WO2022262147A1 - 一种光学器件、电子器件和可编程光子集成电路 - Google Patents

一种光学器件、电子器件和可编程光子集成电路 Download PDF

Info

Publication number
WO2022262147A1
WO2022262147A1 PCT/CN2021/121896 CN2021121896W WO2022262147A1 WO 2022262147 A1 WO2022262147 A1 WO 2022262147A1 CN 2021121896 W CN2021121896 W CN 2021121896W WO 2022262147 A1 WO2022262147 A1 WO 2022262147A1
Authority
WO
WIPO (PCT)
Prior art keywords
programmable
coupler
optical
optical device
arm
Prior art date
Application number
PCT/CN2021/121896
Other languages
English (en)
French (fr)
Inventor
徐哲
李辰
蒋东东
李茹杨
赵雅倩
李仁刚
Original Assignee
苏州浪潮智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州浪潮智能科技有限公司 filed Critical 苏州浪潮智能科技有限公司
Priority to US18/269,926 priority Critical patent/US20240061282A1/en
Publication of WO2022262147A1 publication Critical patent/WO2022262147A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • G02F1/125Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0072Mechanical, acoustic, electro-elastic, magneto-elastic properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • G02F1/113Circuit or control arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/307Reflective grating, i.e. Bragg grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector

Definitions

  • This application relates to the field of computer technology, in particular to an optical device, an electronic device and a programmable photonic integrated circuit.
  • PICs Photonic integrated circuits, photonic integrated circuits
  • ASPICs application-specific photonic integrated circuits, application-specific photonic integrated circuits
  • the purpose of this application is to provide an optical device, an electronic device and a programmable photonic integrated circuit, which can not only perform optical logic gate operations based on optical signals, but also perform biosensor detection, which can adapt to various scenarios and promote the repeatability of the device use and sustainable use.
  • the specific plan is as follows:
  • the application provides an optical device, comprising:
  • a second coupler whose input port is connected with the sensing arm and the programmable modulation arm, and whose output port is connected with the photodetector.
  • the programmable modulation arm includes a second strip waveguide, a quartz crystal covering the second strip waveguide with a preset length, sound absorbers arranged on both sides of the quartz crystal, and the programmable Piezoelectric transducer;
  • a corresponding grating is formed in the second strip waveguide in the quartz crystal, and the second light wave is Due to diffraction effects, a second signal is generated.
  • the sensing arm includes the slot waveguide and a first strip waveguide, wherein the slot waveguide is arranged at a set position of the first strip waveguide.
  • the slot waveguide of the sensing arm, the first strip waveguide, and the second strip waveguide of the programmable modulation arm are all high-refractive index silicon waveguides.
  • the slot waveguide includes: a silicon dioxide substrate, a first silicon structure and a second silicon structure disposed on the silicon dioxide substrate, wherein the first silicon structure and the second silicon The distances between the structures are nanoscale distances.
  • both the first strip waveguide and the second strip waveguide include: a silicon dioxide substrate, and a silicon structure disposed on the silicon dioxide substrate.
  • the programmable piezoelectric transducer is a piezoelectric ceramic transducer.
  • the present application provides an electronic device, including the above-mentioned optical device, wherein the electronic device is an optical logic gate and/or a biosensor.
  • the application provides a programmable photonic integrated circuit, including:
  • a computer software controller coupled to the optical device for controlling the voltage parameters of the programmable piezoelectric transducer of the optical device.
  • the computer software controller is also used to control the beam splitting ratio of the first coupler of the optical device.
  • the laser is a tunable laser
  • the computer software controller is configured to control light source parameters of the tunable laser, where the light source parameters correspond to the input optical signal of the first coupler of the optical device.
  • multiple optical devices are included, and multiple optical devices are cascaded.
  • the present application provides an optical device, including: a first coupler with an adjustable beam splitting ratio; a sensing arm connected to the first coupler, and a programmable modulation arm; wherein the sensing arm is used to output the first coupler The first light wave passes through the slot waveguide to generate the first signal; the programmable modulation arm is used to obtain the second signal according to the second light wave output by the first coupler by using the diffraction effect of the grating, wherein the grating is in the programmable modulation arm A nanometer grating generated under pre-programmed voltage parameters of a programmable piezoelectric transducer; a second coupler whose input port is connected with a sensing arm and a programmable modulation arm, and whose output port is connected with a photodetector.
  • the present application can adjust the beam splitting ratio of the first coupler and the voltage parameter of the programmable piezoelectric transducer, and obtain an ultrasonic field that changes in the form of an electrical signal according to the voltage parameter to form a nanometer grating.
  • the refractive index of the grating The change causes the phase of the light wave to change.
  • the optical carrier is modulated into an intensity or phase modulation wave carrying information, that is, the second signal, which realizes the second signal.
  • the slit waveguide of the sensing arm is a nano-slit, which causes the optical confinement and optical amplification of the first light wave at the nanometer scale, and generates the first signal. Therefore, the optical device of the present application can sense small changes in the environment, by Small changes will lead to optical phase shift, through which the change of the environment can be obtained; after the first signal and the second signal are coupled through the second coupler, a constructive or destructive interference optical signal is formed at the output end, and finally passed through Photodetector detection, it can be seen that this application can not only perform optical logic gate operations based on optical signals, but also perform biosensor detection, which can adapt to various scenarios and promote the reusable and sustainable use of devices.
  • the present application also provides an electronic device and a programmable photonic integrated circuit at the same time, both of which have the above-mentioned beneficial effects, and will not be repeated here.
  • FIG. 1 is a schematic structural diagram of an optical device provided in an embodiment of the present application.
  • FIG. 2a is a schematic diagram of a uniform fiber grating provided in an embodiment of the present application.
  • FIG. 2b is a schematic diagram of a chirped fiber grating provided in an embodiment of the present application.
  • Fig. 2c is a schematic diagram of a phase-shifting fiber grating provided by an embodiment of the present application.
  • Fig. 2d is a schematic diagram of a sampling fiber grating provided by an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional view of the structure of a strip waveguide provided in an embodiment of the present application
  • FIG. 4 is a schematic cross-sectional view of a structure of a slot waveguide provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a programmable photonic integrated circuit provided by an embodiment of the present application.
  • PICs Photonic integrated circuits, photonic integrated circuits
  • ASPICs application-specific photonic integrated circuits, application-specific photonic integrated circuits
  • this embodiment provides an optical device, including: a first coupler with an adjustable beam splitting ratio; a sensing arm connected to the first coupler, and a programmable modulation arm; wherein, the sensing arm The first light wave output by the first coupler is used to generate the first signal through the slot waveguide; the programmable modulation arm is used to obtain the second signal according to the second light wave output by the first coupler by using the diffraction effect of the grating, wherein, The grating is a nanoscale grating generated under the pre-programmed voltage parameters of the programmable piezoelectric transducer of the programmable modulation arm; the input port is connected with the sensing arm and the programmable modulation arm, and the output port is connected with the photodetector. Two couplers.
  • the present application can adjust the beam splitting ratio of the first coupler and the voltage parameter of the programmable piezoelectric transducer, and obtain an ultrasonic field that changes in the form of an electrical signal according to the voltage parameter to form a nanometer grating.
  • the refractive index of the grating The change causes the phase of the light wave to change.
  • the optical carrier is modulated into an intensity or phase modulation wave carrying information, that is, the second signal, which realizes the second signal.
  • the slit waveguide of the sensing arm is a nano-slit, which causes the optical confinement and optical amplification of the first light wave at the nanometer scale, and generates the first signal. Therefore, the optical device of the present application can sense small changes in the environment, by Small changes will lead to optical phase shift, through which the change of the environment can be obtained; after the first signal and the second signal are coupled through the second coupler, a constructive or destructive interference optical signal is formed at the output end, and finally passed through Photodetector detection, it can be seen that this application can not only perform optical logic gate operations based on optical signals, but also perform biosensor detection, which can adapt to various scenarios and promote the reusable and sustainable use of devices.
  • Figure 1 is a schematic structural diagram of an optical device provided in an embodiment of the present application, including:
  • the waveguide 121 generates the first signal
  • the programmable modulation arm is used to obtain the second signal according to the second light wave output by the first coupler 110 by using the diffraction effect of the grating, wherein the grating is a programmable piezoelectric transducer in the programmable modulation arm
  • the nano-grating generated under the pre-programmed voltage parameters of the generator 134; the input port is connected with the sensing arm and the programmable modulation arm, and the output port is connected with the second coupler 140 of the photodetector.
  • the first coupler 110 is a coupler with an adjustable beam splitting ratio, which can be a 50/50 coupler, and of course other couplers, which are not limited in this embodiment , the user can choose according to actual needs, as long as the purpose of this embodiment can be achieved.
  • the beam splitting ratio of the first coupler 110 can be modified by the user through the computer software controller according to actual needs.
  • the ratio of the first light wave to the second light wave can be determined by modifying the beam splitting ratio, which can be 0:1, 1:0, or n1:n2, and n1 and n2 can be set according to actual needs.
  • the sensing arm includes a slot waveguide 121, and of course may also include a first strip waveguide 122.
  • the slot waveguide 121 is set at a set position of the first strip waveguide 122, and the set position can be set according to actual needs.
  • the nano-slit of the slot waveguide 121 can cause the confinement and amplification of the light field of the evanescent wave at the nanometer scale, and can sense small changes in the nearby environment, thereby causing optical phase shift, and detecting multiple or even a single biological small molecule.
  • the slot waveguide 121 may be a high refractive index silicon waveguide.
  • the optical wave range of the input optical signal in this embodiment may be in the infrared band, and may be mainly concentrated around the biological wavelength of 1064 nm and the communication wavelength of 1550 nm.
  • the programmable modulation arm is used to obtain the second signal according to the second light wave output by the first coupler 110 by using the diffraction effect of the grating, wherein the grating is pre-programmed in the programmable piezoelectric transducer 134 of the programmable modulation arm generated under voltage parameters.
  • This embodiment does not limit the structure of the programmable modulation arm, and the user can set it according to actual needs, as long as the purpose of this embodiment can be achieved.
  • the grating is a Bragg grating
  • the Bragg grating can be any one of uniform fiber grating, uniform long-period fiber grating, apodized fiber grating, phase-shifting fiber grating, sampling fiber grating, and chirped fiber grating
  • Fig. 2a is a schematic diagram of a uniform fiber grating provided in the embodiment of the present application
  • Fig. 2b is a schematic diagram of a chirped fiber grating provided in the embodiment of the present application
  • Fig. 2c is a schematic diagram of a phase fiber grating provided in the embodiment of the present application
  • Fig. 2d is a schematic diagram of a sampling fiber grating provided by an embodiment of the present application.
  • the programmable modulation arm includes a second strip waveguide 131, a quartz crystal 132 covering the second strip waveguide 131 with a preset length, and sound absorbers arranged on both sides of the quartz crystal 132. 133 and a programmable piezoelectric transducer 134; wherein, under the pre-programmed voltage parameters of the programmable piezoelectric transducer 134, a corresponding Bragg grating is formed in the second waveguide in the quartz crystal 132, and the second light wave is Under the diffraction effect of the grating, a second signal is generated.
  • the programmable modulation arm includes an acousto-optic modulation module and a strip waveguide, and the acousto-optic modulation module acts on the second strip waveguide 131 through the quartz crystal 132 cladding, and the acousto-optic modulation module specifically includes the second strip waveguide 131 Coated quartz crystal 132 , optically transparent sound absorber 133 , programmable piezoelectric transducer 134 .
  • the computer software controller controls the voltage parameters (including voltage magnitude and cycle) of the external voltage signal, acts on the programmable piezoelectric transducer 134, and converts it into an ultrasonic field that changes in the form of an electrical signal through electroacoustics, forming a grating,
  • the change in the refractive index of the grating causes a change in the phase of the second light wave passing through the quartz crystal 132, generating a second signal.
  • the second light wave passes through the programmable modulation arm, due to the diffraction effect of the grating, the second light wave is modulated to become an intensity or phase modulated wave carrying information, that is, a second signal.
  • the two waves that pass through the sensing arm and the programmable modulating arm namely the first signal and the second signal
  • the second coupling for example, a 50/50 coupler
  • the light waves of the output port are linear combinations of the light waves at the input ports.
  • power and phase shift are controlled by a computer software controller according to the target function.
  • the output optical signal can be output from only one port, or output from two ports at the same time according to a certain ratio, and the intensity of the output optical signal can be continuously controlled.
  • this embodiment can work forward or reverse if it is used as an optical logic gate. Since photons are bosons, the optical device can simultaneously transmit and process two light wave signals of different wavelengths without interfering with each other. It can be seen that the optical device can handle analog calculations.
  • both the first coupler 110 and the programmable piezoelectric transducer 134 in this embodiment can regulate corresponding parameters through a computer software controller.
  • the input optical signal may also be adjustable. Therefore, the user can program the PICs device according to the needs, and can control three parts, the first part can adjust the laser light source, and the input wavelength can be selected according to the needs, and the output wavelength of the two lasers can be the same or different; the second part and the third part It is mainly an optical device, specifically the first coupler 110 and the programmable piezoelectric transducer 134 of the optical device.
  • the beam splitting ratio can be adjusted according to the actual situation; the programmable piezoelectric transducer can be controlled by programming
  • the device 134 controls the input of sound waves through voltage, and forms a nanometer Bragg grating on the strip waveguide of the quartz crystal 132.
  • the structural parameters of the Bragg grating are adjustable and controllable by the computer software controller, and the refractive index changes with the period. phase modulation on the path.
  • the programmable photonic integrated circuit in this embodiment can be an MZI structure manufactured on an insulating substrate silicon wafer, and the light wave propagates in the waveguide, and is input into the 2 ⁇ 2 coupler, which is the optical device in this embodiment, through
  • the first coupler 110 (which may be a 50/50 coupler) enters the MZI optical path, passes through the interference effect of the two light waves, and finally outputs the signal through the second coupler 140 , that is, the 50/50 beam splitter.
  • the optical device determines the programmable functional optical path and how to configure it.
  • the programmable modulation arm acts as an optical phase shifter, and the change of the waveguide refractive index can be controlled by the programmable modulation arm to make it more precise. Controlling the optical signal passing through the MZI leads to better performance of PICs.
  • the optical device is used as a 2 ⁇ 2 optical logic gate to input light (wavelengths can be the same or different) from two input waveguides into the first coupler 110, and the input power is controlled by the computer software controller, which is controlled by Distributed into the two end output waveguides of the first coupler 110, these two waveguides form the two arms of the MZI. Since the refractive index distributions of the two arms are different, the optical path difference is also different, and a phase difference will be formed before the second coupler 140 .
  • this embodiment uses a waveguide-based programmable modulation arm. It can be understood that the improved Mach-Zehnder structure has two input optical signal sources, so two different wavelength signals can be transmitted simultaneously in the MZI (Mach-Zehnder structure), which increases the information capacity, and between different wavelength signals Do not interfere with each other, and there is no information crosstalk phenomenon.
  • MZI Machine-Zehnder structure
  • this embodiment can adjust the beam splitting ratio of the first coupler 110 and the voltage parameters of the programmable piezoelectric transducer 134, and obtain an ultrasonic field that changes in the form of an electrical signal according to the voltage parameters to form a nanoscale grating , the change of the refractive index of the grating causes the phase of the light wave to change.
  • the optical device of the present application can Sensing small changes in the environment, the small changes will cause an optical phase shift, and the environmental changes can be obtained through the optical phase shift; after the first signal and the second signal are coupled through the second coupler 140, a constructive or phase phase is formed at the output end.
  • the interference-eliminated optical signal is finally detected by the photodetector. It can be seen that this application can not only perform optical logic gate operations based on the optical signal, but also perform biosensor detection, which can adapt to various scenarios and promote the reusability and reusability of the device. Continue to use.
  • the slot waveguide 121 of the sensing arm, the first strip waveguide 122 and the second strip waveguide 131 of the programmable modulation arm in this embodiment are all high-refractive index silicon waveguides.
  • the slot waveguide 121 includes: a silicon dioxide substrate, a first silicon structure and a second silicon structure disposed on the silicon dioxide substrate, wherein the distance between the first silicon structure and the second silicon structure is nanometers level distance.
  • both the first strip waveguide 122 and the second strip waveguide 131 include: a silicon dioxide substrate, and a silicon structure disposed on the silicon dioxide substrate.
  • this embodiment adopts silicon material with high refractive index and quartz with acousto-optic modulation effect, which are processed on a silicon dioxide substrate.
  • the materials used are cheap and easy to process. The cost is low, and it is convenient for mass production.
  • Figure 3 is a cross-sectional schematic diagram of a strip waveguide structure provided by an embodiment of the present application
  • Figure 4 is a cross-sectional schematic diagram of a slot waveguide structure provided by an embodiment of this application .
  • the sensing arm includes a slot waveguide 121 and a strip waveguide structure, and the slot waveguide 121 occupies a small part of the entire sensing arm.
  • the programmable piezoelectric transducer 134 is a piezoelectric ceramic transducer. Among them, piezoelectric ceramic transducers are easy to manufacture, strong in controllability, high in sensitivity, and good in electromechanical coupling.
  • both the first coupler 110 and the second coupler 140 are 50/50 couplers.
  • this embodiment provides a general-purpose multifunctional Mach-Zehnder on-chip interferometer, which has the integration of sensing and computing functions, realizes optical transmission, optical amplification and optical confinement through the optical waveguide structure, and realizes logic through optical interference phenomena. computing and biosensing. Users can use computer software to program according to the target functional requirements, and reconfigure the refractive index of the on-chip optical waveguide by controlling the sound wave through voltage to form a Bragg grating structure, thereby realizing the re-regulation of the optical signal.
  • silicon materials with high refractive index and quartz with acousto-optic modulation effect are used to process and manufacture on silicon dioxide substrates. The materials used are cheap, the processing cost is low, and it is convenient Mass production.
  • the present application provides an electronic device, including the above optical device, wherein the electronic device is an optical logic gate and/or a biosensor.
  • the photodetector When used as a biosensor, due to changes in the surrounding environment such as thermal effects, biomolecules, etc., it will affect the optical signals of the sensing arm and the programmable modulating arm, and then the optical signals output by the sensing arm and the programmable modulating arm are first The signal and the second signal will change, and after being coupled by the second coupler, the photodetector can detect it according to the first output light signal and the second output light signal.
  • the two beams of light signals are effective signals, and need to pass through two optical arms, and accurate signals can be obtained at this time; when the biomolecules are large, the two beams of light There is at least one effective signal in each optical signal, mainly because a single waveguide can also be used as a biosensor, and the signal obtained based on the interference phenomenon after passing through two optical arms is more accurate.
  • the light intensity of 1 and 0 of the first output optical signal and the second output optical signal are outputted through logical operation to realize the function of the optical logic gate.
  • Optical logic gates can be operated while running logic operations, and can also simultaneously perform biosensing, first couplers and programmable piezoelectric transducers of tunable beams connected by optical waveguides controlled by electrical signals. Under the control of a computer software controller, the optical signal is spatially distributed and rerouted. At this point, the chip can implement various linear functions by interfering with beams along different paths.
  • FIG. 5 A structural schematic diagram of a programmable photonic integrated circuit, including:
  • a photodetector 300 connected to the optics
  • a computer software controller 400 coupled to the optics for controlling the voltage parameters of the programmable piezoelectric transducers of the optics.
  • the computer software controller is also used to control the splitting ratio of the first coupler of the optical device.
  • the laser 200 is a tunable laser 200; correspondingly, the computer software controller 400 is used to control the light source parameters of the tunable laser 200, and the light source parameters correspond to the input optical signal of the first coupler of the optical device.
  • the first part can adjust the laser source laser 200, and the input wavelength can be selected according to needs, and the output wavelengths of the two lasers 200 can be the same or different.
  • the second and third parts are mainly optical devices, specifically the first coupler and programmable piezoelectric transducer of the optical device. Adjusting the first coupler can adjust the beam splitting ratio according to the actual situation; Piezoelectric transducers input sound waves through voltage control to form nanometer Bragg gratings on the strip waveguide of quartz crystals.
  • the structural parameters of the Bragg gratings are adjustable and controllable by the computer software controller 400, and the refractive index changes with the period. Phase modulation is induced on the path of light wave transmission.
  • This embodiment proposes an on-chip programmable general-purpose micro-nano optical device-programmable photonic integrated circuit, which is convenient for optical signal processing and has the advantage of functional integration of communication, sensing and broadband signal processing. Compared with traditional custom-made photonic integrated circuits, this device is controlled by computer programming, which promotes the reusable and sustainable use of the device. Users can program the device and at the same time correct minor errors in the manufacturing process.
  • the key modules in this embodiment include the tunable laser 200, the slot waveguide of the optical device, the tunable first coupler of the optical device and the programmable piezoelectric transducer of the optical device, and all the modules are It should have low insertion loss and low power consumption, and be integrated on the same chip.
  • This embodiment is an improved on-chip Mach-Zehnder optical interferometer.
  • the optical signal can be modulated while performing logic operations through optical logic gates, and biological transmission can also be performed at the same time. sense, forming a general-purpose multifunctional composite optical computing device.
  • multiple optical devices are included, and the multiple optical devices are cascaded.
  • the optical device is small in size, wide in application and broad in application prospect. Controlled by a computer software controller, in practical applications, various complex computing functions and system upgrades can be realized by configuring algorithms.
  • the 2 ⁇ 2 coupler optical device
  • the regulation method is more flexible, and the scalability is strong.
  • light travels in one direction, which can be controlled at each stage using the present optics.
  • This architecture can be programmed for simple incremental designs and can be repurposed for certain complex situations and problems. configuration.
  • the first output optical signal and the second output optical signal in this embodiment are a linear combination of the input end optical signals.
  • the fields in which the optical device of this embodiment can be applied include, but are not limited to: quantum information processing, artificial neural network, nano-optical communication, 5G miniaturized wireless system, and aerospace miniaturized radio frequency system.
  • the embodiments of the programmable photonic integrated circuit part correspond to the embodiments of the interferometer part, please refer to the description of the embodiment of the interferometer part for the embodiments of the programmable photonic integrated circuit part, and details will not be repeated here.
  • each embodiment in the description is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related information, please refer to the description of the method part.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other Any other known storage medium.

Abstract

本申请提供一种光学器件、电子器件和可编程光子集成电路,光学器件包括:分束比可调的第一耦合器;与第一耦合器连接的传感臂、可编程调制臂;其中,传感臂用于将第一耦合器输出的第一束光波通过缝隙波导生成第一信号;可编程调制臂用于利用光栅的衍射效应根据第一耦合器输出的第二束光波得到第二信号,其中,光栅是在可编程调制臂的可编程压电换能器的预先编程的电压参数下生成的纳米光栅;输入端口与传感臂、可编程调制臂连接,且输出端口与光电探测器连接的第二耦合器。本申请不仅可以根据光信号进行光学逻辑门运算,还可以进行生物传感器检测,可以适应多种场景,促进了器件的可重复使用和可持续使用。

Description

一种光学器件、电子器件和可编程光子集成电路
本申请要求在2021年6月17日提交中国专利局、申请号为202110671577.5、发明名称为“一种光学器件、电子器件和可编程光子集成电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,特别涉及一种光学器件、电子器件和可编程光子集成电路。
背景技术
目前,绝大多数PICs(Photonic integrated circuits,光子集成电路)都是针对某一特定应用而设计并制造的ASPICs(application-specific photonic integrated circuits,专用光子集成电路),比如细胞检测模块或全光逻辑门。一旦加工制作完成,其光路结构和工作效能固定不变,无法适用于多种应用领域及应用场景。
因此,如何提供一种解决上述技术问题的方案是本领域技术人员目前需要解决的问题。
发明内容
本申请的目的是提供一种光学器件、电子器件和可编程光子集成电路,不仅可以根据光信号进行光学逻辑门运算,还可以进行生物传感器检测,可以适应多种场景,促进了器件的可重复使用和可持续使用。其具体方案如下:
本申请提供了一种光学器件,包括:
分束比可调的第一耦合器;
与所述第一耦合器连接的传感臂、可编程调制臂;其中,所述传感臂用于将所述第一耦合器输出的第一束光波通过缝隙波导生成第一信号;所述可编程调制臂用于利用光栅的衍射效应根据所述第一耦合器输出的第二束光波 得到第二信号,其中,所述光栅是在所述可编程调制臂的可编程压电换能器的预先编程的电压参数下生成的纳米光栅;
输入端口与所述传感臂、所述可编程调制臂连接,且输出端口与光电探测器连接的第二耦合器。
优选地,所述可编程调制臂包括第二条形波导、包覆预设长度的所述第二条形波导的石英晶体、设置在所述石英晶体两侧的吸声体和所述可编程压电换能器;
其中,在所述可编程压电换能器的预先编程的电压参数下,所述石英晶体中的所述第二条形波导内形成对应的光栅,所述第二束光波在所述光栅的衍射效应下,生成第二信号。
优选地,所述传感臂包括所述缝隙波导和第一条形波导,其中,所述缝隙波导设置在所述第一条形波导的设定位置处。
优选地,所述传感臂的所述缝隙波导、所述第一条形波导,以及所述可编程调制臂的所述第二条形波导均为高折射率硅波导。
优选地,所述缝隙波导包括:二氧化硅衬底、设置在所述二氧化硅衬底上的第一硅结构和第二硅结构,其中,所述第一硅结构和所述第二硅结构之间的距离为纳米级距离。
优选地,所述第一条形波导和所述第二条形波导均包括:二氧化硅衬底、设置在所述二氧化硅衬底上的硅结构。
优选地,所述可编程压电换能器为压电陶瓷换能器。
本申请提供了一种电子器件,包括如上所述的光学器件,其中,所述电子器件为光学逻辑门和/或生物传感器。
本申请提供了一种可编程光子集成电路,包括:
激光器;
与所述激光器连接的如上所述的光学器件;
与所述光学器件连接的光电探测器;
与所述光学器件连接的,用于控制所述光学器件的可编程压电换能器的电压参数的计算机软件控制器。
优选地,所述计算机软件控制器还用于控制所述光学器件的第一耦合器的分束比。
优选地,所述激光器为可调谐激光器;
对应的,所述计算机软件控制器,用于控制所述可调谐激光器的光源参数,所述光源参数与所述光学器件的第一耦合器的输入光信号相对应。
优选地,包括多个所述光学器件,且多个所述光学器件级联。
本申请提供一种光学器件,包括:分束比可调的第一耦合器;与第一耦合器连接的传感臂、可编程调制臂;其中,传感臂用于将第一耦合器输出的第一束光波通过缝隙波导生成第一信号;可编程调制臂用于利用光栅的衍射效应根据第一耦合器输出的第二束光波得到第二信号,其中,光栅是在可编程调制臂的可编程压电换能器的预先编程的电压参数下生成的纳米光栅;输入端口与传感臂、可编程调制臂连接,且输出端口与光电探测器连接的第二耦合器。
可见,本申请可以调整第一耦合器的分束比和可编程压电换能器的电压参数,根据电压参数得到以电信号形式变化的超声场,以形成纳米的光栅,该光栅的折射率变化导致光波的相位发生变化,当第二束光波通过可编程调制臂时,由于光栅的衍射效应的作用,使光载波受到调制成为携带信息的强度或者相位调制波即第二信号,实现了对光信号的调控;传感臂的缝隙波导为纳米缝隙,引起第一束光波在纳米尺度的光学局限和光学放大,生成第一信号,因此,本申请的光学器件可以感应环境的微小变化,由微小变化会导致光学相移,通过光学相移可以得到环境的变化;在第一信号和第二信号通过第二耦合器耦合后,在输出端形成相长或者相消干涉的光信号,最终通过光电探测器检测,可见,本申请不仅可以根据光信号进行光学逻辑门运算,还可以进行生物传感器检测,可以适应多种场景,促进了器件的可重复使用和可持续使用。
本申请同时还提供了一种电子器件、可编程光子集成电路,均具有上述有益效果,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面 描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种光学器件的结构示意图;
图2a为本申请实施例提供的一种均匀光纤光栅的示意图;
图2b为本申请实施例提供的一种chirped光纤光栅的示意图;
图2c为本申请实施例提供的一种相移光纤光栅的示意图;
图2d为本申请实施例提供的一种取样光纤光栅的示意图;
图3为本申请实施例提供的一种条形波导的结构的横截示意图;
图4为本申请实施例提供的一种缝隙波导的结构的横截示意图;
图5为本申请实施例提供的一种可编程光子集成电路的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前,绝大多数PICs(Photonic integrated circuits,光子集成电路)都是针对某一特定应用而设计并制造的ASPICs(application-specific photonic integrated circuits,专用光子集成电路),比如细胞检测模块或全光逻辑门。一旦加工制作完成,其光路结构和工作效能固定不变,无法适用于多种应用领域及应用场景。
为解决上述技术问题,本实施例提供了一种光学器件,包括:分束比可调的第一耦合器;与第一耦合器连接的传感臂、可编程调制臂;其中,传感臂用于将第一耦合器输出的第一束光波通过缝隙波导生成第一信号;可编程调制臂用于利用光栅的衍射效应根据第一耦合器输出的第二束光波得到第二信号,其中,光栅是在可编程调制臂的可编程压电换能器的预先编程的电压参数下生成的纳米光栅;输入端口与传感臂、可编程调制臂连接,且输出端口与光电探测器连接的第二耦合器。
可见,本申请可以调整第一耦合器的分束比和可编程压电换能器的电压参数,根据电压参数得到以电信号形式变化的超声场,以形成纳米的光栅,该光栅的折射率变化导致光波的相位发生变化,当第二束光波通过可编程调制臂时,由于光栅的衍射效应的作用,使光载波受到调制成为携带信息的强度或者相位调制波即第二信号,实现了对光信号的调控;传感臂的缝隙波导为纳米缝隙,引起第一束光波在纳米尺度的光学局限和光学放大,生成第一信号,因此,本申请的光学器件可以感应环境的微小变化,由微小变化会导致光学相移,通过光学相移可以得到环境的变化;在第一信号和第二信号通过第二耦合器耦合后,在输出端形成相长或者相消干涉的光信号,最终通过光电探测器检测,可见,本申请不仅可以根据光信号进行光学逻辑门运算,还可以进行生物传感器检测,可以适应多种场景,促进了器件的可重复使用和可持续使用。
请参考图1,图1为本申请实施例提供的一种光学器件的结构示意图,包括:
分束比可调的第一耦合器110;与第一耦合器110连接的传感臂、可编程调制臂;其中,传感臂用于将第一耦合器110输出的第一束光波通过缝隙波导121生成第一信号;可编程调制臂用于利用光栅的衍射效应根据第一耦合器110输出的第二束光波得到第二信号,其中,光栅是在可编程调制臂的可编程压电换能器134的预先编程的电压参数下生成的纳米光栅;输入端口与传感臂、可编程调制臂连接,且输出端口与光电探测器连接的第二耦合器140。
针对第一耦合器110,进行进一步阐述,第一耦合器110为分束比可调的耦合器,可以是50/50耦合器,当然还可以是其他的耦合器,本实施例不再进行限定,用户可根据实际需求进行选择,只要是能够实现本实施例的目的即可。进一步的,该第一耦合器110的分束比用户可以根据实际需求通过算机软件控制器来进行修改。通过分束比的修改可以确定第一束光波和第二束光波的比值,可以是0:1,还可以是1:0,还可以是n1:n2,n1、n2根据实际需求设置。
针对传感臂,进行进一步阐述。传感臂包括缝隙波导121,当然还可以包括第一条形波导122,缝隙波导121设置在第一条形波导122的设定位置处,该设定位置可根据实际需求设定。其中,缝隙波导121的纳米缝隙可以引起 衰逝波在纳米尺度的光场局限和放大,可以感应附近环境的微小变化,从而导致光学相移,检测多个甚至单个生物小分子。当光波通过MZI(Mach-Zehnder interferometers,马赫-曾德尔干涉仪)臂(传感臂和可编程调制臂)之后,光波的光学相移的微小变化,生成的第一信号和第二信号都可以在第二耦合器140(固定分束比)耦合之后,在第二耦合器140的输出端形成相长或相消干涉得到第一输出信号和第二输出信号,并通过光电探测器检测出来。本实施例中缝隙波导121可以为高折射率硅波导。由于硅的折射率很高,在缝隙波导121的纳米缝隙中,易形成光场模式的空间局限和强度增强,有助于产生光学捕获现象,可应用于单分子检测和其他近场光学场景。优选的,本实施例中的输入光信号的光波范围可以为红外波段,可以主要集中在生物波长1064nm和通信波长1550nm附近。
针对可编程调制臂进行进一步阐述。可编程调制臂用于利用光栅的衍射效应根据第一耦合器110输出的第二束光波得到第二信号,其中,光栅是在可编程调制臂的可编程压电换能器134的预先编程的电压参数下生成的。本实施例不对可编程调制臂的结构进行限定,用户可根据实际需求进行设置,只要是能够实现本实施例的目的即可。优选地,光栅为布拉格光栅,布拉格光栅可以是均匀光纤光栅、均匀长周期光纤光栅、切趾光纤光栅、相移光纤光栅、取样光纤光栅、啁啾光纤光栅中的任意一种,请参考图2a-2d,图2a为本申请实施例提供的一种均匀光纤光栅的示意图,图2b为本申请实施例提供的一种啁啾光纤光栅的示意图,图2c为本申请实施例提供的一种相移光纤光栅的示意图,图2d为本申请实施例提供的一种取样光纤光栅的示意图。
在一种可实现的实施方式中,可编程调制臂包括第二条形波导131、包覆预设长度的第二条形波导131的石英晶体132、设置在石英晶体132两侧的吸声体133和可编程压电换能器134;其中,在可编程压电换能器134的预先编程的电压参数下,石英晶体132中的第二波导内形成对应的布拉格光栅,第二束光波在光栅的衍射效应下,生成第二信号。
其中,可编程调制臂包括声光调制模块和条形波导,声光调制模块通过石英晶体132包层作用于第二条形波导131上,该声光调制模块具体包括第二条形波导131外部包覆的石英晶体132、光学透明的吸声体133、可编程压电换能器134。具体的,计算机软件控制器控制外部电压信号的电压参数(包 括电压大小、周期),作用于可编程压电换能器134,通过电声转化为以电信号形式变化的超声场,形成光栅,光栅折射率的变化导致穿过石英晶体132的第二束光波的相位发生变化,生成第二信号。当第二束光波通过可编程调制臂时,由于光栅的衍射效应作用,使第二束光波受到调制而成为携带信息的强度或相位调制波即第二信号。
针对第二耦合器140进行进一步阐述。通过传感臂和可编程调制臂的两个波即第一信号和第二信号通过输入端口输入第二耦合中(例如50/50耦合器),然后传递到两个输出端口,输出端口的光波(第一输出光信号和第二输出光信号)是输入端口的光波的线性组合。在整个光路中,功率和相移都是根据目标功能,由计算机软件控制器控制。在输出端口,输出光信号可以只从某一个端口输出,或者按一定的比率从两个端口同时输出,输出光信号强度的大小可以连续控制。由于光路可逆,本实施例如果作为光学逻辑门可以正向或反向工作。由于光子是玻色子,本光学器件可以同时传输和处理两个不同波长的光波信号,并互不干扰。由此可见,本光学器件可处理模拟运算。
可以理解的是,本实施例中的第一耦合器110和可编程压电换能器134均可以通过计算机软件控制器来调控对应的参数。进一步的,输入光信号也可以是可调的。因此,用户根据需要对PICs设备进行编程,可以控制三个部分,第一部分可以调整激光光源,可以根据需要选择输入的波长,两个激光器的输出波长可以相同或不同;第二部分和第三部分主要是光学器件,具体为光学器件的第一耦合器110、可编程压电换能器134,调整第一耦合器110,可以根据实际情况调整分束比;通过编程控制可编程压电换能器134,通过电压控制输入声波,在石英晶体132的条形波导上形成纳米的布拉格光栅,布拉格光栅的结构参数受计算机软件控制器可调可控,且折射率随周期变化,在光波传输的路径上引起相位调制。
其中,本实施例中的可编程光子集成电路可以是在绝缘衬底硅片上制造MZI结构,光波在波导中传播,输入到2×2耦合器也就是本实施例中的光学器件中,通过第一耦合器110(可以是50/50耦合器)进入MZI光路,通过两束光波的干涉效应,最后通过第二耦合器140即50/50分束器输出信号。对于其工作机理进行进一步阐述,光学器件决定了可编程的功能光路,以及如何配置,其中,可编程调制臂充当光学移相器,通过可编程调制臂来控制波导 折射率的变化进而可以更精确地控制穿过MZI的光信号,从而带来更好的PICs性能。具体的,在图1中,光学器件作为2×2光学逻辑门将来自两个输入波导的光(波长可以相同或不同)输入到第一耦合器110中,输入功率根据计算机软件控制器控制,被分配到第一耦合器110的两端输出波导中,这两个波导形成MZI的两个臂。由于两个臂的折射率分布不同,光程差也不一样,在第二耦合器140之前就会形成相位差。
进一步的,为了减小器件大小和驱动电压,本实施例使用基于波导的可编程调制臂。可以理解的是,改进的马赫曾德尔结构有两个输入光信号源,因此在MZI(马赫曾德尔结构)中可以同时传输两个不同的波长信号,增加了信息容量,并且不同波长信号之间互不干扰,不存在信息串扰现象。
基于上述技术方案,本实施例可以调整第一耦合器110的分束比和可编程压电换能器134的电压参数,根据电压参数得到以电信号形式变化的超声场,以形成纳米的光栅,该光栅的折射率变化导致光波的相位发生变化,当第二束光波通过可编程调制臂时,由于光栅的衍射效应的作用,使光载波受到调制成为携带信息的强度或者相位调制波即第二信号,实现了对光信号的调控;传感臂的缝隙波导121为纳米缝隙,引起第一束光波在纳米尺度的光学局限和光学放大,生成第一信号,因此,本申请的光学器件可以感应环境的微小变化,由微小变化会导致光学相移,通过光学相移可以得到环境的变化;在第一信号和第二信号通过第二耦合器140耦合后,在输出端形成相长或者相消干涉的光信号,最终通过光电探测器检测,可见,本申请不仅可以根据光信号进行光学逻辑门运算,还可以进行生物传感器检测,可以适应多种场景,促进了器件的可重复使用和可持续使用。
进一步地,为了提高信号的灵敏度,本实施例中传感臂的缝隙波导121、第一条形波导122和可编程调制臂的第二条形波导131均为高折射率硅波导。
进一步地,缝隙波导121包括:二氧化硅衬底、设置在二氧化硅衬底上的第一硅结构和第二硅结构,其中,第一硅结构和第二硅结构之间的距离为纳米级距离。
进一步地,第一条形波导122和第二条形波导131均包括:二氧化硅衬底、设置在二氧化硅衬底上的硅结构。为了提升与现有电子集成电路工艺的兼容性问题,本实施例采用具有高折射率的硅材料,和具有声光调制效应的 石英,加工制作在二氧化硅衬底上,所用材料便宜,加工成本低,便于批量生产。请参考图3,图3为本申请实施例提供的一种条形波导的结构的横截示意图,请参考图4,图4为本申请实施例提供的一种缝隙波导的结构的横截示意图。其中,图3中的结构适用于第一条形波导122和/或第二条形波导131。在本申请中,传感臂包含缝隙波导121和条形波导结构,缝隙波导121占据整个传感臂的一小部分。
进一步地,可编程压电换能器134为压电陶瓷换能器。其中,压电陶瓷换能器制作方便,可操控强,灵敏度高,机电耦合性好。
进一步地,第一耦合器110、第二耦合器140均为50/50耦合器。
综上可知,本实施例提供通用型多功能马赫-曾德尔片上干涉仪,具有传感运算功能一体化,通过光学波导结构,实现光学传输,光学放大和光学局限;通过光学干涉现象,实现逻辑运算和生物传感。用户可以根据目标功能需求使用计算机软件进行编程,通过电压控制声波的方式,对片上光波导的折射率进行重新配置,形成布拉格光栅结构,从而实现对光信号的再次调控。为了提升与现有电子集成电路工艺的兼容性问题,采用具有高折射率的硅材料,和具有声光调制效应的石英,加工制作在二氧化硅基片上,所用材料便宜,加工成本低,便于批量生产。
下面对本申请实施例提供的一种电子器件进行介绍,下文描述的电子器件与上文描述的光学器件可相互对应参照。
本申请提供了一种电子器件,包括如上的光学器件,其中,电子器件为光学逻辑门和/或生物传感器。
在作为生物传感器时,由于周围环境的变化例如:热效应、生物分子等,会对传感臂、可编程调制臂的光信号产生影响,进而传感臂和可编程调制臂输出的光信号第一信号和第二信号会有变化,进而通过第二耦合器耦合后,光电探测器可以根据输出的第一输出光信号和第二输出光信号探测出来。可见,本实施例中作为生物传感器时,当生物分子较小时,两束光信号均是有效信号,需要通过两个光学臂,此时能够得到准确的信号;当生物分子较大时,两束光信号均至少存在一个有效信号,主要是由于单个波导也可以作为生物传感器,通过两个光学臂后基于干涉现象得到的信号更加准确。
本实施例中作为光学逻辑门通过逻辑运算,输出的第一输出光信号和第二输出光信号的1、0高低光强,实现光学逻辑门的功能。光学逻辑门可以在运行逻辑运算时进行操作,也可以同时进行生物传感,通过电信号控制光波导连接的可调光束的第一耦合器和可编程压电换能器。在计算机软件控制器的控制下,光信号得以在空间分布并重新路由。此时芯片可以通过干涉沿不同路径的光束,实现各种线性功能。
下面对本申请实施例提供的一种可编程光子集成电路进行介绍,下文描述的可编程光子集成电路与上文描述的光学器件可相互对应参照,参考图5,图5为本申请实施例提供的一种可编程光子集成电路的结构示意图,包括:
激光器200;
与激光器200连接的如上的光学器件;
与光学器件连接的光电探测器300;
与光学器件连接的,用于控制光学器件的可编程压电换能器的电压参数的计算机软件控制器400。
优选地,计算机软件控制器还用于控制光学器件的第一耦合器的分束比。
优选地,激光器200为可调谐激光器200;对应的,计算机软件控制器400,用于控制可调谐激光器200的光源参数,光源参数与光学器件的第一耦合器的输入光信号相对应。
用户根据需要对PICs设备即可编程光子集成电路进行编程,可以控制三个部分。第一部分可以调整激光光源激光器200,可以根据需要选择输入的波长,两个激光器200的输出波长可以相同或不同。第二部分和第三部分主要是光学器件,具体为光学器件的第一耦合器、可编程压电换能器,调整第一耦合器,可以根据实际情况调整分束比;通过编程控制可编程压电换能器,通过电压控制输入声波,在石英晶体的条形波导上形成纳米的布拉格光栅,布拉格光栅的结构参数受计算机软件控制器400可调可控,且折射率随周期变化,在光波传输的路径上引起相位调制。
本实施例提出了一种片上可编程通用型微纳光学器件-可编程光子集成电路,便于光学信号处理,优势在于通信、传感和宽带信号处理的功能一体化。相比于传统的定制型光子集成电路,本器件通过计算机编程控制,促进了器 件的可重复使用和可持续使用。用户可以对器件进行编程,并同时纠正制造过程中的小错误。
可以理解的是,本实施例中的关键模块包括可调谐激光器200、光学器件的缝隙波导、光学器件的可调谐的第一耦合器和光学器件的可编程压电换能器,所有的模块都应该具有较低的插入损耗和低功耗,并集成在同一块芯片上。
本实施例是改进型片上马赫-曾德尔光学干涉仪,通过引入计算机技术、缝隙波导结构、压电控制模块,在光信号通过光学逻辑门进行逻辑运算的同时进行调制,也可以同时进行生物传感,形成通用型多功能复合型光计算器件。
优选地,包括多个光学器件,且多个光学器件级联。
其中,本光学器件尺寸小,适用面广,应用前景广阔。通过计算机软件控制器控制,在实际应用中可以通过配置算法,实现多种复杂的运算功能和系统升级。不仅如此,2×2耦合器(光学器件)便于级联,调控的方式也更加灵活,可扩展性强。一般来说,光在一个方向上进行传输,在每个阶段都可以使用本光学器件对其进行控制,这种架构可以通过编程进行简单的渐进设计,并可以针对某些复杂情况和问题进行重新配置。
本实施例的第一输出光信号和第二输出光信号是输入端光信号的线性组合。本实施例的光学器件可以应用的领域包括但不局限于:量子信息处理,人工神经网络,纳米光通信,5G小型化无线系统,航空航天小型化射频系统等。
由于可编程光子集成电路部分的实施例与干涉仪部分的实施例相互对应,因此可编程光子集成电路部分的实施例请参见干涉仪部分的实施例的描述,这里暂不赘述。
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现, 为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上对本申请所提供的一种光学器件、电子器件和可编程光子集成电路进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (12)

  1. 一种光学器件,其特征在于,包括:
    分束比可调的第一耦合器;
    与所述第一耦合器连接的传感臂、可编程调制臂;其中,所述传感臂用于将所述第一耦合器输出的第一束光波通过缝隙波导生成第一信号;所述可编程调制臂用于利用光栅的衍射效应根据所述第一耦合器输出的第二束光波得到第二信号,其中,所述光栅是在所述可编程调制臂的可编程压电换能器的预先编程的电压参数下生成的纳米光栅;
    输入端口与所述传感臂、所述可编程调制臂连接,且输出端口与光电探测器连接的第二耦合器。
  2. 根据权利要求1所述的光学器件,其特征在于,所述可编程调制臂包括第二条形波导、包覆预设长度的所述第二条形波导的石英晶体、设置在所述石英晶体两侧的吸声体和所述可编程压电换能器;
    其中,在所述可编程压电换能器的预先编程的电压参数下,所述石英晶体中的所述第二条形波导内形成对应的光栅,所述第二束光波在所述光栅的衍射效应下,生成第二信号。
  3. 根据权利要求2所述的光学器件,其特征在于,所述传感臂包括所述缝隙波导和第一条形波导,其中,所述缝隙波导设置在所述第一条形波导的设定位置处。
  4. 根据权利要求3所述的光学器件,其特征在于,所述传感臂的所述缝隙波导、所述第一条形波导,以及所述可编程调制臂的所述第二条形波导均为高折射率硅波导。
  5. 根据权利要求4所述的光学器件,其特征在于,所述缝隙波导包括:二氧化硅衬底、设置在所述二氧化硅衬底上的第一硅结构和第二硅结构,其中,所述第一硅结构和所述第二硅结构之间的距离为纳米级距离。
  6. 根据权利要求4所述的光学器件,其特征在于,所述第一条形波导和所述第二条形波导均包括:二氧化硅衬底、设置在所述二氧化硅衬底上的硅结构。
  7. 根据权利要求1所述的光学器件,其特征在于,所述可编程压电换能器为压电陶瓷换能器。
  8. 一种电子器件,其特征在于,包括如权利要求1至7任一项所述的光学器件,其中,所述电子器件为光学逻辑门和/或生物传感器。
  9. 一种可编程光子集成电路,其特征在于,包括:
    激光器;
    与所述激光器连接的如权利要求1至7任一项所述的光学器件;
    与所述光学器件连接的光电探测器;
    与所述光学器件连接的,用于控制所述光学器件的可编程压电换能器的电压参数的计算机软件控制器。
  10. 根据权利要求9所述的可编程光子集成电路,其特征在于,所述计算机软件控制器还用于控制所述光学器件的第一耦合器的分束比。
  11. 根据权利要求9所述的可编程光子集成电路,其特征在于,所述激光器为可调谐激光器;
    对应的,所述计算机软件控制器,用于控制所述可调谐激光器的光源参数,所述光源参数与所述光学器件的第一耦合器的输入光信号相对应。
  12. 根据权利要求9所述的可编程光子集成电路,其特征在于,包括多个所述光学器件,且多个所述光学器件级联。
PCT/CN2021/121896 2021-06-17 2021-09-29 一种光学器件、电子器件和可编程光子集成电路 WO2022262147A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/269,926 US20240061282A1 (en) 2021-06-17 2021-09-29 An optical device, an electronic device, and a programmable photonic integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110671577.5A CN113253403B (zh) 2021-06-17 2021-06-17 一种光学器件、电子器件和可编程光子集成电路
CN202110671577.5 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022262147A1 true WO2022262147A1 (zh) 2022-12-22

Family

ID=77188430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121896 WO2022262147A1 (zh) 2021-06-17 2021-09-29 一种光学器件、电子器件和可编程光子集成电路

Country Status (3)

Country Link
US (1) US20240061282A1 (zh)
CN (1) CN113253403B (zh)
WO (1) WO2022262147A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116107037A (zh) * 2023-04-13 2023-05-12 中国科学院长春光学精密机械与物理研究所 密集波导阵列的片上光学器件光计算网络结构
CN117470806A (zh) * 2023-12-21 2024-01-30 天津工业大学 一种基于马赫曾德尔结构的聚合物葡萄糖传感器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253403B (zh) * 2021-06-17 2021-10-29 苏州浪潮智能科技有限公司 一种光学器件、电子器件和可编程光子集成电路
CN113641210B (zh) * 2021-10-12 2022-03-18 清华大学 用于消息散列算法中消息压缩的光电集成电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278523B1 (en) * 1998-02-13 2001-08-21 Centre National De La Recherche Scientifique-Cnrs Optical sensor on a silicon substrate and application for the in situ measurement of a fluorescent marker in the small bronchia
US20020159702A1 (en) * 2001-03-16 2002-10-31 Lightwave Microsystems Corporation Optical mach-zehnder interferometers with low polarization dependence
CN1670556A (zh) * 2004-03-15 2005-09-21 中国科学院半导体研究所 可提高消光比的电光型波导光开关结构
CN104020137A (zh) * 2014-06-09 2014-09-03 大连理工大学 一种相位增敏型集成波导光学生化传感器
CN108037597A (zh) * 2017-12-28 2018-05-15 中国科学院长春光学精密机械与物理研究所 一种可调谐啁啾布拉格体光栅及啁啾脉冲放大系统
CN111609873A (zh) * 2020-04-24 2020-09-01 中国地质大学(武汉) 一种波导干涉仪传感器
CN113253403A (zh) * 2021-06-17 2021-08-13 苏州浪潮智能科技有限公司 一种光学器件、电子器件和可编程光子集成电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211121A (ja) * 1982-06-01 1983-12-08 Nec Corp 音響光学的光変調素子
AUPP930799A0 (en) * 1999-03-18 1999-04-15 University Of Sydney, The Optical planar waveguide device and method of its fabrication
US7212693B2 (en) * 2003-12-22 2007-05-01 Lucent Technologies Inc. Optical substance analyzer
SG10201502164TA (en) * 2011-09-21 2015-05-28 Agency Science Tech & Res Optical Circuit For Sensing A Biological Entity In A Fluid And Method Of Configuring The Same
CN106019645A (zh) * 2016-08-10 2016-10-12 中国电子科技集团公司第二十六研究所 一种尾纤耦合型声光可调滤光装置
US10228511B2 (en) * 2016-09-28 2019-03-12 LGS Innovations LLC Integrated low-voltage CMOS-compatible electro-optic modulator
GR1009480B (el) * 2017-02-17 2019-03-19 Amo Gmbh Μεθοδος κατασκευης ολοκληρωμενου πλασμο-φωτονικου βιοαισθητηρα και συσκευη για το σκοπο αυτο
CN110943836B (zh) * 2019-12-26 2022-03-18 中国电子科技集团公司第三十研究所 一种实现平衡探测系统自动平衡的装置及方法
CN111394236B (zh) * 2020-02-25 2022-04-01 华中科技大学 一种用于葡萄糖检测的传感器及其制备与检测方法、装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278523B1 (en) * 1998-02-13 2001-08-21 Centre National De La Recherche Scientifique-Cnrs Optical sensor on a silicon substrate and application for the in situ measurement of a fluorescent marker in the small bronchia
US20020159702A1 (en) * 2001-03-16 2002-10-31 Lightwave Microsystems Corporation Optical mach-zehnder interferometers with low polarization dependence
CN1670556A (zh) * 2004-03-15 2005-09-21 中国科学院半导体研究所 可提高消光比的电光型波导光开关结构
CN104020137A (zh) * 2014-06-09 2014-09-03 大连理工大学 一种相位增敏型集成波导光学生化传感器
CN108037597A (zh) * 2017-12-28 2018-05-15 中国科学院长春光学精密机械与物理研究所 一种可调谐啁啾布拉格体光栅及啁啾脉冲放大系统
CN111609873A (zh) * 2020-04-24 2020-09-01 中国地质大学(武汉) 一种波导干涉仪传感器
CN113253403A (zh) * 2021-06-17 2021-08-13 苏州浪潮智能科技有限公司 一种光学器件、电子器件和可编程光子集成电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116107037A (zh) * 2023-04-13 2023-05-12 中国科学院长春光学精密机械与物理研究所 密集波导阵列的片上光学器件光计算网络结构
CN117470806A (zh) * 2023-12-21 2024-01-30 天津工业大学 一种基于马赫曾德尔结构的聚合物葡萄糖传感器
CN117470806B (zh) * 2023-12-21 2024-03-26 天津工业大学 一种基于马赫曾德尔结构的聚合物葡萄糖传感器

Also Published As

Publication number Publication date
US20240061282A1 (en) 2024-02-22
CN113253403A (zh) 2021-08-13
CN113253403B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2022262147A1 (zh) 一种光学器件、电子器件和可编程光子集成电路
Butt et al. Recent advances in photonic crystal optical devices: A review
Boes et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits
Sethi et al. Ultrafast all-optical flip-flops, simultaneous comparator-decoder and reconfigurable logic unit with silicon microring resonator switches
ITPD20110140A1 (it) Porta logica in ottica integrata per qubit quantistici codificati in polarizzazione e relativo metodo di realizzazione ed utilizzo
CN102721431A (zh) 锥型波导辅助的级联长周期波导光栅传感器及其制备方法
CN102495479A (zh) 一种基于石墨烯薄膜的电控微纳光纤光开关
Lian et al. OAM beams generation technology in optical fiber: A review
Duan et al. A non-volatile quasi-continuous all-optical fiber programmable platform based on GST-coated microspheres
CN112862103A (zh) 集成光量子计算芯片及其制备方法
CN113552670A (zh) 一种受拓扑保护的马赫-曾德尔干涉仪
Awasthi et al. Exploring a reversible NOR from a 4× 4 modified Fredkin gate and its optical mapping using a LiNbO3-based MZI
CN101833138A (zh) 一种偏振无关光栅耦合器的制作方法
CN113839715B (zh) 一种光学神经网络及芯片
CN216352386U (zh) 集成光量子计算芯片
CN115291321A (zh) 一种基于两级mzi结构的模式不敏感的聚合物可变光衰减器
CN115576100A (zh) 一种基于逆向设计的片上模式转换器的设计方法
CN201508442U (zh) 集成光学多功能调制器
JP5135244B2 (ja) 光導波路スイッチ
Chen et al. Broadband Polarization Beam Splitter Based on Silicon Dual-Core Photonic Crystal Fiber with Gold Layers Operating in Mid-Infrared Band
CN215181644U (zh) 集成光源和控制非门光量子计算芯片及采用其的教学系统
CN113253537B (zh) 一种基于soi材料制备的马赫-曾德尔干涉仪型可调分数阶光场微分器
CN116009812B (zh) 一种基于马赫-曾德尔干涉仪和非易失性相变材料的光子矩阵乘法器
EP3907539B1 (en) Integrated environmentally insenstive modulator for interferometric gyroscopes
CN115291323B (zh) 一种基于mzi结构的多模光衰减器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269926

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE