WO2022102767A1 - Solid polymer electrolyte, and power storage element and power storage device which use solid polymer electrolyte - Google Patents

Solid polymer electrolyte, and power storage element and power storage device which use solid polymer electrolyte Download PDF

Info

Publication number
WO2022102767A1
WO2022102767A1 PCT/JP2021/041826 JP2021041826W WO2022102767A1 WO 2022102767 A1 WO2022102767 A1 WO 2022102767A1 JP 2021041826 W JP2021041826 W JP 2021041826W WO 2022102767 A1 WO2022102767 A1 WO 2022102767A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
solid polymer
power storage
electrode active
active material
Prior art date
Application number
PCT/JP2021/041826
Other languages
French (fr)
Japanese (ja)
Inventor
雄也 伊丹
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2022562216A priority Critical patent/JPWO2022102767A1/ja
Publication of WO2022102767A1 publication Critical patent/WO2022102767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid polymer electrolyte, a power storage element using a solid polymer electrolyte, and a power storage device.
  • Non-aqueous electrolyte secondary batteries represented by lithium-ion non-aqueous electrolyte secondary batteries are widely used in personal computers, electronic devices such as communication terminals, automobiles, etc. due to their high energy density.
  • the non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrically isolated electrodes and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between both electrodes. It is configured to charge and discharge with.
  • An object of the present invention is to provide a solid polymer electrolyte having high ionic conductivity, a power storage element and a power storage device using the solid polymer electrolyte.
  • the solid polymer electrolyte according to one aspect of the present invention comprises a polyalkylene carbonate, a salt, and an inorganic filler.
  • the power storage element includes a positive electrode, a negative electrode, and the solid polymer electrolyte.
  • the power storage device includes two or more power storage elements and one or more power storage elements according to the other aspect of the present invention.
  • the solid polyelectrolyte according to one aspect of the present invention can enhance ionic conductivity.
  • the power storage element according to another aspect of the present invention can be a power storage element provided with a solid polymer electrolyte having high ionic conductivity.
  • the power storage device according to another aspect of the present invention can be a power storage device including a power storage element including a solid polymer electrolyte having high ionic conductivity.
  • FIG. 1 is a schematic cross-sectional view of a power storage element (all-solid-state battery) according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a power storage device configured by assembling a plurality of power storage elements according to an embodiment of the present invention.
  • the solid polymer electrolyte according to one aspect of the present invention comprises a polyalkylene carbonate, a salt, and an inorganic filler.
  • the solid polymer electrolyte has high ionic conductivity.
  • the reason for this is not clear, but the following can be inferred.
  • a new ionic conduction path is formed in the vicinity of the inorganic filler of the solid polymer electrolyte.
  • the particle size of the inorganic filler added to the solid polyelectrolyte is small, the specific surface area of the inorganic filler is large, so that more ion conduction paths are formed, the effect of increasing the ionic conductivity is increased, and the lithium ion is increased.
  • the transport rate will also improve.
  • the amount of the inorganic filler added is excessive or the specific surface area of the inorganic filler having a solid polymer electrolyte as a unit volume is too large, the polymer chain segment is caused by the interaction between the solid polymer electrolyte and the surface of the inorganic filler. Less exercise. As a result, the ionic conductivity due to the segment motion becomes low, so that the ionic conductivity of the solid polymer electrolyte becomes low.
  • the solid polymer electrolyte does not contain an electrolytic solution containing a solvent.
  • the electrolytic solution may contribute to the dendritic growth of metallic lithium on the surface of the negative electrode.
  • polyethylene carbonate and polypropylene carbonate are preferable from the viewpoint of ionic conductivity, and among them, since the distance between the carbonate groups of the main chain skeleton is shorter, the ionic conductivity due to the segment motion of the polymer becomes high. Possible polyethylene carbonates are more preferred.
  • the salt is preferably an imide salt from the viewpoint of easy dissociation, preferably lithium bis (perfluoroalkylsulfonyl) imide from the viewpoint of lithium ion conductivity, and lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 )). 2.
  • LiTFSI lithium bis (perfluoroalkylsulfonyl) imide from the viewpoint of lithium ion conductivity
  • LiN lithium bis (trifluoromethanesulfonyl) imide
  • the content ratio of the salt to the total mass of the polyalkylene carbonate and the salt is 50. It is preferably larger than% by mass.
  • the inorganic filler may contain a compound of a metal element such as Si, Al, Mg, Ca and Ti, and the compound may be an oxide.
  • the upper limit of the specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume is preferably 65 m 2 / m 3 from the viewpoint of ionic conductivity.
  • the content ratio of the inorganic filler to the solid polymer electrolyte is preferably less than 29% by mass from the viewpoint of ionic conductivity.
  • the power storage element according to one aspect of the present invention includes a positive electrode, a negative electrode, and a solid polymer electrolyte according to one aspect of the present invention.
  • the power storage element can be a power storage element including a solid polymer electrolyte having high ionic conductivity.
  • the power storage device includes two or more power storage elements and one or more power storage elements according to the above aspect of the present invention.
  • the power storage device can be a power storage device including a power storage element including a solid polymer electrolyte having high ionic conductivity.
  • each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background technique.
  • the solid polyelectrolyte according to the embodiment of the present invention comprises a polyalkylene carbonate, a salt, and an inorganic filler.
  • the solid polymer electrolyte preferably does not contain an electrolytic solution containing a solvent.
  • R represents a hydrogen or an alkyl group.
  • R represents a hydrogen or an alkyl group
  • the lower limit of the number of carbon atoms of the alkyl group is preferably 1, the upper limit is preferably 8, and more preferably 4. Is more preferable.
  • the polyalkylene carbonate according to the embodiment of the present invention include polybutylene carbonate, polypentylene carbonate, polypropylene carbonate, polyethylene carbonate and the like, and among these, polyethylene carbonate and polypropylene carbonate are preferable, and polyethylene carbonate is more preferable.
  • the polyalkylene carbonate may be a copolymer.
  • polyalkylene carbonate a commercially available product may be used, or a product manufactured by a known method may be used.
  • the salt according to the embodiment of the present invention includes a lithium salt, a sodium salt, a potassium salt, a magnesium salt, an onium salt and the like. Of these, lithium salts are preferred.
  • the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , lithium bis (oxalate) borate (LiBOB), and lithium difluorooxalate borate (LiFOB).
  • Lithium salt with oxalic acid group such as lithium bis (oxalate) difluorophosphate (LiFOP), LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 )
  • LiFOP lithium bis (oxalate) difluorophosphate
  • LiSO 3 CF 3 LiN (SO 2 CF 3 ) 2
  • LiN (SO 2 C 2 F 5 ) 2 LiN (SO 2 )
  • lithium salts and imide salts having a halogenated hydrocarbon group such as CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , and LiC (SO 2 C 2 F 5 ) 3 .
  • an imide salt is preferable from the viewpoint of ease of dissociation
  • a lithium bis (perfluoroalkylsulfonyl) imide is preferable from the viewpoint of lithium ion conductivity
  • a lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 )) is preferable. 2.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the lower limit of the salt content to the total mass of the polyalkylene carbonate and the salt is preferably 50% by mass, more preferably 60% by mass, and 70% by mass. Is more preferable.
  • the upper limit of the salt content is preferably 99% by mass.
  • the inorganic filler according to the embodiment of the present invention may contain a compound of a metal element such as Si, Al, Mg, Ca, Ti, and the compound may be an oxide.
  • the oxide include silicon dioxide, aluminum oxide, magnesium oxide, calcium oxide, titanium oxide and the like.
  • the upper limit of the specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume is preferably 70 m 2 / m 3 , more preferably 65 m 2 / m 3 , further preferably 60 m 2 / m 3 and 55 m 2 / m. 3 is even more preferred, 50 m 2 / m 3 is even more preferred, and 45 m 2 / m 3 is even more preferred.
  • the lower limit of the specific surface area is preferably 5 m 2 / m 3 , more preferably 10 m 2 / m 3 , even more preferably 15 m 2 / m 3 , even more preferably 20 m 2 / m 3 , and even more 25 m 2 / m 3 .
  • the upper limit of the content ratio of the inorganic filler to the solid polymer electrolyte is preferably 35% by mass, more preferably 29% by mass, further preferably 25% by mass, further preferably 23% by mass, still more preferably 20% by mass. 17% by mass is even more preferable.
  • the lower limit of the content ratio of the inorganic filler is preferably 1% by mass, more preferably 3% by mass, further preferably 5% by mass, further preferably 7% by mass, further preferably 9% by mass, and more preferably 11% by mass. More preferred.
  • the specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume is obtained by determining the total surface area of the inorganic filler based on the content mass of the inorganic filler with respect to the solid polymer electrolyte and the specific surface area of the inorganic filler by the BET method. , Determined by dividing by the volume of solid polymer electrolyte.
  • the solid polymer electrolyte according to the embodiment of the present invention can be used as an ionic conduction material, and its use is not particularly limited.
  • various power storage elements such as a metallic lithium battery, a fuel cell and a capacitor are used. Can be used for.
  • the ionic conductivity of the solid polymer electrolyte of the present invention is determined by measuring the electrochemical impedance method (hereinafter, also referred to as EIS) in an environment of 25 ° C.
  • EIS electrochemical impedance method
  • the working electrode and counter electrode of the measuring cell shall be disk-shaped with a diameter of 26 mm, and both the working electrode and counter electrode shall be stainless steel.
  • the measurement frequency is from 7 MHz to 100 MHz. From the obtained complex impedance, the ionic conductivity is obtained by a conventional method.
  • the lithium ion transport number of the solid polymer electrolyte of the present invention is calculated by the following formula (2).
  • the working electrode and counter electrode of the measuring cell shall be disk-shaped with a diameter of 26 mm, and both the working electrode and counter electrode shall be lithium metal.
  • a voltage of 10 mV is applied using a potentiostat device in an environment of 25 ° C. and held for 10 hours.
  • the resistance value measurement frequency by EIS measurement is 7 MHz to 100 MHz.
  • t + is the lithium ion transport rate
  • ⁇ V is the applied voltage (10 mV )
  • I 0 is the current value immediately after the voltage is applied
  • Is is the current value 10 hours after the start of the voltage application.
  • R 0 represents the resistance value of the solid polymer electrolyte before the start of voltage application calculated by EIS measurement
  • R ss represents the resistance value of the solid polymer electrolyte 10 hours after the start of voltage application calculated by EIS measurement. R ss is measured with 10 mV applied.
  • the power storage element according to one aspect of the present invention includes a positive electrode, a negative electrode, and a solid polymer electrolyte according to one aspect of the present invention.
  • an all-solid-state battery will be described as a specific example as a power storage element according to an embodiment of the present invention.
  • FIG. 1 shows a power storage element 10 as an example of an all-solid-state battery.
  • the power storage element 10 is a secondary battery in which a positive electrode 1 and a negative electrode 2 are arranged via an isolation layer 3.
  • the positive electrode 1 has a positive electrode base material 4 and a positive electrode active material layer 5, and the positive electrode base material 4 is the outermost layer of the positive electrode 1.
  • the negative electrode 2 has a negative electrode base material 7 and a negative electrode active material layer 6, and the negative electrode base material 7 is the outermost layer of the negative electrode 2.
  • the negative electrode active material layer 6, the isolation layer 3, the positive electrode active material layer 5, and the positive electrode base material 4 are laminated in this order on the negative electrode base material 7.
  • the power storage element 10 contains a solid polymer electrolyte according to an embodiment of the present invention in at least one of the positive electrode 1, the negative electrode 2, and the isolation layer 3. More specifically, at least one of the positive electrode active material layer 5, the negative electrode active material layer 6 and the isolation layer 3 contains the solid polyelectrolyte according to the embodiment of the present invention.
  • solid electrolytes other than the solid polymer electrolyte according to the embodiment of the present invention may be used together.
  • examples of other solid electrolytes include sulfide-based solid electrolytes, oxide-based solid electrolytes, and solid polymer electrolytes other than the solid polymer electrolyte according to the embodiment of the present invention.
  • a plurality of different types of solid electrolytes may be contained in one layer of the power storage element 10, and different solid electrolytes may be contained in each layer.
  • the positive electrode 1 includes a positive electrode base material 4 and a positive electrode active material layer 5 laminated on the surface of the positive electrode base material 4.
  • the positive electrode 1 may have an intermediate layer between the positive electrode base material 4 and the positive electrode active material layer 5.
  • the positive electrode base material 4 has conductivity. Having “conductivity” means that the volume resistivity measured according to JIS-H-0505 (1975) is 107 ⁇ ⁇ cm or less, and “non-conductive” means. It means that the volume resistivity is more than 107 ⁇ ⁇ cm.
  • a metal such as aluminum, titanium, tantalum, indium, or stainless steel or an alloy thereof is used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost.
  • Examples of the positive electrode base material 4 include a foil, a vapor-deposited film, a mesh, a porous material, and the like, and the foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material 4.
  • Examples of aluminum or aluminum alloy include A1085P, A3003P, A1N30 and the like specified in JIS-H-4000 (2014) or JIS-H4160 (2006).
  • the average thickness of the positive electrode substrate 4 is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, further preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the "average thickness" of the positive electrode base material 4 and the negative electrode base material 7 described later means a value obtained by dividing the mass of the base material having a predetermined area by the true density and area of the base material.
  • the intermediate layer is a layer arranged between the positive electrode base material 4 and the positive electrode active material layer 5.
  • the intermediate layer contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode base material 4 and the positive electrode active material layer 5.
  • the composition of the intermediate layer is not particularly limited and includes, for example, a binder and a conductive agent.
  • the positive electrode active material layer 5 contains a positive electrode active material.
  • the positive electrode active material layer 5 can be formed from a so-called positive electrode mixture containing a positive electrode active material.
  • the positive electrode active material layer 5 may contain an optional component such as a solid polymer electrolyte, a conductive agent, a binder, a thickener, and a filler, if necessary. One or more of each of these optional components may not be substantially contained in the positive electrode active material layer 5.
  • the positive electrode active material contained in the positive electrode active material layer 5 can be appropriately selected from known positive electrode active materials usually used for lithium ion secondary batteries and all-solid-state batteries.
  • As the positive electrode active material for the lithium ion secondary battery a material capable of storing and releasing lithium ions is usually used.
  • Examples of the positive electrode active material include a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanionic compound, a chalcogen compound, sulfur and the like.
  • lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure examples include Li [Li x Ni 1-x ] O 2 (0 ⁇ x ⁇ 0.5) and Li [Li x Ni ⁇ Co (1- ). x- ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ ⁇ 1), Li [Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ] O 2 (0 ⁇ x ⁇ 0. 5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ ⁇ 1) and the like.
  • lithium transition metal composite oxide having a spinel-type crystal structure examples include Li x Mn 2 O 4 and Li x Ni ⁇ Mn ( 2- ⁇ ) O 4 and the like.
  • Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like.
  • Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like.
  • the atom or polyanion in these materials may be partially substituted with an atom or anion species composed of other elements.
  • the surface of the positive electrode active material may be coated with a compound such as lithium niobate, lithium titanate, or lithium phosphate. In the positive electrode active material layer, one of these positive electrode active materials may be used alone. Well, two or more kinds may be mixed and used.
  • the positive electrode active material examples include a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure or a spinel type crystal structure, and a polyanionic compound containing nickel, cobalt or manganese (LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 2 MnSiO). 4 , Li 2 CoPO 4 F, etc.) is preferable, and a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure is more preferable.
  • the lithium transition metal composite oxides having an ⁇ -NaFeO type 2 crystal structure those containing one or more of nickel, cobalt and manganese as transition metals are more preferable.
  • These positive electrode active materials have a particularly high redox potential, and by using such a positive electrode active material, the energy density of the power storage element 10 and the like can be increased.
  • the positive electrode active material is usually particles (powder).
  • the average particle size of the positive electrode active material is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, for example.
  • the production or handling of the positive electrode active material becomes easy.
  • the conductivity of the positive electrode active material layer 5 is improved.
  • the "average particle size” is based on JIS-Z-8825 (2013), and is based on the particle size distribution measured by the laser diffraction / scattering method for a diluted solution obtained by diluting the particles with a solvent. It means a value at which the volume-based integrated distribution calculated in accordance with Z-8819-2 (2001) is 50%.
  • a crusher, a classifier, etc. are used to obtain particles in a predetermined shape.
  • the crushing method include a method using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, or the like.
  • wet pulverization in which water or an organic solvent such as hexane coexists can also be used.
  • a classification method a sieve, a wind power classifier, or the like is used as needed for both dry type and wet type.
  • the content of the positive electrode active material in the positive electrode active material layer 5 is preferably 10% by mass or more and 95% by mass or less, more preferably 30% by mass or more, and further preferably 50% by mass or more. By setting the content of the positive electrode active material in the above range, the electric capacity of the power storage element 10 can be increased.
  • the content of the solid polymer electrolyte in the positive electrode active material layer 5 is preferably 10% by mass or more and 90% by mass or less, and 20% by mass or more and 70% by mass or less. Is more preferable, and 50% by mass or less may be further preferable.
  • the electric capacity of the power storage element 10 can be increased.
  • the positive electrode active material layer 5 may form a complex.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • a conductive agent include carbonaceous materials, metals, conductive ceramics and the like.
  • the carbonaceous material include graphite, non-graphitic carbon, graphene-based carbon and the like.
  • non-graphitic carbon include carbon nanofibers, pitch-based carbon fibers, and carbon black.
  • carbon black include furnace black, acetylene black, and ketjen black.
  • Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), fullerenes and the like.
  • the shape of the conductive agent include powder and fibrous.
  • the conductive agent one of these materials may be used alone, or two or more of them may be mixed and used. Further, these materials may be combined and used. For example, a material in which carbon black and CNT are combined may be used. Among these, carbon black is preferable from the viewpoint of conductivity and coatability, and acetylene black is particularly preferable.
  • the content of the conductive agent in the positive electrode active material layer 5 is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyimide, poly (meth) acrylic acid, poly (meth) acrylic acid ester, and poly (meth).
  • Thermoplastic resins such as acrylamide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber and other elastomers; polysaccharide polymers and the like.
  • the content of the binder in the positive electrode active material layer 5 is preferably 1% by mass or more and 10% by mass, more preferably 3% by mass or more and 9% by mass or less. By setting the content of the binder in the above range, the active substance can be stably retained.
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • methyl cellulose examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • this functional group may be inactivated by methylation or the like in advance.
  • the filler is not particularly limited.
  • Fillers include polyolefins such as polypropylene and polyethylene, silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, inorganic oxides such as aluminosilicate, magnesium hydroxide, calcium hydroxide, and water.
  • Hydroxides such as aluminum oxide, carbonates such as calcium carbonate, sparingly soluble ion crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite.
  • Apatite Kaolin, Murite, Spinel, Olivin, Serisite, Bentnite, Mica and other mineral resource-derived substances or man-made products thereof.
  • the positive electrode active material layer 5 is a typical non-metal element such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W and other transition metal elements are added to positive electrode active materials, solid electrolytes, conductive agents, binders, etc. It may be contained as a component other than the thickener and the filler.
  • the average thickness of the positive electrode active material layer 5 is preferably 30 ⁇ m or more and 1,000 ⁇ m or less, and more preferably 60 ⁇ m or more and 500 ⁇ m or less. By setting the average thickness of the positive electrode active material layer 5 to be equal to or greater than the above lower limit, a power storage element 10 having a high energy density can be obtained. By setting the average thickness of the positive electrode active material layer 5 to be equal to or less than the above upper limit, the power storage element 10 can be downsized.
  • the average thickness of the positive electrode active material layer 5 is the average value of the thickness measured at any five locations. The same applies to the average thickness of the negative electrode active material layer 6 and the isolation layer 3, which will be described later.
  • the negative electrode 2 has a negative electrode base material 7 and a negative electrode active material layer 6 arranged directly on the negative electrode base material 7 or via an intermediate layer.
  • the configuration of the intermediate layer is not particularly limited, and can be selected from, for example, the configurations exemplified by the positive electrode 1.
  • the negative electrode base material 7 has conductivity.
  • a metal such as copper, nickel, stainless steel, nickel-plated steel, or aluminum, an alloy thereof, a carbonaceous material, or the like is used.
  • copper or a copper alloy is preferable.
  • the negative electrode base material include foils and thin-film deposition films, and foils are preferable from the viewpoint of cost. Therefore, a copper foil or a copper alloy foil is preferable as the negative electrode base material.
  • Examples of the copper foil include rolled copper foil, electrolytic copper foil and the like.
  • the average thickness of the negative electrode base material 7 is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, further preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer 6 contains a negative electrode active material.
  • the negative electrode active material layer 6 can be formed from, for example, a so-called negative electrode mixture containing a negative electrode active material.
  • the negative electrode active material layer 6 contains optional components such as a solid polymer electrolyte, a conductive agent, a binder, a thickener, and a filler, if necessary.
  • the types and suitable contents of the optional components in the negative electrode active material layer 6 are the same as those of the above-mentioned optional components in the positive electrode active material layer 5.
  • One or more of each of these optional components may not be substantially contained in the negative electrode active material layer 6.
  • the negative electrode active material layer 6 is a typical non-metal element such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W and other transition metal elements are used as negative electrode active materials, solid polymer electrolytes, etc. It may be contained as a component other than a conductive agent, a binder, a thickener, and a filler.
  • the negative electrode active material can be appropriately selected from known negative electrode active materials usually used for lithium ion secondary batteries and all-solid-state batteries.
  • a material capable of storing and releasing lithium ions is usually used.
  • the negative electrode active material include metal Li; metal or semi-metal such as Si and Sn; metal oxide or semi-metal oxide such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTIO 2 and TiNb 2O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite (graphitite) and non-graphitizable carbon (graphitizable carbon or non-graphitizable carbon). Be done.
  • one kind of these materials may be used alone, or two or more kinds thereof may be mixed and used.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction method before charging / discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm.
  • Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material having stable physical properties can be obtained.
  • Non-graphitic carbon refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by the X-ray diffraction method before charging / discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. ..
  • Examples of non-graphitizable carbon include non-graphitizable carbon and easily graphitizable carbon.
  • the non-graphitic carbon include a resin-derived material, a petroleum pitch-derived material, an alcohol-derived material, and the like.
  • the discharged state means a state in which the carbon material, which is the negative electrode active material, is discharged so as to sufficiently release lithium ions that can be occluded and discharged by charging and discharging.
  • the open circuit voltage is 0.7 V or more.
  • non-graphitizable carbon refers to a carbon material having d 002 of 0.36 nm or more and 0.42 nm or less.
  • the “graphitizable carbon” refers to a carbon material having d 002 of 0.34 nm or more and less than 0.36 nm.
  • metallic lithium is preferable.
  • the metallic lithium may exist as pure metallic lithium consisting substantially only of lithium, or may exist as a lithium alloy containing other metallic elements.
  • the lithium alloy include lithium silver alloy, lithium zinc alloy, lithium calcium alloy, lithium aluminum alloy, lithium magnesium alloy, lithium indium alloy and the like.
  • the lithium alloy may contain a plurality of metal elements other than lithium.
  • the negative electrode active material layer 6 may be a layer substantially composed only of metallic lithium.
  • the content of metallic lithium in the negative electrode active material layer 6 may be 90% by mass or more, 99% by mass or more, or 100% by mass.
  • the negative electrode active material layer 6 may be a metallic lithium foil or a lithium alloy foil.
  • the negative electrode active material may be particles (powder).
  • the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the average particle size thereof may be preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material is a metal, a semi-metal, a metal oxide, a semi-metal oxide, a titanium-containing oxide, a polyphosphate compound or the like
  • the average particle size thereof may be preferably 1 nm or more and 1 ⁇ m or less.
  • the conductivity of the active material layer is improved.
  • a crusher, a classifier, or the like is used to obtain a powder having a predetermined particle size.
  • the pulverization method and the powder grade method can be selected from, for example, the methods exemplified for the positive electrode 1.
  • the content of the negative electrode active material in the negative electrode active material layer 6 may be 10% by mass or more and 95% by mass or less, more preferably 30% by mass or more, and further preferably 50% by mass or more. By increasing the content ratio of the negative electrode active material, the electric capacity of the power storage element 10 can be increased.
  • the content of the solid polymer electrolyte in the negative electrode active material layer 6 is preferably 10% by mass or more and 90% by mass or less, and 20% by mass or more and 70% by mass or less. Is more preferable, and 50% by mass or less may be further preferable. By setting the content of the solid polymer electrolyte in the above range, the electric capacity of the power storage element 10 can be increased.
  • the content of the solid polymer electrolyte according to the embodiment of the present invention is used for the negative electrode active material layer 6, the content of the solid polymer electrolyte according to the embodiment of the present invention with respect to all the electrolytes in the negative electrode active material layer 6 is as follows. 50% by mass or more is preferable, 70% by mass or more is more preferable, 90% by mass or more is further preferable, and substantially 100% by mass is further preferable.
  • the average thickness of the negative electrode active material layer 6 is not particularly limited, and may be, for example, 1 nm or more, more preferably 1 ⁇ m or more and 1,000 ⁇ m or less, and further preferably 10 ⁇ m or more and 500 ⁇ m or less.
  • the charge / discharge performance of the power storage element 10 can be improved.
  • the negative electrode active material is metallic lithium
  • the negative electrode active material layer 6 can be sufficiently charged and discharged even if the average thickness is less than 1 ⁇ m.
  • the power storage element 10 can be downsized.
  • the isolation layer 3 contains a solid polymer electrolyte.
  • various solid polymer electrolytes can be used in addition to the solid polymer electrolyte according to the above-described embodiment of the present invention.
  • the content of the solid polymer electrolyte in the isolation layer 3 is preferably 70% by mass or more, more preferably 90% by mass or more, further preferably 99% by mass or more, and even more preferably substantially 100% by mass. Sometimes.
  • the content of the electrolyte according to the embodiment of the present invention in the isolation layer 3 is preferably 50% by mass or more. It is more preferably 70% by mass or more, further preferably 90% by mass or more, and even more preferably substantially 100% by mass.
  • the isolation layer 3 may contain optional components such as a separator (for example, unemployed cloth) for reinforcing the mechanical strength of the electrolyte and a filler.
  • a separator for example, unemployed cloth
  • a filler can be selected from the materials exemplified in the positive electrode active material layer 5.
  • the average thickness of the isolation layer 3 is preferably 1 ⁇ m or more and 200 ⁇ m or less, and more preferably 3 ⁇ m or more and 100 ⁇ m or less. By setting the average thickness of the isolation layer 3 to be equal to or greater than the above lower limit, it is possible to insulate the positive electrode 1 and the negative electrode 2 with high certainty. By setting the average thickness of the isolation layer 3 to be equal to or less than the above upper limit, it is possible to increase the energy density of the power storage element 10.
  • the power storage device includes two or more power storage elements and one or more power storage elements according to one aspect of the present invention.
  • the power storage element of the present embodiment is a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV), a power source for electronic devices such as a personal computer and a communication terminal, or a power source for power storage.
  • a power storage unit battery module
  • the technique according to the embodiment of the present invention may be applied to at least one power storage element included in the power storage unit.
  • FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected power storage elements 10 are assembled is further assembled.
  • the power storage device 30 may include a bus bar (not shown) for electrically connecting two or more power storage elements 10, a bus bar (not shown) for electrically connecting two or more power storage units 20 and the like.
  • the power storage unit 20 or the power storage device 30 may include a state monitoring device (not shown) for monitoring the state of one or more power storage elements.
  • DMF N, N-dimethylformamide
  • an inorganic filler was added, and the mixture was further stirred in an environment of 60 ° C. for 3 hours and applied onto the SUS foil.
  • Evonik's AEROXIDE AluC was used as the added inorganic filler.
  • a product having a representative value of 13 nm in the average diameter of the primary particles was used.
  • the average diameter is measured by electron micrograph using TEM.
  • the content ratio of the inorganic filler to the solid polymer electrolyte was 13% by mass, and the specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume was 28 m 2 / m 3 . This was dried in an environment of 80 ° C. for 24 hours, and further dried in an environment of 80 ° C. with a vacuum degree of 0.1 Pa or less for 24 hours to obtain a solid polymer electrolyte.
  • Examples 2 to 5, 16 The specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume was the same as in Example 1 except that the amount of the inorganic filler added was changed as shown in [Table 1].
  • Examples 6 to 9 The same as in Example 1 was carried out except that the representative value of the average diameter of the primary particles of the inorganic filler and the specific surface area of the inorganic filler having a solid polymer electrolyte as a unit volume were as shown in [Table 1].
  • Example 10 to 13 The added inorganic filler was AEROXIDE TiO 2 P25 manufactured by Evonik, and the specific surface area of the inorganic filler having the representative value of the average diameter of the primary particles and the solid polymer electrolyte as the unit volume was as shown in [Table 1]. The same as in Example 1.
  • Example 1 except that the added inorganic filler was AEROSIL 200 manufactured by Evonik and the specific surface area of the inorganic filler having the representative value of the average diameter of the primary particles and the solid polymer electrolyte as the unit volume was as shown in [Table 1]. I did the same.
  • Example 1 The procedure was the same as in Example 1 except that no inorganic filler was added.
  • the EIS of the obtained solid polymer electrolyte was measured by the above-mentioned method in an environment of 25 ° C., and the ionic conductivity was determined.
  • the obtained ionic conductivity is shown in Table 1.
  • the ionic conductivity is higher than that in Comparative Example 1.
  • the ionic conductivity in an environment of 25 ° C. is about 1 ⁇ 10 -4 to 1 ⁇ 10 -5 S / cm
  • the liquid electrolyte liquid electrolyte
  • the ionic conductivity of a general liquid-based non-aqueous electrolyte in a 25 ° C environment is lower than that of 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 -3 S / cm.
  • Example 17 to 21 The procedure was the same as in Example 1 except that the content ratio of the inorganic filler to the solid polymer electrolyte was as shown in [Table 2].
  • the EIS of the obtained solid polymer electrolyte was measured by the above-mentioned method in an environment of 25 ° C., and the ionic conductivity was determined.
  • Table 2 shows the obtained ionic conductivity and the value obtained by dividing each ionic conductivity by the ionic conductivity of Comparative Example 1 as "the effect of improving the ionic conductivity by adding the inorganic filler".
  • Example 22 The procedure was the same as in Example 1 except that the LiTFSI was 1.0 g.
  • Example 23 Comparative Example 2
  • the procedure was the same as in Example 22 except that the content ratio of the inorganic filler to the solid polymer electrolyte was as shown in [Table 3].
  • the EIS of the obtained solid polymer electrolyte was measured by the above-mentioned method in an environment of 25 ° C., and the ionic conductivity was determined.
  • Table 3 shows the obtained ionic conductivity and the value obtained by dividing each ionic conductivity by the ionic conductivity of Comparative Example 2 as "the effect of improving the ionic conductivity by adding the inorganic filler".
  • the lithium ion transport number was determined by the above-mentioned method. The measurement was performed in a 25 ° C environment using a VMP-300 manufactured by Biologic and the attached software as a potentiostat device. The Ion transport numbers of the obtained lithium ions are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

A solid polymer electrolyte which is equipped with a polyalkylene carbonate, a salt and an inorganic filler.

Description

固体高分子電解質、固体高分子電解質を用いた蓄電素子及び蓄電装置Solid polymer electrolyte, power storage element and power storage device using solid polymer electrolyte
本発明は、固体高分子電解質、固体高分子電解質を用いた蓄電素子及び蓄電装置に関する。 The present invention relates to a solid polymer electrolyte, a power storage element using a solid polymer electrolyte, and a power storage device.
リチウムイオン非水電解質二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解質を備え、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。 Non-aqueous electrolyte secondary batteries represented by lithium-ion non-aqueous electrolyte secondary batteries are widely used in personal computers, electronic devices such as communication terminals, automobiles, etc. due to their high energy density. The non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrically isolated electrodes and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between both electrodes. It is configured to charge and discharge with.
近年、非水電解質二次電池の安全性の向上等を目的として、非水電解質として有機溶媒等の液体を含む電解質に代えて固体高分子電解質を使用する全固体電池が提案されている。固体高分子電解質としてポリエチレンカーボネート若しくはポリプロピレンカーボネート並びにリチウムビス(フルオロスルホニル)イミドを含有する固体高分子電解質が開示されている(特許文献1参照)。 In recent years, for the purpose of improving the safety of a non-aqueous electrolyte secondary battery, an all-solid-state battery has been proposed in which a solid polymer electrolyte is used as the non-aqueous electrolyte instead of an electrolyte containing a liquid such as an organic solvent. A solid polymer electrolyte containing polyethylene carbonate or polypropylene carbonate and lithium bis (fluorosulfonyl) imide as a solid polymer electrolyte is disclosed (see Patent Document 1).
特許第6213908号公報Japanese Patent No. 6213908
しかし、従来の固体高分子電解質ではイオン伝導度が低いという課題があった。本発明の目的は、イオン伝導度が高い固体高分子電解質、これを用いた蓄電素子及び蓄電装置を提供することである。 However, the conventional solid polymer electrolyte has a problem that the ionic conductivity is low. An object of the present invention is to provide a solid polymer electrolyte having high ionic conductivity, a power storage element and a power storage device using the solid polymer electrolyte.
本発明の一側面に係る固体高分子電解質は、ポリアルキレンカーボネートと、塩と、無機フィラーとを備える。 The solid polymer electrolyte according to one aspect of the present invention comprises a polyalkylene carbonate, a salt, and an inorganic filler.
 本発明の他の一側面に係る蓄電素子は、正極と、負極と、前記固体高分子電解質とを備える。 The power storage element according to another aspect of the present invention includes a positive electrode, a negative electrode, and the solid polymer electrolyte.
 本発明の他の一側面に係る蓄電装置は、蓄電素子を二以上備え、且つ本発明の他の一側面に係る蓄電素子を一以上備える。 The power storage device according to the other aspect of the present invention includes two or more power storage elements and one or more power storage elements according to the other aspect of the present invention.
 本発明の一側面に係る固体高分子電解質は、イオン伝導度を高めることができる。本発明の他の一側面に係る蓄電素子は、イオン伝導度が高い固体高分子電解質を備える蓄電素子とすることができる。本発明の他の一側面に係る蓄電装置は、イオン伝導度が高い固体高分子電解質を備える蓄電素子を備える蓄電装置とすることができる。 The solid polyelectrolyte according to one aspect of the present invention can enhance ionic conductivity. The power storage element according to another aspect of the present invention can be a power storage element provided with a solid polymer electrolyte having high ionic conductivity. The power storage device according to another aspect of the present invention can be a power storage device including a power storage element including a solid polymer electrolyte having high ionic conductivity.
図1は、本発明の一実施形態に係る蓄電素子(全固体電池)の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a power storage element (all-solid-state battery) according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。FIG. 2 is a schematic view showing a power storage device configured by assembling a plurality of power storage elements according to an embodiment of the present invention.
 初めに、本明細書によって開示される固体高分子電解質の概要について説明する。 First, the outline of the solid polymer electrolyte disclosed by the present specification will be described.
本発明の一側面に係る固体高分子電解質は、ポリアルキレンカーボネートと、塩と、無機フィラーとを備える。 The solid polymer electrolyte according to one aspect of the present invention comprises a polyalkylene carbonate, a salt, and an inorganic filler.
 当該固体高分子電解質は、イオン伝導度が高い。この理由は定かではないが、次のことが推測される。固体高分子電解質へ無機フィラーを添加することで、固体高分子電解質の無機フィラー近傍に新たなイオン伝導経路が形成される。固体高分子電解質へ添加する無機フィラーの粒径が小さい場合、無機フィラーの比表面積が大きくなるため、より多くのイオン伝導経路が形成され、イオン伝導度が高まる効果が大きくなり、また、リチウムイオンの輸率も向上する。一方、無機フィラーの添加量が過剰だったり、固体高分子電解質を単位体積とする無機フィラーの比表面積が大きすぎたりすると、固体高分子電解質と無機フィラー表面との相互作用によって、ポリマー鎖のセグメント運動が少なくなる。その結果、セグメント運動に起因するイオン伝導度が低くなるため、固体高分子電解質のイオン伝導度が低くなる。 The solid polymer electrolyte has high ionic conductivity. The reason for this is not clear, but the following can be inferred. By adding the inorganic filler to the solid polymer electrolyte, a new ionic conduction path is formed in the vicinity of the inorganic filler of the solid polymer electrolyte. When the particle size of the inorganic filler added to the solid polyelectrolyte is small, the specific surface area of the inorganic filler is large, so that more ion conduction paths are formed, the effect of increasing the ionic conductivity is increased, and the lithium ion is increased. The transport rate will also improve. On the other hand, if the amount of the inorganic filler added is excessive or the specific surface area of the inorganic filler having a solid polymer electrolyte as a unit volume is too large, the polymer chain segment is caused by the interaction between the solid polymer electrolyte and the surface of the inorganic filler. Less exercise. As a result, the ionic conductivity due to the segment motion becomes low, so that the ionic conductivity of the solid polymer electrolyte becomes low.
 当該固体高分子電解質は、溶媒を含有する電解液を含まないことが好ましい。ゲル電解質のように電解液を含む場合、当該電解液が負極表面に金属リチウムを樹枝状に成長させる一因となることがある。 It is preferable that the solid polymer electrolyte does not contain an electrolytic solution containing a solvent. When an electrolytic solution is contained like a gel electrolyte, the electrolytic solution may contribute to the dendritic growth of metallic lithium on the surface of the negative electrode.
 ここで、ポリアルキレンカーボネートは、イオン伝導度の観点でポリエチレンカーボネート、ポリプロピレンカーボネートが好ましく、中でもより主鎖骨格のカーボネート基間の距離が短いためにポリマーのセグメント運動に起因するイオン伝導度が高くなると考えられるポリエチレンカーボネートがより好ましい。 Here, as the polyalkylene carbonate, polyethylene carbonate and polypropylene carbonate are preferable from the viewpoint of ionic conductivity, and among them, since the distance between the carbonate groups of the main chain skeleton is shorter, the ionic conductivity due to the segment motion of the polymer becomes high. Possible polyethylene carbonates are more preferred.
 また、塩は解離のしやすさからイミド塩が好ましく、リチウムイオン伝導度の観点からリチウムビス(パーフルオロアルキルスルホニル)イミドが好ましく、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF、以下、「LiTFSI」ともいう)がより好ましい。 The salt is preferably an imide salt from the viewpoint of easy dissociation, preferably lithium bis (perfluoroalkylsulfonyl) imide from the viewpoint of lithium ion conductivity, and lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 )). 2. Hereinafter, also referred to as “LiTFSI”) is more preferable.
 本発明の固体高分子電解質は、高塩濃度である場合、無機フィラー添加の効果を奏しやすく、高いイオン伝導度が得られるため、ポリアルキレンカーボネートと塩との合計質量に対する塩の含有割合が50質量%より大きいことが好ましい。 When the solid polymer electrolyte of the present invention has a high salt concentration, the effect of adding an inorganic filler is likely to be exhibited and high ionic conductivity can be obtained. Therefore, the content ratio of the salt to the total mass of the polyalkylene carbonate and the salt is 50. It is preferably larger than% by mass.
 また、無機フィラーは、Si、Al、Mg、Ca、Tiなどの金属元素の化合物を含有するものであってよく、当該化合物は酸化物であってもよい。また、前記固体高分子電解質を単位体積とする無機フィラーの比表面積の上限はイオン伝導度の観点で65m/mが好ましい。当該無機フィラーの固体高分子電解質に対する含有割合はイオン伝導度の観点で、29質量%未満が好ましい。 Further, the inorganic filler may contain a compound of a metal element such as Si, Al, Mg, Ca and Ti, and the compound may be an oxide. Further, the upper limit of the specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume is preferably 65 m 2 / m 3 from the viewpoint of ionic conductivity. The content ratio of the inorganic filler to the solid polymer electrolyte is preferably less than 29% by mass from the viewpoint of ionic conductivity.
 本発明の一側面に係る蓄電素子は、正極と、負極と、本発明の一側面に係る固体高分子電解質を備える。当該蓄電素子は、イオン伝導度が高い固体高分子電解質を備える蓄電素子とすることができる。 The power storage element according to one aspect of the present invention includes a positive electrode, a negative electrode, and a solid polymer electrolyte according to one aspect of the present invention. The power storage element can be a power storage element including a solid polymer electrolyte having high ionic conductivity.
 本発明の一側面に係る蓄電装置は、蓄電素子を二以上備え、且つ上記本発明の一側面に係る蓄電素子を一以上備える。当該蓄電装置は、イオン伝導度が高い固体高分子電解質を備える蓄電素子を備える蓄電装置とすることができる。 The power storage device according to one aspect of the present invention includes two or more power storage elements and one or more power storage elements according to the above aspect of the present invention. The power storage device can be a power storage device including a power storage element including a solid polymer electrolyte having high ionic conductivity.
 本発明の一実施形態に係る固体高分子電解質の構成、蓄電素子及び蓄電装置について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。 The configuration of the solid polymer electrolyte, the power storage element, and the power storage device according to the embodiment of the present invention will be described in detail. The name of each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background technique.
<固体高分子電解質>
 本発明の一実施形態に係る固体高分子電解質は、ポリアルキレンカーボネートと、塩と、無機フィラーとを備える。当該固体高分子電解質は、溶媒を含む電解液を含まないことが好ましい。
<Solid polymer electrolyte>
The solid polyelectrolyte according to the embodiment of the present invention comprises a polyalkylene carbonate, a salt, and an inorganic filler. The solid polymer electrolyte preferably does not contain an electrolytic solution containing a solvent.
(ポリアルキレンカーボネート)
 本発明の一実施形態に係る固体高分子電解質に用いられるポリアルキレンカーボネートはカーボネート結合:-O-C(=O)O-を含む下記一般式(1)で表される構造単位を有する高分子化合物である。
 
Figure JPOXMLDOC01-appb-I000001
(一般式(1)中、Rは水素又はアルキル基を表す。)
(Polyalkylene carbonate)
The polyalkylene carbonate used in the solid polymer electrolyte according to the embodiment of the present invention is a polymer having a structural unit represented by the following general formula (1) containing a carbonate bond: —OC (= O) O—. It is a compound.

Figure JPOXMLDOC01-appb-I000001
(In the general formula (1), R represents a hydrogen or an alkyl group.)
 一般式(1)中、Rは水素又はアルキル基を表し、当該アルキル基の炭素数の下限は1であることが好ましく、上限は8であることが好ましく、4であることがより好ましく、2であることがさらに好ましい。本発明の一実施形態に係るポリアルキレンカーボネートとしては、ポリブチレンカーボネート、ポリペンチレンカーボネート、ポリプロピレンカーボネート、ポリエチレンカーボネートなどがあり、これらの中でも、ポリエチレンカーボネート、ポリプロピレンカーボネートが好ましく、ポリエチレンカーボネートがより好ましい。前記ポリアルキレンカーボネートは、共重合体であってもよい。 In the general formula (1), R represents a hydrogen or an alkyl group, and the lower limit of the number of carbon atoms of the alkyl group is preferably 1, the upper limit is preferably 8, and more preferably 4. Is more preferable. Examples of the polyalkylene carbonate according to the embodiment of the present invention include polybutylene carbonate, polypentylene carbonate, polypropylene carbonate, polyethylene carbonate and the like, and among these, polyethylene carbonate and polypropylene carbonate are preferable, and polyethylene carbonate is more preferable. The polyalkylene carbonate may be a copolymer.
 ポリアルキレンカーボネートは市販品を使用してもよく、公知の方法で製造されたものを使用してもよい。 As the polyalkylene carbonate, a commercially available product may be used, or a product manufactured by a known method may be used.
(塩)
 本発明の一実施形態に係る塩は、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等がある。これらの中でもリチウム塩が好ましい。リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸基を有するリチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩やイミド塩等が挙げられる。これらの中でも、解離のしやすさからイミド塩が好ましく、リチウムイオン伝導度の観点からリチウムビス(パーフルオロアルキルスルホニル)イミドが好ましく、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF、以下、「LiTFSI」ともいう)がより好ましい。
(salt)
The salt according to the embodiment of the present invention includes a lithium salt, a sodium salt, a potassium salt, a magnesium salt, an onium salt and the like. Of these, lithium salts are preferred. Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , lithium bis (oxalate) borate (LiBOB), and lithium difluorooxalate borate (LiFOB). , Lithium salt with oxalic acid group such as lithium bis (oxalate) difluorophosphate (LiFOP), LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 ) Examples thereof include lithium salts and imide salts having a halogenated hydrocarbon group such as CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , and LiC (SO 2 C 2 F 5 ) 3 . Among these, an imide salt is preferable from the viewpoint of ease of dissociation, a lithium bis (perfluoroalkylsulfonyl) imide is preferable from the viewpoint of lithium ion conductivity, and a lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 )) is preferable. 2. Hereinafter, also referred to as “LiTFSI”) is more preferable.
 ポリアルキレンカーボネートと塩との合計質量に対する塩の含有割合は、イオン伝導度の観点で、下限は50質量%であることが好ましく、60質量%であることがより好ましく、70質量%であることがさらに好ましい。上記塩の含有割合の上限は、99質量%であることが好ましい。 From the viewpoint of ionic conductivity, the lower limit of the salt content to the total mass of the polyalkylene carbonate and the salt is preferably 50% by mass, more preferably 60% by mass, and 70% by mass. Is more preferable. The upper limit of the salt content is preferably 99% by mass.
(無機フィラー)
本発明の一実施形態に係る無機フィラーはSi、Al、Mg、Ca、Tiなどの金属元素の化合物を含有するものであってよく、当該化合物は酸化物であってもよい。当該酸化物としては、例えば二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化カルシウム、酸化チタン等が挙げられる。また、前記固体高分子電解質を単位体積とする無機フィラーの比表面積の上限は70m/mが好ましく、65m/mがより好ましく、60m/mがさらに好ましく、55m/mがよりさらに好ましく、50m/mが一層好ましく、45m/mがより一層好ましい。前記比表面積の下限は5m/mが好ましく、10m/mがより好ましく、15m/mがさらに好ましく、20m/mがよりさらに好ましく、25m/mが一層に好ましく、30m/mがより一層に好ましい。当該無機フィラーの固体高分子電解質に対する含有割合の上限は、35質量%が好ましく、29質量%がより好ましく、25質量%がさら好ましく、23質量%がよりさらに好ましく、20質量%が一層好ましく、17質量%がより一層好ましい。前記無機フィラーの含有割合の下限は、1質量%が好ましく、3質量%がより好ましく、5質量%がさら好ましく、7質量%がよりさらに好ましく、9質量%が一層好ましく、11質量%がより一層好ましい。前記固体高分子電解質を単位体積とする前記無機フィラーの比表面積は、固体高分子電解質に対する無機フィラーの含有質量および無機フィラーのBET法による比表面積をもとに、当該無機フィラーの総表面積を求め、固体高分子電解質の体積で除することで求める。
(Inorganic filler)
The inorganic filler according to the embodiment of the present invention may contain a compound of a metal element such as Si, Al, Mg, Ca, Ti, and the compound may be an oxide. Examples of the oxide include silicon dioxide, aluminum oxide, magnesium oxide, calcium oxide, titanium oxide and the like. The upper limit of the specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume is preferably 70 m 2 / m 3 , more preferably 65 m 2 / m 3 , further preferably 60 m 2 / m 3 and 55 m 2 / m. 3 is even more preferred, 50 m 2 / m 3 is even more preferred, and 45 m 2 / m 3 is even more preferred. The lower limit of the specific surface area is preferably 5 m 2 / m 3 , more preferably 10 m 2 / m 3 , even more preferably 15 m 2 / m 3 , even more preferably 20 m 2 / m 3 , and even more 25 m 2 / m 3 . Preferably, 30 m 2 / m 3 is even more preferred. The upper limit of the content ratio of the inorganic filler to the solid polymer electrolyte is preferably 35% by mass, more preferably 29% by mass, further preferably 25% by mass, further preferably 23% by mass, still more preferably 20% by mass. 17% by mass is even more preferable. The lower limit of the content ratio of the inorganic filler is preferably 1% by mass, more preferably 3% by mass, further preferably 5% by mass, further preferably 7% by mass, further preferably 9% by mass, and more preferably 11% by mass. More preferred. The specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume is obtained by determining the total surface area of the inorganic filler based on the content mass of the inorganic filler with respect to the solid polymer electrolyte and the specific surface area of the inorganic filler by the BET method. , Determined by dividing by the volume of solid polymer electrolyte.
(用途)
 本発明の一実施形態に係る固体高分子電解質は、イオン伝導材料として用いることができ、その用途は特に限られず、リチウムイオン二次電池のほか、金属リチウム電池、燃料電池やコンデンサといった各種蓄電素子に用いることができる。
(Use)
The solid polymer electrolyte according to the embodiment of the present invention can be used as an ionic conduction material, and its use is not particularly limited. In addition to a lithium ion secondary battery, various power storage elements such as a metallic lithium battery, a fuel cell and a capacitor are used. Can be used for.
(測定方法)
 本発明の固体高分子電解質のイオン伝導度は、25℃環境下で電気化学インピーダンス法(以下、EISともいう)を測定することにより求める。測定セルの作用極および対極は直径26mmの円盤状とし、作用極、対極ともにステンレス鋼とする。測定周波数は7MHzから100mHzとする。得られる複素インピーダンスから、常法により、イオン伝導度を求める。
(Measuring method)
The ionic conductivity of the solid polymer electrolyte of the present invention is determined by measuring the electrochemical impedance method (hereinafter, also referred to as EIS) in an environment of 25 ° C. The working electrode and counter electrode of the measuring cell shall be disk-shaped with a diameter of 26 mm, and both the working electrode and counter electrode shall be stainless steel. The measurement frequency is from 7 MHz to 100 MHz. From the obtained complex impedance, the ionic conductivity is obtained by a conventional method.
 本発明の固体高分子電解質のリチウムイオンの輸率は下記計算式(2)により求める。測定セルの作用極および対極は直径26mmの円盤状とし、作用極、対極ともにリチウム金属とする。25℃環境下でポテンショスタット装置を用いて電圧10mVを印加し、10時間保持する。EIS測定による抵抗値測定周波数は7MHzから100mHzとする。
 
Figure JPOXMLDOC01-appb-I000002
(計算式(2)中、tはリチウムイオンの輸率、ΔVは印加電圧(10mV)、Iは電圧印加直後の電流値、Issは電圧印加開始から10時間経過時の電流値、RはEIS測定により算出した電圧印加開始前の固体高分子電解質の抵抗値、RssはEIS測定により算出した電圧印加開始から10時間経過時の固体高分子電解質の抵抗値を表す。なお、Rssは10mV印加した状態のままで測定する。)
The lithium ion transport number of the solid polymer electrolyte of the present invention is calculated by the following formula (2). The working electrode and counter electrode of the measuring cell shall be disk-shaped with a diameter of 26 mm, and both the working electrode and counter electrode shall be lithium metal. A voltage of 10 mV is applied using a potentiostat device in an environment of 25 ° C. and held for 10 hours. The resistance value measurement frequency by EIS measurement is 7 MHz to 100 MHz.

Figure JPOXMLDOC01-appb-I000002
(In formula (2), t + is the lithium ion transport rate, ΔV is the applied voltage (10 mV ), I 0 is the current value immediately after the voltage is applied, and Is is the current value 10 hours after the start of the voltage application. R 0 represents the resistance value of the solid polymer electrolyte before the start of voltage application calculated by EIS measurement, and R ss represents the resistance value of the solid polymer electrolyte 10 hours after the start of voltage application calculated by EIS measurement. R ss is measured with 10 mV applied.)
<蓄電素子>
 本発明の一側面に係る蓄電素子は、正極と、負極と、本発明の一側面に係る固体高分子電解質を備える。本発明の一実施形態に係る蓄電素子として、以下、全固体電池を具体例に挙げて説明する。図1に、全固体電池の一例としての蓄電素子10を示す。蓄電素子10は、正極1と負極2とが隔離層3を介して配置された二次電池である。正極1は、正極基材4及び正極活物質層5を有し、正極基材4が正極1の最外層となる。負極2は、負極基材7及び負極活物質層6を有し、負極基材7が負極2の最外層となる。図1に示す蓄電素子10においては、負極基材7上に、負極活物質層6、隔離層3、正極活物質層5及び正極基材4がこの順で積層されている。
<Power storage element>
The power storage element according to one aspect of the present invention includes a positive electrode, a negative electrode, and a solid polymer electrolyte according to one aspect of the present invention. Hereinafter, an all-solid-state battery will be described as a specific example as a power storage element according to an embodiment of the present invention. FIG. 1 shows a power storage element 10 as an example of an all-solid-state battery. The power storage element 10 is a secondary battery in which a positive electrode 1 and a negative electrode 2 are arranged via an isolation layer 3. The positive electrode 1 has a positive electrode base material 4 and a positive electrode active material layer 5, and the positive electrode base material 4 is the outermost layer of the positive electrode 1. The negative electrode 2 has a negative electrode base material 7 and a negative electrode active material layer 6, and the negative electrode base material 7 is the outermost layer of the negative electrode 2. In the power storage element 10 shown in FIG. 1, the negative electrode active material layer 6, the isolation layer 3, the positive electrode active material layer 5, and the positive electrode base material 4 are laminated in this order on the negative electrode base material 7.
 蓄電素子10は、正極1、負極2及び隔離層3の少なくとも1つに、本発明の一実施形態に係る固体高分子電解質を含有する。より具体的には、正極活物質層5、負極活物質層6及び隔離層3の少なくとも1つに、本発明の一実施形態に係る固体高分子電解質が含有されている。 The power storage element 10 contains a solid polymer electrolyte according to an embodiment of the present invention in at least one of the positive electrode 1, the negative electrode 2, and the isolation layer 3. More specifically, at least one of the positive electrode active material layer 5, the negative electrode active material layer 6 and the isolation layer 3 contains the solid polyelectrolyte according to the embodiment of the present invention.
 蓄電素子10においては、本発明の一実施形態に係る固体高分子電解質以外のその他の固体電解質を併せて用いるようにしてもよい。その他の固体電解質としては、硫化物系固体電解質、酸化物系固体電解質、本発明の一実施形態に係る固体高分子電解質以外の固体高分子電解質等を挙げることができる。また、蓄電素子10における一つの層中に異なる複数種の固体電解質が含有されていてもよく、層毎に異なる固体電解質が含有されていてもよい。 In the power storage element 10, other solid electrolytes other than the solid polymer electrolyte according to the embodiment of the present invention may be used together. Examples of other solid electrolytes include sulfide-based solid electrolytes, oxide-based solid electrolytes, and solid polymer electrolytes other than the solid polymer electrolyte according to the embodiment of the present invention. Further, a plurality of different types of solid electrolytes may be contained in one layer of the power storage element 10, and different solid electrolytes may be contained in each layer.
[正極]
 正極1は、正極基材4と、この正極基材4の表面に積層される正極活物質層5とを備える。正極1は、正極基材4と正極活物質層5との間に中間層を有していてもよい。
[Positive electrode]
The positive electrode 1 includes a positive electrode base material 4 and a positive electrode active material layer 5 laminated on the surface of the positive electrode base material 4. The positive electrode 1 may have an intermediate layer between the positive electrode base material 4 and the positive electrode active material layer 5.
(正極基材)
 正極基材4は、導電性を有する。「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が10Ω・cm超であることを意味する。正極基材4の材質としては、アルミニウム、チタン、タンタル、インジウム、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材4としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材4としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H4160(2006年)に規定されるA1085P、A3003P、A1N30等が例示できる。
(Positive electrode base material)
The positive electrode base material 4 has conductivity. Having "conductivity" means that the volume resistivity measured according to JIS-H-0505 (1975) is 107 Ω · cm or less, and "non-conductive" means. It means that the volume resistivity is more than 107 Ω · cm. As the material of the positive electrode base material 4, a metal such as aluminum, titanium, tantalum, indium, or stainless steel or an alloy thereof is used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost. Examples of the positive electrode base material 4 include a foil, a vapor-deposited film, a mesh, a porous material, and the like, and the foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material 4. Examples of aluminum or aluminum alloy include A1085P, A3003P, A1N30 and the like specified in JIS-H-4000 (2014) or JIS-H4160 (2006).
 正極基材4の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材4の平均厚さを上記の範囲とすることで、正極基材4の強度を高めつつ、蓄電素子10の体積当たりのエネルギー密度を高めることができる。正極基材4及び後述する負極基材7の「平均厚さ」とは、所定の面積の基材の質量を、基材の真密度及び面積で除した値をいう。 The average thickness of the positive electrode substrate 4 is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 40 μm or less, further preferably 8 μm or more and 30 μm or less, and particularly preferably 10 μm or more and 25 μm or less. By setting the average thickness of the positive electrode base material 4 in the above range, it is possible to increase the energy density per volume of the power storage element 10 while increasing the strength of the positive electrode base material 4. The "average thickness" of the positive electrode base material 4 and the negative electrode base material 7 described later means a value obtained by dividing the mass of the base material having a predetermined area by the true density and area of the base material.
 中間層は、正極基材4と正極活物質層5との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで正極基材4と正極活物質層5との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダー及び導電剤を含む。 The intermediate layer is a layer arranged between the positive electrode base material 4 and the positive electrode active material layer 5. The intermediate layer contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode base material 4 and the positive electrode active material layer 5. The composition of the intermediate layer is not particularly limited and includes, for example, a binder and a conductive agent.
(正極活物質層)
 正極活物質層5は、正極活物質を含む。正極活物質層5は、正極活物質を含むいわゆる正極合剤から形成することができる。正極活物質層5は、必要に応じて、固体高分子電解質、導電剤、バインダー、増粘剤、フィラー等の任意成分を含んでいてよい。これらの各任意成分の1種又は2種以上は、正極活物質層5に実質的に含有されていなくてもよい。
(Positive electrode active material layer)
The positive electrode active material layer 5 contains a positive electrode active material. The positive electrode active material layer 5 can be formed from a so-called positive electrode mixture containing a positive electrode active material. The positive electrode active material layer 5 may contain an optional component such as a solid polymer electrolyte, a conductive agent, a binder, a thickener, and a filler, if necessary. One or more of each of these optional components may not be substantially contained in the positive electrode active material layer 5.
 正極活物質層5に含まれる正極活物質としては、リチウムイオン二次電池や全固体電池に通常用いられる公知の正極活物質の中から適宜選択できる。上記リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi1-x]O(0≦x<0.5)、Li[LiNiγCo(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiNiγMnβCo(1-x-γ-β]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LiMn、LiNiγMn(2-γ)等が挙げられる。ポリアニオン化合物として、LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。正極活物質は、表面がニオブ酸リチウム、チタン酸リチウム、リン酸リチウム等の化合物で被覆されていてもよい。正極活物質層においては、これら正極活物質の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The positive electrode active material contained in the positive electrode active material layer 5 can be appropriately selected from known positive electrode active materials usually used for lithium ion secondary batteries and all-solid-state batteries. As the positive electrode active material for the lithium ion secondary battery, a material capable of storing and releasing lithium ions is usually used. Examples of the positive electrode active material include a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanionic compound, a chalcogen compound, sulfur and the like. Examples of the lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure include Li [Li x Ni 1-x ] O 2 (0 ≦ x <0.5) and Li [Li x Ni γ Co (1- ). x-γ) ] O 2 (0 ≦ x <0.5, 0 <γ <1), Li [Li x Ni γ Mn β Co (1-x-γ-β ] O 2 (0 ≦ x <0. 5, 0 <γ, 0 <β, 0.5 <γ + β <1) and the like. Examples of the lithium transition metal composite oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni γ Mn ( 2-γ) O 4 and the like. Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like. Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like. The atom or polyanion in these materials may be partially substituted with an atom or anion species composed of other elements. The surface of the positive electrode active material may be coated with a compound such as lithium niobate, lithium titanate, or lithium phosphate. In the positive electrode active material layer, one of these positive electrode active materials may be used alone. Well, two or more kinds may be mixed and used.
 正極活物質としては、α-NaFeO型結晶構造又はスピネル型結晶構造を有するリチウム遷移金属複合酸化物、及びニッケル、コバルト又はマンガンを含むポリアニオン化合物(LiMnPO、LiNiPO、LiCoPO、LiMnSiO、LiCoPOF等)が好ましく、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物がより好ましい。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の中でも、遷移金属としてニッケル、コバルト及びマンガンのうちの1種又は2種以上を含むものがより好ましい。これらの正極活物質は酸化還元電位が特に高く、このような正極活物質を用いることで、蓄電素子10のエネルギー密度等を高めることができる。 Examples of the positive electrode active material include a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure or a spinel type crystal structure, and a polyanionic compound containing nickel, cobalt or manganese (LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 2 MnSiO). 4 , Li 2 CoPO 4 F, etc.) is preferable, and a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure is more preferable. Among the lithium transition metal composite oxides having an α-NaFeO type 2 crystal structure, those containing one or more of nickel, cobalt and manganese as transition metals are more preferable. These positive electrode active materials have a particularly high redox potential, and by using such a positive electrode active material, the energy density of the power storage element 10 and the like can be increased.
 正極活物質は、通常、粒子(粉体)である。正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層5の導電性が向上する。ここで、「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。 The positive electrode active material is usually particles (powder). The average particle size of the positive electrode active material is preferably 0.1 μm or more and 20 μm or less, for example. By setting the average particle size of the positive electrode active material to the above lower limit or more, the production or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to the above upper limit or less, the conductivity of the positive electrode active material layer 5 is improved. Here, the "average particle size" is based on JIS-Z-8825 (2013), and is based on the particle size distribution measured by the laser diffraction / scattering method for a diluted solution obtained by diluting the particles with a solvent. It means a value at which the volume-based integrated distribution calculated in accordance with Z-8819-2 (2001) is 50%.
 粒子を所定の形状で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。 A crusher, a classifier, etc. are used to obtain particles in a predetermined shape. Examples of the crushing method include a method using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, or the like. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane coexists can also be used. As a classification method, a sieve, a wind power classifier, or the like is used as needed for both dry type and wet type.
 正極活物質層5における正極活物質の含有量としては、10質量%以上95質量%以下が好ましく、30質量%以上、さらには50質量%以上がより好ましい。正極活物質の含有量を上記範囲とすることで、蓄電素子10の電気容量を大きくすることができる。 The content of the positive electrode active material in the positive electrode active material layer 5 is preferably 10% by mass or more and 95% by mass or less, more preferably 30% by mass or more, and further preferably 50% by mass or more. By setting the content of the positive electrode active material in the above range, the electric capacity of the power storage element 10 can be increased.
 正極活物質層5が固体高分子電解質を含有する場合、正極活物質層5における固体高分子電解質の含有量としては、10質量%以上90質量%以下が好ましく、20質量%以上70質量%以下がより好ましく、50質量%以下がさらに好ましい場合もある。固体高分子電解質の含有量を上記範囲とすることで、蓄電素子10の電気容量を大きくすることができる。正極活物質層5に本発明の一実施形態に係る固体高分子電解質を用いる場合、正極活物質層5中の全電解質に対する本発明の一実施形態に係る固体高分子電解質の含有量としては、50質量%以上が好ましく、70質量以上%がより好ましく、90質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましい。正極活物質層5中において、正極活物質と固体高分子電解質とは複合体を形成していてもよい。 When the positive electrode active material layer 5 contains a solid polymer electrolyte, the content of the solid polymer electrolyte in the positive electrode active material layer 5 is preferably 10% by mass or more and 90% by mass or less, and 20% by mass or more and 70% by mass or less. Is more preferable, and 50% by mass or less may be further preferable. By setting the content of the solid polymer electrolyte in the above range, the electric capacity of the power storage element 10 can be increased. When the solid polymer electrolyte according to the embodiment of the present invention is used for the positive electrode active material layer 5, the content of the solid polymer electrolyte according to the embodiment of the present invention with respect to all the electrolytes in the positive electrode active material layer 5 is as follows. 50% by mass or more is preferable, 70% by mass or more is more preferable, 90% by mass or more is further preferable, and substantially 100% by mass is further preferable. In the positive electrode active material layer 5, the positive electrode active material and the solid polymer electrolyte may form a complex.
 導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、導電性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。 The conductive agent is not particularly limited as long as it is a conductive material. Examples of such a conductive agent include carbonaceous materials, metals, conductive ceramics and the like. Examples of the carbonaceous material include graphite, non-graphitic carbon, graphene-based carbon and the like. Examples of non-graphitic carbon include carbon nanofibers, pitch-based carbon fibers, and carbon black. Examples of carbon black include furnace black, acetylene black, and ketjen black. Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), fullerenes and the like. Examples of the shape of the conductive agent include powder and fibrous. As the conductive agent, one of these materials may be used alone, or two or more of them may be mixed and used. Further, these materials may be combined and used. For example, a material in which carbon black and CNT are combined may be used. Among these, carbon black is preferable from the viewpoint of conductivity and coatability, and acetylene black is particularly preferable.
 正極活物質層5における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記範囲とすることで、蓄電素子10の電気容量を大きくすることができる。 The content of the conductive agent in the positive electrode active material layer 5 is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the content of the conductive agent in the above range, the electric capacity of the power storage element 10 can be increased.
 バインダーとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル、ポリ(メタ)アクリルアミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。 Examples of the binder include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyimide, poly (meth) acrylic acid, poly (meth) acrylic acid ester, and poly (meth). ) Thermoplastic resins such as acrylamide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber and other elastomers; polysaccharide polymers and the like.
 正極活物質層5におけるバインダーの含有量は1質量%以上10質量%が好ましく、3質量%以上9質量%以下がより好ましい。バインダーの含有量を上記範囲とすることで、活物質を安定して保持することができる。 The content of the binder in the positive electrode active material layer 5 is preferably 1% by mass or more and 10% by mass, more preferably 3% by mass or more and 9% by mass or less. By setting the content of the binder in the above range, the active substance can be stably retained.
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。 Examples of the thickener include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose. When the thickener has a functional group that reacts with lithium or the like, this functional group may be inactivated by methylation or the like in advance.
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、酸化アルミニウム、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。 The filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, inorganic oxides such as aluminosilicate, magnesium hydroxide, calcium hydroxide, and water. Hydroxides such as aluminum oxide, carbonates such as calcium carbonate, sparingly soluble ion crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite. , Apatite, Kaolin, Murite, Spinel, Olivin, Serisite, Bentnite, Mica and other mineral resource-derived substances or man-made products thereof.
 正極活物質層5は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、固体電解質、導電剤、バインダー、増粘剤、フィラー以外の成分として含有してもよい。 The positive electrode active material layer 5 is a typical non-metal element such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W and other transition metal elements are added to positive electrode active materials, solid electrolytes, conductive agents, binders, etc. It may be contained as a component other than the thickener and the filler.
 正極活物質層5の平均厚さとしては、30μm以上1,000μm以下が好ましく、60μm以上500μm以下がより好ましい。正極活物質層5の平均厚さを上記下限以上とすることで、高いエネルギー密度を有する蓄電素子10を得ることができる。正極活物質層5の平均厚さを上記上限以下とすることで、蓄電素子10の小型化を図ることなどができる。正極活物質層5の平均厚さは、任意の5ヶ所で測定した厚さの平均値とする。後述する負極活物質層6及び隔離層3の平均厚さも同様である。 The average thickness of the positive electrode active material layer 5 is preferably 30 μm or more and 1,000 μm or less, and more preferably 60 μm or more and 500 μm or less. By setting the average thickness of the positive electrode active material layer 5 to be equal to or greater than the above lower limit, a power storage element 10 having a high energy density can be obtained. By setting the average thickness of the positive electrode active material layer 5 to be equal to or less than the above upper limit, the power storage element 10 can be downsized. The average thickness of the positive electrode active material layer 5 is the average value of the thickness measured at any five locations. The same applies to the average thickness of the negative electrode active material layer 6 and the isolation layer 3, which will be described later.
[負極]
 負極2は、負極基材7と、当該負極基材7に直接又は中間層を介して配される負極活物質層6とを有する。中間層の構成は特に限定されず、例えば正極1で例示した構成から選択することができる。
[Negative electrode]
The negative electrode 2 has a negative electrode base material 7 and a negative electrode active material layer 6 arranged directly on the negative electrode base material 7 or via an intermediate layer. The configuration of the intermediate layer is not particularly limited, and can be selected from, for example, the configurations exemplified by the positive electrode 1.
(負極基材)
 負極基材7は、導電性を有する。負極基材7の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。
(Negative electrode base material)
The negative electrode base material 7 has conductivity. As the material of the negative electrode base material 7, a metal such as copper, nickel, stainless steel, nickel-plated steel, or aluminum, an alloy thereof, a carbonaceous material, or the like is used. Among these, copper or a copper alloy is preferable. Examples of the negative electrode base material include foils and thin-film deposition films, and foils are preferable from the viewpoint of cost. Therefore, a copper foil or a copper alloy foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil, electrolytic copper foil and the like.
 負極基材7の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材7の平均厚さを上記下限以上とすることで、負極基材7の強度を高めることができる。負極基材7の平均厚さを上記上限以下とすることで、蓄電素子10の体積当たりのエネルギー密度を高めることができる。 The average thickness of the negative electrode base material 7 is preferably 2 μm or more and 35 μm or less, more preferably 3 μm or more and 30 μm or less, further preferably 4 μm or more and 25 μm or less, and particularly preferably 5 μm or more and 20 μm or less. By setting the average thickness of the negative electrode base material 7 to be equal to or higher than the above lower limit, the strength of the negative electrode base material 7 can be increased. By setting the average thickness of the negative electrode base material 7 to be equal to or less than the above upper limit, the energy density per volume of the power storage element 10 can be increased.
(負極活物質層)
 負極活物質層6は、負極活物質を含む。負極活物質層6は、例えば、負極活物質を含むいわゆる負極合剤から形成することができる。負極活物質層6は、必要に応じて、固体高分子電解質、導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。これらの負極活物質層6における任意成分の種類及び好適な含有量は、上述した正極活物質層5の各任意成分と同様である。これらの各任意成分の1種又は2種以上は、負極活物質層6に実質的に含有されていなくてもよい。
(Negative electrode active material layer)
The negative electrode active material layer 6 contains a negative electrode active material. The negative electrode active material layer 6 can be formed from, for example, a so-called negative electrode mixture containing a negative electrode active material. The negative electrode active material layer 6 contains optional components such as a solid polymer electrolyte, a conductive agent, a binder, a thickener, and a filler, if necessary. The types and suitable contents of the optional components in the negative electrode active material layer 6 are the same as those of the above-mentioned optional components in the positive electrode active material layer 5. One or more of each of these optional components may not be substantially contained in the negative electrode active material layer 6.
 負極活物質層6は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、固体高分子電解質、導電剤、バインダー、増粘剤、フィラー以外の成分として含有してもよい。 The negative electrode active material layer 6 is a typical non-metal element such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W and other transition metal elements are used as negative electrode active materials, solid polymer electrolytes, etc. It may be contained as a component other than a conductive agent, a binder, a thickener, and a filler.
 負極活物質としては、リチウムイオン二次電池や全固体電池に通常用いられる公知の負極活物質の中から適宜選択できる。上記リチウムイオン二次電池用負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。負極活物質層6においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The negative electrode active material can be appropriately selected from known negative electrode active materials usually used for lithium ion secondary batteries and all-solid-state batteries. As the negative electrode active material for the lithium ion secondary battery, a material capable of storing and releasing lithium ions is usually used. Examples of the negative electrode active material include metal Li; metal or semi-metal such as Si and Sn; metal oxide or semi-metal oxide such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTIO 2 and TiNb 2O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite (graphitite) and non-graphitizable carbon (graphitizable carbon or non-graphitizable carbon). Be done. In the negative electrode active material layer 6, one kind of these materials may be used alone, or two or more kinds thereof may be mixed and used.
 「黒鉛」とは、充放電前又は放電状態において、エックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。 “Graphite” refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction method before charging / discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm. Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material having stable physical properties can be obtained.
 「非黒鉛質炭素」とは、充放電前又は放電状態においてエックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチ由来の材料、アルコール由来の材料等が挙げられる。 "Non-graphitic carbon" refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by the X-ray diffraction method before charging / discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. .. Examples of non-graphitizable carbon include non-graphitizable carbon and easily graphitizable carbon. Examples of the non-graphitic carbon include a resin-derived material, a petroleum pitch-derived material, an alcohol-derived material, and the like.
 ここで、「放電状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた単極電池において、開回路電圧が0.7V以上である状態である。 Here, the "discharged state" means a state in which the carbon material, which is the negative electrode active material, is discharged so as to sufficiently release lithium ions that can be occluded and discharged by charging and discharging. For example, in a unipolar battery in which a negative electrode containing a carbon material as a negative electrode active material is used as a working electrode and metallic Li is used as a counter electrode, the open circuit voltage is 0.7 V or more.
 「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。 The “non-graphitizable carbon” refers to a carbon material having d 002 of 0.36 nm or more and 0.42 nm or less.
 「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。 The “graphitizable carbon” refers to a carbon material having d 002 of 0.34 nm or more and less than 0.36 nm.
 負極活物質としては、金属リチウムが好ましい。金属リチウムは、実質的にリチウムのみからなる純金属リチウムとして存在してもよいし、他の金属元素を含むリチウム合金として存在してもよい。リチウム合金としては、リチウム銀合金、リチウム亜鉛合金、リチウムカルシウム合金、リチウムアルミニウム合金、リチウムマグネシウム合金、リチウムインジウム合金等が挙げられる。リチウム合金は、リチウム以外の複数の金属元素を含有していてもよい。 As the negative electrode active material, metallic lithium is preferable. The metallic lithium may exist as pure metallic lithium consisting substantially only of lithium, or may exist as a lithium alloy containing other metallic elements. Examples of the lithium alloy include lithium silver alloy, lithium zinc alloy, lithium calcium alloy, lithium aluminum alloy, lithium magnesium alloy, lithium indium alloy and the like. The lithium alloy may contain a plurality of metal elements other than lithium.
 負極活物質層6は、実質的に金属リチウムのみからなる層であってもよい。負極活物質層6における金属リチウムの含有量は、90質量%以上であってもよく、99質量%以上であってもよく、100質量%であってもよい。負極活物質層6は、金属リチウム箔又はリチウム合金箔であってもよい。 The negative electrode active material layer 6 may be a layer substantially composed only of metallic lithium. The content of metallic lithium in the negative electrode active material layer 6 may be 90% by mass or more, 99% by mass or more, or 100% by mass. The negative electrode active material layer 6 may be a metallic lithium foil or a lithium alloy foil.
 負極活物質は、粒子(粉体)であってもよい。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が例えば炭素材料である場合、その平均粒径は1μm以上100μm以下が好ましい場合がある。負極活物質が、金属、半金属、金属酸化物、半金属酸化物、チタン含有酸化物、ポリリン酸化合物等である場合、その平均粒径は、1nm以上1μm以下が好ましい場合がある。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、活物質層の導電性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び粉級方法は、例えば、正極1で例示した方法から選択できる。 The negative electrode active material may be particles (powder). The average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 μm or less. When the negative electrode active material is, for example, a carbon material, the average particle size thereof may be preferably 1 μm or more and 100 μm or less. When the negative electrode active material is a metal, a semi-metal, a metal oxide, a semi-metal oxide, a titanium-containing oxide, a polyphosphate compound or the like, the average particle size thereof may be preferably 1 nm or more and 1 μm or less. By setting the average particle size of the negative electrode active material to be equal to or higher than the above lower limit, the production or handling of the negative electrode active material becomes easy. By setting the average particle size of the negative electrode active material to the above upper limit or less, the conductivity of the active material layer is improved. A crusher, a classifier, or the like is used to obtain a powder having a predetermined particle size. The pulverization method and the powder grade method can be selected from, for example, the methods exemplified for the positive electrode 1.
 負極活物質層6における負極活物質の含有量としては、10質量%以上95質量%以下であってよく、30質量%以上、さらには50質量%以上がより好ましい。負極活物質の含有割合を高めることで、蓄電素子10の電気容量を大きくすることができる。 The content of the negative electrode active material in the negative electrode active material layer 6 may be 10% by mass or more and 95% by mass or less, more preferably 30% by mass or more, and further preferably 50% by mass or more. By increasing the content ratio of the negative electrode active material, the electric capacity of the power storage element 10 can be increased.
 負極活物質層6が固体高分子電解質を含有する場合、負極活物質層6における固体高分子電解質の含有量としては、10質量%以上90質量%以下が好ましく、20質量%以上70質量%以下がより好ましく、50質量%以下がさらに好ましい場合もある。固体高分子電解質の含有量を上記範囲とすることで、蓄電素子10の電気容量を大きくすることができる。負極活物質層6に本発明の一実施形態に係る固体高分子電解質を用いる場合、負極活物質層6中の全電解質に対する本発明の一実施形態に係る固体高分子電解質の含有量としては、50質量%以上が好ましく、70質量以上%がより好ましく、90質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましい。 When the negative electrode active material layer 6 contains a solid polymer electrolyte, the content of the solid polymer electrolyte in the negative electrode active material layer 6 is preferably 10% by mass or more and 90% by mass or less, and 20% by mass or more and 70% by mass or less. Is more preferable, and 50% by mass or less may be further preferable. By setting the content of the solid polymer electrolyte in the above range, the electric capacity of the power storage element 10 can be increased. When the solid polymer electrolyte according to the embodiment of the present invention is used for the negative electrode active material layer 6, the content of the solid polymer electrolyte according to the embodiment of the present invention with respect to all the electrolytes in the negative electrode active material layer 6 is as follows. 50% by mass or more is preferable, 70% by mass or more is more preferable, 90% by mass or more is further preferable, and substantially 100% by mass is further preferable.
 負極活物質層6の平均厚さとしては特に限定されず、例えば1nm以上であればよく、1μm以上1,000μm以下がより好ましく、10μm以上500μm以下がさらに好ましい。負極活物質層6の平均厚さを上記下限以上とすることで、蓄電素子10の充放電性能等を高めることができる。なお、特に負極活物質が金属リチウムである場合などは、負極活物質層6の平均厚さが1μm未満といった薄さであっても十分に充放電が可能である。負極活物質層6の平均厚さを上記上限以下とすることで、蓄電素子10の小型化を図ることなどができる。 The average thickness of the negative electrode active material layer 6 is not particularly limited, and may be, for example, 1 nm or more, more preferably 1 μm or more and 1,000 μm or less, and further preferably 10 μm or more and 500 μm or less. By setting the average thickness of the negative electrode active material layer 6 to be equal to or greater than the above lower limit, the charge / discharge performance of the power storage element 10 can be improved. In particular, when the negative electrode active material is metallic lithium, the negative electrode active material layer 6 can be sufficiently charged and discharged even if the average thickness is less than 1 μm. By setting the average thickness of the negative electrode active material layer 6 to be equal to or less than the above upper limit, the power storage element 10 can be downsized.
[隔離層]
 隔離層3は、固体高分子電解質を含有する。隔離層3に含有される固体高分子電解質としては、上述した本発明の一実施形態に係る固体高分子電解質以外にも、各種固体高分子電解質を用いることができる。隔離層3における固体高分子電解質の含有量としては、70質量%以上が好ましく、90質量以上%がより好ましく、99質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましいこともある。また、隔離層3に本発明の一実施形態に係る電解質を用いる場合、隔離層3中の全電解質に占める本発明の一実施形態に係る電解質の含有量としては、50質量%以上が好ましく、70質量以上%がより好ましく、90質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましい。
[Isolation layer]
The isolation layer 3 contains a solid polymer electrolyte. As the solid polymer electrolyte contained in the isolation layer 3, various solid polymer electrolytes can be used in addition to the solid polymer electrolyte according to the above-described embodiment of the present invention. The content of the solid polymer electrolyte in the isolation layer 3 is preferably 70% by mass or more, more preferably 90% by mass or more, further preferably 99% by mass or more, and even more preferably substantially 100% by mass. Sometimes. When the electrolyte according to the embodiment of the present invention is used for the isolation layer 3, the content of the electrolyte according to the embodiment of the present invention in the isolation layer 3 is preferably 50% by mass or more. It is more preferably 70% by mass or more, further preferably 90% by mass or more, and even more preferably substantially 100% by mass.
 隔離層3には、電解質の他、電解質の機械的強度補強用のセパレータ(例えば不職布等)やフィラー等の任意成分が含有されていてもよい。フィラー等の任意成分は、正極活物質層5で例示した材料から選択できる。 In addition to the electrolyte, the isolation layer 3 may contain optional components such as a separator (for example, unemployed cloth) for reinforcing the mechanical strength of the electrolyte and a filler. Any component such as a filler can be selected from the materials exemplified in the positive electrode active material layer 5.
 隔離層3の平均厚さとしては、1μm以上200μm以下が好ましく、3μm以上100μm以下がより好ましい。隔離層3の平均厚さを上記下限以上とすることで、正極1と負極2とを確実性高く絶縁することが可能となる。隔離層3の平均厚さを上記上限以下とすることで、蓄電素子10のエネルギー密度を高めることが可能となる。 The average thickness of the isolation layer 3 is preferably 1 μm or more and 200 μm or less, and more preferably 3 μm or more and 100 μm or less. By setting the average thickness of the isolation layer 3 to be equal to or greater than the above lower limit, it is possible to insulate the positive electrode 1 and the negative electrode 2 with high certainty. By setting the average thickness of the isolation layer 3 to be equal to or less than the above upper limit, it is possible to increase the energy density of the power storage element 10.
<蓄電装置>
 本発明の一側面に係る蓄電装置は、蓄電素子を二以上備え、且つ本発明の一側面に係る蓄電素子を一以上備える。本実施形態の蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよい。
<Power storage device>
The power storage device according to one aspect of the present invention includes two or more power storage elements and one or more power storage elements according to one aspect of the present invention. The power storage element of the present embodiment is a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV), a power source for electronic devices such as a personal computer and a communication terminal, or a power source for power storage. For example, it can be mounted as a power storage unit (battery module) composed of a plurality of power storage elements assembled together. In this case, the technique according to the embodiment of the present invention may be applied to at least one power storage element included in the power storage unit.
 図2に、電気的に接続された二以上の蓄電素子10が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の蓄電素子10を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。 FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected power storage elements 10 are assembled is further assembled. The power storage device 30 may include a bus bar (not shown) for electrically connecting two or more power storage elements 10, a bus bar (not shown) for electrically connecting two or more power storage units 20 and the like. The power storage unit 20 or the power storage device 30 may include a state monitoring device (not shown) for monitoring the state of one or more power storage elements.
 以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples.
[実施例1]
 ポリプロピレンカーボネート(質量平均分子量Mw=50,000)1.0gおよびLiTFSI4.0gをDMF(N,N-dimethylformamide)10mLに混合し、60℃環境下で3時間攪拌して固体高分子電解質溶液を作製した。これに対し、無機フィラーを添加して、さらに60℃環境下で3時間攪拌し、SUS箔上へ塗布した。添加した無機フィラーはEvonik製AEROXIDE AluCを用いた。一次粒子の平均径の代表値13nm品を用いた。当該平均径はTEMを用いて電子顕微鏡写真法により測定されたものである。無機フィラーの固体高分子電解質に対する含有割合は13質量%とし、固体高分子電解質を単位体積とする無機フィラーの比表面積は28m/mとした。これを80℃環境下で24時間乾燥させ、さらに真空度0.1Pa以下の80℃環境下で24時間乾燥させることで固体高分子電解質を得た。
[Example 1]
1.0 g of polypropylene carbonate (mass average molecular weight Mw = 50,000) and 4.0 g of LiTFSI are mixed with 10 mL of DMF (N, N-dimethylformamide) and stirred in a 60 ° C. environment for 3 hours to prepare a solid polymer electrolyte solution. bottom. On the other hand, an inorganic filler was added, and the mixture was further stirred in an environment of 60 ° C. for 3 hours and applied onto the SUS foil. As the added inorganic filler, Evonik's AEROXIDE AluC was used. A product having a representative value of 13 nm in the average diameter of the primary particles was used. The average diameter is measured by electron micrograph using TEM. The content ratio of the inorganic filler to the solid polymer electrolyte was 13% by mass, and the specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume was 28 m 2 / m 3 . This was dried in an environment of 80 ° C. for 24 hours, and further dried in an environment of 80 ° C. with a vacuum degree of 0.1 Pa or less for 24 hours to obtain a solid polymer electrolyte.
[実施例2から5、16]
 固体高分子電解質を単位体積とする無機フィラーの比表面積を、無機フィラーの添加量を変えて[表1]の通りとしたこと以外は、実施例1と同様にした。
[Examples 2 to 5, 16]
The specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume was the same as in Example 1 except that the amount of the inorganic filler added was changed as shown in [Table 1].
[実施例6から9]
 無機フィラーの一次粒子の平均径の代表値および固体高分子電解質を単位体積とする無機フィラーの比表面積を[表1]の通りとしたこと以外は、実施例1と同様にした。
[Examples 6 to 9]
The same as in Example 1 was carried out except that the representative value of the average diameter of the primary particles of the inorganic filler and the specific surface area of the inorganic filler having a solid polymer electrolyte as a unit volume were as shown in [Table 1].
[実施例10から13]
 添加した無機フィラーをEvonik製AEROXIDE TiOP25とし、一次粒子の平均径の代表値と固体高分子電解質を単位体積とする無機フィラーの比表面積を[表1]の通りとしたこと以外は、実施例1と同様にした。
[Examples 10 to 13]
The added inorganic filler was AEROXIDE TiO 2 P25 manufactured by Evonik, and the specific surface area of the inorganic filler having the representative value of the average diameter of the primary particles and the solid polymer electrolyte as the unit volume was as shown in [Table 1]. The same as in Example 1.
[実施例14、15]
 添加した無機フィラーをEvonik製AEROSIL 200とし、一次粒子の平均径の代表値と固体高分子電解質を単位体積とする無機フィラーの比表面積を[表1]の通りとしたこと以外は、実施例1と同様にした。
[Examples 14 and 15]
Example 1 except that the added inorganic filler was AEROSIL 200 manufactured by Evonik and the specific surface area of the inorganic filler having the representative value of the average diameter of the primary particles and the solid polymer electrolyte as the unit volume was as shown in [Table 1]. I did the same.
[比較例1]
 無機フィラーを添加しないこと以外は、実施例1と同様にした。
[Comparative Example 1]
The procedure was the same as in Example 1 except that no inorganic filler was added.
 得られた固体高分子電解質について、25℃環境下で上述した方法によってEISを測定し、イオン伝導度を求めた。得られたイオン伝導度を表1に記す。 The EIS of the obtained solid polymer electrolyte was measured by the above-mentioned method in an environment of 25 ° C., and the ionic conductivity was determined. The obtained ionic conductivity is shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表1に示されるように、実施例1から16において、比較例1と比較してイオン伝導度が高い。一般に、PEO系固体高分子電解質において、無機フィラーを添加した場合では、25℃環境下でのイオン伝導度は1×10-4から1×10-5S/cm程度であり、液体系電解質(例えば、一般的な液体系非水電解質の25℃環境下でのイオン伝導度は1×10-2から1×10-3S/cm程度)に比べて低いことが知られている。一方で、実施例1から16では、25℃環境下でのイオン伝導度は5.0×10-3から1.3×10-4S/cmであり、液体系非水電解質と同等のイオン伝導度を示していることが分かる。無機フィラーの添加により、無機フィラー近傍に新たなイオン伝導経路が形成されるため、イオン伝導度が高まると考えられる。 As shown in Table 1, in Examples 1 to 16, the ionic conductivity is higher than that in Comparative Example 1. Generally, in a PEO-based solid polymer electrolyte, when an inorganic filler is added, the ionic conductivity in an environment of 25 ° C. is about 1 × 10 -4 to 1 × 10 -5 S / cm, and the liquid electrolyte (liquid electrolyte) ( For example, it is known that the ionic conductivity of a general liquid-based non-aqueous electrolyte in a 25 ° C environment is lower than that of 1 × 10 − 2 to 1 × 10 -3 S / cm). On the other hand, in Examples 1 to 16, the ionic conductivity in an environment of 25 ° C. is 5.0 × 10 -3 to 1.3 × 10 -4 S / cm, which is equivalent to that of a liquid-based non-aqueous electrolyte. It can be seen that it shows conductivity. It is considered that the addition of the inorganic filler increases the ionic conductivity because a new ionic conduction path is formed in the vicinity of the inorganic filler.
[実施例17から21]
 固体高分子電解質に対する無機フィラーの含有割合を[表2]の通りとしたこと以外は、実施例1と同様にした。
[Examples 17 to 21]
The procedure was the same as in Example 1 except that the content ratio of the inorganic filler to the solid polymer electrolyte was as shown in [Table 2].
 得られた固体高分子電解質について、25℃環境下で上述した方法によってEISを測定し、イオン伝導度を求めた。得られたイオン伝導度およびそれぞれのイオン伝導度を比較例1のイオン伝導度で除した値を「無機フィラー添加によるイオン伝導度向上の効果」として表2に記す。 The EIS of the obtained solid polymer electrolyte was measured by the above-mentioned method in an environment of 25 ° C., and the ionic conductivity was determined. Table 2 shows the obtained ionic conductivity and the value obtained by dividing each ionic conductivity by the ionic conductivity of Comparative Example 1 as "the effect of improving the ionic conductivity by adding the inorganic filler".
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示されるように、無機フィラーの添加により、無機フィラー近傍に新たなイオン伝導経路が形成されるため、イオン伝導度が高まることが分かる。 As shown in Table 2, it can be seen that the addition of the inorganic filler forms a new ionic conduction path in the vicinity of the inorganic filler, so that the ionic conductivity is increased.
[実施例22]
LiTFSIを1.0gとしたこと以外は、実施例1と同様にした。
[Example 22]
The procedure was the same as in Example 1 except that the LiTFSI was 1.0 g.
[実施例23、24、比較例2]
固体高分子電解質に対する無機フィラーの含有割合を[表3]の通りとしたこと以外は、実施例22と同様にした。
[Examples 23 and 24, Comparative Example 2]
The procedure was the same as in Example 22 except that the content ratio of the inorganic filler to the solid polymer electrolyte was as shown in [Table 3].
 得られた固体高分子電解質について、25℃環境下で上述した方法によってEISを測定し、イオン伝導度を求めた。得られたイオン伝導度およびそれぞれのイオン伝導度を比較例2のイオン伝導度で除した値を「無機フィラー添加によるイオン伝導度向上の効果」として表3に記す。 The EIS of the obtained solid polymer electrolyte was measured by the above-mentioned method in an environment of 25 ° C., and the ionic conductivity was determined. Table 3 shows the obtained ionic conductivity and the value obtained by dividing each ionic conductivity by the ionic conductivity of Comparative Example 2 as "the effect of improving the ionic conductivity by adding the inorganic filler".
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2、表3より、塩濃度が高濃度である方が無機フィラーの添加によるイオン伝導度の向上効果は顕著であることが分かる。高濃度塩である場合、動きやすいイオン量自体が多くなること等により、イオン伝導度の向上効果が顕著になると考えられる。 From Tables 2 and 3, it can be seen that the higher the salt concentration, the more remarkable the effect of improving the ionic conductivity by the addition of the inorganic filler. In the case of a high-concentration salt, it is considered that the effect of improving the ionic conductivity becomes remarkable due to an increase in the amount of ionic ions that are easy to move.
 実施例1および比較例1で得られた固体高分子電解質について、上述した方法によってリチウムイオンの輸率を求めた。測定は25℃環境下で、ポテンショスタット装置としてバイオロジック社製、VMP-300および付属ソフトを用いて行った。得られたリチウムイオンの輸率を表4に記す。 For the solid polymer electrolytes obtained in Example 1 and Comparative Example 1, the lithium ion transport number was determined by the above-mentioned method. The measurement was performed in a 25 ° C environment using a VMP-300 manufactured by Biologic and the attached software as a potentiostat device. The Ion transport numbers of the obtained lithium ions are shown in Table 4.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4より、無機フィラーの添加によりリチウムイオンの輸率が向上することが分かる。 From Table 4, it can be seen that the addition of the inorganic filler improves the lithium ion transport number.
1  正極
2  負極
3  隔離層
4  正極基材
5  正極活物質層
6  負極活物質層
7  負極基材
10 蓄電素子(全固体電池)
20 蓄電ユニット
30 蓄電装置
1 Positive electrode 2 Negative electrode 3 Isolation layer 4 Positive electrode base material 5 Positive electrode active material layer 6 Negative electrode active material layer 7 Negative electrode base material 10 Power storage element (all-solid-state battery)
20 Power storage unit 30 Power storage device

Claims (9)

  1.  ポリアルキレンカーボネートと、
     塩と、
     無機フィラーと、
    を備える固体高分子電解質。
    Polyalkylene carbonate and
    With salt
    Inorganic filler and
    A solid polyelectrolyte that comprises.
  2.  前記ポリアルキレンカーボネートはポリエチレンカーボネート又はポリプロピレンカーボネートである請求項1に記載の固体高分子電解質。 The solid polyelectrolyte according to claim 1, wherein the polyalkylene carbonate is polyethylene carbonate or polypropylene carbonate.
  3.  前記塩は、イミド塩である請求項1又は請求項2に記載の固体高分子電解質。 The solid polymer electrolyte according to claim 1 or 2, wherein the salt is an imide salt.
  4.  前記塩は、リチウムビス(トリフルオロメタンスルホニル)イミドである請求項1、請求項2又は請求項3に記載の固体高分子電解質。 The solid polymer electrolyte according to claim 1, claim 2 or claim 3, wherein the salt is lithium bis (trifluoromethanesulfonyl) imide.
  5.  前記無機フィラーの前記固体高分子電解質を単位体積とする比表面積が65m/m以下である請求項1から請求項4の何れか1項に記載の固体高分子電解質。 The solid polymer electrolyte according to any one of claims 1 to 4, wherein the specific surface area of the inorganic filler having the solid polymer electrolyte as a unit volume is 65 m 2 / m 3 or less.
  6.  前記固体高分子電解質に対する前記無機フィラーの含有割合が29質量%未満である請求項1から請求項5の何れか1項に記載の固体高分子電解質。 The solid polymer electrolyte according to any one of claims 1 to 5, wherein the content ratio of the inorganic filler to the solid polymer electrolyte is less than 29% by mass.
  7.  前記ポリアルキレンカーボネートと前記塩との合計質量に対する前記塩の含有割合が50質量%より大きい請求項1から請求項6の何れか1項に記載の固体高分子電解質。 The solid polyelectrolyte according to any one of claims 1 to 6, wherein the content ratio of the salt to the total mass of the polyalkylene carbonate and the salt is larger than 50% by mass.
  8.  正極と、
    負極と、
    請求項1から請求項7の何れか1項に記載の固体高分子電解質と、
    を備える蓄電素子。
    With the positive electrode
    With the negative electrode
    The solid polyelectrolyte according to any one of claims 1 to 7, and the solid polymer electrolyte.
    A power storage element equipped with.
  9.  蓄電素子を二以上備え、且つ請求項8の蓄電素子を一以上備える蓄電装置。
     
    A power storage device including two or more power storage elements and one or more power storage elements according to claim 8.
PCT/JP2021/041826 2020-11-16 2021-11-15 Solid polymer electrolyte, and power storage element and power storage device which use solid polymer electrolyte WO2022102767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022562216A JPWO2022102767A1 (en) 2020-11-16 2021-11-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-200617 2020-11-16
JP2020200617 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022102767A1 true WO2022102767A1 (en) 2022-05-19

Family

ID=81601332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041826 WO2022102767A1 (en) 2020-11-16 2021-11-15 Solid polymer electrolyte, and power storage element and power storage device which use solid polymer electrolyte

Country Status (2)

Country Link
JP (1) JPWO2022102767A1 (en)
WO (1) WO2022102767A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008500A1 (en) * 2016-07-07 2018-01-11 リンテック株式会社 Solid electrolyte and battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008500A1 (en) * 2016-07-07 2018-01-11 リンテック株式会社 Solid electrolyte and battery

Also Published As

Publication number Publication date
JPWO2022102767A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
WO2019016925A1 (en) Carbon Conductive Additives For Lithium Ion Battery
WO2021095293A1 (en) Nonaqueous electrolyte electricity storage element
JP7215331B2 (en) Method for manufacturing non-aqueous electrolyte storage element and non-aqueous electrolyte storage element
WO2021246186A1 (en) Positive electrode and power storage element
JP7409132B2 (en) Nonaqueous electrolyte storage element
WO2022102767A1 (en) Solid polymer electrolyte, and power storage element and power storage device which use solid polymer electrolyte
WO2021125148A1 (en) Power storage device
WO2021020290A1 (en) Non-aqueous electrolyte power storage element, manufacturing method thereof, and power storage device
JP2021077641A (en) Power storage element
JP2022017033A (en) Positive electrode active material particles, their manufacturing method, power storage element, and power storage device
JP2021163583A (en) Power storage element
WO2022260001A1 (en) Polymer solid electrolyte, power storage element, and power storage device
WO2023276334A1 (en) Solid polyelectrolyte, power storage element, and power storage device
JP2022074946A (en) Electrolyte, power storage element, and method for manufacturing electrolyte
WO2024117146A1 (en) Solid electrolyte, solid electrolyte for positive electrode, composite, positive electrode for power storage element, and power storage element
WO2023224071A1 (en) Nonaqueous electrolyte power storage element
WO2023224070A1 (en) Non-aqueous electrolyte power storage element
WO2021124651A1 (en) Non-aqueous electrolyte power storage element and manufacturing method therefor
WO2023248769A1 (en) Active material particles, electrode, power storage element and power storage device
US20240063427A1 (en) Solid electrolyte, method of producing solid electrolyte, energy storage device, electronic device, and automobile
WO2024048411A1 (en) Solid electrolyte and power storage element
WO2022091825A1 (en) Electrode, electricity storage element and electricity storage device
WO2022239861A1 (en) Electric power storage element
WO2021200373A1 (en) Power storage element
WO2023090439A1 (en) Non-aqueous electrolyte electric power storage element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892012

Country of ref document: EP

Kind code of ref document: A1