WO2022259933A1 - 感光性樹脂組成物、樹脂膜、電子装置および電子装置の製造方法 - Google Patents

感光性樹脂組成物、樹脂膜、電子装置および電子装置の製造方法 Download PDF

Info

Publication number
WO2022259933A1
WO2022259933A1 PCT/JP2022/022290 JP2022022290W WO2022259933A1 WO 2022259933 A1 WO2022259933 A1 WO 2022259933A1 JP 2022022290 W JP2022022290 W JP 2022022290W WO 2022259933 A1 WO2022259933 A1 WO 2022259933A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin composition
group
meth
composition according
Prior art date
Application number
PCT/JP2022/022290
Other languages
English (en)
French (fr)
Inventor
裕馬 田中
卓士 川浪
律也 川崎
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2023527643A priority Critical patent/JPWO2022259933A1/ja
Publication of WO2022259933A1 publication Critical patent/WO2022259933A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to a photosensitive resin composition, a resin film, an electronic device, and a method for manufacturing an electronic device.
  • photosensitive resin compositions containing polyamide resins and/or polyimide resins are sometimes used to form cured films such as insulating layers. Therefore, photosensitive resin compositions containing polyamide resins and/or polyimide resins have been investigated.
  • US Pat. No. 5,300,002 discloses at least one fully imidized polyimide polymer having a weight average molecular weight ranging from about 20,000 Daltons to about 70,000 Daltons; at least one solubility-switching compound; at least one A photosensitive composition is described which comprises a photoinitiator; and at least one solvent and is capable of forming a film exhibiting a dissolution rate of greater than about 0.15 ⁇ m/sec when cyclopentanone is used as a developer. ing.
  • Patent Documents 2 and 3 also describe photosensitive resin compositions containing polyamide resins and/or polyimide resins.
  • An object of the present invention is to provide a photosensitive resin composition which is excellent in flatness when applied and has well-balanced chemical resistance and elongation when cured.
  • a heat-resistant resin (A) selected from polyimide resins and precursors thereof, polybenzoxazole resins and precursors thereof, or polyamide resins having reactive groups at the terminals or side chains; a photosensitizer; a cross-linking agent (B) having one or more epoxy-containing groups and one or more (meth)acryloyl groups in the molecule; A photosensitive resin composition containing 2.
  • PI-1 a polyimide resin containing a structural unit represented by the following general formula (PI-1).
  • X is a divalent organic group
  • Y is a tetravalent organic group
  • At least one of X and Y is a fluorine atom-containing group.
  • 7.6 A photosensitive resin composition according to A photosensitive resin composition in which the divalent organic group of X and/or the tetravalent organic group of Y contains an aromatic ring structure. 8. 1. ⁇ 7.
  • PI-2 a polyimide resin containing a structural unit represented by the following general formula (PI-2).
  • X is a divalent organic group
  • Y' is a single bond or an alkylene group.
  • a photosensitive resin composition according to any one of A photosensitive resin composition wherein the proportion of structural units having a phenolic hydroxy group in all structural units of the heat-resistant resin (A) is 0 to 10 mol%.
  • 12. 1. ⁇ 11 A photosensitive resin composition according to any one of A photosensitive resin composition, wherein the cross-linking agent (B) contains a compound represented by the following general formula (1).
  • X 1 represents a (meth)acryloyl group.
  • X2 represents an epoxy group, glycidyl group, glycidyl ether group or 3,4 - epoxycyclohexyl group. Also, n represents an integer of 1-10. 13. 1. ⁇ 12. A photosensitive resin composition according to any one of A photosensitive resin composition, wherein the cross-linking agent (B) contains one or more compounds selected from compounds represented by formulas (2) to (4) below. 14. 1. ⁇ 13. A photosensitive resin composition according to any one of Furthermore, a photosensitive resin composition containing a polyfunctional (meth)acrylic compound having three or more functionalities. 15. 14. A photosensitive resin composition according to The photosensitive resin composition, wherein the polyfunctional (meth)acrylic compound contains a pentafunctional or higher polyfunctional (meth)acrylic compound. 16. 1.
  • a photosensitive resin composition that is excellent in flatness when applied and has well-balanced chemical resistance and elongation when cured.
  • X to Y in the description of numerical ranges means X or more and Y or less, unless otherwise specified.
  • “1 to 5% by mass” means “1% by mass or more and 5% by mass or less”.
  • alkyl group includes not only alkyl groups without substituents (unsubstituted alkyl groups) but also alkyl groups with substituents (substituted alkyl groups).
  • (meth)acryl used herein represents a concept that includes both acryl and methacryl. The same applies to similar expressions such as “(meth)acrylate” and "(meth)acryloyl group”.
  • organic group as used herein means an atomic group obtained by removing one or more hydrogen atoms from an organic compound, unless otherwise specified.
  • a "monovalent organic group” represents an atomic group obtained by removing one hydrogen atom from an arbitrary organic compound.
  • electrode refers to elements to which electronic engineering technology is applied, such as semiconductor chips, semiconductor elements, printed wiring boards, electric circuit display devices, information communication terminals, light-emitting diodes, physical batteries, and chemical batteries. , devices, final products, etc.
  • the photosensitive resin composition of the present embodiment includes a heat-resistant resin (A) selected from polyimide resins and precursors thereof having reactive groups at terminals or side chains, polybenzoxazole resins and precursors thereof, or polyamide resins. , a photosensitive agent, and a cross-linking agent (B) having one or more epoxy-containing groups and one or more (meth)acryloyl groups in the molecule.
  • A heat-resistant resin
  • A selected from polyimide resins and precursors thereof having reactive groups at terminals or side chains, polybenzoxazole resins and precursors thereof, or polyamide resins.
  • a photosensitive agent and a cross-linking agent (B) having one or more epoxy-containing groups and one or more (meth)acryloyl groups in the molecule.
  • the cross-linking agent (B) has a reactive group selected from epoxy-containing groups and (meth)acryloyl groups in the molecule, and is included in the cross-linking agent (B) and the resin composition. It is considered that the components of (B) react with each other or polymerize with each other with the cross-linking agent (B). Then, it is considered that the cross-linking agent (B) becomes closely entangled in the cured product of the resin composition. It is believed that this further improves the chemical resistance and elongation of the resin film composed of the cured product of the photosensitive resin composition.
  • the photosensitive resin composition of the present embodiment is preferably used for forming insulating layers in electronic devices.
  • the "epoxy-containing group” refers to a substituent having a three-membered ether oxacyclopropane (oxirane) in its structural formula.
  • oxirane a substituent having a three-membered ether oxacyclopropane (oxirane) in its structural formula.
  • Specific examples thereof include an epoxy group, a glycidyl group, a glycidyl ether group, and one or more hydrogen atoms in an organic group to an epoxy group, a glycidyl group, or a glycidyl ether group (a group obtained by removing hydrogen from the OH group of glycidol).
  • Substituted groups may be mentioned, and specific examples include 1,2-epoxycyclohexyl group and the like.
  • organic group is not particularly limited, examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group and hexyl.
  • alkyl groups such as group, heptyl group, octyl group, nonyl group and decyl group; alkenyl groups such as allyl group, pentenyl group and vinyl group; alkynyl groups such as ethynyl group; alkylidene groups such as methylidene group and ethylidene group; aryl groups such as , naphthyl and anthracenyl groups; aralkyl groups such as benzyl and phenethyl groups; alkaryl groups such as tolyl and xylyl groups; or cycloalkyl groups such as adamantyl, cyclopentyl, cyclohexyl and cyclooctyl groups is mentioned.
  • the photosensitive resin composition of the present embodiment includes a heat-resistant resin (A) selected from polyimide resins and precursors thereof, polybenzoxazole resins and precursors thereof, or polyamide resins having reactive groups at the terminals or side chains. contains.
  • the heat-resistant resin (A) preferably contains one or more selected from the group consisting of an acid anhydride group, a carboxyl group, an amino group, and a phenolic hydroxyl group as reactive groups. More preferably contains an acid anhydride group.
  • the heat-resistant resin (A) contains the reactive group, the reactivity with the cross-linking agent (B) described below is improved, and the chemical resistance and elongation of the resin film made of the cured product of the photosensitive resin composition are improved. can be achieved with a high balance.
  • the photosensitive resin composition of the present embodiment may contain only one type of heat-resistant resin (A), or may contain two or more types.
  • the content of the heat-resistant resin (A) in the photosensitive resin composition of the present embodiment is preferably 1% by mass or more, more preferably 5% by mass or more, based on the total solid content of the photosensitive resin composition. It is preferably 10% by mass or more.
  • the upper limit of the heat-resistant resin (A) is not particularly limited, but is usually 70% by mass or less, preferably 50% by mass or less.
  • the lower limit of the weight-average molecular weight of the heat-resistant resin (A) in the photosensitive resin composition of the present embodiment is preferably 10,000 or more, more preferably 12,000 or more, and even more preferably 15,000 or more.
  • the upper limit of the weight average molecular weight of the heat-resistant resin (A) is preferably 100,000 or less, more preferably 75,000 or less, even more preferably 50,000 or less.
  • the weight-average molecular weight of the heat-resistant resin (A) is equal to or less than the upper limit, the fluidity of the photosensitive resin composition is improved, and the coatability and flatness during coating are improved.
  • the weight average molecular weight can usually be determined by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • the photosensitive resin composition of the present embodiment preferably contains a polyimide resin as the heat-resistant resin (A), and more preferably contains a closed-ring polyimide.
  • a polyimide resin as the heat-resistant resin (A)
  • the reactivity with the crosslinking agent (B) described later becomes good, and the chemical resistance of the resin film made of the cured product of the photosensitive resin composition Elongation rate can be compatible with high balance.
  • polyimide resin usually has an imide ring structure.
  • the expression "closed-ring polyimide” may originally be simply expressed as "polyimide".
  • polyimide is sometimes referred to as "closed ring polyimide” in order to distinguish it from polyimide resin precursors (where no imide ring is formed).
  • the photosensitive resin composition of the present embodiment preferably contains ring-closed polyimide in a stage before being subjected to curing.
  • the ring-closing polyimide is preferably soluble in the solvent.
  • polyimide resin When using a polyimide resin, only one polyimide resin may be used, or two or more polyimide resins may be used together.
  • the conversion rate is preferably 90% or higher, more preferably 95% or higher, and still more preferably 98% or higher.
  • the polyimide resin preferably has no or little amide structure and many imide ring structures.
  • the imide cyclization rate can be known, for example, from the area of the peak corresponding to the amide group and the area of the peak corresponding to the imide ring group in the NMR spectrum.
  • the imide cyclization rate can be known from the area of the peak corresponding to the amide group, the area of the peak corresponding to the imide ring group, and the like in the infrared absorption spectrum.
  • the polyimide resin preferably contains a structural unit represented by the following general formula (PI-1).
  • X is a divalent organic group
  • Y is a tetravalent organic group
  • At least one of X and Y is a fluorine atom-containing group.
  • the divalent organic group of X and/or the tetravalent organic group of Y preferably contains an aromatic ring structure, more preferably a benzene ring structure. This tends to further increase the heat resistance. From the viewpoint of solubility in organic solvents, both X and Y are preferably fluorine atom-containing groups.
  • the divalent organic group of X and/or the tetravalent organic group of Y preferably has a structure in which 2 to 6 benzene rings are linked via a single bond or a divalent linking group. Examples of the divalent linking group here include an alkylene group, a fluorinated alkylene group, an ether group, and the like.
  • Alkylene groups and fluorinated alkylene groups may be linear or branched.
  • the number of carbon atoms in the divalent organic group of X is, for example, 6-30.
  • the number of carbon atoms in the tetravalent organic group of Y is, for example, 6-20.
  • Each of the two imide rings in general formula (PI-1) is preferably a 5-membered ring.
  • the polyimide resin more preferably contains a structural unit represented by the following general formula (PI-2).
  • X is synonymous with X in the general formula (PI-1), Y' represents a single bond or an alkylene group.
  • the alkylene group of Y' may be linear or branched. Some or all of the hydrogen atoms in the alkylene group of Y' are preferably substituted with fluorine atoms.
  • the number of carbon atoms in the alkylene group of Y' is, for example, 1-6, preferably 1-4, more preferably 1-3.
  • a polyimide resin can be obtained by subjecting a polyimide resin precursor to a ring closure reaction.
  • a polyamide resin can be used as the polyimide resin precursor.
  • polybenzoxazole resin preferably contains a structural unit represented by the following formula (PB01).
  • polybenzoxazole resin When using a polybenzoxazole resin, only one polybenzoxazole resin may be used, or two or more polybenzoxazole resins may be used in combination.
  • a polybenzoxazole resin can be obtained by subjecting a polybenzoxazole resin precursor to a ring-closure reaction.
  • a polyamide resin can be used as the polybenzoxazole resin precursor.
  • polyamide resin The polyamide resin preferably contains a structural unit represented by general formula (PA-1) below.
  • polyamide resin When a polyamide resin is used, only one polyamide resin may be used, or two or more polyamide resins may be used together.
  • X is a divalent organic group
  • Y is a tetravalent organic group
  • at least one of X and Y is preferably a fluorine atom-containing group.
  • both X and Y in general formula (PA-1) are preferably fluorine atom-containing groups.
  • the divalent organic group of X and/or the tetravalent organic group of Y preferably contains an aromatic ring structure, more preferably a benzene ring structure. This tends to further increase the heat resistance.
  • the benzene ring here may be substituted with a fluorine atom-containing group such as a fluorine atom or a fluorinated alkyl group (preferably a trifluoromethyl group), or may be substituted with other groups.
  • the divalent organic group for X and/or the tetravalent organic group for Y in general formula (PA-1) preferably has 2 to 6 benzene rings via a single bond or a divalent linking group. It has a combined structure.
  • Examples of the divalent linking group here include an alkylene group, a fluorinated alkylene group, an ether group, and the like. Alkylene groups and fluorinated alkylene groups may be linear or branched.
  • the number of carbon atoms in the divalent organic group of X is, for example, 6-30.
  • the tetravalent organic group of Y has, for example, 6 to 20 carbon atoms.
  • the polyamide resin more preferably contains a structural unit represented by the following general formula (PA-2).
  • X is synonymous with X in the general formula (PA-1), Y' represents a single bond or an alkylene group.
  • the polyamide resin can also be used as a polyimide resin precursor or a polybenzoxazole resin precursor.
  • the heat-resistant resin (A) may or may not have an alkali-soluble group such as a phenolic hydroxy group.
  • the heat-resistant resin (A) preferably has an alkali-soluble group.
  • the photosensitive resin composition of the present embodiment to a lithography process using a developer containing an organic solvent as a main component (a developer in which 95% by mass or more of the component is an organic solvent)
  • heat resistance may be substantially free of alkali-soluble groups.
  • the proportion of structural units having an alkali-soluble group such as a phenolic hydroxy group in all structural units of the heat-resistant resin (A) is preferably 0 to 10 mol%, more preferably 0 to 5 mol%, and more preferably 0 to 5 mol%. It is preferably 0 to 3 mol %.
  • the photosensitive resin composition of this embodiment contains a photosensitive agent.
  • the photosensitive agent is not particularly limited as long as it can generate active species by light and cure the photosensitive resin composition.
  • the photosensitizer preferably contains a photoradical generator.
  • Photoradical generators are particularly effective in polymerizing polyfunctional (meth)acrylate compounds.
  • the photoradical generator that can be used is not particularly limited, and known ones can be used as appropriate.
  • Biimidazole compounds 1,2-octanedione, 1-[4-(phenylthio)phenyl]-2-(O-benzoyloxime), ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)- 9H-carbazol-3-yl]-,1-(O-acetyloxime) and other oxime ester compounds; bis( ⁇ 5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3 -(1H-pyrrol-1-yl)-phenyl) titanocene compounds such as titanium; benzoic acid ester compounds such as p-dimethylaminobenzoic acid and p-diethylaminobenzoic acid; acridine compounds such as 9-phenylacridine; etc. can be mentioned.
  • oxime ester compounds can be preferably used.
  • photosensitive agent When using a photosensitive agent, only one photosensitive agent may be used, or two or more photosensitive agents may be used.
  • the content of the photosensitive agent is, for example, 1 to 30 parts by mass, preferably 5 to 20 parts by mass, based on 100 parts by mass of the heat-resistant resin (A).
  • the photosensitive resin composition of the present embodiment contains a cross-linking agent (B) having one or more epoxy-containing groups and one or more (meth)acryloyl groups in the molecule.
  • the cross-linking agent (B) Since the cross-linking agent (B) has one or more epoxy-containing groups and one or more (meth)acryloyl groups in the molecule, the cross-linking agent (B) reacts with other components contained in the resin composition, or the cross-linking agent ( B) It is thought that they will polymerize with each other. Then, it is considered that the cross-linking agent (B) becomes closely entangled in the cured product of the resin composition. This is believed to improve the chemical resistance and elongation of the resin film made of the cured product of the photosensitive resin composition.
  • the cross-linking agent (B) preferably has one epoxy-containing group at one end of the molecule and one (meth)acryloyl group at the other end of the molecule.
  • the cross-linking agent (B) preferably contains a compound represented by general formula (1).
  • X 1 represents a (meth)acryloyl group.
  • X2 represents a glycidyl group, a glycidyl ether group, an epoxy group or a 3,4 - epoxycyclohexyl group as an epoxy-containing group.
  • n represents an integer of 1-10.
  • the reactivity between the cross-linking agent (B) and other components contained in the resin composition or the cross-linking agent (B) becomes good, and the cured product of the photosensitive resin composition It is preferable because the chemical resistance of the resin film composed of is improved.
  • n is within the range of 1 to 10, the elongation rate of the resin film made of the cured product of the photosensitive resin composition becomes more suitable, which is preferable.
  • the cross-linking agent (B) preferably contains one or more compounds selected from compounds represented by any of the following chemical formulas (2) to (4) as compounds satisfying the general formula (1).
  • the cross-linking agent (B) preferably contains one or more compounds selected from compounds represented by any of the following chemical formulas (2) to (4) as compounds satisfying the general formula (1).
  • the content of the cross-linking agent (B) is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more with respect to 100 parts by mass of the heat-resistant resin (A). be.
  • the content of the cross-linking agent (B) is 0.1 parts by mass or more, the cured product of the photosensitive resin composition can have high chemical resistance.
  • the content of the cross-linking agent (B) is, for example, 30 parts by mass or less, preferably 20 parts by mass or less, and more preferably 10 parts by mass or less with respect to 100 parts by mass of the heat-resistant resin (A).
  • the content of the cross-linking agent (B) is 30 parts by mass or less, the ratio of the heat-resistant resin (A) in the photosensitive resin composition is maintained, and the elongation of the cured product of the photosensitive resin composition is good. In addition, the adhesion between the photosensitive resin composition and the substrate is sufficiently improved.
  • the photosensitive resin composition of the present embodiment may contain only one type of cross-linking agent (B), or may contain two or more types.
  • the photosensitive resin composition of the present embodiment can optionally contain additives other than the heat-resistant resin (A), the photosensitive agent and the cross-linking agent (B) described above.
  • the photosensitive resin composition of the present embodiment preferably contains a polyfunctional (meth)acrylic compound having 3 or more functional groups.
  • a trifunctional or higher polyfunctional (meth)acrylic compound refers to a resin having 3 or more (meth)acryloyl groups. It is believed that the polyfunctional (meth)acrylic compound forms a network structure between the heat-resistant resin (A) and the cross-linking agent (B) by bonding with the acryloyl groups of the cross-linking agent (B). It is presumed that the chemical resistance of the resin film is improved by forming such a complexly entangled structure.
  • the number of functional groups of the polyfunctional (meth)acrylic compound is preferably 4 or more, more preferably 5 or more.
  • the chemical resistance of the resin film made of the cured product of the photosensitive resin composition becomes more suitable.
  • the number of functional groups of the polyfunctional (meth)acrylic compound is preferably 15 or less, more preferably 13 or less, and even more preferably 11 or less.
  • the number of functional groups of the polyfunctional (meth)acrylic compound is equal to or less than the above number, the elongation rate of the resin film made of the cured product of the photosensitive resin composition is improved.
  • a polyfunctional (meth)acrylic compound represented by the following general formula (5) can be used as an example of the polyfunctional (meth)acrylic compound.
  • R' is a hydrogen atom or a methyl group
  • n is 0 to 3
  • R is a hydrogen atom or a (meth)acryloyl group.
  • polyfunctional (meth)acrylic compounds include ethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra Polyol polyacrylates such as (meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, di(meth)acrylate of bisphenol A diglycidyl ether, di(meth)acrylate of hexanediol diglycidyl ether ) epoxy acrylates such as acrylates, and urethane (meth)acrylates obtained by reaction of polyisocyanate and hydroxyl group-containing (meth)acrylates such as hydroxyethyl (meth)acrylate.
  • polyfunctional (meth)acrylates obtained
  • polyfunctional (meth)acrylic compounds include Aronix M-400, Aronix M-460, Aronix M-402, Aronix M-510, Aronix M-520 (manufactured by Toagosei Co., Ltd.), KAYARAD T- 1420, KAYARAD DPHA, KAYARAD DPCA20, KAYARAD DPCA30, KAYARAD DPCA60, KAYARAD DPCA120 (manufactured by Nippon Kayaku Co., Ltd.), viscote #230, viscote #300, viscote #802, viscote #2500, viscote #1000, viscote #1080 (Osaka Organic Chemical Industry Co., Ltd.), NK Ester A-BPE-10, NK Ester A-GLY-9E, NK Ester A-9550, NK Ester A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd.). .
  • commercially available polyfunctional (meth)acrylic compounds
  • the amount of the polyfunctional (meth) acrylate compound with respect to 100 parts by weight of the heat-resistant resin (A) such as a polyimide resin is preferably 30 to 130 parts by weight, more preferably 50 to 130 parts. parts by mass, more preferably 85 to 125 parts by mass.
  • the polyamide resin and / or polyimide resin and polyfunctional (meth) acrylate "entangled structure" is formed by curing, but the polyamide
  • the polyamide resin and/or polyimide resin and the polyfunctional (meth)acrylate compound are moderately entangled, and participate in the entanglement. It is thought that there will be fewer unnecessary ingredients. As a result, the chemical resistance and elongation of the resin film made of the cured product of the photosensitive resin composition are more suitable.
  • the photosensitive resin composition contains a polyfunctional (meth)acrylic compound
  • it may contain only one polyfunctional (meth)acrylate compound, or may contain two or more polyfunctional (meth)acrylate compounds. In the latter case, it is preferable to use together polyfunctional (meth)acrylate compounds having different numbers of functional groups.
  • polyfunctional (meth)acrylate compounds with different numbers of functional groups By using polyfunctional (meth)acrylate compounds with different numbers of functional groups together, a more complex "entangled structure" can be created, and the chemical resistance and elongation of the resin film made of the cured product of the photosensitive resin composition are more suitable. It is considered to be.
  • polyfunctional (meth)acrylate compounds there is also a mixture of polyfunctional (meth)acrylate compounds having different numbers of functional groups.
  • a polymerization reaction of the polyfunctional (meth)acrylic compound can be employed as the curing mechanism. Since this polymerization reaction does not involve dehydration in principle, the combined use of a polyimide resin and a polyfunctional (meth)acrylic compound is also advantageous in that shrinkage due to heating is small.
  • the photosensitive resin composition of this embodiment may contain a thermal radical initiator.
  • a thermal radical initiator When the photosensitive resin composition contains a polyfunctional (meth)acrylic compound as an additive, the use of a thermal radical initiator promotes the polymerization reaction of the polyfunctional (meth)acrylic compound. As a result, the chemical resistance (resistance to organic solvents and the like) of the resin film made of the cured product of the photosensitive resin composition can be enhanced.
  • the thermal radical initiator preferably contains an organic peroxide.
  • Organic peroxides include octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, oxalic acid peroxide, 2,5-dimethyl- 2,5-di(2-ethylhexanoylperoxy)hexane, 1-cyclohexyl-1-methylethylperoxy 2-ethylhexanoate, t-hexylperoxy 2-ethylhexanoate, t-butylperoxy 2-ethylhexanoate, m-toluyl peroxide, benzoyl peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, acetyl peroxide, t-butyl hydroperoxide, di-t-butyl per
  • thermal radical initiator when a thermal radical initiator is used, only one thermal radical initiator may be used, or two or more thermal radical initiators may be used. When a thermal radical initiator is used, its amount is preferably 0.1 to 30 parts by weight, more preferably 1 to 20 parts by weight, based on 100 parts by weight of the polyfunctional (meth)acrylic compound.
  • the photosensitive resin composition of the present embodiment may contain an epoxy resin other than the cross-linking agent (B). Epoxy resins are thought to form bonds with polyimide resins, and the bonds thus formed can enhance the mechanical properties (tensile elongation, etc.) of resin films made from cured photosensitive resin compositions. is.
  • epoxy resins include the following. Of course, epoxy resins are not limited to these. Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol M type epoxy resin (4,4'-(1,3-phenylene isopridien) bisphenol type epoxy resin), bisphenol P type epoxy resin (4,4'-(1,4-phenylenediisopridiene) bisphenol type epoxy resin), bisphenol Z type epoxy resin (4,4'-cyclohexane Bisphenol-type epoxy resins such as cydiene bisphenol-type epoxy resin) and tetramethylbisphenol F-type epoxy resin; Resins, novolac type epoxy resins such as novolak type epoxy resins having a condensed ring aromatic hydrocarbon structure; biphenyl type epoxy resins; xylylene type epoxy resins, aralkyl type epoxy resins such as biphenyl aralkyl type epoxy resins; naphthylene
  • an epoxy resin When an epoxy resin is used as an additive, its amount is, for example, 0.5 to 100 parts by mass, preferably 1 to 50 parts by mass, more preferably 1 to 50 parts by mass, with respect to 100 parts by mass of the heat-resistant resin (A) such as polyimide resin. 3 to 20 parts by mass.
  • epoxy resin when used as an additive, only one epoxy resin may be used, or two or more epoxy resins may be used together.
  • the photosensitive resin composition of this embodiment may contain a curing catalyst.
  • a curing catalyst may accelerate the reaction of the epoxy resin.
  • Curing catalysts include curing catalysts (often called curing accelerators) known in the technical field of epoxy resins.
  • curing catalysts for example, diazabicycloalkenes such as 1,8-diazabicyclo[5,4,0]undecene-7 and derivatives thereof; amine compounds such as tributylamine and benzyldimethylamine; imidazole compounds such as 2-methylimidazole; triphenyl Organic phosphines such as phosphine and methyldiphenylphosphine; tetra-substituted phosphonium salts such as phosphonium/tetranaphthyloxyborate and tetraphenylphosphonium/4,4'-sulfonyldiphenolate; and triphenylphosphine obtained by adducting benzoquinone.
  • organic phosphines are preferred.
  • a curing catalyst When a curing catalyst is used, its amount is, for example, 1 to 80 parts by mass, preferably 5 to 50 parts by mass, more preferably 5 to 30 parts by mass, relative to 100 parts by mass of the epoxy group-containing compound.
  • the photosensitive resin composition of this embodiment may contain a silane coupling agent.
  • silane coupling agent By using the silane coupling agent, the adhesion between the resin film formed from the photosensitive resin composition and the substrate can be further enhanced.
  • Silane coupling agents include, for example, amino group-containing silane coupling agents, epoxy group-containing silane coupling agents, (meth)acryloyl group-containing silane coupling agents, mercapto group-containing silane coupling agents, and vinyl group-containing silane coupling agents.
  • a silane coupling agent such as a ureido group-containing silane coupling agent, a sulfide group-containing silane coupling agent, and a silane coupling agent having a cyclic anhydride structure can be used.
  • a silane coupling agent having a cyclic anhydride structure is preferably used.
  • the cyclic anhydride structure is likely to react with the main chain, side chains and/or terminals of the polyimide, and for this reason a particularly good effect of improving adhesion can be obtained.
  • silane coupling agent When a silane coupling agent is used, it may be used alone, or two or more silane coupling agents may be used in combination.
  • the amount used is, for example, 0.1 to 20 parts by mass, preferably 0.3 to 20 parts by mass, based on 100 parts by mass of the heat-resistant resin (A) such as a polyimide resin. 15 parts by mass, more preferably 0.4 to 12 parts by mass, and even more preferably 0.5 to 10 parts by mass.
  • the photosensitive resin composition of this embodiment may contain a surfactant.
  • a surfactant further enhances the applicability of the photosensitive resin composition and the flatness of the resin film formed from the photosensitive resin composition.
  • surfactants include fluorine-based surfactants, silicone-based surfactants, alkyl-based surfactants, and acrylic surfactants.
  • the surfactant is preferably nonionic. The use of nonionic surfactants is preferable, for example, from the viewpoint of suppressing unintentional reactions with other components in the composition and enhancing the storage stability of the composition.
  • the surfactant preferably contains a surfactant containing at least one of a fluorine atom and a silicon atom. This contributes to obtaining a uniform resin film (improvement of coatability), improvement of developability, and improvement of adhesive strength.
  • a surfactant is preferably, for example, a nonionic surfactant containing at least one of a fluorine atom and a silicon atom. Examples of commercial products that can be used as surfactants include F-251, F-253, F-281, F-430, and F-477 of "Megafac (registered trademark)" series manufactured by DIC Corporation.
  • fluorine-containing oligomer structure surfactants fluorine-containing nonionic surfactants such as Phthagent 250 and Phthagent 251 manufactured by Neos Co., Ltd., SILFOAM (registered trademark) series manufactured by Wacker Chemie ( Examples include silicone surfactants such as SD 100 TS, SD 670, SD 850, SD 860, SD 882).
  • FC4430 and FC4432 manufactured by 3M are also preferable surfactants.
  • a surfactant When a surfactant is used, it may be used alone, or two or more surfactants may be used in combination.
  • the photosensitive resin composition of the present embodiment contains a surfactant
  • its amount is, for example, 0.001 to 1 part by mass, preferably 0, when the content of the heat-resistant resin (A) is 100 parts by mass. 0.005 to 0.5 parts by mass.
  • the photosensitive resin composition of this embodiment preferably contains a solvent. This makes it possible to easily form a photosensitive resin film on a base material (particularly, a base material having steps) by a coating method.
  • a solvent usually contains an organic solvent.
  • the organic solvent is not particularly limited as long as it can dissolve or disperse each component described above and does not substantially chemically react with each component.
  • organic solvents include acetone, methyl ethyl ketone, toluene, propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol 1-monomethyl ether 2-acetate, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, benzyl Alcohol, propylene carbonate, ethylene glycol diacetate, propylene glycol diacetate, propylene glycol monomethyl ether acetate, dipropylene glycol methyl-n-propyl ether, butyl acetate, ⁇ -butyrolactone, methyl lactate, ethyl lactate, butyl lactate and the like. . These may be used singly or in combination.
  • the photosensitive resin composition of the present embodiment contains a solvent
  • the photosensitive resin composition of the present embodiment is usually in the form of varnish. Since the photosensitive resin composition of the present embodiment is in the form of varnish, it is possible to form a uniform film by coating. Moreover, it is preferable that the photosensitive resin composition of the present embodiment is in the form of a varnish and at least the heat-resistant resin (A) is dissolved in a solvent.
  • the concentration of the total solid content (nonvolatile components) in the photosensitive resin composition is preferably 10 to 50% by mass, more preferably 20 to 45% by mass. By setting it as this range, each component can fully be melt
  • the photosensitive resin composition of the present embodiment may contain components other than the components listed above, if necessary.
  • examples of such components include antioxidants, fillers such as silica, sensitizers, film-forming agents, and the like.
  • the photosensitive resin composition of the present embodiment does not contain a (meth)acrylamide-based compound (a compound having a (meth)acrylamide structure), or even if it does, it is 1% by mass or less in the total non-volatile components of the composition. is preferred.
  • the resin film is preferably made of a cured product of the above photosensitive resin composition.
  • the above photosensitive resin composition can be applied onto a base material of an electronic device and cured to form a resin film.
  • the electronic device preferably includes the above resin film.
  • the electronic device of this embodiment can be manufactured by the following manufacturing process.
  • the method for manufacturing the electronic device of this embodiment includes: A film forming step of forming a photosensitive resin film on a substrate using the photosensitive resin composition described above; an exposure step of exposing the photosensitive resin film; a developing step of developing the exposed photosensitive resin film; including. Moreover, it is preferable that the method for manufacturing an electronic device of the present embodiment includes a thermosetting step of heating and curing the exposed photosensitive resin film after the above-described developing step. Thereby, it is possible to obtain a resin film composed of a cured product of a photosensitive resin composition having excellent chemical resistance and elongation.
  • the film forming step is usually performed by applying a photosensitive resin composition onto the substrate.
  • the film forming step can be performed using a spin coater, bar coater, spray device, inkjet device, or the like.
  • Appropriate heating is preferably performed for the purpose of drying the solvent in the coated photosensitive resin composition before the next exposure step.
  • the heating at this time is performed, for example, at a temperature of 80 to 150° C. for 1 to 60 minutes.
  • the thickness of the photosensitive resin film after drying varies depending on the structure of the final electronic device to be obtained.
  • the amount of exposure in the exposure step is not particularly limited. 100 to 2000 mJ/cm 2 is preferred, and 200 to 1000 mJ/cm 2 is more preferred.
  • the light source used for exposure is not particularly limited as long as it emits light of a wavelength (eg, g-line or i-line) with which the photosensitive agent in the photosensitive resin composition reacts.
  • a high pressure mercury lamp is typically used.
  • Post-exposure baking may be performed as necessary.
  • the post-exposure baking temperature is not particularly limited. It is preferably 50 to 150°C, more preferably 50 to 130°C, still more preferably 55 to 120°C, and particularly preferably 60 to 110°C.
  • the post-exposure bake time is preferably 1 to 30 minutes, more preferably 1 to 20 minutes, still more preferably 1 to 15 minutes.
  • a photomask can be used in the exposure step. Thereby, a desired "pattern" can be formed using the photosensitive resin composition.
  • the developer used in the development process examples include an organic developer and a water-soluble developer.
  • the developer preferably contains an organic solvent. More specifically, the developer is preferably a developer containing an organic solvent as a main component (a developer in which 95% by mass or more of the component is an organic solvent). By developing with a developer containing an organic solvent, swelling of the pattern due to the developer can be suppressed more than in the case of developing with an alkaline developer (aqueous). That is, it is easy to obtain a finer pattern.
  • ketone solvents such as cyclopentanone
  • ester solvents such as propylene glycol monomethyl ether acetate (PGMEA) and butyl acetate
  • ether solvents such as propylene glycol monomethyl ether, etc.
  • an organic solvent developer containing only an organic solvent and containing only unavoidable impurities may be used as the developer.
  • Impurities that are unavoidably contained include metal elements and moisture, but from the viewpoint of preventing contamination of electronic devices, it is better that the impurities that are unavoidably contained are as small as possible.
  • the method of bringing the developer into contact with the photosensitive resin film is not particularly limited.
  • a generally known dipping method, paddle method, spray method, or the like can be appropriately applied.
  • the time for the development process is usually in the range of about 5 to 300 seconds, preferably about 10 to 120 seconds, and is appropriately adjusted based on the film thickness of the resin film, the shape of the pattern to be formed, and the like.
  • the conditions for the heat curing process are not particularly limited, but for example, the heating temperature can be about 160 to 250° C. for about 30 to 240 minutes.
  • the temperature of the reaction liquid was raised to 180° C. in an oil bath and the reaction was carried out for 3 hours, and then cooled to room temperature to prepare a polyimide resin solution.
  • the resulting white solid was vacuum dried at 200° C. to obtain a polyimide resin (A-1) having an acid anhydride group at the terminal.
  • the weight average molecular weight (Mw) of the polyimide resin (A-1) measured by GPC was 49,000.
  • the resulting reaction solution was added dropwise to a large amount of 30% by mass methanol aqueous solution at room temperature while stirring to precipitate the resin.
  • the resulting precipitate was collected by filtration and vacuum dried to obtain a polyamide resin (A-2) having an amino group at its terminal.
  • the weight average molecular weight (Mw) of the polyamide resin (A-2) measured by GPC was 30,000.
  • (A-1) and (A-3) have a structural unit represented by the above general formula (PI-1) and a structural unit represented by general formula (PI-2).
  • (A-1) and (A-3) do not substantially have an alkali-soluble group such as a phenolic hydroxy group, as far as the structure of the raw material monomer is concerned.
  • C-1 Viscoat #802 (manufactured by Osaka Organic Industry Co., Ltd., tripentaerythritol acrylate, mixture of mono- and dipentaerythritol acrylates; compound of general formula (5) above)
  • C-2 A-9550 (manufactured by Shin-Nakamura Chemical Co., Ltd., 5-6 functional (alkoxylated) dipentaerythritol acrylate)
  • C-3) Viscoat #300 manufactured by Osaka Organic Industry Co., Ltd., monopentaerythritol acrylate
  • C-4 Viscoat #230 (manufactured by Osaka Organic Industry Co., Ltd., 1,6-hexanediol diacrylate)
  • ⁇ Tensile elongation> (Preparation of test piece for tensile elongation measurement)
  • the photosensitive resin composition of each example and each comparative example was applied on a 12-inch silicon wafer by spin coating so that the film thickness after drying was 10 ⁇ m, followed by heating at 120° C. for 3 minutes. A photosensitive resin film was obtained.
  • the resulting coating film was exposed to light of 300 mJ/cm 2 through a photomask using an i-line stepper so that a range of 5 mm in width and 50 mm in length was exposed.
  • the exposed resin film was developed with cyclopentanone and propylene glycol monomethyl ether acetate using a spray developing machine together with the silicon wafer, further air-dried with a spin dry, and then dried on a hot plate at 140° C. for 2 minutes. gone. After that, heat treatment was performed at 170° C. for 90 minutes in a nitrogen atmosphere to obtain a resin film.
  • the resulting resin film was immersed in a 2% by mass hydrofluoric acid aqueous solution to separate from the substrate, washed with water, and dried at 60° C. for 10 hours to obtain a test piece for measurement (50 mm ⁇ 5 mm ⁇ 10 ⁇ m thick). .
  • ⁇ Chemical resistance> (Preparation of substrate for chemical resistance evaluation)
  • the photosensitive resin composition of each example and each comparative example was applied onto a 12-inch silicon wafer by spin coating so that the film thickness after drying was 5 ⁇ m, followed by heating at 120° C. for 3 minutes.
  • a photosensitive resin film was obtained.
  • the coating film thus obtained was exposed to light at 300 mJ/cm 2 using an i-line stepper without a reticle. Thereafter, the film was developed with cyclopentanone and propylene glycol monomethyl ether acetate using a spray developing machine, further air-dried with a spin dry, and then dried on a hot plate at 140° C. for 2 minutes. After that, heat treatment was performed at 170° C. for 90 minutes in a nitrogen atmosphere to obtain a silicon wafer with a resin film (evaluation substrate).
  • a Cu wiring substrate was prepared by forming Cu wiring having a width of 5 ⁇ m, a pitch of 5 ⁇ m, and a height of 5 ⁇ m on a silicon wafer with an oxide film.
  • the photosensitive resin composition of each example and each comparative example was applied by spin coating so that the film thickness after drying was 10 ⁇ m, and dried at 120° C. for 3 minutes to make it photosensitive.
  • a resin film was formed.
  • the resulting photosensitive resin film was exposed to light at 300 mJ/cm 2 with a high-pressure mercury lamp. After that, it was immersed in cyclopentanone for 30 seconds. After that, heat treatment was performed at 170° C.
  • a surface unevenness of 1 ⁇ m or less was evaluated as excellent (good), a surface unevenness of 1 to 3 ⁇ m was evaluated as good (usable level), and a surface unevenness exceeding 3 ⁇ m was evaluated as unusable (unusable level).
  • ⁇ Room temperature viscosity change rate> The viscosity of the photosensitive resin composition of each example and each comparative example immediately after blending was measured with an E-type viscometer (TVE-25L). The viscosity at this time was defined as A. After that, the varnish of the photosensitive resin composition of each example and each comparative example was stored at 23° C. for 7 days, and the viscosity was measured again. The viscosity at this time was defined as B.
  • the viscosity change rate was calculated by substituting viscosity A and viscosity B into the following formula.
  • Viscosity change rate [%] ⁇ (viscosity A - viscosity B) / viscosity A ⁇ x 100
  • Tg Glass transition temperature
  • the photosensitive resin composition of each example and each comparative example was spin-coated on a 12-inch silicon wafer having a plated copper layer of 3000 ⁇ on the surface so that the film thickness after drying was 5 ⁇ m, and was coated with a hot plate at 120°C. C. for 3 minutes to obtain a photosensitive resin film.
  • This photosensitive resin film is passed through a mask manufactured by Toppan Printing Co., Ltd. (test chart No. 1: a left pattern and a blank pattern with a width of 0.5 to 50 ⁇ m are drawn), and an i-line stepper (FPA-5500iX manufactured by CANON). was used to irradiate the i-line while changing the exposure amount.
  • the film after exposure was developed with a spray developing machine using cyclopentanone at 2500 rpm for 30 seconds, then using propylene glycol monomethyl ether acetate at 2500 rpm for 10 seconds, and further spin-dried at 2500 rpm for 10 seconds. After air-drying, drying was performed on a hot plate at 120° C. for 4 minutes. After that, heat treatment was performed at 170° C. for 90 minutes in a nitrogen atmosphere to obtain a patterned resin film. The obtained pattern was observed and evaluated as excellent when via holes of less than 5 ⁇ m ⁇ were opened, as good when via holes of 5 ⁇ m ⁇ or more and less than 10 ⁇ m ⁇ were opened, and as unsatisfactory when via holes of 10 ⁇ m ⁇ or more were opened.
  • the photosensitive resin compositions of Examples 1 to 8 were superior to Comparative Example 1 in both tensile elongation and chemical resistance.
  • the photosensitive resin compositions of Examples 1 to 8 were superior to those of Comparative Example 2 in terms of flatness for embedding the step.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)

Abstract

本発明の感光性樹脂組成物は、末端または側鎖に反応性基を有するポリイミド樹脂およびその前駆体、ポリベンゾオキサゾール樹脂及びその前駆体またはポリアミド樹脂から選択される耐熱性樹脂(A)と、感光剤と、分子内にエポキシ含有基および(メタ)アクリロイル基をそれぞれ1以上有する架橋剤(B)と、を含有する。

Description

感光性樹脂組成物、樹脂膜、電子装置および電子装置の製造方法
 本発明は、感光性樹脂組成物、樹脂膜、電子装置および電子装置の製造方法に関する。
 電気・電子分野においては、絶縁層などの硬化膜を形成するために、ポリアミド樹脂および/またはポリイミド樹脂を含む感光性樹脂組成物が用いられることがある。そのため、ポリアミド樹脂および/またはポリイミド樹脂を含む感光性樹脂組成物がこれまで検討されてきている。
 一例として、特許文献1には、約20,000ダルトン~約70,000ダルトンの範囲の重量平均分子量を有する少なくとも1種の完全イミド化ポリイミドポリマー;少なくとも1種の溶解度スイッチング化合物;少なくとも1種の光開始剤;および少なくとも1種の溶剤を含み、シクロペンタノンを現像剤として使用した場合に約0.15μm/秒を超える溶解速度を示すフィルムを形成することができる感光性組成物が記載されている。
 特許文献2、3などにも、ポリアミド樹脂および/またはポリイミド樹脂を含む感光性樹脂組成物が記載されている。
国際公開第2016/172092号 国際公開第2007/047384号 特開2018-070829号公報
 本発明者が検討した結果、上記特許文献1~3に記載の感光性樹脂組成物において、感光性樹脂組成物を塗布した際の平坦性の点で改善の余地があることが判明した。
 また、上記特許文献1~3に記載の感光性樹脂組成物の硬化物において、耐薬品性および伸び率の点で改善の余地があることが判明した。
 本発明はこのような事情に鑑みてなされたものである。本発明は、塗布した際の平坦性に優れ、硬化物とした際の耐薬品性および伸び率のバランスが取れた感光性樹脂組成物を提供することを目的とする。
 本発明者らは、以下に提供される発明を完成させ、上記課題を解決した。
1.
 末端または側鎖に反応性基を有するポリイミド樹脂およびその前駆体、ポリベンゾオキサゾール樹脂及びその前駆体またはポリアミド樹脂から選択される耐熱性樹脂(A)と、
 感光剤と、
 分子内にエポキシ含有基および(メタ)アクリロイル基をそれぞれ1以上有する架橋剤(B)と、
を含有する感光性樹脂組成物。
2.
 1.に記載の感光性樹脂組成物であって、
 前記耐熱性樹脂(A)が閉環ポリイミドを含む、感光性樹脂組成物。
3.
 1.または2.に記載の感光性樹脂組成物であって、
 前記耐熱性樹脂(A)が前記反応性基として酸無水物基、カルボキシル基、アミノ基、フェノール性水酸基からなる群から選択される1種または2種以上を含む、感光性樹脂組成物。
4.
 1.~3.のいずれか1つに記載の感光性樹脂組成物であって、
 前記耐熱性樹脂(A)が末端に酸無水物基を含む、感光性樹脂組成物。
5.
 1.~4.のいずれか1つに記載の感光性樹脂組成物であって、
 前記耐熱性樹脂(A)の重量平均分子量が10000以上100000以下である、感光性樹脂組成物。
6.
 1.~5.のいずれか1つに記載の感光性樹脂組成物であって、
 前記耐熱性樹脂(A)が、下記一般式(PI-1)で表される構造単位を含むポリイミド樹脂を含む、感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
 一般式(PI-1)中、
 Xは2価の有機基であり、
 Yは4価の有機基であり、
 XおよびYの少なくとも一方は、フッ素原子含有基である。
7.
 6.に記載の感光性樹脂組成物であって、
 Xの2価の有機基および/またはYの4価の有機基が、芳香環構造を含む、感光性樹脂組成物。
8.
 1.~7.のいずれか1つに記載の感光性樹脂組成物であって、
 前記耐熱性樹脂(A)が、下記一般式(PI-2)で表される構造単位を含むポリイミド樹脂を含む、感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000008
 一般式(PI-2)中、
 Xは2価の有機基であり、
 Y'は単結合またはアルキレン基である。
9.
 1.~8.のいずれか1つに記載の感光性樹脂組成物であって、
 前記耐熱性樹脂(A)の全構造単位中の、アルカリ可溶性基を有する構造単位の比率が、0~10mol%である、感光性樹脂組成物。
10.
 1.~9.のいずれか1つに記載の感光性樹脂組成物であって、
 前記耐熱性樹脂(A)の全構造単位中の、フェノール性ヒドロキシ基を有する構造単位の比率が、0~10mol%である、感光性樹脂組成物。
11.
 1.~10.のいずれか1つに記載の感光性樹脂組成物であって、
 前記架橋剤(B)が、分子内の一方の末端にエポキシ含有基を、他方の末端に(メタ)アクリロイル基をそれぞれ1つずつ有する、感光性樹脂組成物。
12.
 1.~11.のいずれか1つに記載の感光性樹脂組成物であって、
 前記架橋剤(B)が以下一般式(1)で表される化合物を含む、感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(1)中、Xは(メタ)アクリロイル基を表す。Xはエポキシ基、グリシジル基、グリシジルエーテル基もしくは3,4-エポキシシクロヘキシル基を表す。また、nは1~10の整数を表す。
13.
 1.~12.のいずれか1つに記載の感光性樹脂組成物であって、
 前記架橋剤(B)が以下式(2)~(4)のいずれかの化合物から選択される1種もしくは2種以上を含む、感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
14.
 1.~13.のいずれか1つに記載の感光性樹脂組成物であって、
 さらに、3官能以上の多官能(メタ)アクリル化合物を含む、感光性樹脂組成物。
15.
 14.に記載の感光性樹脂組成物であって、
 前記多官能(メタ)アクリル化合物が、5官能以上の多官能(メタ)アクリル化合物を含む、感光性樹脂組成物。
16.
 1.~15.のいずれか1つに記載の感光性樹脂組成物であって、
 全不揮発成分中の(メタ)アクリルアミド系化合物の含有量が0~1質量%である、感光性樹脂組成物。
17.
 1.~16.のいずれか一つに記載の感光性樹脂組成物の硬化物からなる樹脂膜。
18.
 17.に記載の樹脂膜を備える電子装置。
19.
 基材上に、1.~16.のいずれか一つに記載の感光性樹脂組成物を用いて感光性樹脂膜を形成する膜形成工程と、
 前記感光性樹脂膜を露光する露光工程と、
 露光された前記感光性樹脂膜を現像する現像工程と、
を含む、電子装置の製造方法。
20.
 19.に記載の電子装置の製造方法であって、
 前記現像工程においては、有機溶剤を主成分とする現像液が用いられる、電子装置の製造方法。
 本発明によれば、塗布した際の平坦性に優れ、硬化物とした際の耐薬品性および伸び率のバランスが取れた感光性樹脂組成物が提供される。
 本明細書中、数値範囲の説明における「X~Y」との表記は、特に断らない限り、X以上Y以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
 本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」「(メタ)アクリロイル基」等の類似の表記についても同様である。
 本明細書における「有機基」の語は、特に断りが無い限り、有機化合物から1つ以上の水素原子を除いた原子団のことを意味する。例えば、「1価の有機基」とは、任意の有機化合物から1つの水素原子を除いた原子団のことを表す。
 本明細書における「電子装置」の語は、半導体チップ、半導体素子、プリント配線基板、電気回路ディスプレイ装置、情報通信端末、発光ダイオード、物理電池、化学電池など、電子工学の技術が適用された素子、デバイス、最終製品等を包含する意味で用いられる。
 [感光性樹脂組成物]
 本実施形態の感光性樹脂組成物は、末端または側鎖に反応性基を有するポリイミド樹脂およびその前駆体、ポリベンゾオキサゾール樹脂及びその前駆体またはポリアミド樹脂から選択される耐熱性樹脂(A)と、感光剤と、分子内にエポキシ含有基および(メタ)アクリロイル基をそれぞれ1以上有する架橋剤(B)と、を含有する。
 電子デバイス中の硬化膜には、薬液処理に耐えうる耐薬品性と、クラックの発生を防止するための伸び率が求められるが、本実施形態の感光性樹脂組成物の硬化物から形成される樹脂膜は、耐薬品性と伸び率が良好である。
 詳細は不明であるが、架橋剤(B)が分子内にエポキシ含有基および(メタ)アクリロイル基から選択される反応性基を有することで、架橋剤(B)と樹脂組成物に含まれる他の成分が反応したり、架橋剤(B)どうしで重合したりするようになると考えられる。そして、架橋剤(B)が樹脂組成物の硬化物中で密接に絡み合うようになると考えらえる。このことが感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性と伸び率をより一層向上させるものと考えられる。
 上記のような事項から、本実施形態の感光性樹脂組成物は、電子装置における絶縁層の形成に好ましく用いられる。
 本実施形態において「エポキシ含有基」とは、3員環のエーテルであるオキサシクロプロパン(オキシラン)を構造式中に持つ置換基を指す。その具体例としては、エポキシ基、グリシジル基、グリシジルエーテル基のほか、有機基のうち1以上の水素原子がエポキシ基、グリシジル基またはグリシジルエーテル基(グリシドールのOH基から水素を除いた基)に置換された基が挙げられ、具体的には、1,2-エポキシシクロヘキシル基などが挙げられる。有機基としては特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基;アリル基、ペンテニル基、ビニル基等のアルケニル基;エチニル基等のアルキニル基;メチリデン基、エチリデン基等のアルキリデン基;フェニル基、ナフチル基、アントラセニル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;トリル基、キシリル基等のアルカリル基;またはアダマンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等のシクロアルキル基などが挙げられる。
 本実施形態の感光性樹脂組成物が含むことができる成分や、本実施形態の感光性樹脂組成物の性状、物性などについて説明を続ける。
 <耐熱性樹脂(A)>
 本実施形態の感光性樹脂組成物は、末端または側鎖に反応性基を有するポリイミド樹脂およびその前駆体、ポリベンゾオキサゾール樹脂及びその前駆体またはポリアミド樹脂から選択される耐熱性樹脂(A)を含有する。
 ここで、耐熱性樹脂(A)が反応性基として酸無水物基、カルボキシル基、アミノ基、フェノール性水酸基からなる群から選択される1種または2種以上を含むことが好ましく、その中でも末端に酸無水物基を含むことがさらに好ましい。耐熱性樹脂(A)が上記反応性基を含むことによって、後述する架橋剤(B)との反応性が良好となり、感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性および伸び率を高いバランスで両立することができる。
 本実施形態の感光性樹脂組成物は、耐熱性樹脂(A)を1種のみ含んでもよいし、2種以上含んでもよい。
 本実施形態の感光性樹脂組成物における耐熱性樹脂(A)の含有量は、感光性樹脂組成物の全固形分中、好適には1質量%以上、より好適には5質量%以上、さらに好適には10質量%以上である。ある程度多量の耐熱性樹脂(A)を用いることで、適度な厚さの樹脂膜を形成しやすくなる。また、耐熱性樹脂(A)の上限値は特に限定されないが、通常は70質量%以下、好適には50質量%以下である。
 本実施形態の感光性樹脂組成物における耐熱性樹脂(A)の重量平均分子量の下限値は、好ましくは10000以上、より好ましくは12000以上、さらに好ましくは15000以上である。耐熱性樹脂(A)の重量平均分子量が上記下限値以上であることにより、感光性樹脂組成物の硬化物からなる樹脂膜の十分な耐薬品性が得られるほか、さらに十分な耐熱性も得ることができる。
 また、耐熱性樹脂(A)の重量平均分子量の上限値は、好ましくは100000以下、より好ましくは75000以下、さらに好ましくは50000以下である。耐熱性樹脂(A)の重量平均分子量が上記上限値以下であることにより、感光性樹脂組成物の流動性が向上し、塗布性および塗布時の平坦性が向上する。
 重量平均分子量は、通常、ポリスチレンを標準物質として用いたゲルパーミエーションクロマトグラフィー(GPC)法により求めることができる。
 (ポリイミド樹脂)
 加熱による収縮を抑えることができるという観点から、本実施形態の感光性樹脂組成物は、耐熱性樹脂(A)としてポリイミド樹脂を含むことが好ましく、閉環ポリイミドを含むことがさらに好ましい。また、耐熱性樹脂(A)として閉環ポリイミドを含むことによる利点として、後述する架橋剤(B)との反応性が良好となり、感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性および伸び率を高いバランスで両立することができる。
 ちなみに、「ポリイミド樹脂」は、通常、イミド環構造を有する。この点で、「閉環ポリイミド」との表現は、は、本来「ポリイミド」とシンプルに表現してもよい。しかし、本明細書 においては、ポリイミド樹脂前駆体(イミド環は形成されていない)と特に区別するために、ポリイミドを敢えて「閉環ポリイミド」と表現することがある。本実施形態の感光性樹脂組成物は、好ましくは、硬化に供される前の段階において閉環ポリイミドを含んでいる。閉環ポリイミドは、好ましくは、溶剤に溶解する。
 ポリイミド樹脂を用いる場合、1のみのポリイミド樹脂を用いてもよいし、2以上のポリイミド樹脂を併用してもよい。
 ポリイミド樹脂中に含まれるイミド環基のモル数をIMとし、ポリイミド樹脂に含まれるアミド基のモル数をAMとしたとき、{IM/(IM+AM)}×100(%)で表されるイミド環化率は、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上である。要するに、ポリイミド樹脂は、アミド構造が無いまたは少なく、イミド環構造が多い樹脂であることが好ましい。このようなポリイミド樹脂を用いることで、閉環反応による脱水が起こらないため、加熱による収縮(硬化収縮)を一層抑えることができる。これにより、電子デバイスの信頼性の一層の向上や、感光性樹脂組成物の硬化物からなる樹脂膜の平坦性の一層の向上などを図ることができる。
 イミド環化率は、一例として、NMRスペクトルにおける、アミド基に対応するピークの面積やイミド環基に対応するピークの面積などから知ることができる。別の例として、イミド環化率は、赤外吸収スペクトルにおける、アミド基に対応するピークの面積やイミド環基に対応するピークの面積などから知ることができる。
 ポリイミド樹脂は、下記一般式(PI-1)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式(PI-1)中、
 Xは2価の有機基であり、
 Yは4価の有機基であり、
 XおよびYの少なくとも一方は、フッ素原子含有基である。
 Xの2価の有機基および/またはYの4価の有機基は、芳香環構造を含むことが好ましく、ベンゼン環構造を含むことがより好ましい。これにより耐熱性が一層高まる傾向がある。
 有機溶剤溶解性の観点では、XおよびYの両方が、フッ素原子含有基であることが好ましい。
 Xの2価の有機基および/またはYの4価の有機基は、好ましくは、2~6個のベンゼン環が、単結合または2価の連結基を介して結合した構造を有する。ここでの2価の連結基としては、アルキレン基、フッ化アルキレン基、エーテル基などを挙げることができる。アルキレン基およびフッ化アルキレン基は、直鎖状であっても分岐状であってもよい。
 Xの2価の有機基の炭素数は、例えば6~30である。
 Yの4価の有機基の炭素数は、例えば6~20である。
 一般式(PI-1)中の2つのイミド環は、それぞれ、5員環であることが好ましい。
 ポリイミド樹脂は、下記一般式(PI-2)で表される構造単位を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(PI-2)中、
 Xは、一般式(PI-1)におけるXと同義であり、
 Y'は、単結合またはアルキレン基を表す。
 Xの具体的態様については、一般式(PI-1)において説明したものと同様である。
 Y'のアルキレン基は、直鎖状でも分岐状でもよい。Y'のアルキレン基の水素原子の一部または全部は、フッ素原子で置換されていることが好ましい。Y'のアルキレン基の炭素数は、例えば1~6、好ましくは1~4、さらに好ましくは1~3である。
 ポリイミド樹脂は、ポリイミド樹脂前駆体を閉環反応させることにより得ることができる。ポリイミド樹脂前駆体としては、ポリアミド樹脂を用いることができる。
 (ポリベンゾオキサゾール樹脂)
 ポリベンゾオキサゾール樹脂は、下記式(PB01)で表される構造単位を含むことが好ましい。
 ポリベンゾオキサゾール樹脂を用いる場合、1のみのポリベンゾオキサゾール樹脂を用いてもよいし、2以上のポリベンゾオキサゾール樹脂を併用してもよい。
Figure JPOXMLDOC01-appb-C000015
 ポリベンゾオキサゾール樹脂は、ポリベンゾオキサゾール樹脂前駆体を閉環反応させることにより得ることができる。ポリベンゾオキサゾール樹脂前駆体としては、ポリアミド樹脂を用いることができる。
 (ポリアミド樹脂)
 ポリアミド樹脂は、下記一般式(PA-1)で表される構造単位を含むことが好ましい。
 ポリアミド樹脂を用いる場合、1のみのポリアミド樹脂を用いてもよいし、2以上のポリアミド樹脂を併用してもよい。
Figure JPOXMLDOC01-appb-C000016
 一般式(PA-1)において、Xは2価の有機基であり、Yは4価の有機基であり、XおよびYの少なくとも一方は、好ましくは、フッ素原子含有基である。有機溶剤溶解性の観点では、一般式(PA-1)において、XおよびYの両方が、フッ素原子含有基であることが好ましい。
 一般式(PA-1)において、Xの2価の有機基および/またはYの4価の有機基は、芳香環構造を含むことが好ましく、ベンゼン環構造を含むことがより好ましい。これにより耐熱性が一層高まる傾向がある。ここでのベンゼン環は、フッ素原子、フッ化アルキル基(好ましくはトリフルオロメチル基)などのフッ素原子含有基で置換されていてもよいし、その他の基で置換されていてもよい。
 一般式(PA-1)におけるXの2価の有機基および/またはYの4価の有機基は、好ましくは、2~6個のベンゼン環が、単結合または2価の連結基を介して結合した構造を有する。ここでの2価の連結基としては、アルキレン基、フッ化アルキレン基、エーテル基などを挙げることができる。アルキレン基およびフッ化アルキレン基は、直鎖状であっても分岐状であってもよい。
 一般式(PA-1)において、Xの2価の有機基の炭素数は、例えば6~30である。
 一般式(PA-1)において、Yの4価の有機基の炭素数は、例えば6~20である。
 ポリアミド樹脂は、下記一般式(PA-2)で表される構造単位を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(PA-2)中、
 Xは、一般式(PA-1)におけるXと同義であり、
 Y'は、単結合またはアルキレン基を表す。
 前述の通り、ポリアミド樹脂は、ポリイミド樹脂前駆体またはポリベンゾオキサゾール樹脂前駆体として用いることも可能である。
 耐熱性樹脂(A)は、フェノール性ヒドロキシ基などのアルカリ可溶性基を有していてもよいし、有していなくてもよい。
 アルカリ現像液を用いたリソグラフィープロセスに本実施形態の感光性樹脂組成物を適用する場合には、耐熱性樹脂(A)はアルカリ可溶性基を有することが好ましい。
 一方、有機溶剤を主成分とする現像液(成分の95質量%以上が有機溶剤である現像液)を用いたリソグラフィープロセスに本実施形態の感光性樹脂組成物を適用する場合には、耐熱性樹脂(A)はアルカリ可溶性基を実質上有していなくてもよい。具体的には、耐熱性樹脂(A)の全構造単位中、フェノール性ヒドロキシ基などのアルカリ可溶性基を有する構造単位の比率は、好ましくは0~10mol%、より好ましくは0~5mol%、さらに好ましくは0~3mol%である。
<感光剤>
 本実施形態の感光性樹脂組成物は、感光剤を含有する。
 感光剤は、光により活性種を発生して感光性樹脂組成物を硬化させることが可能なものである限り、特に限定されない。
 感光剤は、好ましくは光ラジカル発生剤を含む。光ラジカル発生剤は、特に、多官能(メタ)アクリレート化合物を重合させるのに効果的である。
 用いることができる光ラジカル発生剤は特に限定されず、公知のものを適宜用いることができる。
 例えば、2,2-ジエトキシアセトフェノン、2,2-ジメトキシー2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル〕フェニル}-2-メチルプロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-〔(4-メチルフェニル)メチル〕-1-〔4-(4-モルホリニル)フェニル〕-1-ブタノン等のアルキルフェノン系化合物;ベンゾフェノン、4,4′-ビス(ジメチルアミノ)ベンゾフェノン、2-カルボキシベンゾフェノン等のベンゾフェノン系化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテ等のベンゾイン系化合物;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系化合物;2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシカルボキニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン等のハロメチル化トリアジン系化合物;2-トリクロロメチル-5-(2′-ベンゾフリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2′-ベンゾフリル)ビニル〕-1,3,4-オキサジアゾール、4-オキサジアゾール、2-トリクロロメチル-5-フリル-1,3,4-オキサジアゾール等のハロメチル化オキサジアゾール系化合物;2,2′-ビス(2-クロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4,6-トリクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール等のビイミダゾール系化合物;1,2-オクタンジオン,1-〔4-(フェニルチオ)フェニル〕-2-(O-ベンゾイルオキシム)、エタノン,1-〔9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル〕-,1-(O-アセチルオキシム)等のオキシムエステル系化合物;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等のチタノセン系化合物;p-ジメチルアミノ安息香酸、p-ジエチルアミノ安息香酸等の安息香酸エステル系化合物;9-フェニルアクリジン等のアクリジン系化合物;等を挙げることができる。これらの中でも、特にオキシムエステル系化合物を好ましく用いることができる。
 感光剤を用いる場合、1のみの感光剤を用いてもよいし、2以上の感光剤を用いてもよい。
 感光剤の含有量は、耐熱性樹脂(A)100質量部に対して、例えば1~30質量部であり、好ましくは5~20質量部である。
 <架橋剤(B)>
 本実施形態の感光性樹脂組成物は、分子内にエポキシ含有基および(メタ)アクリロイル基をそれぞれ1以上有する架橋剤(B)を含有する。
 架橋剤(B)が、分子中にエポキシ含有基および(メタ)アクリロイル基をそれぞれ1以上有することで、架橋剤(B)と樹脂組成物に含まれる他の成分が反応したり、架橋剤(B)どうしで重合したりするようになると考えられる。そして、架橋剤(B)が樹脂組成物の硬化物中で密接に絡み合うようになると考えられる。このことが感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性および伸び率を向上させるものと考えられる。
 架橋剤(B)は、分子内の一方の末端にエポキシ含有基を、他方の末端に(メタ)アクリロイル基をそれぞれ1つずつ有することが好ましい。この構成を備えることにより、未反応の官能基が減少して、結果として感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性が向上する。
 架橋剤(B)は、一般式(1)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(1)において、
 Xは(メタ)アクリロイル基を表す。Xはエポキシ含有基としてグリシジル基、グリシジルエーテル基、エポキシ基もしくは3,4-エポキシシクロヘキシル基を表す。また、nは1~10の整数を表す。
 Xが上記官能基から選択されることにより、架橋剤(B)と樹脂組成物に含まれる他の成分もしくは架橋剤(B)同士の反応性が良好となり、感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性が向上するため好ましい。
 また、nが1~10の範囲内であることにより、感光性樹脂組成物の硬化物からなる樹脂膜の伸び率がより好適となるため好ましい。
 架橋剤(B)において、上記一般式(1)を満たす化合物として、以下化学式(2)~(4)のいずれかの化合物から選択される1種もしくは2種以上を含むことが好ましい。以下化学式(2)~(4)のいずれかの化合物から選択される1種もしくは2種以上を含むことにより、感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性および伸び率を高いバランスで両立することができる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 架橋剤(B)の含有量は、耐熱性樹脂(A)100質量部に対して、例えば0.1質量部以上であり、好ましくは0.5質量部以上、より好ましくは1質量部以上である。架橋剤(B)の含有量が0.1質量部以上であることにより、感光性樹脂組成物の硬化物が高い耐薬品性を有することができる。
 また、架橋剤(B)の含有量は、耐熱性樹脂(A)100質量部に対して、例えば30質量部以下であり、好ましくは20質量部以下、より好ましくは10質量部以下である。架橋剤(B)の含有量が30質量部以下であることにより、感光性樹脂組成物における耐熱性樹脂(A)の比率が維持され、感光性樹脂組成物の硬化物の伸び率が良好となるほか、感光性樹脂組成物と基材との密着性が十分に向上する。
 本実施形態の感光性樹脂組成物は、架橋剤(B)を1種のみ含んでもよいし、2種以上含んでもよい。
 <その他の添加剤>
 本実施形態の感光性樹脂組成物は、上述した耐熱性樹脂(A)、感光剤および架橋剤(B)以外の添加剤を任意で含有することができる。
 (多官能(メタ)アクリル化合物)
 本実施形態の感光性樹脂組成物は、好ましくは官能基数が3官能以上の多官能(メタ)アクリル化合物を含む。
 3官能以上の多官能(メタ)アクリル化合物とは、(メタ)アクリロイル基の個数が3以上である樹脂のことを指す。多官能(メタ)アクリル化合物は、架橋剤(B)のアクリロイル基と結合することにより、耐熱性樹脂(A)および架橋剤(B)との間でネットワーク構造を形成するものと考えられる。このような複雑に絡み合った構造が形成されることにより、樹脂膜の耐薬品性が良好となると推測される。
 このとき、多官能(メタ)アクリル化合物の官能基数が4官能以上であることがより好ましく、5官能以上であることがさらに好ましい。多官能(メタ)アクリル化合物が上記官能基数以上であることにより、感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性がより好適となる。
 また、多官能(メタ)アクリル化合物の官能基数は15官能以下であることが好ましく、13官能以下であることがより好ましく、11官能以下であることがさらに好ましい。多官能(メタ)アクリル化合物が上記官能基数以下であることにより、感光性樹脂組成物の硬化物からなる樹脂膜の伸び率が良好となる。
 多官能(メタ)アクリル化合物としては、一例として、以下一般式(5)で表される多官能(メタ)アクリル化合物を用いることができる。以下一般式(5)において、R'は水素原子またはメチル基、nは0~3、Rは水素原子または(メタ)アクリロイル基である。
Figure JPOXMLDOC01-appb-C000022
 多官能(メタ)アクリル化合物の具体例としては、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のポリオールポリアクリレート類、ビスフェノールAジグリシジルエーテルのジ(メタ)アクリレート、ヘキサンジオールジグリシジルエーテルのジ(メタ)アクリレート等のエポキシアクリレート類、ポリイソシナネートとヒドロキシエチル(メタ)アクリレート等の水酸基含有(メタ)アクリレートの反応によって得られるウレタン(メタ)アクリレートなどを挙げることができる。もちろん、多官能(メタ)アクリル化合物はこれらのみに限定されない。
 また、多官能(メタ)アクリル化合物の市販品としては、 アロニックスM-400、アロニックスM-460、アロニックスM-402、アロニックスM-510、アロニックスM-520(東亜合成株式会社製)、KAYARAD T-1420、KAYARAD DPHA、KAYARAD DPCA20、KAYARAD DPCA30、KAYARAD DPCA60、KAYARAD DPCA120(日本化薬株式会社製)、ビスコート#230、ビスコート#300、ビスコート#802、ビスコート#2500、ビスコート#1000、ビスコート#1080(大阪有機化学工業株式会社製)、NKエステルA-BPE-10、NKエステルA-GLY-9E、NKエステルA-9550、NKエステルA-DPH(新中村化学工業株式会社製)などを挙げることができる。もちろん、多官能(メタ)アクリル化合物の市販品はこれらのみに限定されない。
 多官能(メタ)アクリレート化合物を用いる場合、ポリイミド樹脂等の耐熱性樹脂(A)100質量部に対する多官能(メタ)アクリレート化合物の量は、好ましくは30~130質量部、より好ましくは50~130質量部、さらに好ましくは85~125質量部である。
 前述のように、本実施形態の感光性樹脂組成物においては、硬化により、ポリアミド樹脂および/またはポリイミド樹脂と多官能(メタ)アクリレートとの「絡み合い構造」が形成されると考えられるが、ポリアミド樹脂および/またはポリイミド樹脂に対する多官能(メタ)アクリレート化合物の使用量を適切に調整することで、ポリアミド樹脂および/またはポリイミド樹脂と多官能(メタ)アクリレート化合物が適度に絡み合い、また、絡み合いに関与しない余分な成分が少なくなると考えられる。結果として、感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性および伸び率がより好適となる。
 感光性樹脂組成物が多官能(メタ)アクリル化合物を含む場合、1のみの多官能(メタ)アクリレート化合物を含んでもよいし、2以上の多官能(メタ)アクリレート化合物を含んでもよい。後者の場合、官能基数が異なる多官能(メタ)アクリレート化合物を併用することが好ましい。官能基数が異なる多官能(メタ)アクリレート化合物を併用することで、より複雑な「絡み合い構造」ができ、感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性および伸び率がより好適となると考えられる。
 ちなみに、市販の多官能(メタ)アクリレート化合物の中には、官能基数が異なる多官能(メタ)アクリレート化合物の混合物もある。
 また、ポリイミド樹脂と多官能(メタ)アクリル化合物とを併用する場合、硬化のメカニズムとして、多官能(メタ)アクリル化合物の重合反応を採用することができる。この重合反応は、原理的に脱水を伴わないので、加熱による収縮が小さいという点でも、ポリイミド樹脂と多官能(メタ)アクリル化合物との併用は有利である。
 (熱ラジカル開始剤)
 本実施形態の感光性樹脂組成物は、熱ラジカル開始剤を含んでもよい。
 感光性樹脂組成物が添加剤として多官能(メタ)アクリル化合物を含有する場合、熱ラジカル開始剤を用いることにより、多官能(メタ)アクリル化合物の重合反応が促進される。結果として、感光性樹脂組成物の硬化物からなる樹脂膜の耐薬品性(有機溶剤などに対する耐性)を高めることができる。
 熱ラジカル開始剤は、好ましくは、有機過酸化物を含む。有機過酸化物としては、オクタノイルパーオキシド、ラウロイルパーオキシド、ステアロイルパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、シュウ酸パーオキシド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ2-エチルヘキサノエート、t-ヘキシルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシ2-エチルヘキサノエート、m-トルイルパーオキシド、ベンゾイルパーオキシド、ベンゾイルパーオキシド、メチルエチルケトンパーオキシド、アセチルパーオキシド、t-ブチルヒドロパーオキシド、ジ-t-ブチルパーオキシド、クメンヒドロパーオキシド、ジクミルパーオキシド、t-ブチルパーベンゾエート、パラクロロベンゾイルパーオキシド、シクロヘキサノンパーオキシド、などを挙げることができる。
 熱ラジカル開始剤を用いる場合、1のみの熱ラジカル開始剤を用いてもよいし、2以上の熱ラジカル開始剤を用いてもよい。
 熱ラジカル開始剤を用いる場合、その量は、多官能(メタ)アクリル化合物100質量部に対して、好ましくは0.1~30質量部、より好ましくは1~20質量部である。
 (エポキシ樹脂)
 本実施形態の感光性樹脂組成物は、架橋剤(B)以外のエポキシ樹脂を含んでもよい。エポキシ樹脂は、ポリイミド樹脂と結合を形成すると考えられ、このようにして形成された結合により、感光性樹脂組成物の硬化物からなる樹脂膜の機械物性(引張り伸び率など)を高めることが可能である。
 エポキシ樹脂の具体例としては、以下を挙げることができる。もちろん、エポキシ樹脂はこれらのみに限定されない。
 ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4'-(1,3-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4'-(1,4-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4'-シクロヘキシジエンビスフェノール型エポキシ樹脂)、テトラメチルビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などのアラルキル型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2~4官能エポキシ型ナフタレン樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂などのナフタレン骨格を有するエポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン型エポキシ樹脂;フルオレン型エポキシ樹脂、リン含有エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビキシレノール型エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、スチルベン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、トリグリシジルイソシアヌレートなどの複素環式エポキシ樹脂;N,N,N',N'-テトラグリシジルメタキシレンジアミン、N,N,N',N'-テトラグリシジルビスアミノメチルシクロヘキサン、N,N-ジグリシジルアニリンなどのグリシジルアミン類や、グリシジル(メタ)アクリレートとエチレン性不飽和二重結合を有する化合物との共重合物;ブタジエン構造を有するエポキシ樹脂;ビスフェノールのジグリシジルエーテル化物;ナフタレンジオールのジグリシジルエーテル化物;フェノール類のグリシジルエーテル化物など。
 エポキシ樹脂を添加剤として用いる場合、その量は、ポリイミド樹脂などの耐熱性樹脂(A)100質量部に対して、例えば0.5~100質量部、好ましくは1~50質量部、さらに好ましくは3~20質量部である。
 添加剤としてエポキシ樹脂を用いる場合、1のみのエポキシ樹脂を用いてもよいし、2以上のエポキシ樹脂を併用してもよい。
(硬化触媒)
 本実施形態の感光性樹脂組成物は、硬化触媒を含んでもよい。
 感光性樹脂組成物がエポキシ基含有化合物を含有する場合、硬化触媒を用いることにより、エポキシ樹脂の反応が促進される場合がある。
 硬化触媒としては、エポキシ樹脂の技術分野で知られている硬化触媒(しばしば、硬化促進剤とも呼ばれる)を挙げることができる。例えば、1,8-ジアザビシクロ[5,4,0]ウンデセン-7等のジアザビシクロアルケンおよびその誘導体;トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物;2-メチルイミダゾール等のイミダゾール化合物;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート、テトラフェニルホスホニウム・4,4'-スルフォニルジフェノラート等のテトラ置換ホスホニウム塩;ベンゾキノンをアダクトしたトリフェニルホスフィン等が挙げられる。なかでも、有機ホスフィン類が好ましく挙げられる。
 硬化触媒を用いる場合、その量は、エポキシ基含有化合物100質量部に対して、例えば1~80質量部、好ましくは5~50質量部、より好ましくは5~30質量部である。
 (シランカップリング剤)
 本実施形態の感光性樹脂組成物は、シランカップリング剤を含んでもよい。
 シランカップリング剤を用いることにより、感光性樹脂組成物により形成される樹脂膜と、基材との密着性をより高めることができる。
 シランカップリング剤としては、例えば、アミノ基含有シランカップリング剤、エポキシ基含有シランカップリング剤、(メタ)アクリロイル基含有シランカップリング剤、メルカプト基含有シランカップリング剤、ビニル基含有シランカップリング剤、ウレイド基含有シランカップリング剤、スルフィド基含有シランカップリング剤、環状無水物構造を有するシランカップリング剤、などのシランカップリング剤を用いることができる。
 本実施形態においては、耐熱性樹脂(A)としてポリイミド樹脂が用いられる場合、環状無水物構造を有するシランカップリング剤が好ましく用いられる。詳細は不明だが、環状無水物構造は、ポリイミドの主鎖、側鎖および/または末端と反応しやすく、そのために特に良好な密着性向上効果が得られると推測される。
 シランカップリング剤が用いられる場合、単独で用いられてもよいし、2種以上のシランカップリング剤が併用されてもよい。
 シランカップリング剤が用いられる場合、その使用量は、ポリイミド樹脂等の耐熱性樹脂(A)の使用量を100質量部としたとき、例えば0.1~20質量部、好ましくは0.3~15質量部、より好ましく0.4~12質量部、さらに好ましくは0.5~10質量部である。
 (界面活性剤)
 本実施形態の感光性樹脂組成物は、界面活性剤を含んでもよい。
 界面活性剤を含むことにより、感光性樹脂組成物の塗布性や、感光性樹脂組成物により形成される樹脂膜の平坦性が一層高められる。
 界面活性剤としては、フッ素系界面活性剤、シリコーン系界面活性剤、アルキル系界面活性剤、アクリル系界面活性剤などが挙げられる。
 別観点として、界面活性剤は、非イオン性であることが好ましい。非イオン性の界面活性剤の使用は、例えば、組成物中の他成分との非意図的な反応を抑え、組成物の保存安定性を高める点で好ましい。
 界面活性剤は、フッ素原子およびケイ素原子の少なくともいずれかを含む界面活性剤を含むことが好ましい。これにより、均一な樹脂膜を得られること(塗布性の向上)や、現像性の向上に加え、接着強度の向上にも寄与する。このような界面活性剤としては、例えば、フッ素原子およびケイ素原子の少なくともいずれかを含むノニオン系界面活性剤であることが好ましい。界面活性剤として使用可能な市販品としては、例えば、DIC株式会社製の「メガファック(登録商標)」シリーズの、F-251、F-253、F-281、F-430、F-477、F-551、F-552、F-553、F-554、F-555、F-556、F-557、F-558、F-559、F-560、F-561、F-562、F-563、F-565、F-568、F-569、F-570、F-572、F-574、F-575、F-576、R-40、R-40-LM、R-41、R-94等の、フッ素を含有するオリゴマー構造の界面活性剤、株式会社ネオス製のフタージェント250、フタージェント251等のフッ素含有ノニオン系界面活性剤、ワッカー・ケミー社製のSILFOAM(登録商標)シリーズ(例えばSD 100 TS、SD 670、SD 850、SD 860、SD 882)等のシリコーン系界面活性剤が挙げられる。
 また、スリーエム社製のFC4430やFC4432なども、好ましい界面活性剤として挙げることができる。
 界面活性剤が用いられる場合、単独で用いられてもよいし、2種以上の界面活性剤を併用してもよい。
 本実施形態の感光性樹脂組成物が界面活性剤を含む場合、その量は、耐熱性樹脂(A)の含有量を100質量部としたとき、例えば0.001~1質量部、好ましくは0.005~0.5質量部である。
 (溶剤/組成物の性状)
 本実施形態の感光性樹脂組成物は、好ましくは溶剤を含む。これにより、基材(特に、段差を有する基材)に対して塗布法により感光性樹脂膜を容易に形成することができる。
 溶剤は、通常、有機溶剤を含む。上述の各成分を溶解または分散可能で、かつ、各構成成分と実質的に化学反応しないものである限り、有機溶剤は特に限定されない。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、トルエン、プロピレングリコールメチルエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセテート、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ベンジルアルコール、プロピレンカーボネート、エチレングリコールジアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロプレングリコールメチル-n-プロピルエーテル、酢酸ブチル、γ-ブチロラクトン、乳酸メチル、乳酸エチル、乳酸ブチル等が挙げられる。これらは単独で用いても、複数組み合わせて用いてもよい。
 本実施形態の感光性樹脂組成物が溶剤を含む場合、本実施形態の感光性樹脂組成物は、通常、ワニス状である。本実施形態の感光性樹脂組成物がワニス状であることにより、塗布による均一な膜形成を行うことができる。また、本実施形態の感光性樹脂組成物は、ワニス状であり且つ少なくとも耐熱性樹脂(A)が溶剤に溶解していることが好ましい。
 溶剤を用いる場合は、感光性樹脂組成物中の全固形分(不揮発成分)の濃度が、好ましくは10~50質量%、より好ましくは20~45質量%となるように用いられる。この範囲とすることで、各成分を十分に溶解または分散させることができる。また、良好な塗布性を担保することができ、ひいてはスピンコート時の平坦性の良化にもつながる。さらに、不揮発成分の含有量を調整することにより、感光性樹脂組成物の粘度を適切に制御できる。
 本実施形態の感光性樹脂組成物は、上記の成分に加えて、必要に応じて、上掲の成分以外の成分を含んでもよい。そのような成分としては、例えば、酸化防止剤、シリカ等の充填材、増感剤、フィルム化剤等が挙げられる。
 ちなみに、本実施形態の感光性樹脂組成物は、(メタ)アクリルアミド系化合物((メタ)アクリルアミド構造を有する化合物)を含まないか、含むとしても組成物の全不揮発成分中1質量%以下であることが好ましい。
 [樹脂膜]
 本実施形態の一実施形態において、樹脂膜は上記の感光性樹脂組成物の硬化物から成ることが好ましい。
 例えば、電子装置の基材上に上記の感光性樹脂組成物を塗布し、硬化させ、樹脂膜を形成させることができる。
 [電子装置]
 本実施形態において、電子装置は上記の樹脂膜を備えることが好ましい。
 本実施形態の電子装置は、下記の製造工程により製造することができる。
 本実施形態の電子装置の製造方法は、
 基材上に、上述の感光性樹脂組成物を用いて感光性樹脂膜を形成する膜形成工程と、
 感光性樹脂膜を露光する露光工程と、
 露光された感光性樹脂膜を現像する現像工程と、
を含む。
 また、本実施形態の電子装置の製造方法は、上述の現像工程の後に、露光された感光性樹脂膜を加熱して硬化させる熱硬化工程を含むことが好ましい。これにより、耐薬品性および伸び率に優れた感光性樹脂組成物の硬化物からなる樹脂膜を得ることができる。
 膜形成工程は、通常、基材上に感光性樹脂組成物を塗布することで行われる。膜形成工程は、スピンコーター、バーコーター、スプレー装置、インクジェット装置等を用いて行うことができる。
 次の露光工程の前に、塗布された感光性樹脂組成物中の溶剤を乾燥させるなどの目的で、適切な加熱を行うことが好ましい。この際の加熱は、例えば80~150℃の温度で、1~60分間加熱することで行う。
 乾燥後の感光性樹脂膜の厚みは、最終的に得ようとする電子デバイスの構造に応じて適宜変わるが、例えば1~100μm程度、具体的には1~50μm程度である。
 露光工程における露光量は、特に限定されない。100~2000mJ/cmが好ましく、200~1000mJ/cmがより好ましい。
 露光に用いられる光源は特に限定されず、感光性樹脂組成物中の感光剤が反応する波長の光(例えばg線やi線)を発する光源であればよい。典型的には高圧水銀灯が用いられる。
 必要に応じて、露光後ベークを施してもよい。露光後ベークの温度は、特に限定されない。好ましくは50~150℃、より好ましくは50~130℃、さらに好ましくは55~120℃、特に好ましくは60~110℃である。また、露光後ベークの時間は、好ましくは1~30分間、より好ましくは1~20分間、さらに好ましくは1~15分間である。
 露光工程においては、フォトマスクを用いることができる。これにより、感光性樹脂組成物を用いて所望の「パターン」を形成することができる。
 現像工程における現像液としては、例えば、有機系現像液、水溶性現像液等が挙げられる。本実施形態においては、現像液は、有機溶剤を含有することが好ましい。より具体的には、現像液は、有機溶剤を主成分とする現像液(成分の95質量%以上が有機溶剤である現像液)であることが好ましい。有機溶剤を含有する現像液で現像することにより、アルカリ現像液(水系)で現像する場合よりも、現像液によるパターンの膨潤を抑えること等が可能になる。つまり、よりファインなパターンを得やすい。
 現像液に使用可能な有機溶剤として具体的には、シクロペンタノンなどのケトン系溶剤、プロピレングリコールモノメチルエーテルアセテート(PGMEA)や酢酸ブチルなどのエステル系溶剤、プロピレングリコールモノメチルエーテルなどのエーテル系溶剤、等が挙げられる。
 現像液としては、有機溶剤のみからなり、不可避的に含まれる不純物以外は含まない有機溶剤現像液を使用してもよい。不可避的に含まれる不純物としては、金属元素や水分があるが、電子デバイスの汚染防止などの観点からは不可避的に含まれる不純物は少ないに越したことは無い。
 現像液を感光性樹脂膜に接触させる方法は特に限定されない。一般的に知られている、浸漬法、パドル法、スプレー法などを適宜適用することができる。
 現像工程の時間は、通常5~300秒程度、好ましくは10~120秒程度の範囲で、樹脂膜の膜厚や形成されるパターンの形状などに基づき適宜調整される。
 熱硬化工程の条件は特に限定されないが、例えば160~250℃程度の加熱温度で、30~240分程度とすることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本発明は実施例のみに限定されない。
 [各原料の合成]
<耐熱性樹脂(A-1)の合成>
 撹拌機および冷却管を備えた5Lのセパラブルフラスコに、2,2'-ビス(トリフルオロメチル)ベンジジン304.2g(0.95モル)、4,4'-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物355.39g(0.80モル)、4,4'-オキシジフタル酸二無水物62.04g(0.20モル)及びGBL1684gを加えて窒素雰囲気下で室温にて16時間重合反応を行った。続いてオイルバスにて反応液温度を180℃まで上げ3時間反応を行ったのち室温まで冷却してポリイミド樹脂溶液を作成した。
 続いて、反応液をイソプロパノール/水=4/7の混合溶液に撹拌しながら滴下し、樹脂固体を析出させた。得られた固体を荒濾過したのち、更にイソプロパノール/水=4/7で洗浄してポリイミドの白色固体を得た。得られた白色固体を200℃にて真空乾燥することにより、末端に酸無水物基を有するポリイミド樹脂(A-1)を得た。
 ポリイミド樹脂(A-1)のGPC測定による重量平均分子量(Mw)は49,000であった。
<耐熱性樹脂(A-2)の合成>
 2Lのセパラブルフラスコに、γ-ブチロラクトン428g、4,4'-オキシジフタル酸二無水物155.11gおよび2-ヒドロキシエチルメタクリレート130.14gを入れ、室温でフラスコ内の成分を撹拌し完全に溶解させた。続いて室温下で攪拌しながらピリジン79.1gを加えて、更に室温で16時間撹拌した。
 上記のようにして得られた溶液を氷冷下で冷却攪拌しながら、その溶液に、ジシクロヘキシルカルボジイミド206.3gをγ-ブチロラクトン206gに溶解した溶液を30分かけて加えた。続いて4,4'-ジアミノジフェニルエーテル120.1gおよびγ-ブチロラクトン240gを加え、更に室温で2時間攪拌を継続した。
 反応終了後、エタノール30gを加えて1時間攪拌した。その後、γ-ブチロラクトン400gを加え更に撹拌し、生じた沈殿物をろ過により取り除いた。これによりポリアミド酸エステルの反応液を得た。
 得られた反応液を、室温下で、大量の30質量%メタノール水溶液に撹拌しながら滴下し、樹脂を沈殿させた。得られた沈殿物を濾取し、真空乾燥することにより、末端にアミノ基を有するポリアミド樹脂(A-2)を得た。
 ポリアミド樹脂(A-2)のGPC測定による重量平均分子量(Mw)は30,000であった。
<耐熱性樹脂(A-3)の合成>
 撹拌機および冷却管を備えた5Lのセパラブルフラスコに、2,2'-ビス(トリフルオロメチル)ベンジジン317.04g(0.99モル)、4,4'-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物355.39g(0.80モル)、4,4'-オキシジフタル酸二無水物62.04g(0.20モル)及びGBL1714gを加えて窒素雰囲気下で室温にて16時間重合反応を行った。続いてオイルバスにて反応液温度を180℃まで上げ3時間反応を行ったのち室温まで冷却してポリイミド樹脂溶液を作成した。
 続いて、反応液をイソプロパノール/水=4/7の混合溶液に撹拌しながら滴下し、樹脂固体を析出させた。得られた固体を荒濾過したのち、更にイソプロパノール/水=4/7で洗浄してポリイミドの白色固体を得た。得られた白色固体を200℃にて真空乾燥することにより、末端に酸無水物基を有するポリイミド樹脂(A-3)を得た。
 ポリイミド樹脂(A-3)のGPC測定による重量平均分子量(Mw)は110,000であった。
 <硬化触媒(F-1)の合成>
 撹拌装置付きのセパラブルフラスコに、4,4'-ビスフェノールS37.5g(0.15mol)、メタノール100mLを仕込み、室温で撹拌溶解し、更に攪拌しながら予め50mLのメタノールに水酸化ナトリウム4.0g(0.1mol)を溶解した溶液を添加した。次いで予め150mLのメタノールにテトラフェニルホスホニウムブロマイド41.9g(0.1mol)を溶解した溶液を加えた。しばらく攪拌を継続し、300mLのメタノールを追加した後、フラスコ内の溶液を大量の水に撹拌しながら滴下し、白色沈殿を得た。沈殿を濾過、乾燥し白色結晶の硬化触媒(F-1)を得た。
 [感光性樹脂組成物の調製]
 後掲の表1に従い各原料を配合し、室温下で原料が完全に溶解するまで撹拌し、溶液を得た。その後、その溶液を孔径0.2μmのポリプロピレン製フィルターで濾過した。このようにして、ワニス状の感光性樹脂組成物を得た。
 表1における各成分の原料の詳細は下記のとおりである。
<耐熱性樹脂(A)>
 (A-1)上記で合成した耐熱性樹脂(ポリイミド樹脂)
 (A-2)上記で合成した耐熱性樹脂(ポリアミド樹脂)
 (A-3)上記で合成した耐熱性樹脂(ポリイミド樹脂)
 ちなみに、(A-1)および(A-3)は、上述の一般式(PI-1)で表される構造単位および一般式(PI-2)で表される構造単位を有する。
 また、(A-1)および(A-3)は、原料モノマーの構造に基づく限り、フェノール性ヒドロキシ基などのアルカリ可溶性基を実質上有しない。
<エポキシ含有基と(メタ)アクリロイル基を有する架橋剤(B)>
 (B-1)メタクリル酸グリシジル
 (B-2)4-ヒドロキシブチルアクリレートグリシジルエーテル
 (B-3)3,4-エポキシシクロヘキシルメチルメタアクリレート
 (B-4)アクリル酸グリシジル
<多官能(メタ)アクリル化合物>
 (C-1)ビスコート#802 (大阪有機工業(株)製、トリペンタエリスリトールアクリレート、モノ及びジペンタエリスリトールアクリレートの混合物;前述の一般式(5)の化合物)
 (C-2)A-9550(新中村化学(株)製、5-6官能(アルコキシ化)ジペンタエリスリトールアクリレート)
 (C-3)ビスコート#300(大阪有機工業(株)製、モノペンタエリスリトールアクリレート)
 (C-4)ビスコート#230(大阪有機工業(株)製、1,6-ヘキサンジオールジアクリレート)
<感光剤>
 (D-1)Irgacure OXE01(BASF社製、オキシムエステル型光ラジカル発生剤)
<熱ラジカル開始剤>
 (E-1)パーカドックスBC(化薬ヌーリオン(株)製、ジクミルパーオキシド)
<硬化触媒>
 (F-1)上記で合成した硬化触媒(ホスホニウム塩)
<シランカップリング剤>
 (G-1)X-12-967C(信越化学工業(株)製、環状無水物構造を有するシランカップリング剤)
 (G-2)KBM-403(信越化学工業(株)製、エポキシ基含有シランカップリング剤)
<界面活性剤>
 (H-1)FC4432(3M社製、フッ素系界面活性剤)
<溶剤>
 (J-1)乳酸エチル(EL)
 (J-2)ガンマ-ブチロラクトン(GBL)
 <引張り伸び率>
 (引張り伸び率測定用試験片の作成)
 各実施例および各比較例の感光性樹脂組成物を12インチのシリコンウェハ上に乾燥後の膜厚が10μmとなるようにスピンコートにて塗布し、続いて120℃で3分間加熱することで感光性樹脂膜を得た。得られた塗布膜にi線ステッパーにて幅5mm、長さ50mmの範囲が露光されるようにフォトマスクを介して300mJ/cmの露光を行った。その後、露光された樹脂膜をシリコンウェハごとスプレー現像機にてシクロペンタノンおよびプロピレングリコールモノメチルエーテルアセテートにて現像し、更にスピンドライにて風乾後、140℃で、2分間ホットプレート上で乾燥を行った。さらにその後、窒素雰囲気下、170℃で90分間熱処理し、樹脂膜を得た。 
 得られた樹脂膜を2質量%フッ酸水溶液中に浸漬することで基板より剥離し、水洗後、60℃で10時間乾燥して、測定用試験片(50mm×5mm×10μm厚)を得た。
(引張り伸び率の測定)
 前述の(引張り伸び率測定用試験片の作成)にて得られた測定用試験片について、引張試験機(オリエンテック社製、テンシロンRTC-1210A)を用い、23℃雰囲気下、JIS K 7161に準拠した方法で引張試験を実施し、試験片の引張伸び率を測定した。引張試験における延伸速度は、5mm/分とした。引張伸び率の単位は、%である。
<耐薬品性>
(耐薬品性評価用基板の作成)
 各実施例および各比較例の感光性樹脂組成物を12インチのシリコンウェハ上に乾燥後の膜厚が5μmとなるようにスピンコートにて塗布し、続いて120℃で3分間加熱することで感光性樹脂膜を得た。得られた塗布膜にi線ステッパーにてレチクルを介さずに300mJ/cmの露光を行った。その後、スプレー現像機にてシクロペンタノンおよびプロピレングリコールモノメチルエーテルアセテートにて現像し、更にスピンドライにて風乾後、140℃で、2分間ホットプレート上で乾燥を行った。さらにその後、窒素雰囲気下、170℃で90分間熱処理し、樹脂膜付きシリコンウェハ(評価用基板)を得た。
 (耐薬品性の評価)
 前述の(耐薬品性評価用基板の作成)にて得られた評価用基板上の樹脂膜の膜厚を測定した(膜厚A)。続いて、この評価用基板を50℃のレジスト剥離液(ジメチルスルホキシド/テトラメチルアンモニウムハイドライド=96wt%/4wt%)に10分浸漬し、その後イソプロパノールで洗浄後にスピンドライにて乾燥した。更に基板を150℃のホットプレート上で乾燥後に樹脂膜の膜厚を測定した(膜厚B)。膜厚A及び膜厚Bから下記の式で膜厚変化率を計算した。膜厚変化率が<5%のものを優、<10%のものを良、10%を超えたものを不可、として耐薬品性の評価とした。
 膜厚変化率(%)=(膜厚A-膜厚B)/膜厚A×100
<塗布時の平坦性の評価(段差埋め込み平坦性)>
 酸化膜付きシリコンウェハ上に、幅5μm/ピッチ5μm、高さ5μmのCu配線を形成したCu配線基板を作製した。このCu配線基板上に、各実施例および各比較例の感光性樹脂組成物を、スピンコートによって、乾燥後の膜厚が10μmになるように塗布し、120℃で3分乾燥して感光性樹脂膜を形成した。
 得られた感光性樹脂膜に、高圧水銀灯にて、300mJ/cmの露光を行った。その後、シクロペンタノン中に30秒浸漬した。さらにその後、窒素雰囲気下、170℃で90分間熱処理して、基板上に樹脂膜を形成した。
 得られた樹脂膜付き基板を割って、その断面を研磨し、断面SEM観察により、感光性樹脂膜の表面の凹凸を評価した。表面の凹凸が1μm以下のものを優(良い)、表面の凹凸が1~3μmのものを良(使用できるレベル)、3μmを超えたものを不可(使用できないレベル)として評価した。
<常温粘度変化率>
 配合直後の各実施例および各比較例の感光性樹脂組成物の粘度を、E型粘度計(TVE-25L)にて測定した。この時の粘度をAとした。その後、各実施例および各比較例の感光性樹脂組成物のワニスを23℃にて7日間保管を行い、再度粘度を測定した。この時の粘度をBとした。
 粘度Aおよび粘度Bを下記式に代入して、粘度変化率を算出した。粘度変化率が5%以下のものを優、5%超え10%以下のものを良、10%を超えたものを不可として評価した。粘度変化率は、安定した膜厚を得るために、低いほうが好ましい。
  粘度変化率[%]={(粘度A-粘度B)/粘度A}×100
<ガラス転移温度(Tg)>
 前述の(引張り伸び率測定用試験片の作成)と同様の方法で得られた試験片について、熱機械分析装置(セイコーインスツルメンツ社製、TMA/SS6000)を用いて、10℃/分の昇温速度で300℃まで加熱し、得られた試験片の熱膨張率を測定した。
 次いで、得られた測定結果に基づき、熱膨張率の変曲点から硬化物のガラス転移温度(Tg)を算出した。Tgの単位は、℃である。
<パターニング性>
 各実施例および各比較例の感光性樹脂組成物を表面に3000Åのメッキ銅層を有した12インチシリコンウェハ上に乾燥後の膜厚が5μmとなるようにスピンコートし、ホットプレートにて120℃で3分間乾燥し、感光性樹脂膜を得た。この感光性樹脂膜に、凸版印刷社製マスク(テストチャートNo.1:幅0.5~50μmの残しパターンおよび抜きパターンが描かれている)を通して、i線ステッパー(CANON製、FPA-5500iX)を用いて、露光量を変化させながらi線を照射した。
 露光後の膜をスプレー現像機にてシクロペンタノンを用いて2500回転で30秒、続いてプロピレングリコールモノメチルエーテルアセテートを用いて2500回転で10秒現像し、更に2500回転で10秒スピンドライにて風乾後、ホットプレート上120℃で4分間の乾燥を行った。さらにその後、窒素雰囲気下、170℃で90分間熱処理し、パターン付きの樹脂膜を得た。
 得られたパターンについて観察し、5μmΦ未満のビアホールが開口したものを優、5μmΦ以上10μmΦ未満のビアホールが開口したものを良、10μmΦ以上のビアホールが開口したものを不可、として評価した。
Figure JPOXMLDOC01-appb-T000023
 表1に示されるとおり、実施例1~8の感光性樹脂組成物は、比較例1と比較して、引張伸び率および耐薬品性の結果がいずれも優れていた。また、実施例1~8の感光性樹脂組成物は、比較例2と比較して、段差埋め込み平坦性の結果が優れていた。
 この出願は、2021年6月7日に出願された日本出願特願2021-095212号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (20)

  1.  末端または側鎖に反応性基を有するポリイミド樹脂およびその前駆体、ポリベンゾオキサゾール樹脂及びその前駆体またはポリアミド樹脂から選択される耐熱性樹脂(A)と、
     感光剤と、
     分子内にエポキシ含有基および(メタ)アクリロイル基をそれぞれ1以上有する架橋剤(B)と、
    を含有する感光性樹脂組成物。
  2.  請求項1に記載の感光性樹脂組成物であって、
     前記耐熱性樹脂(A)が閉環ポリイミドを含む、感光性樹脂組成物。
  3.  請求項1または2に記載の感光性樹脂組成物であって、
     前記耐熱性樹脂(A)が前記反応性基として酸無水物基、カルボキシル基、アミノ基、フェノール性水酸基からなる群から選択される1種または2種以上を含む、感光性樹脂組成物。
  4.  請求項1または2に記載の感光性樹脂組成物であって、
     前記耐熱性樹脂(A)が末端に酸無水物基を含む、感光性樹脂組成物。
  5.  請求項1または2に記載の感光性樹脂組成物であって、
     前記耐熱性樹脂(A)の重量平均分子量が10000以上100000以下である、感光性樹脂組成物。
  6.  請求項1または2に記載の感光性樹脂組成物であって、
     前記耐熱性樹脂(A)が、下記一般式(PI-1)で表される構造単位を含むポリイミド樹脂を含む、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(PI-1)中、
     Xは2価の有機基であり、
     Yは4価の有機基であり、
     XおよびYの少なくとも一方は、フッ素原子含有基である。
  7.  請求項6に記載の感光性樹脂組成物であって、
     Xの2価の有機基および/またはYの4価の有機基が、芳香環構造を含む、感光性樹脂組成物。
  8.  請求項1または2に記載の感光性樹脂組成物であって、
     前記耐熱性樹脂(A)が、下記一般式(PI-2)で表される構造単位を含むポリイミド樹脂を含む、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
     一般式(PI-2)中、
     Xは2価の有機基であり、
     Y'は単結合またはアルキレン基である。
  9.  請求項1または2に記載の感光性樹脂組成物であって、
     前記耐熱性樹脂(A)の全構造単位中の、アルカリ可溶性基を有する構造単位の比率が、0~10mol%である、感光性樹脂組成物。
  10.  請求項1または2に記載の感光性樹脂組成物であって、
     前記耐熱性樹脂(A)の全構造単位中の、フェノール性ヒドロキシ基を有する構造単位の比率が、0~10mol%である、感光性樹脂組成物。
  11.  請求項1または2に記載の感光性樹脂組成物であって、
     前記架橋剤(B)が、分子内の一方の末端にエポキシ含有基を、他方の末端に(メタ)アクリロイル基をそれぞれ1つずつ有する、感光性樹脂組成物。
  12.  請求項1または2に記載の感光性樹脂組成物であって、
     前記架橋剤(B)が以下一般式(1)で表される化合物を含む、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
     上記一般式(1)中、Xは(メタ)アクリロイル基を表す。Xはエポキシ基、グリシジル基、グリシジルエーテル基もしくは3,4-エポキシシクロヘキシル基を表す。また、nは1~10の整数を表す。
  13.  請求項1または2に記載の感光性樹脂組成物であって、
     前記架橋剤(B)が以下式(2)~(4)のいずれかの化合物から選択される1種もしくは2種以上を含む、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  14.  請求項1または2に記載の感光性樹脂組成物であって、
     さらに、3官能以上の多官能(メタ)アクリル化合物を含む、感光性樹脂組成物。
  15.  請求項14に記載の感光性樹脂組成物であって、
     前記多官能(メタ)アクリル化合物が、5官能以上の多官能(メタ)アクリル化合物を含む、感光性樹脂組成物。
  16.  請求項1または2に記載の感光性樹脂組成物であって、
     全不揮発成分中の(メタ)アクリルアミド系化合物の含有量が0~1質量%である、感光性樹脂組成物。
  17.  請求項1または2に記載の感光性樹脂組成物の硬化物からなる樹脂膜。
  18.  請求項17に記載の樹脂膜を備える電子装置。
  19.  基材上に、請求項1または2に記載の感光性樹脂組成物を用いて感光性樹脂膜を形成する膜形成工程と、
     前記感光性樹脂膜を露光する露光工程と、
     露光された前記感光性樹脂膜を現像する現像工程と、
    を含む、電子装置の製造方法。
  20.  請求項19に記載の電子装置の製造方法であって、
     前記現像工程においては、有機溶剤を主成分とする現像液が用いられる、電子装置の製造方法。
PCT/JP2022/022290 2021-06-07 2022-06-01 感光性樹脂組成物、樹脂膜、電子装置および電子装置の製造方法 WO2022259933A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023527643A JPWO2022259933A1 (ja) 2021-06-07 2022-06-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-095212 2021-06-07
JP2021095212 2021-06-07

Publications (1)

Publication Number Publication Date
WO2022259933A1 true WO2022259933A1 (ja) 2022-12-15

Family

ID=84424890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022290 WO2022259933A1 (ja) 2021-06-07 2022-06-01 感光性樹脂組成物、樹脂膜、電子装置および電子装置の製造方法

Country Status (3)

Country Link
JP (1) JPWO2022259933A1 (ja)
TW (1) TW202307088A (ja)
WO (1) WO2022259933A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011048329A (ja) * 2009-07-27 2011-03-10 Sumitomo Electric Ind Ltd ネガ型感光性樹脂組成物及びそれを用いたポリイミド樹脂膜、フレキシブルプリント配線板
JP2018070829A (ja) * 2016-11-02 2018-05-10 東レ株式会社 樹脂組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011048329A (ja) * 2009-07-27 2011-03-10 Sumitomo Electric Ind Ltd ネガ型感光性樹脂組成物及びそれを用いたポリイミド樹脂膜、フレキシブルプリント配線板
JP2018070829A (ja) * 2016-11-02 2018-05-10 東レ株式会社 樹脂組成物

Also Published As

Publication number Publication date
JPWO2022259933A1 (ja) 2022-12-15
TW202307088A (zh) 2023-02-16

Similar Documents

Publication Publication Date Title
WO2006006581A1 (ja) 感光性絶縁樹脂組成物、その硬化物およびその用途
JP7173103B2 (ja) 感光性樹脂組成物、電子デバイスの製造方法および電子デバイス
JP5298675B2 (ja) 感光性樹脂組成物、sawフィルタ及びその製造方法
JP4789657B2 (ja) 感光性樹脂組成物
KR102650469B1 (ko) 감광성 수지 조성물, 패턴 경화물의 제조 방법, 경화물, 층간 절연막, 커버 코트층, 표면 보호막 및 전자부품
JP5206182B2 (ja) 感光性樹脂組成物、sawフィルタ及びその製造方法
JP2018146964A (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
TW201942185A (zh) 含有聚合性不飽和基的鹼可溶性樹脂的製造方法、含有聚合性不飽和基的鹼可溶性樹脂、以其作為必須成分的感光性樹脂組成物以及其硬化膜
WO2022259933A1 (ja) 感光性樹脂組成物、樹脂膜、電子装置および電子装置の製造方法
TW202219630A (zh) 感光性樹脂組成物、電子裝置之製造方法、電子裝置及感光性樹脂組成物之製造方法
WO2022202907A1 (ja) 感光性樹脂組成物、樹脂膜および電子装置
WO2022270544A1 (ja) ネガ型感光性樹脂組成物、ネガ型感光性ポリマー、硬化膜および半導体装置
JP2007112908A (ja) 酸変性ポリエステルイミド樹脂、感光性樹脂組成物、レジストパターンの形成方法、プリント配線板及び半導体素子。
JP7392580B2 (ja) 感光性樹脂組成物、電子デバイスの製造方法および電子デバイス
JP7405309B2 (ja) ネガ型感光性ポリマー、ポリマー溶液、ネガ型感光性樹脂組成物、硬化膜および半導体装置
WO2024053564A1 (ja) 感光性樹脂組成物、樹脂膜、および電子装置
WO2023021688A1 (ja) 感光性樹脂組成物、電子デバイスの製造方法および電子デバイス
JP2024056605A (ja) 光硬化性接着剤組成物
JP2019066754A (ja) ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
WO2022270541A1 (ja) ネガ型感光性樹脂組成物、ネガ型感光性ポリマー、硬化膜および半導体装置
WO2023054381A1 (ja) 感光性樹脂組成物、電子デバイスの製造方法、電子デバイスおよび光デバイス
WO2023021684A1 (ja) 感光性樹脂組成物、電子デバイスの製造方法および電子デバイス
JP2022151197A (ja) 化合物、密着剤および樹脂組成物
JP2024024621A (ja) 感光性樹脂組成物、硬化膜および半導体装置
JP2024024622A (ja) 感光性樹脂組成物、硬化物、硬化膜、および半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527643

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE