WO2022262314A1 - 紫外半导体发光元件 - Google Patents

紫外半导体发光元件 Download PDF

Info

Publication number
WO2022262314A1
WO2022262314A1 PCT/CN2022/078634 CN2022078634W WO2022262314A1 WO 2022262314 A1 WO2022262314 A1 WO 2022262314A1 CN 2022078634 W CN2022078634 W CN 2022078634W WO 2022262314 A1 WO2022262314 A1 WO 2022262314A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting element
semiconductor light
ultraviolet semiconductor
aging
Prior art date
Application number
PCT/CN2022/078634
Other languages
English (en)
French (fr)
Inventor
郑锦坚
高默然
毕京锋
范伟宏
曾家明
张成军
Original Assignee
厦门士兰明镓化合物半导体有限公司
杭州士兰明芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门士兰明镓化合物半导体有限公司, 杭州士兰明芯科技有限公司 filed Critical 厦门士兰明镓化合物半导体有限公司
Publication of WO2022262314A1 publication Critical patent/WO2022262314A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps

Definitions

  • the invention relates to the technical field of semiconductors, in particular to an ultraviolet semiconductor light-emitting element.
  • Ultraviolet semiconductor light-emitting element with a wavelength range of 200-300nm, the ultraviolet light emitted can interrupt the DNA or RNA of viruses and bacteria, directly kill viruses and bacteria, and can be widely used in air purification, tap water sterilization, household air conditioning sterilization, automobile Sterilization and disinfection fields such as air-conditioning sterilization.
  • Existing ultraviolet semiconductor light-emitting elements use a quantum well layer with a low In composition. Because the In composition is too low, the quantum well layer cannot form similar to the In composition fluctuation and V-pits structure in the blue light semiconductor light-emitting element. Quantum confinement is performed, so that the carriers cannot be effectively confined outside the leakage channel. During the aging process, electrons will jump into the leakage channel, causing the leakage current to be greater than 2 ⁇ A after aging.
  • Existing ultraviolet semiconductor light-emitting elements use a superlattice structure composed of InGaN and GaN or a superlattice structure composed of InGaN and AlGaN or a superlattice structure composed of GaN and AlGaN as the insertion between the quantum well layer and the n-type semiconductor layer Layer, this structure can perform the functions of stress release and current expansion, but it cannot effectively control and improve the aging leakage phenomenon, so that the leakage current after 1000 hours of aging leakage is generally above 5 ⁇ A, causing aging leakage failure.
  • the object of the present invention is to provide an ultraviolet semiconductor light-emitting element to improve the aging leakage performance of the ultraviolet semiconductor light-emitting element.
  • the present invention provides an ultraviolet semiconductor light-emitting element, which includes from bottom to top: a substrate, an n-type semiconductor layer, an aging leakage control layer, a quantum well layer, and a p-type semiconductor layer, wherein the The aging leakage control layer is a superlattice structure composed of the first structural layer and the second structural layer.
  • the material of the second structural layer includes AlN.
  • the material of the first structure layer includes at least one of GaN and In z Ga 1-z N, wherein z ranges from 0 to 0.2.
  • the In composition content of the first structural layer is lower than that of the quantum well layer The content of the In component.
  • the In component content of the quantum well layer is 0-0.3.
  • the thickness of the first structural layer is at least twice the thickness of the second structural layer.
  • the thickness of the first structure layer is 3nm-8nm.
  • the thickness of the second structural layer is 0.5nm-3nm.
  • the aging leakage control layer has a very small Si doping concentration, and the Si doping concentration of the aging leakage control layer is less than 1E17cm -3 .
  • the period of the superlattice structure of the aging leakage control layer is m, and 5 ⁇ m ⁇ 40.
  • the p-type semiconductor layer includes a p-type electron blocking layer and a p-type contact layer on the p-type electron blocking layer.
  • the material of the p-type electron blocking layer includes AlyGa 1-y N , wherein y ranges from 0.2 to 1; the material of the p-type contact layer includes At least one of GaN and AlkGa1 -kN , wherein k ranges from 0 to 0.45.
  • the material of the n-type semiconductor layer includes AlxGa1 - xN , and x ranges from 0 to 0.6.
  • the aging leakage control layer by adding an aging leakage control layer with a superlattice structure between the n-type semiconductor layer and the quantum well layer, it can block dislocations and defects and reduce leakage channels; at the same time, the composition material of the superlattice structure of the aging leakage control layer One of them is AlN, and the high potential barrier of AlN can effectively prevent aging leakage. Therefore, the aging leakage control layer can effectively inhibit the leakage of electrons into the leakage channel during the aging process, so that the leakage current after aging for 1000 hours is controlled within 0.2 ⁇ A.
  • Fig. 1 is a schematic structural view of an ultraviolet semiconductor light-emitting element according to an embodiment of the present invention
  • Existing ultraviolet semiconductor light-emitting elements use a quantum well layer with a low In composition. Because the In composition is too low, the quantum well layer cannot form similar to the In composition fluctuation and V-pits structure in the blue light semiconductor light-emitting element. Quantum confinement is performed, so that the carriers cannot be effectively confined outside the leakage channel, and electrons will jump into the leakage channel during the aging process, causing the aging leakage current to be greater than 2 ⁇ A.
  • Existing ultraviolet semiconductor light-emitting elements use a superlattice structure composed of InGaN and GaN or a superlattice structure composed of InGaN and AlGaN or a superlattice structure composed of GaN and AlGaN as the insertion layer between the quantum well and the n-type semiconductor,
  • This structure can perform the functions of stress release and current expansion, but it cannot effectively control and improve the aging leakage, so that the leakage current after 1000 hours of aging leakage is generally above 5 ⁇ A, causing aging leakage failure.
  • the present invention provides an ultraviolet semiconductor light-emitting element, an aging leakage control layer with a superlattice structure is inserted between the n-type semiconductor layer and the quantum well layer, through low Si doping
  • the aging leakage control layer with a high concentration can effectively inhibit the leakage of electrons into the leakage channel during the aging process, so that the leakage current after aging for 1000 hours is controlled within 0.2 ⁇ A.
  • the ultraviolet semiconductor light-emitting element includes, from bottom to top, a substrate 100, an n-type semiconductor layer 102, an aging leakage control layer 103, a quantum well layer 104, and a p-type semiconductor layer, wherein the aging
  • the leakage control layer 103 is a superlattice structure composed of the first structure layer and the second structure layer.
  • the substrate 100 can be one of homogeneous or heterogeneous substrates, and can include GaN, AlN, Ga 2 O 3 , SiC, Si, sapphire, ZnO single crystal substrates, and pre-deposited AlN films. High temperature resistant metal substrate.
  • a substrate capable of transmitting light emitted from the quantum well layer 104 and emitting emitted light from the substrate side, such as a sapphire substrate or the like is preferably used.
  • the surface of the substrate 100 on the light emitting side or the opposite side may have a concave-convex shape.
  • a buffer layer (Buffer) 101 may be formed on the substrate 100 .
  • the buffer layer 101 is used to reduce the lattice mismatch between the substrate 100 and the epitaxial layer, so as to reduce the possibility of defects and dislocations in the grown epitaxial layer and improve the crystal quality.
  • the buffer layer 101 is not limited to one material, but can also be a combination of multiple materials, different dopants and different doping contents, etc. All the materials of the buffer layer disclosed so far are within the protection scope of the present invention .
  • the material of the buffer layer 101 is nitride, for example, the material of the buffer layer 101 is AlN.
  • the n-type semiconductor layer 102 is disposed on the substrate 100 via the buffer layer 101 as required, or the n-type semiconductor layer 102 may be directly disposed on the substrate 100 .
  • the n-type semiconductor layer 102 can be a conventional n-type layer, for example, can be made of AlxGa1 -xN , where x ranges from 0 to 0.6.
  • the n-type semiconductor layer 102 functions as an n-type layer by being doped with an n-type dopant.
  • Specific examples of the n-type dopant include silicon (Si), germanium (Ge), tin ( Sn), sulfur (S), oxygen (O), titanium (Ti), zirconium (Zr), etc., but not limited thereto.
  • the dopant concentration of the n-type dopant may be such that the n-type semiconductor layer 102 can function as an n-type layer.
  • the n-type dopant in the n-type semiconductor layer 102 is preferably Si, and the doping concentration of Si is preferably 5E18cm ⁇ 3 to 5E19cm ⁇ 3 .
  • the thickness of the n-type semiconductor layer 102 is preferably 1 ⁇ m ⁇ 3.5 ⁇ m.
  • the bandgap of the n-type semiconductor layer 102 is preferably wider than the bandgap of the quantum well layer 104 (a well layer when a multi-quantum well structure is adopted), and is transparent to emitted ultraviolet light.
  • the n-type semiconductor layer 102 may adopt a superlattice structure in addition to a single-layer structure or a multi-layer structure.
  • the aging leakage control layer 103 is a superlattice structure composed of a first structure layer and a second structure layer, and the period of the superlattice structure of the aging leakage control layer 103 is m, and 5 ⁇ m ⁇ 40.
  • the material of the first structure layer includes at least one of GaN and In z Ga 1-z N, wherein z ranges from 0 to 0.2.
  • the material of the second structure layer includes AlN, but is not limited thereto. Therefore, the aging leakage control layer 103 may be a superlattice structure composed of GaN and AlN or a superlattice structure composed of In z Ga 1-z N and AlN.
  • the aging leakage control layer 103 adopts a superlattice structure composed of GaN and AlN or a superlattice structure composed of In z Ga 1-z N and AlN, which can not only play the role of stress release and current expansion, but also make the epitaxial During the growth process, dislocations and defects are blocked, especially threading dislocations are greatly reduced, which can reduce the leakage channel, which in turn can reduce the probability of electron leakage to the leakage channel, that is, it can effectively inhibit the aging process. The electrons leak into the leakage channel, thereby improving the aging leakage performance of the ultraviolet semiconductor light-emitting element.
  • the In composition content of the first structure layer is lower than the In composition content of the quantum well layer 104 .
  • the In component content of the quantum well layer 104 is preferably 0 ⁇ 0.3.
  • the aging leakage control layer 103 is doped with an n-type dopant, preferably doped with Si.
  • the aging leakage control layer 103 must have extremely low Si doping, so as to achieve the effect of aging leakage control, and also enable the n-type semiconductor layer to effectively spread the current laterally.
  • Si can be doped in the first structural layer, and/or, Si can be doped in the second structural layer, that is, Si can be doped only in the first structural layer, or only Si can be doped in the second structural layer , Si can also be doped in the first structure layer and the second structure layer at the same time.
  • the Si doping concentration of the aging leakage control layer 103 is less than 1E17 cm ⁇ 3 .
  • the Si doping concentration of the aging leakage control layer 103 cannot be greater than 1E17 cm -3 , otherwise electrons will leak into the leakage channel, causing aging leakage failure.
  • the thickness of the first structural layer is at least twice the thickness of the second structural layer, so as to improve aging leakage. That is, the aging leakage control layer 103 must meet the requirement that the GaN thickness is twice or more than the AlN thickness, or the In z Ga 1-z N thickness is twice or more than the AlN thickness.
  • the thickness of the first structural layer is 3nm-8nm
  • the thickness of the second structural layer is 0.5nm-3nm.
  • the thickness of the second structural layer that is, the thickness of AlN must be greater than 0.5nm, otherwise it cannot effectively prevent the aging leakage function; and the thickness of the second structural layer, that is, the thickness of AlN cannot be greater than 3nm, because the AlN barrier Very high, the thickness is too thick, it is difficult for electrons to tunnel and jump into the quantum well, and the resistance of AlN is very large. Therefore, the thickness of the second structure layer is too thick, which will cause the voltage of the ultraviolet semiconductor light-emitting element to be abnormally high and the brightness to be severely reduced.
  • the ultraviolet semiconductor light-emitting element in this embodiment can effectively suppress the leakage of electrons into the leakage channel during the aging process through the aging leakage control layer 103 low-doped with Si, so that the leakage current after aging for 1000 hours is controlled within 0.2 ⁇ A.
  • the aging leakage control layer 103 can also be applied to semiconductor light-emitting elements of all other wavelength bands, with a wavelength range of 200nm to 550nm. For example, it can be applied to deep ultraviolet semiconductor light-emitting elements, purple light semiconductor light-emitting elements, blue light semiconductor light-emitting elements, green light semiconductor Light-emitting elements and yellow light semiconductor light-emitting elements.
  • the quantum well layer 104 is formed on the aging leakage control layer 103 .
  • the quantum well layer 104 may be a superlattice structure composed of InGaN and AlGaN, or a superlattice structure composed of GaN and AlGaN, but is not limited thereto.
  • the quantum well layer 104 may be a superlattice structure composed of InGaN and AlGaN.
  • the quantum well layer 104 generally includes a well layer and a barrier layer.
  • the quantum well layer is an InGaN layer
  • the barrier layer is an AlGaN layer.
  • the content of In component of InGaN in the quantum well layer 104 is greater than the content of In component of InGaN in the aging leakage control layer 103 , and the content of In component in the quantum well layer 104 is preferably 0 ⁇ 0.3.
  • the AlGaN in the quantum well layer 104 is doped with an n-type dopant, preferably Si, and the Si doping concentration is preferably 1E17cm ⁇ 3 to 5E19cm ⁇ 3 .
  • the p-type semiconductor layer disposed on the quantum well layer 104 may include a p-type electron blocking layer 105 and a p-type contact layer 106 .
  • the p-type electron blocking layer 105 is used to block electrons, prevent electrons from overflowing to the p-type contact layer 106, and then inject electrons into the quantum well layer 104 to reduce the occurrence of non-radiative recombination and further improve the performance of the ultraviolet semiconductor light-emitting element. Luminous efficiency.
  • the material of the p-type electron blocking layer 105 is preferably AlyGa1 -yN , and the range of y is 0.2-1, but not limited thereto.
  • the thickness of the p-type electron blocking layer 105 is not particularly limited.
  • examples of p-type dopants to be doped into the p-type electron blocking layer 105 include magnesium (Mg), zinc (Zn), calcium (Ca), beryllium (Be), manganese (Mn), and the like. It is not limited to this.
  • the p-type dopant is preferably Mg.
  • the dopant concentration of the p-type electron blocking layer 105 is not particularly limited as long as it is a dopant concentration capable of functioning as a p-type semiconductor layer.
  • the p-type contact layer 106 is disposed on the p-type electron blocking layer 105 .
  • the p-type contact layer 106 is a layer for reducing the contact resistance between the p-side electrode provided directly thereon and the p-type electron blocking layer 105 .
  • the material of the p-type contact layer 106 includes at least one of GaN and Al k Ga 1-k N, but is not limited thereto, and k ranges from 0 to 0.45.
  • the p-type contact layer 106 of the ultraviolet light-emitting element As the p-type contact layer 106 of the ultraviolet light-emitting element, the p-type GaN layer that is easy to increase the hole concentration is generally used, and the p-type Al k Ga 1-k N layer can also be used, although the Al k Ga 1-k N layer and GaN Compared with the layer, the hole concentration may be slightly reduced, but since the ultraviolet light emitted from the light-emitting layer can pass through the p-type Al k Ga 1-k N layer, the overall light extraction efficiency of the ultraviolet light-emitting element is improved, and the ultraviolet light can be improved.
  • the luminous output of a light-emitting element As the p-type contact layer 106 of the ultraviolet light-emitting element, the p-type GaN layer that is easy to increase the hole concentration is generally used, and the p-type Al k Ga 1-k N layer can also be used, although the Al k Ga 1-k N layer and GaN Compared with the layer
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MBE molecular beam epitaxy
  • HVPE Hydrophosphide Vapor Phase Epitaxy, hydride vapor phase epitaxy
  • PECVD plasma Known film formation methods such as assisted chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD), sputtering method form described ultraviolet semiconductor layer, for example can form described n-type semiconductor layer, aging leakage control layer, quantum well by MOCVD method layer and a p-type semiconductor layer.
  • PECVD assisted chemical vapor deposition
  • PECVD Enhanced Chemical Vapor Deposition
  • sputtering method form described ultraviolet semiconductor layer, for example can form described n-type semiconductor layer, aging leakage control layer, quantum well by MOCVD method layer and a p-type semiconductor layer.
  • an aging leakage control layer with a superlattice structure is added between the n-type semiconductor layer and the quantum well layer, which can block dislocations and defects and reduce leakage channels; at the same time, the aging leakage control layer
  • One of the constituent materials of the superlattice structure is AlN, and the high potential barrier of AlN can effectively prevent aging leakage. Therefore, the aging leakage control layer can effectively inhibit the leakage of electrons into the leakage channel during the aging process, so that the leakage current after aging for 1000 hours is controlled within 0.2 ⁇ A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Led Devices (AREA)

Abstract

本发明提供了一种紫外半导体发光元件,从下至上依次包括:衬底、n型半导体层、老化漏电控制层、量子阱层以及p型半导体层,其中所述老化漏电控制层为第一结构层与第二结构层组成的超晶格结构。本发明通过在n型半导体层和量子阱层之间增加具有超晶格结构的老化漏电控制层,能够改善紫外半导体发光元件的老化漏电性能。

Description

紫外半导体发光元件
本申请要求了申请日为2021年06月15日、申请号为202110661380.3、名称为“紫外半导体发光元件”的中国发明申请的优先权,并且通过参照上述中国发明申请的全部说明书、权利要求、附图和摘要的方式,将其引用于本申请。
技术领域
本发明涉及半导体技术领域,特别涉及一种紫外半导体发光元件。
背景技术
紫外半导体发光元件,其波长范围为200~300nm,发出的紫外光可打断病毒和细菌的DNA或RNA,直接杀死病毒和细菌,可广泛应用于空气净化、自来水杀菌、家用空调杀菌、汽车空调杀菌等杀菌消毒领域。
现有的紫外半导体发光元件使用低In组分的量子阱层,由于In组分过低,量子阱层无法形成类似蓝光半导体发光元件中的In组分涨落和V-pits结构对载流子进行量子限制作用,从而无法有效地将载流子限制在漏电通道外,在老化过程中电子会跃迁到漏电通道中,引起老化后漏电流大于2μA。现有的紫外半导体发光元件使用InGaN与GaN组成的超晶格结构或InGaN与AlGaN组成的超晶格结构或GaN与AlGaN组成的超晶格结构作为量子阱层和n型半导体层之间的插入层,该结构可进行应力释放和电流扩展的作用,但无法有效的控制和改善老化漏电现象,使得老化漏电1000小时后的漏电流普遍在5μA以上,引起老化漏电失效。
发明内容
本发明的目的在于提供一种紫外半导体发光元件,以改善紫外半导体发光元件的老化漏电性能。
为了实现上述目的以及其他相关目的,本发明提供了一种紫外半导体发光元件,从下至上依次包括:衬底、n型半导体层、老化漏电控制层、量子阱层以及p型半导体层,其中所述老化漏电控制层为第一结构层与第二结构层组成的超晶格结构。
可选的,在所述的紫外半导体发光元件中,所述第二结构层的材质包括AlN。
可选的,在所述的紫外半导体发光元件中,所述第一结构层的材质包括GaN和In zGa 1-zN中的至少一种,其中z的范围为0~0.2。
可选的,在所述的紫外半导体发光元件中,所述第一结构层的材质包括In zGa 1-zN时,所述第一结构层的In组分含量低于所述量子阱层的In组分含量。
可选的,在所述的紫外半导体发光元件中,所述量子阱层的In组分含量为0~0.3。
可选的,在所述的紫外半导体发光元件中,所述第一结构层的厚度是所述第二结构层的厚度的至少2倍。
可选的,在所述的紫外半导体发光元件中,所述第一结构层的厚度为3nm~8nm。
可选的,在所述的紫外半导体发光元件中,所述第二结构层的厚度为0.5nm~3nm。
可选的,在所述的紫外半导体发光元件中,所述老化漏电控制层具有极小的Si掺杂浓度,且所述老化漏电控制层的Si掺杂浓度小于1E17cm -3
可选的,在所述的紫外半导体发光元件中,所述老化漏电控制层的超晶格结构的周期为m,且5≤m≤40。
可选的,在所述的紫外半导体发光元件中,所述p型半导体层包括p型电子阻挡层和位于所述p型电子阻挡层上的p型接触层。
可选的,在所述的紫外半导体发光元件中,所述p型电子阻挡层的材质包括Al yGa 1-yN,其中y的范围为0.2~1;所述p型接触层的材质包括GaN和Al kGa 1-kN中的至少一种,其中k的范围为0~0.45。
可选的,在所述的紫外半导体发光元件中,所述n型半导体层的材质包括Al xGa 1-xN,且x的范围为0~0.6。
与现有技术相比,本发明的技术方案具有以下有益效果:
本发明通过在n型半导体层和量子阱层之间增加具有超晶格结构的老化漏电控制层,能够阻挡位错和缺陷,减少漏电通道;同时老化漏电控制层的超晶格结构的组成材质之一为AlN,而AlN的高势垒能够起到有效阻止老化漏电的功能。因此,所述老化漏电控制层能够有效抑制老化过程中的电子泄漏至漏电通道中,使老化1000小时后的漏电流控制在0.2μA以内。
附图说明
图1是本发明一实施例的紫外半导体发光元件的结构示意图;
图1中:
100-衬底,101-缓冲层,102-n型半导体层,103-老化漏电控制层,104-量子阱层,105-p型电子阻挡层,106-p型接触层。
具体实施方式
现有的紫外半导体发光元件使用低In组分的量子阱层,由于In组分过低,量子阱层无法形成类似蓝光半导体发光元件中的In组分涨落和V-pits结构对载流子进行量子限制作用,从而无法有效地将载流子限制在漏电通道外,而在老化过程中电子会跃迁到漏电通道中,引起老化漏电流大于2μA。现有的紫外半导体发光元件使用InGaN与GaN组成的超晶格结构或InGaN与AlGaN组成的超晶格结构或GaN与AlGaN组成的超晶格结构作为量子阱和n型半导体之间的插入层,该结构可进行应力释放和电流扩展的作用,但无法有效的控制和改善老化漏电,使得老化漏电1000小时后的漏电流普遍在5μA以上,引起老化漏电失效。
为了改善紫外半导体发光元件的老化漏电性能,本发明提供了一种紫外半导体发光元件,在n型半导体层和量子阱层间插入具有超晶格结构的老化漏电控制层,通过低的Si掺杂浓度的老化漏电控制层,能够有 效抑制老化过程中的电子泄漏至漏电通道中,使得老化1000小时后的漏电流控制在0.2μA以内。
以下结合附图和具体实施例对本发明提出的紫外半导体发光元件作进一步详细说明。根据下面说明书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
参阅图1,本实施例提供的紫外半导体发光元件,从下至上依次包括:衬底100、n型半导体层102、老化漏电控制层103、量子阱层104以及p型半导体层,其中所述老化漏电控制层103为第一结构层与第二结构层组成的超晶格结构。
所述衬底100可以是同质或异质衬底中的一种,可以包括GaN、AlN、Ga 2O 3、SiC、Si、蓝宝石、ZnO单晶衬底,以及带有预沉积AlN膜的耐高温金属衬底。优选使用能够透射由量子阱层104发出的光并从衬底侧发出出射光的衬底,例如蓝宝石衬底等。为了提高光提取效率,衬底100的出光侧或其相反侧的表面可以为凹凸形状。
在所述衬底100上可以形成有缓冲层(Buffer)101。所述缓冲层101用于减少衬底100与外延层之间的晶格失配,以减少生长的外延层出现缺陷与位错的可能,提高晶体质量。所述缓冲层101不局限于一种材质,也可以是多种材质以及不同掺杂物和不同掺杂含量的组合等,目前已公开的所有缓冲层的材质均在本发明的保护范围之内。优选的,所述缓冲层101的材质为氮化物,例如所述缓冲层101的材质为AlN。
所述n型半导体层102根据需要借由所述缓冲层101设置于所述衬底100上,也可以将所述n型半导体层102直接设置在所述衬底100上。所述n型半导体层102可以采用常规的n型层,例如可以由Al xGa 1-xN构成,其中x的范围为0~0.6。所述n型半导体层102通过掺杂n型的掺杂剂,从而作为n型层发挥作用,作为n型掺杂剂的具体例子,可以列举出硅(Si)、锗(Ge)、锡(Sn)、硫(S)、氧(O)、钛(Ti)、锆(Zr)等,但不限于此。所述n型掺杂剂的掺杂剂浓度只要为所述n型半导体层102能 够作为n型层发挥作用的掺杂剂浓度即可。进一步的,所述n型半导体层102中的n型的掺杂剂优选为Si,且所述Si的掺杂浓度优选为5E18cm -3~5E19cm -3。而所述n型半导体层102的厚度优选为1μm~3.5μm。另外,所述n型半导体层102的带隙优选比量子阱层104(采用多量子阱结构时为阱层)的带隙更宽,相对于发出的紫外光具有透射性。另外,所述n型半导体层102除了可以为单层结构、由多层构成的结构外,也可以采用超晶格结构。
所述老化漏电控制层103为第一结构层与第二结构层组成的超晶格结构,且所述老化漏电控制层103的超晶格结构的周期为m,且5≤m≤40。所述第一结构层的材质包括GaN和In zGa 1-zN中的至少一种,其中z的范围为0~0.2。所述第二结构层的材质包括AlN,但不限于此。因此,所述老化漏电控制层103可以为GaN与AlN组成的超晶格结构或In zGa 1-zN与AlN组成的超晶格结构。所述老化漏电控制层103采用GaN与AlN组成的超晶格结构或In zGa 1-zN与AlN组成的超晶格结构,不仅可以起到应力释放和电流扩展的作用,还可以使得外延在生长的过程中位错和缺陷得到阻挡,尤其是穿透位错极大的减小,能够减小漏电通道,进而可以减小电子泄漏至漏电通道的几率,即能够有效抑制老化过程中的电子泄漏至漏电通道中,进而改善紫外半导体发光元件的老化漏电性能。
所述第一结构层的材质包括In zGa 1-zN时,所述第一结构层的In组分含量低于所述量子阱层104的In组分含量。所述量子阱层104的In组分含量优选为0~0.3。所述老化漏电控制层103掺杂有n型掺杂剂,优选为掺杂Si。所述老化漏电控制层103的必须具有极低掺Si,方能起到老化漏电控制效果,还可以使n型半导体层起到有效的电流横向扩展作用。可以在第一结构层中掺杂Si,和/或,在第二结构层中掺杂Si,即可以仅在第一结构层中掺杂Si,也可以仅在第二结构层中掺杂Si,也可以同时在第一结构层和第二结构层掺杂Si。所述老化漏电控制层103的 Si掺浓度小于1E17cm -3。所述老化漏电控制层103的Si掺杂浓度不能大于1E17cm -3,否则会引起电子泄漏至漏电通道中,引起老化漏电失效。
所述第一结构层的厚度是所述第二结构层的厚度的至少2倍,以达到老化漏电改善的作用。即所述老化漏电控制层103必须满足GaN厚度为AlN厚度的2倍及以上,或In zGa 1-zN的厚度为AlN的厚度2倍及以上。优选的,所述第一结构层的厚度为3nm~8nm,所述第二结构层的厚度为0.5nm~3nm。所述第二结构层的厚度,即AlN的厚度必须满足大于0.5nm,否则无法起到有效阻止老化漏电的功能;而第二结构层的厚度,即AlN的厚度不能大于3nm,由于AlN势垒很高,厚度太厚电子很难隧穿跃迁注入量子阱,而且AlN阻值很大,因此,第二结构层的厚度太厚会导致紫外半导体发光元件的电压异常高且亮度严重下降。
本实施例中的紫外半导体发光元件通过低掺Si的所述老化漏电控制层103,能够有效抑制老化过程中的电子泄漏至漏电通道中,使得老化1000小时后的漏电流控制在0.2μA以内。
所述老化漏电控制层103亦可适用于其他所有波段的半导体发光元件,波长范围为200nm~550nm,例如,可以适用于深紫外半导体发光元件、紫光半导体发光元件、蓝光半导体发光元件、绿光半导体发光元件以及黄光半导体发光元件。
所述量子阱层104形成在所述老化漏电控制层103上。所述量子阱层104可以为InGaN与AlGaN组成的超晶格结构,或者,GaN与AlGaN组成的超晶格结构,但不限于此。优选的,所述量子阱层104可以为InGaN与AlGaN组成的超晶格结构。所述量子阱层104一般包括阱层和垒层,例如,所述量子阱层104为InGaN与AlGaN组成的超晶格结构时,所述阱层为InGaN层,所述垒层为AlGaN层。所述量子阱层104中的InGaN的In组分的含量大于所述老化漏电控制层103中的InGaN的In组分含量,所述量子阱层104中的In组分含量优选为0~0.3。在所述量子阱层104的垒层中,即量子阱层104中的AlGaN中掺杂有n型的掺杂剂,优选为Si,且Si掺浓度优选为1E17cm -3~5E19cm -3
设置于所述量子阱层104上的p型半导体层,所述p型半导体层可以包括p型电子阻挡层105和p型接触层106。所述p型电子阻挡层105用于阻挡电子,防止电子过溢到p型接触层106,进而将电子注入至量子阱层104内,以减少非辐射复合的发生,进一步提高紫外半导体发光元件的发光效率。
所述p型电子阻挡层105的材质优选为Al yGa 1-yN,y的范围为0.2~1,但不限于此。所述p型电子阻挡层105的厚度没有特别限制。另外,作为掺杂至p型电子阻挡层105中的p型掺杂剂,可以列举出镁(Mg)、锌(Zn)、钙(Ca)、铍(Be)、锰(Mn)等,但不限于此。所述p型掺杂剂优选为Mg。所述p型电子阻挡层105的掺杂剂浓度只要为能够作为p型的半导体层发挥作用的掺杂剂浓度即可,没有特别限定。
所述p型接触层106设置于p型电子阻挡层105上。p型接触层106是用于减少设置于其正上方的p侧电极与p型电子阻挡层105之间的接触电阻的层。所述p型接触层106的材质包括GaN和Al kGa 1-kN中的至少一种,但不限于此,k的范围为0~0.45。而作为紫外发光元件的p型接触层106,一般使用易于增加空穴浓度的p型GaN层,也可以使用p型Al kGa 1-kN层,虽然Al kGa 1-kN层与GaN层相比可能空穴浓度会有稍许降低,但由于从发光层发出的紫外光能够透过p型Al kGa 1-kN层,因此紫外发光元件整体的光提取效率得以提高,能够提高紫外发光元件的发光输出。
需要说明的是,可以通过有机金属气相沉积(MOCVD:Metal Organic Chemical Vapor Deposition)法、分子束外延(MBE:Molecular Beam Epitaxy)法、HVPE(Hydride Vapor Phase Epitaxy,氢化物气相外延)法、等离子体辅助化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)、溅射法等公知的薄膜形成方法形成所述紫外半导体层,例如可以通过MOCVD法形成所述n型半导体层、老化漏电控制层、量子阱层以及p型半导体层。
本实施例中提供的紫外半导体发光元件,在n型半导体层和量子阱层之间增加具有超晶格结构的老化漏电控制层,能够阻挡位错和缺陷,减少漏电通道;同时老化漏电控制层的超晶格结构的组成材质之一为AlN,而AlN的高势垒能够起到有效阻止老化漏电的功能。因此,所述老化漏电控制层能够有效抑制老化过程中的电子泄漏至漏电通道中,使老化1000小时后的漏电流控制在0.2μA以内。
此外,可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。
还应该理解的是,此处描述的术语仅仅用来描述特定实施例,而不是用来限制本发明的范围。必须注意的是,此处的以及所附权利要求中使用的单数形式“一个”、“一种”以及“该”包括复数基准,除非上下文明确表示相反意思。因此,例如,对“一个步骤”引述意味着对一个或多个步骤的引述,并且可能包括次级步骤。应该以最广义的含义来理解使用的所有连词。因此,词语“或”应该被理解为具有逻辑“或”的定义,而不是逻辑“异或”的定义,除非上下文明确表示相反意思。此处描述的结构将被理解为还引述该结构的功能等效物。可被解释为近似的语言应该被那样理解,除非上下文明确表示相反意思。

Claims (13)

  1. 一种紫外半导体发光元件,其特征在于,从下至上依次包括:衬底、n型半导体层、老化漏电控制层、量子阱层以及p型半导体层,其中所述老化漏电控制层为第一结构层与第二结构层组成的超晶格结构。
  2. 如权利要求1所述的紫外半导体发光元件,其特征在于,所述第二结构层的材质包括AlN。
  3. 如权利要求1所述的紫外半导体发光元件,其特征在于,所述第一结构层的材质包括GaN和In zGa 1-zN中的至少一种,其中z的范围为0~0.2。
  4. 如权利要求3所述的紫外半导体发光元件,其特征在于,所述第一结构层的材质包括In zGa 1-zN时,所述第一结构层的In组分含量低于所述量子阱层的In组分含量。
  5. 如权利要求4所述的紫外半导体发光元件,其特征在于,所述量子阱层的In组分含量为0~0.3。
  6. 如权利要求1所述的紫外半导体发光元件,其特征在于,所述第一结构层的厚度是所述第二结构层的厚度的至少2倍。
  7. 如权利要求1所述的紫外半导体发光元件,其特征在于,所述第一结构层的厚度为3nm~8nm。
  8. 如权利要求1所述的紫外半导体发光元件,其特征在于,所述第二结构层的厚度为0.5nm~3nm。
  9. 如权利要求1所述的紫外半导体发光元件,其特征在于,所述老化漏电控制层具有极小的Si掺杂浓度,且所述老化漏电控制层的Si掺杂浓度小于1E17cm -3
  10. 如权利要求1所述的紫外半导体发光元件,其特征在于,所述老化漏电控制层的超晶格结构的周期为m,且5≤m≤40。
  11. 如权利要求1所述的紫外半导体发光元件,其特征在于,所述p型半导体层包括p型电子阻挡层和位于所述p型电子阻挡层上的p型接触层。
  12. 如权利要求11所述的紫外半导体发光元件,其特征在于,所述p型电子阻挡层的材质包括Al yGa 1-yN,其中y的范围为0.2~1;所述p型接触层的材质包括GaN和Al kGa 1-kN中的至少一种,其中k的范围为0~0.45。
  13. 如权利要求1所述的紫外半导体发光元件,其特征在于,所述n型半导体层的材质包括Al xGa 1-xN,且x的范围为0~0.6。
PCT/CN2022/078634 2021-06-15 2022-03-01 紫外半导体发光元件 WO2022262314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110661380.3 2021-06-15
CN202110661380.3A CN113410345B (zh) 2021-06-15 2021-06-15 紫外半导体发光元件

Publications (1)

Publication Number Publication Date
WO2022262314A1 true WO2022262314A1 (zh) 2022-12-22

Family

ID=77684088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078634 WO2022262314A1 (zh) 2021-06-15 2022-03-01 紫外半导体发光元件

Country Status (2)

Country Link
CN (1) CN113410345B (zh)
WO (1) WO2022262314A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410345B (zh) * 2021-06-15 2022-08-26 厦门士兰明镓化合物半导体有限公司 紫外半导体发光元件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163349A1 (en) * 2008-09-16 2011-07-07 Showa Denko K.K. Method for manufacturing group iii nitride semiconductor light emitting element, group iii nitride semiconductor light emitting element and lamp
CN107910416A (zh) * 2017-11-02 2018-04-13 厦门三安光电有限公司 一种紫外氮化物发光二极管
CN212750915U (zh) * 2020-09-14 2021-03-19 江西乾照光电有限公司 一种具有外延插入层的led芯片
CN113097359A (zh) * 2021-03-29 2021-07-09 厦门士兰明镓化合物半导体有限公司 半导体发光元件
CN113410345A (zh) * 2021-06-15 2021-09-17 厦门士兰明镓化合物半导体有限公司 紫外半导体发光元件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090179190A1 (en) * 2006-05-26 2009-07-16 Rohm Co., Ltd. Nitride Semiconductor Light Emitting Element
EP2523228B1 (en) * 2010-01-05 2017-04-26 Seoul Viosys Co., Ltd Light emitting diode
CN104134732B (zh) * 2014-07-24 2017-09-19 映瑞光电科技(上海)有限公司 一种改善GaN基LED效率下降的外延结构
CN109585621A (zh) * 2018-11-30 2019-04-05 广东德力光电有限公司 一种紫光led外延结构的制备方法及其结构
CN111063753B (zh) * 2019-10-31 2021-08-03 厦门大学 一种Mg掺杂量子阱的AlGaN基深紫外LED外延结构及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163349A1 (en) * 2008-09-16 2011-07-07 Showa Denko K.K. Method for manufacturing group iii nitride semiconductor light emitting element, group iii nitride semiconductor light emitting element and lamp
CN107910416A (zh) * 2017-11-02 2018-04-13 厦门三安光电有限公司 一种紫外氮化物发光二极管
CN212750915U (zh) * 2020-09-14 2021-03-19 江西乾照光电有限公司 一种具有外延插入层的led芯片
CN113097359A (zh) * 2021-03-29 2021-07-09 厦门士兰明镓化合物半导体有限公司 半导体发光元件
CN113410345A (zh) * 2021-06-15 2021-09-17 厦门士兰明镓化合物半导体有限公司 紫外半导体发光元件

Also Published As

Publication number Publication date
CN113410345B (zh) 2022-08-26
CN113410345A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
CA2528719C (en) Nitride semiconductor light emitting device
JP2890396B2 (ja) 窒化物半導体発光素子
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
WO2018181044A1 (ja) Iii族窒化物半導体発光素子およびその製造方法
US7812337B2 (en) Nitride semiconductor light emitting device and fabrication method thereof
US7943949B2 (en) III-nitride based on semiconductor device with low-resistance ohmic contacts
KR101843513B1 (ko) 질화갈륨계 발광 다이오드
KR20140123410A (ko) 자외선 발광 소자
JP2002134786A (ja) 窒化物半導体発光素子
WO2023040204A1 (zh) Led外延结构及其制备方法
WO2019015217A1 (zh) 一种深紫外led
WO2022262315A1 (zh) 半导体发光元件
JP2008277714A (ja) GaN系半導体発光ダイオードの製造方法
WO2022262314A1 (zh) 紫外半导体发光元件
CN114447165B (zh) Led外延结构及其制备方法
US9972745B2 (en) Group III nitride semiconductor light-emitting device
CN114122212B (zh) Led外延结构及其制备方法
CN113410348B (zh) 深紫外发光元件及其制备方法
CN114038954A (zh) 发光二极管的外延结构及其制造方法
US20230080225A1 (en) Ultraviolet led and manufacturing method thereof
KR101067474B1 (ko) 반도체 발광소자
CN113410350B (zh) 深紫外发光元件及其制备方法
CN111326622A (zh) 一种基于空穴调整层的发光二极管
CN114551670A (zh) 红外发光二极管外延结构及其制备方法
CN113394319B (zh) 深紫外发光元件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE