WO2022262696A1 - 液体色油及有色聚酰胺纤维 - Google Patents

液体色油及有色聚酰胺纤维 Download PDF

Info

Publication number
WO2022262696A1
WO2022262696A1 PCT/CN2022/098534 CN2022098534W WO2022262696A1 WO 2022262696 A1 WO2022262696 A1 WO 2022262696A1 CN 2022098534 W CN2022098534 W CN 2022098534W WO 2022262696 A1 WO2022262696 A1 WO 2022262696A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
liquid color
weight
liquid
polyamide fiber
Prior art date
Application number
PCT/CN2022/098534
Other languages
English (en)
French (fr)
Inventor
徐理华
范志恒
倪春健
重田真人
Original Assignee
东丽纤维研究所(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽纤维研究所(中国)有限公司 filed Critical 东丽纤维研究所(中国)有限公司
Priority to CN202280011689.0A priority Critical patent/CN116685727B/zh
Priority to US18/564,344 priority patent/US20240141555A1/en
Priority to JP2023576358A priority patent/JP2024528746A/ja
Priority to EP22824175.8A priority patent/EP4357494A1/en
Publication of WO2022262696A1 publication Critical patent/WO2022262696A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/06Dyes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/04Pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/20Physical properties optical

Definitions

  • the invention relates to a liquid color oil and a colored polyamide fiber prepared from the liquid color oil.
  • the colorant is made into a high-concentration masterbatch, and then added in proportion to the needs during the spinning process, due to the polymerization of the masterbatch and the matrix Due to the difference in material density, there is a problem of uneven color dispersion during spinning, and color spots are easily formed on yarns and fabrics, which affects product quality; and frequent color switching consumes a lot of chips and time, resulting in waste of raw materials and energy. In addition, it is very difficult to realize the addition of colorants in the direct spinning process. (2) In the later stage, it is realized by directly dyeing the product. Although it can be dyed into various target colors, it will produce a large amount of sewage and damage the environment.
  • Chinese patent CN102702658A discloses a liquid color masterbatch, comprising (a) a carrier comprising an acrylamide liquid polymer; (b) a colorant; (c) a surfactant, and (d) a functional additive.
  • a carrier comprising an acrylamide liquid polymer
  • a colorant comprising an acrylamide liquid polymer
  • a surfactant comprising an acrylamide liquid polymer
  • a functional additive comprising (a) a carrier comprising an acrylamide liquid polymer; (b) a colorant; (c) a surfactant, and (d) a functional additive.
  • acrylamide was listed as a second-class carcinogen.
  • Acrylamide liquids have the possibility of carcinogenicity.
  • Chinese patent CN106978639A discloses a liquid colorant for polyester fiber dope coloring, which consists of a liquid dispersion medium, a colorant and a dispersant, and the liquid dispersion medium is a mixture of mineral oil and aliphatic polyester .
  • the liquid dispersion medium is not suitable for nylon spinning due to the polarity problem, and its application range is relatively narrow.
  • the purpose of the present invention is to provide a liquid color oil that can be stably added to the polymer and dyed during the spinning process, and a colored polyamide fiber with good quality obtained by adding the liquid color oil.
  • a liquid color oil containing a coloring agent and a base oil agent, the base oil agent is liquid at normal temperature and pressure, and its solubility parameter SP value is 7.5-15.0, preferably 8.0-13.0.
  • the base oil agent is preferably an aliphatic polyester formed by copolymerization of an aliphatic diacid with a total of 2 to 12 carbon atoms and an aliphatic diol with a total of 2 to 6 carbon atoms; more preferably a polyadipate.
  • the colorant preferably accounts for 20-50 wt% of the liquid color oil.
  • the color oil also contains a polyurethane or ammonium polyester acid dispersant.
  • the dispersant preferably accounts for less than 15% by weight of the liquid color oil.
  • the viscosity of the liquid color oil is preferably below 5000poise.
  • the invention also discloses a colored polyamide fiber containing the liquid color oil.
  • the colorant accounts for 0.10-5.00 wt% of the fiber weight
  • the base oil agent accounts for 0.10-8.00 wt% of the fiber weight
  • the dispersant accounts for 1.000 wt% or less of the fiber weight.
  • the dispersed CV% of the colorant in the fiber is preferably 0.3% or less.
  • the liquid color oil of the invention has good compatibility with polyamide and has no influence on the spinnability of polyamide.
  • the color tone of the colored polyamide fiber obtained by adding the liquid color oil of the present invention is good, and physical properties such as strength elongation and fastness are basically not lowered compared with ordinary polyamide fibers. And in the spinning process can realize the rapid switching between various colors.
  • the liquid color oil of the present invention contains a coloring agent and a base oil agent, the base oil agent is liquid at normal temperature and pressure, and its solubility parameter SP value is 7.5-15.0. If the SP value of the base oil agent is lower than 7.5 or the SP value is higher than 15.0, that is, the polarity of the base oil agent is too low or too high, it will make the base oil agent and the matrix polymer incompatible, and the base oil agent cannot be dispersed in in the matrix polymer, eventually resulting in the inability to form filaments. In the present invention, preferably, the solubility parameter SP value of the base oil agent is 8.0-13.0.
  • the composition of the base oil is not specifically limited, and it can be a polymer oil, such as polyester, polyamide, poly Ether, etc.; it can also be low-molecular-weight organic substances, such as aliphatic carboxylic acids, phosphates, etc.
  • the normal temperature and pressure generally refers to a temperature of 20-30° C. and a pressure of 101 KPa.
  • the weight-average molecular weight of a base oil that is liquid at normal temperature and pressure is generally 10,000 or less. Therefore, when detecting whether the base oil agent is liquid at normal temperature and pressure, it can also be judged according to its weight average molecular weight.
  • the preferred aliphatic polyester in the present invention is more preferably composed of aliphatic diacids with a total of 2 to 12 carbon atoms and a total of 2 to 12 carbon atoms.
  • the aliphatic diacid with a total of 2 to 12 carbon atoms may be a straight chain compound or a branched chain compound, and may be a saturated aliphatic diacid or an unsaturated aliphatic diacid. If the total number of carbon atoms of the aliphatic diacid is too large, the problem of too high viscosity or failure to maintain a liquid state is likely to occur after the polymer is formed.
  • the aliphatic diacid can be 1,3-malonic acid, 1,4-butanedioic acid, 1,6-adipic acid, 2-methylsuccinic acid, 2,2-dimethyl Succinic acid, 3-ethyladipic acid, etc., among which 1,6-adipic acid is preferred.
  • the aliphatic diols whose total number of carbon atoms is 2 to 6 can include ethylene glycol, 1-methylethylene glycol, 1,3-propanediol, 1,4-butanediol, etc., among which ethylene glycol is preferred .
  • the base oil agent of the present invention is preferably polyadipate, more preferably polyethylene adipate.
  • the coloring agent in the present invention can be pigment, dye, matting agent.
  • the pigments and dyes can be carbon black, titanium dioxide, cadmium red, quinine, phthalocyanine green, phthalocyanine blue, water fast red, zinc yellow, Hansa yellow, TERATOP BLUE NFB GR, TERATOP RED NFR, TERATOP YELLOW NFG , TERASIL BLACK WW-KSN, etc.
  • the matting agent can be metal soap (aluminum stearate, zinc stearate, calcium stearate, etc.), silicon dioxide, titanium dioxide, etc.
  • the colorant in the liquid color oil preferably accounts for 20-50 wt% of the liquid color oil.
  • the amount of liquid color oil with small colorant concentration is larger, which will inevitably lead to the addition of more base oil.
  • a large amount of base oil agent will cause cost increase, poor spinnability, and decrease in fiber toughness; if the colorant concentration is too high, it will cause uneven dispersion of the colorant or excessive viscosity of the colorant and loss of fluidity.
  • the nano-scale coloring agent Due to the small particle size and large specific surface area and surface energy of the nano-scale coloring agent, a large amount of positive and negative charges are accumulated on the surface, and the irregular shape of the nano-particles also leads to charge aggregation and is in an unstable state, and the particles tend to aggregate Together they reach a steady state, thus forming agglomerates.
  • the agglomeration of the colorant in the liquid color oil cannot be deagglomerated again by adjusting the process during the spinning process, and the viscosity of the liquid color oil increases during use, which reduces its supply performance and clogs the spinning filter, causing the component pressure to rise
  • the life of the spinning components is greatly reduced, the frequent occurrence of floating and broken filaments reduces the operability of spinning, and the uneven color tone of the fibers reduces the quality of the product.
  • nanoparticles In addition to the agglomeration of nanoparticles due to the spontaneous reduction of surface energy, some nanoparticles such as titanium dioxide, because of the layered distribution of negative charge layers and positive charge layers on the surface of the nanostructure, and the outermost layer is a negative charge layer. It is unavoidable to be exposed to positive charges during storage and use, such as ionized H + ions in water vapor. These positive charges will destroy the positive and negative charge accumulation layers of nanoparticles, resulting in the attraction of nanoparticles to each other and agglomeration.
  • the liquid color oil of the present invention preferably also contains a polyurethane or ammonium polyester acid dispersant.
  • the dispersant can generate positive and negative charges, and the positive charge generated by the dispersant and the opposite charge on the surface of the colorant combine with each other to form a protective film on the surface of the colorant particles, reducing the solid/liquid interfacial tension to achieve wetting and coloring The role of the surface of the agent, and then achieve the effect of inhibiting the agglomeration of the colorant.
  • the ester group or amide group in the dispersant and the ester group, amide group or amino group in the base oil can form a hydrogen bond.
  • the dispersant in the base oil can achieve a good uniform dispersion state and achieve the effect of significantly reducing the viscosity of liquid color oil.
  • the base oil agent molecules can enter the colorant particles under the action of the dispersant, further increasing the steric hindrance of the colorant particles and reducing agglomeration, so that the colorant is evenly dispersed.
  • the polyurethane dispersant can be a polyurethane dispersant whose terminal group is n-butanol, n-pentyl, n-hexyl, n-heptyl or n-octyl; the polyester acid ammonium salt
  • the dispersant can be a self-polymer formed from monomers such as N,N,N-trimethyl-p-formyl benzyl ammonium, monoester quaternary ammonium salt, diester quaternary ammonium salt, triester quaternary ammonium salt.
  • the content of the dispersant in the liquid color oil is preferably less than 15 wt%. If the content of dispersant is too high, unnecessary cost increase will be caused after the dispersion effect reaches saturation.
  • the liquid color oil can also contain various functional additives, such as anti-ultraviolet additives, antioxidants, deodorants, antistatic agents, hydrophilic agents, hydrophobic agents, anti-wrinkle agents, reinforcing agents, flame retardants, etc.
  • various functional additives such as anti-ultraviolet additives, antioxidants, deodorants, antistatic agents, hydrophilic agents, hydrophobic agents, anti-wrinkle agents, reinforcing agents, flame retardants, etc.
  • the above-mentioned liquid color oil is stably added to the matrix polymer through the slicing pipeline in front of the screw of the spinning machine, or the melt pipeline behind the screw of the spinning machine, or through the liquid adding pump in the direct spinning process.
  • amide and then prepare colored polyamide fiber. According to the demand for fiber color and the content of colorant in the liquid color oil, choose the appropriate amount of liquid color oil to add.
  • the colorant when preparing a full-dull fiber, is selected as a liquid color oil of titanium dioxide. After adding the liquid color oil, the content of titanium dioxide in the fiber is within the range of 1.50 to 2.60 wt%, to achieve a full-dull effect; when preparing a black fiber , choose the liquid color oil with carbon black as the colorant, at this time, you can add as much liquid color oil as possible without affecting the physical properties of the fiber; The content of the colorant in the oil, choose the appropriate amount of liquid color oil added.
  • the coloring agent in the colored polyamide fiber accounts for 0.10-5.00% by weight of the total fiber
  • the base oil agent accounts for 0.10-8.00% of the total fiber
  • the dispersant accounts for less than 1.000% of the total fiber. If the content of colorant in the colored polyamide fiber is too small, the color of the fiber will be light and cannot meet the tone requirement; if the content of colorant is too much, it will cause cost waste due to color saturation, and the colorant will become a foreign matter affecting to fiber toughness.
  • the base oil agent contained in the colored polyamide fiber is only used as a carrier of the colorant during the addition process to disperse the colorant evenly in the matrix polymer. After the fiber is formed, the base oil agent becomes a foreign matter, which will affect the spinnability of the fiber. Therefore, the content of the base oil should be as small as possible without affecting the dispersion effect of the colorant in the fiber. If the content of the base oil is too much, it will affect the spinning performance and reduce the fiber toughness, while increasing the unnecessary Raw material costs.
  • the purpose of the dispersant is to inhibit the agglomeration of the colorant, improve the dispersibility of the colorant in the base oil and reduce the viscosity of the liquid color oil.
  • dispersants may also become foreign matter that affects spinnability and physical properties. Therefore, the content of dispersants in fibers should be as small as possible without affecting the dispersion effect of colorants in liquid color oils. Too much will affect spinning performance and reduce fiber toughness, and will increase unnecessary raw material costs.
  • the present invention uses the coefficient of variation CV% of the content of the colorant in the fiber to characterize the dispersion uniformity of the colorant in the fiber, and the smaller the CV% value, the more uniform the colorant is dispersed.
  • the present invention uses the coefficient of variation CV% of the fiber hue L * value to characterize the dispersion of the colorant in the fiber.
  • the dispersion CV% of the colorant can be 0.3% or less.
  • the liquid color oil of the invention has good compatibility with the polymer and has no influence on the spinnability of the polymer.
  • the color tone of the colored fiber obtained by adding the liquid color oil of the present invention is good, and the physical properties such as strength and elongation and fastness are basically not lowered compared with ordinary fibers, and the liquid color oil is evenly dispersed in the fiber, and the yarn and fabric are not easy to form Mottling, excellent color uniformity.
  • test method involved in the present invention is described as follows:
  • the percentage of colorant and dispersant contained in the excellent oil can be calculated by weighing the weight of the solid part.
  • NMR nuclear magnetic resonance analysis
  • IR infrared test analysis
  • elemental analysis elemental analysis
  • mass spectrometry analysis the structure and content of colorants and dispersants in solid components can be analyzed, and then the colorants and dispersants in excellent oil can be calculated respective concentrations.
  • the solvent added to the color oil can be separated, and the rest is the base oil agent.
  • the rest of the base oil is weighed to calculate the weight ratio of the base oil in the liquid color oil.
  • the organic solvent can be selected from common organic solvents such as cyclohexane, acetone, and chloroform.
  • HT-PNMR12-9 nuclear magnetic resonance spectrometer H, C system
  • Huantong NMR Company Use the HT-PNMR12-9 nuclear magnetic resonance spectrometer (H, C system) of Huantong NMR Company to scan the hydrogen NMR spectrum and the carbon NMR spectrum, and combine the results of the hydrogen spectrum and the carbon spectrum with the infrared test analysis (IR ), elemental analysis, and mass spectrometry analysis to determine the molecular structure of the base oil.
  • IR infrared test analysis
  • the molecular weight determination of the base oil agent is carried out by gel permeation chromatography (Gel Permeation Chromatography, GPC), a well-known method for determining the molecular weight of polymer materials in the industry.
  • GPC Gel Permeation Chromatography
  • SP is a parameter that represents the structural characteristics of a substance and is used to characterize the interaction force between molecules.
  • the theoretical definition of the solubility parameter (SP) is the square root of the cohesive energy density of the material.
  • the present invention utilizes the group contribution calculation method to calculate the solubility parameter, which is based on the structure of the substance to calculate the solubility parameter, which is called the molar group gravitational constant method, which divides the chemical structure of the substance into appropriate atoms or groups, called the The combined quantity of cohesive energy and molar volume is the molar gravitational constant (F), and it is additive.
  • the calculation method adopted in the present invention is the Hoy method in the group contribution calculation method.
  • is the SP value
  • F i represents the molar gravitational constant of the group, and the unit is J 1/2 ⁇ cm 3/2 ⁇ mol -1
  • V i represents the molar volume of the group, the unit is cm 3 ⁇ mol -1 .
  • the Yarong RE-52CS/5299 rotary evaporator uses the Yarong RE-52CS/5299 rotary evaporator to remove the acetone from the mixture of solvent and oil obtained by extraction three times, and then obtain the base oil contained in the fiber.
  • the ratio of the weight of the extracted base oil agent to the weight of the initial fiber is the content of the base oil agent in the fiber.
  • the structural analysis and quantitative analysis of the coloring agent in the fiber are carried out by nuclear magnetic resonance analysis (NMR), infrared test analysis (IR), elemental analysis, and mass spectrometry analysis.
  • NMR nuclear magnetic resonance analysis
  • IR infrared test analysis
  • elemental analysis elemental analysis
  • mass spectrometry analysis mass spectrometry analysis
  • NMR nuclear magnetic resonance analysis
  • IR infrared test analysis
  • elemental analysis elemental analysis
  • mass spectrometry auxiliary analysis the structural analysis and quantitative analysis of the dispersant in the fiber are carried out.
  • the filter is used for production with a pore size of 15 microns, the discharge rate is 16g/min, and the evaluation time is 12 hours. Whether it can be used is judged by whether the filter pressure rises within 12 hours. If the filter pressure does not increase at all within 12 hours, it is judged as ⁇ (excellent), if the rise is less than 0.2MPa, it is judged as ⁇ (usable); if it rises 0.2-0.5MPa, it is judged as ⁇ (barely usable); if it rises more than 0.5MPa, it is judged as ⁇ (unavailable).
  • the L * value of the polyamide fiber sample was tested with a Japan-made SM-T45 color difference meter.
  • the L * value is an indicator of the brightness of the appearance of the sample, and the value range generally ranges from 0 to 100. The higher the L * value, the brighter the appearance of the sample.
  • Test multiple L * values for the same sample at different time points calculate the standard deviation (STD) between each L * value, and then divide the STD by the arithmetic mean (AVG) of all L * values, and calculate the data as a percentage It means CV%, the lower the CV%, the better the tone of the polyamide fiber, and the more uniform the colorant is dispersed in the fiber.
  • CV% (STD/AVG) x 100%.
  • the TiO 2 content in the fiber was tested by ZSX PRIMUSIII+ X-ray fluorescence spectrometer of RIGUKU company. For testing multiple TiO 2 content values with one sample at different spinning time points, calculate the standard deviation (STD) between each content value, and then divide STD by the arithmetic mean value (AVG) of all content values, the calculated data Expressed as a percentage, that is, CV%, the lower the CV%, the more uniform the dispersion of titanium dioxide in the fiber,
  • CV% (STD/AVG) x 100%.
  • the liquid adding device above the screw is continuously and stably fed into the spinning machine to be evenly mixed and melted with nylon, and then spun through the spinneret, and further processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • Filtration pressure increased by 0.08 MPa in 12 hours, and there was almost no filament breakage during spinning.
  • the liquid has a high viscosity, although it does not affect the spinning, but the fluidity is weak due to the viscosity problem.
  • TiO 2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.80wt% of the weight of the polyamide fiber.
  • the TiO 2 content CV% was 0.52%.
  • Select matrix polymer to be polyamide make the polyethylene adipate (PEGA, weight-average molecular weight 1000) content of 47wt% that TiO2 content is 50wt%, SP is 9.1, polyurethane type dispersant polyethylene
  • PEGA polyethylene adipate
  • SP is 9.1
  • the liquid color oil with an imine (PEI) content of 3wt% is continuously and stably fed into the spinning machine through the liquid adding device above the screw of the spinning machine, mixed and melted with nylon, and is discharged and spun through the spinneret, and further passed through After processing, polyamide fibers are obtained.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • TiO2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.69wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.108wt% of the weight of the polyamide fiber.
  • the CV% of the TiO 2 content was 0.28%.
  • Select matrix polymer to be polyamide make the polyethylene adipate (PEGA, weight-average molecular weight 1000) content of 47wt% that TiO2 content is 50wt%, SP is 9.1, polyurethane type dispersant polyethylene
  • PEGA polyethylene adipate
  • SP is 9.1
  • the liquid color oil with an imine (PEI) content of 3wt% is continuously and stably fed into the spinning machine through the liquid adding device above the screw of the spinning machine, mixed and melted with nylon, and is discharged and spun through the spinneret, and further passed through After processing, polyamide fibers are obtained.
  • the added amount of the liquid color oil is 0.20wt% relative to the polyamide fiber.
  • TiO2 accounts for 0.10wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 0.09wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.006wt% of the weight of the polyamide fiber.
  • the TiO 2 content CV% was 0.25%.
  • Select matrix polymer to be polyamide make the polyethylene adipate (PEGA, weight-average molecular weight 1000) content of 47wt% that TiO2 content is 50wt%, SP is 9.1, polyurethane type dispersant polyethylene
  • PEGA polyethylene adipate
  • SP is 9.1
  • the liquid color oil with an imine (PEI) content of 3wt% is continuously and stably fed into the spinning machine through the liquid adding device above the screw of the spinning machine, mixed and melted with nylon, and is discharged and spun through the spinneret, and further passed through After processing, polyamide fibers are obtained.
  • the added amount of the liquid color oil is 5.00wt% relative to the polyamide fiber.
  • TiO2 accounts for 2.50wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 2.35wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.150wt% of the weight of the polyamide fiber.
  • the TiO 2 content CV% was 0.22%.
  • Select matrix polymer to be polyamide make the polyethylene adipate (PEGA, weight-average molecular weight 1000) content of 47wt% that TiO2 content is 50wt%, SP is 9.1, polyurethane type dispersant polyethylene
  • PEGA polyethylene adipate
  • SP is 9.1
  • the liquid color oil with an imine (PEI) content of 3wt% is continuously and stably fed into the spinning machine through the liquid adding device above the screw of the spinning machine, mixed and melted with nylon, and is discharged and spun through the spinneret, and further passed through After processing, polyamide fibers are obtained.
  • the added amount of the liquid color oil is 0.10wt% relative to the polyamide fiber.
  • TiO2 accounts for 0.05wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 0.05wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.003wt% of the weight of the fiber.
  • the TiO 2 content CV% was 0.21%. A small amount of addition is not a problem in terms of practicability, but too low an addition amount does not make much sense.
  • Select matrix polymer to be polyamide make the polyethylene adipate (PEGA, weight-average molecular weight 1000) content of 47wt% that TiO2 content is 50wt%, SP is 9.1, polyurethane type dispersant polyethylene
  • PEGA polyethylene adipate
  • SP is 9.1
  • the liquid color oil with an imine (PEI) content of 3wt% is continuously and stably fed into the spinning machine through the liquid adding device above the screw of the spinning machine, mixed and melted with nylon, and is discharged and spun through the spinneret, and further passed through After processing, polyamide fibers are obtained.
  • the added amount of the liquid color oil is 10.00wt% relative to the polyamide fiber.
  • TiO 2 accounts for 5.00wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 4.70wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.300wt% of the weight of the fiber.
  • the TiO 2 content CV% was 0.24%.
  • Select matrix polymer to be polyamide with TiO Content be 50wt%, SP be the polyethylene adipate (PEGA, weight-average molecular weight 1000) content of 9.1 be 42wt%, polyurethane type dispersant polyethylene
  • the liquid color oil with an imine (PEI) content of 8wt% is continuously and stably fed into the spinning machine through the liquid adding device above the screw of the spinning machine to mix and melt evenly with nylon, and is discharged and spun through the spinneret, and further passed through After processing, polyamide fibers are obtained.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • TiO2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.51wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.288wt% of the weight of the fiber.
  • the TiO 2 content CV% was 0.23%.
  • the matrix polymer is selected as polyamide, and the content of polyethylene adipate (PEGA, weight average molecular weight 1000) with TiO2 content of 50wt% and SP of 9.1 is 40wt%, and the polyurethane dispersant contains polyamide
  • PEGA polyethylene adipate
  • the polyurethane dispersant contains polyamide
  • the liquid color oil whose ethyleneimine (PEI) amount is 10wt% is continuously and stably sent into the spinning machine through the liquid adding device above the spinning machine screw, mixed and melted evenly with nylon, and is discharged and spun through the spinneret, and further After post-processing, polyamide fibers are obtained.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • TiO2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.44wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.360wt% of the weight of the fiber.
  • the TiO 2 content CV% was 0.15%.
  • Select matrix polymer to be polyamide make the content of polyethylene adipate (PEGA, weight - average molecular weight 1000) of 9.1 content be 35wt%, polyurethane dispersant polyethylene
  • PEGA polyethylene adipate
  • PEI imine
  • the liquid color oil with an imine (PEI) content of 15wt% is continuously and stably fed into the spinning machine through the liquid adding device above the screw of the spinning machine to mix and melt with nylon evenly, and is discharged and spun through the spinneret, and further passed through After processing, polyamide fibers are obtained.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • the filtration pressure increased by 0.16 MPa within 12 hours, and there was almost no filament breakage during spinning.
  • TiO2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.26wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.540wt% of the weight of the fiber.
  • the TiO 2 content CV% was 0.13%.
  • Select matrix polymer to be polyamide make the content of polyethylene adipate (PEGA, weight-average molecular weight 1000) of 9.1 be 32wt %, polyurethane type dispersant polyethylene
  • PEGA polyethylene adipate
  • PEI imine
  • the liquid color oil with an imine (PEI) content of 18wt% is continuously and stably fed into the spinning machine through the liquid adding device above the screw of the spinning machine to mix and melt evenly with nylon, and is discharged and spun through the spinneret, and further passed through After processing, polyamide fibers are obtained.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • TiO2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.15wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.648wt% of the weight of the fiber.
  • the TiO 2 content CV% was 0.14%.
  • Select matrix polymer to be polyamide with TiO Content be 30wt%
  • SP be the polyethylene adipate (PEGA, weight-average molecular weight 1000) content of 9.1 and be that the liquid color oil of 70wt% is passed through in spinning machine screw
  • the liquid adding device above is continuously and stably fed into the spinning machine to be evenly mixed and melted with nylon, and then spun through the spinneret, and further processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 6.00wt% relative to the polyamide fiber.
  • TiO2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 4.20wt% of the weight of the polyamide fiber.
  • the TiO 2 content CV% was 0.32%.
  • the selected matrix polymer is polyamide, the polyethylene adipate (PEGA, weight-average molecular weight 2000) content of TiO2 content is 50wt%, SP is 9.1 is 47wt%, polyester acid ammonium salt type dispersant ten
  • the liquid color oil with a glycol polyethylene glycol sulfate ammonium salt (ALES) content of 3wt% is continuously and stably sent into the spinning machine through the liquid adding device above the spinning machine screw to mix and melt evenly with nylon, and pass through the spinning machine.
  • the board is extruded and spun, and further post-processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • TiO2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.69wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.108wt% of the weight of the fiber.
  • the TiO 2 content CV% was 0.29%.
  • the liquid adding device above is continuously and stably fed into the spinning machine to be evenly mixed and melted with nylon, and then spun through the spinneret, and further processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • TiO 2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.80wt% of the weight of the polyamide fiber.
  • the TiO 2 content CV% was 0.46%.
  • Select matrix polymer to be polyamide be 50wt% by TiO content
  • SP be 8.0 pyromellitic acid (PMA, weight-average molecular weight 250) content
  • PMA weight-average molecular weight 250
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • TiO 2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.80wt% of the weight of the polyamide fiber.
  • the TiO 2 content CV% was 0.51%.
  • Select matrix polymer to be polyamide with TiO 2 content is 50wt%
  • SP is the phosphoric acid ester CR-733S (RDP, weight-average molecular weight 3000) content of 10.5 and is the liquid color oil of 50wt% by the liquid above the spinning machine screw rod
  • the adding device continuously and stably feeds it into the spinning machine to mix and melt nylon evenly, and then it is extruded and spun through the spinneret, and further processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • Filtration pressure increased by 0.12MPa in 12 hours, and there was almost no broken filament.
  • TiO accounted for 1.80wt% of the weight of the polyamide fiber
  • base oil accounted for 1.80wt% of the weight of the polyamide fiber.
  • the TiO 2 content CV% was 0.49%.
  • Select matrix polymer to be polyamide with TiO 2 content be 50wt%
  • SP be that the liquid polyamide oligomer (PA, weight-average molecular weight 500) content of 13.0 is that the liquid color oil of 50wt% is passed through above spinning machine screw rod
  • the liquid adding device is continuously and stably sent to the spinning machine to mix and melt the nylon evenly, and then it is spun out through the spinneret, and further processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • TiO 2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.80wt% of the weight of the polyamide fiber.
  • the TiO 2 content CV% was 0.52%.
  • Select matrix polymer to be polyamide with TiO Content be 50wt%
  • SP be the polyethylene glycol (PEG of 15.0, weight-average molecular weight 800) content be that the liquid color oil of 50wt% is added by the liquid above spinning machine screw rod
  • the device is continuously and stably fed into the spinning machine to be evenly mixed and melted with nylon, and then spun through the spinneret, and further processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • TiO 2 accounts for 1.80wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.80wt% of the weight of the polyamide fiber.
  • the TiO 2 content CV% was 0.44%.
  • Select matrix polymer to be polyamide be that 20wt% with carbon black content, SP be the polyethylene adipate (PEGA, weight-average molecular weight 3000) content of 9.1 and be that the liquid color oil of 80wt% is passed in spinning machine screw
  • the liquid adding device above is continuously and stably fed into the spinning machine to be evenly mixed and melted with nylon, and then spun through the spinneret, and further processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 10.00wt% relative to the polyamide fiber.
  • the carbon black in the polyamide fiber accounts for 2.00wt% of the weight of the polyamide fiber, and the base oil agent accounts for 8.00wt% of the weight of the polyamide fiber.
  • the CV% of the hue L * was 0.67%.
  • the matrix polymer is selected as polyamide, the red pigment (PigmentRED254) content is 30wt%, SP is 9.1 polyethylene adipate (PEGA, weight average molecular weight 10000) content is 70wt% liquid color oil through spinning
  • the liquid adding device above the screw of the spinning machine is continuously and stably fed into the spinning machine to mix and melt the nylon evenly, and then it is spun out through the spinneret and further post-processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 3.30wt% relative to the polyamide fiber.
  • the filtration pressure increased by 0.15 MPa in 12 hours, and there was almost no broken filament during the spinning process.
  • the pigment in the final polyamide fiber accounts for 1.00 wt% of the weight of the polyamide fiber, and the base oil agent accounts for 2.31 wt% of the weight of the polyamide fiber.
  • the CV% of the hue L * was 0.62%.
  • the matrix polymer is selected as polyamide, and the content of red pigment (PigmentRED254) is 30wt%, and the content of polyethylene adipate (PEGA, weight average molecular weight 5000) of 9.1 is 55wt%.
  • the liquid color oil with a polyethyleneimine (PEI) content of 15wt% is continuously and stably fed into the spinning machine through the liquid adding device above the screw of the spinning machine, mixed and melted evenly with nylon, and is spun out through the spinneret. And further processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 6.67wt% relative to the polyamide fiber.
  • the filtration pressure did not rise at all, and there was almost no broken filament during the spinning process.
  • the pigment accounts for 2.00wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 3.67wt% of the weight of the polyamide fiber
  • the dispersant accounts for 1.000wt% of the weight of the polyamide fiber.
  • the CV% of the hue L * was 0.22%.
  • the matrix polymer is selected as polyamide, and the content of red pigment (PigmentRED254) is 15wt%, and the content of polyethylene adipate (PEGA, weight average molecular weight 8000) of 9.1 is 82wt%, and polyurethane is dispersed
  • the liquid color oil with a polyethyleneimine (PEI) content of 3wt% is continuously and stably fed into the spinning machine through the liquid adding device above the screw of the spinning machine, mixed and melted evenly with nylon, and spun out through the spinneret. And further processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 6.67wt% relative to the polyamide fiber.
  • the filtration pressure did not rise at all, and there were occasional broken filaments during the spinning process, but the spinning could be carried out.
  • the pigment accounts for 1.00wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 5.47wt% of the weight of the polyamide fiber
  • the dispersant accounts for 0.200wt% of the weight of the polyamide fiber.
  • CV% of hue L * is 0.28%
  • the selection matrix polymer is polyamide, and the content of polyethylene adipate (PEGA, weight-average molecular weight 1000) of blue dye (ReactiveBlue2) content is 35wt%, SP is 9.1 and the liquid color oil that is 65wt% is passed through
  • PEGA polyethylene adipate
  • SP blue dye
  • the liquid adding device above the screw of the spinning machine is continuously and stably fed into the spinning machine to mix and melt evenly with nylon, and then it is spun out through the spinneret and further post-processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 2.90wt% relative to the polyamide fiber.
  • the filtration pressure increased by 0.15 MPa in 12 hours, and there was almost no broken filaments during the spinning process, and the spinning could be carried out.
  • the pigment accounts for 1.00 wt% of the weight of the polyamide fiber
  • the base oil agent accounts for 1.88 wt% of the weight of the polyamide fiber.
  • the CV% of the hue L * was 0.55%.
  • Select matrix polymer to be polyamide TiO2 content is 50wt%
  • SP is ethylene glycol (EG, weight-average molecular weight 62) content of 16.3 and is the liquid color oil of 50wt% by the liquid adding device above spinning machine screw rod It is continuously and stably sent to the spinning machine to be evenly mixed and melted with nylon, and then spun through the spinneret, and further post-processing to obtain polyamide fibers.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • Select matrix polymer to be polyamide TiO2 content is 50wt%
  • SP is that the diisopropyl ether (DE, weight-average molecular weight 102) content of 6.9 is the liquid color oil of 50wt% by the liquid above the spinning machine screw rod
  • DE weight-average molecular weight 102
  • the adding device continuously and stably feeds it into the spinning machine to mix and melt nylon evenly, and then it is extruded and spun through the spinneret, and further processed to obtain polyamide fibers.
  • the added amount of the liquid color oil is 3.60wt% relative to the polyamide fiber.
  • the matrix polymer is selected as polyamide, and the color masterbatch is polyamide masterbatch chips with a carbon black content of 20%.
  • the first silo and the second silo are quantified by respective chip metering devices and merged into the mixer. After being stirred and mixed by the mixer, it enters the screw of the spinning machine, and is melted, sheared, conveyed by the screw, and finally spun through the spinneret to obtain black polyamide fiber.
  • the added amount of the black masterbatch is 10.0wt% relative to the polyamide fiber.
  • the filtration pressure increased by 0.5 MPa in 12 hours, but the filaments were occasionally broken during the spinning process.
  • the pigment in the fiber accounts for 2.00 wt% of the weight of the polyamide fiber, and the CV% of the hue L * is 1.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种液体色油和有色聚酰胺纤维。所述液体色油含有着色剂和基础油剂,所述基础油剂在常温常压下为液体,且其溶解度参数SP值为7.5~15.0。所述有色聚酰胺纤维中含有前述液体色油。所述液体色油在纺丝过程中可以稳定加入聚合物并使其染色的液体色油,所述有色聚酰胺纤维具有良好的纺丝性和染色性。

Description

液体色油及有色聚酰胺纤维 技术领域
本发明涉及一种液体色油以及由这种液体色油制备得到的有色聚酰胺纤维。
背景技术
赋予由合成纤维制备的产品各种各样的颜色,通常采用下列方法:(1)将着色剂制成高浓度母粒,再在纺丝过程中根据需要按比例添加,由于母粒和基体聚合物密度差异,纺丝时存在颜色分散不均匀的问题,在纱线和织物上容易形成色斑影响产品品质;且频繁切换颜色消耗大量切片和时间,造成原料和能源的浪费。另外在直连纺工艺中想实现着色剂的添加是非常困难的。(2)后期通过对制品直接染色实现,虽然可以染成各种目标颜色,但是会产生大量的污水破坏环境。
为了克服上述两种方法存在的缺陷,提出了一种新型方法,在纺丝过程中添加液体色油,使得纤维能够快速上色。
中国专利CN102702658A公开了一种液体色母料,包含(a)载体,其包含丙烯酰胺类液体聚合物;(b)着色剂;(c)表面活性剂,和(d)功能添加剂。但是丙烯酰胺在2017年10月27日本世界卫生组织国际癌症研究机构公布为二类致癌物清单中,丙烯酰胺类液体具有致癌的可能性。
中国专利CN106978639A公开了一种聚酯纤维原液着色用液态着色剂,由液态分散介质、着色剂和分散剂等组成,所述的液态分散介质是矿物油和脂肪族聚酯的两类物质的混合物。但是该液态分散介质因为极性问题无法适用于尼龙纺丝,应用范围比较狭窄。
发明内容
本发明的目的在于提供一种在纺丝过程中可以稳定加入聚合物并使其染色的液体色油,以及通过液体色油的添加获得的品质优良的有色聚酰胺纤维。
本发明的技术解决方案是:
一种液体色油,含有着色剂和基础油剂,所述基础油剂在常温常压下为液体,且其溶解度参数SP值为7.5~15.0,优选8.0~13.0。
所述基础油剂优选由碳原子总数为2~12的脂肪族二酸和碳原子总数为2~6的脂肪族二醇共聚形成的脂肪族聚酯;更优选聚己二酸酯。
所述着色剂优选占液体色油的20~50wt%。
所述色油中优选还含有聚亚安酯类或聚酯酸铵盐分散剂。
所述分散剂优选占液体色油重量的15wt%以下。
所述液体色油的粘度优选在5000poise以下。
本发明还公开了一种含有上述液体色油的有色聚酰胺纤维。优选所述着色剂占纤维重量的0.10~5.00wt%,所述基础油剂占纤维重量的0.10~8.00wt%,所述分散剂占纤维重量的1.000wt%以下。
所述纤维中着色剂的分散CV%优选在0.3%以下。
本发明的液体色油与聚酰胺相容性好,对聚酰胺的纺丝性没有影响。添加了本发明液体色油得到的有色聚酰胺纤维的色调好,强伸度、坚牢度等物性与普通聚酰胺纤维相比基本没有下降。且在纺丝过程中可以实现各种颜色之间的迅速切换。
具体实施方式
本发明的液体色油中含有着色剂和基础油剂,所述基础油剂在常温常压下为液体,且其溶解度参数SP值为7.5~15.0。如果基础油剂的SP值低于7.5或者SP值高于15.0,即基础油剂的极性过低或者过高,均会使得基础油剂和基体聚合物不相容,基础油剂无法分散在基体聚合物中,最终导致无法成丝。本发明优选所述基础油剂的溶解度参数SP值为8.0~13.0。
满足常温常压下为液体且溶解度参数SP值在7.5~15.0范围内的前提下,对所述基础油剂的构成不做具体限定,可以是聚合物油剂,如聚酯、聚酰胺、聚醚等;也可以是低分子有机物,如脂肪族羧酸、磷酸酯等。
所述常温常压,一般是指温度20~30℃、压力101KPa。对于聚合物来说,常温常压为液体的基础油剂的重均分子量一般为10000以下。因此,在检测所述基础油剂在常温常压下是否为液体时,也可以根据其重均分子量进行判断。
考虑到原料成本和使用安全性等方面,在上述列举的基础油剂中,本发明优选脂肪族聚酯,更优选由碳原子总数为2~12的脂肪族二酸和碳原子总数为2~6的脂肪族二醇共聚形成的脂肪族聚酯。
所述碳原子总数为2~12的脂肪族二酸可以是直链化合物也可以带有支链,可以是饱和脂肪族二酸也可以是不饱和脂肪族二酸。所述脂肪族二酸的碳原子总数太多的话,在形成聚合物之后容易出现粘度过大或者无法保持液态的问题。具体的,所述脂肪族二酸可以是1,3-丙二酸、1,4-丁二酸、1,6-已二酸、2-甲 基丁二酸、2,2-二甲基丁二酸、3-乙基己二酸等,其中优选1,6-已二酸。
所述碳原子总数为2~6的脂肪族二醇可以列举的有乙二醇、1-甲基乙二醇,1,3-丙二醇、1,4-丁二醇等,其中优选乙二醇。
以上述脂肪族二酸和脂肪族二醇为原料形成的脂肪族聚酯中,本发明所述基础油剂优选聚己二酸酯,更优选聚己二酸乙二醇酯。
本发明所述着色剂可以是颜料、染料、消光剂。所述颜料、染料可以是炭黑、钛白粉、镉红、群菁、酞菁绿、酞菁蓝、水固红、锌黄、汉沙黄、TERATOP BLUE NFB GR、TERATOP RED NFR、TERATOP YELLOW NFG、TERASIL BLACK WW-KSN等。所述消光剂可以是金属皂(硬脂酸铝、硬脂酸锌、硬脂酸钙盐等)、二氧化硅、二氧化钛等。
液体色油中着色剂优选占液体色油的20~50wt%。纤维中添加同样量的着色剂的情况下,相比于着色剂浓度大的液体色油,着色剂浓度小的液体色油的添加量较大,这样就势必导致添加的基础油剂也较多,大量的基础油剂会造成成本提高、可纺性差、纤维韧性下降;如果着色剂浓度太大的话,会造成着色剂分散不均匀或者色油粘度过大而失去流动性。
纳米级别的着色剂由于颗粒较小,比表面积和表面能较大,表面累积大量的正负电荷,而纳米颗粒由于其不规则的形状也导致电荷聚集进而处于不稳定的状态,颗粒趋向于聚集在一起达到稳定状态,因而形成团聚物。着色剂在液体色油中产生的团聚在纺丝过程中无法通过调整工艺再次解团聚,并在使用过程中产生液体色油粘度增大而降低其供给性能、堵塞纺丝滤网引起组件压力上升进而导致纺丝组件寿命大大降低、飘丝断丝频发降低纺丝操作性、纤维色调不匀降低产品品质等问题。
除纳米颗粒自发降低表面能而发生团聚之外,某些纳米颗粒如二氧化钛,因为其纳米结构表面存在负电荷层和正电荷层交替排列、且最外层为负电荷层的层状分布电荷,在存储使用过程中无法避免接触到正电荷,比如水气中电离的H +离子,这些正电荷会破坏纳米颗粒的正负电荷聚集层,从而导致纳米颗粒互相吸引进而产生团聚。
因此,为了避免着色剂发生团聚,本发明的液体色油中还优选含有聚亚安酯类或聚酯酸铵盐分散剂。所述分散剂可以产生正负电荷,分散剂所产生的正电荷和着色剂表面的相反电荷相互结合,在着色剂颗粒的表面形成一层保护膜,降低 固/液界面张力以达到润湿着色剂表面的作用,进而达到抑制著色剂团聚的作用。另外,分散剂中的酯基或者酰胺基基团,和基础油剂中的酯基、酰胺基或氨基等之间可形成氢键结合,在此氢键作用下,分散剂在基础油剂中可实现良好得均匀分散态,实现显著降低液体色油粘度的效果。另外基础油剂分子可在分散剂的作用下进入着色剂颗粒间,进一步增大着色剂粒子空间位阻进而减少团聚,使着色剂均匀分散。
所述聚亚安酯类分散剂可以是端基为正丁醇基、正戊基、正己基、正庚基或正辛基的聚亚安酯类分散剂;所述聚酯酸铵盐类分散剂可以是由N,N,N-三甲基对甲酰基苄铵、单酯季铵盐、双酯季铵盐、三酯季铵盐等单体形成的自聚物。
所述分散剂在液体色油中的含量优选15wt%以下。如果分散剂的含量太高的话,分散效果达到饱和之后会造成不必要的成本上升。
同时,液体色油中还可以含有各种功能添加剂,比如抗紫外添加剂、抗氧化剂、消臭剂、抗静电剂、亲水剂、疏水剂、抗皱剂、补强剂、阻燃剂等。
制备有色纤维时,通过纺丝机螺杆前方的切片管道,或者纺丝机螺杆后方熔体管道,或者在直连纺丝工艺中通过液体添加泵将上述液体色油稳定的添加至基体聚合物聚酰胺中,进而制备有色聚酰胺纤维。根据对纤维颜色的需求以及液体色油中着色剂的含量,选择合适的液体色油的添加量。
比如,制备全消光纤维时,选择着色剂为二氧化钛的液体色油,添加液体色油后使得纤维中二氧化钛的含量在1.50~2.60wt%的范围之内,达到全消光的效果;制备黑色纤维时,选择着色剂为炭黑的液体色油,此时在不影响纤维物性的条件下可以尽量多地添加液体色油;制备其他颜色的纤维时,根据对颜色深浅的需求,根据所添加液体色油中着色剂的含量,选择合适的液体色油的添加量。
本发明中,优选有色聚酰胺纤维中着色剂的含量占纤维总量的0.10~5.00wt%,基础油剂占纤维总量的0.10~8.00%,分散剂占纤维总量的1.000%以下。所述有色聚酰胺纤维中着色剂含量太少的话,纤维的颜色偏淡,达不到色调要求;着色剂含量太多的话一方面会因颜色饱和而造成成本浪费,并且着色剂会成为异物影响到纤维的韧性。
所述有色聚酰胺纤维中所含有的基础油剂仅在添加过程中作为着色剂的载体使着色剂均匀分散在基体聚合物中,形成纤维之后基础油剂便成为异物会影响纤维的纺丝性和韧性,因此在不影响着色剂在纤维中的分散效果的前提下基础油 剂的含量应尽可能小,基础油剂含量太多的话会影响纺丝性能和降低纤维韧性,同时提高不必要的原料成本。
所述分散剂目的是为了抑制着色剂的团聚、提高着色剂在基础油剂中的分散性以及降低液体色油的粘度。但是,对于纤维来说分散剂也有可能成为影响纺丝性和物性的异物,因此在不影响着色剂在液体色油中的分散效果的前提下纤维中分散剂的含量也应尽可能小,含量太多的话会影响纺丝性能和降低纤维韧性,同时会提高不必要的原料成本。
本发明使用着色剂在纤维中含量的变异系数CV%来表征着色剂在纤维中的分散均匀性,CV%值越小说明着色剂分散得越均匀。对于普通颜料、染料来说,由于着色剂的含量分布测定繁琐,本发明用纤维色调L *值的变异系数CV%表征着色剂在纤维中的分散。使用了含有分散剂的液体色油所得到的纤维中,着色剂的分散CV%可以达到0.3%以下。
本发明的液体色油与聚合物相容性好,对聚合物的纺丝性没有影响。添加了本发明液体色油得到的有色纤维的色调好,强伸度、坚牢度等物性与普通纤维相比基本没有下降,且液体色油在纤维中分散均匀,纱线和织物不容易形成色斑,颜色均匀度优良。
对本发明中所涉及的测试方法说明如下:
(1)液体色油粘度
采用Brookfield的旋转式粘度计(型号DVNX),将旋转式粘度计的转子浸入液体色油中,开启设备即可对液体色油的粘度进行定量测试。
(2)色油中着色剂、分散剂和基础油剂含量
向一定重量的液体色油中加入重量比30~50wt%的溶剂得混合液体,将混合液体置于超声波环境进行超声处理1小时,超声波处理后的混合液体进行离心分离(转速18000rpm,时间10分钟),得到上层液体和下层固体。
称取固体部分重量,可计算出色油中所含着色剂和分散剂的百分比。
采用核磁共振分析(NMR)、以红外测试分析(IR)、元素分析、质谱分析辅助分析,分析出固体成分中着色剂和分散剂的结构和含量,进而可计算出色油中着色剂和分散剂各自的浓度。
对于得到的上层液体,在70℃的真空环境中减压蒸馏24小时,可将添加进色油的溶剂分离出来,剩下的就是基础油剂。对剩下的基础油剂进行称重,可计 算出液体色油中基础油剂的重量比例。
所述有机溶剂可以从环己烷、丙酮、三氯甲烷等常用有机溶剂中选取。
(3)基础油剂分子结构确定
使用寰彤核磁公司的HT-PNMR12-9核磁共振波谱仪(H,C系统),进行核磁共振氢谱和核磁共振碳谱扫描,通过氢谱和碳谱的结果,再结合红外测试分析(IR)、元素分析、质谱分析辅助分析,确定基础油剂的分子结构。
(4)基础油剂分子量测定
采用业内周知的高分子材料分子量测定方法:凝胶渗透色谱(Gel Permeation Chromatography、GPC)进行基础油剂的分子量测定。
(5)溶解度参数SP(solubility parameter)
SP是一个表示物质结构特点的参数,用来表征分子间的相互作用力。溶解度参数(SP)的理论定义为材料内聚能密度的开平方。本发明利用基团贡献计算法计算溶解度参数,是根据物质的结构计算溶解度参数,称为摩尔基团引力常数法,它将物质的化学结构分割成适当的原子或基团,称各基团的内聚能和摩尔体积的组合量为摩尔引力常数(F),且具有加和性。本发明采用的计算方法为基团贡献计算法中的Hoy法。
δ=ΣF i/ΣV i
其中δ为SP值;F i表示基团的摩尔引力常数,单位是J 1/2·cm 3/2·mol -1;V i表示基团的摩尔体积,单位是cm 3·mol -1。Hoy法所需的各基团F i和V i可通过简单的查阅资料轻松得到。
(6)纤维中基础油剂含量
使用2g/L的精炼剂水溶液,在80℃下对纤维进行20分钟洗涤,去除表面纺丝油剂。称重一定量的洗涤后的纤维样品剪碎成1mm左右。使用索氏抽提法,将剪碎的样品和溶剂,例如丙酮,加入索氏提取器中提取纤维中所含基础油剂。纤维中的基础油剂会在抽提过程中被溶入溶剂中,提取1小时后取出溶剂和油剂的混合物。再次加入新的溶剂进行提取,重复三次。将提取三次所得溶剂和油剂混合物,使用亚荣RE-52CS/5299旋转蒸发仪除去丙酮,即可得到纤维中所含基础油剂。提取出的基础油剂的重量占初始纤维重量的比例即为纤维中基础油剂含量。
(7)纤维中着色剂含量
采用核磁共振分析(NMR)、以红外测试分析(IR)、元素分析、质谱分析辅助分析,对纤维中着色剂进行结构分析和定量分析。
(8)纤维中分散剂含量
采用核磁共振分析(NMR)、以红外测试分析(IR)、元素分析、质谱分析辅助分析,对纤维中分散剂进行结构分析和定量分析。
(9)滤压差
采用过滤网使用15微米孔径生产用滤网,吐出量为16g/min,评价时间为12小时,通过12小时内滤压是否上升来判断使用可否。12小时内滤压完全不上升,判定为◎(优秀),上升小于0.2MPa,判定为〇(可用);上升0.2~0.5MPa,判定为△(勉强可用);上升大于0.5MPa,判定为×(不可用)。
(10)纺丝性能
通过评价纺丝过程中的喷丝孔污染情况,有无喷丝孔后纱线共振现象,有无滴料,有无单丝,有无断丝,以及纤维强伸度和物性变化来进行综合评判。纺丝过程中无任何异常为◎,纺丝过程中无单丝且几乎不断丝为〇(断丝2回以下/吨),纺丝过程中无单丝但偶尔有断丝情况为△(断丝3~5回/吨),纺丝过程中发生频繁断丝或无法成丝等造成无法连续生产结果的为×(断丝频率超过5回/吨)。
(11)纤维L 值的CV%
使用日本产SM-T45型色差计测试聚酰胺纤维样品的L 值。L 值是试样外观亮度的指标,值域范围一般在0到100。L 值越高说明试样外观趋向透亮。对同一样品在不同时间点测试多个L 值,计算各个L 值之间的标准偏差(STD),再用STD除以所有L 值的算术平均值(AVG),算得的数据以百分数表示即CV%,CV%越低说明聚酰胺纤维的色调越好,着色剂在纤维中分散得越均匀,
CV%=(STD/AVG)×100%。
(12)TiO 2含量的CV%
使用RIGUKU公司的ZSX PRIMUSⅢ+型X射线荧光光谱仪测试纤维中的TiO 2含量。对用一样品在不同纺丝时间点测试多个TiO 2含量值,计算各个含量值之间的标准偏差(STD),再用STD除以所有含量值的算术平均值(AVG),算得的数据以百分数表示即CV%,CV%越低说明纤维中二氧化钛分散越均匀,
CV%=(STD/AVG)×100%。
以下通过实施例来说明本发明的内容,但是本发明并不局限于实施例所列内容。
实施例1
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量为500)含量为50wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时滤压上升0.08MPa,纺丝性过程中几乎没有断丝。液体粘度较大,虽然不影响纺丝但是因为粘度问题导致流动性较弱。最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.80wt%。TiO 2含有量CV%为0.52%。
实施例2
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为47wt%、聚亚安酯类分散剂聚乙烯亚胺(PEI)含量为3wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时内滤压未见上升,纺丝性过程中无异常。最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.69wt%,分散剂占聚酰胺纤维重量的0.108wt%。TiO 2含有量的CV%为0.28%。
实施例3
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为47wt%、聚亚安酯类分散剂聚乙烯亚胺(PEI)含量为3wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为0.20wt%。
12小时内滤压未见上升,纺丝性过程中无异常。最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的0.10wt%,基础油剂占聚酰胺纤维重量的0.09wt%,分散剂占 聚酰胺纤维重量的0.006wt%。TiO 2含有量CV%为0.25%。
实施例4
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为47wt%、聚亚安酯类分散剂聚乙烯亚胺(PEI)含量为3wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为5.00wt%。
12小时内滤压未见上升,纺丝性过程中无异常。最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的2.50wt%,基础油剂占聚酰胺纤维重量的2.35wt%,分散剂占聚酰胺纤维重量的0.150wt%。TiO 2含有量CV%为0.22%。
实施例5
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为47wt%、聚亚安酯类分散剂聚乙烯亚胺(PEI)含量为3wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为0.10wt%。
12小时内滤压未见上升,纺丝性过程中无异常。所得最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的0.05wt%,基础油剂占聚酰胺纤维重量的0.05wt%,分散剂占纤维重量的0.003wt%。TiO 2含有量CV%为0.21%。少量添加从可实施性上看并无问题,但是过低的添加量并无太大意义。
实施例6
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为47wt%、聚亚安酯类分散剂聚乙烯亚胺(PEI)含量为3wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为10.00wt%。
12小时内滤压未见上升,纺丝过程中偶尔有断丝情况发生。所得最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的5.00wt%,基础油剂占聚酰胺纤维重量的4.70wt%,分散剂占纤维重量的0.300wt%。TiO 2含有量CV%为0.24%。
实施例7
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为42wt%、聚亚安酯类分散剂聚乙烯亚胺(PEI)含量为8wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时内滤压未见上升,纺丝性过程中无异常。所得最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.51wt%,分散剂占纤维重量的0.288wt%。TiO 2含有量CV%为0.23%。
实施例8
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为40wt%、聚亚安酯类分散剂含聚乙烯亚胺(PEI)量为10wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时内滤压未见上升,纺丝性过程中无异常。所得最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.44wt%,分散剂占纤维重量的0.360wt%。TiO 2含有量CV%为0.15%。
实施例9
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为35wt%、聚亚安酯类分散剂聚乙烯亚胺(PEI)含量为15wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时内滤压上升0.16MPa,纺丝性过程中几乎没有断丝。所得最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.26wt%,分散剂占纤维重量的0.540wt%。TiO 2含有量CV%为0.13%。
实施例10
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为32wt%、聚亚安酯类分散剂聚乙烯亚胺(PEI)含量为18wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入 纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时滤压上升0.3MPa,纺丝过程中偶尔有断丝情况发生。所得最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.15wt%,分散剂占纤维重量的0.648wt%。TiO 2含有量CV%为0.14%。
实施例11
选择基体聚合物为聚酰胺,将TiO 2含量为30wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为70wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为6.00wt%。
12小时滤压上升0.11MPa,纺丝过程中几乎不断丝。最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的4.20wt%。TiO 2含有量CV%为0.32%。
实施例12
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量2000)含量为47wt%、聚酯酸铵盐类分散剂十二醇聚乙二醇硫酸酯铵盐(ALES)含量为3wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时滤压未见上升,纺丝过程中无异常。最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.69wt%,分散剂占纤维重量的0.108wt%。TiO 2含有量CV%为0.29%。
实施例13
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为7.5的聚己二酸丁二醇酯(PBAG,重均分子量3000)含量为50wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时滤压上升0.1MPa,纺丝过程中几乎无断丝现象。最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.80wt%。TiO 2含有量CV%为0.46%。
实施例14
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为8.0的均苯四甲酸(PMA,重均分子量250)含量为50wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时滤压上升0.07MPa,几乎无断丝现象,喷丝板处纤维有少许弯曲现象。最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.80wt%。TiO 2含有量CV%为0.51%。
实施例15
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为10.5的磷酸酯CR-733S(RDP,重均分子量3000)含量为50wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时滤压上升0.12MPa,几乎无断丝现象.最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.80wt%。TiO 2含有量CV%为0.49%。
实施例16
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为13.0的液态聚酰胺低聚物(PA,重均分子量500)含量为50wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时滤压上升0.11MPa,几乎无断丝现象。最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.80wt%。TiO 2含有量CV%为0.52%。
实施例17
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为15.0的聚乙二醇(PEG,重均分子量800)含量为50wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时滤压上升0.1MPa,但偶尔出现断丝现象。最终聚酰胺纤维中TiO 2占聚酰胺纤维重量的1.80wt%,基础油剂占聚酰胺纤维重量的1.80wt%。TiO 2含有量CV%为0.44%。
实施例18
选择基体聚合物为聚酰胺,将炭黑含量为20wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量3000)含量为80wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为10.00wt%。
最终12小时滤压上升0.12MPa,纺丝过程中几乎无断丝情况。。聚酰胺纤维中炭黑占聚酰胺纤维重量的2.00wt%,基础油剂占聚酰胺纤维重量的8.00wt%。色调L 的CV%为0.67%。
实施例19
选择基体聚合物为聚酰胺,将红色颜料(PigmentRED254)含量为30wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量10000)含量为70wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.30wt%。
最终12小时滤压上升0.15MPa,纺丝过程中几乎无断丝现象。最终聚酰胺纤维中颜料占聚酰胺纤维重量的1.00wt%,基础油剂占聚酰胺纤维重量的2.31wt%。色调L 的CV%为0.62%。
实施例20
选择基体聚合物为聚酰胺,将红色颜料(PigmentRED254)含量为30wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量5000)含量为55wt%、聚亚安酯 类分散剂聚乙烯亚胺(PEI)含量为15wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为6.67wt%。
最终12小时滤压完全无上升,纺丝过程中几乎无断丝。最终聚酰胺纤维中颜料占聚酰胺纤维重量的2.00wt%,基础油剂占聚酰胺纤维重量的3.67wt%,分散剂占聚酰胺纤维重量的1.000wt%。色调L 的CV%为0.22%。
实施例21
选择基体聚合物为聚酰胺,将红色颜料(PigmentRED254)含量为15wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量8000)含量为82wt%、聚亚安酯类分散剂聚乙烯亚胺(PEI)含量为3wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为6.67wt%。
最终12小时滤压完全无上升,纺丝过程中偶尔有断丝,但纺丝可以实施。最终聚酰胺纤维中颜料占聚酰胺纤维重量的1.00wt%,基础油剂占聚酰胺纤维重量的5.47wt%,分散剂占聚酰胺纤维重量的0.200wt%。色调L 的CV%为0.28%
实施例22
选择基体聚合物为聚酰胺,将蓝色染料(ReactiveBlue2)含量为35wt%、SP为9.1的聚己二酸乙二醇酯(PEGA,重均分子量1000)含量为65wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为2.90wt%。
最终12小时滤压上升0.15MPa,纺丝过程中几乎无断丝,纺丝可以实施。最终聚酰胺纤维中颜料占聚酰胺纤维重量的1.00wt%,基础油剂占聚酰胺纤维重量的1.88wt%。色调L 的CV%为0.55%。
比较例1
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为16.3的乙二醇(EG,重均分子量62)含量为50wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步 经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
最终12小时滤压上升0.14MPa,但是纺丝过程中出现大量的飘丝和断丝,纺丝失败。
比较例2
选择基体聚合物为聚酰胺,将TiO 2含量为50wt%、SP为6.9的二异丙基醚(DE,重均分子量102)含量为50wt%的液体色油通过在纺丝机螺杆上方的液体添加装置持续稳定地送入纺丝机与尼龙均匀混合、熔融,通过喷丝板吐出纺丝,并进一步经后加工处理,得到聚酰胺纤维。所述液体色油的添加量相对于聚酰胺纤维为3.60wt%。
12小时滤压上升0.12MPa,出现大量的飘丝和断丝,纺丝失败。
比较例3
选择基体聚合物为聚酰胺,色母粒为炭黑含量20%的聚酰胺母粒切片。在纺丝机的第一料仓中加入聚酰胺切片,第二料仓中加入炭黑母粒。第一料仓和第二料仓通过各自的切片计量设备进行定量、汇合入混料器中。经混料器搅拌混合之后进入纺丝机螺杆中,经螺杆的熔融、剪切、输送,最终通过喷丝板吐出纺丝,得到黑色聚酰胺纤维。所述黑色母粒添加量相对于聚酰胺纤维为10.0wt%。
最终12小时滤压上升0.5MPa,但是纺丝过程中偶尔断丝。纤维中颜料占聚酰胺纤维重量的2.00wt%,色调L 的CV%为1.3%。
Figure PCTCN2022098534-appb-000001
Figure PCTCN2022098534-appb-000002

Claims (13)

  1. 液体色油,其特征在于:该液体色油含有着色剂和基础油剂,所述基础油剂在常温常压下为液体,且其溶解度参数SP值为7.5~15.0。
  2. 根据权利要求1所述液体色油,其特征在于:所述基础油剂的溶解度参数SP值为8.0~13.0。
  3. 根据权利要求1或2所述液体色油,其特征在于:所述基础油剂为由碳原子总数为2~12的脂肪族二酸和碳原子总数为2~6的脂肪族二醇共聚形成的脂肪族聚酯。
  4. 根据权利要求3所述液体色油,其特征在于:所述基础油剂为聚己二酸酯。
  5. 根据权利要求1或2所述液体色油,其特征在于:所述着色剂占液体色油的20~50wt%。
  6. 根据权利要求1所述液体色油,其特征在于:所述色油中含有聚氨酯类或聚酯酸铵盐分散剂。
  7. 根据权利要求6所述液体色油,其特征在于:所述分散剂占液体色油重量的15wt%以下。
  8. 根据权利要求6或7所述液体色油,其特征在于:所述液体色油的粘度在5000poise以下。
  9. 有色聚酰胺纤维,特征在于:该有色纤维中含有权利要求1所述的液体色油。
  10. 根据权利要求9所述的有色聚酰胺纤维,其特征在于:所述着色剂占纤维重量的0.10~5.00wt%。
  11. 根据权利要求9或10所述的有色聚酰胺纤维,其特征在于:所述基础油剂占纤维重量的0.10~8.00%。
  12. 根据权利要求9或10所述的有色聚酰胺纤维,其特征在于:所述分散剂占纤维重量的1.000%以下。
  13. 根据权利要求12所述的有色聚酰胺纤维,其特征在于:所述纤维中着色剂的分散CV%在0.3%以下。
PCT/CN2022/098534 2021-06-15 2022-06-14 液体色油及有色聚酰胺纤维 WO2022262696A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280011689.0A CN116685727B (zh) 2021-06-15 2022-06-14 液体色油及有色聚酰胺纤维
US18/564,344 US20240141555A1 (en) 2021-06-15 2022-06-14 Liquid colored oil and colored polyamide fiber
JP2023576358A JP2024528746A (ja) 2021-06-15 2022-06-14 液体状色マスターバッチ及び着色ポリアミド繊維
EP22824175.8A EP4357494A1 (en) 2021-06-15 2022-06-14 Liquid colored oil and colored polyamide fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110658132.3 2021-06-15
CN202110658132 2021-06-15

Publications (1)

Publication Number Publication Date
WO2022262696A1 true WO2022262696A1 (zh) 2022-12-22

Family

ID=84525962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098534 WO2022262696A1 (zh) 2021-06-15 2022-06-14 液体色油及有色聚酰胺纤维

Country Status (6)

Country Link
US (1) US20240141555A1 (zh)
EP (1) EP4357494A1 (zh)
JP (1) JP2024528746A (zh)
CN (1) CN116685727B (zh)
TW (1) TW202313802A (zh)
WO (1) WO2022262696A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045689A (ja) * 1983-08-22 1985-03-12 東洋インキ製造株式会社 ポリエステル繊維原着用液状着色剤
US4639272A (en) * 1984-06-26 1987-01-27 Toyo Ink Mfg., Co., Ltd. Liquid colorant for ABS resins
US5106905A (en) * 1986-11-05 1992-04-21 Nippon Ester Company, Ltd. Colorants, polyester fibers mass-colored therewith and process for spinning mass-colored polyester fibers
US5194090A (en) * 1990-06-20 1993-03-16 Teijin Limited Liquid pigment composition, and master-colored polyamide yarn made by using same
JPH05140499A (ja) * 1991-11-18 1993-06-08 Teijin Ltd ポリアミド用リキツド顔料およびそれを用いたポリアミド原着糸
JPH08165453A (ja) * 1994-12-15 1996-06-25 Teijin Ltd ポリアミド繊維原着用液状着色剤
CN102702658A (zh) 2012-05-25 2012-10-03 东莞市德诚塑化科技有限公司 液体色母料及塑料制品
CN106978639A (zh) 2017-04-01 2017-07-25 苏州世名科技股份有限公司 一种聚酯纤维原液着色用液态着色剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045689A (ja) * 1983-08-22 1985-03-12 東洋インキ製造株式会社 ポリエステル繊維原着用液状着色剤
US4639272A (en) * 1984-06-26 1987-01-27 Toyo Ink Mfg., Co., Ltd. Liquid colorant for ABS resins
US5106905A (en) * 1986-11-05 1992-04-21 Nippon Ester Company, Ltd. Colorants, polyester fibers mass-colored therewith and process for spinning mass-colored polyester fibers
US5194090A (en) * 1990-06-20 1993-03-16 Teijin Limited Liquid pigment composition, and master-colored polyamide yarn made by using same
JPH05140499A (ja) * 1991-11-18 1993-06-08 Teijin Ltd ポリアミド用リキツド顔料およびそれを用いたポリアミド原着糸
JPH08165453A (ja) * 1994-12-15 1996-06-25 Teijin Ltd ポリアミド繊維原着用液状着色剤
CN102702658A (zh) 2012-05-25 2012-10-03 东莞市德诚塑化科技有限公司 液体色母料及塑料制品
CN106978639A (zh) 2017-04-01 2017-07-25 苏州世名科技股份有限公司 一种聚酯纤维原液着色用液态着色剂及其制备方法

Also Published As

Publication number Publication date
CN116685727B (zh) 2024-08-06
EP4357494A1 (en) 2024-04-24
US20240141555A1 (en) 2024-05-02
TW202313802A (zh) 2023-04-01
CN116685727A (zh) 2023-09-01
JP2024528746A (ja) 2024-07-31

Similar Documents

Publication Publication Date Title
US5889089A (en) Additive-containing polymeric compositions and methods of making the same
US6495079B1 (en) Process to prepare polymeric fibers with improved color and appearance
CA1050689A (en) Process for producing dispersions of pigments in condensation type polymers
TW201319340A (zh) 高強度纖維素長絲,其用途,及其製造方法
CN1898419A (zh) 包含荧光增白剂的聚酰胺组合物,由其制造的纱线以及热定型这种纱线的方法
EP0356579A2 (en) Colored aramid fibers
US6416859B1 (en) Methods of making pigmented filaments
WO2022262696A1 (zh) 液体色油及有色聚酰胺纤维
DE4400248A1 (de) Verfahren zur Herstellung von massegefärbten geformten Gebilden auf der Basis von aromatischen Polyamiden, massegefärbte Fasern, sowie Vermischung zur Herstellung von massegefärbten geformten Gebilden
US3668172A (en) Pigmented polyester compositions
US3354111A (en) Pigment dispersions
EP2655485B1 (en) Polymeric materials
JP2009041124A (ja) 可染性ポリプロピレン繊維
JPS58180613A (ja) 微粒子分散ポリエステル系繊維及びその製造法
CN107326467B (zh) 一种黑色耐洗聚酯纤维及其制备方法
JPS6312185B2 (zh)
CN104695044A (zh) 直接纺丝增白抗紫外线功能聚酯短纤维的制造方法
CN110923842B (zh) 一种无染原生涤纶短纤维的制备工艺
CA2208228C (en) Additive-containing synthetic filaments and yarns and carpets including such filaments
JPS6354807B2 (zh)
JPS61138720A (ja) ポリエステル系制電性複合繊維の製造方法
JP3802797B2 (ja) ポリトリメチレンテレフタレート原着繊維
CN106400194A (zh) 抗静电聚酯纤维、聚酯组合物的制法及制备纤维的方法
JPS6343486B2 (zh)
US20040059048A1 (en) Alternate dispersants for spray-dried concentrate components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280011689.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18564344

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2301007947

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2023576358

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022824175

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022824175

Country of ref document: EP

Effective date: 20240115