WO2022259867A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022259867A1
WO2022259867A1 PCT/JP2022/021327 JP2022021327W WO2022259867A1 WO 2022259867 A1 WO2022259867 A1 WO 2022259867A1 JP 2022021327 W JP2022021327 W JP 2022021327W WO 2022259867 A1 WO2022259867 A1 WO 2022259867A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
switch
electrode side
neutral point
power storage
Prior art date
Application number
PCT/JP2022/021327
Other languages
English (en)
French (fr)
Inventor
敬弥 谷
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to EP22820049.9A priority Critical patent/EP4354723A4/en
Priority to CN202280040368.3A priority patent/CN117501617A/zh
Publication of WO2022259867A1 publication Critical patent/WO2022259867A1/ja
Priority to US18/527,515 priority patent/US20240106367A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/42The network being an on-board power network, i.e. within a vehicle for ships or vessels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/44The network being an on-board power network, i.e. within a vehicle for aircrafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/01Motors with neutral point connected to the power supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure includes a power storage device having a first power storage unit and a second power storage unit connected in series to the negative electrode side of the first power storage unit, an inverter having upper and lower arm switches, and a winding connected to the inverter. and a power conversion device having a rotating electrical machine.
  • this type of device includes a positive electrode side main path, a negative electrode side main path, a neutral point path, and a neutral point switch provided in the neutral point path.
  • the positive electrode side main path connects the high potential side terminal of the upper arm switch and the positive electrode side of the first power storage unit.
  • the negative main path connects the low potential side terminal of the lower arm switch and the negative side of the second power storage unit.
  • the neutral point path connects a battery connection point between the negative electrode side of the first power storage unit and the positive electrode side of the second power storage unit and the neutral point of the winding.
  • An electrical device may be provided that is connected to any two of the neutral point path, the positive side main path, and the negative side main path. Electric power is transmitted between the electrical equipment and the power storage device.
  • the switching control of the upper and lower arm switches is performed, whereby the first power storage unit and the second power storage unit constituting the power storage device are connected.
  • a current may flow between
  • a current that is a combination of the current that flows between the electrical device and the power storage device and the current that flows due to the execution of the switching control flows through the switch, so it is required to increase the current capacity of the switch.
  • the size of the switch becomes large and the cost of the switch increases.
  • a main object of the present disclosure is to provide a power converter capable of reducing the current capacity of the switch.
  • the present disclosure provides a power storage device including a first power storage unit and a second power storage unit connected in series to a negative electrode side of the first power storage unit; an inverter having upper and lower arm switches; a rotating electric machine having windings connected to the inverter; a positive electrode side main path connecting the high potential side terminal of the upper arm switch and the positive electrode side of the first power storage unit; a negative electrode side main path connecting the low potential side terminal of the lower arm switch and the negative electrode side of the second power storage unit; a neutral point path connecting a battery connection point between the negative electrode side of the first power storage unit and the positive electrode side of the second power storage unit and the neutral point of the winding; switches provided in the positive electrode side main path, the negative electrode side main path, and the neutral point path; an electrical device having a first connection terminal and a second connection terminal; a first connection path that connects a first target path, which is one of the positive electrode side main path, the negative electrode side main path, and the neutral point path, to the first connection terminal; A second connection
  • the power storage device and the electrical device are connected without the switch provided on the first target path. electrically connected. Therefore, the current capacity of the switch provided in the first target path can be reduced.
  • the second connection path is connected to the power storage device side of the second target path rather than the switch
  • the power storage device and the electrical device are connected via the switch provided on the second target path. are electrically connected without Therefore, the current capacity of the switch provided in the first target path can be reduced.
  • FIG. 1 is a configuration diagram of a power converter according to the first embodiment
  • FIG. 2 is a flowchart of processing executed by the control device
  • FIG. 3 is a flowchart of processing executed by a control device according to a modification of the first embodiment
  • FIG. 4 is a configuration diagram of a power converter according to the second embodiment
  • FIG. 5 is a configuration diagram of a power converter according to the third embodiment
  • FIG. 6 is a configuration diagram of a power converter according to a fourth embodiment
  • FIG. 7 is a configuration diagram of a power converter according to the fifth embodiment
  • FIG. 1 is a configuration diagram of a power converter according to the first embodiment
  • FIG. 2 is a flowchart of processing executed by the control device
  • FIG. 3 is a flowchart of processing executed by a control device according to a modification of the first embodiment
  • FIG. 4 is a configuration diagram of a power converter according to the second embodiment
  • FIG. 5 is a configuration diagram of a power converter according to the third embodiment
  • FIG. 8 is a configuration diagram of a power converter according to the sixth embodiment
  • FIG. 9 is a configuration diagram of a power converter according to the seventh embodiment
  • FIG. 10 is a configuration diagram of a power converter according to the eighth embodiment
  • FIG. 11 is a configuration diagram of a power converter according to the ninth embodiment
  • FIG. 12 is a configuration diagram of a power converter according to the tenth embodiment.
  • a first embodiment embodying a power converter according to the present disclosure will be described below with reference to the drawings.
  • the power conversion device of this embodiment is mounted on a vehicle such as an electric vehicle or a hybrid vehicle.
  • the power conversion device 10 includes an inverter 30 and a rotating electric machine 40.
  • the rotary electric machine 40 is a three-phase synchronous machine, and includes star-connected U-, V-, and W-phase windings 41U, 41V, and 41W.
  • the phase windings 41U, 41V, and 41W are arranged with an electrical angle shift of 120°.
  • the rotating electric machine 40 is, for example, a permanent magnet synchronous machine.
  • the rotary electric machine 40 is a vehicle-mounted main machine and serves as a driving power source for the vehicle.
  • the inverter 30 has three phases of series connections of upper arm switches QUH, QVH, QWH and lower arm switches QUL, QVL, QWL.
  • the switches QUH, QVH, QWH, QUL, QVL, and QWL are voltage-controlled semiconductor switching elements, and more specifically, IGBTs. Therefore, the high potential side terminal of each switch QUH, QVH, QWH, QUL, QVL, QWL is the collector, and the low potential side terminal is the emitter.
  • Diodes DUH, DVH, DWH, DUL, DVL, and DWL as freewheel diodes are connected in antiparallel to the switches QUH, QVH, QWH, QUL, QVL, and QWL.
  • a first end of a U-phase winding 41U is connected to the emitter of the U-phase upper arm switch QUH and the collector of the U-phase lower arm switch QUL via a U-phase conductive member 32U.
  • a first end of a V-phase winding 41V is connected to the emitter of the V-phase upper arm switch QVH and the collector of the V-phase lower arm switch QVL via a V-phase conductive member 32V.
  • a first end of a W-phase winding 41W is connected to the emitter of the W-phase upper arm switch QWH and the collector of the W-phase lower arm switch QWL via a W-phase conductive member 32W.
  • Second ends of the U-, V-, and W-phase windings 41U, 41V, and 41W are connected at a neutral point O.
  • Each conductive member 32U to 32W is, for example, a busbar or a cable.
  • the number of turns of each phase winding 41U, 41V, 41W is set to be the same.
  • the phase windings 41U, 41V, and 41W are set to have the same inductance, for example.
  • the collectors of the upper arm switches QUH, QVH, QWH and the positive terminal of the assembled battery 20 are connected by a positive side main path Lp.
  • the emitters of the lower arm switches QUL, QVL, QWL and the negative terminal of the assembled battery 20 are connected by a negative main path Ln. It should be noted that, in the present embodiment, the negative main path Ln corresponds to the "second target path".
  • the power conversion device 10 has a capacitor 31 .
  • a capacitor 31 connects the collectors of the upper arm switches QUH, QVH, QWH and the emitters of the lower arm switches QUL, QVL, QWL. Note that the capacitor 31 may be built in the inverter 30 or may be provided outside the inverter 30 .
  • the assembled battery 20 corresponds to a "storage device" and is configured as a series connection of battery cells, which are single batteries.
  • the terminal voltages (for example, rated voltages) of the battery cells forming the assembled battery 20 are set to be the same.
  • a battery cell for example, a secondary battery such as a lithium ion battery can be used.
  • the assembled battery 20 is provided outside the power converter 10, for example.
  • a series connection of a plurality of battery cells on the high potential side constitutes a first storage battery 21 (corresponding to a "first power storage unit"), and a low potential side
  • a series connection of a plurality of battery cells constitutes a second storage battery 22 (corresponding to a “second power storage unit”). That is, the assembled battery 20 is divided into two blocks.
  • the number of battery cells constituting the first storage battery 21 and the number of battery cells constituting the second storage battery 22 are the same. Therefore, the terminal voltage (eg, rated voltage) of the first storage battery 21 and the terminal voltage (eg, rated voltage) of the second storage battery 22 are the same.
  • the rated voltage of each of the first storage battery 21 and the second storage battery 22 is set to 400V. Therefore, the rated voltage of the assembled battery 20 is set to 800V.
  • an intermediate terminal B (corresponding to a “battery connection point”) is connected to the negative terminal of the first storage battery 21 and the positive terminal of the second storage battery 22 .
  • the power electronics device 10 includes a monitoring unit 50 .
  • the monitoring unit 50 monitors the terminal voltage, SOC, SOH, temperature, etc. of each battery cell that constitutes the assembled battery 20 .
  • the monitoring information of the monitoring unit 50 is input to the control device 90 included in the power conversion device 10 .
  • the power conversion device 10 includes a neutral point path Lm and a neutral point switch SWm.
  • Neutral point path Lm electrically connects intermediate terminal B and neutral point O of assembled battery 20 .
  • the neutral point switch SWm is provided on the neutral point path Lm.
  • the neutral point switch SWm is a relay.
  • the intermediate terminal B and the neutral point O are electrically connected by turning on the neutral point switch SWm.
  • the intermediate terminal B and the neutral point O are electrically cut off by turning off the neutral point switch SWm.
  • route Lm corresponds to a "1st object path
  • the power converter 10 includes a positive switch SWp and a negative switch SWn.
  • the positive switch SWp and the negative switch SWn are relays.
  • the positive side switch SWp is provided on the positive side main path Lp. By turning on the positive switch SWp, the positive terminal of the first storage battery 21 is electrically connected to the collectors of the upper arm switches QUH, QVH, QWH. On the other hand, the positive electrode terminal of the first storage battery 21 and the collectors of the upper arm switches QUH, QVH, QWH are electrically cut off by turning off the positive electrode side switch SWp.
  • the negative switch SWn is provided on the negative main path Ln. By turning on the negative switch SWn, the negative terminal of the second storage battery 22 and the emitters of the lower arm switches QUL, QVL, QWL are electrically connected. On the other hand, by turning off the negative switch SWn, the negative terminal of the second storage battery 22 and the emitters of the lower arm switches QUL, QVL, QWL are electrically cut off.
  • the power conversion device 10 includes an auxiliary device 60, a charger 61, and a charging inlet 62 as electrical equipment. Further, the power conversion device 10 has a configuration for electrically connecting each electrical device to the assembled battery 20, and includes a first high potential side path L1p, a first low potential side path L1n, a first cutoff switch SW1, a second It includes a high potential side path L2p, a second low potential side path L2n, a second cutoff switch SW2, a third high potential side path L3p, a third low potential side path L3n, and a third cutoff switch SW3.
  • each cut-off switch SW1-SW3 is a relay.
  • the auxiliary machine 60 includes a first positive terminal C1p and a first negative terminal C1n.
  • a first end of a first high potential side path L1p is connected to the first positive terminal C1p.
  • a portion of the neutral point path Lm closer to the intermediate terminal B than the neutral point switch SWm is connected to the second end of the first high potential side path L1p.
  • a first end of a first low potential side path L1n is connected to the first negative terminal C1n.
  • a second end of the first low-potential-side path L1n is connected to a portion of the negative-side main path Ln closer to the second storage battery 22 than the negative-side switch SWn.
  • a first cutoff switch SW1 is provided in the first low potential side path L1n. Power can be supplied from the second storage battery 22 to the auxiliary device 60 when the first cutoff switch SW1 is turned on.
  • Auxiliary machine 60 includes a DCDC converter, an air conditioning inverter, and an air conditioning heater.
  • the DCDC converter is driven to step down the output voltage of the second storage battery 22 and supply it to a low-voltage storage battery (not shown).
  • the low-voltage storage battery is, for example, a lead-acid battery with a rated voltage of 12V.
  • the air conditioning inverter drives an electric compressor that circulates the refrigerant in the refrigeration cycle.
  • the air-conditioning heater is driven to heat the vehicle interior.
  • the charger 61 has a second positive terminal C2p and a second negative terminal C2n.
  • a first end of a second high potential side path L2p is connected to the second positive terminal C2p.
  • a portion of the neutral point path Lm closer to the intermediate terminal B than the neutral point switch SWm is connected to the second end of the second high potential side path L2p.
  • a first end of a second low potential side path L2n is connected to the second negative terminal C2n.
  • a second end of the second low-potential-side path L2n is connected to a portion of the negative-side main path Ln closer to the second storage battery 22 than the negative-side switch SWn.
  • a charging connector connected to an AC power supply 71 installed in a house or the like can be connected to the charger 61 .
  • the charging connector is connected to the charger 61 by the user, for example.
  • the charger 61 converts the AC voltage output from the AC power supply 71 into a DC voltage to convert the second storage battery 22 into a DC voltage.
  • the charger 61 is also called an on-board charger (OBC).
  • OBC on-board charger
  • the charging inlet 62 has a third positive terminal C3p and a third negative terminal C3n.
  • a first end of a third high potential side path L3p is connected to the third positive terminal C3p.
  • a portion of the neutral point path Lm closer to the intermediate terminal B than the neutral point switch SWm is connected to the second end of the third high potential side path L3p.
  • a first end of a third low potential side path L3n is connected to the third negative terminal C3n.
  • a second end of the third low-potential-side path L3n is connected to a portion of the negative-side main path Ln closer to the second storage battery 22 than the negative-side switch SWn.
  • a charging connector connected to an external charger 72 (corresponding to a "charging facility") provided outside the vehicle can be connected to the charging inlet 62 .
  • the charging connector is connected to charging inlet 62 by, for example, a user.
  • the external charger 72 converts AC voltage (for example, single-phase or three-phase AC voltage) supplied from the system power supply into DC voltage.
  • a charging current is supplied from the external charger 72 to the second storage battery 22 via the charging inlet 62 when the charging connector is connected to the charging inlet 62 and the third cutoff switch SW3 is turned on. On the other hand, the safety of the user is ensured by turning off the third cutoff switch SW3.
  • first to third positive terminals C1p to C3p correspond to "first connection terminals”
  • first to third negative terminals C1n to C3n correspond to "second connection terminals”.
  • first to third high potential side paths L1p to L3p correspond to the "first connection path”
  • first to third low potential side paths L1n to L3n correspond to the "second connection path”.
  • the power conversion device 10 includes a current sensor 80 and a phase current sensor 81.
  • Current sensor 80 detects the current flowing through neutral point path Lm.
  • the phase current sensor 81 detects phase currents for at least two phases.
  • the phase current sensor 81 detects, for example, currents flowing through at least two phases of the conductive members among the conductive members 32U to 32W. Detected values of the current sensors 80 and 81 are input to the control device 90 .
  • the control device 90 is mainly composed of a microcomputer 90a, and the microcomputer 90a includes a CPU.
  • the functions provided by the microcomputer 90a can be provided by software recorded in a physical memory device, a computer executing the software, only software, only hardware, or a combination thereof.
  • the microcomputer 90a is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including many logic circuits, or an analog circuit.
  • the microcomputer 90a executes a program stored in a non-transitory tangible storage medium as its own storage unit.
  • the programs include, for example, programs for voltage equalization control, temperature increase control, and control shown in FIGS. 2 and 3, which will be described later.
  • a method corresponding to the program is executed by executing the program.
  • the storage unit is, for example, a non-volatile memory. Note that the program stored in the storage unit can be updated via a communication network such as the Internet, for example.
  • the control device 90 performs switching control of the switches QUH to QWL constituting the inverter 30 based on the detected value of the phase current sensor 81 and the like in order to feedback-control the control amount of the rotating electric machine 40 to the command value.
  • the controlled variable is torque.
  • the upper arm switch and the lower arm switch are alternately turned on.
  • the control device 90 turns on or off the neutral point switch SWm, the positive switch SWp, the negative switch SWn, and the first to third cutoff switches SW1 to SW3, and is capable of communicating with the monitoring unit 50.
  • the control device 90 functions as a "control section” that performs temperature increase control and voltage equalization control with the neutral point switch SWm, the positive switch SWp, and the negative switch SWn turned on.
  • the temperature increase control is switching control of the inverter 30 for causing alternating current to flow between the first storage battery 21 and the second storage battery 22 via the neutral point path Lm, the neutral point O, and the inverter 30 .
  • This control raises the temperature of the assembled battery 20 .
  • Voltage equalization control is performed by switching the inverter 30 to flow a direct current from one of the first storage battery 21 and the second storage battery 22 to the other via the neutral point path Lm, the neutral point O, and the inverter 30. Control. Through this control, energy is supplied from one of the first storage battery 21 and the second storage battery 22 to the other, and the voltages of the first storage battery 21 and the second storage battery 22 are equalized.
  • the control device 90 calculates a neutral point command current for temperature rise control or voltage equalization control.
  • the neutral point command current for temperature rise control is an AC component
  • the neutral point command current for voltage equalization control is a DC component.
  • Control device 90 performs switching control of inverter 30 to control the current detected by current sensor 80 to the neutral point command current. Note that the control device 90 can simultaneously perform temperature increase control and voltage equalization control. In this case, the neutral point command current is the total value of the AC component and the DC component. Further, when the control device 90 controls the control amount of the rotating electric machine 40 to run the vehicle without performing the temperature increase control or the voltage equalization control, the control device 90 turns on the positive side switch SWp and the negative side switch SWn, Turn off the neutral point switch SWm.
  • FIG. 2 shows a flowchart of the processing performed by the control device 90.
  • the vehicle is stopped and the positive switch SWp and the negative switch SWn are turned on.
  • step S10 it is determined whether or not there is an instruction to charge the second storage battery 22 via the charger 61. For example, when it is determined that the charging connector of the AC power supply 71 is connected to the charger 61, it may be determined that there is a charging instruction.
  • step S10 If it is determined in step S10 that there is a charge instruction, the process proceeds to step S11, where the second cutoff switch SW2 is turned on and the first cutoff switch SW1 and the third cutoff switch SW3 are turned off.
  • step S12 it is determined whether or not there is an instruction to execute at least one of temperature increase control and voltage equalization control.
  • step S12 If it is determined in step S12 that there is no execution instruction for both temperature increase control and voltage equalization control, the process proceeds to step S13 to turn off the neutral point switch SWm. Then, in step S ⁇ b>14 , the second storage battery 22 is charged by controlling the charger 61 .
  • step S12 determines whether there is an instruction to execute at least one of temperature increase control and voltage equalization control. If it is determined in step S12 that there is an instruction to execute at least one of temperature increase control and voltage equalization control, the process proceeds to step S15 to turn on the neutral point switch SWm. Then, the second storage battery 22 is charged by controlling the charger 61 in step S16. Also, among the temperature increase control and the voltage equalization control, the control for which the execution instruction is given is executed.
  • a second high-potential-side path L2p is connected to a portion of the neutral-point path Lm closer to the intermediate terminal B than the neutral-point switch SWm
  • a second high-potential-side path L2p is connected to a portion of the neutral-point path Lm closer to the intermediate terminal B than the negative-side switch SWn.
  • the second low potential side path L2n is connected to the portion on the storage battery 22 side.
  • a surge voltage is generated with the execution of at least one switching control of temperature increase control and voltage equalization control.
  • this switching control when this switching control is performed, the first cutoff switch SW1 and the third cutoff switch SW3 are turned off. Therefore, it is possible to prevent the surge voltage from being transmitted to auxiliary device 60 and charging inlet 62 . As a result, failure of the auxiliary device 60 and the charging inlet 62 can be prevented.
  • step S10 If it is determined in step S10 that there is no charging instruction, the process proceeds to step S17 to determine whether or not there is a charging instruction for the second storage battery 22 via the charging inlet 62. For example, when it is determined that the charging connector of the external charger 72 is connected to the charging inlet 62, it may be determined that there is a charging instruction.
  • step S17 When it is determined in step S17 that there is a charge instruction, the process proceeds to step S18, where the third cutoff switch SW3 is turned on and the first cutoff switch SW1 and the second cutoff switch SW2 are turned off. Then, it progresses to step S12, and when it determines affirmatively in step S12, the process of step S15, S16 is performed. While charging the second storage battery 22 with electric power supplied from the charger 61 or the charging inlet 62 , voltage equalization control is performed to supply power from the second storage battery 22 to the first storage battery 21 . As a result, the first storage battery 21 and the second storage battery 22 can be charged even when only the second storage battery 22 is to be charged by the external charging equipment among the first storage battery 21 and the second storage battery 22 .
  • the charging current supplied from the charging inlet 62 flows to the second storage battery 22, and the charging current supplied from the charging inlet 62 does not flow to the neutral switch SWm and the negative switch SWn, or is neutral. Almost no current flows through the point switch SWm and the negative switch SWn. As a result, the current capacities of the neutral point switch SWm and the negative switch SWn can be reduced.
  • the current capacities of the neutral point switch SWm and the negative switch SWn are set to the neutral point path when either temperature increase control or voltage equalization control or both temperature increase control and voltage equalization control are performed. It can be smaller than the total value of the maximum value of the current flowing through Lm and the negative electrode side main path Ln and the maximum value of the charging current supplied from the charger 61 or the charging inlet 62 to the second storage battery 22 .
  • the control amount of the rotary electric machine 40 may be controlled while the auxiliary machine 60 is driven by power supply from the second storage battery 22 .
  • a current that is a combination of the current that flows from the second storage battery 22 to the auxiliary machine 60 and the current that flows for controlling the control amount flows through the negative main path Ln.
  • the current capacity of the negative switch SWn can be reduced by the arrangement of the negative switch SWn described above.
  • the control device 90 may perform the process shown in FIG. 3 instead of the process shown in FIG. In the example shown in FIG. 3, it is assumed that the positive switch SWp and the negative switch SWn are turned on.
  • step S20 it is determined whether or not there is an instruction to execute at least one of temperature increase control and voltage equalization control.
  • step S21 If it is determined in step S21 that there is no execution instruction for both temperature increase control and voltage equalization control, the process proceeds to step S21 to turn off the neutral point switch SWm.
  • the first cutoff switch SW1 should be turned on.
  • the second cutoff switch SW2 or the third cutoff switch SW3 may be turned on.
  • step S20 determines whether there is an instruction to execute at least one of temperature increase control and voltage equalization control. If it is determined in step S20 that there is an instruction to execute at least one of temperature increase control and voltage equalization control, the process proceeds to step S22 to turn on the neutral point switch SWm. Also, the first to third cutoff switches SW1 to SW3 are turned off. Then, the process proceeds to step S23 to execute the instructed control among the temperature increase control and the voltage equalization control. Since the first to third cutoff switches SW1 to SW3 are turned off, it is possible to prevent the surge voltage generated by the execution of this control from being transmitted to the auxiliary device 60, the charger 61 and the charging inlet 62. FIG. As a result, failure of the auxiliary device 60, the charger 61, and the charging inlet 62 can be prevented. Incidentally, in step S22, one or two of the first to third cutoff switches SW1 to SW3 may be turned off.
  • step S11 the neutral point switch SWm is turned on in addition to the second cutoff switch SW2.
  • step S12 determines whether the determination in step S12 is affirmative, the process proceeds to step S16, and if the determination in step S12 is negative, the process proceeds to step S14.
  • step S17 the neutral point switch SWm is turned on in addition to the third cutoff switch SW3.
  • the current capacity of the negative switch SWn can be reduced.
  • the negative electrode side switch SWn is provided in a portion of the negative electrode side main path Ln closer to the second storage battery 22 than the connection point with each of the low potential side paths L1n, L2n, and L3n. It is
  • the current capacity of the neutral point switch SWm can be reduced.
  • each of the high potential side paths L1p, L2p, and L3p is connected to the positive side main path Lp instead of the neutral point path Lm.
  • each of the low-potential-side paths L1n, L2n, and L3n is connected to the neutral point path Lm instead of the negative-side main path Ln.
  • the positive-side main path Lp corresponds to the "first target path”
  • the neutral point path Lm corresponds to the "second target path”.
  • the current capacities of the positive switch SWp and the neutral point switch SWm can be reduced.
  • the neutral point switch SWm is provided in a portion of the neutral point path Lm closer to the intermediate terminal B than the connection point with each of the low potential side paths L1n, L2n, L3n. It is
  • the processing executed by the control device 90 of this embodiment is the same as the processing described in the second embodiment.
  • the first storage battery 21 can be charged via the charger 61 or the charging inlet 62 .
  • the current capacity of the positive switch SWp can be reduced.
  • the positive electrode side switch SWp is provided in a portion of the positive electrode side main path Lp closer to the first storage battery 21 than the connection point with each of the high potential side paths L1p, L2p, and L3p. It is
  • the current capacity of the neutral point switch SWm can be reduced.
  • the positive electrode-side main path Lp is provided on the first storage battery 21 side of the positive electrode-side switch SWp. parts are connected.
  • the first cutoff switch SW1 is turned on, power can be supplied to the auxiliary machine 60 from the series connection body of the first storage battery 21 and the second storage battery 22 .
  • the series connection body of the first storage battery 21 and the second storage battery 22 is charged by the charger 61 while the second cutoff switch SW2 is turned on.
  • the positive side main route Lp corresponds to the "first target route”
  • the negative electrode side main route Ln corresponds to the "second target route”.
  • a first end of the high-voltage charging path LcH is connected to the third positive terminal C3p of the charging inlet 62 .
  • a second end of the high voltage charging path LcH is connected to a portion of the positive electrode side main path Lp closer to the first storage battery 21 than the positive electrode side switch SWp.
  • the high-voltage charging path LcH is provided with a high-voltage side switch SWH (corresponding to a “cutoff switch”).
  • the high voltage charging path LcH and the first to third high potential side paths L1p to L3p correspond to the "first connection path".
  • a first end of the low-voltage charging path LcL is connected to a portion of the high-voltage charging path LcH closer to the third positive terminal C3p than the high-voltage side switch SWH.
  • a portion of the neutral point path Lm closer to the intermediate terminal B than the neutral point switch SWm is connected to the second end of the low-voltage charging path LcL.
  • a low-voltage side switch SWL is provided in the low-voltage charging path LcL.
  • a charging connector connected to an external charger 72 can be connected to the charging inlet 62 .
  • the external charger 72 is either a fast charger whose charging voltage is a first charging voltage (eg 400 V) or a super fast charger whose charging voltage is a second charging voltage (eg 800 V) higher than the first charging voltage. or
  • the control device 90 determines that the external charger 72 is a quick charger, it turns off the high voltage side switch SWH and turns on the low voltage side switch SWL and the third cutoff switch SW3. Thereby, the charging current is supplied to the second storage battery 22 .
  • control device 90 determines that the external charger 72 is a super-rapid charger, it turns off the low voltage side switch SWL and turns on the high voltage side switch SWH and the third cutoff switch SW3. Thereby, the charging current is supplied to the series connection body of the first storage battery 21 and the second storage battery 22 .
  • the current capacities of the neutral point switch SWm, the positive switch SWp, and the negative switch SWn can be reduced.
  • the processing shown in FIG. 2 can be applied.
  • all or some of the switches SW1, SW3, SWH, and SWL may be turned off in step S11.
  • step S18 all or some of the switches SW1, SW2, SWH, and SWL may be turned off.
  • the processing shown in FIG. 3 can be applied. In this case, at least one of the first to third cutoff switches SW1 to SW3 and the high voltage side switch SWH may be turned off in step S22.
  • the eighth embodiment will be described below with reference to the drawings, focusing on differences from the seventh embodiment.
  • the positive electrode side switch SWp is provided in a portion of the positive electrode side main path Lp closer to the first storage battery 21 than the connection point with each of the paths L1p, L2p, and LcH. .
  • the current capacity of the negative switch SWn can be reduced.
  • the ninth embodiment will be described below with reference to the drawings, focusing on differences from the seventh embodiment.
  • the positive electrode side switch SWp is provided in a portion of the positive electrode side main path Lp closer to the first storage battery 21 than the connection point with each of the paths L1p, L2p, and LcH.
  • the negative electrode side switch SWn is provided in a portion of the negative electrode side main path Ln closer to the second storage battery 22 than the connection point with each of the low potential side paths L1n, L2n, and L3n.
  • the current capacity of the neutral point switch SWm can be reduced.
  • the neutral point switch SWm is provided in a portion of the neutral point path Lm closer to the intermediate terminal B than the connection point with the low-voltage charging path LcL.
  • the negative electrode side switch SWn is provided in a portion of the negative electrode side main path Ln closer to the second storage battery 22 than the connection point with each of the low potential side paths L1n, L2n, and L3n.
  • the current capacity of the positive switch SWp can be reduced.
  • step S11 of FIG. 2 either one of the first cut-off switch SW1 or the third cut-off switch SW3 may be turned off. Also, in step S18, either one of the first cut-off switch SW1 and the second cut-off switch SW2 may be turned off.
  • the first cutoff switch SW1 is provided only in the first high potential side path L1p of the first low potential side path L1n and the first high potential side path L1p, or is provided in the first high potential side path L1p and the first low potential side path L1p. It may be provided on both sides of the side path L1n.
  • the second cutoff switch SW2 is provided only in the second high potential side path L2p out of the second low potential side path L2n and the second high potential side path L2p, or is provided only in the second high potential side path L2p and the second low potential side path L2p. It may be provided on both sides of the side path L2n.
  • the third cutoff switch SW3 is provided only in the third high potential side path L3p out of the third low potential side path L3n and the third high potential side path L3p, or is provided in the third high potential side path L3p and the third low potential side path L3p. It may be provided on both sides of the side path L3n.
  • the switches SWp, SWm, SWn, SW1 to SW3, SWL, and SWH are not limited to relays, and may be, for example, a pair of N-channel MOSFETs or IGBTs whose sources are connected to each other.
  • the upper and lower arm switches that constitute the inverter are not limited to IGBTs, but may be, for example, N-channel MOSFETs.
  • the rotating electric machine and the inverter may be those other than 3-phase, such as 5-phase or 7-phase.
  • the power storage device may be configured by, for example, an electric double layer capacitor instead of a storage battery.
  • the mobile object on which the power conversion device is mounted is not limited to a vehicle, and may be, for example, an aircraft or a ship.
  • the rotating electric machine provided in the aircraft serves as the flight power source for the aircraft
  • the rotating electric machine provided in the ship serves as the navigation power source for the ship.
  • the mounting destination of the power conversion device is not limited to the mobile body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

電力変換装置(10)は、インバータ(30)と、回転電機(40)と、正極側メイン経路(Lp)と、負極側メイン経路(Ln)と、中性点経路(Lm)と、正極側メイン経路、負極側メイン経路及び中性点経路に設けられたスイッチ(SWp,SWn,SWm)と、正極側メイン経路、負極側メイン経路及び中性点経路のいずれかである第1対象経路と、電気機器(60~62)の第1接続端子(C1p,C2p,C3p)とを接続する第1接続経路(L1p,L2p,L3p,LcH)と、正極側メイン経路、負極側メイン経路及び中性点経路のうち、第1対象経路以外のいずれかである第2対象経路と、電気機器の第2接続端子(C1n,C2n,C3n)とを接続する第2接続経路(L1n,L2n,L3n)と、を備える。電力変換装置では、例えば、第1対象経路のうちスイッチよりも蓄電装置側に第1接続経路が接続されている構成が用いられている。

Description

電力変換装置 関連出願の相互参照
 本出願は、2021年6月7日に出願された日本出願番号2021-095445号に基づくもので、ここにその記載内容を援用する。
 本開示は、第1蓄電部、及び第1蓄電部の負極側に直列接続された第2蓄電部を有する蓄電装置と、上,下アームスイッチを有するインバータと、インバータに接続された巻線を有する回転電機と、を備える電力変換装置に関する。
 この種の装置としては、特許文献1に記載されているように、正極側メイン経路、負極側メイン経路、中性点経路、及び中性点経路に設けられた中性点スイッチを備えるものが知られている。正極側メイン経路は、上アームスイッチの高電位側端子と第1蓄電部の正極側とを接続する。負極側メイン経路は、下アームスイッチの低電位側端子と第2蓄電部の負極側とを接続する。中性点経路は、第1蓄電部の負極側と第2蓄電部の正極側との電池接続点と、巻線の中性点とを接続する。
 この電力変換装置では、中性点スイッチがオンされた状態で、インバータを構成する上,下アームスイッチのスイッチング制御により、中性点経路、巻線の中性点及びインバータを介して、第1蓄電部と第2蓄電部との間に電流が流される。これにより、例えば、第1蓄電部の電圧と第2蓄電部の電圧とを均等化したり、第1蓄電部及び第2蓄電部を昇温したりする。
特開2020-120566号公報
 中性点経路、正極側メイン経路及び負極側メイン経路のうちいずれか2つに接続された電気機器が設けられることがある。電気機器と蓄電装置との間で電力が伝達される。
 ここで、電気機器と蓄電装置との間で電力が伝達される場合において、上,下アームスイッチのスイッチング制御が行われることにより、蓄電装置を構成する第1蓄電部と第2蓄電部との間に電流が流されることがある。この場合、電気機器と蓄電装置との間に流れる電流と、スイッチング制御の実行に伴い流れる電流とが合わさった電流がスイッチに流れるため、スイッチの電流容量を大きくすることが要求される。ただし、この場合、スイッチの体格が大きくなったり、スイッチのコストが増加したりする。
 本開示は、スイッチの電流容量を低減できる電力変換装置を提供することを主たる目的とする。
 本開示は、第1蓄電部、及び前記第1蓄電部の負極側に直列接続された第2蓄電部を有する蓄電装置と、
 上,下アームスイッチを有するインバータと、
 前記インバータに接続された巻線を有する回転電機と、
 前記上アームスイッチの高電位側端子と前記第1蓄電部の正極側とを接続する正極側メイン経路と、
 前記下アームスイッチの低電位側端子と前記第2蓄電部の負極側とを接続する負極側メイン経路と、
 前記第1蓄電部の負極側と前記第2蓄電部の正極側との電池接続点と、前記巻線の中性点とを接続する中性点経路と、
 前記正極側メイン経路、前記負極側メイン経路及び前記中性点経路に設けられたスイッチと、
 第1接続端子及び第2接続端子を有する電気機器と、
 前記正極側メイン経路、前記負極側メイン経路及び前記中性点経路のうち、いずれかである第1対象経路と、前記第1接続端子とを接続する第1接続経路と、
 前記正極側メイン経路、前記負極側メイン経路及び前記中性点経路のうち、前記第1対象経路以外のいずれかである第2対象経路と、前記第2接続端子とを接続する第2接続経路と、を備え、
 前記第1対象経路のうち前記スイッチよりも前記蓄電装置側に前記第1接続経路が接続されている構成、及び前記第2対象経路のうち前記スイッチよりも前記蓄電装置側に前記第2接続経路が接続されている構成の少なくとも一方が用いられている。
 上記第1対象経路のうちスイッチよりも蓄電装置側に第1接続経路が接続されている構成が用いられる場合、蓄電装置と電気機器とが、第1対象経路に設けられたスイッチを介さずに電気的に接続される。このため、第1対象経路に設けられたスイッチの電流容量を低減することができる。
 また、上記第2対象経路のうちスイッチよりも蓄電装置側に第2接続経路が接続されている構成が用いられる場合、蓄電装置と電気機器とが、第2対象経路に設けられたスイッチを介さずに電気的に接続される。このため、第1対象経路に設けられたスイッチの電流容量を低減することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る電力変換装置の構成図であり、 図2は、制御装置が実行する処理のフローチャートであり、 図3は、第1実施形態の変形例に係る制御装置が実行する処理のフローチャートであり、 図4は、第2実施形態に係る電力変換装置の構成図であり、 図5は、第3実施形態に係る電力変換装置の構成図であり、 図6は、第4実施形態に係る電力変換装置の構成図であり、 図7は、第5実施形態に係る電力変換装置の構成図であり、 図8は、第6実施形態に係る電力変換装置の構成図であり、 図9は、第7実施形態に係る電力変換装置の構成図であり、 図10は、第8実施形態に係る電力変換装置の構成図であり、 図11は、第9実施形態に係る電力変換装置の構成図であり、 図12は、第10実施形態に係る電力変換装置の構成図である。
 <第1実施形態>
 以下、本開示に係る電力変換装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態の電力変換装置は、電気自動車やハイブリッド車等の車両に搭載されている。
 図1示すように、電力変換装置10は、インバータ30と、回転電機40とを備えている。回転電機40は、3相の同期機であり、星形結線されたU,V,W相巻線41U,41V,41Wを備えている。各相巻線41U,41V,41Wは、電気角で120°ずつずれて配置されている。回転電機40は、例えば永久磁石同期機である。本実施形態において、回転電機40は車載主機であり、車両の走行動力源となる。
 インバータ30は、上アームスイッチQUH,QVH,QWHと下アームスイッチQUL,QVL,QWLとの直列接続体を3相分備えている。本実施形態では、各スイッチQUH,QVH,QWH,QUL,QVL,QWLとして、電圧制御形の半導体スイッチング素子が用いられており、具体的にはIGBTが用いられている。このため、各スイッチQUH,QVH,QWH,QUL,QVL,QWLの高電位側端子はコレクタであり、低電位側端子はエミッタである。各スイッチQUH,QVH,QWH,QUL,QVL,QWLには、フリーホイールダイオードとしての各ダイオードDUH,DVH,DWH,DUL,DVL,DWLが逆並列に接続されている。
 U相上アームスイッチQUHのエミッタと、U相下アームスイッチQULのコレクタとには、U相導電部材32Uを介して、U相巻線41Uの第1端が接続されている。V相上アームスイッチQVHのエミッタと、V相下アームスイッチQVLのコレクタとには、V相導電部材32Vを介して、V相巻線41Vの第1端が接続されている。W相上アームスイッチQWHのエミッタと、W相下アームスイッチQWLのコレクタとには、W相導電部材32Wを介して、W相巻線41Wの第1端が接続されている。U,V,W相巻線41U,41V,41Wの第2端同士は、中性点Oで接続されている。なお、各導電部材32U~32Wは、例えば、バスバー又はケーブルである。また、本実施形態において、各相巻線41U,41V,41Wは、ターン数が同じに設定されている。これにより、各相巻線41U,41V,41Wは、例えばインダクタンスが同じに設定されている。
 各上アームスイッチQUH,QVH,QWHのコレクタと、組電池20の正極端子とは、正極側メイン経路Lpにより接続されている。各下アームスイッチQUL,QVL,QWLのエミッタと、組電池20の負極端子とは、負極側メイン経路Lnにより接続されている。なお、本実施形態において、負極側メイン経路Lnが「第2対象経路」に相当する。
 電力変換装置10は、コンデンサ31を備えている。コンデンサ31は、各上アームスイッチQUH,QVH,QWHのコレクタと、各下アームスイッチQUL,QVL,QWLのエミッタとを接続する。なお、コンデンサ31は、インバータ30に内蔵されていてもよいし、インバータ30の外部に設けられていてもよい。
 組電池20は、「蓄電装置」に相当し、単電池である電池セルの直列接続体として構成されている。本実施形態では、組電池20を構成する各電池セルの端子電圧(例えば定格電圧)が互いに同じに設定されている。電池セルとしては、例えば、リチウムイオン電池等の2次電池を用いることができる。なお、組電池20は、例えば電力変換装置10の外部に設けられている。
 本実施形態では、組電池20を構成する電池セルのうち、高電位側の複数の電池セルの直列接続体が第1蓄電池21(「第1蓄電部」に相当)を構成し、低電位側の複数の電池セルの直列接続体が第2蓄電池22(「第2蓄電部」に相当)を構成している。つまり、組電池20が2つのブロックに分けられている。本実施形態では、第1蓄電池21を構成する電池セル数と、第2蓄電池22を構成する電池セル数とが同じである。このため、第1蓄電池21の端子電圧(例えば定格電圧)と、第2蓄電池22の端子電圧(例えば定格電圧)とが同じである。本実施形態において、第1蓄電池21及び第2蓄電池22それぞれの定格電圧は400Vとされている。このため、組電池20の定格電圧は800Vとされている。組電池20において、第1蓄電池21の負極端子と第2蓄電池22の正極端子とには中間端子B(「電池接続点」に相当)が接続されている。
 電力変換装置10は、監視ユニット50を備えている。監視ユニット50は、組電池20を構成する各電池セルの端子電圧、SOC、SOH及び温度等を監視する。監視ユニット50の監視情報は、電力変換装置10が備える制御装置90に入力される。
 電力変換装置10は、中性点経路Lmと、中性点スイッチSWmとを備えている。中性点経路Lmは、組電池20の中間端子Bと中性点Oとを電気的に接続する。中性点スイッチSWmは、中性点経路Lmに設けられている。本実施形態において、中性点スイッチSWmはリレーである。中性点スイッチSWmがオンされることにより、中間端子Bと中性点Oとが電気的に接続される。一方、中性点スイッチSWmがオフされることにより、中間端子Bと中性点Oとの間が電気的に遮断される。なお、本実施形態において、中性点経路Lmが「第1対象経路」に相当する。
 電力変換装置10は、正極側スイッチSWpと、負極側スイッチSWnとを備えている。本実施形態において、正極側スイッチSWp及び負極側スイッチSWnはリレーである。
 正極側スイッチSWpは正極側メイン経路Lpに設けられている。正極側スイッチSWpがオンされることにより、第1蓄電池21の正極端子と各上アームスイッチQUH,QVH,QWHのコレクタとが電気的に接続される。一方、正極側スイッチSWpがオフされることにより、第1蓄電池21の正極端子と各上アームスイッチQUH,QVH,QWHのコレクタとが電気的に遮断される。
 負極側スイッチSWnは負極側メイン経路Lnに設けられている。負極側スイッチSWnがオンされることにより、第2蓄電池22の負極端子と各下アームスイッチQUL,QVL,QWLのエミッタとが電気的に接続される。一方、負極側スイッチSWnがオフされることにより、第2蓄電池22の負極端子と各下アームスイッチQUL,QVL,QWLのエミッタとが電気的に遮断される。
 電力変換装置10は、電気機器として、補機60、充電器61及び充電インレット62を備えている。また、電力変換装置10は、各電気機器を組電池20に電気的に接続するための構成として、第1高電位側経路L1p、第1低電位側経路L1n、第1遮断スイッチSW1、第2高電位側経路L2p、第2低電位側経路L2n、第2遮断スイッチSW2、第3高電位側経路L3p、第3低電位側経路L3n及び第3遮断スイッチSW3を備えている。本実施形態において、各遮断スイッチSW1~SW3はリレーである。
 補機60は、第1正極側端子C1p及び第1負極側端子C1nを備えている。第1正極側端子C1pには、第1高電位側経路L1pの第1端が接続されている。第1高電位側経路L1pの第2端には、中性点経路Lmのうち中性点スイッチSWmよりも中間端子B側の部分が接続されている。第1負極側端子C1nには、第1低電位側経路L1nの第1端が接続されている。第1低電位側経路L1nの第2端には、負極側メイン経路Lnのうち負極側スイッチSWnよりも第2蓄電池22側の部分が接続されている。第1低電位側経路L1nには、第1遮断スイッチSW1が設けられている。第1遮断スイッチSW1がオンされた状態において、第2蓄電池22から補機60に給電可能になっている。
 補機60は、DCDCコンバータ、空調用インバータ及び空調用ヒータを含む。DCDCコンバータは、第2蓄電池22の出力電圧を降圧して図示しない低圧蓄電池に供給するために駆動される。低圧蓄電池は、例えば、定格電圧が12Vの鉛蓄電池である。空調用インバータは、冷凍サイクル内の冷媒を循環させる電動コンプレッサを駆動する。空調用ヒータは、車室内の暖房のために駆動される。
 充電器61は、第2正極側端子C2p及び第2負極側端子C2nを備えている。第2正極側端子C2pには、第2高電位側経路L2pの第1端が接続されている。第2高電位側経路L2pの第2端には、中性点経路Lmのうち中性点スイッチSWmよりも中間端子B側の部分が接続されている。第2負極側端子C2nには、第2低電位側経路L2nの第1端が接続されている。第2低電位側経路L2nの第2端には、負極側メイン経路Lnのうち負極側スイッチSWnよりも第2蓄電池22側の部分が接続されている。
 充電器61には、住宅等に設けられた交流電源71に接続された充電コネクタが接続可能になっている。充電コネクタは、例えばユーザにより充電器61に接続される。充電器61に充電コネクタが接続されて、かつ、第2遮断スイッチSW2がオンされた状態において、充電器61は、交流電源71から出力された交流電圧を直流電圧に変換して第2蓄電池22に供給する。なお、充電器61は、オンボードチャージャ(OBC)とも呼ばれる。一方、第2遮断スイッチSW2がオフされることにより、ユーザの安全を確保する。
 充電インレット62は、第3正極側端子C3p及び第3負極側端子C3nを備えている。第3正極側端子C3pには、第3高電位側経路L3pの第1端が接続されている。第3高電位側経路L3pの第2端には、中性点経路Lmのうち中性点スイッチSWmよりも中間端子B側の部分が接続されている。第3負極側端子C3nには、第3低電位側経路L3nの第1端が接続されている。第3低電位側経路L3nの第2端には、負極側メイン経路Lnのうち負極側スイッチSWnよりも第2蓄電池22側の部分が接続されている。
 充電インレット62には、車両外部に設けられた外部充電器72(「充電設備」に相当)に接続された充電コネクタが接続可能になっている。充電コネクタは、例えばユーザにより充電インレット62に接続される。外部充電器72は、系統電源から供給される交流電圧(例えば、単相又は三相交流電圧)を直流電圧に変換する。充電インレット62に充電コネクタが接続されて、かつ、第3遮断スイッチSW3がオンされた状態において、外部充電器72から充電インレット62を介して第2蓄電池22に充電電流が供給される。一方、第3遮断スイッチSW3がオフされることにより、ユーザの安全を確保する。
 なお、本実施形態において、第1~第3正極側端子C1p~C3pが「第1接続端子」に相当し、第1~第3負極側端子C1n~C3nが「第2接続端子」に相当する。また、第1~第3高電位側経路L1p~L3pが「第1接続経路」に相当し、第1~第3低電位側経路L1n~L3nが「第2接続経路」に相当する。
 電力変換装置10は、電流センサ80と、相電流センサ81とを備えている。電流センサ80は、中性点経路Lmに流れる電流を検出する。相電流センサ81は、少なくとも2相分の相電流を検出する。相電流センサ81は、例えば、各導電部材32U~32Wのうち少なくとも2相分の導電部材に流れる電流を検出する。各電流センサ80,81の検出値は、制御装置90に入力される。
 制御装置90は、マイコン90aを主体として構成され、マイコン90aは、CPUを備えている。マイコン90aが提供する機能は、実体的なメモリ装置に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、マイコン90aがハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路によって提供することができる。例えば、マイコン90aは、自身が備える記憶部としての非遷移的実体的記録媒体(non-transitory tangible storage medium)に格納されたプログラムを実行する。プログラムには、例えば、後述する電圧均等化制御、昇温制御、及び図2,図3に示す制御のプログラムが含まれる。プログラムが実行されることにより、プログラムに対応する方法が実行される。記憶部は、例えば不揮発性メモリである。なお、記憶部に記憶されたプログラムは、例えば、インターネット等の通信ネットワークを介して更新可能である。
 制御装置90は、回転電機40の制御量を指令値にフィードバック制御すべく、相電流センサ81の検出値等に基づいて、インバータ30を構成する各スイッチQUH~QWLのスイッチング制御を行う。本実施形態において、制御量はトルクである。各相において、上アームスイッチと下アームスイッチとは交互にオンされる。
 制御装置90は、中性点スイッチSWm、正極側スイッチSWp、負極側スイッチSWn及び第1~第3遮断スイッチSW1~SW3をオン又はオフし、また、監視ユニット50と通信可能とされている。
 制御装置90は、中性点スイッチSWm、正極側スイッチSWp及び負極側スイッチSWnをオンした状態で昇温制御及び電圧均等化制御を行う「制御部」として機能する。昇温制御は、中性点経路Lm、中性点O及びインバータ30を介して、第1蓄電池21と第2蓄電池22との間に交流電流を流すためのインバータ30のスイッチング制御である。この制御により、組電池20を昇温させる。電圧均等化制御は、中性点経路Lm、中性点O及びインバータ30を介して、第1蓄電池21と第2蓄電池22のうち、一方から他方へと直流電流を流すためのインバータ30のスイッチング制御である。この制御により、第1蓄電池21及び第2蓄電池22のうち、一方から他方へとエネルギが供給され、第1蓄電池21及び第2蓄電池22の電圧が均等化される。
 制御装置90は、昇温制御又は電圧均等化制御のための中性点指令電流を算出する。昇温制御のための中性点指令電流は交流成分であり、電圧均等化制御のための中性点指令電流は直流成分である。制御装置90は、電流センサ80により検出された電流を中性点指令電流に制御すべく、インバータ30のスイッチング制御を行う。なお、制御装置90は、昇温制御及び電圧均等化制御を同時に行うことも可能である。この場合、中性点指令電流は、上記交流成分及び上記直流成分の合計値となる。また、制御装置90は、昇温制御又は電圧均等化制御を行わず、車両を走行させるために回転電機40の制御量の制御を行う場合、正極側スイッチSWp及び負極側スイッチSWnをオンし、中性点スイッチSWmをオフする。
 図2に、制御装置90が行う処理のフローチャートを示す。なお、図2に示す例では、車両が停車中であり、正極側スイッチSWp及び負極側スイッチSWnがオンされていることとする。
 ステップS10では、充電器61を介した第2蓄電池22の充電指示があるか否かを判定する。例えば、交流電源71の充電コネクタが充電器61に接続されたと判定した場合、充電指示があると判定すればよい。
 ステップS10において充電指示があると判定した場合には、ステップS11に進み、第2遮断スイッチSW2をオンし、第1遮断スイッチSW1及び第3遮断スイッチSW3をオフする。
 続くステップS12では、昇温制御及び電圧均等化制御のうち少なくとも一方の実行指示があるか否かを判定する。
 ステップS12において昇温制御及び電圧均等化制御の双方の実行指示がないと判定した場合には、ステップS13に進み、中性点スイッチSWmをオフにする。そして、ステップS14において、充電器61を制御することにより第2蓄電池22を充電する。
 一方、ステップS12において昇温制御及び電圧均等化制御のうち少なくとも一方の実行指示があると判定した場合には、ステップS15に進み、中性点スイッチSWmをオンにする。そして、ステップS16において充電器61を制御することにより第2蓄電池22を充電する。また、昇温制御及び電圧均等化制御のうち実行指示がなされた制御を実行する。
 中性点スイッチSWm、正極側スイッチSWp及び負極側スイッチSWnには、昇温制御及び電圧均等化制御のうち少なくとも一方の実行に伴い電流が流れる。一方、充電器61から供給された充電電流の大部分は第2蓄電池22へと流れ、充電器61から供給された充電電流は、中性点スイッチSWm及び負極側スイッチSWnにほとんど流れない。これは、中性点経路Lmのうち中性点スイッチSWmよりも中間端子B側の部分に第2高電位側経路L2pが接続され、負極側メイン経路Lnのうち負極側スイッチSWnよりも第2蓄電池22側の部分に第2低電位側経路L2nが接続されているためである。これにより、中性点スイッチSWm及び負極側スイッチSWnの電流容量を小さくすることができる。
 昇温制御及び電圧均等化制御のうち少なくとも一方のスイッチング制御の実行に伴い、サージ電圧が発生する。本実施形態では、このスイッチング制御が行われる場合において第1遮断スイッチSW1及び第3遮断スイッチSW3がオフされる。このため、サージ電圧が補機60及び充電インレット62に伝わることを防止できる。これにより、補機60及び充電インレット62の故障を防止できる。
 ステップS10において充電指示がないと判定した場合には、ステップS17に進み、充電インレット62を介した第2蓄電池22の充電指示があるか否かを判定する。例えば、外部充電器72の充電コネクタが充電インレット62に接続されたと判定した場合、充電指示があると判定すればよい。
 ステップS17において充電指示があると判定した場合には、ステップS18に進み、第3遮断スイッチSW3をオンし、第1遮断スイッチSW1及び第2遮断スイッチSW2をオフする。その後、ステップS12に進み、ステップS12において肯定判定した場合、ステップS15,S16の処理を実行する。充電器61又は充電インレット62から供給される電力により第2蓄電池22を充電しつつ、第2蓄電池22から第1蓄電池21へと給電する電圧均等化制御を行う。これにより、第1蓄電池21及び第2蓄電池22のうち外部の充電設備による充電対象が第2蓄電池22のみの場合であっても、第1蓄電池21及び第2蓄電池22を充電することができる。
 充電インレット62から供給された充電電流の大部分は第2蓄電池22へと流れ、充電インレット62から供給された充電電流は、中性点スイッチSWm及び負極側スイッチSWnには流れない、又は中性点スイッチSWm及び負極側スイッチSWnにはほとんど流れない。これにより、中性点スイッチSWm及び負極側スイッチSWnの電流容量を小さくすることができる。例えば、中性点スイッチSWm及び負極側スイッチSWnの電流容量を、昇温制御及び電圧均等化制御のいずれか、又は昇温制御及び電圧均等化制御の双方が実行される場合に中性点経路Lm及び負極側メイン経路Lnに流れる電流の最大値と、充電器61又は充電インレット62から第2蓄電池22に対して供給される充電電流の最大値との合計値よりも小さくできる。
 ちなみに、例えば車両の走行中において、第2蓄電池22から給電されて補機60が駆動されつつ、回転電機40の制御量の制御が行われることもある。この場合、第2蓄電池22から補機60へと流れる電流と、制御量の制御のために流れる電流とが合わさった電流が負極側メイン経路Lnに流れる。ただし、負極側スイッチSWnの上述した配置により、負極側スイッチSWnの電流容量を小さくすることができる。
 <第1実施形態の変形例>
 制御装置90は、図2に示す処理に代えて、図3に示す処理を行ってもよい。なお、図3に示す例では、正極側スイッチSWp及び負極側スイッチSWnがオンされていることとする。
 ステップS20では、昇温制御及び電圧均等化制御のうち少なくとも一方の実行指示があるか否かを判定する。
 ステップS21において昇温制御及び電圧均等化制御の双方の実行指示がないと判定した場合には、ステップS21に進み、中性点スイッチSWmをオフする。なお、この場合において、補機60を駆動する場合に第1遮断スイッチSW1をオンすればよい。また、充電器61又は充電インレット62を介した充電指示があると判定した場合、第2遮断スイッチSW2又は第3遮断スイッチSW3をオンすればよい。
 一方、ステップS20において昇温制御及び電圧均等化制御のうち少なくとも一方の実行指示があると判定した場合には、ステップS22に進み、中性点スイッチSWmをオンにする。また、第1~第3遮断スイッチSW1~SW3をオフする。そして、ステップS23に進み、昇温制御及び電圧均等化制御のうち実行指示がなされた制御を実行する。第1~第3遮断スイッチSW1~SW3がオフされているため、この制御の実行に伴い発生するサージ電圧が、補機60、充電器61及び充電インレット62に伝わることを防止できる。これにより、補機60、充電器61及び充電インレット62の故障を防止できる。ちなみに、ステップS22において、第1~第3遮断スイッチSW1~SW3のうち、1又は2つの遮断スイッチがオフされてもよい。
 <第2実施形態>
 以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図4に示すように、中性点スイッチSWmが、中性点経路Lmのうち各高電位側経路L1p,L2p,L3pとの接続点よりも中間端子B側の部分に設けられている。なお、以降の各実施形態に示す構成のうち、先の図1に示した構成と同一の構成又は対応する構成には、便宜上、同一の符号を付している。また、以降の各実施形態に対応する図において、先の図1に示した構成の一部の図示を省略している。
 本実施形態の制御装置90が実行する処理のうち、図2に示す処理との相違点について説明する。
 ステップS11では、第2遮断スイッチSW2に加え、中性点スイッチSWmをオンする。
 ステップS12において肯定判定した場合、ステップS16に進み、ステップS12において否定判定した場合、ステップS14に進む。
 ステップS17では、第3遮断スイッチSW3に加え、中性点スイッチSWmをオンする。
 以上説明した本実施形態によれば、負極側スイッチSWnの電流容量を小さくすることができる。
 <第3実施形態>
 以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図5に示すように、負極側スイッチSWnが、負極側メイン経路Lnのうち各低電位側経路L1n,L2n,L3nとの接続点よりも第2蓄電池22側の部分に設けられている。
 以上説明した本実施形態によれば、中性点スイッチSWmの電流容量を小さくすることができる。
 <第4実施形態>
 以下、第4実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図6に示すように、各高電位側経路L1p,L2p,L3pが、中性点経路Lmに代えて正極側メイン経路Lpに接続されている。また、各低電位側経路L1n,L2n,L3nが、負極側メイン経路Lnに代えて中性点経路Lmに接続されている。なお、本実施形態において、正極側メイン経路Lpが「第1対象経路」に相当し、中性点経路Lmが「第2対象経路」に相当する。
 以上説明した本実施形態によれば、正極側スイッチSWp及び中性点スイッチSWmの電流容量を小さくすることができる。
 <第5実施形態>
 以下、第5実施形態について、第4実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図7に示すように、中性点スイッチSWmが、中性点経路Lmのうち各低電位側経路L1n,L2n,L3nとの接続点よりも中間端子B側の部分に設けられている。
 本実施形態の制御装置90が実行する処理は、第2実施形態で説明した処理と同様である。本実施形態では、充電器61又は充電インレット62を介して第1蓄電池21を充電できる。
 以上説明した本実施形態によれば、正極側スイッチSWpの電流容量を小さくすることができる。
 <第6実施形態>
 以下、第6実施形態について、第4実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図8に示すように、正極側スイッチSWpが、正極側メイン経路Lpのうち各高電位側経路L1p,L2p,L3pとの接続点よりも第1蓄電池21側の部分に設けられている。
 以上説明した本実施形態によれば、中性点スイッチSWmの電流容量を小さくすることができる。
 <第7実施形態>
 以下、第7実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図9に示すように、各経路Lp,Lm,Lnに対する電気経路の接続態様が大きく変更されている。
 第1高電位側経路L1p及び第2高電位側経路L2pの第2端には、中性点経路Lmに代えて、正極側メイン経路Lpのうち正極側スイッチSWpよりも第1蓄電池21側の部分が接続されている。第1遮断スイッチSW1がオンされた状態において、第1蓄電池21及び第2蓄電池22の直列接続体から補機60に給電可能になっている。また、第2遮断スイッチSW2がオンされた状態において、充電器61により第1蓄電池21及び第2蓄電池22の直列接続体が充電される。なお、本実施形態において、正極側メイン経路Lpが「第1対象経路」に相当し、負極側メイン経路Lnが「第2対象経路」に相当する。
 充電インレット62の第3正極側端子C3pには、高圧充電経路LcHの第1端が接続されている。高圧充電経路LcHの第2端には、正極側メイン経路Lpのうち正極側スイッチSWpよりも第1蓄電池21側の部分が接続されている。高圧充電経路LcHには、高圧側スイッチSWH(「遮断スイッチ」に相当)が設けられている。なお、本実施形態において、高圧充電経路LcH及び第1~第3高電位側経路L1p~L3pが「第1接続経路」に相当する。
 高圧充電経路LcHのうち高圧側スイッチSWHよりも第3正極側端子C3p側の部分には、低圧充電経路LcLの第1端が接続されている。低圧充電経路LcLの第2端には、中性点経路Lmのうち中性点スイッチSWmよりも中間端子B側の部分が接続されている。低圧充電経路LcLには、低圧側スイッチSWLが設けられている。
 充電インレット62には、外部充電器72に接続された充電コネクタが接続可能になっている。外部充電器72は、充電電圧が第1充電電圧(例えば400V)となる急速充電器、又は充電電圧が第1充電電圧よりも高い第2充電電圧(例えば800V)となる超急速充電器のいずれかである。制御装置90は、外部充電器72が急速充電器であると判定した場合、高圧側スイッチSWHをオフし、低圧側スイッチSWL及び第3遮断スイッチSW3をオンする。これにより、第2蓄電池22に充電電流が供給される。一方、制御装置90は、外部充電器72が超急速充電器であると判定した場合、低圧側スイッチSWLをオフし、高圧側スイッチSWH及び第3遮断スイッチSW3をオンする。これにより、第1蓄電池21及び第2蓄電池22の直列接続体に充電電流が供給される。
 以上説明した本実施形態によれば、中性点スイッチSWm、正極側スイッチSWp及び負極側スイッチSWnの電流容量を小さくすることができる。ちなみに、本実施形態において、先の図2に示した処理を適用することができる。この場合、ステップS11において、各スイッチSW1,SW3,SWH,SWLのうち、全部又は一部のスイッチがオフされてもよい。また、ステップS18において、各スイッチSW1,SW2,SWH,SWLのうち、全部又は一部のスイッチがオフされてもよい。また、本実施形態において、先の図3に示した処理を適用することができる。この場合、ステップS22において、第1~第3遮断スイッチSW1~SW3及び高圧側スイッチSWHのうち、一部であってかつ少なくとも1つのスイッチがオフされてもよい。
 <第8実施形態>
 以下、第8実施形態について、第7実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図10に示すように、正極側スイッチSWpが、正極側メイン経路Lpのうち各経路L1p,L2p,LcHとの接続点よりも第1蓄電池21側の部分に設けられている。
 以上説明した本実施形態によれば、負極側スイッチSWnの電流容量を小さくすることができる。
 <第9実施形態>
 以下、第9実施形態について、第7実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図11に示すように、正極側スイッチSWpが、正極側メイン経路Lpのうち各経路L1p,L2p,LcHとの接続点よりも第1蓄電池21側の部分に設けられている。また、負極側スイッチSWnが、負極側メイン経路Lnのうち各低電位側経路L1n,L2n,L3nとの接続点よりも第2蓄電池22側の部分に設けられている。
 以上説明した本実施形態によれば、中性点スイッチSWmの電流容量を小さくすることができる。
 <第10実施形態>
 以下、第10実施形態について、第7実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図12に示すように、中性点スイッチSWmが、中性点経路Lmのうち低圧充電経路LcLとの接続点よりも中間端子B側の部分に設けられている。また、負極側スイッチSWnが、負極側メイン経路Lnのうち各低電位側経路L1n,L2n,L3nとの接続点よりも第2蓄電池22側の部分に設けられている。
 以上説明した本実施形態によれば、正極側スイッチSWpの電流容量を小さくすることができる。
 <その他の実施形態>
 なお、上記実施形態は、以下のように変更して実施してもよい。
 ・図2のステップS11において、第1遮断スイッチSW1又は第3遮断スイッチSW3のいずれか1つがオフされてもよい。また、ステップS18において、第1遮断スイッチSW1又は第2遮断スイッチSW2のいずれか1つがオフされてもよい。
 ・第1遮断スイッチSW1は、第1低電位側経路L1n及び第1高電位側経路L1pのうち第1高電位側経路L1pのみに設けられたり、第1高電位側経路L1p及び第1低電位側経路L1nの双方に設けられたりしてもよい。
 ・第2遮断スイッチSW2は、第2低電位側経路L2n及び第2高電位側経路L2pのうち第2高電位側経路L2pのみに設けられたり、第2高電位側経路L2p及び第2低電位側経路L2nの双方に設けられたりしてもよい。
 ・第3遮断スイッチSW3は、第3低電位側経路L3n及び第3高電位側経路L3pのうち第3高電位側経路L3pのみに設けられたり、第3高電位側経路L3p及び第3低電位側経路L3nの双方に設けられたりしてもよい。
 ・各スイッチSWp,SWm,SWn,SW1~SW3,SWL,SWHとしては、リレーに限らず、例えば、ソース同士が接続された一対のNチャネルMOSFETや、IGBTであってもよい。
 ・インバータを構成する上,下アームスイッチとしては、IGBTに限らず、例えばNチャネルMOSFETであってもよい。
 ・回転電機及びインバータとしては、5相又は7相等、3相以外のものであってもよい。
 ・蓄電装置としては、蓄電池に代えて、例えば電気二重層キャパシタにより構成されていてもよい。
 ・電力変換装置が搭載される移動体としては、車両に限らず、例えば、航空機又は船舶であってもよい。例えば、移動体が航空機の場合、航空機が備える回転電機は航空機の飛行動力源となり、移動体が船舶の場合、船舶が備える回転電機は船舶の航行動力源となる。また、電力変換装置の搭載先は、移動体に限らない。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (9)

  1.  第1蓄電部(21)、及び前記第1蓄電部の負極側に直列接続された第2蓄電部(22)を有する蓄電装置(20)と、
     上,下アームスイッチ(QUH~QWL)を有するインバータ(30)と、
     前記インバータに接続された巻線(41U~41W)を有する回転電機(40)と、
     前記上アームスイッチの高電位側端子と前記第1蓄電部の正極側とを接続する正極側メイン経路(Lp)と、
     前記下アームスイッチの低電位側端子と前記第2蓄電部の負極側とを接続する負極側メイン経路(Ln)と、
     前記第1蓄電部の負極側と前記第2蓄電部の正極側との電池接続点(B)と、前記巻線の中性点(O)とを接続する中性点経路(Lm)と、
     前記正極側メイン経路、前記負極側メイン経路及び前記中性点経路に設けられたスイッチ(SWp,SWn,SWm)と、
     第1接続端子(C1p,C2p,C3p)及び第2接続端子(C1n,C2n,C3n)を有する電気機器(60~62)と、
     前記正極側メイン経路、前記負極側メイン経路及び前記中性点経路のうち、いずれかである第1対象経路と、前記第1接続端子とを接続する第1接続経路(L1p,L2p,L3p,LcH)と、
     前記正極側メイン経路、前記負極側メイン経路及び前記中性点経路のうち、前記第1対象経路以外のいずれかである第2対象経路と、前記第2接続端子とを接続する第2接続経路(L1n,L2n,L3n)と、を備え、
     前記第1対象経路のうち前記スイッチよりも前記蓄電装置側に前記第1接続経路が接続されている構成、及び前記第2対象経路のうち前記スイッチよりも前記蓄電装置側に前記第2接続経路が接続されている構成の少なくとも一方が用いられている、電力変換装置(10)。
  2.  前記第1対象経路は、前記中性点経路(Lm)であり、
     前記第2対象経路は、前記正極側メイン経路及び前記負極側メイン経路のいずれかである、請求項1に記載の電力変換装置。
  3.  前記電気機器は、外部の充電設備(72)の充電コネクタが接続される充電インレット(62)を有し、
     前記充電インレットの前記第1接続端子(C3p)が接続された前記第1接続経路(L3p)は、前記正極側メイン経路、前記負極側メイン経路及び前記中性点経路のうち、前記中性点経路のみに接続されており、
     前記充電インレットの前記第2接続端子(C3n)が接続された前記第2接続経路(L3n)は、前記正極側メイン経路、前記負極側メイン経路及び前記中性点経路のうち、前記第2対象経路のみに接続されている、請求項2に記載の電力変換装置。
  4.  前記第1対象経路のうち前記スイッチよりも前記蓄電装置側に前記第1接続経路が接続されており、
     前記第2対象経路のうち前記スイッチよりも前記蓄電装置側に前記第2接続経路が接続されている、請求項1~3のいずれか1項に記載の電力変換装置。
  5.  前記第1接続経路及び前記第2接続経路のうち少なくとも一方に設けられた遮断スイッチ(SW1~SW3,SWH)を備える、請求項1~4のいずれか1項に記載の電力変換装置。
  6.  前記上,下アームスイッチのスイッチング制御を実行することにより、前記中性点経路及び前記中性点を介して前記第1蓄電部と前記第2蓄電部との間に流す制御部(90)を備える、請求項1~5のいずれか1項に記載の電力変換装置。
  7.  前記上,下アームスイッチのスイッチング制御を実行することにより、前記中性点経路及び前記中性点を介して前記第1蓄電部と前記第2蓄電部との間に流す制御部(90)と、
     前記第1接続経路及び前記第2接続経路のうち少なくとも一方に設けられた遮断スイッチ(SW1~SW3,SWH)と、を備え、
     前記制御部は、前記スイッチング制御を実行している場合において、前記遮断スイッチをオフする、請求項1~4のいずれか1項に記載の電力変換装置。
  8.  前記電気機器は複数であり、
     前記制御部は、前記各電気機器のうち、少なくとも1つの電気機器に対応する前記遮断スイッチをオフする、請求項7に記載の電力変換装置。
  9.  前記電気機器は、
     外部の充電設備(72)の充電コネクタが接続される充電インレット(62)と、
     外部のAC電源(71)が接続される充電器(61)と、
     給電されることにより駆動する補機(60)と、を有し、
     前記第1接続経路及び前記第2接続経路のうち少なくとも一方に設けられた遮断スイッチ(SW1~SW3,SWH)と、
     前記充電設備から前記充電インレットを介して前記蓄電装置へと充電されている場合において、前記補機に対応する前記遮断スイッチ(SW1)及び前記充電器に対応する前記遮断スイッチ(SW2)の少なくとも一方をオフし、
    前記AC電源から前記充電器を介して前記蓄電装置へと充電されている場合において、前記補機に対応する前記遮断スイッチ(SW1)及び前記充電インレットに対応する前記遮断スイッチ(SW3,SWH,SWL)の少なくとも一方をオフする制御部(90)と、を備える、請求項1又は2に記載の電力変換装置。
PCT/JP2022/021327 2021-06-07 2022-05-25 電力変換装置 WO2022259867A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22820049.9A EP4354723A4 (en) 2021-06-07 2022-05-25 POWER CONVERTER
CN202280040368.3A CN117501617A (zh) 2021-06-07 2022-05-25 电力转换装置
US18/527,515 US20240106367A1 (en) 2021-06-07 2023-12-04 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-095445 2021-06-07
JP2021095445A JP2022187416A (ja) 2021-06-07 2021-06-07 電力変換装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/527,515 Continuation US20240106367A1 (en) 2021-06-07 2023-12-04 Power conversion device

Publications (1)

Publication Number Publication Date
WO2022259867A1 true WO2022259867A1 (ja) 2022-12-15

Family

ID=84425909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021327 WO2022259867A1 (ja) 2021-06-07 2022-05-25 電力変換装置

Country Status (5)

Country Link
US (1) US20240106367A1 (ja)
EP (1) EP4354723A4 (ja)
JP (1) JP2022187416A (ja)
CN (1) CN117501617A (ja)
WO (1) WO2022259867A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246038A (ja) * 2006-03-17 2007-09-27 National Univ Corp Shizuoka Univ 電動車両の電源供給装置
US20090250279A1 (en) * 2008-04-02 2009-10-08 Gm Global Technology Operations, Inc. Power systems for hybrid electric vehicle (hev)
JP2010045961A (ja) * 2008-07-16 2010-02-25 Toyota Central R&D Labs Inc 電力制御装置
US10457151B2 (en) * 2014-12-24 2019-10-29 Hyundai Motor Company Power conversion apparatus and method
WO2021065222A1 (ja) * 2019-10-03 2021-04-08 株式会社Soken 電力変換装置
JP2021095445A (ja) 2019-12-13 2021-06-24 Toyo Tire株式会社 インナーライナー用ゴム組成物、及びそれを用いた空気入りタイヤ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4159517A4 (en) * 2020-05-27 2023-12-20 Denso Corporation POWER SUPPLY SYSTEM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246038A (ja) * 2006-03-17 2007-09-27 National Univ Corp Shizuoka Univ 電動車両の電源供給装置
US20090250279A1 (en) * 2008-04-02 2009-10-08 Gm Global Technology Operations, Inc. Power systems for hybrid electric vehicle (hev)
JP2010045961A (ja) * 2008-07-16 2010-02-25 Toyota Central R&D Labs Inc 電力制御装置
US10457151B2 (en) * 2014-12-24 2019-10-29 Hyundai Motor Company Power conversion apparatus and method
WO2021065222A1 (ja) * 2019-10-03 2021-04-08 株式会社Soken 電力変換装置
JP2021095445A (ja) 2019-12-13 2021-06-24 Toyo Tire株式会社 インナーライナー用ゴム組成物、及びそれを用いた空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4354723A4

Also Published As

Publication number Publication date
EP4354723A1 (en) 2024-04-17
JP2022187416A (ja) 2022-12-19
US20240106367A1 (en) 2024-03-28
EP4354723A4 (en) 2024-10-16
CN117501617A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US9493092B2 (en) Electric automobile
US10836264B2 (en) Drive system
WO2022131019A1 (ja) 電力変換装置
KR20190133396A (ko) 차량 배터리 충전용 전력 변환 장치 및 이의 제어 방법
EP3576273B1 (en) Dc/dc conversion unit
KR102598413B1 (ko) 차량 이동식 발전 시스템 및 방법
WO2021065222A1 (ja) 電力変換装置
US10875418B2 (en) Charge control apparatus and system
US11411410B2 (en) Charging device
JP7205428B2 (ja) 電源装置
US20230086550A1 (en) Power supply system
JP2020005389A (ja) 電源システム
US20180236999A1 (en) Drive system and drive control method
WO2022259867A1 (ja) 電力変換装置
JP2021005944A (ja) 充電システム
JP2020005394A (ja) 電源システム
JP2016063702A (ja) 交流電動機駆動システム
JP7277348B2 (ja) 電力変換装置
WO2024209945A1 (ja) 電源システム
WO2024024425A1 (ja) 電力変換装置、プログラム
JP7099132B2 (ja) 回転電機制御システム
WO2024219146A1 (ja) 電力変換装置
WO2024095381A1 (ja) 切替ユニットおよびシステム
JP2022175119A (ja) 電力変換装置、及びプログラム
JP2022160202A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280040368.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022820049

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022820049

Country of ref document: EP

Effective date: 20240108