WO2022262225A1 - 一种反应堆启动方法及系统 - Google Patents

一种反应堆启动方法及系统 Download PDF

Info

Publication number
WO2022262225A1
WO2022262225A1 PCT/CN2021/138438 CN2021138438W WO2022262225A1 WO 2022262225 A1 WO2022262225 A1 WO 2022262225A1 CN 2021138438 W CN2021138438 W CN 2021138438W WO 2022262225 A1 WO2022262225 A1 WO 2022262225A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
power
flow rate
preset
feedwater
Prior art date
Application number
PCT/CN2021/138438
Other languages
English (en)
French (fr)
Inventor
胡艺嵩
高雅心
卢向晖
胡友森
朱建敏
周洺稼
周有新
程毅
Original Assignee
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Publication of WO2022262225A1 publication Critical patent/WO2022262225A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/32Control of nuclear reaction by varying flow of coolant through the core by adjusting the coolant or moderator temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of reactors, in particular to a method and system for starting a reactor.
  • the technical problem to be solved by the present invention is to provide a method and system for starting a reactor aiming at the defects of the prior art.
  • the two-speed switching power range is a pre-selected power step range; wherein, the power step range is greater than or equal to the stable operation of the steam generator of the reactor power step range.
  • the step S1 further includes:
  • S1-1 controlling the pressure of the secondary circuit of said reactor to remain constant;
  • S1-2 Control the main feed water pump of the secondary circuit of the reactor to provide feed water for the steam generator of the reactor with a preset feed water flow rate, so as to control the average temperature of the primary circuit of the reactor to maintain the first preset temperature;
  • the preset feedwater flow rate is the feedwater flow rate corresponding to the real-time core power.
  • step S1-2 including:
  • the secondary circuit main feed water pump of the reactor to provide feed water for the steam generator of the reactor with the first preset feed water flow rate;
  • the first preset feed water flow rate is Feedwater flow corresponding to said zero power;
  • the secondary circuit main feed water pump of the reactor to provide feed water for the steam generator of the reactor with the second preset feed water flow rate;
  • the second preset The feedwater flow rate is the feedwater flow rate corresponding to the first power range;
  • the secondary circuit main feed water pump of the reactor to provide feed water for the steam generator of the reactor with the third preset feed water flow rate;
  • the third preset The feed water flow rate is the feed water flow rate corresponding to the second power range;
  • the minimum value of the second power range is greater than the maximum value of the first power range; the third preset feedwater flow rate is greater than the second preset feedwater flow rate, and the second preset feedwater flow rate is greater than the set Describe the first preset feedwater flow rate.
  • the step S4 further includes:
  • S4-1 controlling the pressure of the secondary circuit of the reactor to remain constant;
  • S4-2 controlling the feedwater flow rate of the main feedwater pump of the secondary circuit of the reactor to linearly increase following the real-time core power, so as to control the average temperature of the primary circuit of the reactor to maintain a second preset temperature.
  • the first preset temperature is lower than the second preset temperature; the first rotation speed is lower than the second rotation speed.
  • the first rotation speed is half speed
  • the second rotation speed is full speed
  • the invention also discloses a reactor starting system, comprising:
  • a starting module configured to control the main pump of the primary circuit of the reactor to start at a first rotational speed when the reactor core is started;
  • the obtaining module is used to obtain real-time core power during the process of increasing the core power from zero power to full power;
  • a judging module configured to judge whether the real-time core power is within a preset two-speed switching power range
  • the switching module is used for controlling the main pump to switch from the first rotating speed to the second rotating speed when the judging module judges yes.
  • the two-speed switching power range is a pre-selected power step range; wherein, the power step range is greater than or equal to the stable operation of the steam generator of the reactor power step range.
  • the start-up module is also used to control the pressure of the secondary circuit of the reactor to remain constant; and/or control the main feed water pump of the secondary circuit of the reactor to pre- Set the feed water flow as the steam generator of the reactor to provide feed water to control the primary circuit average temperature of the reactor to maintain the first preset temperature; the preset feed water flow is the feed water flow corresponding to the real-time core power .
  • the control of the main feedwater pump of the secondary circuit of the reactor provides feedwater for the steam generator of the reactor with a preset feedwater flow rate; the preset feedwater flow rate is the same as
  • the feedwater flow corresponding to the real-time core power includes:
  • the secondary circuit main feed water pump of the reactor to provide feed water for the steam generator of the reactor with the first preset feed water flow rate;
  • the first preset feed water flow rate is Feedwater flow corresponding to said zero power;
  • the secondary circuit main feed water pump of the reactor to provide feed water for the steam generator of the reactor with the second preset feed water flow rate;
  • the second preset The feedwater flow rate is the feedwater flow rate corresponding to the first power range;
  • the secondary circuit main feed water pump of the reactor to provide feed water for the steam generator of the reactor with the third preset feed water flow rate;
  • the third preset The feed water flow rate is the feed water flow rate corresponding to the second power range;
  • the minimum value of the second power range is greater than the maximum value of the first power range; the third preset feedwater flow rate is greater than the second preset feedwater flow rate, and the second preset feedwater flow rate is greater than the set Describe the first preset feedwater flow rate.
  • the switching module is also used to control the pressure of the secondary circuit of the reactor to remain constant; and/or control the feed water of the main feed water pump of the secondary circuit of the reactor
  • the flow rate increases linearly following the real-time core power, so as to control the average temperature of the primary loop of the reactor to maintain at the second preset temperature.
  • the first preset temperature is lower than the second preset temperature; the first rotation speed is lower than the second rotation speed.
  • the first rotation speed is half speed
  • the second rotation speed is full speed
  • the reactor start-up method of the present invention controls the primary loop main pump of the reactor to start at the first rotational speed when the reactor core is started, and obtains the real-time core power during the process of the core power rising from zero power to full power, and judges Whether the real-time core power is within the preset two-speed switching power range, if so, control the main pump to switch from the first speed to the second speed, so as to achieve the purpose of saving power, so that the starting current of the pump is low and the starting characteristics are better.
  • the reserve power of the motor can be greatly reduced, which is beneficial to reduce the size of the motor.
  • the reactor start-up system of the present invention includes a start-up module, an acquisition module, a judgment module, and a switching module.
  • the start-up module is used to control the primary loop main pump of the reactor to start at the first rotational speed when the reactor core is started;
  • the judging module is used to judge whether the real-time core power is within the preset two-speed switching power range;
  • the switching module is used to control the main pump to switch from the first speed to the second speed when the judging module judges yes.
  • Fig. 1 is the schematic diagram of reactor of the present invention
  • Fig. 2 is the flow chart of reactor start-up method of the present invention
  • Fig. 3 is a block diagram of the reactor start-up system of the present invention.
  • the invention discloses a method for starting a reactor, which is suitable for the reactor shown in Fig. 1, including a main pump 1, a pressure vessel 2, a reactor core 3, a control rod 4, a steam generator 5, a start-up separator 6, a hydrophobic heat exchange Device 7, deaerator 8, main feedwater pump 9 and feedwater valve 10.
  • the function of core 3 is to carry out nuclear fission, and convert nuclear energy into heat energy of water.
  • water absorbs the heat energy generated by nuclear fission in the reactor and becomes high-temperature and high-pressure water, and then enters the steam generator 5 along the water inlet pipe of the primary circuit, and transfers heat to the water in the secondary circuit to make it become saturated steam, and then The water and steam are separated in the start-up separator 6 through the outlet pipe of the secondary circuit, and the separated water is input into the drain heat exchanger 7 for cooling, and then input into the deaerator 8 after cooling, and finally passed through the water inlet pipe of the primary circuit and The main feed water pump 9 returns to the steam generator 5 to cool the primary circuit hot water.
  • the water cooled by the primary circuit is then output to the core 3 for reheating through the main pump 1 through the water outlet pipe of the primary circuit, so that the cycle goes on and on, forming a closed cycle process of heat absorption and heat release.
  • the dotted line in Fig. 1 represents the primary circuit
  • the solid line represents the secondary circuit.
  • the main purpose of this method designed by the present invention is to save electricity. It can start at half speed when the power is high, the starting current of the pump is low, the starting characteristics are better, the reserve power of the motor can be greatly reduced, which is beneficial to reduce the size of the motor, and it can start at full speed when the power of the core 3 is high, so as shown in Figure 2
  • the method includes the following steps:
  • Step S1 When the reactor core 3 is started, the main pump 1 of the primary circuit of the reactor is controlled to start at the first rotational speed.
  • the first rotation speed may be half speed. In some other embodiments, the first rotational speed may also be 1/3 rotational speed or the like.
  • Step S2 Obtain real-time core power during the process of increasing the core power from zero power to full power.
  • Step S3 Judging whether the real-time core power is within the preset two-speed switching power range.
  • the two-speed switching power range is a pre-selected power step range, and the power step range is greater than or equal to the power step range in which the steam generator 5 of the reactor operates stably.
  • the two-speed switching power range is a selected power step range, the power step range is greater than or equal to the power step range of the reactor steam generator 5 in stable operation and less than or equal to the power step range of the reactor steam turbine connected to the grid.
  • the preset two-speed switching power range is greater than or equal to 20% FP, where FP is the full power of the core.
  • the grid-connected power step of the steam turbine is generally selected to be higher, such as 20% FP or 30% FP, this is because the steam generator is below 20% FP may be unstable, so the two-speed switching power range is a pre-selected power step range, and the power step range is greater than or equal to the power step range where the steam generator 5 of the reactor operates stably.
  • Step S4 If yes, control the main pump 1 to switch from the first rotational speed to the second rotational speed; wherein, the first rotational speed is lower than the second rotational speed, and the second rotational speed may be full speed. In some other embodiments, the second rotational speed may also be 2/3 rotational speed or the like.
  • This method controls the main pump 1 to start at half speed when the reactor core 3 is started.
  • the main purpose is to save electricity.
  • the pressure and feed water flow of the reactor's secondary circuit can be controlled, and the half-speed start of the main pump 1 can be used to improve the efficiency of the reactor at low power.
  • temperature difference which is beneficial to the heat transfer and stability of the steam generator 5, and further facilitates the control of the average temperature of the primary circuit of the reactor to achieve the best heat transfer effect.
  • step S1 also includes:
  • Step S1-1 The pressure of the secondary circuit of the control reactor is kept constant.
  • the pressure of the secondary loop of the reactor can be controlled by adjusting the valve at the outlet of the secondary loop of the steam generator 5 of the reactor, for example, the pressure of the secondary loop of the reactor can be controlled to keep 4MPa constant.
  • Step S1-2 Control the main feedwater pump 9 of the secondary circuit of the reactor to provide feedwater to the steam generator 5 of the reactor at a preset feedwater flow rate, so as to control the average temperature of the primary circuit of the reactor to maintain the first preset temperature.
  • the preset feedwater flow rate is the feedwater flow rate corresponding to the real-time core power.
  • the first preset temperature is lower than the average temperature of the primary circuit of the reactor when the main pump 1 starts at half speed in the existing situation, that is, 280 degrees Celsius, preferably the first preset temperature is 250 degrees Celsius.
  • the primary circuit main pump 1 of the reactor controls the primary circuit main pump 1 of the reactor to start with the first rotational speed, controlling the pressure of the secondary circuit of the reactor to remain constant, and controlling the secondary circuit main feed water pump 9 of the reactor to preset the feed water flow rate as the steam of the reactor
  • the generator 5 supplies water to control the average temperature of the primary circuit of the reactor to maintain the first preset temperature.
  • the preset feedwater flow rate is the feedwater flow rate corresponding to the real-time core power.
  • step S1-2 including:
  • the main feedwater pump 9 of the secondary loop of the reactor is controlled to provide feedwater for the steam generator 5 of the reactor with the first preset feedwater flow rate, so as to ensure that the secondary loop of the reactor is in a water entity state.
  • the first preset feedwater flow rate is the feedwater flow rate corresponding to zero power.
  • the secondary circuit main feedwater pump 9 of the control reactor provides feedwater for the steam generator 5 of the reactor with the second preset feedwater flow rate, and now because the real-time core power rises, so that The supercooled water is converted into superheated steam at the outlet of the steam generator 5 secondary circuit of the reactor.
  • the second preset feedwater flow rate is the feedwater flow rate corresponding to the first power range.
  • the third preset feedwater flow rate is the feedwater flow rate corresponding to the second power range.
  • the minimum value of the second power range is greater than the maximum value of the first power range; the third preset feedwater flow rate is greater than the second preset feedwater flow rate, and the second preset feedwater flow rate is greater than the first preset feedwater flow rate.
  • the first preset feed water flow rate is greater than or equal to 2%FF and less than or equal to 4%FF.
  • the first preset feed water flow rate is 2% FF.
  • the second preset feedwater flow rate is greater than or equal to 5% FF and less than or equal to 8% FF.
  • the second preset feed water flow rate is 5% FF.
  • the third preset feedwater flow rate is greater than or equal to 18% FF and less than or equal to 25% FF.
  • the third preset feed water flow rate is 20.4% FF.
  • FP is the full power of the reactor core
  • FF is the full feedwater flow rate of the main feedwater pump 9 .
  • the pressure and feed water flow of the secondary circuit of the reactor can be controlled, and the main pump 1 can be started at full speed to facilitate the steam
  • the heat transfer and stability of the generator 5 further facilitates the control of the average temperature of the primary loop of the reactor and achieves the best heat transfer effect.
  • step S4 Therefore also include in step S4:
  • S4-1 control the pressure of the secondary loop of the reactor to remain constant; in some embodiments, the pressure of the secondary loop of the reactor can be controlled by adjusting the valve at the outlet of the steam generator 5 of the reactor, for example, the pressure of the secondary loop of the reactor can be controlled.
  • the loop pressure remains constant at 4MPa.
  • S4-2 Control the feedwater flow rate of the main feedwater pump 9 of the secondary circuit of the reactor to linearly increase following the real-time core power, so as to control the average temperature of the primary circuit of the reactor to maintain the second preset temperature.
  • the first preset temperature is lower than the second preset temperature
  • the second preset temperature is lower than the average temperature of the primary circuit of the reactor when the main pump 1 starts at full speed in the existing situation, that is, 330 degrees Celsius, preferably the second preset temperature Let the temperature be 300 degrees Celsius.
  • the main pump 1 controls the main pump 1 to switch from the first rotating speed to the second rotating speed, controlling the pressure of the secondary loop of the reactor to remain constant, and controlling the feedwater flow rate of the main feedwater pump 9 of the secondary loop of the reactor. increase to control the average temperature of the primary loop of the reactor to maintain at the second preset temperature.
  • the reactor startup method of the present invention controls the primary loop main pump 1 of the reactor to start at the first rotational speed when the reactor core 3 is started, and obtains the real-time reactor core power during the process in which the reactor core power rises from zero power to full power, And judge whether the real-time core power is within the preset two-speed switching power range, if so, control the main pump 1 to switch from the first speed to the second speed, so as to achieve the purpose of saving power, so that the starting current of the pump is low and the starting characteristics Even better, the reserve power of the motor can be greatly reduced, which is beneficial to reduce the size of the motor.
  • the invention also discloses a reactor start-up system, which is suitable for the reactor shown in Fig. Heater 7, deaerator 8, main feed water pump 9 and feed water valve 10.
  • the function of core 3 is to carry out nuclear fission, and convert nuclear energy into heat energy of water.
  • water absorbs the heat energy generated by nuclear fission in the reactor and becomes high-temperature and high-pressure water, and then enters the steam generator 5 along the water inlet pipe of the primary circuit, and transfers heat to the water in the secondary circuit to make it become saturated steam, and then The water and steam are separated in the start-up separator 6 through the outlet pipe of the secondary circuit, and the separated water is input into the drain heat exchanger 7 for cooling, and then input into the deaerator 8 after cooling, and finally passed through the water inlet pipe of the primary circuit and The main feed water pump 9 returns to the steam generator 5 to cool the primary circuit hot water.
  • the water cooled by the primary circuit is then output to the core 3 for reheating through the main pump 1 through the water outlet pipe of the primary circuit, so that the cycle goes on and on, forming a closed cycle process of heat absorption and heat release.
  • the dotted line in Fig. 1 represents the primary circuit
  • the solid line represents the secondary circuit.
  • the main purpose of the method designed by the present invention is to save electricity. 3. It can start at half speed when the power is low, the starting current of the pump is low, the starting characteristics are better, the reserve power of the motor can be greatly reduced, which is beneficial to reduce the size of the motor, and it can start at full speed when the power of the core 3 is high, so as shown in the figure 3, the system includes:
  • the starting module 11 is used for controlling the primary circuit main pump 1 of the reactor to start at a first rotational speed when the reactor core 3 is started.
  • the first rotation speed may be half speed. In some other embodiments, the first rotational speed may also be 1/3 rotational speed or the like.
  • the starting module 11 is a rotational speed generating device.
  • the obtaining module 12 is connected with the starting module 11, and is used to obtain real-time core power during the process of rising the core power from zero power to full power; in some embodiments, the obtaining module 12 is a watt-hour meter, or Includes a Hall voltage sensor to measure voltage, a Hall current sensor to measure current, and a calculator to calculate power from voltage and current.
  • the judging module 13 is connected with the acquiring module 12 and is used for judging whether the real-time core power is within the preset two-speed switching power range.
  • the two-speed switching power range is a pre-selected power step range, and the power step range is greater than or equal to the power step range in which the steam generator 5 of the reactor operates stably.
  • the two-speed switching power range is a selected power step range, the power step range is greater than or equal to the power step range of the reactor steam generator 5 in stable operation and less than or equal to the power step range of the reactor steam turbine connected to the grid.
  • the preset two-speed switching power range is greater than or equal to 20% FP, where FP is the full power of the core.
  • the grid-connected power step of the steam turbine is generally selected to be higher, such as 20% FP or 30% FP, this is because the steam generator is below 20% FP may be unstable, so the two-speed switching power range is a pre-selected power step range, and the power step range is greater than or equal to the power step range where the steam generator 5 of the reactor operates stably.
  • the judging module 13 is a microprocessor.
  • the switching module 14 is connected with the judgment module 13, and is used to control the main pump 1 to switch from the first speed to the second speed when the judgment module 13 judges yes; wherein, the first speed is less than the second speed, and the second speed can be full speed. In some other embodiments, the second rotational speed may also be 2/3 rotational speed or the like. In some embodiments, the switching module 14 is a frequency converter.
  • This system controls the main pump 1 to start at half speed when the reactor core 3 is started.
  • the main purpose is to save electricity.
  • the pressure and feed water flow of the reactor's secondary circuit can be controlled, and the half-speed start of the main pump 1 can be used to improve the efficiency of the reactor at low power.
  • temperature difference which is beneficial to the heat transfer and stability of the steam generator 5, and further facilitates the control of the average temperature of the primary circuit of the reactor to achieve the best heat transfer effect.
  • the starting module 11 is also used to control the pressure of the secondary loop of the reactor to remain constant.
  • the pressure of the secondary loop of the reactor can be controlled by adjusting the valve at the outlet of the secondary loop of the steam generator 5 of the reactor, for example, the pressure of the secondary loop of the reactor can be controlled to keep 4MPa constant.
  • the preset feedwater flow rate is the feedwater flow rate corresponding to the real-time core power.
  • the first preset temperature is lower than the average temperature of the primary circuit of the reactor when the main pump 1 starts at half speed in the existing situation, that is, 280 degrees Celsius, preferably the first preset temperature is 250 degrees Celsius.
  • the start-up module 11 is used to start the main pump 1 of the primary circuit of the reactor at a first rotational speed, control the pressure of the secondary circuit of the reactor to remain constant, and control the main feed water pump 9 of the secondary circuit of the reactor to preset feed water
  • the flow rate is to provide water for the steam generator 5 of the reactor to control the average temperature of the primary circuit of the reactor to maintain at the first preset temperature.
  • the preset feedwater flow rate is the feedwater flow rate corresponding to the real-time core power.
  • the secondary circuit main feedwater pump 9 of the control reactor provides feedwater for the steam generator 5 of the reactor with a preset feedwater flow rate, the preset feedwater flow rate is the feedwater flow rate corresponding to the real-time core power, including:
  • the main feedwater pump 9 of the secondary loop of the reactor is controlled to provide feedwater for the steam generator 5 of the reactor with the first preset feedwater flow rate, so as to ensure that the secondary loop of the reactor is in a water entity state.
  • the first preset feedwater flow rate is the feedwater flow rate corresponding to zero power.
  • the secondary circuit main feedwater pump 9 of the control reactor provides feedwater for the steam generator 5 of the reactor with the second preset feedwater flow rate, and now because the real-time core power rises, so that The supercooled water is converted into superheated steam at the outlet of the steam generator 5 secondary circuit of the reactor.
  • the second preset feedwater flow rate is the feedwater flow rate corresponding to the first power range.
  • the third preset feedwater flow rate is the feedwater flow rate corresponding to the second power range.
  • the minimum value of the second power range is greater than the maximum value of the first power range; the third preset feedwater flow rate is greater than the second preset feedwater flow rate, and the second preset feedwater flow rate is greater than the first preset feedwater flow rate.
  • the first preset feed water flow rate is greater than or equal to 2%FF and less than or equal to 4%FF.
  • the first preset feed water flow rate is 2% FF.
  • the second preset feedwater flow rate is greater than or equal to 5% FF and less than or equal to 8% FF.
  • the second preset feed water flow rate is 5% FF.
  • the third preset feedwater flow rate is greater than or equal to 18% FF and less than or equal to 25% FF.
  • the third preset feed water flow rate is 20.4% FF.
  • FP is the full power of the reactor core
  • FF is the full feedwater flow rate of the main feedwater pump 9 .
  • the pressure and feed water flow of the secondary circuit of the reactor can be controlled, and the main pump 1 can be started at full speed to facilitate the steam
  • the heat transfer and stability of the generator 5 further facilitates the control of the average temperature of the primary loop of the reactor and achieves the best heat transfer effect.
  • switching module 14 is also used for, and the secondary loop pressure of control reactor remains constant;
  • the secondary loop pressure of control reactor can control the secondary loop pressure of reactor by adjusting the valve at the steam generator 5 secondary loop outlet of reactor, for example
  • the secondary loop pressure of the reactor can be controlled to keep 4MPa unchanged.
  • the feedwater flow rate of the main feedwater pump 9 of the secondary circuit of the reactor is controlled to linearly increase following the real-time core power, so as to control the average temperature of the primary circuit of the reactor to maintain the second preset temperature.
  • the first preset temperature is lower than the second preset temperature
  • the second preset temperature is lower than the average temperature of the primary circuit of the reactor when the main pump 1 starts at full speed in the existing situation, that is, 330 degrees Celsius, preferably the second preset temperature Let the temperature be 300 degrees Celsius.
  • the switching module 14 is used to control the main pump 1 to switch from the first rotational speed to the second rotational speed, control the pressure of the secondary loop of the reactor to remain constant, and control the feedwater flow rate of the main feedwater pump 9 of the secondary loop of the reactor to follow
  • the real-time core power is linearly increased to control the average temperature of the primary loop of the reactor to maintain the second preset temperature.
  • the reactor startup system of the present invention includes a startup module 11 , an acquisition module 12 , a judging module 13 , and a switching module 14 .
  • the starting module 11 is used to control the primary circuit main pump 1 of the reactor to start at the first rotational speed when the reactor core 3 is started;
  • the obtaining module 12 is used to obtain the Real-time core power;
  • the judging module 13 is used to judge whether the real-time core power is in the preset two-speed switching power range;
  • the switching module 14 is used to control the main pump 1 to switch from the first rotating speed to second speed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Control Of Turbines (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种反应堆启动方法及系统,该方法包括以下步骤:S1:在反应堆堆芯(3)启动时,控制反应堆的一回路主泵(1)以第一转速启动;S2:在堆芯(3)功率从零功率上升至满功率的过程中,获取实时堆芯(3)功率;S3:判断实时堆芯(3)功率是否在预设的双速切换功率范围内;S4:若是,则控制主泵(1)由第一转速切换为第二转速。该方法能够达到省电的目的,令启泵电流低,启动特性更好,电机储备功率可大幅减小,有利于减小电机尺寸。

Description

一种反应堆启动方法及系统 技术领域
本发明涉及反应堆技术领域,尤其涉及一种反应堆启动方法及系统。
背景技术
现有技术对于自然循环式蒸汽发生器的压水堆核动力装置,采用了一回路冷却剂平均温度不变的运行方案或一回路冷却剂平均温度和二回路蒸汽压力都保持恒定的运行方案。主要缺点是:现有技术下启泵需要的功率较大,对于难以取得外部电源的地方需要设置额外柴油发电机及较大的储油设施,该技术有比较大的局限性;启停期间,现有技术下蒸汽发生器一二次侧的温差较低,不利于蒸汽发生器的传热和稳定性。
技术问题
本发明要解决的技术问题在于,针对现有技术的缺陷,提供一种反应堆启动方法及系统。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种反应堆启动方法,包括以下步骤:
S1:在所述反应堆堆芯启动时,控制所述反应堆的一回路主泵以第一转速启动;
S2:在堆芯功率从零功率上升至满功率的过程中,获取实时堆芯功率;
S3:判断所述实时堆芯功率是否在预设的双速切换功率范围内;
S4:若是,则控制所述主泵由所述第一转速切换为第二转速。
优选地,在本发明所述的反应堆启动方法中,所述双速切换功率范围为预先选定的一功率台阶范围;其中,所述功率台阶范围大于等于所述反应堆的蒸汽发生器稳定运行的功率台阶范围。
优选地,在本发明所述的反应堆启动方法中,在所述步骤S1中还包括:
S1-1:控制所述反应堆的二回路压力保持不变;和/或
S1-2:控制所述反应堆的二回路主给水泵以预设给水流量为所述反应堆的蒸汽发生器提供给水,来控制所述反应堆的一回路平均温度维持在第一预设温度;所述预设给水流量为与所述实时堆芯功率对应的给水流量。
优选地,在本发明所述的反应堆启动方法中,在所述步骤S1-2中,包括:
若所述实时堆芯功率为零功率时,则控制所述反应堆的二回路主给水泵以第一预设给水流量为所述反应堆的蒸汽发生器提供给水;所述第一预设给水流量为与所述零功率对应的给水流量;
若所述实时堆芯功率在第一功率范围内时,则控制所述反应堆的二回路主给水泵以第二预设给水流量为所述反应堆的蒸汽发生器提供给水;所述第二预设给水流量为与所述第一功率范围对应的给水流量;
若所述实时堆芯功率在第二功率范围内时,则控制所述反应堆的二回路主给水泵以第三预设给水流量为所述反应堆的蒸汽发生器提供给水;所述第三预设给水流量为与所述第二功率范围对应的给水流量;
其中,所述第二功率范围的最小值大于所述第一功率范围的最大值;所述第三预设给水流量大于所述第二预设给水流量,所述第二预设给水流量大于所述第一预设给水流量。
优选地,在本发明所述的反应堆启动方法中,在所述步骤S4中还包括:
S4-1:控制所述反应堆的二回路压力保持不变;和/或
S4-2:控制所述反应堆的二回路主给水泵的给水流量跟随所述实时堆芯功率线性提升,来控制所述反应堆的一回路平均温度维持在第二预设温度。
优选地,在本发明所述的反应堆启动方法中,所述第一预设温度小于所述第二预设温度;所述第一转速小于所述第二转速。
优选地,在本发明所述的反应堆启动方法中,所述第一转速为半速,所述第二转速为全速。
本发明还公开了一种反应堆启动系统,包括:
启动模块,用于在所述反应堆堆芯启动时,控制所述反应堆的一回路主泵以第一转速启动;
获取模块,用于在堆芯功率从零功率上升至满功率的过程中,获取实时堆芯功率;
判断模块,用于判断所述实时堆芯功率是否在预设的双速切换功率范围内;
切换模块,用于所述判断模块判断为是时,控制所述主泵由第一转速切换为第二转速。
优选地,在本发明所述的反应堆启动系统中,所述双速切换功率范围为预先选定的一功率台阶范围;其中,所述功率台阶范围大于等于所述反应堆的蒸汽发生器稳定运行的功率台阶范围。
优选地,在本发明所述的反应堆启动系统中,所述启动模块还用于,控制所述反应堆的二回路压力保持不变;和/或,控制所述反应堆的二回路主给水泵以预设给水流量为所述反应堆的蒸汽发生器提供给水,来控制所述反应堆的一回路平均温度维持在第一预设温度;所述预设给水流量为与所述实时堆芯功率对应的给水流量。
优选地,在本发明所述的反应堆启动系统中,所述控制所述反应堆的二回路主给水泵以预设给水流量为所述反应堆的蒸汽发生器提供给水;所述预设给水流量为与所述实时堆芯功率对应的给水流量,包括:
若所述实时堆芯功率为零功率时,则控制所述反应堆的二回路主给水泵以第一预设给水流量为所述反应堆的蒸汽发生器提供给水;所述第一预设给水流量为与所述零功率对应的给水流量;
若所述实时堆芯功率在第一功率范围内时,则控制所述反应堆的二回路主给水泵以第二预设给水流量为所述反应堆的蒸汽发生器提供给水;所述第二预设给水流量为与所述第一功率范围对应的给水流量;
若所述实时堆芯功率在第二功率范围内时,则控制所述反应堆的二回路主给水泵以第三预设给水流量为所述反应堆的蒸汽发生器提供给水;所述第三预设给水流量为与所述第二功率范围对应的给水流量;
其中,所述第二功率范围的最小值大于所述第一功率范围的最大值;所述第三预设给水流量大于所述第二预设给水流量,所述第二预设给水流量大于所述第一预设给水流量。
优选地,在本发明所述的反应堆启动系统中,所述切换模块还用于,控制所述反应堆的二回路压力保持不变;和/或,控制所述反应堆的二回路主给水泵的给水流量跟随所述实时堆芯功率线性提升,来控制所述反应堆的一回路平均温度维持在第二预设温度。
优选地,在本发明所述的反应堆启动系统中,所述第一预设温度小于所述第二预设温度;所述第一转速小于所述第二转速。
优选地,在本发明所述的反应堆启动系统中,所述第一转速为半速,所述第二转速为全速。
有益效果
通过实施本发明,具有以下有益效果:
本发明的反应堆启动方法通过在反应堆堆芯启动时,控制反应堆的一回路主泵以第一转速启动,在堆芯功率从零功率上升至满功率的过程中,获取实时堆芯功率,并判断实时堆芯功率是否在预设的双速切换功率范围内,若是,则控制主泵由第一转速切换为第二转速,从而达到省电的目的,令启泵电流低,启动特性更好,电机储备功率可大幅减小,有利于减小电机尺寸。
另外,本发明的反应堆启动系统包括启动模块、获取模块、判断模块、以及切换模块。其中,启动模块用于在反应堆堆芯启动时,控制反应堆的一回路主泵以第一转速启动;获取模块用于在堆芯功率从零功率上升至满功率的过程中,获取实时堆芯功率;判断模块用于判断实时堆芯功率是否在预设的双速切换功率范围内;切换模块用于判断模块判断为是时,控制主泵由第一转速切换为第二转速。通过实施该系统从而达到省电的目的,令启泵电流低,启动特性更好,电机储备功率可大幅减小,有利于减小电机尺寸。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明反应堆的示意图;
图2是本发明反应堆启动方法的流程图;
图3是本发明反应堆启动系统的模块框图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
需要说明的是,附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。 即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
实施例一:
本发明公开了一种反应堆启动方法,适用于如图1所示的反应堆,包括主泵1、压力容器2、堆芯3、控制棒4、蒸汽发生器5、启动分离器6、疏水换热器7、除氧器8、主给水泵9和给水阀门10。其中,堆芯3的作用是进行核裂变,将核能转化为水的热能。水作为冷却剂在反应堆中吸收核裂变产生的热能,成为高温高压的水,然后沿一回路进水管道进入蒸汽发生器5,将热量传给二回路的水,使其变为饱和蒸汽,然后经二回路出水管道输出至启动分离器6中分离水和蒸汽,分离后的水输入至疏水换热器7中进行降温,降温后输入至除氧器8中,最后经一回路进水管道并通过主给水泵9回流至蒸汽发生器5中,对一回路热水进行冷却。而一回路冷却后的水再由一回路出水管道通过主泵1输出到堆芯3内重新加热,如此循环往复,形成一个封闭的吸热和放热的循环过程。其中,图1中的虚线代表一回路,实线代表二回路。
对于反应堆在取电比较困难的情况下时,即使节省几度电也是有重大意义的,因此本发明设计的该方法主要目的是为了省电,控制反应堆的一回路主泵1在堆芯3低功率时能够半速启动,启泵电流低,启动特性更好,电机储备功率可大幅减小,有利于减小电机尺寸,而在堆芯3高功率时又能够全速启动,因此如图2所示,该方法包括以下步骤:
步骤S1:在反应堆堆芯3启动时,控制反应堆的一回路主泵1以第一转速启动。其中,第一转速可以为半速。而在另外一些实施例中,第一转速还可以为1/3转速等。
步骤S2:在堆芯功率从零功率上升至满功率的过程中,获取实时堆芯功率。
步骤S3:判断实时堆芯功率是否在预设的双速切换功率范围内。其中,双速切换功率范围为预先选定的一功率台阶范围,该功率台阶范围大于等于反应堆的蒸汽发生器5稳定运行的功率台阶范围。优选地,双速切换功率范围为选定的一功率台阶范围,该功率台阶范围大于等于反应堆的蒸汽发生器5稳定运行的功率台阶范围且小于等于反应堆的汽轮机并网的功率台阶范围。例如,预设的双速切换功率范围为大于等于20%FP,其中FP为堆芯满功率。对于小型堆,汽轮机并网功率台阶一般选择较高,比如20% FP或30% FP,这是因为蒸汽发生器在低于20% FP时,可能不稳定,因此双速切换功率范围为预先选定的一功率台阶范围,该功率台阶范围大于等于反应堆的蒸汽发生器5稳定运行的功率台阶范围。
步骤S4:若是,则控制主泵1由第一转速切换为第二转速;其中,第一转速小于第二转速,第二转速可以为全速。而在另外一些实施例中,第二转速还可以为2/3转速等。
本方法在反应堆堆芯3启动时,控制主泵1以半速启动,主要目的是为了省电,但在省电的情况下,为了保证反应堆的一回路能够很好的传热,避免蒸汽发生器5在启动期间强烈的流动不稳定和壁温波动状况,实现反应堆稳定运行的目标,可通过控制反应堆的二回路压力和给水流量,并配合主泵1的半速启动,来提高低功率下的温差,从而利于蒸汽发生器5的传热和稳定性,进而利于反应堆的一回路平均温度的控制,达到最好的传热效果。
因此,在步骤S1中还包括:
步骤S1-1:控制反应堆的二回路压力保持不变。在一些实施例中,可通过调节反应堆的蒸汽发生器5二回路出口处的阀门,来控制反应堆的二回路压力,例如可控制反应堆的二回路压力保持4MPa不变。
和/或
步骤S1-2:控制反应堆的二回路主给水泵9以预设给水流量为反应堆的蒸汽发生器5提供给水,来控制反应堆的一回路平均温度维持在第一预设温度。该预设给水流量为与实时堆芯功率对应的给水流量。在一些实施例中,第一预设温度小于现有情况下主泵1半速启动时的反应堆的一回路平均温度,即280摄氏度,优选第一预设温度为250摄氏度。
优选且完整地,可通过控制反应堆的一回路主泵1以第一转速启动、控制反应堆的二回路压力保持不变、以及控制反应堆的二回路主给水泵9以预设给水流量为反应堆的蒸汽发生器5提供给水,来控制反应堆的一回路平均温度维持在第一预设温度。该预设给水流量为与实时堆芯功率对应的给水流量。
在一些实施例中,在步骤S1-2中,包括:
若实时堆芯功率为零功率时,则控制反应堆的二回路主给水泵9以第一预设给水流量为反应堆的蒸汽发生器5提供给水,保证反应堆的二回路处于水实体状态。该第一预设给水流量为与零功率对应的给水流量。
若实时堆芯功率在第一功率范围内时,则控制反应堆的二回路主给水泵9以第二预设给水流量为反应堆的蒸汽发生器5提供给水,此时由于实时堆芯功率上升,使得反应堆的蒸汽发生器5二回路出口处由过冷水转变成过热蒸汽。该第二预设给水流量为与第一功率范围对应的给水流量。
若实时堆芯功率在第二功率范围内时,则控制反应堆的二回路主给水泵9以第三预设给水流量为反应堆的蒸汽发生器5提供给水,保证反应堆的蒸汽发生器5二回路出口处维持过热蒸汽状态。该第三预设给水流量为与第二功率范围对应的给水流量。
其中,第二功率范围的最小值大于第一功率范围的最大值;第三预设给水流量大于第二预设给水流量,第二预设给水流量大于第一预设给水流量。
例如:零功率即0%FP时,第一预设给水流量大于等于2%FF且小于等于4%FF。优选地,第一预设给水流量为2%FF。
第一功率范围为大于0%FP且小于等于5%FP时,第二预设给水流量大于等于5%FF且小于等于8%FF。优选地,第二预设给水流量为5%FF。
第二功率范围为大于5%FP且小于20%FP时,第三预设给水流量为大于等于18%FF且小于等于25%FF。优选地,第三预设给水流量为20.4%FF。
其中,需要说明的是,FP为堆芯满功率,FF为主给水泵9的给水满流量。
在本实施例中,为了保证反应堆的一回路能够很好的传热,实现反应堆稳定运行的目标,可通过控制反应堆的二回路压力、给水流量,并配合主泵1的全速启动,从而利于蒸汽发生器5的传热和稳定性,进而利于反应堆的一回路平均温度的控制,达到最好的传热效果。
因此在步骤S4中还包括:
S4-1:控制反应堆的二回路压力保持不变;在一些实施例中,可通过调节反应堆的蒸汽发生器5二回路出口处的阀门,来控制反应堆的二回路压力,例如可控制反应堆的二回路压力保持4MPa不变。
和/或
S4-2:控制反应堆的二回路主给水泵9的给水流量跟随实时堆芯功率线性提升,来控制反应堆的一回路平均温度维持在第二预设温度。在一些实施例中,第一预设温度小于第二预设温度,第二预设温度小于现有情况下主泵1全速启动时的反应堆的一回路平均温度,即330摄氏度,优选第二预设温度为300摄氏度。
优选且完整地,可通过控制主泵1由第一转速切换为第二转速、控制反应堆的二回路压力保持不变、以及控制反应堆的二回路主给水泵9的给水流量跟随实时堆芯功率线性提升,来控制反应堆的一回路平均温度维持在第二预设温度。
通过实施本实施例,具有以下有益效果:
本发明的反应堆启动方法通过在反应堆堆芯3启动时,控制反应堆的一回路主泵1以第一转速启动,在堆芯功率从零功率上升至满功率的过程中,获取实时堆芯功率,并判断实时堆芯功率是否在预设的双速切换功率范围内,若是,则控制主泵1由第一转速切换为第二转速,从而达到省电的目的,令启泵电流低,启动特性更好,电机储备功率可大幅减小,有利于减小电机尺寸。
同时,在省电的情况下,为了保证反应堆的一回路能够很好的传热,避免蒸汽发生器5在启动期间强烈的流动不稳定和壁温波动状况,实现反应堆稳定运行的目标,可通过控制反应堆的二回路压力和给水流量,并配合主泵1的半速启动,来提高低功率下的温差,从而利于蒸汽发生器5的传热和稳定性,进而利于反应堆的一回路平均温度的控制,达到最好的传热效果。
实施例二:
本发明还公开了一种反应堆启动系统,适用于如图1所示的反应堆,包括主泵1、压力容器2、堆芯3、控制棒4、蒸汽发生器5、启动分离器6、疏水换热器7、除氧器8、主给水泵9和给水阀门10。其中,堆芯3的作用是进行核裂变,将核能转化为水的热能。水作为冷却剂在反应堆中吸收核裂变产生的热能,成为高温高压的水,然后沿一回路进水管道进入蒸汽发生器5,将热量传给二回路的水,使其变为饱和蒸汽,然后经二回路出水管道输出至启动分离器6中分离水和蒸汽,分离后的水输入至疏水换热器7中进行降温,降温后输入至除氧器8中,最后经一回路进水管道并通过主给水泵9回流至蒸汽发生器5中,对一回路热水进行冷却。而一回路冷却后的水再由一回路出水管道通过主泵1输出到堆芯3内重新加热,如此循环往复,形成一个封闭的吸热和放热的循环过程。其中,图1中的虚线代表一回路,实线代表二回路。
特别对于海上的反应堆,由于海上获取电比较困难,因此即使节省几度电也是有重大意义的,因此本发明设计的该方法主要目的是为了省电,控制反应堆的一回路主泵1在堆芯3低功率时能够半速启动,启泵电流低,启动特性更好,电机储备功率可大幅减小,有利于减小电机尺寸,而在堆芯3高功率时又能够全速启动,因此如图3所示,该系统包括:
启动模块11,用于在反应堆堆芯3启动时,控制反应堆的一回路主泵1以第一转速启动。其中,第一转速可以为半速。而在另外一些实施例中,第一转速还可以为1/3转速等。在一些实施例中,该启动模块11为转速发生装置。
获取模块12,与启动模块11相连接,用于在堆芯功率从零功率上升至满功率的过程中,获取实时堆芯功率;在一些实施例中,该获取模块12为电度表,或者包括用于测量电压的霍尔电压传感器、用于测量电流的霍尔电流传感器以及用于根据电压和电流计算功率的计算器。
判断模块13,与获取模块12相连接,用于判断实时堆芯功率是否在预设的双速切换功率范围内。其中,双速切换功率范围为预先选定的一功率台阶范围,该功率台阶范围大于等于反应堆的蒸汽发生器5稳定运行的功率台阶范围。优选地,双速切换功率范围为选定的一功率台阶范围,该功率台阶范围大于等于反应堆的蒸汽发生器5稳定运行的功率台阶范围且小于等于反应堆的汽轮机并网的功率台阶范围。例如,预设的双速切换功率范围为大于等于20%FP,其中FP为堆芯满功率。对于小型堆,汽轮机并网功率台阶一般选择较高,比如20% FP或30% FP,这是因为蒸汽发生器在低于20% FP时,可能不稳定,因此双速切换功率范围为预先选定的一功率台阶范围,该功率台阶范围大于等于反应堆的蒸汽发生器5稳定运行的功率台阶范围。在一些实施例中,该判断模块13为微处理器。
切换模块14,与判断模块13相连接,用于判断模块13判断为是时,控制主泵1由第一转速切换为第二转速;其中,第一转速小于第二转速,第二转速可以为全速。而在另外一些实施例中,第二转速还可以为2/3转速等。在一些实施例中,该切换模块14为变频器。
本系统在反应堆堆芯3启动时,控制主泵1以半速启动,主要目的是为了省电,但在省电的情况下,为了保证反应堆的一回路能够很好的传热,避免蒸汽发生器5在启动期间强烈的流动不稳定和壁温波动状况,实现反应堆稳定运行的目标,可通过控制反应堆的二回路压力和给水流量,并配合主泵1的半速启动,来提高低功率下的温差,从而利于蒸汽发生器5的传热和稳定性,进而利于反应堆的一回路平均温度的控制,达到最好的传热效果。
因此,启动模块11还用于,控制反应堆的二回路压力保持不变。在一些实施例中,可通过调节反应堆的蒸汽发生器5二回路出口处的阀门,来控制反应堆的二回路压力,例如可控制反应堆的二回路压力保持4MPa不变。
和/或,
控制反应堆的二回路主给水泵9以预设给水流量为反应堆的蒸汽发生器5提供给水,来控制反应堆的一回路平均温度维持在第一预设温度。该预设给水流量为与实时堆芯功率对应的给水流量。在一些实施例中,第一预设温度小于现有情况下主泵1半速启动时的反应堆的一回路平均温度,即280摄氏度,优选第一预设温度为250摄氏度。
优选且完整地,启动模块11,用于通过控制反应堆的一回路主泵1以第一转速启动、控制反应堆的二回路压力保持不变、以及控制反应堆的二回路主给水泵9以预设给水流量为反应堆的蒸汽发生器5提供给水,来控制反应堆的一回路平均温度维持在第一预设温度。该预设给水流量为与实时堆芯功率对应的给水流量。
在一些实施例中,所述控制反应堆的二回路主给水泵9以预设给水流量为反应堆的蒸汽发生器5提供给水,该预设给水流量为与实时堆芯功率对应的给水流量,包括:
若实时堆芯功率为零功率时,则控制反应堆的二回路主给水泵9以第一预设给水流量为反应堆的蒸汽发生器5提供给水,保证反应堆的二回路处于水实体状态。该第一预设给水流量为与零功率对应的给水流量。
若实时堆芯功率在第一功率范围内时,则控制反应堆的二回路主给水泵9以第二预设给水流量为反应堆的蒸汽发生器5提供给水,此时由于实时堆芯功率上升,使得反应堆的蒸汽发生器5二回路出口处由过冷水转变成过热蒸汽。该第二预设给水流量为与第一功率范围对应的给水流量。
若实时堆芯功率在第二功率范围内时,则控制反应堆的二回路主给水泵9以第三预设给水流量为反应堆的蒸汽发生器5提供给水,保证反应堆的蒸汽发生器5二回路出口处维持过热蒸汽状态。该第三预设给水流量为与第二功率范围对应的给水流量。
其中,第二功率范围的最小值大于第一功率范围的最大值;第三预设给水流量大于第二预设给水流量,第二预设给水流量大于第一预设给水流量。
例如:零功率即0%FP时,第一预设给水流量大于等于2%FF且小于等于4%FF。优选地,第一预设给水流量为2%FF。
第一功率范围为大于0%FP且小于等于5%FP时,第二预设给水流量大于等于5%FF且小于等于8%FF。优选地,第二预设给水流量为5%FF。
第二功率范围为大于5%FP且小于20%FP时,第三预设给水流量为大于等于18%FF且小于等于25%FF。优选地,第三预设给水流量为20.4%FF。
其中,需要说明的是,FP为堆芯满功率,FF为主给水泵9的给水满流量。
在本实施例中,为了保证反应堆的一回路能够很好的传热,实现反应堆稳定运行的目标,可通过控制反应堆的二回路压力和给水流量,并配合主泵1的全速启动,从而利于蒸汽发生器5的传热和稳定性,进而利于反应堆的一回路平均温度的控制,达到最好的传热效果。
因此,切换模块14还用于,控制反应堆的二回路压力保持不变;在一些实施例中,可通过调节反应堆的蒸汽发生器5二回路出口处的阀门,来控制反应堆的二回路压力,例如可控制反应堆的二回路压力保持4MPa不变。
和/或,
控制反应堆的二回路主给水泵9的给水流量跟随实时堆芯功率线性提升,来控制反应堆的一回路平均温度维持在第二预设温度。在一些实施例中,第一预设温度小于第二预设温度,第二预设温度小于现有情况下主泵1全速启动时的反应堆的一回路平均温度,即330摄氏度,优选第二预设温度为300摄氏度。
优选且完整地,切换模块14,用于通过控制主泵1由第一转速切换为第二转速、控制反应堆的二回路压力保持不变、以及控制反应堆的二回路主给水泵9的给水流量跟随实时堆芯功率线性提升,来控制反应堆的一回路平均温度维持在第二预设温度。
通过实施本实施例,具有以下有益效果:
本发明的反应堆启动系统包括启动模块11、获取模块12、判断模块13、以及切换模块14。其中,启动模块11用于在反应堆堆芯3启动时,控制反应堆的一回路主泵1以第一转速启动;获取模块12用于在堆芯功率从零功率上升至满功率的过程中,获取实时堆芯功率;判断模块13用于判断实时堆芯功率是否在预设的双速切换功率范围内;切换模块14用于判断模块13判断为是时,控制主泵1由第一转速切换为第二转速。通过实施该系统从而达到省电的目的,令启泵电流低,启动特性更好,电机储备功率可大幅减小,有利于减小电机尺寸。
同时,在省电的情况下,为了保证反应堆的一回路能够很好的传热,避免蒸汽发生器5在启动期间强烈的流动不稳定和壁温波动状况,实现反应堆稳定运行的目标,可通过控制反应堆的二回路压力和给水流量,并配合主泵1的半速启动,来提高低功率下的温差,从而利于蒸汽发生器5的传热和稳定性,进而利于反应堆的一回路平均温度的控制,达到最好的传热效果。
工业实用性
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (14)

  1. 一种反应堆启动方法,其特征在于,包括以下步骤:
    S1:在所述反应堆堆芯(3)启动时,控制所述反应堆的一回路主泵(1)以第一转速启动;
    S2:在堆芯功率从零功率上升至满功率的过程中,获取实时堆芯功率;
    S3:判断所述实时堆芯功率是否在预设的双速切换功率范围内;
    S4:若是,则控制所述主泵(1)由所述第一转速切换为第二转速。
  2. 根据权利要求1所述的反应堆启动方法,其特征在于,所述双速切换功率范围为预先选定的一功率台阶范围;其中,所述功率台阶范围大于等于所述反应堆的蒸汽发生器(5)稳定运行的功率台阶范围。
  3. 根据权利要求1所述的反应堆启动方法,其特征在于,在所述步骤S1中还包括:
    S1-1:控制所述反应堆的二回路压力保持不变;和/或
    S1-2:控制所述反应堆的二回路主给水泵(9)以预设给水流量为所述反应堆的蒸汽发生器(5)提供给水,来控制所述反应堆的一回路平均温度维持在第一预设温度;所述预设给水流量为与所述实时堆芯功率对应的给水流量。
  4. 根据权利要求3所述的反应堆启动方法,其特征在于,在所述步骤S1-2中,包括:
    若所述实时堆芯功率为零功率时,则控制所述反应堆的二回路主给水泵(9)以第一预设给水流量为所述反应堆的蒸汽发生器(5)提供给水;所述第一预设给水流量为与所述零功率对应的给水流量;
    若所述实时堆芯功率在第一功率范围内时,则控制所述反应堆的二回路主给水泵(9)以第二预设给水流量为所述反应堆的蒸汽发生器(5)提供给水;所述第二预设给水流量为与所述第一功率范围对应的给水流量;
    若所述实时堆芯功率在第二功率范围内时,则控制所述反应堆的二回路主给水泵(9)以第三预设给水流量为所述反应堆的蒸汽发生器(5)提供给水;所述第三预设给水流量为与所述第二功率范围对应的给水流量;
    其中,所述第二功率范围的最小值大于所述第一功率范围的最大值;所述第三预设给水流量大于所述第二预设给水流量,所述第二预设给水流量大于所述第一预设给水流量。
  5. 根据权利要求3所述的反应堆启动方法,其特征在于,在所述步骤S4中还包括:
    S4-1:控制所述反应堆的二回路压力保持不变;和/或
    S4-2:控制所述反应堆的二回路主给水泵(9)的给水流量跟随所述实时堆芯功率线性提升,来控制所述反应堆的一回路平均温度维持在第二预设温度。
  6. 根据权利要求5所述的反应堆启动方法,其特征在于,所述第一预设温度小于所述第二预设温度;所述第一转速小于所述第二转速。
  7. 根据权利要求6所述的反应堆启动方法,其特征在于,所述第一转速为半速,所述第二转速为全速。
  8. 一种反应堆启动系统,其特征在于,包括:
    启动模块(11),用于在所述反应堆堆芯(3)启动时,控制所述反应堆的一回路主泵(1)以第一转速启动;
    获取模块(12),用于在堆芯功率从零功率上升至满功率的过程中,获取实时堆芯功率;
    判断模块(13),用于判断所述实时堆芯功率是否在预设的双速切换功率范围内;
    切换模块(14),用于所述判断模块(13)判断为是时,控制所述主泵(1)由第一转速切换为第二转速。
  9. 根据权利要求8所述的反应堆启动系统,其特征在于,所述双速切换功率范围为预先选定的一功率台阶范围;其中,所述功率台阶范围大于等于所述反应堆的蒸汽发生器(5)稳定运行的功率台阶范围。
  10. 根据权利要求8所述的反应堆启动系统,其特征在于,所述启动模块(11)还用于,控制所述反应堆的二回路压力保持不变;和/或,控制所述反应堆的二回路主给水泵(9)以预设给水流量为所述反应堆的蒸汽发生器(5)提供给水,来控制所述反应堆的一回路平均温度维持在第一预设温度;所述预设给水流量为与所述实时堆芯功率对应的给水流量。
  11. 根据权利要求10所述的反应堆启动系统,其特征在于,所述控制所述反应堆的二回路主给水泵(9)以预设给水流量为所述反应堆的蒸汽发生器(5)提供给水;所述预设给水流量为与所述实时堆芯功率对应的给水流量,包括:
    若所述实时堆芯功率为零功率时,则控制所述反应堆的二回路主给水泵(9)以第一预设给水流量为所述反应堆的蒸汽发生器(5)提供给水;所述第一预设给水流量为与所述零功率对应的给水流量;
    若所述实时堆芯功率在第一功率范围内时,则控制所述反应堆的二回路主给水泵(9)以第二预设给水流量为所述反应堆的蒸汽发生器(5)提供给水;所述第二预设给水流量为与所述第一功率范围对应的给水流量;
    若所述实时堆芯功率在第二功率范围内时,则控制所述反应堆的二回路主给水泵(9)以第三预设给水流量为所述反应堆的蒸汽发生器(5)提供给水;所述第三预设给水流量为与所述第二功率范围对应的给水流量;
    其中,所述第二功率范围的最小值大于所述第一功率范围的最大值;所述第三预设给水流量大于所述第二预设给水流量,所述第二预设给水流量大于所述第一预设给水流量。
  12. 根据权利要求10所述的反应堆启动系统,其特征在于,所述切换模块(14)还用于,控制所述反应堆的二回路压力保持不变;和/或,控制所述反应堆的二回路主给水泵(9)的给水流量跟随所述实时堆芯功率线性提升,来控制所述反应堆的一回路平均温度维持在第二预设温度。
  13. 根据权利要求12所述的反应堆启动系统,其特征在于,所述第一预设温度小于所述第二预设温度;所述第一转速小于所述第二转速。
  14. 根据权利要求13所述的反应堆启动系统,其特征在于,所述第一转速为半速,所述第二转速为全速。
PCT/CN2021/138438 2021-06-18 2021-12-15 一种反应堆启动方法及系统 WO2022262225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110679012.1 2021-06-18
CN202110679012.1A CN113488207B (zh) 2021-06-18 2021-06-18 一种反应堆启动方法及系统

Publications (1)

Publication Number Publication Date
WO2022262225A1 true WO2022262225A1 (zh) 2022-12-22

Family

ID=77935520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138438 WO2022262225A1 (zh) 2021-06-18 2021-12-15 一种反应堆启动方法及系统

Country Status (2)

Country Link
CN (1) CN113488207B (zh)
WO (1) WO2022262225A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488207B (zh) * 2021-06-18 2024-05-10 中广核研究院有限公司 一种反应堆启动方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975238A (en) * 1988-09-01 1990-12-04 Mpr, Inc. Control system for a nuclear steam power plant
JPH11118987A (ja) * 1997-10-15 1999-04-30 Toshiba Corp 原子炉水位制御方法
CN1252607A (zh) * 1998-10-22 2000-05-10 Abb燃烧工程核力公司 压水反应堆蒸汽发生器满功率范围内的给水控制
CN103117101A (zh) * 2013-01-19 2013-05-22 哈尔滨工程大学 用于一体化反应堆的启停辅助装置及一体化反应堆的冷启动方法
CN106847347A (zh) * 2017-02-10 2017-06-13 中国科学院合肥物质科学研究院 一种双循环模式反应堆和反应堆运行噪声的控制方法
CN107170487A (zh) * 2017-04-21 2017-09-15 中广核研究院有限公司 多环路反应堆长期低功率偏环路运行的控制系统及方法
CN108729967A (zh) * 2017-04-25 2018-11-02 国家电投集团科学技术研究院有限公司 核能发电系统及其控制方法
CN109240245A (zh) * 2018-10-25 2019-01-18 中国船舶重工集团公司第七〇九研究所 一种核动力装置综合控制系统数字化体系架构
CN111508620A (zh) * 2020-04-30 2020-08-07 中国核动力研究设计院 一种反应堆机动性自调节方法
CN113488207A (zh) * 2021-06-18 2021-10-08 中广核研究院有限公司 一种反应堆启动方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610957A (en) * 1994-07-31 1997-03-11 Hitachi, Ltd. Reactor core coolant flow rate control system for a BWR type nuclear power plant
JPH09178110A (ja) * 1995-12-27 1997-07-11 Hitachi Ltd 給水制御方法及びその装置
JP2005172742A (ja) * 2003-12-15 2005-06-30 Global Nuclear Fuel-Japan Co Ltd 原子炉の起動運転方法
CN110186026B (zh) * 2019-05-06 2020-09-08 中广核研究院有限公司 直流式蒸汽发生器的干式热态启动方法
CN110197733B (zh) * 2019-06-12 2021-02-02 岭澳核电有限公司 核电站一回路排气控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975238A (en) * 1988-09-01 1990-12-04 Mpr, Inc. Control system for a nuclear steam power plant
JPH11118987A (ja) * 1997-10-15 1999-04-30 Toshiba Corp 原子炉水位制御方法
CN1252607A (zh) * 1998-10-22 2000-05-10 Abb燃烧工程核力公司 压水反应堆蒸汽发生器满功率范围内的给水控制
CN103117101A (zh) * 2013-01-19 2013-05-22 哈尔滨工程大学 用于一体化反应堆的启停辅助装置及一体化反应堆的冷启动方法
CN106847347A (zh) * 2017-02-10 2017-06-13 中国科学院合肥物质科学研究院 一种双循环模式反应堆和反应堆运行噪声的控制方法
CN107170487A (zh) * 2017-04-21 2017-09-15 中广核研究院有限公司 多环路反应堆长期低功率偏环路运行的控制系统及方法
CN108729967A (zh) * 2017-04-25 2018-11-02 国家电投集团科学技术研究院有限公司 核能发电系统及其控制方法
CN109240245A (zh) * 2018-10-25 2019-01-18 中国船舶重工集团公司第七〇九研究所 一种核动力装置综合控制系统数字化体系架构
CN111508620A (zh) * 2020-04-30 2020-08-07 中国核动力研究设计院 一种反应堆机动性自调节方法
CN113488207A (zh) * 2021-06-18 2021-10-08 中广核研究院有限公司 一种反应堆启动方法及系统

Also Published As

Publication number Publication date
CN113488207A (zh) 2021-10-08
CN113488207B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
CN107246602B (zh) 热电联产机组采用电锅炉方式深度调峰的优化控制方法
WO2022166185A1 (zh) 一种高温气冷堆二氧化碳发电的系统和方法
CN206845247U (zh) 一种增强电厂灵活性热力系统
CN206617236U (zh) 一种用于参与电网调峰的燃气热电联产机组系统
KR101028634B1 (ko) 발전소의 출력증강으로 발생한 잉여증기를 이용한 보조발전시스템
WO2022262225A1 (zh) 一种反应堆启动方法及系统
CN114446503A (zh) 一种一体化小型反应堆核电机组的系统与堆机运行方法
CN215676608U (zh) 一种熔盐储能电力调峰系统
CN112983565A (zh) 一种基于储热的火电机组抽汽辅助调频调峰系统
JP5704526B2 (ja) コジェネレーション高温ガス炉システム
CN108678819B (zh) 一种利用旁路实现热电解耦和快速调峰的系统
JP2008312330A (ja) 排熱発電装置、排熱発電装置の運転方法
CN216381531U (zh) 主蒸汽作为储热热源的熔盐储热耦合超临界火电机组系统
CN206816307U (zh) 一种新型热电解耦热力系统
CN214625114U (zh) 一种液氢燃料电池余热回收系统
CN213395249U (zh) 一种高温气冷堆二回路的内置式启停堆装置
CN110439642A (zh) 一种辅助电极锅炉参与电厂调峰的低温余热发电系统
CN214671852U (zh) 一种高温气冷堆核电机组滑压启动的系统
CN111322126B (zh) 热网加热器的循环水泵的控制方法、装置和系统
CN215170831U (zh) 一种基于双馈系统的湿冷机组锅炉电动给水泵系统
CN214660372U (zh) 一种高温气冷堆二氧化碳发电的系统
CN218324979U (zh) 一种纯凝机组与熔盐储热耦合的深度调峰系统
CN219160314U (zh) 一种核电站给水加热汽源热备用系统
CN220134118U (zh) 一种基于熔盐储能的工业供汽装置
CN215927489U (zh) 一种高温气冷堆非核蒸汽冲转系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE