WO2022260001A1 - Polymer solid electrolyte, power storage element, and power storage device - Google Patents
Polymer solid electrolyte, power storage element, and power storage device Download PDFInfo
- Publication number
- WO2022260001A1 WO2022260001A1 PCT/JP2022/022777 JP2022022777W WO2022260001A1 WO 2022260001 A1 WO2022260001 A1 WO 2022260001A1 JP 2022022777 W JP2022022777 W JP 2022022777W WO 2022260001 A1 WO2022260001 A1 WO 2022260001A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- electrode active
- active material
- negative electrode
- solid electrolyte
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 83
- 229920000642 polymer Polymers 0.000 title claims abstract description 56
- 238000003860 storage Methods 0.000 title claims description 108
- 150000003839 salts Chemical class 0.000 claims abstract description 29
- 125000005587 carbonate group Chemical group 0.000 claims abstract description 20
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims abstract description 17
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000002861 polymer material Substances 0.000 claims abstract description 17
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 6
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 20
- 230000005611 electricity Effects 0.000 claims 1
- 239000000470 constituent Substances 0.000 abstract description 2
- 239000007774 positive electrode material Substances 0.000 description 51
- 239000007773 negative electrode material Substances 0.000 description 48
- 239000000463 material Substances 0.000 description 36
- 239000007787 solid Substances 0.000 description 34
- 229910052744 lithium Inorganic materials 0.000 description 26
- -1 fluorosulfonyl Chemical group 0.000 description 23
- 230000003647 oxidation Effects 0.000 description 23
- 238000007254 oxidation reaction Methods 0.000 description 23
- 239000000758 substrate Substances 0.000 description 23
- 239000005518 polymer electrolyte Substances 0.000 description 22
- 238000002955 isolation Methods 0.000 description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 20
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 17
- 239000002245 particle Substances 0.000 description 16
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 14
- 239000011888 foil Substances 0.000 description 14
- 229910001416 lithium ion Inorganic materials 0.000 description 14
- 239000006258 conductive agent Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 239000003575 carbonaceous material Substances 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052723 transition metal Inorganic materials 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- 239000002905 metal composite material Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000011255 nonaqueous electrolyte Substances 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000002562 thickening agent Substances 0.000 description 6
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 229910000733 Li alloy Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000001989 lithium alloy Substances 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052752 metalloid Inorganic materials 0.000 description 4
- 150000002738 metalloids Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229920000447 polyanionic polymer Polymers 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000033116 oxidation-reduction process Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 150000001786 chalcogen compounds Chemical class 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000009831 deintercalation Methods 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920000379 polypropylene carbonate Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001868 water Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910000882 Ca alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920008712 Copo Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910000578 Li2CoPO4F Inorganic materials 0.000 description 1
- 229910010142 Li2MnSiO4 Inorganic materials 0.000 description 1
- 229910001367 Li3V2(PO4)3 Inorganic materials 0.000 description 1
- 229910011279 LiCoPO4 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910000668 LiMnPO4 Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- 229910013084 LiNiPO4 Inorganic materials 0.000 description 1
- 229910012672 LiTiO Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- USOPFYZPGZGBEB-UHFFFAOYSA-N calcium lithium Chemical compound [Li].[Ca] USOPFYZPGZGBEB-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- LHJOPRPDWDXEIY-UHFFFAOYSA-N indium lithium Chemical compound [Li].[In] LHJOPRPDWDXEIY-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- GCICAPWZNUIIDV-UHFFFAOYSA-N lithium magnesium Chemical compound [Li].[Mg] GCICAPWZNUIIDV-UHFFFAOYSA-N 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- WUALQPNAHOKFBR-UHFFFAOYSA-N lithium silver Chemical compound [Li].[Ag] WUALQPNAHOKFBR-UHFFFAOYSA-N 0.000 description 1
- KUJOABUXCGVGIY-UHFFFAOYSA-N lithium zinc Chemical compound [Li].[Zn] KUJOABUXCGVGIY-UHFFFAOYSA-N 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
Definitions
- the present invention relates to solid polymer electrolytes, power storage elements, and power storage devices.
- Non-aqueous electrolyte secondary batteries typified by lithium-ion secondary batteries
- the non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically isolated by a separator and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the electrodes. It is configured to be charged and discharged by Capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as storage elements other than non-aqueous electrolyte secondary batteries.
- Patent Document 1 has both lithium ion conductivity and oxidation resistance.
- An object of the present invention is to provide a polymer solid electrolyte that has both lithium ion conductivity and oxidation resistance, and an electric storage element and an electric storage device comprising the same.
- An embodiment according to one aspect of the present invention which has been made to solve the above problems, is a polymer material containing a carbonate structure represented by the following general formula (1) as a structural unit, and lithium bis (trifluoromethanesulfonyl) imide Alternatively, it is a polymer solid electrolyte containing a salt containing lithium bis(fluorosulfonyl)imide as a main component, wherein the concentration of the salt is 1.0 mol/kg or more. (Wherein R 1 and R 2 are independently H, F, or an alkyl group.)
- Another aspect of the present invention is a power storage device comprising the polymer solid electrolyte according to one aspect of the present invention.
- Another aspect of the present invention is a power storage device including two or more power storage elements and one or more power storage elements according to the other aspect of the present invention.
- the solid polymer electrolyte according to one aspect of the present invention can achieve both ionic conductivity and oxidation resistance.
- a power storage device can achieve both ionic conductivity and oxidation resistance of the polymer solid electrolyte included in the power storage device.
- a power storage device can achieve both ionic conductivity and oxidation resistance of the polymer solid electrolyte included in the power storage device.
- FIG. 1 is a schematic cross-sectional view of a power storage device (all-solid-state battery) according to one embodiment of the present invention.
- FIG. 2 is a schematic diagram showing a power storage device configured by assembling a plurality of power storage elements according to one embodiment of the present invention.
- FIG. 3 is a diagram showing the results of LSV (Linear Sweep Voltage) measurement according to Example 1.
- FIG. 4 is a diagram showing the results of LSV measurement according to Comparative Example 4.
- a polymer solid electrolyte according to one aspect of the present invention comprises a polymer material containing a carbonate structure represented by the general formula (1) as a constituent unit, and lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl) ) and a salt containing imide as a main component, wherein the concentration of the salt is 1.0 mol/kg or more.
- the polymer solid electrolyte according to one embodiment of the present invention is a carbonate structure represented by the general formula (1) having high oxidation resistance, and a high concentration of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or By containing lithium bis(fluorosulfonyl)imide (LiFSI), both ionic conductivity and oxidation resistance can be achieved.
- LiTFSI lithium bis(trifluoromethanesulfonyl)imide
- LiFSI lithium bis(fluorosulfonyl)imide
- the above salt is contained in the polymer solid electrolyte at a high concentration of 1.0 mol / kg or more. It is possible to Therefore, in a polymer solid electrolyte containing a polymer material containing the carbonate structure as a structural unit, the TFSI ion or FSI ion is preferentially coordinated to the lithium ion rather than the carbonate structure. Conductive paths are formed and ionic conductivity is increased.
- the polymer solid electrolyte according to one embodiment of the present invention can achieve both ionic conductivity and oxidation resistance. is assumed to be possible.
- lithium bis(pentafluoroethanesulfonyl)imide LiBETI
- LiBETI lithium bis(pentafluoroethanesulfonyl)imide
- lithium difluoro(oxalato)borate LiDFOB
- LiDFOB lithium difluoro(oxalato)borate
- LiFSI lithium bis(fluorosulfonyl)imide
- Solid electrolyte refers to an electrolyte that is substantially composed only of solid components.
- a solid component refers to a component that is solid at 20°C.
- the expression that the electrolyte is substantially composed only of solid components means that the content of solid components in the electrolyte is 99% by mass or more.
- a power storage device includes the polymer solid electrolyte according to one aspect of the present invention. Since the electric storage device includes the solid polymer electrolyte, it can achieve both ionic conductivity and oxidation resistance. Therefore, for example, even when a positive electrode active material having a high oxidation-reduction potential is used, good ion conductivity is exhibited.
- the power storage device has a positive electrode potential of 4.7 V vs. 4.7 V when fully charged by a charging method during normal use. It is preferably Li/Li + or more. Since the electric storage element includes the polymer solid electrolyte with good oxidation resistance, even in a usage pattern in which the positive electrode potential is high when fully charged by the charging method during normal use, good ion conduction is achieved. It is possible to obtain a power storage element having a high energy density.
- the positive electrode potential in a fully charged state is the positive electrode potential in a state in which the battery is not energized after being fully charged.
- a power storage device includes two or more power storage elements, and one or more power storage elements according to another aspect of the present invention.
- the power storage device includes the solid polymer electrolyte, it can achieve both ionic conductivity and oxidation resistance.
- a polymer solid electrolyte, a structure of an electric storage element, a structure of an electric storage device, a method for manufacturing an electric storage element, and other embodiments according to one embodiment of the present invention will be described in detail. Note that the name of each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
- the polymer solid electrolyte is mainly composed of a polymer material containing a carbonate structure represented by the above general formula (1) as a structural unit, and lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide. and a salt having a concentration of 1.0 mol/kg or more.
- a polymeric material according to one embodiment of the present invention contains a carbonate structure represented by the general formula (1) as a structural unit.
- R 1 and R 2 in general formula (1) are independently H, F, or alkyl groups. At least one of R 1 and R 2 is preferably H.
- R 1 and R 2 are alkyl groups, the number of carbon atoms is not particularly limited, but is preferably 20 or less, more preferably 10 or less, and even more preferably 8 or less.
- the polymer material may contain the carbonate structure represented by the general formula (1) as a structural unit, and may be a homopolymer having only the carbonate structure represented by the general formula (1) as a structural unit.
- the content of the carbonate structure represented by the general formula (1) in the polymer material is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and 40% by mass or more. Even more preferably, 60% by mass or more is even more preferable, and 80% by mass or more is even more preferable.
- the lower limit of the number average molecular weight of the polymer material is preferably 5,000, more preferably 10,000.
- the upper limit of the number average molecular weight is preferably 500,000, more preferably 100,000.
- a salt according to one embodiment of the present invention is based on lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide.
- the “main component” means the component with the highest content in the salt contained in the polymer solid electrolyte, preferably 50% by mass or more, more preferably 90% by mass or more, and further 100% by mass. preferable.
- the concentration of the salt is 1.0 mol/kg or more relative to the polymer solid electrolyte. When the concentration of the salt is equal to or higher than the lower limit, it is possible to increase not only the ionic conductivity but also the lithium ion transference number.
- salts 1 type of these salts may be used individually, and 2 types may be mixed and used.
- the above salts may further contain salts other than lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide.
- the polymer solid electrolyte is mainly composed of a polymer material containing a carbonate structure represented by the above general formula (1) as a structural unit, and lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide. It may further contain other components other than the salt.
- Other components include non-aqueous solvents and other additives.
- additives conventionally known various additives that are added to the electrolyte of a general electric storage element can be used.
- the content of other additives in the polymer solid electrolyte can be, for example, 0.01% by mass or more and 10% by mass or less, and can be 7% by mass or less, 3% by mass or less, or 1% by mass or less. preferable.
- the content of solid components in the solid polymer electrolyte is 99% by mass or more, preferably 99.9% by mass or more, and more preferably 100% by mass.
- the solid polymer electrolyte When the solid polymer electrolyte is applied to a power storage device having a negative electrode containing metallic lithium, for example, it can suppress deposition of dendritic metallic lithium (dendrite) on the surface of the negative electrode.
- the polymer solid electrolyte can be suitably used as an electrolyte for a storage element such as a lithium ion secondary battery, especially a lithium battery. Moreover, the polymer solid electrolyte can be particularly suitably used as an electrolyte for an all-solid battery.
- the polymer solid electrolyte can be used for any of the positive electrode layer, isolation layer, negative electrode layer, and the like in the electric storage element.
- a method for producing a polymer solid electrolyte according to one embodiment of the present invention includes a polymer material containing a carbonate structure represented by the general formula (1) as a structural unit, and lithium bis(trifluoromethanesulfonyl)imide or with a salt based on lithium bis(fluorosulfonyl)imide.
- This mixing method is not particularly limited. This mixing may be performed under heating by melting the polymer material containing the carbonate structure represented by the general formula (1) as a structural unit, and the carbonate structure represented by the general formula (1) is Even if the polymer material contained as a structural unit and the salt containing lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide as a main component are dissolved or dispersed in a liquid solvent, good.
- the polymer solid electrolyte can be obtained by removing the solvent after mixing. During this mixing, the above other components can be further mixed as necessary. Moreover, after mixing, the polymer solid electrolyte obtained may be formed into a predetermined shape.
- vinylene carbonate which is a precursor of polyvinylene carbonate (PVCA), and a salt containing lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide as a main component are mixed and dissolved in advance.
- a precursor solution is prepared by mixing a polymerization initiator such as a radical polymerization initiator, and after the precursor solution is injected into the storage element, the storage element is heated to convert vinylene carbonate in the storage element.
- a polymer solid electrolyte can also be obtained by polymerizing to produce polyvinylene carbonate.
- the electric storage element is an electric storage element including the polymer solid electrolyte.
- an all-solid-state battery will be described below as a specific example.
- the storage element 10 in FIG. 1 is an all-solid battery, and is a secondary battery in which a positive electrode layer 1 (positive electrode) and a negative electrode layer 2 (negative electrode) are arranged with an isolation layer 3 interposed therebetween.
- the positive electrode layer 1 has a positive electrode substrate 4 and a positive electrode active material layer 5 , and the positive electrode substrate 4 is the outermost layer of the positive electrode layer 1 .
- the negative electrode layer 2 has a negative electrode substrate 7 and a negative electrode active material layer 6 , and the negative electrode substrate 7 is the outermost layer of the negative electrode layer 2 .
- the negative electrode active material layer 6, the isolation layer 3, the positive electrode active material layer 5, and the positive electrode substrate 4 are laminated on the negative electrode substrate 7 in this order.
- At least one of the positive electrode layer 1, the negative electrode layer 2, and the isolation layer 3 of the storage element 10 contains the polymer solid electrolyte according to one embodiment of the present invention. More specifically, at least one of the positive electrode active material layer 5, the negative electrode active material layer 6, and the isolation layer 3 contains the polymer solid electrolyte according to one embodiment of the present invention. Since the solid polymer electrolyte according to one embodiment of the present invention has good oxidation resistance, at least one of the positive electrode active material layer 5 and the isolation layer 3 contains the solid polymer electrolyte according to one embodiment of the present invention. It is preferably contained.
- solid electrolytes than the polymer solid electrolyte according to one embodiment of the present invention may be used together.
- Other solid electrolytes include sulfide-based solid electrolytes, oxide-based solid electrolytes, polymer solid electrolytes other than the polymer solid electrolyte according to one embodiment of the present invention, and the like.
- a plurality of different types of solid electrolytes may be contained in one layer in the electric storage element 10, and different solid electrolytes may be contained in each layer.
- the positive electrode layer 1 includes a positive electrode substrate 4 and a positive electrode active material layer 5 laminated on the surface of the positive electrode substrate 4 .
- the positive electrode layer 1 may have an intermediate layer between the positive electrode substrate 4 and the positive electrode active material layer 5 .
- the positive electrode base material 4 has conductivity. Having “conductivity” means having a volume resistivity of 10 7 ⁇ cm or less as measured in accordance with JIS-H-0505 (1975), and “non-conductivity” It means that the volume resistivity is more than 10 7 ⁇ cm.
- metals such as aluminum, titanium, tantalum, indium, stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost.
- Examples of the positive electrode substrate 4 include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, the positive electrode substrate 4 is preferably aluminum foil or aluminum alloy foil. Examples of aluminum or aluminum alloy include A1085P, A3003P, A1N30, etc. defined in JIS-H-4000 (2014) or JIS-H-4160 (2006).
- the average thickness of the positive electrode substrate 4 is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, even more preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
- the "average thickness" of the positive electrode base material 4 and the negative electrode base material 7, which will be described later, refers to a value obtained by dividing the mass of the base material in a predetermined area by the true density and area of the base material.
- the intermediate layer is a layer arranged between the positive electrode substrate 4 and the positive electrode active material layer 5 .
- the intermediate layer reduces the contact resistance between the positive electrode substrate 4 and the positive electrode active material layer 5 by containing a conductive agent such as carbon particles.
- the composition of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
- the positive electrode active material layer 5 contains a positive electrode active material.
- the positive electrode active material layer 5 can be formed from a so-called positive electrode mixture containing a positive electrode active material.
- the positive electrode active material layer 5 may contain optional components such as a polymer solid electrolyte, a conductive agent, a binder, a thickener, a filler, and the like, if necessary. One or more of these optional components may not be substantially contained in the positive electrode active material layer 5 .
- the positive electrode active material contained in the positive electrode active material layer 5 can be appropriately selected from known positive electrode active materials commonly used in lithium ion secondary batteries and all-solid-state batteries.
- a material capable of intercalating and deintercalating lithium ions is usually used as the positive electrode active material. Examples thereof include lithium transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure, lithium transition metal composite oxides having a spinel crystal structure, polyanion compounds, chalcogen compounds, and sulfur.
- lithium transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure examples include Li[Li x Ni (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[Li x Ni ⁇ Co ( 1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1) and the like.
- lithium transition metal composite oxides having a spinel crystal structure examples include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
- Examples of polyanion compounds include LiFePO4 , LiMnPO4 , LiNiPO4 , LiCoPO4, Li3V2(PO4)3 , Li2MnSiO4 , Li2CoPO4F and the like.
- Examples of chalcogen compounds include titanium disulfide, molybdenum disulfide, and molybdenum dioxide.
- the atoms or polyanions in these materials may be partially substituted with atoms or anionic species of other elements.
- the surface of the positive electrode active material may be coated with a compound such as lithium niobate, lithium titanate, or lithium phosphate. In the positive electrode active material layer, one kind of these positive electrode active materials may be used alone, or two or more kinds may be mixed and used.
- positive electrode active materials include lithium transition metal composite oxides having an ⁇ -NaFeO 2 -type crystal structure or spinel-type crystal structure, and polyanion compounds containing nickel, cobalt, or manganese elements (LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , LiCoPO 4 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.) are preferable, and a lithium transition metal composite oxide having an ⁇ -NaFeO 2 type crystal structure is more preferable.
- the lithium-transition metal composite oxides having the ⁇ -NaFeO 2 type crystal structure those containing one or more of nickel, cobalt and manganese as transition metal elements are more preferable.
- These positive electrode active materials have a particularly high oxidation-reduction potential, and by using such positive electrode active materials, the energy density and the like of the electric storage element can be increased.
- the polymer solid electrolyte having good oxidation resistance according to one embodiment of the present invention is used for the storage element 10, even when these positive electrode active materials having a high oxidation-reduction potential are used, good It is possible to maintain good charge and discharge performance.
- the average particle size of the positive electrode active material is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less. By making the average particle size of the positive electrode active material equal to or more than the above lower limit, manufacturing or handling of the positive electrode active material becomes easy. By setting the average particle diameter of the positive electrode active material to the above upper limit or less, the conductivity of the positive electrode active material layer 5 is improved.
- the "average particle size" is based on the particle size distribution measured by a laser diffraction/scattering method for a diluted solution in which the particles are diluted with a solvent in accordance with JIS-Z-8825 (2013).
- Z-8819-2 (2001) means the value at which the volume-based integrated distribution calculated according to 50%.
- Pulverizers, classifiers, etc. are used to obtain particles in a predetermined shape.
- Pulverization methods include, for example, methods using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, or sieve.
- wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used.
- a sieve, an air classifier, or the like is used as necessary, both dry and wet.
- the content of the positive electrode active material in the positive electrode active material layer 5 is preferably 10% by mass or more and 95% by mass or less, more preferably 30% by mass or more, and further preferably 50% by mass or more. By setting the content of the positive electrode active material within the above range, the electric capacity of the storage element 10 can be increased.
- the content of the solid electrolyte is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 70% by mass or less, and further 50% by mass or less. preferable. By setting the content of the solid electrolyte within the above range, the electrical capacity of the storage element 10 can be increased.
- the content of the solid polymer electrolyte according to one embodiment of the present invention with respect to the total solid electrolyte in the positive electrode active material layer 5 is , preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and even more preferably substantially 100% by mass.
- the positive electrode active material and the solid electrolyte may form a composite.
- the conductive agent is not particularly limited as long as it is a conductive material.
- Examples of such conductive agents include carbonaceous materials, metals, and conductive ceramics.
- Carbonaceous materials include graphite, non-graphitic carbon, graphene-based carbon, and the like.
- Examples of non-graphitic carbon include carbon nanofiber, pitch-based carbon fiber, and carbon black.
- Examples of carbon black include furnace black, acetylene black, and ketjen black.
- Graphene-based carbon includes graphene, carbon nanotube (CNT), fullerene, and the like.
- the shape of the conductive agent may be powdery, fibrous, or the like.
- As the conductive agent one type of these materials may be used alone, or two or more types may be mixed and used. Also, these materials may be combined for use.
- a composite material of carbon black and CNT may be used.
- carbon black is preferable from the viewpoint of conductivity and coatability
- acetylene black is particularly preferable.
- the content of the conductive agent in the positive electrode active material layer 5 is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
- binders include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyimide, poly(meth)acrylic acid, poly(meth)acrylic acid ester, poly(meth) ) thermoplastic resins such as acrylamide; elastomers such as ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
- fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
- PTFE polytetrafluoroethylene
- PVDF polyvinylidene fluoride
- binders include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc
- the binder content in the positive electrode active material layer 5 is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less. By setting the content of the binder within the above range, the active material can be stably retained.
- thickeners examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
- CMC carboxymethylcellulose
- methylcellulose examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
- the functional group may be previously deactivated by methylation or the like.
- the filler is not particularly limited.
- Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide, calcium hydroxide, and water.
- Hydroxides such as aluminum oxide, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, and zeolite , apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, mica, and other mineral resource-derived substances or artificial products thereof.
- the positive electrode active material layer 5 is composed of typical nonmetallic elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, and W are used as positive electrode active materials, solid electrolytes, conductive agents, binders, and thickeners. You may contain as a component other than a sticky agent and a filler.
- the average thickness of the positive electrode active material layer 5 is preferably 30 ⁇ m or more and 1000 ⁇ m or less, more preferably 60 ⁇ m or more and 500 ⁇ m or less. By setting the average thickness of the positive electrode active material layer 5 to the above lower limit or more, it is possible to obtain the electric storage device 10 having a high energy density. By making the average thickness of the positive electrode active material layer 5 equal to or less than the upper limit, it is possible to reduce the size of the electric storage device 10 . Let the average thickness of the positive electrode active material layer 5 be the average value of the thickness measured at arbitrary five places. The same applies to the average thicknesses of the negative electrode active material layer 6 and the separation layer 3, which will be described later.
- the negative electrode layer 2 has a negative electrode base material 7 and a negative electrode active material layer 6 disposed on the negative electrode base material 7 directly or via an intermediate layer.
- the structure of the intermediate layer is not particularly limited, and can be selected from the structures exemplified for the positive electrode layer 1, for example.
- the negative electrode base material 7 has conductivity.
- materials for the negative electrode substrate 7 metals such as copper, nickel, stainless steel, nickel-plated steel, and aluminum, alloys thereof, carbonaceous materials, and the like are used. Among these, copper or a copper alloy is preferred.
- examples of negative electrode substrates include foils and vapor deposition films, and foils are preferred from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate.
- Examples of copper foil include rolled copper foil and electrolytic copper foil.
- the average thickness of the negative electrode substrate 7 is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, even more preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
- the negative electrode active material layer 6 contains a negative electrode active material.
- the negative electrode active material layer 6 can be formed, for example, from a so-called negative electrode mixture containing a negative electrode active material.
- the negative electrode active material layer 6 contains optional components such as a solid electrolyte, a conductive agent, a binder, a thickener, a filler, and the like, if necessary.
- the types and suitable contents of these optional components in the negative electrode active material layer 6 are the same as those of the above-described optional components in the positive electrode active material layer 5 .
- One or more of these optional components may not be substantially contained in the negative electrode active material layer 6 .
- the negative electrode active material layer 6 is composed of typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, and Ba.
- Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W, etc. are used as negative electrode active materials, solid electrolytes, and conductive agents. , a binder, a thickener, and a component other than a filler.
- the negative electrode active material can be appropriately selected from known negative electrode active materials commonly used in lithium ion secondary batteries and all-solid batteries.
- a material capable of intercalating and deintercalating lithium ions is usually used as the negative electrode active material.
- the negative electrode active material include metal Li; metals or metalloids such as Si and Sn; metal oxides and metalloid oxides such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite and non-graphitizable carbon (easily graphitizable carbon or non-graphitizable carbon) be done.
- the negative electrode active material layer 6 one kind of these materials may be used alone, or two or more kinds may be mixed and used.
- Graphite refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane of 0.33 nm or more and less than 0.34 nm as determined by X-ray diffraction before charging/discharging or in a discharged state.
- Graphite includes natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material with stable physical properties can be obtained.
- Non-graphitic carbon refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane of 0.34 nm or more and 0.42 nm or less as determined by X-ray diffraction before charging/discharging or in a discharged state.
- Non-graphitizable carbon includes non-graphitizable carbon and graphitizable carbon. Examples of non-graphitic carbon include resin-derived materials, petroleum pitch-derived materials, and alcohol-derived materials.
- the discharged state means a state in which the carbon material, which is the negative electrode active material, is discharged such that lithium ions that can be inserted and released are sufficiently released during charging and discharging.
- the open circuit voltage is 0.7 V or higher.
- non-graphitizable carbon refers to a carbon material having a d 002 of 0.36 nm or more and 0.42 nm or less.
- Graphitizable carbon refers to a carbon material having a d 002 of 0.34 nm or more and less than 0.36 nm.
- Metallic lithium is preferable as the negative electrode active material.
- Metallic lithium may exist as pure metallic lithium consisting essentially of lithium, or may exist as a lithium alloy containing other metal elements.
- Lithium alloys include lithium silver alloys, lithium zinc alloys, lithium calcium alloys, lithium aluminum alloys, lithium magnesium alloys, lithium indium alloys, and the like.
- the lithium alloy may contain multiple metal elements other than lithium.
- the negative electrode active material layer 6 is preferably a layer consisting essentially of metallic lithium.
- the content of metallic lithium in the negative electrode active material layer 6 is preferably 90% by mass or more, more preferably 99% by mass or more, and even more preferably 100% by mass.
- the negative electrode active material layer 6 is preferably a pure metal lithium foil or a lithium alloy foil.
- Particles can be used as the negative electrode active material.
- the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
- the negative electrode active material is, for example, a carbon material, its average particle size is preferably 1 ⁇ m or more and 100 ⁇ m or less.
- the negative electrode active material is a metal, a metalloid, a metal oxide, a metalloid oxide, a titanium-containing oxide, a polyphosphate compound, or the like, the average particle size is preferably 1 nm or more and 10 ⁇ m or less.
- the conductivity of the active material layer is improved.
- a pulverizer, a classifier, or the like is used to obtain powder having a predetermined particle size.
- the pulverization method and classification method can be selected from the methods exemplified for the positive electrode layer 1, for example.
- the content of the negative electrode active material in the negative electrode active material layer 6 is preferably 10% by mass or more and 95% by mass or less, more preferably 30% by mass or more, and further 50% by mass or more. more preferred.
- the electric capacity of the storage element 10 can be increased.
- the content of the solid electrolyte is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 70% by mass or less, and further preferably 50% by mass or less. preferable. By setting the content of the solid electrolyte within the above range, the electric capacity of the electric storage element 10 can be increased.
- the content of the solid polymer electrolyte according to one embodiment of the present invention with respect to the total solid electrolyte in the negative electrode active material layer 6 is , preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and even more preferably substantially 100% by mass.
- the average thickness of the negative electrode active material layer 6 is not particularly limited. By making the average thickness of the negative electrode active material layer 6 equal to or greater than the above lower limit, the charge/discharge performance and the like of the storage element 10 can be enhanced. In particular, when the negative electrode active material is metallic lithium, charging/discharging is sufficiently possible even if the average thickness of the negative electrode active material layer 6 is as thin as less than 1 ⁇ m. By making the average thickness of the negative electrode active material layer 6 equal to or less than the above upper limit, it is possible to reduce the size of the storage element 10 .
- the isolation layer 3 preferably contains a solid electrolyte.
- a solid electrolyte contained in the isolation layer 3
- various solid electrolytes can be used in addition to the polymer solid electrolyte according to the embodiment of the present invention described above.
- the content of the solid electrolyte in the isolation layer 3 is preferably 70% by mass or more, more preferably 90% by mass or more, still more preferably 99% by mass or more, and even more preferably substantially 100% by mass.
- the content of the solid polymer electrolyte according to one embodiment of the present invention in the total solid electrolyte in the isolation layer 3 is It is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and even more preferably substantially 100% by mass.
- the isolation layer 3 may contain optional components such as fillers in addition to the solid electrolyte.
- Optional components such as fillers can be selected from the materials exemplified for the positive electrode active material layer 5 .
- a woven fabric, a non-woven fabric, a porous resin film, or the like may be arranged in the isolating layer 3 in order to increase the mechanical strength.
- the average thickness of the isolation layer 3 is preferably 1 ⁇ m or more and 200 ⁇ m or less, more preferably 3 ⁇ m or more and 100 ⁇ m or less. By setting the average thickness of the isolation layer 3 to the above lower limit or more, it is possible to reliably insulate the positive electrode layer 1 and the negative electrode layer 2 from each other. By making the average thickness of isolation layer 3 equal to or less than the above upper limit, it is possible to increase the energy density of storage element 10 .
- the positive electrode potential of the storage element 10 fully charged by the charging method during normal use is, for example, 3.5 V vs. Li/Li + or more, preferably 4.0 V vs. Li/Li + or more is more preferable, and 4.5 V vs. More preferably Li/Li + or more, 4.6 V vs. More preferably Li/Li + or more, 4.7 V vs. More preferably Li/Li + or more, 4.8 V vs. Li/Li + or more is even more preferable.
- the energy density and voltage of the storage element 10 can be increased by setting the positive electrode potential in a fully charged state by the charging method during normal use to the lower limit or higher.
- the solid polymer electrolyte having good oxidation resistance according to one embodiment of the present invention is used for the storage element 10, the positive electrode potential in a fully charged state by the charging method during normal use is Even when it is high, good charge/discharge performance can be maintained.
- the upper limit of the positive electrode potential in a fully charged state by the charging method during normal use of the storage element 10 is, for example, 6.0 V vs. Li/Li + , 5.5V vs. Li/Li + is preferred, 5.2V vs. Li/Li + is more preferred.
- the power storage device of the present embodiment is a power source for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), power sources for electronic devices such as personal computers and communication terminals, or power sources for power storage.
- EV electric vehicles
- HEV hybrid vehicles
- PHEV plug-in hybrid vehicles
- power sources for electronic devices such as personal computers and communication terminals
- power sources for power storage
- it can be mounted as a power storage unit (battery module) configured by assembling a plurality of power storage elements.
- the technology according to one embodiment of the present invention may be applied to at least one power storage element included in the power storage unit.
- a power storage device according to one embodiment of the present invention includes two or more power storage elements and one or more power storage elements according to one embodiment of the present invention (hereinafter referred to as "second embodiment").
- the technology according to one embodiment of the present invention is applied to at least one power storage element included in the power storage device according to the second embodiment.
- One or more energy storage elements not related to one embodiment of the present invention may be provided, or two or more energy storage elements according to one embodiment of the present invention may be included.
- FIG. 2 shows an example of a power storage device 30 according to the second embodiment, in which power storage units 20 each including two or more electrically connected power storage elements 10 are assembled.
- the power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 10, a bus bar (not shown) that electrically connects two or more power storage units 20, and the like.
- the power storage unit 20 or power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more power storage elements.
- the method for producing an electric storage element according to one embodiment of the present invention is generally known except that the polymer solid electrolyte according to one embodiment of the present invention is used to produce at least one of the positive electrode layer, the isolation layer, and the negative electrode layer. It can be done by the method of The production method includes, for example, (1) preparing a positive electrode layer-forming material such as a positive electrode mixture and a positive electrode base material, (2) preparing a separation layer material, and (3) a negative electrode mixture, a negative electrode base material, and the like. and (4) laminating the positive electrode layer, the isolation layer and the negative electrode layer.
- the above-described forms of the positive electrode layer, the separating layer, and the negative electrode layer provided in the electric storage element can be applied.
- metallic lithium when metallic lithium is used as the negative electrode active material, metallic lithium foil or the like can be used as an example of the negative electrode layer forming material.
- the present invention is not limited to the above-described embodiments, and can be implemented in various modified and improved modes in addition to the above-described modes.
- the power storage device according to the present invention may include layers other than the positive electrode layer, the isolation layer, and the negative electrode layer.
- Each structure of the positive electrode layer, the isolation layer, and the negative electrode layer is not limited to the above-described structures.
- the negative electrode layer (negative electrode) may be composed only of the negative electrode base material without the negative electrode active material layer.
- the electric storage device according to the present invention may contain a liquid in one or more of the layers.
- the positive electrode, negative electrode, etc. of the storage device according to the present invention may not have a layered structure.
- the storage element according to the present invention may be a storage element that is a secondary battery, or may be a capacitor or the like.
- Example 1 After mixing vinylene carbonate and LiTFSI, a precursor was prepared by adding azobisisobutyronitrile (AIBN) as a polymerization initiator. Using a working electrode and a counter electrode made of SUS foil (diameter 26 mm) with a thickness of 12 ⁇ m and a separation layer made of a cellulose nonwoven fabric with a thickness of 35 ⁇ m, the separation layer was sandwiched between the working electrode and the counter electrode, and the precursor was injected and then sealed. By doing so, a cell for ionic conductivity evaluation was manufactured. After that, the ion conductivity evaluation cell is left in a constant temperature bath at 60° C.
- AIBN azobisisobutyronitrile
- polyvinylene carbonate PVCA
- An ionic conductivity evaluation cell comprising the polymer solid electrolyte of Example 1 was obtained.
- the concentration of salt (LiTFSI) in the polymer solid electrolyte of Example 1 was 1.4 mol/kg.
- Example 2 to 8 Comparative Examples 1, 2, 3 and 5
- Examples 2 to 8 and Comparative Examples 1, 2, 3 and 5 were prepared in the same manner as in Example 1 except that the salt, polymer material, and salt concentration were as shown in Tables 1 and 2.
- An ionic conductivity evaluation cell having a molecular solid electrolyte was obtained.
- the ionic conductivity of each polymer solid electrolyte was determined by an electrochemical impedance method using an ionic conductivity evaluation cell provided with each polymer solid electrolyte of Examples and Comparative Examples. Under the environment of 25° C., the measurement frequency was set to 7 MHz to 100 mHz, and the ionic conductivity was obtained by a conventional method from the obtained complex impedance.
- the Young's modulus of the self-supporting membrane composed of each polymer solid electrolyte of Examples 4 to 8 was obtained by the following procedure. As samples for Young's modulus evaluation, two self-supporting membranes of each solid polymer electrolyte having length, width and thickness of 0.5 cm, 0.5 cm and 300 to 500 ⁇ m were prepared. Using a microcompression tester (MCT-211 manufactured by Shimadzu Corporation), the amount of displacement of the obtained self-supporting membrane was measured. The measurement conditions were the maximum test force of 100 mN, the minimum test force of 0.49 mN, the load speed of 9.68 mN/sec, and the load retention time and unload retention time of 0 seconds in the test mode of the load-unload test.
- Example 1 As shown in Table 1, it was confirmed that the polymer solid electrolytes of Examples 1 to 3 had good oxidation resistance and good ionic conductivity. As shown in FIGS. 3 and 4, the voltage at which the current abruptly increases, that is, the voltage at which the oxidative decomposition of the solid polymer electrolyte occurs is high in Example 1 and low in Comparative Example 4. It can be seen that the molecular solid electrolyte has good oxidation resistance and Comparative Example 4 has poor oxidation resistance.
- the polymer solid electrolyte according to the present invention is suitably used as an electrolyte for power storage elements such as all-solid batteries.
- Positive electrode layer positive electrode layer (positive electrode) 2 negative electrode layer (negative electrode) 3 Separation layer 4 Positive electrode substrate 5 Positive electrode active material layer 6 Negative electrode active material layer 7 Negative electrode substrate 10 Power storage element (all-solid battery) 20 power storage unit 30 power storage device
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
A polymer solid electrolyte according to one aspect of the present invention contains: a polymer material containing, as a constituent unit, a carbonate structure represented by the following general formula (1); and, a salt having lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide as a main component. The concentration of the salt is 1.0 mol/kg or greater. (In the formula, R1 and R2 independently represent H, F, or an alkyl group.)
Description
本発明は、高分子固体電解質、蓄電素子及び蓄電装置に関する。
The present invention relates to solid polymer electrolytes, power storage elements, and power storage devices.
リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質とを有し、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
Non-aqueous electrolyte secondary batteries, typified by lithium-ion secondary batteries, are widely used in electronic devices such as personal computers, communication terminals, and automobiles due to their high energy density. The non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically isolated by a separator and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the electrodes. It is configured to be charged and discharged by Capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as storage elements other than non-aqueous electrolyte secondary batteries.
近年、液漏れの心配がないといった理由から、固体の非水電解質が提案されている。例えば、このような非水電解質として、架橋性の官能基によって架橋されたポリエーテルを有する固体電解質が用いられた二次電池が提案されている(特許文献1参照)。
In recent years, solid non-aqueous electrolytes have been proposed because there is no concern about liquid leakage. For example, a secondary battery using a solid electrolyte having polyether crosslinked with a crosslinkable functional group as such a non-aqueous electrolyte has been proposed (see Patent Document 1).
しかし、上記特許文献1に記載されたような固体電解質では、リチウムイオン伝導性及び耐酸化性が両立できているとはいい難い。
However, it is difficult to say that the solid electrolyte described in Patent Document 1 has both lithium ion conductivity and oxidation resistance.
本発明の目的は、リチウムイオン伝導性及び耐酸化性が両立した高分子固体電解質、それを備える蓄電素子及び蓄電装置を提供することである。
An object of the present invention is to provide a polymer solid electrolyte that has both lithium ion conductivity and oxidation resistance, and an electric storage element and an electric storage device comprising the same.
上記課題を解決するためになされた本発明の一側面に係る実施形態は下記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料と、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩とを含み、上記塩の濃度が1.0mol/kg以上である高分子固体電解質である。
(式中、R1及びR2は独立的にH、F、又はアルキル基である。)
An embodiment according to one aspect of the present invention, which has been made to solve the above problems, is a polymer material containing a carbonate structure represented by the following general formula (1) as a structural unit, and lithium bis (trifluoromethanesulfonyl) imide Alternatively, it is a polymer solid electrolyte containing a salt containing lithium bis(fluorosulfonyl)imide as a main component, wherein the concentration of the salt is 1.0 mol/kg or more.
(Wherein R 1 and R 2 are independently H, F, or an alkyl group.)
本発明の他の一側面は、本発明の一側面に係る高分子固体電解質を備える蓄電素子である。
Another aspect of the present invention is a power storage device comprising the polymer solid electrolyte according to one aspect of the present invention.
本発明の他の一側面は、蓄電素子を二以上備え、かつ上記本発明の他の一側面に係る蓄電素子を一以上備える蓄電装置である。
Another aspect of the present invention is a power storage device including two or more power storage elements and one or more power storage elements according to the other aspect of the present invention.
本発明の一側面に係る高分子固体電解質は、イオン伝導性及び耐酸化性の両立ができる。
The solid polymer electrolyte according to one aspect of the present invention can achieve both ionic conductivity and oxidation resistance.
本発明の他の一側面に係る蓄電素子は、当該蓄電素子が備える高分子固体電解質のイオン伝導性及び耐酸化性を両立させることができる。
A power storage device according to another aspect of the present invention can achieve both ionic conductivity and oxidation resistance of the polymer solid electrolyte included in the power storage device.
本発明の他の一側面に係る蓄電装置は、当該蓄電装置が備える高分子固体電解質のイオン伝導性及び耐酸化性を両立させることができる。
A power storage device according to another aspect of the present invention can achieve both ionic conductivity and oxidation resistance of the polymer solid electrolyte included in the power storage device.
初めに、本明細書によって開示される高分子固体電解質、蓄電素子及び蓄電装置の概要について説明する。
First, an outline of the solid polymer electrolyte, the power storage element, and the power storage device disclosed by the present specification will be described.
本発明の一側面に係る高分子固体電解質は、上記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料と、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩とを含み、上記塩の濃度が1.0mol/kg以上である高分子固体電解質である。
A polymer solid electrolyte according to one aspect of the present invention comprises a polymer material containing a carbonate structure represented by the general formula (1) as a constituent unit, and lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl) ) and a salt containing imide as a main component, wherein the concentration of the salt is 1.0 mol/kg or more.
本発明の一実施形態に係る高分子固体電解質は、耐酸化性が高い上記一般式(1)で表されるカーボネート構造に対して、高濃度のリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)又はリチウムビス(フルオロスルホニル)イミド(LiFSI)を含有させることでイオン伝導性及び耐酸化性の両立ができる。当該高分子固体電解質のイオン伝導性及び耐酸化性が良好である理由は定かではないが、以下のような理由が推測される。LiTFSIとLiFSIは、上記一般式(1)で表されるカーボネート構造に対する溶解性が高いことから、高分子固体電解質中に上記塩を上記塩の濃度が1.0mol/kg以上の高濃度で含有させることが可能である。そのため、上記カーボネート構造を構成単位として含有する高分子材料を含む高分子固体電解質中で、リチウムイオンに対して上記カーボネート構造よりもTFSIイオン又はFSIイオンが優先的に配位することで良好なイオン伝導パスが形成され、イオン伝導性が高くなる。当該高イオン伝導性と、上記一般式(1)で表されるカーボネート構造の有する高耐酸化性により、本発明の一実施形態に係る高分子固体電解質は、イオン伝導性及び耐酸化性の両立ができるものと推測される。一方で、同じイミド塩であっても、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)等はTFSIイオンやFSIイオンと比較してBETIイオン等のイオン半径が大きいことで、塩を構成するイオンの電荷中心間の距離が大きくなるため、リチウムイオンに対してBETIイオン等が優先的に配位し難いことから、イオン伝導度の向上効果は見られないものと推察される。また、リチウムジフルオロ(オキサラト)ボレート(LiDFOB)も同様に、DFOBイオンのイオン半径が大きいため、リチウムイオンに対してDFOBイオンが優先的に配位し難いことから、イオン伝導度の向上効果は見られないものと推察される。さらに、上記塩がリチウムビス(フルオロスルホニル)イミド(LiFSI)である場合、上記高分子固体電解質からなる自立膜のヤング率も良好である。
The polymer solid electrolyte according to one embodiment of the present invention is a carbonate structure represented by the general formula (1) having high oxidation resistance, and a high concentration of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or By containing lithium bis(fluorosulfonyl)imide (LiFSI), both ionic conductivity and oxidation resistance can be achieved. Although the reason why the polymer solid electrolyte has good ion conductivity and oxidation resistance is not clear, the following reasons are presumed. Since LiTFSI and LiFSI have high solubility in the carbonate structure represented by the general formula (1), the above salt is contained in the polymer solid electrolyte at a high concentration of 1.0 mol / kg or more. It is possible to Therefore, in a polymer solid electrolyte containing a polymer material containing the carbonate structure as a structural unit, the TFSI ion or FSI ion is preferentially coordinated to the lithium ion rather than the carbonate structure. Conductive paths are formed and ionic conductivity is increased. Due to the high ionic conductivity and the high oxidation resistance of the carbonate structure represented by the general formula (1), the polymer solid electrolyte according to one embodiment of the present invention can achieve both ionic conductivity and oxidation resistance. is assumed to be possible. On the other hand, even though it is the same imide salt, lithium bis(pentafluoroethanesulfonyl)imide (LiBETI) has a larger ionic radius than TFSI ions and FSI ions. Since the distance between the charge centers of is large, it is difficult for BETI ions and the like to preferentially coordinate with lithium ions. Similarly, lithium difluoro(oxalato)borate (LiDFOB) has a large ionic radius of DFOB ions, which makes it difficult for DFOB ions to preferentially coordinate with lithium ions. presumed to be impossible. Furthermore, when the salt is lithium bis(fluorosulfonyl)imide (LiFSI), the Young's modulus of the self-supporting membrane made of the polymer solid electrolyte is also good.
なお、「固体電解質」とは、実質的に固体成分のみから構成されている電解質をいう。固体成分とは、20℃において固体である成分をいう。電解質が実質的に固体成分のみから構成されているとは、電解質における固体成分の含有割合が99質量%以上であることをいう。
"Solid electrolyte" refers to an electrolyte that is substantially composed only of solid components. A solid component refers to a component that is solid at 20°C. The expression that the electrolyte is substantially composed only of solid components means that the content of solid components in the electrolyte is 99% by mass or more.
本発明の他の一側面に係る蓄電素子は、本発明の一側面に係る高分子固体電解質を備える。当該蓄電素子は、当該高分子固体電解質を備えるため、イオン伝導性及び耐酸化性を両立できる。そのため、例えば酸化還元電位が高い正極活物質が用いられている場合であっても良好なイオン伝導性が発揮される。
A power storage device according to another aspect of the present invention includes the polymer solid electrolyte according to one aspect of the present invention. Since the electric storage device includes the solid polymer electrolyte, it can achieve both ionic conductivity and oxidation resistance. Therefore, for example, even when a positive electrode active material having a high oxidation-reduction potential is used, good ion conductivity is exhibited.
本発明の他の一側面に係る蓄電素子は、通常使用時の充電方法で満充電とした状態の正極電位が4.7V vs.Li/Li+以上であることが好ましい。当該蓄電素子は、耐酸化性が良好な当該高分子固体電解質を備えるため、このように通常使用時の充電方法で満充電とした状態の正極電位が高い使用形態であっても良好なイオン伝導性が発揮され、高いエネルギー密度を有する蓄電素子とすることができる。
The power storage device according to another aspect of the present invention has a positive electrode potential of 4.7 V vs. 4.7 V when fully charged by a charging method during normal use. It is preferably Li/Li + or more. Since the electric storage element includes the polymer solid electrolyte with good oxidation resistance, even in a usage pattern in which the positive electrode potential is high when fully charged by the charging method during normal use, good ion conduction is achieved. It is possible to obtain a power storage element having a high energy density.
なお、「通常使用時」とは、当該蓄電素子について推奨され、又は指定される充放電条件を採用して当該蓄電素子を使用する場合であり、当該蓄電素子のための充電器が用意されている場合は、その充電器を適用して当該蓄電素子を使用する場合をいう。また、「満充電とした状態の正極電位」とは、満充電後の通電していない状態での正極電位である。
Note that "during normal use" is when the storage element is used under the charging and discharging conditions recommended or specified for the storage element, and a charger for the storage element is prepared. If there is, it means the case of using the storage device by applying the charger. Further, "the positive electrode potential in a fully charged state" is the positive electrode potential in a state in which the battery is not energized after being fully charged.
本発明の他の一側面に係る蓄電装置は、蓄電素子を二以上備え、かつ上記本発明の他の一側面に係る蓄電素子を一以上備える。
A power storage device according to another aspect of the present invention includes two or more power storage elements, and one or more power storage elements according to another aspect of the present invention.
当該蓄電装置は、当該高分子固体電解質を備えるため、イオン伝導性及び耐酸化性を両立できる。
Since the power storage device includes the solid polymer electrolyte, it can achieve both ionic conductivity and oxidation resistance.
本発明の一実施形態に係る高分子固体電解質、蓄電素子の構成、蓄電装置の構成及び蓄電素子の製造方法、並びにその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。
A polymer solid electrolyte, a structure of an electric storage element, a structure of an electric storage device, a method for manufacturing an electric storage element, and other embodiments according to one embodiment of the present invention will be described in detail. Note that the name of each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
<高分子固体電解質>
当該高分子固体電解質は、上記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料と、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩とを含み、上記塩の濃度が1.0mol/kg以上である高分子固体電解質である。 <Polymer solid electrolyte>
The polymer solid electrolyte is mainly composed of a polymer material containing a carbonate structure represented by the above general formula (1) as a structural unit, and lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide. and a salt having a concentration of 1.0 mol/kg or more.
当該高分子固体電解質は、上記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料と、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩とを含み、上記塩の濃度が1.0mol/kg以上である高分子固体電解質である。 <Polymer solid electrolyte>
The polymer solid electrolyte is mainly composed of a polymer material containing a carbonate structure represented by the above general formula (1) as a structural unit, and lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide. and a salt having a concentration of 1.0 mol/kg or more.
(高分子材料)
本発明の一実施形態に係る高分子材料は、上記一般式(1)で表されるカーボネート構造を構成単位として含有する。一般式(1)におけるR1及びR2は、独立的にH、F、又はアルキル基である。R1及びR2は、少なくとも何れか一方がHであることが好ましい。また、R1及びR2がアルキル基である場合、その炭素数は特に制限されないが、20以下であることが好ましく、10以下であることがより好ましく、8以下であることがさらに好ましい。上記高分子材料は、上記一般式(1)で表されるカーボネート構造を構成単位として含んでいればよく、上記一般式(1)で表されるカーボネート構造のみを構成単位とする単独重合体からなってもよく、上記一般式(1)で表されるカーボネート構造と上記一般式(1)で表されるカーボネート構造以外の構造とを構成単位として含有する共重合体を含んでなってもよく、当該共重合体からなってもよい。上記高分子材料に対する上記一般式(1)で表されるカーボネート構造の含有量は、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上が更に好ましく、40質量%以上がより更に好ましく、60質量%以上が一層好ましく、80質量%以上がより一層好ましい。上記高分子材料の数平均分子量の下限は5000であることが好ましく、10000であることがより好ましい。数平均分子量の上限は500000であることが好ましく、100000であることがより好ましい。上記高分子材料の数平均分子量が上記下限以上又は上限以下であることにより、耐酸化性を高めることに加えて、取扱性、成形性等を高めること等ができる。 (Polymer material)
A polymeric material according to one embodiment of the present invention contains a carbonate structure represented by the general formula (1) as a structural unit. R 1 and R 2 in general formula (1) are independently H, F, or alkyl groups. At least one of R 1 and R 2 is preferably H. When R 1 and R 2 are alkyl groups, the number of carbon atoms is not particularly limited, but is preferably 20 or less, more preferably 10 or less, and even more preferably 8 or less. The polymer material may contain the carbonate structure represented by the general formula (1) as a structural unit, and may be a homopolymer having only the carbonate structure represented by the general formula (1) as a structural unit. It may be composed of a copolymer containing a carbonate structure represented by the general formula (1) and a structure other than the carbonate structure represented by the general formula (1) as structural units. , may consist of the copolymer. The content of the carbonate structure represented by the general formula (1) in the polymer material is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and 40% by mass or more. Even more preferably, 60% by mass or more is even more preferable, and 80% by mass or more is even more preferable. The lower limit of the number average molecular weight of the polymer material is preferably 5,000, more preferably 10,000. The upper limit of the number average molecular weight is preferably 500,000, more preferably 100,000. By setting the number average molecular weight of the polymer material to be equal to or more than the lower limit or equal to or less than the upper limit, it is possible to improve not only oxidation resistance but also handleability, moldability, and the like.
本発明の一実施形態に係る高分子材料は、上記一般式(1)で表されるカーボネート構造を構成単位として含有する。一般式(1)におけるR1及びR2は、独立的にH、F、又はアルキル基である。R1及びR2は、少なくとも何れか一方がHであることが好ましい。また、R1及びR2がアルキル基である場合、その炭素数は特に制限されないが、20以下であることが好ましく、10以下であることがより好ましく、8以下であることがさらに好ましい。上記高分子材料は、上記一般式(1)で表されるカーボネート構造を構成単位として含んでいればよく、上記一般式(1)で表されるカーボネート構造のみを構成単位とする単独重合体からなってもよく、上記一般式(1)で表されるカーボネート構造と上記一般式(1)で表されるカーボネート構造以外の構造とを構成単位として含有する共重合体を含んでなってもよく、当該共重合体からなってもよい。上記高分子材料に対する上記一般式(1)で表されるカーボネート構造の含有量は、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上が更に好ましく、40質量%以上がより更に好ましく、60質量%以上が一層好ましく、80質量%以上がより一層好ましい。上記高分子材料の数平均分子量の下限は5000であることが好ましく、10000であることがより好ましい。数平均分子量の上限は500000であることが好ましく、100000であることがより好ましい。上記高分子材料の数平均分子量が上記下限以上又は上限以下であることにより、耐酸化性を高めることに加えて、取扱性、成形性等を高めること等ができる。 (Polymer material)
A polymeric material according to one embodiment of the present invention contains a carbonate structure represented by the general formula (1) as a structural unit. R 1 and R 2 in general formula (1) are independently H, F, or alkyl groups. At least one of R 1 and R 2 is preferably H. When R 1 and R 2 are alkyl groups, the number of carbon atoms is not particularly limited, but is preferably 20 or less, more preferably 10 or less, and even more preferably 8 or less. The polymer material may contain the carbonate structure represented by the general formula (1) as a structural unit, and may be a homopolymer having only the carbonate structure represented by the general formula (1) as a structural unit. It may be composed of a copolymer containing a carbonate structure represented by the general formula (1) and a structure other than the carbonate structure represented by the general formula (1) as structural units. , may consist of the copolymer. The content of the carbonate structure represented by the general formula (1) in the polymer material is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and 40% by mass or more. Even more preferably, 60% by mass or more is even more preferable, and 80% by mass or more is even more preferable. The lower limit of the number average molecular weight of the polymer material is preferably 5,000, more preferably 10,000. The upper limit of the number average molecular weight is preferably 500,000, more preferably 100,000. By setting the number average molecular weight of the polymer material to be equal to or more than the lower limit or equal to or less than the upper limit, it is possible to improve not only oxidation resistance but also handleability, moldability, and the like.
(塩)
本発明の一実施形態に係る塩は、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする。ここで、「主成分」とは、高分子固体電解質に含有される塩において最も含有量が多い成分を意味し、50質量%以上が好ましく、90質量%以上がより好ましく、100質量%が更に好ましい。上記塩の濃度は、上記高分子固体電解質に対して1.0mol/kg以上である。上記塩の濃度が上記下限以上であることにより、イオン伝導度を高めることに加えて、リチウムイオン輸率を高めること等ができる。なお、上記塩としては、これら塩の1種を単独で用いてもよく、2種を混合して用いてもよい。上記塩はリチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミド以外の他の塩をさらに含んでいてもよい。 (salt)
A salt according to one embodiment of the present invention is based on lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide. Here, the “main component” means the component with the highest content in the salt contained in the polymer solid electrolyte, preferably 50% by mass or more, more preferably 90% by mass or more, and further 100% by mass. preferable. The concentration of the salt is 1.0 mol/kg or more relative to the polymer solid electrolyte. When the concentration of the salt is equal to or higher than the lower limit, it is possible to increase not only the ionic conductivity but also the lithium ion transference number. In addition, as said salt, 1 type of these salts may be used individually, and 2 types may be mixed and used. The above salts may further contain salts other than lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide.
本発明の一実施形態に係る塩は、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする。ここで、「主成分」とは、高分子固体電解質に含有される塩において最も含有量が多い成分を意味し、50質量%以上が好ましく、90質量%以上がより好ましく、100質量%が更に好ましい。上記塩の濃度は、上記高分子固体電解質に対して1.0mol/kg以上である。上記塩の濃度が上記下限以上であることにより、イオン伝導度を高めることに加えて、リチウムイオン輸率を高めること等ができる。なお、上記塩としては、これら塩の1種を単独で用いてもよく、2種を混合して用いてもよい。上記塩はリチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミド以外の他の塩をさらに含んでいてもよい。 (salt)
A salt according to one embodiment of the present invention is based on lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide. Here, the “main component” means the component with the highest content in the salt contained in the polymer solid electrolyte, preferably 50% by mass or more, more preferably 90% by mass or more, and further 100% by mass. preferable. The concentration of the salt is 1.0 mol/kg or more relative to the polymer solid electrolyte. When the concentration of the salt is equal to or higher than the lower limit, it is possible to increase not only the ionic conductivity but also the lithium ion transference number. In addition, as said salt, 1 type of these salts may be used individually, and 2 types may be mixed and used. The above salts may further contain salts other than lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide.
(他の成分)
当該高分子固体電解質は、上記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料と、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩以外の他の成分をさらに含んでいてもよい。 (other ingredients)
The polymer solid electrolyte is mainly composed of a polymer material containing a carbonate structure represented by the above general formula (1) as a structural unit, and lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide. It may further contain other components other than the salt.
当該高分子固体電解質は、上記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料と、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩以外の他の成分をさらに含んでいてもよい。 (other ingredients)
The polymer solid electrolyte is mainly composed of a polymer material containing a carbonate structure represented by the above general formula (1) as a structural unit, and lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide. It may further contain other components other than the salt.
他の成分としては、非水溶媒、その他の添加剤等が挙げられる。
Other components include non-aqueous solvents and other additives.
その他の添加剤としては、一般的な蓄電素子の電解質に添加される従来公知の各種添加剤を用いることができる。当該高分子固体電解質におけるその他の添加剤の含有量は、例えば0.01質量%以上10質量%以下とすることができ、7質量%以下、3質量%以下又は1質量%以下であることが好ましい。
As other additives, conventionally known various additives that are added to the electrolyte of a general electric storage element can be used. The content of other additives in the polymer solid electrolyte can be, for example, 0.01% by mass or more and 10% by mass or less, and can be 7% by mass or less, 3% by mass or less, or 1% by mass or less. preferable.
当該高分子固体電解質における固体成分の含有割合は、99質量%以上であり、99.9質量%以上が好ましく、100質量%がより好ましい。当該高分子固体電解質は、例えば金属リチウムを有する負極を備える蓄電素子に適用したときの、負極表面における樹枝状の形態をした金属リチウム(デンドライト)の析出を抑制すること等ができる。
The content of solid components in the solid polymer electrolyte is 99% by mass or more, preferably 99.9% by mass or more, and more preferably 100% by mass. When the solid polymer electrolyte is applied to a power storage device having a negative electrode containing metallic lithium, for example, it can suppress deposition of dendritic metallic lithium (dendrite) on the surface of the negative electrode.
当該高分子固体電解質は、リチウムイオン二次電池等の蓄電素子、中でもリチウム電池の電解質として好適に用いることができる。また、当該高分子固体電解質は、全固体電池の電解質として特に好適に用いることができる。なお、当該高分子固体電解質は、蓄電素子における正極層、隔離層、負極層等のいずれにも用いることができる。
The polymer solid electrolyte can be suitably used as an electrolyte for a storage element such as a lithium ion secondary battery, especially a lithium battery. Moreover, the polymer solid electrolyte can be particularly suitably used as an electrolyte for an all-solid battery. The polymer solid electrolyte can be used for any of the positive electrode layer, isolation layer, negative electrode layer, and the like in the electric storage element.
<高分子固体電解質の製造方法>
本発明の一実施形態に係る高分子固体電解質の製造方法は特に限定されないが、以下の方法が好ましい。すなわち、本発明の一実施形態に係る高分子固体電解質の製造方法は、上記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料と、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩とを混合することを備える。 <Method for Producing Solid Polymer Electrolyte>
Although the method for producing the polymer solid electrolyte according to one embodiment of the present invention is not particularly limited, the following method is preferred. That is, a method for producing a polymer solid electrolyte according to one embodiment of the present invention includes a polymer material containing a carbonate structure represented by the general formula (1) as a structural unit, and lithium bis(trifluoromethanesulfonyl)imide or with a salt based on lithium bis(fluorosulfonyl)imide.
本発明の一実施形態に係る高分子固体電解質の製造方法は特に限定されないが、以下の方法が好ましい。すなわち、本発明の一実施形態に係る高分子固体電解質の製造方法は、上記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料と、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩とを混合することを備える。 <Method for Producing Solid Polymer Electrolyte>
Although the method for producing the polymer solid electrolyte according to one embodiment of the present invention is not particularly limited, the following method is preferred. That is, a method for producing a polymer solid electrolyte according to one embodiment of the present invention includes a polymer material containing a carbonate structure represented by the general formula (1) as a structural unit, and lithium bis(trifluoromethanesulfonyl)imide or with a salt based on lithium bis(fluorosulfonyl)imide.
この混合方法は特に限定されない。この混合は、上記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料を溶融させた加熱下で行ってもよく、上記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料と、リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩とを液体からなる溶媒中に溶解又は分散させた状態で行ってもよい。液体からなる溶媒中に溶解又は分散させた状態で混合した場合、混合後当該溶媒を除去することで、高分子固体電解質が得られる。この混合の際には、必要に応じて上記他の成分をさらに混合させることができる。また、混合後に、得られた高分子固体電解質を所定の形状に成形してもよい。
This mixing method is not particularly limited. This mixing may be performed under heating by melting the polymer material containing the carbonate structure represented by the general formula (1) as a structural unit, and the carbonate structure represented by the general formula (1) is Even if the polymer material contained as a structural unit and the salt containing lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide as a main component are dissolved or dispersed in a liquid solvent, good. When mixed in a state of being dissolved or dispersed in a liquid solvent, the polymer solid electrolyte can be obtained by removing the solvent after mixing. During this mixing, the above other components can be further mixed as necessary. Moreover, after mixing, the polymer solid electrolyte obtained may be formed into a predetermined shape.
本発明においては、例えば、ポリビニレンカーボネート(PVCA)の前駆体であるビニレンカーボネートとリチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩とをあらかじめ混合溶解させたのちラジカル重合開始剤等の重合開始剤を混合することで前駆体溶液を作製し、この前駆体溶液を蓄電素子に注液した後に、蓄電素子を加熱することにより、蓄電素子内でビニレンカーボネートを重合させてポリビニレンカーボネートを作製することで高分子固体電解質を得ることもできる。
In the present invention, for example, vinylene carbonate, which is a precursor of polyvinylene carbonate (PVCA), and a salt containing lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide as a main component are mixed and dissolved in advance. After that, a precursor solution is prepared by mixing a polymerization initiator such as a radical polymerization initiator, and after the precursor solution is injected into the storage element, the storage element is heated to convert vinylene carbonate in the storage element. A polymer solid electrolyte can also be obtained by polymerizing to produce polyvinylene carbonate.
<蓄電素子>
当該蓄電素子は、当該高分子固体電解質を備える蓄電素子である。本発明の一実施形態に係る蓄電素子として、以下、全固体電池を具体例に挙げて説明する。図1の蓄電素子10は、全固体電池であり、正極層1(正極)と負極層2(負極)とが隔離層3を介して配置された二次電池である。正極層1は、正極基材4及び正極活物質層5を有し、正極基材4が正極層1の最外層となる。負極層2は、負極基材7及び負極活物質層6を有し、負極基材7が負極層2の最外層となる。図1に示す蓄電素子10においては、負極基材7上に、負極活物質層6、隔離層3、正極活物質層5及び正極基材4がこの順で積層されている。 <Storage element>
The electric storage element is an electric storage element including the polymer solid electrolyte. As a storage device according to one embodiment of the present invention, an all-solid-state battery will be described below as a specific example. Thestorage element 10 in FIG. 1 is an all-solid battery, and is a secondary battery in which a positive electrode layer 1 (positive electrode) and a negative electrode layer 2 (negative electrode) are arranged with an isolation layer 3 interposed therebetween. The positive electrode layer 1 has a positive electrode substrate 4 and a positive electrode active material layer 5 , and the positive electrode substrate 4 is the outermost layer of the positive electrode layer 1 . The negative electrode layer 2 has a negative electrode substrate 7 and a negative electrode active material layer 6 , and the negative electrode substrate 7 is the outermost layer of the negative electrode layer 2 . In the electric storage element 10 shown in FIG. 1, the negative electrode active material layer 6, the isolation layer 3, the positive electrode active material layer 5, and the positive electrode substrate 4 are laminated on the negative electrode substrate 7 in this order.
当該蓄電素子は、当該高分子固体電解質を備える蓄電素子である。本発明の一実施形態に係る蓄電素子として、以下、全固体電池を具体例に挙げて説明する。図1の蓄電素子10は、全固体電池であり、正極層1(正極)と負極層2(負極)とが隔離層3を介して配置された二次電池である。正極層1は、正極基材4及び正極活物質層5を有し、正極基材4が正極層1の最外層となる。負極層2は、負極基材7及び負極活物質層6を有し、負極基材7が負極層2の最外層となる。図1に示す蓄電素子10においては、負極基材7上に、負極活物質層6、隔離層3、正極活物質層5及び正極基材4がこの順で積層されている。 <Storage element>
The electric storage element is an electric storage element including the polymer solid electrolyte. As a storage device according to one embodiment of the present invention, an all-solid-state battery will be described below as a specific example. The
蓄電素子10は、正極層1、負極層2及び隔離層3の少なくとも1つに、本発明の一実施形態に係る高分子固体電解質を含有する。より具体的には、正極活物質層5、負極活物質層6及び隔離層3の少なくとも1つに、本発明の一実施形態に係る高分子固体電解質が含有されている。本発明の一実施形態に係る高分子固体電解質は、耐酸化性が良好であるため、正極活物質層5及び隔離層3の少なくとも1つに本発明の一実施形態に係る高分子固体電解質が含有されていることが好ましい。
At least one of the positive electrode layer 1, the negative electrode layer 2, and the isolation layer 3 of the storage element 10 contains the polymer solid electrolyte according to one embodiment of the present invention. More specifically, at least one of the positive electrode active material layer 5, the negative electrode active material layer 6, and the isolation layer 3 contains the polymer solid electrolyte according to one embodiment of the present invention. Since the solid polymer electrolyte according to one embodiment of the present invention has good oxidation resistance, at least one of the positive electrode active material layer 5 and the isolation layer 3 contains the solid polymer electrolyte according to one embodiment of the present invention. It is preferably contained.
蓄電素子10においては、本発明の一実施形態に係る高分子固体電解質以外のその他の固体電解質を併せて用いるようにしてもよい。その他の固体電解質としては、硫化物系固体電解質、酸化物系固体電解質、本発明の一実施形態に係る高分子固体電解質以外の高分子固体電解質等を挙げることができる。また、蓄電素子10における一つの層中に異なる複数種の固体電解質が含有されていてもよく、層毎に異なる固体電解質が含有されていてもよい。
In the electric storage element 10, other solid electrolytes than the polymer solid electrolyte according to one embodiment of the present invention may be used together. Other solid electrolytes include sulfide-based solid electrolytes, oxide-based solid electrolytes, polymer solid electrolytes other than the polymer solid electrolyte according to one embodiment of the present invention, and the like. Moreover, a plurality of different types of solid electrolytes may be contained in one layer in the electric storage element 10, and different solid electrolytes may be contained in each layer.
[正極層]
正極層1は、正極基材4と、この正極基材4の表面に積層される正極活物質層5とを備える。正極層1は、正極基材4と正極活物質層5との間に中間層を有していてもよい。 [Positive electrode layer]
Thepositive electrode layer 1 includes a positive electrode substrate 4 and a positive electrode active material layer 5 laminated on the surface of the positive electrode substrate 4 . The positive electrode layer 1 may have an intermediate layer between the positive electrode substrate 4 and the positive electrode active material layer 5 .
正極層1は、正極基材4と、この正極基材4の表面に積層される正極活物質層5とを備える。正極層1は、正極基材4と正極活物質層5との間に中間層を有していてもよい。 [Positive electrode layer]
The
(正極基材)
正極基材4は、導電性を有する。「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が107Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が107Ω・cm超であることを意味する。正極基材4の材質としては、アルミニウム、チタン、タンタル、インジウム、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材4としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材4としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H-4160(2006年)に規定されるA1085P、A3003P、A1N30等が例示できる。 (Positive electrode base material)
The positiveelectrode base material 4 has conductivity. Having “conductivity” means having a volume resistivity of 10 7 Ω·cm or less as measured in accordance with JIS-H-0505 (1975), and “non-conductivity” It means that the volume resistivity is more than 10 7 Ω·cm. As the material of the positive electrode substrate 4, metals such as aluminum, titanium, tantalum, indium, stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost. Examples of the positive electrode substrate 4 include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, the positive electrode substrate 4 is preferably aluminum foil or aluminum alloy foil. Examples of aluminum or aluminum alloy include A1085P, A3003P, A1N30, etc. defined in JIS-H-4000 (2014) or JIS-H-4160 (2006).
正極基材4は、導電性を有する。「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が107Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が107Ω・cm超であることを意味する。正極基材4の材質としては、アルミニウム、チタン、タンタル、インジウム、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材4としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材4としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H-4160(2006年)に規定されるA1085P、A3003P、A1N30等が例示できる。 (Positive electrode base material)
The positive
正極基材4の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材4の平均厚さを上記の範囲とすることで、正極基材4の強度を高めつつ、蓄電素子10の体積当たりのエネルギー密度を高めることができる。正極基材4及び後述する負極基材7の「平均厚さ」とは、所定の面積の基材の質量を、基材の真密度及び面積で除した値をいう。
The average thickness of the positive electrode substrate 4 is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 40 μm or less, even more preferably 8 μm or more and 30 μm or less, and particularly preferably 10 μm or more and 25 μm or less. By setting the average thickness of the positive electrode substrate 4 within the above range, the energy density per volume of the storage element 10 can be increased while increasing the strength of the positive electrode substrate 4 . The "average thickness" of the positive electrode base material 4 and the negative electrode base material 7, which will be described later, refers to a value obtained by dividing the mass of the base material in a predetermined area by the true density and area of the base material.
中間層は、正極基材4と正極活物質層5との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで正極基材4と正極活物質層5との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダー及び導電剤を含む。
The intermediate layer is a layer arranged between the positive electrode substrate 4 and the positive electrode active material layer 5 . The intermediate layer reduces the contact resistance between the positive electrode substrate 4 and the positive electrode active material layer 5 by containing a conductive agent such as carbon particles. The composition of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
(正極活物質層)
正極活物質層5は、正極活物質を含む。正極活物質層5は、正極活物質を含むいわゆる正極合剤から形成することができる。正極活物質層5は、必要に応じて、高分子固体電解質、導電剤、バインダー、増粘剤、フィラー等の任意成分を含んでいてよい。これらの各任意成分の1種又は2種以上は、正極活物質層5に実質的に含有されていなくてもよい。 (Positive electrode active material layer)
The positive electrodeactive material layer 5 contains a positive electrode active material. The positive electrode active material layer 5 can be formed from a so-called positive electrode mixture containing a positive electrode active material. The positive electrode active material layer 5 may contain optional components such as a polymer solid electrolyte, a conductive agent, a binder, a thickener, a filler, and the like, if necessary. One or more of these optional components may not be substantially contained in the positive electrode active material layer 5 .
正極活物質層5は、正極活物質を含む。正極活物質層5は、正極活物質を含むいわゆる正極合剤から形成することができる。正極活物質層5は、必要に応じて、高分子固体電解質、導電剤、バインダー、増粘剤、フィラー等の任意成分を含んでいてよい。これらの各任意成分の1種又は2種以上は、正極活物質層5に実質的に含有されていなくてもよい。 (Positive electrode active material layer)
The positive electrode
正極活物質層5に含まれる正極活物質としては、リチウムイオン二次電池や全固体電池に通常用いられる公知の正極活物質の中から適宜選択できる。上記正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。例えば、α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LixNi(1-x)]O2(0≦x<0.5)、Li[LixNiγCo(1-x-γ)]O2(0≦x<0.5、0<γ<1)、Li[LixNiγMnβCo(1-x-γ-β)]O2(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LixMn2O4、LixNiγMn(2-γ)O4等が挙げられる。ポリアニオン化合物として、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、Li3V2(PO4)3、Li2MnSiO4、Li2CoPO4F等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。正極活物質は、表面がニオブ酸リチウム、チタン酸リチウム、リン酸リチウム等の化合物で被覆されていてもよい。正極活物質層においては、これら正極活物質の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The positive electrode active material contained in the positive electrode active material layer 5 can be appropriately selected from known positive electrode active materials commonly used in lithium ion secondary batteries and all-solid-state batteries. A material capable of intercalating and deintercalating lithium ions is usually used as the positive electrode active material. Examples thereof include lithium transition metal composite oxides having an α-NaFeO 2 type crystal structure, lithium transition metal composite oxides having a spinel crystal structure, polyanion compounds, chalcogen compounds, and sulfur. Examples of lithium transition metal composite oxides having an α-NaFeO 2 type crystal structure include Li[Li x Ni (1-x) ]O 2 (0≦x<0.5), Li[Li x Ni γ Co ( 1-x-γ) ]O 2 (0≦x<0.5, 0<γ<1), Li[Li x Ni γ Mn β Co (1-x-γ-β) ]O 2 (0≦x <0.5, 0<γ, 0<β, 0.5<γ+β<1) and the like. Examples of lithium transition metal composite oxides having a spinel crystal structure include Li x Mn 2 O 4 and Li x Ni γ Mn (2-γ) O 4 . Examples of polyanion compounds include LiFePO4 , LiMnPO4 , LiNiPO4 , LiCoPO4, Li3V2(PO4)3 , Li2MnSiO4 , Li2CoPO4F and the like. Examples of chalcogen compounds include titanium disulfide, molybdenum disulfide, and molybdenum dioxide. The atoms or polyanions in these materials may be partially substituted with atoms or anionic species of other elements. The surface of the positive electrode active material may be coated with a compound such as lithium niobate, lithium titanate, or lithium phosphate. In the positive electrode active material layer, one kind of these positive electrode active materials may be used alone, or two or more kinds may be mixed and used.
正極活物質としては、α-NaFeO2型結晶構造又はスピネル型結晶構造を有するリチウム遷移金属複合酸化物、及びニッケル元素、コバルト元素又はマンガン元素を含むポリアニオン化合物(LiMnPO4、LiNiPO4、LiCoPO4、Li2MnSiO4、Li2CoPO4F等)が好ましく、α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物がより好ましい。α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物の中でも、遷移金属元素としてニッケル元素、コバルト元素及びマンガン元素のうちの1種又は2種以上を含むものがより好ましい。これらの正極活物質は酸化還元電位が特に高く、このような正極活物質を用いることで、蓄電素子のエネルギー密度等を高めることができる。また、蓄電素子10には、本発明の一実施形態に係る耐酸化性が良好な高分子固体電解質が用いられているため、酸化還元電位が高いこれらの正極活物質を用いた場合も、良好な充放電性能を持続させることができる。
Examples of positive electrode active materials include lithium transition metal composite oxides having an α-NaFeO 2 -type crystal structure or spinel-type crystal structure, and polyanion compounds containing nickel, cobalt, or manganese elements (LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , LiCoPO 4 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.) are preferable, and a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure is more preferable. Among the lithium-transition metal composite oxides having the α-NaFeO 2 type crystal structure, those containing one or more of nickel, cobalt and manganese as transition metal elements are more preferable. These positive electrode active materials have a particularly high oxidation-reduction potential, and by using such positive electrode active materials, the energy density and the like of the electric storage element can be increased. In addition, since the polymer solid electrolyte having good oxidation resistance according to one embodiment of the present invention is used for the storage element 10, even when these positive electrode active materials having a high oxidation-reduction potential are used, good It is possible to maintain good charge and discharge performance.
正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層5の導電性が向上する。ここで、「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。
The average particle size of the positive electrode active material is preferably, for example, 0.1 μm or more and 20 μm or less. By making the average particle size of the positive electrode active material equal to or more than the above lower limit, manufacturing or handling of the positive electrode active material becomes easy. By setting the average particle diameter of the positive electrode active material to the above upper limit or less, the conductivity of the positive electrode active material layer 5 is improved. Here, the "average particle size" is based on the particle size distribution measured by a laser diffraction/scattering method for a diluted solution in which the particles are diluted with a solvent in accordance with JIS-Z-8825 (2013). Z-8819-2 (2001) means the value at which the volume-based integrated distribution calculated according to 50%.
粒子を所定の形状で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。
Pulverizers, classifiers, etc. are used to obtain particles in a predetermined shape. Pulverization methods include, for example, methods using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, or sieve. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used. As a classification method, a sieve, an air classifier, or the like is used as necessary, both dry and wet.
正極活物質層5における正極活物質の含有量としては、10質量%以上95質量%以下が好ましく、30質量%以上、さらには50質量%以上がより好ましい。正極活物質の含有量を上記範囲とすることで、蓄電素子10の電気容量を大きくすることができる。
The content of the positive electrode active material in the positive electrode active material layer 5 is preferably 10% by mass or more and 95% by mass or less, more preferably 30% by mass or more, and further preferably 50% by mass or more. By setting the content of the positive electrode active material within the above range, the electric capacity of the storage element 10 can be increased.
正極活物質層5が固体電解質を含有する場合、固体電解質の含有量としては、10質量%以上90質量%以下が好ましく、20質量%以上70質量%以下がより好ましく、50質量%以下がさらに好ましい。固体電解質の含有量を上記範囲とすることで、蓄電素子10の電気容量を大きくすることができる。正極活物質層5に本発明の一実施形態に係る高分子固体電解質を用いる場合、正極活物質層5中の全固体電解質に対する本発明の一実施形態に係る高分子固体電解質の含有量としては、50質量%以上が好ましく、70質量以上%がより好ましく、90質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましい。正極活物質層5中において、正極活物質と固体電解質とは複合体を形成していてもよい。
When the positive electrode active material layer 5 contains a solid electrolyte, the content of the solid electrolyte is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 70% by mass or less, and further 50% by mass or less. preferable. By setting the content of the solid electrolyte within the above range, the electrical capacity of the storage element 10 can be increased. When the solid polymer electrolyte according to one embodiment of the present invention is used for the positive electrode active material layer 5, the content of the solid polymer electrolyte according to one embodiment of the present invention with respect to the total solid electrolyte in the positive electrode active material layer 5 is , preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and even more preferably substantially 100% by mass. In the positive electrode active material layer 5, the positive electrode active material and the solid electrolyte may form a composite.
導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、導電性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。
The conductive agent is not particularly limited as long as it is a conductive material. Examples of such conductive agents include carbonaceous materials, metals, and conductive ceramics. Carbonaceous materials include graphite, non-graphitic carbon, graphene-based carbon, and the like. Examples of non-graphitic carbon include carbon nanofiber, pitch-based carbon fiber, and carbon black. Examples of carbon black include furnace black, acetylene black, and ketjen black. Graphene-based carbon includes graphene, carbon nanotube (CNT), fullerene, and the like. The shape of the conductive agent may be powdery, fibrous, or the like. As the conductive agent, one type of these materials may be used alone, or two or more types may be mixed and used. Also, these materials may be combined for use. For example, a composite material of carbon black and CNT may be used. Among these, carbon black is preferable from the viewpoint of conductivity and coatability, and acetylene black is particularly preferable.
正極活物質層5における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記範囲とすることで、蓄電素子10の電気容量を大きくすることができる。
The content of the conductive agent in the positive electrode active material layer 5 is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less. By setting the content of the conductive agent within the above range, the electric capacity of the electric storage element 10 can be increased.
バインダーとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル、ポリ(メタ)アクリルアミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
Examples of binders include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyimide, poly(meth)acrylic acid, poly(meth)acrylic acid ester, poly(meth) ) thermoplastic resins such as acrylamide; elastomers such as ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
正極活物質層5におけるバインダーの含有量は1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダーの含有量を上記範囲とすることで、活物質を安定して保持することができる。
The binder content in the positive electrode active material layer 5 is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less. By setting the content of the binder within the above range, the active material can be stably retained.
増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。
Examples of thickeners include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose. When the thickener has a functional group that reacts with lithium or the like, the functional group may be previously deactivated by methylation or the like.
フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、酸化アルミニウム、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。
The filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide, calcium hydroxide, and water. Hydroxides such as aluminum oxide, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, and zeolite , apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, mica, and other mineral resource-derived substances or artificial products thereof.
正極活物質層5は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、固体電解質、導電剤、バインダー、増粘剤、フィラー以外の成分として含有してもよい。
The positive electrode active material layer 5 is composed of typical nonmetallic elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, and W are used as positive electrode active materials, solid electrolytes, conductive agents, binders, and thickeners. You may contain as a component other than a sticky agent and a filler.
正極活物質層5の平均厚さとしては、30μm以上1000μm以下が好ましく、60μm以上500μm以下がより好ましい。正極活物質層5の平均厚さを上記下限以上とすることで、高いエネルギー密度を有する蓄電素子10を得ることができる。正極活物質層5の平均厚さを上記上限以下とすることで、蓄電素子10の小型化を図ること等ができる。正極活物質層5の平均厚さは、任意の5ヶ所で測定した厚さの平均値とする。後述する負極活物質層6及び隔離層3の平均厚さも同様である。
The average thickness of the positive electrode active material layer 5 is preferably 30 µm or more and 1000 µm or less, more preferably 60 µm or more and 500 µm or less. By setting the average thickness of the positive electrode active material layer 5 to the above lower limit or more, it is possible to obtain the electric storage device 10 having a high energy density. By making the average thickness of the positive electrode active material layer 5 equal to or less than the upper limit, it is possible to reduce the size of the electric storage device 10 . Let the average thickness of the positive electrode active material layer 5 be the average value of the thickness measured at arbitrary five places. The same applies to the average thicknesses of the negative electrode active material layer 6 and the separation layer 3, which will be described later.
[負極層]
負極層2は、負極基材7と、当該負極基材7に直接又は中間層を介して配される負極活物質層6とを有する。中間層の構成は特に限定されず、例えば正極層1で例示した構成から選択することができる。 [Negative electrode layer]
Thenegative electrode layer 2 has a negative electrode base material 7 and a negative electrode active material layer 6 disposed on the negative electrode base material 7 directly or via an intermediate layer. The structure of the intermediate layer is not particularly limited, and can be selected from the structures exemplified for the positive electrode layer 1, for example.
負極層2は、負極基材7と、当該負極基材7に直接又は中間層を介して配される負極活物質層6とを有する。中間層の構成は特に限定されず、例えば正極層1で例示した構成から選択することができる。 [Negative electrode layer]
The
(負極基材)
負極基材7は、導電性を有する。負極基材7の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。 (Negative electrode base material)
The negative electrode base material 7 has conductivity. As materials for the negative electrode substrate 7, metals such as copper, nickel, stainless steel, nickel-plated steel, and aluminum, alloys thereof, carbonaceous materials, and the like are used. Among these, copper or a copper alloy is preferred. Examples of negative electrode substrates include foils and vapor deposition films, and foils are preferred from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate. Examples of copper foil include rolled copper foil and electrolytic copper foil.
負極基材7は、導電性を有する。負極基材7の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。 (Negative electrode base material)
The negative electrode base material 7 has conductivity. As materials for the negative electrode substrate 7, metals such as copper, nickel, stainless steel, nickel-plated steel, and aluminum, alloys thereof, carbonaceous materials, and the like are used. Among these, copper or a copper alloy is preferred. Examples of negative electrode substrates include foils and vapor deposition films, and foils are preferred from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate. Examples of copper foil include rolled copper foil and electrolytic copper foil.
負極基材7の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材7の平均厚さを上記下限以上とすることで、負極基材7の強度を高めることができる。負極基材7の平均厚さを上記上限以下とすることで、蓄電素子10の体積当たりのエネルギー密度を高めることができる。
The average thickness of the negative electrode substrate 7 is preferably 2 μm or more and 35 μm or less, more preferably 3 μm or more and 30 μm or less, even more preferably 4 μm or more and 25 μm or less, and particularly preferably 5 μm or more and 20 μm or less. By making the average thickness of the negative electrode base material 7 equal to or more than the above lower limit, the strength of the negative electrode base material 7 can be increased. By making the average thickness of the negative electrode base material 7 equal to or less than the above upper limit, the energy density per volume of the storage element 10 can be increased.
(負極活物質層)
負極活物質層6は、負極活物質を含む。負極活物質層6は、例えば、負極活物質を含むいわゆる負極合剤から形成することができる。負極活物質層6は、必要に応じて、固体電解質、導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。これらの負極活物質層6における任意成分の種類及び好適な含有量は、上述した正極活物質層5の各任意成分と同様である。これらの各任意成分の1種又は2種以上は、負極活物質層6に実質的に含有されていなくてもよい。 (Negative electrode active material layer)
The negative electrodeactive material layer 6 contains a negative electrode active material. The negative electrode active material layer 6 can be formed, for example, from a so-called negative electrode mixture containing a negative electrode active material. The negative electrode active material layer 6 contains optional components such as a solid electrolyte, a conductive agent, a binder, a thickener, a filler, and the like, if necessary. The types and suitable contents of these optional components in the negative electrode active material layer 6 are the same as those of the above-described optional components in the positive electrode active material layer 5 . One or more of these optional components may not be substantially contained in the negative electrode active material layer 6 .
負極活物質層6は、負極活物質を含む。負極活物質層6は、例えば、負極活物質を含むいわゆる負極合剤から形成することができる。負極活物質層6は、必要に応じて、固体電解質、導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。これらの負極活物質層6における任意成分の種類及び好適な含有量は、上述した正極活物質層5の各任意成分と同様である。これらの各任意成分の1種又は2種以上は、負極活物質層6に実質的に含有されていなくてもよい。 (Negative electrode active material layer)
The negative electrode
負極活物質層6は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、固体電解質、導電剤、バインダー、増粘剤、フィラー以外の成分として含有してもよい。
The negative electrode active material layer 6 is composed of typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, and Ba. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W, etc. are used as negative electrode active materials, solid electrolytes, and conductive agents. , a binder, a thickener, and a component other than a filler.
負極活物質としては、リチウムイオン二次電池や全固体電池に通常用いられる公知の負極活物質の中から適宜選択できる。上記負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;Li4Ti5O12、LiTiO2、TiNb2O7等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。負極活物質層6においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The negative electrode active material can be appropriately selected from known negative electrode active materials commonly used in lithium ion secondary batteries and all-solid batteries. A material capable of intercalating and deintercalating lithium ions is usually used as the negative electrode active material. Examples of the negative electrode active material include metal Li; metals or metalloids such as Si and Sn; metal oxides and metalloid oxides such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite and non-graphitizable carbon (easily graphitizable carbon or non-graphitizable carbon) be done. In the negative electrode active material layer 6, one kind of these materials may be used alone, or two or more kinds may be mixed and used.
「黒鉛」とは、充放電前又は放電状態において、エックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。
“Graphite” refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane of 0.33 nm or more and less than 0.34 nm as determined by X-ray diffraction before charging/discharging or in a discharged state. Graphite includes natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material with stable physical properties can be obtained.
「非黒鉛質炭素」とは、充放電前又は放電状態においてエックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチ由来の材料、アルコール由来の材料等が挙げられる。
“Non-graphitic carbon” refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane of 0.34 nm or more and 0.42 nm or less as determined by X-ray diffraction before charging/discharging or in a discharged state. . Non-graphitizable carbon includes non-graphitizable carbon and graphitizable carbon. Examples of non-graphitic carbon include resin-derived materials, petroleum pitch-derived materials, and alcohol-derived materials.
ここで、「放電状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いたセルにおいて、開回路電圧が0.7V以上である状態である。
Here, the "discharged state" means a state in which the carbon material, which is the negative electrode active material, is discharged such that lithium ions that can be inserted and released are sufficiently released during charging and discharging. For example, in a cell using a negative electrode containing a carbon material as a negative electrode active material as a working electrode and metal Li as a counter electrode, the open circuit voltage is 0.7 V or higher.
「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。
The term “non-graphitizable carbon” refers to a carbon material having a d 002 of 0.36 nm or more and 0.42 nm or less.
「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。
“Graphitizable carbon” refers to a carbon material having a d 002 of 0.34 nm or more and less than 0.36 nm.
負極活物質としては、金属リチウムが好ましい。金属リチウムは、実質的にリチウムのみからなる純金属リチウムとして存在してもよいし、他の金属元素を含むリチウム合金として存在してもよい。リチウム合金としては、リチウム銀合金、リチウム亜鉛合金、リチウムカルシウム合金、リチウムアルミニウム合金、リチウムマグネシウム合金、リチウムインジウム合金等が挙げられる。リチウム合金は、リチウム以外の複数の金属元素を含有していてもよい。
Metallic lithium is preferable as the negative electrode active material. Metallic lithium may exist as pure metallic lithium consisting essentially of lithium, or may exist as a lithium alloy containing other metal elements. Lithium alloys include lithium silver alloys, lithium zinc alloys, lithium calcium alloys, lithium aluminum alloys, lithium magnesium alloys, lithium indium alloys, and the like. The lithium alloy may contain multiple metal elements other than lithium.
負極活物質層6は、実質的に金属リチウムのみからなる層であることが好ましい。この場合、負極活物質層6における金属リチウムの含有量は、90質量%以上が好ましく、99質量%以上がより好ましく、100質量%がさらに好ましい。負極活物質層6は、純金属リチウム箔又はリチウム合金箔が好ましい。
The negative electrode active material layer 6 is preferably a layer consisting essentially of metallic lithium. In this case, the content of metallic lithium in the negative electrode active material layer 6 is preferably 90% by mass or more, more preferably 99% by mass or more, and even more preferably 100% by mass. The negative electrode active material layer 6 is preferably a pure metal lithium foil or a lithium alloy foil.
負極活物質は、粒子(粉体)を用いることができる。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が例えば炭素材料である場合、その平均粒径は1μm以上100μm以下が好ましい。負極活物質が、金属、半金属、金属酸化物、半金属酸化物、チタン含有酸化物、ポリリン酸化合物等である場合、その平均粒径は、1nm以上10μm以下が好ましい。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、活物質層の導電性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び分級方法は、例えば、正極層1で例示した方法から選択できる。
Particles (powder) can be used as the negative electrode active material. The average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 μm or less. When the negative electrode active material is, for example, a carbon material, its average particle size is preferably 1 μm or more and 100 μm or less. When the negative electrode active material is a metal, a metalloid, a metal oxide, a metalloid oxide, a titanium-containing oxide, a polyphosphate compound, or the like, the average particle size is preferably 1 nm or more and 10 μm or less. By making the average particle size of the negative electrode active material equal to or greater than the above lower limit, the production or handling of the negative electrode active material is facilitated. By setting the average particle size of the negative electrode active material to the above upper limit or less, the conductivity of the active material layer is improved. A pulverizer, a classifier, or the like is used to obtain powder having a predetermined particle size. The pulverization method and classification method can be selected from the methods exemplified for the positive electrode layer 1, for example.
負極活物質が粒子(粉体)の場合、負極活物質層6における負極活物質の含有量としては、10質量%以上95質量%以下が好ましく、30質量%以上、さらには50質量%以上がより好ましい。負極活物質の含有割合を高めることで、蓄電素子10の電気容量を大きくすることができる。
When the negative electrode active material is particles (powder), the content of the negative electrode active material in the negative electrode active material layer 6 is preferably 10% by mass or more and 95% by mass or less, more preferably 30% by mass or more, and further 50% by mass or more. more preferred. By increasing the content of the negative electrode active material, the electric capacity of the storage element 10 can be increased.
負極活物質層6が固体電解質を含有する場合、固体電解質の含有量としては、10質量%以上90質量%以下が好ましく、20質量%以上70質量%以下がより好ましく、50質量%以下がさらに好ましい。固体電解質の含有量を上記範囲とすることで、当該蓄電素子10の電気容量を大きくすることができる。負極活物質層6に本発明の一実施形態に係る高分子固体電解質を用いる場合、負極活物質層6中の全固体電解質に対する本発明の一実施形態に係る高分子固体電解質の含有量としては、50質量%以上が好ましく、70質量以上%がより好ましく、90質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましい。
When the negative electrode active material layer 6 contains a solid electrolyte, the content of the solid electrolyte is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 70% by mass or less, and further preferably 50% by mass or less. preferable. By setting the content of the solid electrolyte within the above range, the electric capacity of the electric storage element 10 can be increased. When the solid polymer electrolyte according to one embodiment of the present invention is used for the negative electrode active material layer 6, the content of the solid polymer electrolyte according to one embodiment of the present invention with respect to the total solid electrolyte in the negative electrode active material layer 6 is , preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and even more preferably substantially 100% by mass.
負極活物質層6の平均厚さとしては特に限定されず、例えば1nm以上であればよく、1μm以上1000μm以下がより好ましく、10μm以上500μm以下がさらに好ましい。負極活物質層6の平均厚さを上記下限以上とすることで、蓄電素子10の充放電性能等を高めることができる。なお、特に負極活物質が金属リチウムである場合等は、負極活物質層6の平均厚さが1μm未満といった薄さであっても十分に充放電が可能である。負極活物質層6の平均厚さを上記上限以下とすることで、蓄電素子10の小型化を図ること等ができる。
The average thickness of the negative electrode active material layer 6 is not particularly limited. By making the average thickness of the negative electrode active material layer 6 equal to or greater than the above lower limit, the charge/discharge performance and the like of the storage element 10 can be enhanced. In particular, when the negative electrode active material is metallic lithium, charging/discharging is sufficiently possible even if the average thickness of the negative electrode active material layer 6 is as thin as less than 1 μm. By making the average thickness of the negative electrode active material layer 6 equal to or less than the above upper limit, it is possible to reduce the size of the storage element 10 .
[隔離層]
隔離層3は、固体電解質を含有することが好ましい。隔離層3に含有される固体電解質としては、上述した本発明の一実施形態に係る高分子固体電解質以外にも、各種固体電解質を用いることができる。隔離層3における固体電解質の含有量としては、70質量%以上が好ましく、90質量以上%がより好ましく、99質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましい。また、隔離層3に本発明の一実施形態に係る高分子固体電解質を用いる場合、隔離層3中の全固体電解質に占める本発明の一実施形態に係る高分子固体電解質の含有量としては、50質量%以上が好ましく、70質量以上%がより好ましく、90質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましい。 [Isolation layer]
Theisolation layer 3 preferably contains a solid electrolyte. As the solid electrolyte contained in the isolation layer 3, various solid electrolytes can be used in addition to the polymer solid electrolyte according to the embodiment of the present invention described above. The content of the solid electrolyte in the isolation layer 3 is preferably 70% by mass or more, more preferably 90% by mass or more, still more preferably 99% by mass or more, and even more preferably substantially 100% by mass. Further, when the solid polymer electrolyte according to one embodiment of the present invention is used for the isolation layer 3, the content of the solid polymer electrolyte according to one embodiment of the present invention in the total solid electrolyte in the isolation layer 3 is It is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and even more preferably substantially 100% by mass.
隔離層3は、固体電解質を含有することが好ましい。隔離層3に含有される固体電解質としては、上述した本発明の一実施形態に係る高分子固体電解質以外にも、各種固体電解質を用いることができる。隔離層3における固体電解質の含有量としては、70質量%以上が好ましく、90質量以上%がより好ましく、99質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましい。また、隔離層3に本発明の一実施形態に係る高分子固体電解質を用いる場合、隔離層3中の全固体電解質に占める本発明の一実施形態に係る高分子固体電解質の含有量としては、50質量%以上が好ましく、70質量以上%がより好ましく、90質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましい。 [Isolation layer]
The
隔離層3には、固体電解質の他、フィラー等の任意成分が含有されていてもよい。フィラー等の任意成分は、正極活物質層5で例示した材料から選択できる。また、隔離層3には、機械的強度を高める等のために、織布、不織布、多孔質樹脂フィルム等が配置されていてもよい。
The isolation layer 3 may contain optional components such as fillers in addition to the solid electrolyte. Optional components such as fillers can be selected from the materials exemplified for the positive electrode active material layer 5 . In addition, a woven fabric, a non-woven fabric, a porous resin film, or the like may be arranged in the isolating layer 3 in order to increase the mechanical strength.
隔離層3の平均厚さとしては、1μm以上200μm以下が好ましく、3μm以上100μm以下がより好ましい。隔離層3の平均厚さを上記下限以上とすることで、正極層1と負極層2とを確実性高く絶縁することが可能となる。隔離層3の平均厚さを上記上限以下とすることで、蓄電素子10のエネルギー密度を高めることが可能となる。
The average thickness of the isolation layer 3 is preferably 1 μm or more and 200 μm or less, more preferably 3 μm or more and 100 μm or less. By setting the average thickness of the isolation layer 3 to the above lower limit or more, it is possible to reliably insulate the positive electrode layer 1 and the negative electrode layer 2 from each other. By making the average thickness of isolation layer 3 equal to or less than the above upper limit, it is possible to increase the energy density of storage element 10 .
当該蓄電素子10の通常使用時の充電方法で満充電とした状態の正極電位は、例えば3.5V vs.Li/Li+以上が好ましく4.0V vs.Li/Li+以上がより好ましく、4.5V vs.Li/Li+以上であることがさらに好ましく、4.6V vs.Li/Li+以上であることがよりさらに好ましく、4.7V vs.Li/Li+以上であることが一層好ましく、4.8V vs.Li/Li+以上であることがより一層好ましい。通常使用時の充電方法で満充電とした状態の正極電位を上記下限以上とすることで、蓄電素子10のエネルギー密度や電圧を高めることができる。また、当該蓄電素子10には、本発明の一実施形態に係る耐酸化性が良好な高分子固体電解質が用いられているため、通常使用時の充電方法で満充電とした状態の正極電位が高い場合も、良好な充放電性能を持続させることができる。
The positive electrode potential of the storage element 10 fully charged by the charging method during normal use is, for example, 3.5 V vs. Li/Li + or more, preferably 4.0 V vs. Li/Li + or more is more preferable, and 4.5 V vs. More preferably Li/Li + or more, 4.6 V vs. More preferably Li/Li + or more, 4.7 V vs. More preferably Li/Li + or more, 4.8 V vs. Li/Li + or more is even more preferable. The energy density and voltage of the storage element 10 can be increased by setting the positive electrode potential in a fully charged state by the charging method during normal use to the lower limit or higher. In addition, since the solid polymer electrolyte having good oxidation resistance according to one embodiment of the present invention is used for the storage element 10, the positive electrode potential in a fully charged state by the charging method during normal use is Even when it is high, good charge/discharge performance can be maintained.
当該蓄電素子10の通常使用時の充電方法で満充電とした状態の正極電位の上限としては、例えば6.0V vs.Li/Li+とすることができ、5.5V vs.Li/Li+が好ましく、5.2V vs.Li/Li+がさらに好ましい。
The upper limit of the positive electrode potential in a fully charged state by the charging method during normal use of the storage element 10 is, for example, 6.0 V vs. Li/Li + , 5.5V vs. Li/Li + is preferred, 5.2V vs. Li/Li + is more preferred.
<蓄電装置>
本実施形態の蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよい。
本発明の一実施形態に係る蓄電装置は、蓄電素子を二以上備え、かつ上記本発明の一実施形態に係る蓄電素子を一以上備える(以下、「第二の実施形態」という。)。第二の実施形態に係る蓄電装置に含まれる少なくとも一つの蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよく、上記本発明の一実施形態に係る蓄電素子を一備え、かつ上記本発明の一実施形態に係らない蓄電素子を一以上備えていてもよく、上記本発明の一実施形態に係る蓄電素子を二以上備えていてもよい。 <Power storage device>
The power storage device of the present embodiment is a power source for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), power sources for electronic devices such as personal computers and communication terminals, or power sources for power storage. For example, it can be mounted as a power storage unit (battery module) configured by assembling a plurality of power storage elements. In this case, the technology according to one embodiment of the present invention may be applied to at least one power storage element included in the power storage unit.
A power storage device according to one embodiment of the present invention includes two or more power storage elements and one or more power storage elements according to one embodiment of the present invention (hereinafter referred to as "second embodiment"). It is sufficient that the technology according to one embodiment of the present invention is applied to at least one power storage element included in the power storage device according to the second embodiment. One or more energy storage elements not related to one embodiment of the present invention may be provided, or two or more energy storage elements according to one embodiment of the present invention may be included.
本実施形態の蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよい。
本発明の一実施形態に係る蓄電装置は、蓄電素子を二以上備え、かつ上記本発明の一実施形態に係る蓄電素子を一以上備える(以下、「第二の実施形態」という。)。第二の実施形態に係る蓄電装置に含まれる少なくとも一つの蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよく、上記本発明の一実施形態に係る蓄電素子を一備え、かつ上記本発明の一実施形態に係らない蓄電素子を一以上備えていてもよく、上記本発明の一実施形態に係る蓄電素子を二以上備えていてもよい。 <Power storage device>
The power storage device of the present embodiment is a power source for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), power sources for electronic devices such as personal computers and communication terminals, or power sources for power storage. For example, it can be mounted as a power storage unit (battery module) configured by assembling a plurality of power storage elements. In this case, the technology according to one embodiment of the present invention may be applied to at least one power storage element included in the power storage unit.
A power storage device according to one embodiment of the present invention includes two or more power storage elements and one or more power storage elements according to one embodiment of the present invention (hereinafter referred to as "second embodiment"). It is sufficient that the technology according to one embodiment of the present invention is applied to at least one power storage element included in the power storage device according to the second embodiment. One or more energy storage elements not related to one embodiment of the present invention may be provided, or two or more energy storage elements according to one embodiment of the present invention may be included.
図2に、電気的に接続された二以上の蓄電素子10が集合した蓄電ユニット20をさらに集合した第二の実施形態に係る蓄電装置30の一例を示す。蓄電装置30は、二以上の蓄電素子10を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。
FIG. 2 shows an example of a power storage device 30 according to the second embodiment, in which power storage units 20 each including two or more electrically connected power storage elements 10 are assembled. The power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 10, a bus bar (not shown) that electrically connects two or more power storage units 20, and the like. The power storage unit 20 or power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more power storage elements.
<蓄電素子の製造方法>
本発明の一実施形態に係る蓄電素子の製造方法は、正極層、隔離層及び負極層の少なくとも1つの作製に、本発明の一実施形態に係る高分子固体電解質を用いること以外は、通常公知の方法により行うことができる。当該製造方法は、例えば(1)正極合剤、正極基材等の正極層形成材料を用意すること、(2)隔離層用材料を用意すること、(3)負極合剤、負極基材等の負極層形成材料を用意すること、及び(4)正極層、隔離層及び負極層を積層することを備える。用意される正極層形成材料、隔離層用材料及び負極層形成材料の具体的形態及び好適形態は、蓄電素子に備わる正極層、隔離層及び負極層として上記した形態を適用できる。例えば負極活物質に金属リチウムを用いる場合は、上記負極層形成材料の一例として金属リチウム箔等を用いることができる。 <Method for manufacturing power storage element>
The method for producing an electric storage element according to one embodiment of the present invention is generally known except that the polymer solid electrolyte according to one embodiment of the present invention is used to produce at least one of the positive electrode layer, the isolation layer, and the negative electrode layer. It can be done by the method of The production method includes, for example, (1) preparing a positive electrode layer-forming material such as a positive electrode mixture and a positive electrode base material, (2) preparing a separation layer material, and (3) a negative electrode mixture, a negative electrode base material, and the like. and (4) laminating the positive electrode layer, the isolation layer and the negative electrode layer. As for the specific forms and preferred forms of the prepared positive electrode layer forming material, separation layer material, and negative electrode layer forming material, the above-described forms of the positive electrode layer, the separating layer, and the negative electrode layer provided in the electric storage element can be applied. For example, when metallic lithium is used as the negative electrode active material, metallic lithium foil or the like can be used as an example of the negative electrode layer forming material.
本発明の一実施形態に係る蓄電素子の製造方法は、正極層、隔離層及び負極層の少なくとも1つの作製に、本発明の一実施形態に係る高分子固体電解質を用いること以外は、通常公知の方法により行うことができる。当該製造方法は、例えば(1)正極合剤、正極基材等の正極層形成材料を用意すること、(2)隔離層用材料を用意すること、(3)負極合剤、負極基材等の負極層形成材料を用意すること、及び(4)正極層、隔離層及び負極層を積層することを備える。用意される正極層形成材料、隔離層用材料及び負極層形成材料の具体的形態及び好適形態は、蓄電素子に備わる正極層、隔離層及び負極層として上記した形態を適用できる。例えば負極活物質に金属リチウムを用いる場合は、上記負極層形成材料の一例として金属リチウム箔等を用いることができる。 <Method for manufacturing power storage element>
The method for producing an electric storage element according to one embodiment of the present invention is generally known except that the polymer solid electrolyte according to one embodiment of the present invention is used to produce at least one of the positive electrode layer, the isolation layer, and the negative electrode layer. It can be done by the method of The production method includes, for example, (1) preparing a positive electrode layer-forming material such as a positive electrode mixture and a positive electrode base material, (2) preparing a separation layer material, and (3) a negative electrode mixture, a negative electrode base material, and the like. and (4) laminating the positive electrode layer, the isolation layer and the negative electrode layer. As for the specific forms and preferred forms of the prepared positive electrode layer forming material, separation layer material, and negative electrode layer forming material, the above-described forms of the positive electrode layer, the separating layer, and the negative electrode layer provided in the electric storage element can be applied. For example, when metallic lithium is used as the negative electrode active material, metallic lithium foil or the like can be used as an example of the negative electrode layer forming material.
<その他の実施形態>
本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、本発明に係る蓄電素子については、正極層、隔離層及び負極層以外のその他の層を備えていてもよい。正極層、隔離層及び負極層の各構造も上記した構造に限定されるものでは無い。例えば、負極層(負極)は、負極活物質層を有さず、負極基材のみから構成されていてもよい。また、本発明に係る蓄電素子は、各層のうちの1つ又は複数に液体を含むものとすることができる。本発明に係る蓄電素子の正極、負極等は、層構造を有していなくてもよい。本発明に係る蓄電素子は、二次電池である蓄電素子の他、キャパシタ等でもよい。 <Other embodiments>
The present invention is not limited to the above-described embodiments, and can be implemented in various modified and improved modes in addition to the above-described modes. For example, the power storage device according to the present invention may include layers other than the positive electrode layer, the isolation layer, and the negative electrode layer. Each structure of the positive electrode layer, the isolation layer, and the negative electrode layer is not limited to the above-described structures. For example, the negative electrode layer (negative electrode) may be composed only of the negative electrode base material without the negative electrode active material layer. In addition, the electric storage device according to the present invention may contain a liquid in one or more of the layers. The positive electrode, negative electrode, etc. of the storage device according to the present invention may not have a layered structure. The storage element according to the present invention may be a storage element that is a secondary battery, or may be a capacitor or the like.
本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、本発明に係る蓄電素子については、正極層、隔離層及び負極層以外のその他の層を備えていてもよい。正極層、隔離層及び負極層の各構造も上記した構造に限定されるものでは無い。例えば、負極層(負極)は、負極活物質層を有さず、負極基材のみから構成されていてもよい。また、本発明に係る蓄電素子は、各層のうちの1つ又は複数に液体を含むものとすることができる。本発明に係る蓄電素子の正極、負極等は、層構造を有していなくてもよい。本発明に係る蓄電素子は、二次電池である蓄電素子の他、キャパシタ等でもよい。 <Other embodiments>
The present invention is not limited to the above-described embodiments, and can be implemented in various modified and improved modes in addition to the above-described modes. For example, the power storage device according to the present invention may include layers other than the positive electrode layer, the isolation layer, and the negative electrode layer. Each structure of the positive electrode layer, the isolation layer, and the negative electrode layer is not limited to the above-described structures. For example, the negative electrode layer (negative electrode) may be composed only of the negative electrode base material without the negative electrode active material layer. In addition, the electric storage device according to the present invention may contain a liquid in one or more of the layers. The positive electrode, negative electrode, etc. of the storage device according to the present invention may not have a layered structure. The storage element according to the present invention may be a storage element that is a secondary battery, or may be a capacitor or the like.
以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples.
[実施例1]
ビニレンカーボネートとLiTFSIを混合した後、重合開始剤としてアゾビスイソブチロニトリル(AIBN)を加えることで前駆体を調整した。
厚さ12μmのSUS箔(直径26mm)からなる作用極および対極、厚さ35μmのセルロース製不織布からなる隔離層を用い、隔離層を作用極および対極で挟み、上記前駆体を注液したのち封口することで、イオン伝導度評価用セルを製作した。その後、イオン伝導度評価用セルを60℃の恒温槽にて24時間静置することで、イオン伝導度評価用セル内の前駆体を重合反応させ、高分子材料としてポリビニレンカーボネート(PVCA)を含む実施例1の高分子固体電解質を備えるイオン伝導度評価用セルを得た。実施例1の高分子固体電解質における塩(LiTFSI)の濃度は、1.4mol/kgであった。 [Example 1]
After mixing vinylene carbonate and LiTFSI, a precursor was prepared by adding azobisisobutyronitrile (AIBN) as a polymerization initiator.
Using a working electrode and a counter electrode made of SUS foil (diameter 26 mm) with a thickness of 12 μm and a separation layer made of a cellulose nonwoven fabric with a thickness of 35 μm, the separation layer was sandwiched between the working electrode and the counter electrode, and the precursor was injected and then sealed. By doing so, a cell for ionic conductivity evaluation was manufactured. After that, the ion conductivity evaluation cell is left in a constant temperature bath at 60° C. for 24 hours to polymerize the precursor in the ion conductivity evaluation cell, and polyvinylene carbonate (PVCA) is used as the polymer material. An ionic conductivity evaluation cell comprising the polymer solid electrolyte of Example 1 was obtained. The concentration of salt (LiTFSI) in the polymer solid electrolyte of Example 1 was 1.4 mol/kg.
ビニレンカーボネートとLiTFSIを混合した後、重合開始剤としてアゾビスイソブチロニトリル(AIBN)を加えることで前駆体を調整した。
厚さ12μmのSUS箔(直径26mm)からなる作用極および対極、厚さ35μmのセルロース製不織布からなる隔離層を用い、隔離層を作用極および対極で挟み、上記前駆体を注液したのち封口することで、イオン伝導度評価用セルを製作した。その後、イオン伝導度評価用セルを60℃の恒温槽にて24時間静置することで、イオン伝導度評価用セル内の前駆体を重合反応させ、高分子材料としてポリビニレンカーボネート(PVCA)を含む実施例1の高分子固体電解質を備えるイオン伝導度評価用セルを得た。実施例1の高分子固体電解質における塩(LiTFSI)の濃度は、1.4mol/kgであった。 [Example 1]
After mixing vinylene carbonate and LiTFSI, a precursor was prepared by adding azobisisobutyronitrile (AIBN) as a polymerization initiator.
Using a working electrode and a counter electrode made of SUS foil (diameter 26 mm) with a thickness of 12 μm and a separation layer made of a cellulose nonwoven fabric with a thickness of 35 μm, the separation layer was sandwiched between the working electrode and the counter electrode, and the precursor was injected and then sealed. By doing so, a cell for ionic conductivity evaluation was manufactured. After that, the ion conductivity evaluation cell is left in a constant temperature bath at 60° C. for 24 hours to polymerize the precursor in the ion conductivity evaluation cell, and polyvinylene carbonate (PVCA) is used as the polymer material. An ionic conductivity evaluation cell comprising the polymer solid electrolyte of Example 1 was obtained. The concentration of salt (LiTFSI) in the polymer solid electrolyte of Example 1 was 1.4 mol/kg.
[実施例2から8、比較例1、2、3及び5]
塩、高分子材料、及び塩濃度を表1及び表2に記載の通りとしたこと以外は実施例1と同様にして、実施例2から8、比較例1、2、3及び5の各高分子固体電解質を備えるイオン伝導度評価用セルを得た。 [Examples 2 to 8, Comparative Examples 1, 2, 3 and 5]
Examples 2 to 8 and Comparative Examples 1, 2, 3 and 5 were prepared in the same manner as in Example 1 except that the salt, polymer material, and salt concentration were as shown in Tables 1 and 2. An ionic conductivity evaluation cell having a molecular solid electrolyte was obtained.
塩、高分子材料、及び塩濃度を表1及び表2に記載の通りとしたこと以外は実施例1と同様にして、実施例2から8、比較例1、2、3及び5の各高分子固体電解質を備えるイオン伝導度評価用セルを得た。 [Examples 2 to 8, Comparative Examples 1, 2, 3 and 5]
Examples 2 to 8 and Comparative Examples 1, 2, 3 and 5 were prepared in the same manner as in Example 1 except that the salt, polymer material, and salt concentration were as shown in Tables 1 and 2. An ionic conductivity evaluation cell having a molecular solid electrolyte was obtained.
[比較例4]
ポリプロピレンカーボネート(PPC、数平均分子量50000)とLiTFSIをジメチルホルムアミドに溶解して混合した後、ジメチルホルムアミドを乾燥除去することにより比較例4の高分子固体電解質を調整した。この高分子固体電解質を隔離層として、厚さ12μmのSUS箔(直径26mm)からなる作用極および対極で挟み、封口することで、比較例4の高分子固体電解質を備えるイオン伝導度評価用セルを得た。塩濃度は表1に記載の通りとした。 [Comparative Example 4]
Polypropylene carbonate (PPC, number average molecular weight: 50000) and LiTFSI were dissolved in dimethylformamide and mixed, and then the dimethylformamide was removed by drying to prepare a polymer solid electrolyte of Comparative Example 4. A cell for evaluating ionic conductivity comprising the solid polymer electrolyte of Comparative Example 4 was sandwiched between a working electrode and a counter electrode made of SUS foil (diameter: 26 mm) with a thickness of 12 μm and sealed with this polymer solid electrolyte as an isolation layer. got The salt concentration was as shown in Table 1.
ポリプロピレンカーボネート(PPC、数平均分子量50000)とLiTFSIをジメチルホルムアミドに溶解して混合した後、ジメチルホルムアミドを乾燥除去することにより比較例4の高分子固体電解質を調整した。この高分子固体電解質を隔離層として、厚さ12μmのSUS箔(直径26mm)からなる作用極および対極で挟み、封口することで、比較例4の高分子固体電解質を備えるイオン伝導度評価用セルを得た。塩濃度は表1に記載の通りとした。 [Comparative Example 4]
Polypropylene carbonate (PPC, number average molecular weight: 50000) and LiTFSI were dissolved in dimethylformamide and mixed, and then the dimethylformamide was removed by drying to prepare a polymer solid electrolyte of Comparative Example 4. A cell for evaluating ionic conductivity comprising the solid polymer electrolyte of Comparative Example 4 was sandwiched between a working electrode and a counter electrode made of SUS foil (diameter: 26 mm) with a thickness of 12 μm and sealed with this polymer solid electrolyte as an isolation layer. got The salt concentration was as shown in Table 1.
[イオン伝導度]
実施例及び比較例の各高分子固体電解質を備えるイオン伝導度評価用セルを用いて、各高分子固体電解質のイオン伝導度を、電気化学インピーダンス法により求めた。25℃環境下で、測定周波数は7MHzから100mHzとし、得られた複素インピーダンスから、常法により、イオン伝導度を求めた。 [Ionic conductivity]
The ionic conductivity of each polymer solid electrolyte was determined by an electrochemical impedance method using an ionic conductivity evaluation cell provided with each polymer solid electrolyte of Examples and Comparative Examples. Under the environment of 25° C., the measurement frequency was set to 7 MHz to 100 mHz, and the ionic conductivity was obtained by a conventional method from the obtained complex impedance.
実施例及び比較例の各高分子固体電解質を備えるイオン伝導度評価用セルを用いて、各高分子固体電解質のイオン伝導度を、電気化学インピーダンス法により求めた。25℃環境下で、測定周波数は7MHzから100mHzとし、得られた複素インピーダンスから、常法により、イオン伝導度を求めた。 [Ionic conductivity]
The ionic conductivity of each polymer solid electrolyte was determined by an electrochemical impedance method using an ionic conductivity evaluation cell provided with each polymer solid electrolyte of Examples and Comparative Examples. Under the environment of 25° C., the measurement frequency was set to 7 MHz to 100 mHz, and the ionic conductivity was obtained by a conventional method from the obtained complex impedance.
[耐酸化性]
作用極に厚さ12μmのSUS箔(直径26mm)、対極に厚さ60μmのLi箔(直径20mm)を用いた以外は上記イオン伝導度評価用セルと同様にして、実施例1から3及び比較例1から5の各高分子固体電解質を備える耐酸化性評価用セルを作製した。各耐酸化性評価用セルを用いて、LSV(Linear Sweep Voltammetry)測定を行った。電圧掃引速度は1mV/秒とし、開回路電圧から6.0Vまで測定した。実施例1および比較例4について、それぞれ得られた測定結果を図3及び図4に示す。
測定結果をまとめたものを表1に示す。 [Oxidation resistance]
Except for using a 12 μm thick SUS foil (diameter 26 mm) for the working electrode and a 60 μm thick Li foil (diameter 20 mm) for the counter electrode, in the same manner as the cell for evaluating ionic conductivity, Examples 1 to 3 and Comparative Oxidation resistance evaluation cells comprising the polymer solid electrolytes of Examples 1 to 5 were prepared. LSV (Linear Sweep Voltage) measurement was performed using each oxidation resistance evaluation cell. The voltage sweep rate was 1 mV/sec, and measurements were taken from the open circuit voltage to 6.0V. The measurement results obtained for Example 1 and Comparative Example 4 are shown in FIGS. 3 and 4, respectively.
Table 1 shows a summary of the measurement results.
作用極に厚さ12μmのSUS箔(直径26mm)、対極に厚さ60μmのLi箔(直径20mm)を用いた以外は上記イオン伝導度評価用セルと同様にして、実施例1から3及び比較例1から5の各高分子固体電解質を備える耐酸化性評価用セルを作製した。各耐酸化性評価用セルを用いて、LSV(Linear Sweep Voltammetry)測定を行った。電圧掃引速度は1mV/秒とし、開回路電圧から6.0Vまで測定した。実施例1および比較例4について、それぞれ得られた測定結果を図3及び図4に示す。
測定結果をまとめたものを表1に示す。 [Oxidation resistance]
Except for using a 12 μm thick SUS foil (diameter 26 mm) for the working electrode and a 60 μm thick Li foil (
Table 1 shows a summary of the measurement results.
[ヤング率]
実施例4から8の各高分子固体電解質からなる自立膜のヤング率を以下の手順で求めた。ヤング率評価用のサンプルとして、各高分子固体電解質からなる縦、横、厚さがそれぞれ0.5cm、0.5cm、300から500μm程度の自立膜を2枚ずつ作製した。微小圧縮試験装置(島津製作所社製MCT-211)を用いて、得られた自立膜の変位量を測定した。測定条件は負荷―除荷試験の試験モードにおいて、最大試験力 100mN、最小試験力0.49mNとし、負荷速度を9.68mN /秒、負荷保持時間および除荷保持時間は0秒とした。各サンプルにおいて3回変位量を測定し、その平均値を各サンプルの変位量とした。
得られた変位量を下記式(2)に当てはめて、ヤング率を求めた。
ε=ΔL/t (2)
(ただし、式(2)中、εはヤング率、ΔLは変位量[μm]、tは自立膜の厚さ[μm]を表す。)
得られた実施例4から8の各高分子固体電解質からなる自立膜2枚の変位量及びヤング率の平均値を求めた。得られた結果を表2に示す。 [Young's modulus]
The Young's modulus of the self-supporting membrane composed of each polymer solid electrolyte of Examples 4 to 8 was obtained by the following procedure. As samples for Young's modulus evaluation, two self-supporting membranes of each solid polymer electrolyte having length, width and thickness of 0.5 cm, 0.5 cm and 300 to 500 μm were prepared. Using a microcompression tester (MCT-211 manufactured by Shimadzu Corporation), the amount of displacement of the obtained self-supporting membrane was measured. The measurement conditions were the maximum test force of 100 mN, the minimum test force of 0.49 mN, the load speed of 9.68 mN/sec, and the load retention time and unload retention time of 0 seconds in the test mode of the load-unload test. The amount of displacement was measured three times for each sample, and the average value was taken as the amount of displacement for each sample.
Young's modulus was obtained by applying the obtained displacement amount to the following formula (2).
ε=ΔL/t (2)
(where ε is Young's modulus, ΔL is the amount of displacement [μm], and t is the thickness [μm] of the self-supporting film in the formula (2).)
The average value of the displacement amount and the Young's modulus of two self-supporting membranes made of each of the solid polymer electrolytes obtained in Examples 4 to 8 was obtained. Table 2 shows the results obtained.
実施例4から8の各高分子固体電解質からなる自立膜のヤング率を以下の手順で求めた。ヤング率評価用のサンプルとして、各高分子固体電解質からなる縦、横、厚さがそれぞれ0.5cm、0.5cm、300から500μm程度の自立膜を2枚ずつ作製した。微小圧縮試験装置(島津製作所社製MCT-211)を用いて、得られた自立膜の変位量を測定した。測定条件は負荷―除荷試験の試験モードにおいて、最大試験力 100mN、最小試験力0.49mNとし、負荷速度を9.68mN /秒、負荷保持時間および除荷保持時間は0秒とした。各サンプルにおいて3回変位量を測定し、その平均値を各サンプルの変位量とした。
得られた変位量を下記式(2)に当てはめて、ヤング率を求めた。
ε=ΔL/t (2)
(ただし、式(2)中、εはヤング率、ΔLは変位量[μm]、tは自立膜の厚さ[μm]を表す。)
得られた実施例4から8の各高分子固体電解質からなる自立膜2枚の変位量及びヤング率の平均値を求めた。得られた結果を表2に示す。 [Young's modulus]
The Young's modulus of the self-supporting membrane composed of each polymer solid electrolyte of Examples 4 to 8 was obtained by the following procedure. As samples for Young's modulus evaluation, two self-supporting membranes of each solid polymer electrolyte having length, width and thickness of 0.5 cm, 0.5 cm and 300 to 500 μm were prepared. Using a microcompression tester (MCT-211 manufactured by Shimadzu Corporation), the amount of displacement of the obtained self-supporting membrane was measured. The measurement conditions were the maximum test force of 100 mN, the minimum test force of 0.49 mN, the load speed of 9.68 mN/sec, and the load retention time and unload retention time of 0 seconds in the test mode of the load-unload test. The amount of displacement was measured three times for each sample, and the average value was taken as the amount of displacement for each sample.
Young's modulus was obtained by applying the obtained displacement amount to the following formula (2).
ε=ΔL/t (2)
(where ε is Young's modulus, ΔL is the amount of displacement [μm], and t is the thickness [μm] of the self-supporting film in the formula (2).)
The average value of the displacement amount and the Young's modulus of two self-supporting membranes made of each of the solid polymer electrolytes obtained in Examples 4 to 8 was obtained. Table 2 shows the results obtained.
表1に示されるように、実施例1から3の各高分子固体電解質は、耐酸化性が良好であると同時に、イオン伝導度も良好であることが確認できた。図3及び図4に示されるように、電流が急激に大きくなる電圧、すなわち高分子固体電解質の酸化分解が起こる電圧が実施例1は高く、比較例4は低いことから、実施例1の高分子固体電解質は耐酸化性が良好であり、比較例4は悪いことが分かる。
As shown in Table 1, it was confirmed that the polymer solid electrolytes of Examples 1 to 3 had good oxidation resistance and good ionic conductivity. As shown in FIGS. 3 and 4, the voltage at which the current abruptly increases, that is, the voltage at which the oxidative decomposition of the solid polymer electrolyte occurs is high in Example 1 and low in Comparative Example 4. It can be seen that the molecular solid electrolyte has good oxidation resistance and Comparative Example 4 has poor oxidation resistance.
表2に示されるように、実施例4から7の各高分子固体電解質からなる自立膜は、ヤング率も良好であることが確認できた。
As shown in Table 2, it was confirmed that the Young's modulus of the self-supporting membranes composed of the solid polymer electrolytes of Examples 4 to 7 was also good.
本発明に係る高分子固体電解質は、全固体電池等の蓄電素子の電解質として好適に用いられる。
The polymer solid electrolyte according to the present invention is suitably used as an electrolyte for power storage elements such as all-solid batteries.
1 正極層(正極)
2 負極層(負極)
3 隔離層
4 正極基材
5 正極活物質層
6 負極活物質層
7 負極基材
10 蓄電素子(全固体電池)
20 蓄電ユニット
30 蓄電装置 1 positive electrode layer (positive electrode)
2 negative electrode layer (negative electrode)
3Separation layer 4 Positive electrode substrate 5 Positive electrode active material layer 6 Negative electrode active material layer 7 Negative electrode substrate 10 Power storage element (all-solid battery)
20power storage unit 30 power storage device
2 負極層(負極)
3 隔離層
4 正極基材
5 正極活物質層
6 負極活物質層
7 負極基材
10 蓄電素子(全固体電池)
20 蓄電ユニット
30 蓄電装置 1 positive electrode layer (positive electrode)
2 negative electrode layer (negative electrode)
3
20
Claims (5)
- 下記一般式(1)で表されるカーボネート構造を構成単位として含有する高分子材料と、
リチウムビス(トリフルオロメタンスルホニル)イミド又はリチウムビス(フルオロスルホニル)イミドを主成分とする塩と
を含み、
上記塩の濃度が1.0mol/kg以上である
高分子固体電解質。
a salt containing lithium bis(trifluoromethanesulfonyl)imide or lithium bis(fluorosulfonyl)imide as a main component,
A polymer solid electrolyte in which the salt concentration is 1.0 mol/kg or more.
- 上記塩が、リチウムビス(フルオロスルホニル)イミドを主成分とする請求項1に記載の高分子固体電解質。 The polymer solid electrolyte according to claim 1, wherein the salt contains lithium bis(fluorosulfonyl)imide as a main component.
- 請求項1又は請求項2に記載の高分子固体電解質を備える蓄電素子。 An electricity storage device comprising the polymer solid electrolyte according to claim 1 .
- 通常使用時の充電方法で満充電とした状態の正極電位が4.7V vs.Li/Li+以上である請求項3に記載の蓄電素子。 The positive electrode potential in a fully charged state by the charging method for normal use is 4.7 V vs. The electric storage device according to claim 3, wherein Li/Li + or more.
- 蓄電素子を二以上備え、かつ請求項3又は請求項4に記載の蓄電素子を一以上備える蓄電装置。 An electric storage device comprising two or more electric storage elements and one or more electric storage elements according to claim 3 or 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023527848A JPWO2022260001A1 (en) | 2021-06-10 | 2022-06-06 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-097457 | 2021-06-10 | ||
JP2021097457 | 2021-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022260001A1 true WO2022260001A1 (en) | 2022-12-15 |
Family
ID=84425055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/022777 WO2022260001A1 (en) | 2021-06-10 | 2022-06-06 | Polymer solid electrolyte, power storage element, and power storage device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022260001A1 (en) |
WO (1) | WO2022260001A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107768717A (en) * | 2017-09-14 | 2018-03-06 | 哈尔滨工业大学无锡新材料研究院 | A kind of makrolon base solid polymer electrolyte of the half interpenetrating network structure of ultra-violet curing and preparation method thereof |
CN110518282A (en) * | 2019-09-11 | 2019-11-29 | 蜂巢能源科技有限公司 | Solid polymer electrolyte, solid lithium ion battery |
-
2022
- 2022-06-06 JP JP2023527848A patent/JPWO2022260001A1/ja active Pending
- 2022-06-06 WO PCT/JP2022/022777 patent/WO2022260001A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107768717A (en) * | 2017-09-14 | 2018-03-06 | 哈尔滨工业大学无锡新材料研究院 | A kind of makrolon base solid polymer electrolyte of the half interpenetrating network structure of ultra-violet curing and preparation method thereof |
CN110518282A (en) * | 2019-09-11 | 2019-11-29 | 蜂巢能源科技有限公司 | Solid polymer electrolyte, solid lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022260001A1 (en) | 2022-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107925058B (en) | Negative electrode for secondary battery, method for producing same, and secondary battery comprising same | |
WO2021246186A1 (en) | Positive electrode and power storage element | |
US20230028401A1 (en) | Nonaqueous electrolyte energy storage device and method for manufacturing the same | |
JP2020123465A (en) | Anode and manufacturing method of anode | |
US20230102905A1 (en) | Nonaqueous electrolyte energy storage device | |
JP7215331B2 (en) | Method for manufacturing non-aqueous electrolyte storage element and non-aqueous electrolyte storage element | |
WO2023276863A1 (en) | Non-aqueous electrolyte power storage element | |
WO2022260001A1 (en) | Polymer solid electrolyte, power storage element, and power storage device | |
JP7409132B2 (en) | Nonaqueous electrolyte storage element | |
JP2018078029A (en) | Negative electrode and nonaqueous electrolyte power storage device | |
JP2022134613A (en) | Positive electrode mixture for non-aqueous electrolyte storage element, positive electrode for non-aqueous electrolyte storage element, and non-aqueous electrolyte storage element | |
JP2022091637A (en) | Negative electrode for nonaqueous electrolyte electricity-storage device, nonaqueous electrolyte electricity-storage device, and manufacturing method of them | |
JP2021077641A (en) | Power storage element | |
WO2022102767A1 (en) | Solid polymer electrolyte, and power storage element and power storage device which use solid polymer electrolyte | |
WO2022239861A1 (en) | Electric power storage element | |
WO2023048190A1 (en) | Power storage element, power storage element manufacturing method and power storage device | |
WO2022239520A1 (en) | Power storage element, manufacturing method therefor, and power storage device | |
WO2023276334A1 (en) | Solid polyelectrolyte, power storage element, and power storage device | |
WO2023248769A1 (en) | Active material particles, electrode, power storage element and power storage device | |
WO2022163125A1 (en) | Nonaqueous electrolyte power storage element, power storage device, and method for producing nonaqueous electrolyte power storage element | |
WO2022168845A1 (en) | Nonaqueous electrolyte power storage element and power storage device | |
WO2023145677A1 (en) | Non-aqueous electrolyte storage element | |
WO2023224071A1 (en) | Nonaqueous electrolyte power storage element | |
JP7567508B2 (en) | Positive electrode for all-solid-state battery, all-solid-state battery, and method for producing positive electrode for all-solid-state battery | |
WO2023281960A1 (en) | Positive electrode, power storage element and power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22820181 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023527848 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22820181 Country of ref document: EP Kind code of ref document: A1 |