WO2022262334A1 - 加热装置的故障确定方法、装置以及电热水器 - Google Patents

加热装置的故障确定方法、装置以及电热水器 Download PDF

Info

Publication number
WO2022262334A1
WO2022262334A1 PCT/CN2022/080810 CN2022080810W WO2022262334A1 WO 2022262334 A1 WO2022262334 A1 WO 2022262334A1 CN 2022080810 W CN2022080810 W CN 2022080810W WO 2022262334 A1 WO2022262334 A1 WO 2022262334A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
current value
heating element
main circuit
circuit current
Prior art date
Application number
PCT/CN2022/080810
Other languages
English (en)
French (fr)
Inventor
刘星
陶然
黄强
Original Assignee
艾欧史密斯(中国)热水器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾欧史密斯(中国)热水器有限公司 filed Critical 艾欧史密斯(中国)热水器有限公司
Priority to CA3225273A priority Critical patent/CA3225273A1/en
Publication of WO2022262334A1 publication Critical patent/WO2022262334A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/104Inspection; Diagnosis; Trial operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/124Preventing or detecting electric faults, e.g. electric leakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices

Definitions

  • the embodiments of the present application relate to the field of device fault diagnosis, and in particular, to a method and device for determining a fault of a heating device, and an electric water heater.
  • a separate current monitoring device connected in series with the heating element can be set for each heating element, and the faulty heating element can be found by detecting the branch current value passing through each heating element. Therefore, for multiple For the fault detection scenario of a heating element, the detection cost is relatively high.
  • the embodiments of the present application provide a fault determination method and device for a heating device, and an electric water heater, which can judge whether a heating element has failed according to the value of the main circuit current, and determine whether a heating element has failed according to the change value of the main circuit current To determine the faulty heating element, thereby, the fault diagnosis of a plurality of heating elements in the heating device can be realized cost-effectively and reliably.
  • a method for determining a fault of a heating device when the heating device includes at least two heating units that are in operation and are arranged in parallel on a branch of the same phase line, the heating units When a heating element and a switch for controlling the heating element are included, the method includes:
  • a change value of the main circuit current value caused by turning on and off the switch is obtained, and when the change value of the main circuit current value is not greater than a preset change value, it is determined that the heating element controlled by the switch is faulty.
  • a fault determination method for a heating device when the operating current of the heating device is a three-phase power supply current, and each of the three phase lines includes When at least two heating units in the operating state are arranged in parallel in the branch circuit, and the heating unit includes a heating element and controls a switch of the heating element, the method includes:
  • the operating state of the heating unit obtain the main circuit current value of each phase line, and when the main circuit current value is not greater than the first current value, determine at least one of the phase lines where the main circuit is located failure of the heating element in the heating unit;
  • a device for determining a failure of a heating device including a processor configured to execute the failure of the heating device described in the first aspect or the second aspect Determine the method.
  • an electric water heater including: a heating device, the heating device includes at least two heating units arranged in parallel on the branch of the same phase line, the heating unit includes a heating element and A switch for controlling the operation of the heating element; a fault determination device for the heating device according to the third aspect; a water circuit assembly, the heating element is used to heat the water in the water circuit assembly.
  • the beneficial effect of the embodiment of the present application is that it can be judged according to the value of the main circuit current whether a heating element has failed, and the faulty heating element can be determined according to the change value of the main circuit current, thus, low cost and high reliability can be achieved. Enables fault diagnosis of multiple heating elements in heating installations.
  • FIG. 1 is a schematic diagram of a fault determination method in an embodiment of the present application
  • Fig. 2 to Fig. 4 are the schematic diagrams of the heating circuit in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of an implementation manner of operation 102 in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a fault determination method in an embodiment of the present application.
  • FIG. 7 and Figure 8 are schematic diagrams of the connection relationship of the heating unit in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a fault determination method in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the configuration of the fault determination device in the embodiment of the present application.
  • Fig. 11 is a schematic diagram of the structure of the electric water heater in the embodiment of the present application.
  • Fig. 12 is a schematic diagram of the structure of the electric water heater in the embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • FIG. 1 is a schematic diagram of the fault determination method, as shown in Figure 1, the method includes:
  • the heating device includes at least two (hereinafter referred to as M) heating units in an operating state arranged in parallel on the branch of the same phase line, wherein M is an integer not less than 2, and the M The heating unit is arranged in parallel on the branch of the same phase line.
  • M is an integer not less than 2
  • the heating unit heats up and generates heat, so that the heating function can be realized.
  • the working current of the heating device can be a single-phase power supply current or a two-phase power supply Current, or three-phase power supply current, etc., the embodiment of the present application is not limited by this, for example, when the working current is a single-phase power supply current, the heating device only includes one phase line, Figure 2 is a schematic diagram of the heating circuit, As shown in Figure 2, that is to say, the M heating units are arranged in parallel on the M branches of the one phase line; when the operating current is a three-phase supply current, the heating device includes three phase lines, as shown in Fig.
  • FIG. 3 is another schematic diagram of the heating circuit, as shown in Figure 3, the three phase lines are U phase, V phase and W phase respectively, that is to say, on each of the three phase lines, there is M
  • one heating unit is included on each branch, but this embodiment of the application is not limited thereto, and at least two heating elements connected in series may be included on each branch, where I won't repeat them one by one.
  • each heating unit includes a heating element and a switch for controlling the heating element, for example, the heating element may be a heating rod, and the switch may be a relay or a contactor.
  • the above-mentioned at least two (i.e., M) heating units are in the operating state, wherein, being in the operating state means that the switch for controlling the heating element in the heating unit is in the on state, and stopping the operation means that the heating unit is in the ON state.
  • the switch controlling the heating element is off.
  • the main circuit current value of the phase line is obtained, and the operating state of the heating unit is not changed. change (i.e. keep the on state) and the operating power of the heating element does not change.
  • the heating device also includes the aforementioned P heating units that are set in parallel on the branch of the same phase line and are in the out-of-operation state, the out-of-operation state
  • the operating state of the heating unit also needs to remain unchanged, that is, the on-off state of the switch remains unchanged (that is, remains in the off state).
  • a current sensor or a current transformer can be used to obtain the main circuit current value of the phase line.
  • a current sensor or a current transformer can be arranged on the main circuit of the phase line to obtain the main circuit current value.
  • the following uses the trunk current value of one phase wire as an example to illustrate how to perform fault diagnosis. If the heating device includes multiple phase wires, the implementation of fault diagnosis based on the trunk current value of each phase wire is similar. For details, please refer to The embodiment of the second aspect will not be repeated here.
  • the obtained trunk current value can optionally be corrected and compensated to improve the reliability of the fault diagnosis.
  • the load in the circuit increases, resulting in a decrease in the current value of the main circuit (for example, when the heating element fails, the branch where the heating element is located is in an open state, resulting in the load resistance in the circuit increase, which in turn causes the main circuit current to decrease.)
  • the main circuit current value is not greater than the first current value, it is determined that the heating element in at least one heating unit has failed.
  • the compensated and corrected dry circuit current value is compared with the first current value to determine whether the heating element is faulty.
  • the first current value may be a preset current value, or a previously detected dry circuit current value when the heating element is not faulty, and examples are described below.
  • the first current value is a preset current value, and the preset current value is set based on the total current A1 of all N heating elements in the operating state on the same phase line, or based on the N
  • the total current A2 of N-1 heating elements among the heating elements is set, wherein, N is an integer not less than 2.
  • the first current value may be set as a value within the range [A2, A1), which is not limited in this embodiment of the present application.
  • the total current A1 or A2 refers to the theoretical total current value when N or N-1 heating elements are not faulty and are all in the running state, and N is equal to M.
  • the first current value may be the previously detected main circuit current value when the heating element does not fail, and the first current value means that all the heating elements in the operating state are on the same phase line ( The total current when none of the heating units fail); the method may further include: when it is determined that no heating unit fails, updating the obtained main circuit current value to the first current value. For example, when it is determined that there is no failure of the heating unit, the first current value may be updated at predetermined intervals. Since the load of the heating element changes with the use of time, the first current value is regularly updated. The value is updated, which can further improve the reliability of fault diagnosis.
  • the change value of the main circuit current value caused by turning on and off the switch can be obtained, for example, one heating element in operation is selected in turn, and the operating state of other heating elements does not change (The on-off state of the switch remains unchanged and the operating power of the heating element corresponding to the on-state of the switch does not change), detect the first dry current value of the heating element when it is running and the heating element after it stops running.
  • the second main circuit current value, and the change value of the main circuit current value is determined according to the first main circuit current value and the second main circuit current value. For example, after the switch controlling the operation of the one heating element is turned on, the first trunk current value is detected; after the switch controlling the operation of the one heating element is turned off, the second trunk current value is detected.
  • the preset change value is set based on the branch current A3 of the heating element, for example, the preset change value can be a value within the range of [0, A3), for example, when the preset change value is 0, the value of the main circuit current If the change value is 0, that is, the main circuit current value does not change before and after the switch is turned on and off, it means that the heating element controlled by the switch is faulty.
  • FIG. 5 is a schematic diagram of an implementation method of the operation 102. As shown in FIG. 5, the operation 102 includes:
  • the method may further include (not shown): controlling the failed heating element to stop operating; starting the non-operating non-faulted heating element Heating elements on the same phase.
  • the faulty heating element can be controlled to stop running by turning off the switch.
  • the fault information can also be reported to the background server; If the heating element of the branch circuit is faulty, the heating elements of other phase lines of the branch circuit can be controlled (for the convenience of description, the heating elements of different phase lines in the box shown in Figure 3 are called a group of heating elements) and stop running , to avoid multi-phase unbalanced operation.
  • the heating element stops running it also starts the heating element on the same group of different phase lines as the replacement heating element at the same time, that is, starting a group of heating elements to replace the stopping group of heating elements), as shown in Figure 4, at When two sets of U-phase heating elements fail, the heating elements on the second set of U-phase, V-phase, and W-phase can be stopped, and the fifth set of heating elements (U-phase, V-phase, W-phase) shown by the dotted line can be started. all heating elements on the
  • the method may also include: (not shown)
  • the method of determining the second current value is similar to that of the first current value, which will not be repeated here.
  • the second current value is greater than or equal to the first current value, and the trunk current value is not less than the first current value.
  • the current value is two, it is determined that at least one switch in the heating unit is faulty.
  • the switch fault may be relay or contactor adhesion, etc., and no more examples will be given here.
  • the power switch of the heating device is turned off, and optionally, the failure information may also be reported to the background server.
  • the method may also include: (not As shown in the figure) according to the current value of the main circuit, the cumulative running time of the at least two heating units arranged in parallel on the branch of the same phase line is counted; according to the cumulative running time, the starting sequence of each heating element is adjusted.
  • the main circuit current value does not satisfy the first current value and does not satisfy the second current value, it means that the heating element and the switch in the current heating device have not failed, that is to say, the aforementioned M are set at
  • the heating elements connected in parallel with the same phase line are always in the running state, and the running time of each heating element is counted in real time. If a faulty heating element is found, the heating element will be stopped. For this heating element, the operation until the detection time will be cut off Time is used as the cumulative running time, and at the same time turn on the non-operating replacement heating element that has not failed and is on the same phase line as the failed heating element, and accumulates the cumulative running time of the replacement heating element from the detection time.
  • the heating device includes at least two phase lines, the accumulative operating time of the entire group of heating elements can be counted in units of the aforementioned group of heating elements, and the specific statistical methods will not be repeated here.
  • the starting priority of each (or each group) of heating elements is dynamically adjusted according to the length of the cumulative running time, wherein the starting priority of the heating element (group) with a long cumulative running time is lowered, and the cumulative running time is short
  • the starting priority of the heating element (group) is high; start the heating element (group) according to the starting priority. This can ensure the life balance of multiple heating elements, so as to prolong the service life and reduce the failure rate.
  • the heating elements of the first group to the fourth group are in the running state, and when the second group U-phase heating element is detected to be faulty (T2 time), the second group U The heating elements on the phase, V phase, and W phase are all stopped, and the fifth group of heating elements shown by the dotted line is started (the heating elements on the U phase, V phase, and W phase are all started).
  • the current time is T3
  • the cumulative running time of the first group, the third group and the fourth group is T3-T1
  • the cumulative running time of the second group is T2-T1
  • the cumulative running time of the fifth group is T3- T2.
  • Dynamically adjust the starting priority of each group of heating elements according to the accumulated running time for example, when T3-T2 is smaller than T2-T1 and smaller than T3-T1, the starting priority of the fifth group is adjusted to the highest, and the starting priority of the second group The order is the highest, and the starting priority of groups 1, 3, and 4 is the lowest.
  • the 5th and 2nd groups of heating elements will be started first, and from the 1st, 2nd Randomly select 2 groups of heating elements from groups 3 and 4, and continue to count the cumulative running time of the activated heating elements, and dynamically adjust the starting priority of each heating element, and will not give examples here.
  • the trunk current value can also be used to calculate the power consumption of the heating device and the average power consumption of the heating element, so as to facilitate management and maintenance by users and maintenance personnel.
  • Fig. 6 is a schematic diagram of an implementation of the failure determination method of this embodiment. As shown in Fig. 6, for M heating elements in operation state arranged in parallel on a branch of a phase line, the method includes:
  • FIG. 5 reference may be made to FIG. 5 for the implementation manner of 604, and the implementation manners of other operations are as described above, and details are not repeated here.
  • the embodiment of the second aspect of the present application provides a method for determining the fault of a heating device.
  • the working current of the heating device is a three-phase power supply current
  • the heating device includes three phase lines as an example. That is to say, when the heating device is in operation, each of the three phase lines can include at least two (for example, M) heating units in the operating state that are arranged in parallel in the branch circuit, and each heating unit includes a heating element and a switch to control the heating element.
  • each of the three phase lines there may also be P heating units in a stopped state (P is an integer greater than or equal to 0), and the P The heating units are arranged in parallel with the aforementioned M heating units on the branch of the same phase line, that is to say, on each of the three phase lines, there are M+P heating units arranged in parallel on the M +P branch roads.
  • each branch may include one heating element or at least two (G, G is an integer greater than or equal to 1) heating elements connected in series, that is to say, the The heating device may include 3 ⁇ (M+P) ⁇ G heating elements, and (M+P) ⁇ G heating elements are arranged on each of the three phase lines.
  • the heating device includes M+P groups of heating elements, and a group of heating elements includes 3 ⁇ G heating elements.
  • the three phase lines are U-phase, V-phase and W-phase respectively, and on each of the three phase lines, there are M heating elements in operating state arranged in parallel on M
  • the three phase lines are U phase, V phase and W phase, respectively.
  • M+P branches including M+P groups of heating elements, each group of heating elements One heating element is connected in series on each phase line of the element, therefore, each group of heating elements includes 3 heating elements, and no more examples are given here.
  • the heating elements on the above-mentioned three phase lines are connected in star or delta
  • Fig. 7 and Fig. 8 are schematic diagrams of the connection relationship of the heating elements on the three phase lines respectively, as shown in Fig. 7, the three The heating elements on the phase lines are connected in a star shape, as shown in Figure 8, and the heating elements on the three phase lines are connected in a delta shape.
  • Fig. 9 is a schematic diagram of a fault determination method of the heating device, as shown in Fig. 9, the method includes:
  • the trunk current values of the three phase lines respectively it is necessary to judge the trunk current values of the three phase lines respectively, and the judging method for the trunk current values of each phase line is the same.
  • the repeated parts please refer to the first aspect In 101-102 in the embodiment, the repeated parts will not be repeated.
  • the specific implementation method can refer to the embodiment of the first aspect , which will not be repeated here.
  • a respective first current value, a second current value, and a preset current value are set, and the first current value and the second current value of each phase line.
  • FIG. 10 is a schematic diagram of the fault determination device of the heating device.
  • FIG. 10 is a schematic diagram of the fault determination device of the embodiment of the present application.
  • the example fault determination apparatus 1000 may include: at least one interface (not shown in FIG. 10 ), a processor (for example, a central processing unit (CPU)) 1001, and a memory 1002; the memory 1002 is coupled to the processor 1001. Among them, the memory 1002 can store various data; in addition, a program 1003 is stored for determining faults, and the program 1003 is executed under the control of the processor 1001, and various preset thresholds and predetermined conditions are stored.
  • a processor for example, a central processing unit (CPU)
  • the memory 1002 is coupled to the processor 1001.
  • the memory 1002 can store various data; in addition, a program 1003 is stored for determining faults, and the program 1003 is executed under the control of the processor 1001, and various preset thresholds and predetermined conditions are stored.
  • the processor 1001 can implement the fault determination method described in the embodiment of the first aspect or the second aspect, for example, the processor 1001 can be configured to: when the operating state of the heating unit is not changed In the case of the phase line, the main circuit current value of the phase line is obtained. When the main circuit current value is not greater than the first current value, it is determined that the heating element in at least one heating unit is faulty; the main circuit current value caused by turning on and off the switch is obtained. The change value of the current value. When the change value of the main circuit current value is not greater than the preset change value, it is determined that the heating element controlled by the switch is faulty.
  • the processor 1001 may also be configured to: acquire the main circuit current value of each phase line when the operating state of the heating unit is not changed, and if the main circuit current value is not greater than When the first current value is determined, the heating element failure in at least one heating unit on the phase line where the main circuit is located is determined; the change value of the main circuit current value caused by the switch on the phase line where the heating element failure occurs is obtained. , when the change value of the main circuit current value is not greater than the preset change value, it is determined that the branch circuit where the heating element controlled by the switch is faulty.
  • the fault determination device 1000 may also include a communication module 1004, or may not necessarily include all the components shown in FIG. 10; in addition, the fault determination device 1000 may also include components not shown in FIG. 10, Reference may be made to related technologies, and no examples will be given here.
  • the fault determination device 1000 may also include a current transformer for detecting the main circuit current value, and the processor 1001 is connected with the current transformer for obtaining The trunk current value.
  • the processor 1001 is sometimes also referred to as a controller or an operation control, and may include a microprocessor or other processor devices and/or logic devices. The operation of the part.
  • the storage 1002 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices.
  • Various kinds of information can be stored, and programs for executing related information can also be stored.
  • the processor 1001 can execute the program stored in the memory 1002 to implement information storage or processing.
  • the functions of other components are similar to those in the prior art, and will not be repeated here.
  • Each component of the fault determination device 1000 may be implemented by dedicated hardware, firmware, software or a combination thereof without departing from the scope of the present application.
  • the processor 1001 can be configured separately from the processor of the electric water heater, for example, the processor 1001 can be configured as a chip connected to the processor of the electric water heater, etc., and the two can control each other.
  • the function of the processor 1001 may also be integrated into the processor of the electric water heater itself, which is not limited in this embodiment of the present application.
  • Fig. 11 is a schematic diagram of an electric water heater according to an embodiment of the present application. As shown in Figure 11, the electric water heater 1100 includes:
  • Heating device 1101 the heating device includes at least two heating units arranged in parallel on the branch of the same phase line, the heating unit includes a heating element and a switch for controlling the operation of the heating element;
  • the fault determination means 1102 of the heating device
  • the heating element is used to heat the water in the waterway component.
  • the working current of the heating device 1101 can be a single-phase power supply current or a three-phase power supply current, and its specific composition can refer to the first aspect or the second aspect, the implementation of the fault determination device 1102 of the heating device
  • the fault determination apparatus 1000 in the third aspect, and details are not repeated here.
  • the fault determination device 1102 of the heating device further includes: a current transformer for obtaining a main circuit current value, the heating element is a heating rod, and the water circuit assembly 1103 includes an inner container for storing water.
  • the fault determination device 1102 can be configured separately from the processor of the electric water heater, for example, the fault determination device 1102 can be configured as a chip connected to the processor of the electric water heater, etc., and the two can control each other, or, can also The function of the fault determination device 1102 is integrated into the processor of the electric water heater itself, which is not limited in this embodiment of the present application.
  • the electric water heater may be a commercial high-power electric water heater.
  • the electric water heater may include at least two cascaded sub-electric water heaters. and at least one heating unit in the running state of each sub-electric water heater is connected in parallel on the same phase line.
  • Fig. 12 is a schematic diagram of the structure of the cascaded electric water heater.
  • the electric water heater 1200 includes at least two cascaded sub-electric water heaters 1201 and a fault determination device 1202 of the heating device.
  • each sub-electric water heater 1201 Both are provided with a water circuit assembly 12011 and at least one heating unit 12012 in an operating state, and at least one heating unit 12012 of each sub-electric water heater is connected in parallel on the same phase line.
  • the electric water heater when the working current is a single-phase power supply current, the electric water heater only includes one phase line, and the heating units in each sub-electric water heater are all arranged in parallel to the phase line; when the working current is a three-phase power supply current, the electric water heater The water heater includes three phase lines, and on each of the three phase lines, at least one heating unit in each sub-electric water heater is arranged in parallel on the phase line; in other words, each sub-electric water heater includes at least A set of heating elements.
  • each sub-electric water heater may include P heating units that are in a stopped state (P is an integer greater than or equal to 0) , the P heating units are arranged in parallel with the aforementioned at least one heating unit on a branch of the same phase line.
  • Each sub-electric water heater can include one heating element or at least two (G, G is an integer greater than or equal to 1) series heating elements on each branch, as shown in Figure 3, the M group in the operating state
  • the heating elements can be distributed in each sub-electric water heater 1201, so that each sub-electric water heater 1201 includes at least one group of heating elements in operation state, as shown in Figure 4, the M groups of heating elements in operation state can be distributed in each sub-electric water heater 1201 In the electric water heater 1201, each sub-electric water heater 1201 includes at least one group of heating elements in the operating state.
  • the heating elements that are in the off-operation state for the P group can also be distributed in each sub-electric water heater 1201.
  • Each sub-electric water heater The water heater 1201 may or may not contain the aforementioned heating element in the stop operation state.
  • the fault determination device 1202 can be configured separately from the processors of each sub-electric water heater, for example, the fault determination device 1202 can be configured as a chip connected to the processor of each sub-electric water heater, etc., and the two can control each other, Alternatively, the function of the fault determination device 1202 may also be integrated into a processor of one of the sub-electric water heaters (for example, the first sub-electric water heater), which is not limited in this embodiment of the present application.
  • the fault determination device is configured to execute the fault determination method in the embodiment of the first aspect or the second aspect.
  • the fault determination device is configured to execute the fault determination method in the embodiment of the first aspect or the second aspect.
  • the electric water heater 1100 or 1200 may also include components not shown in FIG. 11 or FIG. 12 , and reference may be made to related technologies, which will not be exemplified here.
  • the embodiment of the present application also provides a computer program, wherein when the program is executed in the fault determination device or the electric water heater, the program causes the main controller to execute the fault described in the embodiment of the first or second aspect. Determine the method.
  • the embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes the fault determination device or the electric water heater to execute the fault determination method described in the embodiment of the first or second aspect.
  • the data sending device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to each software module or each hardware module of the computer program flow.
  • These software modules may respectively correspond to the steps shown in FIG. 1 , FIG. 5 , FIG. 6 and FIG. 9 .
  • These hardware modules for example, can be realized by solidifying these software modules by using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium, or it can be an integral part of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the software module can be stored in the memory of the information processing system, or can be stored in a memory card that can be inserted into the information processing system.
  • One or more of the functional block diagrams described in the figure and/or one or more combinations of the functional block diagrams can be implemented as a general-purpose processor, a digital signal processor (DSP), a dedicated Integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs dedicated Integrated circuits
  • FPGAs field programmable gate arrays
  • One or more of the functional block diagrams described in the figure and/or one or more combinations of the functional block diagrams can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, One or more microprocessors in communication with the DSP or any other such configuration.

Abstract

本申请实施例公开了一种加热装置的故障确定方法、装置以及电热水器,当该加热装置包括至少两个并联设置于同一相线的支路上的处于运行状态的加热单元,该加热单元包括加热元件以及控制该加热元件的开关时,该方法包括:在该加热单元的运行状态不被改变的情况下,获取该相线的干路电流值,在该干路电流值不大于第一电流值时,确定至少一个加热单元中的加热元件发生故障;获取通断该开关所引起的该干路电流值的变化值,当该干路电流值的变化值不大于预设变化值时,确定该开关所控制的加热元件发生故障。通过本申请实施例,可以低成本且高可靠性地实现加热装置中多个加热元件的故障诊断。

Description

加热装置的故障确定方法、装置以及电热水器
交叉参考相关引用
本申请要求2021年06月16日提交的申请号为202110665170.1的中国专利申请的优先权,上述申请参考并入本文。
技术领域
本申请实施例涉及装置故障诊断领域,尤其涉及一种加热装置的故障确定方法、装置以及电热水器。
背景技术
商用大功率电热水器一般用于酒店、宾馆、洗浴中心、医院、家居等大流量沐浴场景。商用大功率电热水器的加热元件数量较多,如果出现了加热元件的故障,则会影响用户的用水体验。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
在相关的技术中,可以为每一个加热元件都设置单独的与该加热元件串联的电流监测装置,通过检测经过每一个加热元件的支路电流值来查找发生故障的加热元件,因此,对于多个加热元件的故障检测场景来说,检测成本较高。
针对上述问题中的至少之一,本申请实施例提供一种加热装置的故障确定方法、装置以及电热水器,可以根据干路电流值判断是否有加热元件发生故障,并根据干路电流的变化值来确定发生故障的加热元件,由此,可以低成本可靠地实现加热装置中多个加热元件的故障诊断。
本申请实施例的具体技术方案是:
根据本申请实施例的第一个方面,提供了一种加热装置的故障确定方法,当该加热装置包括至少两个并联设置于同一相线的支路上的处于运行状态的加热单元,该加热单 元包括加热元件以及控制该加热元件的开关时,该方法包括:
在该加热单元的运行状态不被改变的情况下,获取该相线的干路电流值,在该干路电流值不大于第一电流值时,确定至少一个加热单元中的加热元件发生故障;
获取通断该开关所引起的该干路电流值的变化值,当该干路电流值的变化值不大于预设变化值时,确定该开关所控制的加热元件发生故障。
根据本申请实施例的第二个方面,提供了一种加热装置的故障确定方法,当该加热装置的工作电流是三相供电电流,并且,在三个相线的每个相线上均包括至少两个并联设置于支路的处于运行状态的加热单元,该加热单元包括加热元件以及控制加热元件的开关时,该方法包括:
在该加热单元的运行状态不被改变的情况下,获取该每个相线的干路电流值,在该干路电流值不大于第一电流值时,确定该干路所在相线上至少一个加热单元中的加热元件发生故障;
获取通断发生加热元件故障的该相线上的该开关所引起的该干路电流值的变化值,当该干路电流值的变化值不大于预设变化值时,确定该开关所控制的加热元件所在的支路发生故障。
根据本申请实施例的第三个方面,提供了一种加热装置的故障确定装置,包括处理器,所述处理器被配置为执行第一个方面或第二个方面所述的加热装置的故障确定方法。
根据本申请实施例的第四个方面,提供了一种电热水器,包括:加热装置,该加热装置包括至少两个并联设置于同一相线的支路的加热单元,该加热单元包括加热元件以及控制加热元件运行的开关;第三个方面所述加热装置的故障确定装置;水路组件,该加热元件用于加热所述水路组件中的水。
本申请实施例的有益效果在于:可以根据干路电流值判断是否有加热元件发生故障,并根据干路电流的变化值来确定发生故障的加热元件,由此,可以低成本且高可靠性地实现加热装置中多个加热元件的故障诊断。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
附图说明
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本申请公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本申请的理解,并不是具体限定本申请各部件的形状和比例尺寸。本领域的技术人员在本申请的教导下,可以根据具体情况选择各种可能的形状和比例尺寸来实施本申请。
图1为本申请实施例中的故障确定方法示意图;
图2至图4为本申请实施例中的加热回路示意图;
图5为本申请实施例中的操作102实施方式示意图;
图6为本申请实施例中的故障确定方法示意图;
图7和图8为本申请实施例中的加热单元连接关系示意图;
图9为本申请实施例中的故障确定方法示意图;
图10为本申请实施例中的故障确定装置构成示意图;
图11为本申请实施例中的电热水器构成示意图;
图12为本申请实施例中的电热水器构成示意图。
具体实施方式
下面将结合附图和具体实施例,对本发明的技术方案作详细说明,应理解这些实施例仅用于说明本申请而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本申请的各种等价形式的修改均落入本申请所附权利要求所限定的范围内。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
第一方面的实施例
本申请第一方面的实施例提供一种加热装置的故障确定方法,当该加热装置包括至少两个并联设置于同一相线的支路上的处于运行状态的加热单元,该加热单元包括加热元件以及控制该加热元件的开关时,图1是该故障确定方法示意图,如图1所示,该方法包括:
101,在该加热单元的运行状态不被改变的情况下,获取该相线的干路电流值,在该干路电流值不大于第一电流值时,确定至少一个加热单元中的加热元件发生故障;
102,获取通断该开关所引起的该干路电流值的变化值,当该干路电流值的变化值不大于预设变化值时,确定该开关所控制的加热元件发生故障。
在一些实施例中,该加热装置包括至少两个(以下称为M个)并联设置于同一相线的支路上的处于运行状态的加热单元,其中,M为不小于2的整数,该M个加热单元并联地设置于同一相线的支路上,通过向加热单元提供工作电流,使得加热单元升温发热,从而可以实现加热功能,该加热装置的工作电流可以是单相供电电流,或者两相供电电流,或者三相供电电流等,本申请实施例并不以此作为限制,例如,在该工作电流是单相供电电流时,该加热装置仅包含一个相线,图2是加热回路一示意图,如图2所示,也就是说,该M个加热单元并联的设置于该一个相线的M个支路上;在该工作电流是三相供电电流时,该加热装置包含三个相线,图3是加热回路又一示意图,如图3所示,三个相线分别是U相,V相和W相,也就是说,在该三个相线中的每一个相线上,都有M个加热单元并联地设置在M个支路上(M=4),此处不再一一举例。
另外,该加热装置在工作时除了可以包括M个并联设置于同一相线的支路上的处于运行状态的加热单元外,还可以包括P个处于停止运行状态的加热单元(P为大于等于0的整数),该P个加热单元与前述M个加热单元并联设置于同一相线的支路上,图4是该加热回路又一示意图,如图4所示,图4中的虚线部分是指处于停止运行状态的加热单元,实线部分是指处于运行状态的加热单元,M=4,P=1,在该三个相线中的每一个相线上,都有M+P个加热单元并联的设置在M+P个支路上。
需要说明的是,以上示例中,在每个支路上,包括一个加热单元,但本申请实施例并不以此作为限制,在每个支路上,可以包括至少两个串联的加热元件,此处不再一一赘述。
在一些实施例中,每个加热单元包括加热元件以及控制该加热元件的开关,例如,该加热元件可以是加热棒,该开关可以是继电器或接触器。
在一些实施例中,上述至少两个(即M个)加热单元处于运行状态,其中,处于运行状态是指该加热单元中控制加热元件的开关处于接通状态,停止运行是指该加热单元中控制加热元件的开关处于断开状态。
在一些实施例中,在101中,在该加热单元的运行状态不被改变的情况下,获取该相线的干路电流值,加热单元的运行状态不被改变是指开关的通断状态不变(即保持接通状态)以及加热元件的运行功率不改变,另外,如果该加热装置还包括前述并联设置于同一相线的支路上处于停止运行状态的P个加热单元时,该停止运行状态的加热单元的运行状态也需要保持不变,即开关的通断状态不变(即保持断开状态)。可以使用电流传感器或电流互感器获得该相线的干路电流值,例如,可以将电流传感器或电流互感器设置在相线的干路上,以获取该干路电流值,具体可以参考现有技术,此处不再赘述。
以下以一个相线的干路电流值为例说明如何进行故障诊断,如果加热装置包括多个相线,则根据各个相线的干路电流值进行故障诊断的实施方式类似,具体可以参考后述第二方面的实施例,此处不再赘述。
在一些实施例中,在进行诊断前,可选的,可以对获取的该干路电流值进行校正与补偿,以提高故障诊断可靠性,在加热元件发生故障时,与该加热元件未发生故障的情况相比,可以看作电路中负载增加,导致干路电流值会减小(举例而言,当加热元件发生故障时,加热元件所在支路处于开路状态,由此造成电路中负载阻值增大,进而引起干路电流减小。),因此,在干路电流值不大于第一电流值时,确定至少一个加热单元中的加热元件发生故障,需要说明的是,还可以在对获取的干路电流值进行补偿和校正后,再将补偿和矫正后的干路电流值与第一电流值进行比较,进而确定加热元件是否发生故障。
例如,该第一电流值可以是预设电流值,也可以是先前检测到的加热元件未发生故障时的干路电流值,以下分别举例说明。
在一些实施例中,该第一电流值是预设电流值,并且,该预设电流值基于处于同一相线上的所有处于运行状态的N个加热元件的总电流A1设置,或者基于该N个加热元件中的N-1个加热元件的总电流A2设置,其中,N为不小于2的整数。例如,第一电流值可以设置为[A2,A1)范围内的值,本申请实施例并不以此作为限制。其中,总电流A1或A2是指N个或N-1个加热元件都未发生故障时且都处于运行状态的理论总电流值,N等于M。
在一些实施例中,该第一电流值可以是先前检测到的加热元件未发生故障时的干路 电流值,该第一电流值即表示处于同一相线上的所有处于运行状态的加热元件(都未发生故障时)的总电流;该方法还可以包括:在确定没有加热单元发生故障时,将获取的该干路电流值更新为该第一电流值。例如,在确定没有加热单元发生故障时,可以每间隔预定时间,对第一电流值进行更新,由于加热元件随着使用时间的变化,会导致其负载发生改变,因此,定期对该第一电流值进行更新,可以进一步提高故障诊断可靠性。
由上述实施例可知,可以根据干路电流值与该第一电流值比较以判断是否有加热元件发生故障,在确定为有发生故障的加热元件时,还可以根据干路电流的变化值来确定哪一个加热元件发生了故障。
在一些实施例中,在102中,可以获取通断该开关所引起的该干路电流值的变化值,例如,依次选定一个运行的加热元件,在保持其他加热元件的运行状态不发生变化(开关的通断状态不变以及对应开关是接通状态的加热元件的运行功率不改变)的情况下,检测该一个加热元件运行时的第一干路电流值以及该一个加热元件停止运行后的第二干路电流值,根据该第一干路电流值和该第二干路电流值确定干路电流值的变化值。例如,在控制该一个加热元件运行的开关接通后,检测该第一干路电流值;在控制该一个加热元件运行的开关断开后,检测该第二干路电流值。
在一些实施例中,当该干路电流值的变化值不大于预设变化值时,确定该开关所控制的加热元件发生故障。该预设变化值基于该一个加热元件的支路电流A3设置,例如预设变化值可以是[0,A3)范围内的值,例如,预设变化值为0时,在干路电流值的变化值为0,即开关接通断开前后干路电流值未发生变化,则表示该开关控制的加热元件故障。
图5是该操作102一实施方法示意图,如图5所示,操作102包括:
501,获取该相线当前的第一干路电流值;
502,选择第M个处于运行状态的加热元件中的第i个加热元件,初始运行时,i=1,其中,i是大于等于1且小于等于M的整数;
503,将控制第i个加热元件的开关断开;
504,获取该相线当前的第二干路电流值;
505,判断第一干路电流值和第二干路电流值的变化值是否不大于预设变化值,在判断结果为是时,执行506,否则执行507;
506,确定第i个加热元件故障;
507,将控制第i个加热元件的开关接通,使i=i+1,并返回501;
在一些实施例中,在确定发生故障的加热元件后,该方法还可以包括(未图示):控制发生故障的加热元件停止运行;启动未运行的未发生故障的且与发生故障的加热元件处于同一相线的加热元件。例如,可以通过开关断开来控制发生故障的加热元件停止运行,另外,还可以向后台服务器上报故障信息;在该加热装置包括至少两个相线时,如果检测到一个相线上的一个支路的加热元件故障,则可以控制该支路其他相线的加热元件(以下为方便说明,将如图3所示方框内的不同相线的加热元件称为一组加热元件)也停止运行,以避免多相不平衡运行。另外,为了保证加热功率,还可以启动未运行的未发生故障的且与发生故障的加热元件处于同一相线的加热元件,以替代同一相线上发生故障的加热元件(或者在使前述一组加热元件停止运行时,还同时启动与该替代的加热元件在同一组的不同相线的加热元件,即启动一组加热元件替代停止运行的一组加热元件),如图4所示,在第2组U相加热元件发生故障时,可以将第2组U相,V相,W相上的加热元件都停止运行,启动虚线所示的第5组加热元件(U相,V相,W相上的加热元件都启动)。
在一些实施例中,该方法还可以包括:(未图示)
在该干路电流值不小于第二电流值时,确定至少一个加热单元中的开关发生故障。
在一些实施例中,该第二电流值的确定方式与该第一电流值类似,此处不再赘述,该第二电流值大于或等于第一电流值,在干路电流值不小于该第二电流值时,确定至少一个加热单元中的开关发生故障,开关故障可以是继电器或接触器粘连等,此处不再一一举例。
在一些实施例中,在确定至少一个加热单元中的开关发生故障后,断开该加热装置的电源开关,可选的,还可以向后台服务器上报故障信息。
在一些实施例中,在每个加热元件加热长(运行时长)分配不均时,容易导致各个加热元件的使用寿命存在差异,为避免加热元件故障率变高,该方法还可以包括:(未图示)根据该干路电流值统计该至少两个并联设置于同一相线的支路上的加热单元的累计运行时间;根据该累计运行时间调整各个加热元件的启动顺序。
例如,在该干路电流值不满足不大于第一电流值,以及不满足不小于第二电流值时,表示当前加热装置中的加热元件以及开关未发生故障,也即表示前述M个设置于同一相线并联的加热元件一直处于运行状态,则实时统计各个加热元件的运行时间,如果发现存在故障的加热元件,则使该加热元件停止运行,针对该加热元件,将截止检测时间为止的运行时间作为累计运行时间,同时开启未运行的未发生故障的且与发生故障的加 热元件处于同一相线的替代加热元件,并从检测时间开始累计该替代的加热元件的累计运行时间,另外,针对其他未发生故障且一直处于运行状态的加热元件,持续累计其运行时间。在该加热装置包括至少两个相线时,可以以前述一组加热元件为单位统计整组加热元件的累计运行时间,具体统计方式不再赘述。
在一些实施例中,根据累计运行时间的长短动态调整各个(或各组)加热元件的启动优先级,其中,累计运行时间长的加热元件(组)的启动优先级调低,累计运行时间短的加热元件(组)的启动优先级高;根据该启动优先级启动加热元件(组)。由此可以保证多个加热元件寿命均衡,以延长使用受用,降低故障率。
例如,如图4所示,从启动T1时刻起,第1组至第4组加热元件处于运行状态,在检测到第2组U相加热元件发生故障(T2时刻)时,将第2组U相,V相,W相上的加热元件都停止运行,启动虚线所示的第5组加热元件(U相,V相,W相上的加热元件都启动)。设当前时刻是T3时刻,则第1组,第3组和第4组的累计运行时间是T3-T1,第2组的累计运行时间是T2-T1,第5组的累计运行时间是T3-T2。根据累计运行时间的长短动态调整各组加热元件的启动优先级,例如在T3-T2小于T2-T1小于T3-T1时,将第5组的启动优先级调整为最高,第2组的启动优先级次高,第1,3,4组的启动优先级最低,则在下次启动时,在需要启动4组加热元件时,则优先启动第5组和第2组加热元件,以及从第1,3,4组中随机选择2组加热元件,并继续统计启动的加热元件的累计运行时间,以及动态调整各个加热元件的启动优先级,此处不再一一举例。
在一些实施例中,该干路电流值还可以用于计算该加热装置的用电量以及加热元件的平均耗电功率,以方便用户和维护人员管理和维护。
图6是本实施例故障确定方法一实施示意图,如图6所示,针对M个并联设置于一个相线的支路上的处于运行状态的加热元件,该方法包括:
601,在该加热单元的运行状态不被改变的情况下,获取该相线的干路电流值;
602,判断该干路电流值是否不大于第一电流值,在判断结果为是时,执行603-606,否则执行607;
603,确定至少一个加热单元中的加热元件发生故障;
604,获取通断各个开关所引起的该干路电流值的变化值,根据该变化值确定发生故障的加热元件(定位故障点);
605,控制发生故障的加热元件停止运行;
606,启动未运行的未发生故障的且与发生故障的加热元件处于同一相线的加热元 件;
607,判断该干路电流值是否不小于第二电流值,在判断结果为是时,执行608-609,否则结束;
608,确定至少一个加热单元中的开关发生故障;
609,断开该加热装置的电源开关。
在一些实施例中,604的实施方式可以参考图5,其他操作的实施方式如前所述,此处不再一一赘述。
值得注意的是,以上附图1,图5,图6仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图1,图5,图6的记载
由上述实施例可知,可以根据干路电流值判断是否有加热元件发生故障,并根据干路电流的变化值来确定发生故障的加热元件,由此,可以低成本且高可靠性地实现加热装置中多个加热元件的故障诊断。
第二方面的实施例
本申请第二方面的实施例提供一种加热装置的故障确定方法,在本实施例中,以加热装置的工作电流是三相供电电流,该加热装置包括三个相线为例进行说明,也就是说,加热装置工作时,在三个相线的每个相线上均可以包括至少两个(例如M个)并联设置于支路的处于运行状态的加热单元,每个加热单元包括加热元件以及控制加热元件的开关。
另外,如第一方面的实施例所述,在该三个相线中的每一个相线上,还可以包括P个处于停止运行状态的加热单元(P为大于等于0的整数),该P个加热单元与前述M个加热单元并联设置于同一相线的支路上,也就是说,在该三个相线中的每一个相线上,都有M+P个加热单元并联的设置在M+P个支路上。
另外,如第一方面的实施例所述,在每个支路上,可以包括一个加热元件或至少两个(G个,G为大于或等于1的整数)串联的加热元件,也就是说,该加热装置可以包括3×(M+P)×G个加热元件,在该三个相线中的每一个相线上,都设置有(M+P)×G个加热元件。换句话说,该加热装置包括M+P组加热元件,一组加热元件包括3×G个加热元件。如图3所示,三个相线分别是U相,V相和W相,在该三个相线中的每一 个相线上,都有M个运行状态的加热元件并联的设置在M个支路上(P=0),共包括M组加热元件,每组加热单元包括3个加热元件,如图4所示,三个相线分别是U相,V相和W相,在该三个相线中的每一个相线上,都有M个运行状态的加热元件和P个停止运行的加热元件并联的设置在M+P个支路上,共包括M+P组加热元件,每组加热元件的每个相线上都串联有1个加热元件,因此,每组加热元件包括3个加热元件,此处不再一一举例。
在一些实施例中,上述三个相线上的加热元件呈星形连接或三角形连接,图7和图8分别是三个相线上的加热元件连接关系示意图,如图7所示,三个相线上的加热元件呈星形连接,如图8所示,三个相线上的加热元件呈三角形连接。
图9是该加热装置的故障确定方法示意图,如图9所示,该方法包括:
901,在该加热单元的运行状态不被改变的情况下,获取该每个相线的干路电流值,在该干路电流值不大于第一电流值时,确定该干路所在相线上至少一个加热单元中的加热元件发生故障;
902,获取通断发生加热元件故障的该相线上的该开关所引起的该干路电流值的变化值,当该干路电流值的变化值不大于预设变化值时,确定该开关所控制的加热元件所在的支路发生故障。
在一些实施例中,901-902的实施方式中需要分别针对三个相线的干路电流值进行判断,针对每个相线的干路电流值的判断方法都相同,具体可以参考第一方面的实施例里中101-102,重复之处不再赘述。
例如,在902中,针对三个相线中的每个相线在定位故障点时,需要在发生加热元件故障的该相线上依次选定一个运行的加热元件,在保持其他加热元件的运行状态不发生变化的情况下,检测该一个加热元件运行时的第一干路电流值以及该一个加热元件停止运行后的第二干路电流值,其具体实施方式可以参考第一方面的实施例,此处不再赘述。
在一些实施例中,针对三个相线中的每个相线,都设置有各自的第一电流值和第二电流值以及预设电流值,每个相线的该第一电流值和第二电流值以及预设电流值的确定方式可以参考第一方面的实施例,此处不再赘述。
值得注意的是,以上附图9仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅 限于上述附图9的记载。
由上述实施例可知,可以根据干路电流值判断是否有加热元件发生故障,并根据干路电流的变化值来确定发生故障的加热元件,由此,可以低成本且高可靠性地实现加热装置中多个加热元件的故障诊断。
第三方面的实施例
本申请第三方面的实施例提供一种装置,图10是该加热装置的故障确定装置构成示意图,图10是本申请实施例的故障确定装置的一个示意图,如图10所示,本申请实施例的故障确定装置1000可以包括:至少一个接口(图10中未示出),处理器(例如,中央处理器(CPU))1001,存储器1002;存储器1002耦合到处理器1001。其中,存储器1002可存储各种数据;此外还存储程序1003用于确定故障,并且在处理器1001的控制下执行该程序1003,并存储各种预设的阈值和预定的条件等。
在一些实施例中,该处理器1001可以实现第一方面或第二方面的实施例所述的故障确定方法,例如,该处理器1001可以被配置为:在该加热单元的运行状态不被改变的情况下,获取该相线的干路电流值,在该干路电流值不大于第一电流值时,确定至少一个加热单元中的加热元件故障;获取通断该开关所引起的该干路电流值的变化值,当该干路电流值的变化值不大于预设变化值时,确定该开关所控制的加热元件发生故障。
在一些实施例中,该处理器1001还可以被配置为:在该加热单元的运行状态不被改变的情况下,获取该每个相线的干路电流值,在该干路电流值不大于第一电流值时,确定该干路所在相线上至少一个加热单元中的加热元件故障;获取通断发生加热元件故障的该相线上的该开关所引起的该干路电流值的变化值,当该干路电流值的变化值不大于预设变化值时,确定该开关所控制的加热元件所在的支路发生故障。
值得注意的是,故障确定装置1000还可以包括通信模块1004,或者也并不是必须要包括图10中所示的所有部件;此外,故障确定装置1000还可以包括图10中没有示出的部件,可以参考相关技术,此处不再一一举例,例如,该故障确定装置1000还可以包括电流互感器,其用于检测干路电流值,该处理器1001与该电流互感器连接,用于获取该干路电流值。
在本申请实施例中,处理器1001有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该处理器1001接收输入并控制故障确定装置1000的各个部件的操作。
在本申请实施例中,存储器1002例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种信息,此外还可存储执行有关信息的程序。并且处理器1001可执行该存储器1002存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。故障确定装置1000的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本申请的范围。
例如,在该加热装置应用于电热水器时,处理器1001可以与电热水器的处理器分开配置,例如将该处理器1001配置为与电热水器的处理器连接的芯片等,二者可以互相控制,或者,也可以将处理器1001的功能集成至电热水器自身的处理器中,本申请实施例并不以此作为限制。
由上述实施例可知,可以根据干路电流值判断是否有加热元件发生故障,并根据干路电流的变化值来确定发生故障的加热元件,由此,可以低成本且高可靠性地实现加热装置中多个加热元件的故障诊断。
第四方面的实施例
本申请第四方面的实施例提供一种电热水器。图11是本申请实施例的电热水器示意图。如图11所示,电热水器1100包括:
加热装置1101,该加热装置包括至少两个并联设置于同一相线的支路的加热单元,该加热单元包括加热元件以及控制加热元件运行的开关;
加热装置的故障确定装置1102;
水路组件1103,该加热元件用于加热该水路组件中的水。
在一些实施例中,加热装置1101的工作电流可以是单相供电电流或三相供电电流,其具体的构成可以参考第一方面或第二方面所述,该加热装置的故障确定装置1102的实施方式可以参考第三方面的故障确定装置1000,此处不再赘述。
在一些实施例中,该加热装置的故障确定装置1102还包括:用于获取干路电流值的电流互感器,该加热元件是加热棒,该水路组件1103包括用于储水的内胆。
在一些实施例中,故障确定装置1102可以与电热水器的处理器分开配置,例如将该故障确定装置配置1102为与电热水器的处理器连接的芯片等,二者可以互相控制,或者,也可以将故障确定装置1102的功能集成至电热水器自身的处理器中,本申请实施例并不以此作为限制。
在一些实施例中,该电热水器可以是商用大功率电热水器,例如,该电热水器可以包括至少两个级联的子电热水器,每个子电热水器中分别设置有水路组件以及至少一个处于运行状态的加热单元;并且各个子电热水器的处于运行状态的至少一个加热单元在同一相线上并联。
图12是该级联的电热水器构成示意图,如图12所示,该电热水器1200包括至少两个级联的子电热水器1201以及加热装置的故障确定装置1202,在每个子电热水器1201中,都设置有水路组件12011以及至少一个处于运行状态的加热单元12012,每个子电热水器的至少一个加热单元12012在同一相线上并联。例如,在工作电流是单相供电电流时,该电热水器仅包括一个相线,每个子电热水器中的加热单元都并联地设置于该相线;在工作电流是三相供电电流时,该电热水器包括三个相线,在该三个相线的每个相线上,每个子电热水器中的至少一个加热单元都并联地设置于该相线;换句话说,每个子电热水器都包括至少一组加热元件。
另外,如第一方面的实施例所述,在该三个相线中的每个相线上,每个子电热水器可以包括P个处于停止运行状态的加热单元(P为大于等于0的整数),该P个加热单元与前述至少一个加热单元并联设置于同一相线的支路上。每个子电热水器在每个支路上,可以包括一个加热元件或至少两个(G个,G为大于或等于1的整数)串联的加热元件,如图3所示,该M组处于运行状态的加热元件可以分布于各个子电热水器1201中,使得每个子电热水器1201都包括至少一组处于运行状态的加热元件,如图4所示,该M组处于运行状态的加热元件可以分布于各个子电热水器1201中,使得每个子电热水器1201都包括至少一组处于运行状态的加热元件,另外,针对P组处于停止运行状态的加热元件也可以分布于各个子电水器1201中,各个子电水器1201中可以包含或不包含前述停止运行状态的加热元件。
在一些实施例中,故障确定装置1202可以与各个子电热水器的处理器分开配置,例如将该故障确定装置配置1202为与各个子电热水器的处理器连接的芯片等,二者可以互相控制,或者,也可以将故障确定装置1202的功能集成至其中一个子电热水器(例如第一个子电热水器)自身的处理器中,本申请实施例并不以此作为限制。
在一些实施例中,故障确定装置被配置为执行第一或第二方面实施例中的故障确定方法,具体可以参考第一或第二方面的实施例,重复之处不再赘述。
值得注意的是,电热水器1100或1200还可以包括图11或图12中没有示出的部件,可以参考相关技术,此处不再一一举例。
由上述实施例可知,可以根据干路电流值判断是否有加热元件发生故障,并根据干路电流的变化值来确定发生故障的加热元件,由此,可以低成本且高可靠性地实现加热装置中多个加热元件的故障诊断。
本申请实施例还提供一种计算机程序,其中当在故障确定装置或电热水器中执行所述程序时,所述程序使得所述主控器执行第一或第二方面的实施例所述的故障确定方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得故障确定装置或电热水器执行第一或第二方面的实施例所述的故障确定方法。
结合本申请实施例描述的在数据发送装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图1,图5,图6,图9所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在信息处理系统的存储器中,也可以存储在可插入信息处理系统的存储卡中。
针对图中描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件、或者其任意适当组合。针对图中描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请 的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。

Claims (20)

  1. 一种加热装置的故障确定方法,其特征在于,当所述加热装置包括至少两个并联设置于同一相线的支路上的处于运行状态的加热单元,所述加热单元包括加热元件以及控制所述加热元件的开关时,所述方法包括:
    在所述加热单元的运行状态不被改变的情况下,获取所述相线的干路电流值,在所述干路电流值不大于第一电流值时,确定至少一个加热单元中的加热元件发生故障;
    获取通断所述开关所引起的所述干路电流值的变化值,当所述干路电流值的变化值不大于预设变化值时,确定所述开关所控制的加热元件发生故障。
  2. 根据权利要求1所述的方法,其特征在于,所述第一电流值是预设电流值,并且,所述预设电流值基于处于同一相线上的所有处于运行状态的N个加热元件的总电流设置,或者基于所述N个加热元件中的N-1个加热元件的总电流设置,其中,N为不小于2的整数。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在确定没有加热单元发生故障时,将获取的所述干路电流值更新为所述第一电流值。
  4. 根据权利要求1所述的方法,其特征在于,获取通断所述开关所引起的所述干路电流值的变化值的步骤,包括:
    依次选定运行的一个加热元件,在保持其他加热元件的运行状态不发生变化的情况下,检测所述一个加热元件运行时的第一干路电流值以及所述一个加热元件停止运行后的第二干路电流值。
  5. 根据权利要求4所述的方法,其特征在于,在控制所述一个加热元件运行的开关接通后,检测所述第一干路电流值;在控制所述一个加热元件运行的开关断开后,检测所述第二干路电流值。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    控制发生故障的加热元件停止运行;
    启动未运行的未发生故障的且与发生故障的加热元件处于同一相线的加热元件。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述干路电流值不小于第二电流值时,确定至少一个加热单元中的开关发生故障。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:在确定至少一个加 热单元中的开关发生故障后,断开所述加热装置的电源开关。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述干路电流值统计所述至少两个并联设置于同一相线的支路上的加热单元的累计运行时间;
    根据所述累计运行时间调整各个加热元件的启动顺序。
  10. 根据权利要求9所述的方法,其特征在于,根据所述累计运行时间调整各个加热元件的启动顺序的步骤,包括:
    根据累计运行时间的长短动态调整各个加热元件的启动优先级,其中,累计运行时间长的加热元件的启动优先级调低,累计运行时间短的加热元件的启动优先级高;
    根据所述启动优先级启动加热元件。
  11. 一种加热装置的故障确定方法,其特征在于,当所述加热装置的工作电流是三相供电电流,并且,在三个相线的每个相线上均包括至少两个并联设置于支路的处于运行状态的加热单元,所述加热单元包括加热元件以及控制加热元件的开关时,所述方法包括:
    在所述加热单元的运行状态不被改变的情况下,获取所述每个相线的干路电流值,在所述干路电流值不大于第一电流值时,确定所述干路所在相线上至少一个加热单元中的加热元件发生故障;
    获取通断发生加热元件故障的所述相线上的所述开关所引起的所述干路电流值的变化值,当所述干路电流值的变化值不大于预设变化值时,确定所述开关所控制的加热元件所在的支路发生故障。
  12. 根据权利要求11所述的方法,其特征在于,获取通断发生加热元件故障的所述相线上的所述开关所引起的所述干路电流值的变化值的步骤,包括:
    在发生加热元件故障的所述相线上依次选定运行的一个加热元件,在保持其他加热元件的运行状态不发生变化的情况下,检测所述一个加热元件运行时的第一干路电流值以及所述一个加热元件停止运行后的第二干路电流值。
  13. 根据权利要求12所述的方法,其特征在于,在控制所述一个加热元件运行的开关接通后,检测所述第一干路电流值,在控制所述一个加热元件运行的开关断开后,检测所述第二干路电流值。
  14. 根据权利要求11所述的方法,其特征在于,所述第一电流值是预设电流值,并且,所述预设电流值基于处于同一相线上的所有处于运行状态的N个加热元件的总电流 设置,或者基于所述N个加热元件中的N-1个加热元件的总电流设置,其中N不小于2。
  15. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    在确定没有加热单元发生故障时,将获取每个相线的所述干路电流值更新为各个相线对应的所述第一电流值。
  16. 一种加热装置的故障确定装置,包括处理器,所述处理器被配置为执行权利要求1至15中的任一项所述的加热装置的故障确定方法。
  17. 一种电热水器,其特征在于,所述电热水器包括:
    加热装置,所述加热装置包括至少两个并联设置于同一相线的支路的加热单元,所述加热单元包括加热元件以及控制加热元件运行的开关;
    权利要求16所述加热装置的故障确定装置;
    水路组件,所述加热元件用于加热所述水路组件中的水。
  18. 根据权利要求17所述的电热水器,所述加热装置的工作电流是三相供电电流,并且,在三个相线的每个相线上均包括至少两个并联设置于支路的加热单元,三个相线上的加热元件呈星形连接或三角形连接。
  19. 根据权利要求17所述的电热水器,其特征在于,所述电热水器包括至少两个级联的子电热水器,每个子电热水器中分别设置有水路组件以及至少一个加热单元;并且各个子电热水器的至少一个加热单元在同一相线上并联。
  20. 根据权利要求17至19任一项所述的电热水器,其特征在于,
    所述加热装置的故障确定装置还包括:用于获取干路电流值的电流互感器,所述加热元件是加热棒,所述水路组件包括用于储水的内胆。
PCT/CN2022/080810 2021-06-16 2022-03-15 加热装置的故障确定方法、装置以及电热水器 WO2022262334A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3225273A CA3225273A1 (en) 2021-06-16 2022-03-15 Method and apparatus for determining a fault of a heating device and an electric water heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110665170.1 2021-06-16
CN202110665170.1A CN115479395A (zh) 2021-06-16 2021-06-16 加热装置的故障确定方法、装置以及电热水器

Publications (1)

Publication Number Publication Date
WO2022262334A1 true WO2022262334A1 (zh) 2022-12-22

Family

ID=84419561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080810 WO2022262334A1 (zh) 2021-06-16 2022-03-15 加热装置的故障确定方法、装置以及电热水器

Country Status (3)

Country Link
CN (1) CN115479395A (zh)
CA (1) CA3225273A1 (zh)
WO (1) WO2022262334A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167474A (ja) * 1993-12-13 1995-07-04 Matsushita Electric Ind Co Ltd 空気調和機のヒータ回路の制御方法
KR101383158B1 (ko) * 2012-10-29 2014-04-09 주식회사 한영넉스 히터 단선 검출 방법
CN104880602A (zh) * 2015-04-30 2015-09-02 广东美的制冷设备有限公司 一种空调器及其电加热器件检测方法和装置
CN206212319U (zh) * 2016-11-15 2017-05-31 佛山市顺德区美的电热电器制造有限公司 电磁加热系统及其保护装置
CN107422244A (zh) * 2017-05-18 2017-12-01 苏州大学 电路故障检测的混沌电源电流方法
CN108414861A (zh) * 2018-03-07 2018-08-17 宁波弘讯科技股份有限公司 电热故障自检方法、装置、系统及计算机可读存储介质
CN209703068U (zh) * 2018-11-14 2019-11-29 东莞厚恒丝绸有限公司 一种蒸化机加热器
CN112816914A (zh) * 2021-02-09 2021-05-18 珠海格力电器股份有限公司 烤箱加热管故障检测电路和烤箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167474A (ja) * 1993-12-13 1995-07-04 Matsushita Electric Ind Co Ltd 空気調和機のヒータ回路の制御方法
KR101383158B1 (ko) * 2012-10-29 2014-04-09 주식회사 한영넉스 히터 단선 검출 방법
CN104880602A (zh) * 2015-04-30 2015-09-02 广东美的制冷设备有限公司 一种空调器及其电加热器件检测方法和装置
CN206212319U (zh) * 2016-11-15 2017-05-31 佛山市顺德区美的电热电器制造有限公司 电磁加热系统及其保护装置
CN107422244A (zh) * 2017-05-18 2017-12-01 苏州大学 电路故障检测的混沌电源电流方法
CN108414861A (zh) * 2018-03-07 2018-08-17 宁波弘讯科技股份有限公司 电热故障自检方法、装置、系统及计算机可读存储介质
CN209703068U (zh) * 2018-11-14 2019-11-29 东莞厚恒丝绸有限公司 一种蒸化机加热器
CN112816914A (zh) * 2021-02-09 2021-05-18 珠海格力电器股份有限公司 烤箱加热管故障检测电路和烤箱

Also Published As

Publication number Publication date
CA3225273A1 (en) 2022-12-22
CN115479395A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US8714933B2 (en) Water supply apparatus
JP2008202556A (ja) 給水装置のn重系自律分散制御システム
US20140368232A1 (en) Insulated gate bipolar transistor failure mode detection and protection system and method
US8493231B2 (en) Power meter having fault tolerance
US9625894B2 (en) Multi-channel control switchover logic
JP6071488B2 (ja) 給水装置および給水方法
CN104167979B (zh) 一种无刷直流电机霍尔传感器上电自修复方法
US20120136502A1 (en) Fan speed control system and fan speed reading method thereof
US7800875B2 (en) Multi-level electronic protection system providing safe fault recovery for multiple digital control outputs
TWI428613B (zh) Abnormal detection method and device for server power supply system
CN110515802A (zh) 一种服务器开机故障的监测方法、系统及相关组件
SE1350462A1 (sv) Analys av avbrottsutbredning för elektriska distributionssystem
CN104699589A (zh) 风扇错误侦测系统及方法
WO2022262334A1 (zh) 加热装置的故障确定方法、装置以及电热水器
CN109798703A (zh) 热泵机组及其除霜控制方法、装置
CN110190740B (zh) Pfc电路的容错保护方法、电路及空调器
JP6033492B2 (ja) ブラシレス直流モータを動作させるための方法と装置
CN101173976A (zh) 一种过零触发电路的故障检测方法
CN102624568B (zh) 一种接入电路侧链路故障状态的通知方法及装置
CN107181235A (zh) 用于高电流脉冲电源的短路控制
CN104633946A (zh) 热泵热水器的启动方法
JP6707646B2 (ja) ユーティリティシステムにおける供給停止に対処するためのシステムおよび方法
JP2012070620A (ja) 高電流パルス電源の制御方法および電源回路
CN107940692B (zh) 空调系统及其控制方法
CN106160855B (zh) 一种检测onu长发光的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18576292

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3225273

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE