WO2022260009A1 - 潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法 - Google Patents

潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法 Download PDF

Info

Publication number
WO2022260009A1
WO2022260009A1 PCT/JP2022/022816 JP2022022816W WO2022260009A1 WO 2022260009 A1 WO2022260009 A1 WO 2022260009A1 JP 2022022816 W JP2022022816 W JP 2022022816W WO 2022260009 A1 WO2022260009 A1 WO 2022260009A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricant
acid amide
combination
mass
lubricants
Prior art date
Application number
PCT/JP2022/022816
Other languages
English (en)
French (fr)
Inventor
航介 浦島
征宏 有福
洋 大守
大樹 福永
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2023527853A priority Critical patent/JPWO2022260009A1/ja
Publication of WO2022260009A1 publication Critical patent/WO2022260009A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size

Definitions

  • the present disclosure relates to a lubricant, a combination of lubricants, a powder mixture, a combination of raw materials for the powder mixture, and a method for producing a sintered body.
  • Lubricants are usually used for lubrication, for example, to reduce friction between solids in contact with each other.
  • Lubricants include liquid lubricating oil, semi-solid grease, solid lubricants, and the like.
  • powdery solid lubricants are used.
  • a powder mixture is usually used in which a powdery lubricant is mixed with the raw material powder in order to reduce the friction between the mold wall surface and the green compact.
  • the powder mixture is obtained by mixing iron-based powder, which is the main raw material powder, with auxiliary raw material powder such as copper powder, graphite powder, machinability improving powder, and lubricant powder.
  • Lubricant powders include, for example, metallic soap-based lubricants such as stearic acid and metal salts thereof, organic lubricants (wax-based lubricants), fatty acid amide-based lubricants, and metallic soap-based lubricants and fatty acid amide-based lubricants. Mixtures with lubricants are mentioned (see, for example, Patent Documents 1 and 2).
  • the lubricant should be selected after taking into consideration the miscibility with the metal powder, the powder characteristics when the powder is mixed, the ease with which the green compact can be extracted after compression molding, and the dissipation of the lubricant when sintering the green compact. selected.
  • zinc stearate is widely used as a lubricant because of its relatively excellent lubricating properties and cost.
  • Such lubricants are generally mixed in advance with the powder mixture before use.
  • metal soap-based lubricants typified by zinc stearate
  • metal soap-based lubricants have the problem of contaminating the surface of products, exhaust ducts, etc. when sintering green compacts. is desired to be replaced.
  • organic lubricants in addition to the lubricants described in Patent Documents 1 and 2, amide compounds having long-chain alkyl groups have been proposed (see Patent Document 3, for example).
  • the molded body should be easy to extract from the mold, that is, the molded body should be easily ejected.
  • a sintered body obtained by sintering a molded body is also likely to have a poor appearance due to irregularities formed on its surface.
  • the present disclosure is a powder containing a lubricant and a combination of lubricants, the lubricant, or the combination of the lubricants, which can improve the ejectability of the molded body and can produce a sintered body with suppressed appearance defects. It is an object of the present invention to provide a mixture, a combination of raw materials for the powder mixture, and a method for producing a sintered body using the powder mixture or the combination of the raw materials for the powder mixture.
  • Lubricant containing lubricant A having a melting point of 60° C. to 85° C., wherein the ratio of particles having a particle diameter of 63 ⁇ m or less is 88% by mass or more of the total amount of the lubricant.
  • Lubricant A includes oleic acid amide, erucic acid amide, ricinoleic acid amide, N-oleyl oleic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, N -
  • the lubricant according to ⁇ 1> containing at least one selected from the group consisting of oleyl palmitamide, N-oleyl-hydroxystearic acid amide, stearic acid, and N-oleyl palmitamide.
  • ⁇ 3> The lubricant according to ⁇ 1> or ⁇ 2>, wherein the proportion of particles having a particle size larger than 150 ⁇ m is 5% by mass or less with respect to the total amount of the lubricant.
  • Lubricant A having a melting point of 60° C. to 85° C.; a lubricant B, which is a fatty acid bisamide; A combination of lubricants in which the ratio of particles having a particle diameter of 63 ⁇ m or less is 88% by mass or more of the total amount of the combination of lubricants.
  • ⁇ 5> The combination of lubricants according to ⁇ 4>, wherein the total content of the lubricant A and the lubricant B relative to the total amount of the lubricant combination is 60% by mass or more.
  • ⁇ 6> The combination of lubricants according to ⁇ 4> or ⁇ 5>, wherein the proportion of particles having a particle size of less than 10 ⁇ m in the lubricant is 10% by mass or more relative to the total amount of the combination of lubricants.
  • Lubricant A includes oleic acid amide, erucic acid amide, ricinoleic acid amide, N-oleyl oleic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, N - any one of ⁇ 4> to ⁇ 6> including at least one selected from the group consisting of oleyl palmitamide, N-oleyl-hydroxystearic acid amide, stearic acid, and N-oleyl palmitamide A combination of lubricants as described.
  • Lubricant B is methylenebisstearic acid amide, methylenebislauric acid amide, methylenebishydroxystearic acid amide, ethylenebiscaprylic acid amide, ethylenebiscapric acid amide, ethylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebisisostearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, hexamethylenebisstearic acid amide, hexamethylenebisstearic acid amide, hexamethylenebisstearic acid amide, hexamethylenebishydroxystearic acid amide, butylenebishydroxystearic acid amide, N,N'-distearyladipamide, N,N'-distearylsebacamide, methylenebisoleamide,
  • the lubricant A contains at least one selected from the group consisting of erucamide and oleamide, The combination of lubricants according to any one of ⁇ 4> to ⁇ 6>, wherein the lubricant B contains ethylenebisstearic acid amide.
  • the mass ratio of the lubricant A to the lubricant B is 1:9 to 9:1.
  • ⁇ 13> A powder mixture containing a raw material powder and a combination of the lubricant according to any one of ⁇ 1> to ⁇ 3> or the lubricant according to any one of ⁇ 4> to ⁇ 12> .
  • ⁇ 14> A powder mixture containing a raw material powder and a combination of the lubricant according to any one of ⁇ 1> to ⁇ 3> or the lubricant according to any one of ⁇ 4> to ⁇ 12>
  • a combination of raw materials for ⁇ 15> A method for producing a sintered body by sintering the powder mixture obtained from the powder mixture according to ⁇ 13> or the combination of raw materials for the powder mixture according to ⁇ 14>.
  • a lubricant and a combination of lubricants, the lubricant, or the combination of the lubricants that can improve the ejectability of the molded body and can produce a sintered body with suppressed appearance defects It is possible to provide a powder mixture and a combination of raw materials for the powder mixture, and a method for producing a sintered body using the powder mixture or the combination of raw materials for the powder mixture.
  • the lubricant the combination of lubricants, the powder mixture, the combination of raw materials for the powder mixture, and the method for producing the sintered body of the present disclosure will be described.
  • the present disclosure is not limited to the following embodiments.
  • the constituent elements including element steps and the like) are not essential unless otherwise specified.
  • a numerical range indicated using "to” indicates a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described step by step.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component means the total content rate or content of the multiple types of substances unless otherwise specified.
  • Particles corresponding to each component in the present disclosure may include a plurality of types.
  • the particle size of each component means a value for a mixture of the multiple types of particles unless otherwise specified.
  • the lubricant of the present disclosure contains lubricant A having a melting point of 60 ° C. to 85 ° C., and the proportion of particles having a particle size of 63 ⁇ m or less is 88% by mass or more with respect to the total amount of the lubricant. .
  • the lubricant of the present disclosure By using the lubricant of the present disclosure, it is possible to improve the ejectability of the molded body and manufacture a sintered body with suppressed appearance defects. More specifically, since the lubricant of the present disclosure contains lubricant A having a relatively low melting point, it tends to make it easier to pull out the molded body from the mold, that is, to improve the pull-out performance of the molded body. Furthermore, the proportion of particles having a particle diameter of 63 ⁇ m or less is 88% by mass or more of the total amount of the lubricant. As a result, it is possible to manufacture a sintered body obtained by sintering a molded body, in which unevenness on the surface is reduced and appearance defects are suppressed.
  • the lubricant of the present disclosure is preferably used for powder metallurgy, for example.
  • the lubricants of the present disclosure may be used in applications other than powder metallurgy.
  • the proportion of particles having a particle diameter of 63 ⁇ m or less may be 90% by mass or more, or 95% by mass or more, relative to the total amount of the lubricant, from the viewpoint of suitably suppressing poor appearance of the sintered body. may be 100% by mass.
  • the "proportion of particles having a particle size of a specific particle size or less (e.g., 63 ⁇ m or less)" is defined by sieving with a JIS standard sieve having the specific particle size (e.g., 63 ⁇ m).
  • the particle size that serves as a reference for sieving or classification is not limited to 63 ⁇ m or less, and may be 50 ⁇ m or less or 43 ⁇ m or less.
  • the proportion of particles having a particle diameter of 50 ⁇ m or less may be 90% by mass or more, 95% by mass or more, or 100% by mass with respect to the total amount of the lubricant.
  • the proportion of particles having a particle diameter of 43 ⁇ m or less may be 90% by mass or more, 95% by mass or more, or 100% by mass with respect to the total amount of the lubricant.
  • JIS standard sieve conforms to JIS-Z-8801-1:2006 and corresponds to ISO3310-1:2000.
  • ISO3310-1:2000 it is preferable to use a sieve having square meshes as in JIS-Z-8801-1:2006.
  • the proportion of particles having a particle diameter larger than 150 ⁇ m is preferably 5% by mass or less with respect to the total amount of the lubricant from the viewpoint of suitably suppressing the appearance defect of the sintered body. , 3% by mass or less, and even more preferably 1% by mass or less.
  • the proportion of the aforementioned particles may be 0% by mass or 0.5% by mass or more relative to the total amount of the lubricant.
  • "percentage of particles with a particle size larger than a specific particle size e.g., larger than 150 ⁇ m)
  • the percentage of particles that do not pass through the sieve is obtained, or after classifying by the air classification method, etc., the particle size distribution measurement is performed to determine the integrated value (mass standard) that is less than a specific particle diameter (e.g., 150 ⁇ m). It can be derived by subtracting the integrated value (based on mass) from 100% by mass.
  • a specific particle diameter e.g. 150 ⁇ m
  • the proportion of particles having a particle diameter of 63 ⁇ m or less may be 88% by mass or more with respect to the total amount of Lubricant A.
  • the proportion of particles having a particle size of 63 ⁇ m or less is 88 with respect to the total amount of lubricant A and lubricants other than lubricant A. % or more is sufficient.
  • Lubricants of the present disclosure include Lubricant A having a melting point of 60°C to 85°C.
  • the lubricant may contain one kind of lubricant A, or may contain two or more kinds of lubricants A.
  • melting point is a value measured by differential scanning calorimetry (DSC).
  • Lubricant A is oleic acid amide, erucic acid amide, ricinoleic acid amide, N-oleyl oleic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, N-oleyl palmitic acid It preferably contains at least one selected from the group consisting of amide, N-oleyl-hydroxystearic acid amide, stearic acid, and N-oleyl palmitamide, oleic acid amide, erucic acid amide, ricinoleic acid amide, stearin More preferably, it contains at least one selected from the group consisting of acids and N-oleyl palmitoamide.
  • the lubricant A preferably contains at least one of erucamide and oleamide, more preferably erucamide, from the viewpoint of extractability of the molded article.
  • the content of lubricant A may be 50% by mass to 100% by mass, 70% by mass to 100% by mass, or 90% by mass to 100% by mass with respect to the total amount of the lubricant. There may be.
  • the lubricant of the present disclosure may contain lubricants other than Lubricant A.
  • lubricants other than lubricant A include fatty acid amides having a melting point of over 85° C., metallic soap-based lubricants, and the like. When lubricants other than lubricant A are used, one of them may be used alone, or two or more of them may be used in combination.
  • Fatty acid amides with a melting point exceeding 85°C include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxystearic acid amide, N-lauryllauric acid amide, N-palmitylpalmitic acid amide, N-stearyl stearic acid amide, N-stearyl-hydroxystearic acid amide and the like.
  • metal soap-based lubricants include metal salts of fatty acids having 12 to 22 carbon atoms and at least one metal selected from the group consisting of lithium, magnesium, calcium, barium, zinc and strontium.
  • the fatty acid having 12 to 22 carbon atoms may be a saturated fatty acid having 12 to 22 carbon atoms or an unsaturated fatty acid having 12 to 22 carbon atoms.
  • the number of carbon atoms in the fatty acid may be 16-20, or 16-18.
  • Fatty acids having 12 to 22 carbon atoms include saturated fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid and behenic acid, and unsaturated fatty acids such as linoleic acid, linolenic acid, oleic acid and erucic acid. mentioned.
  • metal soap-based lubricants include lithium stearate, calcium stearate, barium stearate, and zinc stearate.
  • the content of the lubricant other than the lubricant A with respect to the total amount of the lubricant may be more than 0% by mass and 50% by mass or less, may be 5% by mass to 40% by mass, 10% by mass to 20% by mass. may be At this time, the total content of lubricant A and lubricants other than lubricant A should be 100% by mass.
  • the combination of lubricants of the present disclosure includes a lubricant A having a melting point of 60° C. to 85° C. and a lubricant B that is a fatty acid bisamide, and the proportion of particles having a particle size of 63 ⁇ m or less is the combination of lubricants. It is 88% by mass or more with respect to the total amount of.
  • the combination of lubricants may be a mixture of lubricants comprising at least Lubricant A and Lubricant B, wherein a lubricant comprising Lubricant A and a lubricant comprising Lubricant B are mixed. It may be a combination of those prepared separately. For example, if a combination of a lubricant containing lubricant A and a lubricant containing lubricant B are prepared without mixing, when producing a powder mixture, the lubricant containing lubricant A and the lubricant A lubricant containing agent B may be mixed.
  • the proportion of particles having a particle diameter of 63 ⁇ m or less is 90% by mass or more with respect to the total amount of the combination of lubricants, from the viewpoint of suitably suppressing the appearance of the sintered body. It may be present, may be 95% by mass or more, or may be 100% by mass.
  • the particle size that serves as a reference for sieving or classification is not limited to 63 ⁇ m or less, and may be 50 ⁇ m or less or 43 ⁇ m or less.
  • the proportion of particles having a particle size larger than 150 ⁇ m is 5% by mass or less with respect to the total amount of the combination of lubricants, from the viewpoint of suitably suppressing the appearance defect of the sintered body. It is preferably 3% by mass or less, more preferably 1% by mass or less.
  • the proportion of the aforementioned particles may be 0% by weight or 0.5% by weight or more relative to the total amount of the lubricant combination.
  • the configuration of the lubricant A included in the combination of lubricants of the present disclosure is the same as the configuration of the lubricant A included in the lubricant of the present disclosure described above, so description thereof will be omitted.
  • Lubricant B which is a fatty acid bisamide.
  • the combination of lubricants may contain one lubricant B, or may contain two or more lubricants B.
  • the melting point of lubricant B may be 140°C or higher and lower than 150°C, or may be 140°C or higher and 148°C or lower.
  • Examples of the lubricant B include methylenebisstearic acid amide, methylenebislauric acid amide, methylenebishydroxystearic acid amide, ethylenebiscaprylic acid amide, ethylenebiscapric acid amide, ethylenebislauric acid amide, and ethylenebisstearic acid amide.
  • the lubricant B more preferably contains ethylenebisstearic acid amide from the viewpoint of fluidity of the powder mixture.
  • Lubricant A is at least selected from the group consisting of erucic acid amide and oleic acid amide from the viewpoint of the balance between the fluidity of the powder mixture and the ejection property of the compact.
  • Lubricant B preferably contains ethylenebisstearic acid amide.
  • the total content of erucamide and oleamide in lubricant A is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and 90% by mass to 100% by mass. % is more preferred.
  • the content of ethylenebisstearic acid amide in Lubricant B is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and 90% by mass to 100% by mass. is more preferred.
  • Lubricant A Lubricant B, which is the mass ratio of Lubricant A and Lubricant B, is 1: 9 to 9: 1 from the viewpoint of the balance between the fluidity of the powder mixture and the ejection property of the compact. It is preferably 2:8 to 8:2, and even more preferably 3:7 to 7:3.
  • the total content of lubricant A and lubricant B with respect to the total combined amount of lubricants is preferably 50% by mass to 100% by mass. Further, the total content of lubricant A and lubricant B may be 60% by mass to 95% by mass, or may be 80% by mass to 90% by mass.
  • the total content of lubricant A and lubricant B with respect to the total amount of the combination of lubricants is preferably 60% by mass or more, from the viewpoint of reducing the fluidity of the powder mixture and graphite segregation, and 70% to 100% by mass. %, more preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the proportion of particles smaller than 10 ⁇ m in diameter in the lubricant is preferably 10% by mass or more, more preferably 15% to 50% by mass, more preferably 20% to 40% by mass, based on the total amount of the combined lubricant. % by volume is more preferred, and 25% to 35% by weight is particularly preferred. Graphite segregation tends to be reduced when the proportion of particles having a particle size of less than 10 ⁇ m in the lubricant is 10% by mass or more.
  • the lubricant combinations of the present disclosure may include other lubricants than Lubricant A and Lubricant B.
  • Other lubricants include amide-based lubricants other than lubricant A and lubricant B, and metal soap-based lubricants described above.
  • Examples of amide-based lubricants other than Lubricant A and Lubricant B include fatty acid amides having a melting point exceeding 85°C.
  • Other lubricants may be used alone or in combination of two or more.
  • the content of other lubricants with respect to the total amount of the combination of lubricants may be more than 0% by mass and 50% by mass or less, may be 5% by mass to 40% by mass, and may be 10% by mass to 20% by mass. There may be. At this time, the total content of lubricant A, lubricant B and other lubricants should be 100% by mass.
  • the content of other lubricants relative to the total amount of the lubricant combination is preferably 40% by mass or less, and 0% to 30% by mass, from the viewpoint of reducing the fluidity of the powder mixture and graphite segregation. It is more preferably 0% by mass to 20% by mass, and particularly preferably 0% by mass to 10% by mass.
  • a powder mixture of the present disclosure includes a raw powder and a lubricant of the present disclosure described above or a combination of lubricants of the present disclosure described above. By using this powder mixture, it is possible to improve the ejectability of the molded body, and to manufacture a sintered body with suppressed appearance defects.
  • the powder mixtures of the present disclosure are preferably used, for example, for powder metallurgy.
  • raw material powders include main raw material powders containing iron as a main component, auxiliary raw material powders that improve the properties of the sintered body, and the like.
  • containing iron as a main component means that the content of iron in the raw material powder is 50% by mass or more of the entire raw material powder.
  • main raw material powders include iron-based powders such as pure iron powders and iron-based alloy powders that may contain inevitable impurities (oxygen, silicon, carbon, manganese, etc.).
  • the main raw material powder may be used singly or in combination of two or more.
  • the average particle size of the main raw material powder is preferably 30 ⁇ m to 150 ⁇ m, more preferably 50 ⁇ m to 100 ⁇ m.
  • the average particle size is the particle size (D50) when the accumulation from the small size side is 50% in the volume-based particle size distribution measured by laser diffraction.
  • the iron-based powder can be produced, for example, by atomizing molten iron or molten iron alloy into fine particles, reducing the fine particles, and then pulverizing the fine particles.
  • the auxiliary raw material powder is not particularly limited as long as it is a raw material powder that can improve the properties of the sintered body. Examples include powders that enhance machinability.
  • auxiliary raw material powders examples include metal powders and inorganic powders other than the main raw material powders.
  • the auxiliary raw material powders may be used singly or in combination of two or more.
  • Metal powders include powders of copper, nickel, chromium, molybdenum, tin, vanadium, manganese, and the like.
  • inorganic powder examples include sulfides such as manganese sulfide and manganese disulfide; nitrides such as boron nitride; oxides such as boric acid, magnesium oxide, potassium oxide and silicon oxide; graphite such as natural graphite and artificial graphite; Powders such as sulfur can be mentioned.
  • sulfides such as manganese sulfide and manganese disulfide
  • nitrides such as boron nitride
  • oxides such as boric acid, magnesium oxide, potassium oxide and silicon oxide
  • graphite such as natural graphite and artificial graphite
  • Powders such as sulfur can be mentioned.
  • the average particle size of the secondary raw material powder is preferably 2 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m.
  • the content of the main raw material powder in 100 parts by mass of the raw material powder is preferably 90 to 99 parts by mass, more preferably 95 to 98 parts by mass.
  • the content of the auxiliary raw material powder is preferably 1 to 10 parts by mass, more preferably 2 to 5 parts by mass, out of 100 parts by mass of the raw material powder.
  • the content of the lubricant and the content of the combination of lubricants are each independently preferably 0.1 parts by mass to 2.0 parts by mass, and 0.2 parts by mass. It is more preferably up to 1.5 parts by mass, and even more preferably 0.3 parts by mass to 1.0 parts by mass.
  • the powder mixtures of the present disclosure may contain other ingredients than the raw powders, the lubricants of the present disclosure, and the combinations of lubricants of the present disclosure.
  • Other components include binders. When the powder mixture contains a binder, it tends to be possible to suppress segregation, scattering, and the like of the raw material powder.
  • the binder is not particularly limited, and includes polyolefin, acrylic resin, polystyrene, styrene-butadiene rubber, ethylene glycol distearate, epoxy resin, rosin ester, and the like.
  • the content of the binder is preferably 0.01 parts by mass to 1.0 parts by mass with respect to 100 parts by mass of the raw material powder, and 0.1 parts by mass to 1 part by mass. 0.0 parts by mass is more preferable.
  • the powder mixture of the present disclosure is obtained by mixing the raw material powder, the lubricant of the present disclosure or the combination of lubricants of the present disclosure, and other components as necessary. Mixing of the raw material powder with the lubricant of the present disclosure or the combination of lubricants of the present disclosure can be performed using commonly used mixers such as vane mixers, V-shaped mixers, double cone mixers (W-cone), etc. It can be done using a machine.
  • a raw material combination for a powder mixture of the present disclosure includes a raw powder and a lubricant of the present disclosure or a combination of lubricants of the present disclosure.
  • the combination of raw materials for the powder mixture of the present disclosure may be a mixture of raw powder and lubricant or a mixture of raw powder and lubricant combination. Alternatively, it may be a combination of the raw material powder and the lubricant of the present disclosure or the combination of the lubricant of the present disclosure, which are prepared without mixing, and when producing the molded body, the raw material powder and the present
  • the method for producing a sintered body of the present disclosure is a method of producing a sintered body by sintering a powder mixture obtained from the powder mixture of the present disclosure described above or a combination of raw materials for the powder mixture of the present disclosure described above.
  • the method for producing a sintered body of the present disclosure preferably includes filling a powder mixture in a mold, compression molding the powder mixture filled in the mold to form a compact, and sintering the molded body extracted from the
  • the powder mixture filled in the mold may be compression molded.
  • the molding temperature, molding pressure, and the like are not particularly limited, and may be appropriately adjusted depending on the composition of the powder mixture, the amount added, the shape inside the mold, and the like.
  • the sintered body is produced by sintering the powder mixture, preferably by sintering the molded body extracted from the mold.
  • the conditions for sintering the powder mixture or compact are not particularly limited, and ordinary sintering methods can be employed.
  • Examples 1 to 14 and Comparative Examples 1 to 14 Atomized iron powder for powder metallurgy with an average particle size of 75 ⁇ m was prepared as the main raw material powder, and electrolytic copper powder with an average particle size of 30 ⁇ m and graphite powder with an average particle size of 10 ⁇ m were prepared as auxiliary raw material powders. Next, with respect to 97.5 parts by mass of iron powder, 1.5 parts by mass of copper powder and 1.0 parts by mass of graphite powder, Lubricant A or a lubricant mixture of Lubricant A and Lubricant B shown in Table 1 and below was added in an amount of 0.8 parts by mass.
  • the ratio of particles having a particle diameter of 63 ⁇ m or less when sieved using a JIS standard sieve is the numerical value shown in Table 1 with respect to the total amount of lubricant A and A lubricant mixture was used.
  • Table 1 shows the ratio of lubricant A and lubricant B in each example and each comparative example. After that, a mixture of the raw material powder and the lubricant was put into a V-shaped mixer and mixed for 30 minutes to obtain a powder mixture of each example and each comparative example.
  • Fluidity evaluation of the powder mixture obtained in each example and each comparative example was performed by the fluidity test method specified in JIS Z 2502 (2012). Evaluation criteria are as follows. -Evaluation criteria- A Powder mixture flowed within 30 seconds. B The powder mixture flowed within more than 30 seconds and within 35 seconds. C The powder mixture did not flow or the powder mixture flowed for more than 35 seconds. Table 1 shows the results. If the evaluation is A or B, the fluidity of the powder mixture is good.
  • Ejectability of the cylindrical molded body in each example and each comparative example was measured by measuring the ejection pressure when the cylindrical molded body used for evaluating the compaction property of the powder mixture was extracted from the mold, and was based on the following criteria. evaluated. -Evaluation criteria- A The extraction pressure was 8 MPa or less. B The extraction pressure was more than 8 MPa and 15 MPa or less. The C extraction pressure was above 15 MPa. Table 1 shows the results. If the evaluation is A or B, the ejection property of the cylindrical molded body is good.
  • Example 15 to 90 and Comparative Examples 15 to 36 Atomized iron powder for powder metallurgy with an average particle size of 75 ⁇ m was prepared as the main raw material powder, and electrolytic copper powder with an average particle size of 30 ⁇ m and graphite powder with an average particle size of 10 ⁇ m were prepared as auxiliary raw material powders. Next, with respect to 97.5 parts by mass of iron powder, 1.5 parts by mass of copper powder and 1.0 parts by mass of graphite powder, a lubricant mixture of lubricant A, lubricant A and lubricant B shown in Table 2 and below Alternatively, 0.8 parts by mass of a lubricant mixture of lubricants A to C was added.
  • each example and each comparative example when sieved using a JIS standard sieve, the ratio of particles having a particle diameter of 63 ⁇ m or less with respect to the total amount of lubricant is the numerical value shown in Tables 2 to 5.
  • Agent A and a lubricant mixture were used.
  • Tables 2 to 5 show the ratios of lubricant A, lubricant B and lubricant C in each example and each comparative example. After that, a mixture of the raw material powder and the lubricant was put into a V-shaped mixer and mixed for 30 minutes to obtain a powder mixture of each example and each comparative example.
  • the blending ratio of lubricant A is the blending ratio of lubricant A with respect to the total of lubricant A and lubricant B
  • the blending ratio of lubricant B is the total of lubricant A and lubricant B
  • the total content of (lubricant A + lubricant B) is the total content of (lubricant A + lubricant B) with respect to the total of lubricant A, lubricant B and lubricant C
  • the content of lubricant C is , the content of lubricant C with respect to the total of lubricant A, lubricant B and lubricant C.
  • Tables 2, 4 and 5 were evaluated by the method described above.
  • Graphite segregation in Tables 2 and 3 was evaluated by the following method.
  • graphite segregation could be reduced by setting the ratio of particles smaller than 10 ⁇ m in the lubricant to 10% by mass or more.
  • the ratio of particles having a particle diameter of 63 ⁇ m or less was 88% by mass or more with respect to the total amount of the lubricant, and thus the compaction property was evaluated as good.
  • the proportion of particles with a particle diameter of less than 80 ⁇ m is relatively high at 95% by mass, the proportion of particles with a particle diameter of 63 ⁇ m or less is less than 88% by mass. , it was found that the compaction evaluation was poor. From this result, it was found that it is important for evaluation of consolidation property to use the ratio of particles having a particle diameter of 63 ⁇ m or less as a standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

融点が60℃~85℃である潤滑剤Aを含み、粒子径が63μm以下である粒子の割合が潤滑剤の全量に対して88質量%以上である潤滑剤。

Description

潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法
 本開示は、潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法に関する。
 通常、潤滑剤は潤滑のために使用され、例えば、互いに接する固体同士の摩擦を軽減するために用いられる。潤滑剤としては、液体の潤滑油、半固形のグリース、固体の潤滑剤等が挙げられ、例えば、粉末冶金法では、粉末状である固体の潤滑剤(粉末状の潤滑剤)が用いられる。
 粉末冶金法のうち、特に金型成形法においては、金型壁面と圧粉体との摩擦を軽減するため、通常、粉末状の潤滑剤を原料粉末に混入させた粉末混合物を用いる。粉末混合物は、主原料粉末である鉄基粉末に、例えば、銅粉末、黒鉛粉末、切削性改善用粉末等の副原料粉末と潤滑剤の粉末とを混合したものである。
 粉末混合物が粉末状の潤滑剤を含むことにより、粉末混合物における流動性、圧密性等の粉末特性が改善され、圧縮成形した圧粉体を金型から抜き出し易くなる。潤滑剤の粉末としては、例えば、ステアリン酸及びその金属塩等の金属石鹸系潤滑剤、有機系潤滑剤(ワックス系潤滑剤)、脂肪酸アミド系潤滑剤、並びに金属石鹸系潤滑剤と脂肪酸アミド系潤滑剤との混合物が挙げられる(例えば、特許文献1及び2参照)。
 潤滑剤は、金属粉末との混合性、粉末混合物としたときの粉末特性、圧縮成形後の圧粉体の抜き出し性、圧粉体を焼結する際の潤滑剤の散逸性等を勘案して選択される。中でも、比較的優れた潤滑特性及びコストの点から、ステアリン酸亜鉛が潤滑剤として広く用いられている。このような潤滑剤は、粉末混合物に予め混入させて用いるのが一般的である。なお、潤滑剤を金型壁面に塗布して用いる方法もあるが、特殊な装置が必要となるため、焼結体の製造コストが割高となる。
 しかしながら、ステアリン酸亜鉛に代表される金属石鹸系潤滑剤は、圧粉体を焼結する際に製品表面、排気ダクト等を汚染するという問題があり、有機系潤滑剤(ワックス系潤滑剤)への置き換えが望まれている。有機系潤滑剤としては、特許文献1及び2に記載された潤滑剤のほか、長鎖アルキル基を有するアミド系化合物が提案されている(例えば、特許文献3参照)。
特開平4-136104号公報 特開平11-193404号公報 特表2008-513602号公報
 潤滑剤が添加された粉末混合物を金型を用いて圧縮成形した際に、成形体を金型から抜き出しやすくなること、すなわち、成形体の抜き出し性に優れることが望ましい。成形体を焼結してなる焼結体についてもその表面に凹凸が形成されることで外観不良が発生しやすいため、外観不良が抑制可能であることが望ましい。
 本開示は、成形体の抜き出し性を向上させることができ、さらに外観不良が抑制された焼結体を製造可能な潤滑剤及び潤滑剤の組み合わせ、前記潤滑剤又は前記潤滑剤の組み合わせを含む粉末混合物及び粉末混合物用原料の組み合わせ並びに粉末混合物又は粉末混合物用原料の組み合わせを用いた焼結体の製造方法を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
<1> 融点が60℃~85℃である潤滑剤Aを含み、粒子径が63μm以下である粒子の割合が潤滑剤の全量に対して88質量%以上である潤滑剤。
<2> 前記潤滑剤Aは、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、N-オレイルオレイン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、N-オレイルパルミチン酸アミド、N-オレイル-ヒドロキシステアリン酸アミド、ステアリン酸、及びN-オレイルパルミトアミドからなる群より選択される少なくとも1つを含む<1>に記載の潤滑剤。
<3> 粒子径が150μmよりも大きい粒子の割合は、潤滑剤の全量に対して、5質量%以下である<1>又は<2>に記載の潤滑剤。
<4> 融点が60℃~85℃である潤滑剤Aと、
 脂肪酸ビスアミドである潤滑剤Bと、を含み、
 粒子径が63μm以下である粒子の割合が潤滑剤の組み合わせの全量に対して88質量%以上である潤滑剤の組み合わせ。
<5> 潤滑剤の組み合わせ全量に対する前記潤滑剤A及び前記潤滑剤Bの合計の含有率は、60質量%以上である<4>に記載の潤滑剤の組み合わせ。
<6> 潤滑剤の粒径10μmより小さな粒子の割合が潤滑剤の組み合わせ全量に対して10質量%以上である<4>又は<5>に記載の潤滑剤の組み合わせ。
<7> 前記潤滑剤Aは、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、N-オレイルオレイン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、N-オレイルパルミチン酸アミド、N-オレイル-ヒドロキシステアリン酸アミド、ステアリン酸、及びN-オレイルパルミトアミドからなる群より選択される少なくとも1つを含む<4>~<6>のいずれか1つに記載の潤滑剤の組み合わせ。
<8> 前記潤滑剤Bの融点は、140℃以上150℃未満である<4>~<7>のいずれか1つに記載の潤滑剤の組み合わせ。
<9> 前記潤滑剤Bは、メチレンビスステアリン酸アミド、メチレンビスラウリン酸アミド、メチレンビスヒドロキシステアリン酸アミド、エチレンビスカプリル酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスイソステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンビスヒドロキシステアリン酸アミド、ブチレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミド、メチレンビスオレイン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミド、m-キシリレンビスステアリン酸アミド及びN,N’-ジステアリルイソフタル酸アミドからなる群より選択される少なくとも1つを含む<4>~<8>のいずれか1つに記載の潤滑剤の組み合わせ。
<10> 前記潤滑剤Aは、エルカ酸アミド及びオレイン酸アミドからなる群より選択される少なくとも1種を含み、
 前記潤滑剤Bは、エチレンビスステアリン酸アミドを含む<4>~<6>のいずれか1つに記載の潤滑剤の組み合わせ。
<11> 前記潤滑剤Aと前記潤滑剤Bとの質量比である潤滑剤A:潤滑剤Bは、1:9~9:1である<4>~<10>のいずれか1つに記載の潤滑剤の組み合わせ。
<12> 粒子径が150μmよりも大きい粒子の割合は、潤滑剤の組み合わせの全量に対して、5質量%以下である<4>~<11>のいずれか1つに記載の潤滑剤の組み合わせ。
<13> 原料粉末と、<1>~<3>のいずれか1つに記載の潤滑剤又は<4>~<12>のいずれか1つに記載の潤滑剤の組み合わせと、を含む粉末混合物。
<14> 原料粉末と、<1>~<3>のいずれか1つに記載の潤滑剤又は<4>~<12>のいずれか1つに記載の潤滑剤の組み合わせと、を含む粉末混合物用原料の組み合わせ。
<15> <13>に記載の粉末混合物又は<14>に記載の粉末混合物用原料の組み合わせから得られる粉末混合物を焼結することによって焼結体を製造する焼結体の製造方法。
 本開示によれば、成形体の抜き出し性を向上させることができ、さらに外観不良が抑制された焼結体を製造可能な潤滑剤及び潤滑剤の組み合わせ、前記潤滑剤又は前記潤滑剤の組み合わせを含む粉末混合物及び粉末混合物用原料の組み合わせ並びに粉末混合物又は粉末混合物用原料の組み合わせを用いた焼結体の製造方法を提供することができる。
 以下、本開示の潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法について説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示中に段階的に記載されている数値範囲において、1つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、当該複数種の粒子の混合物についての値を意味する。
[潤滑剤]
 本開示の潤滑剤は、融点が60℃~85℃である潤滑剤Aを含み、粒子径が63μm以下である粒子の割合が潤滑剤の全量に対して88質量%以上である潤滑剤である。
 本開示の潤滑剤を用いることによって、成形体の抜き出し性を向上させることができ、さらに外観不良が抑制された焼結体を製造可能である。より具体的には、本開示の潤滑剤は、比較的融点の低い潤滑剤Aを含むことにより、成形体を金型から抜き出しやすくなる、すなわち、成形体の抜き出し性が向上する傾向にある。さらに、粒子径が63μm以下である粒子の割合が潤滑剤の全量に対して88質量%以上である。これにより、成形体を焼結してなる焼結体にて、その表面の凹凸が低減されて外観不良が抑制された焼結体を製造可能である。
 本開示の潤滑剤は、例えば、粉末冶金用に用いられることが好ましい。本開示の潤滑剤は、粉末冶金用以外の用途に用いられてもよい。
 粒子径が63μm以下である粒子の割合は、焼結体の外観不良を好適に抑制する観点から、潤滑剤の全量に対して、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。
 本開示において、「粒子径が特定の粒子径以下(例えば、63μm以下)である粒子の割合」は、目開きが前記特定の粒子径(例えば、63μm)のJIS標準篩で篩い分けしたときに篩を通過する粒子の割合を求めること、又は、風力分級法などで分級した後、粒度分布測定で特定の粒子径(例えば、63μm)以下である積算値(質量基準)を求めることによって導出可能である。
 篩い分け又は分級の基準となる粒子径は63μm以下に限定されず、50μm以下であってもよく、43μm以下であってもよい。例えば、粒子径が50μm以下である粒子の割合は、潤滑剤の全量に対して、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。粒子径が43μm以下である粒子の割合は、潤滑剤の全量に対して、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。
 JIS標準篩はJIS-Z-8801-1:2006に準拠し、ISO3310-1:2000に対応する。なお、ISO3310-1:2000を用いる場合には、JIS-Z-8801-1:2006と同様に篩い目の形状が正方形であるものを適用することが好ましい。
 本開示の潤滑剤において、粒子径が150μmよりも大きい粒子の割合は、焼結体の外観不良を好適に抑制する観点から、潤滑剤の全量に対して、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。前述の粒子の割合は、潤滑剤の全量に対して、0質量%であってもよく、0.5質量%以上であってもよい。
 本開示において、「粒子径が特定の粒子径よりも大きい(例えば、150μmよりも大きい)粒子の割合」は、目開きが前記特定の粒子径(例えば、150μm)のJIS標準篩で篩い分けしたときに篩を通過しない粒子の割合を求めること、又は、風力分級法などで分級した後、粒度分布測定で特定の粒子径(例えば、150μm)以下である積算値(質量基準)を求め、求めた積算値(質量基準)を100質量%から差し引くことによって導出可能である。
 本開示の潤滑剤が潤滑剤Aからなる場合、粒子径が63μm以下である粒子の割合は、潤滑剤Aの全量に対して88質量%以上であればよい。本開示の潤滑剤が潤滑剤A及び潤滑剤A以外の潤滑剤からなる場合、粒子径が63μm以下である粒子の割合は、潤滑剤A及び潤滑剤A以外の潤滑剤の全量に対して88質量%以上であればよい。
(潤滑剤A)
 本開示の潤滑剤は、融点が60℃~85℃である潤滑剤Aを含む。潤滑剤は、1種の潤滑剤Aを含んでいてもよく、2種以上の潤滑剤Aを含んでいてもよい。
 本開示において、融点は示差走査熱量測定(DSC)により測定される値である。
 潤滑剤Aは、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、N-オレイルオレイン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、N-オレイルパルミチン酸アミド、N-オレイル-ヒドロキシステアリン酸アミド、ステアリン酸、及びN-オレイルパルミトアミドからなる群より選択される少なくとも1つを含むことが好ましく、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸、及びN-オレイルパルミトアミドからなる群より選択される少なくとも1つを含むことがより好ましい。中でも、潤滑剤Aは、成形体の抜き出し性の観点から、エルカ酸アミド及びオレイン酸アミドの少なくとも一方を含むことが好ましく、エルカ酸アミドであることがより好ましい。
 潤滑剤Aの含有率は、潤滑剤の全量に対して、50質量%~100質量%であってもよく、70質量%~100質量%であってもよく、90質量%~100質量%であってもよい。
(潤滑剤A以外の潤滑剤)
 本開示の潤滑剤は、潤滑剤A以外の潤滑剤を含んでいてもよい。潤滑剤A以外の潤滑剤としては、融点が85℃を超える脂肪酸アミド、金属石鹸系潤滑剤等が挙げられる。潤滑剤A以外の潤滑剤を用いる場合、1種を単独で用いてもよく、2種以上を併用してもよい。
 融点が85℃を超える脂肪酸アミドとしては、ラウリン酸アミド、パルチミン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミド、N-ラウリルラウリン酸アミド、N-パルミチルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリル-ヒドロキシステアリン酸アミド等が挙げられる。
 金属石鹸系潤滑剤としては、例えば、炭素数12~22である脂肪酸と、リチウム、マグネシウム、カルシウム、バリウム、亜鉛及びストロンチウムからなる群より選択される少なくとも一つの金属との金属塩が挙げられる。
 炭素数12~22である脂肪酸としては、炭素数12~22の飽和脂肪酸であってもよく、炭素数12~22の不飽和脂肪酸であってもよい。脂肪酸における炭素数は、16~20であってもよく、16~18であってもよい。
 炭素数12~22である脂肪酸としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸等の飽和脂肪酸、リノール酸、リノレン酸、オレイン酸、エルカ酸等の不飽和脂肪酸が挙げられる。
 金属石鹸系潤滑剤の具体例としては、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸亜鉛等が挙げられる。
 潤滑剤全量に対する潤滑剤A以外の潤滑剤の含有率は、0質量%超50質量%以下であってもよく、5質量%~40質量%であってもよく、10質量%~20質量%であってもよい。このとき、潤滑剤A及び潤滑剤A以外の潤滑剤の合計含有率が100質量%であればよい。
[潤滑剤の組み合わせ]
 本開示の潤滑剤の組み合わせは、融点が60℃~85℃である潤滑剤Aと、脂肪酸ビスアミドである潤滑剤Bと、を含み、粒子径が63μm以下である粒子の割合が潤滑剤の組み合わせの全量に対して88質量%以上である。
 本開示の潤滑剤の組み合わせを用いることによって、粉末混合物の流動性及び成形体の抜き出し性を向上させることができ、さらに外観不良が抑制された焼結体を製造可能である。潤滑剤Aと潤滑剤Bとを組み合わせることで粉末混合物とした際の流動性を向上させつつ、成形体の抜き出し性も向上させることができる。
 本開示では、潤滑剤の組み合わせは、少なくとも潤滑剤A及び潤滑剤Bを含む潤滑剤の混合物であってもよく、潤滑剤Aを含む潤滑剤と、潤滑剤Bを含む潤滑剤とを混合せずにそれぞれ準備したものの組み合わせであってもよい。例えば、潤滑剤Aを含む潤滑剤と、潤滑剤Bを含む潤滑剤とを混合せずにそれぞれ準備したものの組み合わせである場合、粉末混合物を製造する際に、潤滑剤Aを含む潤滑剤と潤滑剤Bを含む潤滑剤とを混合してもよい。
 本開示の潤滑剤の組み合わせでは、粒子径が63μm以下である粒子の割合は、焼結体の外観不良を好適に抑制する観点から、潤滑剤の組み合わせの全量に対して、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。
 篩い分け又は分級の基準となる粒子径は63μm以下に限定されず、50μm以下であってもよく、43μm以下であってもよい。
 本開示の潤滑剤の組み合わせにおいて、粒子径が150μmよりも大きい粒子の割合は、焼結体の外観不良を好適に抑制する観点から、潤滑剤の組み合わせの全量に対して、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。前述の粒子の割合は、潤滑剤の組み合わせの全量に対して、0質量%であってもよく、0.5質量%以上であってもよい。
 本開示の潤滑剤の組み合わせに含まれる潤滑剤Aの構成は、前述の本開示の潤滑剤に含まれる潤滑剤Aの構成と同様であるため、説明を省略する。
(潤滑剤B)
 本開示の潤滑剤の組み合わせは、脂肪酸ビスアミドである潤滑剤Bを含む。潤滑剤の組み合わせは、1種の潤滑剤Bを含んでいてもよく、2種以上の潤滑剤Bを含んでいてもよい。
 潤滑剤Bの融点は、140℃以上150℃未満であってもよく、140℃以上148℃以下であってもよい。
 潤滑剤Bとしては、例えば、メチレンビスステアリン酸アミド、メチレンビスラウリン酸アミド、メチレンビスヒドロキシステアリン酸アミド、エチレンビスカプリル酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスイソステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンビスヒドロキシステアリン酸アミド、ブチレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミド、メチレンビスオレイン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミド、m-キシリレンビスステアリン酸アミド及びN,N’-ジステアリルイソフタル酸アミドが挙げられる。中でも、潤滑剤Bは、粉末混合物の流動性の観点から、エチレンビスステアリン酸アミドを含むことがより好ましい。
 潤滑剤A及び潤滑剤Bの好ましい組み合わせとしては、粉末混合物の流動性及び成形体の抜き出し性のバランスの観点から、潤滑剤Aは、エルカ酸アミド及びオレイン酸アミドからなる群より選択される少なくとも1種を含み、潤滑剤Bは、エチレンビスステアリン酸アミドを含むことが好ましい。
 潤滑剤Aにおけるエルカ酸アミド及びオレイン酸アミドの合計含有率は、50質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。
 潤滑剤Bにおけるエチレンビスステアリン酸アミドの含有率は、50質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。
 潤滑剤Aと潤滑剤Bとの質量比である潤滑剤A:潤滑剤Bは、粉末混合物の流動性及び成形体の抜き出し性のバランスの観点から、1:9~9:1であることが好ましく、2:8~8:2であることがより好ましく、3:7~7:3であることがさらに好ましい。
 潤滑剤の組み合わせ全量に対する潤滑剤A及び潤滑剤Bの合計の含有率は、50質量%~100質量%であることが好ましい。また、潤滑剤A及び潤滑剤Bの合計の含有率は、60質量%~95質量%であってもよく、80質量%~90質量%であってもよい。
 潤滑剤の組み合わせ全量に対する潤滑剤A及び潤滑剤Bの合計の含有率は、粉末混合物の流動性及び黒鉛偏析の低減の観点から、60質量%以上であることが好ましく、70質量%~100質量%であることがより好ましく、80質量%~100質量%であることがさらに好ましく、90質量%~100質量%であることが特に好ましい。
 潤滑剤の粒径10μmより小さな粒子の割合は、潤滑剤の組み合わせ全量に対して10質量%以上であることが好ましく、15質量%~50質量%であることがより好ましく、20質量%~40体積%であることがさらに好ましく、25質量%~35質量%であることが特に好ましい。潤滑剤の粒径10μmより小さな粒子の割合が10質量%以上であることにより、黒鉛偏析の低減が可能となる傾向にある。
(その他の潤滑剤)
 本開示の潤滑剤の組み合わせは、潤滑剤A及び潤滑剤B以外のその他の潤滑剤を含んでいてもよい。その他の潤滑剤としては、潤滑剤A及び潤滑剤B以外のアミド系潤滑剤、前述の金属石鹸系潤滑剤等が挙げられる。潤滑剤A及び潤滑剤B以外のアミド系潤滑剤としては、前述の融点が85℃を超える脂肪酸アミドが挙げられる。
 その他の潤滑剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 潤滑剤の組み合わせ全量に対するその他の潤滑剤の含有率は、0質量%超50質量%以下であってもよく、5質量%~40質量%であってもよく、10質量%~20質量%であってもよい。このとき、潤滑剤A、潤滑剤B及びその他の潤滑剤の合計含有率が100質量%であればよい。
 潤滑剤の組み合わせ全量に対するその他の潤滑剤の含有率は、粉末混合物の流動性及び黒鉛偏析の低減の観点から、40質量%以下であることが好ましく、0質量%~30質量%であることがより好ましく、0質量%~20質量%であることがさらに好ましく、0質量%~10質量%であることが特に好ましい。
〔粉末混合物〕
 本開示の粉末混合物は、原料粉末と、前述の本開示の潤滑剤又は前述の本開示の潤滑剤の組み合わせと、を含む。この粉末混合物を用いることで成形体の抜き出し性を向上させることができ、さらに外観不良が抑制された焼結体を製造可能となる。
 本開示の粉末混合物は、例えば、粉末冶金用に用いられることが好ましい。
 原料粉末としては、鉄を主成分として含む主原料粉末、焼結体の特性を改善する副原料粉末等が挙げられる。
 なお、鉄を主成分として含むとは、原料粉末における鉄の含有率が原料粉末全体の50質量%以上であることを意味する。
 主原料粉末としては、不可避不純物(酸素、ケイ素、炭素、マンガン等)を含みうる純鉄粉、鉄基合金粉末等の鉄基粉末が挙げられる。主原料粉末は、1種を単独で用いてもよく、2種以上を併用してもよい。
 主原料粉末の平均粒子径は、30μm~150μmであることが好ましく、50μm~100μmであることがより好ましい。
 本開示において、平均粒子径は、レーザー回折法により測定される体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(D50)である。
 鉄基粉末は、例えば、アトマイズ法によって溶融鉄又は溶融鉄合金を微粒子とした後に前記微粒子を還元し、次いで粉砕する方法によって製造できる。
 副原料粉末としては、焼結体の特性を改善することができる原料粉末であれば特に限定されず、焼結体の硬さ、靭性等の機械的特性を向上させる粉末、焼結体の被削性を高める粉末等が挙げられる。
 副原料粉末としては、例えば、主原料粉末以外の金属粉末及び無機粉末が挙げられる。副原料粉末は、1種を単独で用いてもよく、2種以上を併用してもよい。
 金属粉末としては、銅、ニッケル、クロム、モリブデン、スズ、バナジウム、マンガン等の粉末が挙げられる。
 無機粉末としては、硫化マンガン、二硫化マンガン等の硫化物;窒化ホウ素等の窒化物;ホウ酸、酸化マグネシウム、酸化カリウム、酸化ケイ素等の酸化物;天然黒鉛、人造黒鉛等のグラファイト;リン;硫黄などの粉末が挙げられる。
 副原料粉末の平均粒子径は、2μm~100μmであることが好ましく、5μm~50μmであることがより好ましい。
 原料粉末100質量部のうち、主原料粉末の含有量は、90質量部~99質量部であることが好ましく、95質量部~98質量部であることがより好ましい。
 原料粉末100質量部のうち、副原料粉末の含有量は、1質量部~10質量部であることが好ましく、2質量部~5質量部であることがより好ましい。
 原料粉末100質量部に対して、潤滑剤の含有量及び潤滑剤の組み合わせの含有量は、それぞれ独立に、0.1質量部~2.0質量部であることが好ましく、0.2質量部~1.5質量部であることがより好ましく、0.3質量部~1.0質量部であることがさらに好ましい。
(その他の成分)
 本開示の粉末混合物は、原料粉末、本開示の潤滑剤及び本開示の潤滑剤の組み合わせ以外のその他の成分を含んでいてもよい。その他の成分としては、バインダーが挙げられる。粉末混合物がバインダーを含むことにより、原料粉末の偏析、飛散等を抑制できる傾向にある。
 バインダーとしては、特に限定されず、ポリオレフィン、アクリル樹脂、ポリスチレン、スチレンブタジエンゴム、エチレングリコールジステアレート、エポキシ樹脂、ロジンエステル等が挙げられる。
 本開示の粉末混合物がバインダーを含む場合、バインダーの含有量は、原料粉末100質量部に対して、0.01質量部~1.0質量部であることが好ましく、0.1質量部~1.0質量部であることがより好ましい。
 本開示の粉末混合物は、原料粉末と、本開示の潤滑剤又は本開示の潤滑剤の組み合わせと、必要に応じてその他の成分とを混合することにより得られる。原料粉末と、本開示の潤滑剤又は本開示の潤滑剤の組み合わせとの混合は、羽根付き混合機、V形混合機、二重円錐形混合機(Wコーン)等の通常使用されている混合機を用いて行うことができる。
 本開示の粉末混合物用原料の組み合わせは、原料粉末と、本開示の潤滑剤又は本開示の潤滑剤の組み合わせと、を含む。本開示の粉末混合物用原料の組み合わせは、原料粉末及び潤滑剤の混合物又は原料粉末及び潤滑剤の組み合わせの混合物であってもよい。あるいは、原料粉末と、本開示の潤滑剤又は本開示の潤滑剤の組み合わせと、を混合せずにそれぞれ準備したものの組み合わせであってもよく、成形体を製造する際に、原料粉末と、本開示の潤滑剤又は本開示の潤滑剤の組み合わせと、を混合して用いてもよい。
 本開示の粉末混合物用原料の組み合わせの好ましい条件は、前述の本開示の粉末混合物と同様であるため、その説明を省略する。
〔焼結体の製造方法〕
 本開示の焼結体の製造方法は、前述の本開示の粉末混合物又は前述の本開示の粉末混合物用原料の組み合わせから得られる粉末混合物を焼結することによって焼結体を製造する方法である。
 本開示の焼結体の製造方法は、好ましくは、粉末混合物を金型内に充填すること、金型内に充填された粉末混合物を圧縮成形して成形体とすること、及び、金型内から抜き出した成形体を焼結することを含んでいる。
 本開示の焼結体の製造方法では、前述の粉末混合物を用いることで成形体の抜き出し性を向上させることができ、さらに外観不良が抑制された焼結体を製造可能となる。
 本開示の焼結体の製造方法では、金型内に充填された粉末混合物を圧縮成形してもよい。成形温度、成形圧力等は特に限定されず、粉末混合物の組成、添加量、金型内の形状等によって適宜調節してもよい。
 本開示の焼結体の製造方法では、粉末混合物を焼結することによって焼結体を製造し、好ましくは金型内から抜き出した成形体を焼結することによって焼結体を製造する。粉末混合物又は成形体を焼結する条件としては、特に限定されず、通常の焼結方法を採用することができる。
 以下、実施例に基づき本開示をさらに詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。
[実施例1~14及び比較例1~14]
 主原料粉末として、平均粒子径が75μmの粉末冶金用アトマイズ鉄粉、副原料粉末として平均粒子径が30μmの電解銅粉、及び平均粒子径が10μmの黒鉛粉を用意した。次に、鉄粉97.5質量部、銅粉1.5質量部及び黒鉛粉1.0質量部に対し、表1及び以下に示す潤滑剤A又は潤滑剤A及び潤滑剤Bの潤滑剤混合物を0.8質量部加えた。各実施例及び各比較例では、JIS標準篩を用いて篩い分けしたときに、粒子径が63μm以下である粒子の割合が潤滑剤の全量に対して表1に示す数値である潤滑剤A及び潤滑剤混合物を使用した。各実施例及び各比較例における潤滑剤A及び潤滑剤Bの割合は表1に示すとおりである。その後、原料粉末と潤滑剤との混合物をV形混合機に投入し、30分混合することで各実施例及び各比較例の粉末混合物を得た。
<潤滑剤A>
 エルカ酸アミド(融点:78℃~81℃)
 オレイン酸アミド(融点:75℃)
<潤滑剤B>
 エチレンビスステアリン酸アミド(融点:145℃)
(粉末混合物の流動性)
 各実施例及び各比較例で得た粉末混合物の流動性の評価は、JIS Z 2502(2012)に規定された流動度試験方法により行った。評価基準は以下の通りである。
-評価基準-
A 粉末混合物が30秒以内に流れた。
B 粉末混合物が30秒超35秒以内に流れた。
C 粉末混合物が流れない、又は粉末混合物が35秒超で流れた。
 結果を表1に示す。評価A又は評価Bであれば、粉末混合物の流動性は良好である。
(粉末混合物の圧密性)
 各実施例及び各比較例で得た粉末混合物の圧密性の評価は、粉末混合物7gを金型内に供給した後に、成形圧力700MPaで直径11.3mmの円柱成形体を成形し、以下の基準に基づき行った。
-評価基準-
A 円柱成形体の密度が7.10g/cm以上であった。
B 円柱成形体の密度が7.06g/cm以上7.10g/cm未満であった。
C 円柱成形体の密度が7.06g/cm未満であった。
 結果を表1に示す。評価A又は評価Bであれば、粉末混合物の圧密性は良好である。
(円柱成形体の抜き出し性)
 各実施例及び各比較例における円柱成形体の抜き出し性は、前述の粉末混合物の圧密性の評価に用いる円柱成形体を金型から抜き出す際に抜出圧力の測定を行い、以下の基準に基づいて評価した。
-評価基準-
A 抜出圧力は8MPa以下であった。
B 抜出圧力は8MPa超15MPa以下であった。
C 抜出圧力は15MPa超であった。
 結果を表1に示す。評価A又は評価Bであれば、円柱成形体の抜き出し性は良好である。
(外観の評価)
 各実施例及び各比較例における外観の評価は、前述の粉末混合物の圧密性の評価に用いる円柱成形体を窒素中、約1100℃で焼成した焼結体の表面を目視で確認し、以下の基準に基づいて評価した。
-評価基準-
A 焼結体の表面に表面凹凸に起因する荒れが観察されなかった。
C 焼結体の表面に表面凹凸に起因する荒れが観察された。
 結果を表1に示す。評価Aであれば、焼結体の外観は良好である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~14の粉末混合物を用いることで、成形体の抜き出し性に優れ、外観不良が抑制された焼結体を製造可能であった。
[実施例15~90及び比較例15~36]
 主原料粉末として、平均粒子径が75μmの粉末冶金用アトマイズ鉄粉、副原料粉末として平均粒子径が30μmの電解銅粉、及び平均粒子径が10μmの黒鉛粉を用意した。次に、鉄粉97.5質量部、銅粉1.5質量部及び黒鉛粉1.0質量部に対し、表2及び以下に示す潤滑剤A、潤滑剤A及び潤滑剤Bの潤滑剤混合物又は潤滑剤A~潤滑剤Cの潤滑剤混合物を0.8質量部加えた。各実施例及び各比較例では、JIS標準篩を用いて篩い分けしたときに、粒子径が63μm以下である粒子の割合が潤滑剤の全量に対して表2~表5に示す数値である潤滑剤A及び潤滑剤混合物を使用した。各実施例及び各比較例における潤滑剤A、潤滑剤B及び潤滑剤Cの割合は表2~表5に示すとおりである。その後、原料粉末と潤滑剤との混合物をV形混合機に投入し、30分混合することで各実施例及び各比較例の粉末混合物を得た。
 なお、表2中、潤滑剤Aの配合比は、潤滑剤A及び潤滑剤Bの合計に対する潤滑剤Aの配合比であり、潤滑剤Bの配合比は、潤滑剤A及び潤滑剤Bの合計に対する潤滑剤Bの配合比である。(潤滑剤A+潤滑剤B)の合計含有量は、潤滑剤A、潤滑剤B及び潤滑剤Cの合計に対する(潤滑剤A+潤滑剤B)の合計含有量であり、潤滑剤Cの含有量は、潤滑剤A、潤滑剤B及び潤滑剤Cの合計に対する潤滑剤Cの含有量である。
<潤滑剤A>
 エルカ酸アミド(融点:78℃~81℃)
 オレイン酸アミド(融点:75℃)
<潤滑剤B>
 エチレンビスステアリン酸アミド(融点:145℃)
<潤滑剤C(潤滑剤A以外の潤滑剤)>
 ステアリン酸アミド(融点:98℃~102℃)
 表2、表4及び表5中の流動性及び圧密性については前述の方法により評価を行った。表2及び表3中の黒鉛偏析については以下の方法により評価を行った。
(黒鉛偏析の評価)
 各実施例及び各比較例における黒鉛偏析の評価は、前述の粉末混合物を用いて成形した圧密性の評価に用いる円柱成形体の表面を光学顕微鏡で確認し、以下の基準に基づいて評価した。
-評価基準-
A 50μm以上の黒鉛偏析がない
B 50μm~100μmの黒鉛偏析がある
C 100μmよりも大きい黒鉛偏析がある
 結果を表2及び表3に示す。評価A又はBであれば、黒鉛偏析の評価は良好である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、潤滑剤全量に対する潤滑剤A及び潤滑剤Bの合計の含有率が、60質量%以上であることにより、高い流動性と黒鉛偏析の低減とが両立可能であった。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、潤滑剤の粒径10μmより小さな粒子の割合が10質量%以上であることにより、黒鉛偏析の低減が可能であった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4及び表5に示すように、粒子径が63μm以下である粒子の割合が潤滑剤の全量に対して88質量%以上であることにより、圧密性の評価が良好であった。
 一方、表5に示すように、粒子径が80μmより小さな粒子の割合が95質量%と比較的多い場合であっても、粒子径が63μm以下である粒子の割合が88質量%未満であると、圧密性の評価が不良であることが分かった。この結果から、粒子径が63μm以下である粒子の割合を基準とすることが圧密性評価に重要であることが分かった。
 2021年6月11日に出願されたPCT/JP2021/022394の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (15)

  1.  融点が60℃~85℃である潤滑剤Aを含み、粒子径が63μm以下である粒子の割合が潤滑剤の全量に対して88質量%以上である潤滑剤。
  2.  前記潤滑剤Aは、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、N-オレイルオレイン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、N-オレイルパルミチン酸アミド、N-オレイル-ヒドロキシステアリン酸アミド、ステアリン酸、及びN-オレイルパルミトアミドからなる群より選択される少なくとも1つを含む請求項1に記載の潤滑剤。
  3.  粒子径が150μmよりも大きい粒子の割合は、潤滑剤の全量に対して、5質量%以下である請求項1又は請求項2に記載の潤滑剤。
  4.  融点が60℃~85℃である潤滑剤Aと、
     脂肪酸ビスアミドである潤滑剤Bと、を含み、
     粒子径が63μm以下である粒子の割合が潤滑剤の組み合わせの全量に対して88質量%以上である潤滑剤の組み合わせ。
  5.  潤滑剤の組み合わせ全量に対する前記潤滑剤A及び前記潤滑剤Bの合計の含有率は、60質量%以上である請求項4に記載の潤滑剤の組み合わせ。
  6.  潤滑剤の粒径10μmより小さな粒子の割合が潤滑剤の組み合わせ全量に対して10質量%以上である請求項4又は請求項5に記載の潤滑剤の組み合わせ。
  7.  前記潤滑剤Aは、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、N-オレイルオレイン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、N-オレイルパルミチン酸アミド、N-オレイル-ヒドロキシステアリン酸アミド、ステアリン酸、及びN-オレイルパルミトアミドからなる群より選択される少なくとも1つを含む請求項4~請求項6のいずれか1項に記載の潤滑剤の組み合わせ。
  8.  前記潤滑剤Bの融点は、140℃以上150℃未満である請求項4~請求項7のいずれか1項に記載の潤滑剤の組み合わせ。
  9.  前記潤滑剤Bは、メチレンビスステアリン酸アミド、メチレンビスラウリン酸アミド、メチレンビスヒドロキシステアリン酸アミド、エチレンビスカプリル酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスイソステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンビスヒドロキシステアリン酸アミド、ブチレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミド、メチレンビスオレイン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミド、m-キシリレンビスステアリン酸アミド及びN,N’-ジステアリルイソフタル酸アミドからなる群より選択される少なくとも1つを含む請求項4~請求項8のいずれか1項に記載の潤滑剤の組み合わせ。
  10.  前記潤滑剤Aは、エルカ酸アミド及びオレイン酸アミドからなる群より選択される少なくとも1種を含み、
     前記潤滑剤Bは、エチレンビスステアリン酸アミドを含む請求項4~請求項6のいずれか1項に記載の潤滑剤の組み合わせ。
  11.  前記潤滑剤Aと前記潤滑剤Bとの質量比である潤滑剤A:潤滑剤Bは、1:9~9:1である請求項4~請求項10のいずれか1項に記載の潤滑剤の組み合わせ。
  12.  粒子径が150μmよりも大きい粒子の割合は、潤滑剤の組み合わせの全量に対して、5質量%以下である請求項4~請求項11のいずれか1項に記載の潤滑剤の組み合わせ。
  13.  原料粉末と、請求項1~請求項3のいずれか1項に記載の潤滑剤又は請求項4~請求項12のいずれか1項に記載の潤滑剤の組み合わせと、を含む粉末混合物。
  14.  原料粉末と、請求項1~請求項3のいずれか1項に記載の潤滑剤又は請求項4~請求項12のいずれか1項に記載の潤滑剤の組み合わせと、を含む粉末混合物用原料の組み合わせ。
  15.  請求項13に記載の粉末混合物又は請求項14に記載の粉末混合物用原料の組み合わせから得られる粉末混合物を焼結することによって焼結体を製造する焼結体の製造方法。
PCT/JP2022/022816 2021-06-11 2022-06-06 潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法 WO2022260009A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023527853A JPWO2022260009A1 (ja) 2021-06-11 2022-06-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2021/022394 2021-06-11
PCT/JP2021/022394 WO2022259547A1 (ja) 2021-06-11 2021-06-11 潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法

Publications (1)

Publication Number Publication Date
WO2022260009A1 true WO2022260009A1 (ja) 2022-12-15

Family

ID=84424546

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/022394 WO2022259547A1 (ja) 2021-06-11 2021-06-11 潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法
PCT/JP2022/022816 WO2022260009A1 (ja) 2021-06-11 2022-06-06 潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022394 WO2022259547A1 (ja) 2021-06-11 2021-06-11 潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法

Country Status (2)

Country Link
JP (1) JPWO2022260009A1 (ja)
WO (2) WO2022259547A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053141A1 (ja) * 2022-09-05 2024-03-14 Jfeスチール株式会社 粉末冶金用混合粉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136104A (ja) * 1990-09-25 1992-05-11 Hitachi Powdered Metals Co Ltd 粉末冶金用成形潤滑剤
JPH11193404A (ja) * 1997-12-26 1999-07-21 Hitachi Powdered Metals Co Ltd 金属粉末成形用潤滑剤
JP2008513602A (ja) * 2004-09-17 2008-05-01 ホガナス アクチボラゲット 潤滑剤及び/又は結合剤として第二級アミドを含む粉末金属組成物
WO2014123106A1 (ja) * 2013-02-05 2014-08-14 株式会社Adeka 金属粉末冶金用潤滑剤、その製造方法、金属粉末組成物及び金属粉末冶金製品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136104A (ja) * 1990-09-25 1992-05-11 Hitachi Powdered Metals Co Ltd 粉末冶金用成形潤滑剤
JPH11193404A (ja) * 1997-12-26 1999-07-21 Hitachi Powdered Metals Co Ltd 金属粉末成形用潤滑剤
JP2008513602A (ja) * 2004-09-17 2008-05-01 ホガナス アクチボラゲット 潤滑剤及び/又は結合剤として第二級アミドを含む粉末金属組成物
WO2014123106A1 (ja) * 2013-02-05 2014-08-14 株式会社Adeka 金属粉末冶金用潤滑剤、その製造方法、金属粉末組成物及び金属粉末冶金製品の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053141A1 (ja) * 2022-09-05 2024-03-14 Jfeスチール株式会社 粉末冶金用混合粉

Also Published As

Publication number Publication date
WO2022259547A1 (ja) 2022-12-15
JPWO2022260009A1 (ja) 2022-12-15

Similar Documents

Publication Publication Date Title
US7993429B2 (en) Lubricant for powder metallurgical compositions
CA2580509C (en) Powder metal composition comprising secondary amides as lubricant and/or binder
JP2010265454A (ja) 潤滑剤複合物及びその製造方法
US7871453B2 (en) Coarse iron or iron-based powder composition containing specific lubricant
KR20110099703A (ko) 분말 야금학적 조성물용 윤활제
WO2022260009A1 (ja) 潤滑剤、潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法
JP7501521B2 (ja) 潤滑剤、粉末混合物及び焼結体の製造方法
CN106660118B (zh) 新产品
US7247187B2 (en) Metal powder composition including a bonding binder/lubricant
WO2022259548A1 (ja) 潤滑剤の組み合わせ、粉末混合物、粉末混合物用原料の組み合わせ及び焼結体の製造方法
CN113710392B (zh) 粉末冶金用混合粉
JP2004292861A (ja) 粉末冶金用鉄基混合粉およびその製造方法
US20230128986A1 (en) Iron-Based Mixed Powder and Method for Manufacturing the Same
US12023732B2 (en) Iron-based mixed powder and method for manufacturing the same
JP6680422B1 (ja) 粉末冶金用混合粉および粉末冶金用潤滑剤
JP6877375B2 (ja) 粉末冶金用混合粉
JP2024017984A (ja) 粉末冶金用鉄基混合粉、鉄基焼結体、および焼結機械部品
JP2020132973A (ja) 鉄基粉末冶金用混合粉、鉄基焼結合金、および焼結機械部品
JPH08325604A (ja) 粉末冶金用添加剤および粉末冶金用混合粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527853

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22820188

Country of ref document: EP

Kind code of ref document: A1