JP2010045961A - 電力制御装置 - Google Patents

電力制御装置 Download PDF

Info

Publication number
JP2010045961A
JP2010045961A JP2009163745A JP2009163745A JP2010045961A JP 2010045961 A JP2010045961 A JP 2010045961A JP 2009163745 A JP2009163745 A JP 2009163745A JP 2009163745 A JP2009163745 A JP 2009163745A JP 2010045961 A JP2010045961 A JP 2010045961A
Authority
JP
Japan
Prior art keywords
battery
inverter
positive electrode
motor
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009163745A
Other languages
English (en)
Other versions
JP5644070B2 (ja
Inventor
Yoshitoshi Watanabe
良利 渡辺
Koji Umeno
孝治 梅野
Yasushi Amano
也寸志 天野
Katsuhiro Asano
勝宏 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009163745A priority Critical patent/JP5644070B2/ja
Publication of JP2010045961A publication Critical patent/JP2010045961A/ja
Application granted granted Critical
Publication of JP5644070B2 publication Critical patent/JP5644070B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

【課題】専用の充電器を用いることなく、車載バッテリ等のバッテリを充電する。
【解決手段】電力制御装置は、車載バッテリ10とインバータ14とモータ16とを有し、車載バッテリ10の正極がモータ16の固定子巻線の中性点に接続され、負極がインバータ14の直流側負極に接続される。インバータ14の直流側正極と車載バッテリ10の正極との間に接続されたダイオード整流器を含む充電付加回路18を備え、外部交流電源22は充電付加回路18を介してインバータ14に接続される。インバータ14の正極側のスイッチング素子をオンオフ制御することで車載バッテリ10を充電する。
【選択図】図1

Description

本発明は電力制御装置に関し、例えば車両に搭載されたバッテリ(直流電源)の駆動に関する。
図13に、直流電圧を電力変換器内の電圧型インバータにより多相交流電圧に変換して多相交流電動機を駆動する多相出力電力変換回路の構成を示す。直流電源10の一端をモータ(三相モータ)16のスター結線された固定子巻線の中性点に接続し、直流電源10の他端をインバータ14の直流側に並列接続された平滑コンデンサ12とインバータ14との接続点の一方に接続して、直流電源10の電圧及び電流がインバータ14の交流出力側からモータ16を介して見たときに零相となるように構成する。そして、時間分割により、インバータ14がモータ16との間で電力を授受し、かつ、インバータ14による零電圧ベクトルの出力時に直流電源10との間で零相電力を授受する。
図14に、零相分等価回路を示す。3相電圧形インバータ14の3アームはあたかも零電圧ベクトルの比でスイッチング動作する1つのアームとみなされ、コンバータ(チョッパ)として作用するので、インバータ14により零相電圧を制御することでコンバータを代用することができる。さらに、モータ16は漏れインダクタンスの値をもつリアクトルと考えることができるので、直流電源10とコンデンサ12との間で零相電力を送受することになる。
この従来技術では、1台のインバータ14でモータ16の駆動と同時に直流電源10の電圧の昇降圧動作が可能であり、昇圧コンバータが省略できるため装置構成の簡略化、小型化、低価格化を図ることができる。なお、本発明に関連する先行技術文献として、特許文献1の他に特許文献2,3もある。
特開平10−337047号公報 特許第2695083号公報 特開2007−318970号公報
このように、直流電源10の一端をモータ16の中性点に接続し、他端を平滑コンデンサ12とインバータ14との接続点に接続する構成には利点があるものの、直流電源10に外部電源から充電する場合を想定すると、専用の充電器を用いて直流電源10を充電しなければならない。このため、電気自動車やプラグインハイブリッド自動車のように、商用電源から車載の電池に充電しなければならない場合には、専用の充電器を別途、車両に搭載する必要が生じ、装置の小型化や低価格化の妨げとなる。
本発明の目的は、簡易な構成で車載バッテリ等のバッテリに充電することができる電力制御装置を提供することにある。
本発明に係る電力制御装置は、バッテリと、前記バッテリに接続されたインバータと、前記インバータに接続されたモータと、を有し、外部交流電源は、ダイオード整流器を含む充電付加回路を介して前記インバータに接続され、前記インバータの正極側または負極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電することを特徴とする電力制御装置である。
また、本発明に係る電力制御装置において、好ましくは、前記インバータの正極側または負極側のスイッチング素子の1相のみをオンオフ制御する、または全相を同位相でオンオフ制御する、または全相を位相が120度ずつ異なるキャリア信号を使用してオンオフ制御することで前記外部電源から前記バッテリに充電する。
また、本発明に係る電力制御装置において、好ましくは、前記バッテリの正極が前記モータの固定子巻線の中性点に接続され、負極が前記インバータの直流側負極に接続され、前記充電付加回路は、前記インバータの直流側正極と前記バッテリの正極との間に接続され、前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電する。
また、本発明に係る電力制御装置において、好ましくは、前記バッテリの正極が前記モータの固定子巻線の中性点に接続され、負極が前記インバータの直流側負極に接続され、前記充電付加回路は、前記モータの固定子巻線の中性点と前記インバータの直流側負極との間に第1スイッチを介して接続され、前記バッテリの正極は第2スイッチを介して前記モータの固定子巻線の中性点に接続され、前記バッテリの充電時には前記第1スイッチをオンするとともに前記第2スイッチを切り替えて前記バッテリの正極は前記インバータの直流側正極に接続され、前記インバータの負極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電する。
また、本発明に係る電力制御装置において、好ましくは、前記バッテリの正極が前記モータの固定子巻線の中性点に接続され、負極が前記インバータの直流側負極に接続され、前記充電付加回路は、前記インバータの直流側正極と前記バッテリの負極との間に接続され、前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電する。
また、本発明に係る電力制御装置において、好ましくは、前記バッテリの正極と前記インバータの直流側正極とは第1スイッチを介して接続され、前記バッテリの正極と前記モータの固定子巻線の中性点とは第2スイッチを介して接続され、前記充電付加回路は、前記インバータの直流側正極と前記インバータの直流側負極との間に第3スイッチを介して接続され、前記バッテリの充電時には前記第1スイッチをオフにするとともに前記第2スイッチ及び第3スイッチをオンにして、前記バッテリの正極と前記モータの固定子巻線の中性点とが接続されるとともに前記インバータの直流側正極と前記インバータの直流側負極との間に前記充電付加回路が接続され、前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電する。
また、本発明に係る電力制御装置において、好ましくは、前記バッテリの正極と前記インバータの直流側正極とは第1スイッチを介して接続され、前記バッテリの正極と前記モータの固定子巻線の中性点とは、第2スイッチ、または第2スイッチ及び第3スイッチを介して接続され、前記充電付加回路は、前記インバータの直流側正極と前記モータの固定子巻線の中性点との間に第3スイッチを介して接続され、前記バッテリの充電時には前記第1スイッチをオフにするとともに前記第2スイッチ及び第3スイッチをオンにして、前記バッテリの正極と前記モータの固定子巻線の中性点とが接続されるとともに前記インバータの直流側正極と前記モータの固定子巻線の中性点との間に前記充電付加回路が接続され、前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電する。
また、本発明に係る電力制御装置は、バッテリと、前記バッテリに接続されたインバータと、前記インバータに接続されたモータと、を有し、前記バッテリの正極が前記モータの固定子巻線の中性点に接続され、負極が前記インバータの直流側負極に接続され、前記インバータの直流側正極と前記バッテリの正極または負極との間に外部直流電源を接続するためのコネクタを備え、前記外部直流電源は、前記コネクタを介して前記インバータに接続され、前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部直流電源から前記バッテリに充電することを特徴とする電力制御装置である。
また、本発明に係る電力制御装置は、互いに直列に接続された片側バッテリ及び他側バッテリにより構成する直列接続バッテリと、前記直列接続バッテリに接続されたインバータと、前記インバータに接続されたモータと、を有し、前記片側バッテリの正極側は前記インバータの直流側正極に接続され、前記他側バッテリの負極側は前記インバータの直流側負極に接続され、前記片側バッテリ及び前記他側バッテリの間と前記モータの固定子巻線の中性点との間にスイッチを介してコンデンサを含むフィルタが接続され、前記各バッテリの充電時には前記スイッチをオンにして、前記片側バッテリ及び前記他側バッテリの間と前記モータの固定子巻線の中性点とが前記フィルタを介して接続され、外部交流電源は前記フィルタを介して前記モータの固定子巻線の中性点に接続され、前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記直列接続バッテリに充電することを特徴とする電力制御装置である。
また、本発明に係る電力制御装置は、バッテリと、前記バッテリに接続されたインバータと、前記インバータに接続されたモータと、前記バッテリと前記インバータとの間に、前記インバータに対し並列に接続され、互いに直列に接続された片側コンデンサ及び他側コンデンサにより構成する直列接続コンデンサと、を有し、前記片側コンデンサ及び前記他側コンデンサの間と前記モータの固定子巻線の中性点との間にスイッチを介してコンデンサを含むフィルタが接続され、前記バッテリの充電時には前記スイッチをオンにして、前記片側コンデンサ及び前記他側コンデンサの間と前記モータの固定子巻線の中性点とが前記フィルタを介して接続され、外部交流電源は前記フィルタを介して前記モータの固定子巻線の中性点に接続され、前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電することを特徴とする電力制御装置である。
本発明によれば、専用の充電器を用いることなく、簡易な構成で外部電源から車載バッテリ等のバッテリに充電することができる。
第1実施形態の構成図である。 第2実施形態の構成図である。 第3実施形態の構成図である。 第4実施形態の構成図である。 第5実施形態の構成図である。 第6実施形態の構成図である。 第7実施形態の構成図である。 図7の実施形態において、充電時にインバータ及びモータを利用して電圧変換を行う様子を説明するための回路図である。 第8実施形態の構成図である。 第8実施形態の電流指令生成部の1例を示す図である。 第9実施形態の構成図である。 第10実施形態の構成図である。 第11実施形態の電力制御装置を、ハイブリッド車両を構成するモータ駆動装置と組み合わせた様子を示す回路図である。 従来装置の構成図である。 図13の等価回路図である。
以下、図面に基づき本発明の実施形態について説明する。
<第1実施形態>
図1に、本実施形態の構成を示す。基本構成は従来技術と同様であり、車載バッテリ(直流電源)10の一端(正極側)はモータ(三相モータ)16のスター結線された固定子巻線の中性点に接続され、バッテリ10の他端(負極側)はインバータ14の直流側に並列接続された平滑コンデンサ12とインバータ14との接続点の一方に接続され、バッテリ10の電圧及び電流がインバータ14の交流出力側からモータ16を介して見たときに零相となるように構成する。そして、時間分割により、インバータ14がモータ16との間で電力を授受し、かつ、インバータ14による零電圧ベクトルの出力時にバッテリ10との間で零相電力を授受する。インバータ14は、3相(u相、v相、w相)の各相(各アーム)毎に直列接続される一対のスイッチングトランジスタ(スイッチング素子)、各スイッチングトランジスタに逆並列接続されるダイオードを有する。3相電圧形インバータ14の3アームはあたかも零電圧ベクトルの比でスイッチング動作する1つのアームとみなされ、コンバータ(チョッパ)として作用するので、インバータ14により零相電圧を制御することでコンバータを代用することができる。さらに、モータ16は漏れインダクタンスの値をもつリアクトルと考えることができるので、バッテリ10とコンデンサ12との間で零相電力を送受することになる。
一方、本実施形態では、このような基本構成に加え、充電付加回路18を備える。充電付加回路18にはコネクタ20が接続され、コネクタ20を介して外部交流電源(商用電源)22が接続される。充電付加回路18はダイオード整流器を有し、ダイオード整流器の直流側負極はバッテリ10の正極側に接続され、ダイオード整流器の直流側正極はインバータ14の直流正極側に接続される。外部交流電源22からの電力は充電付加回路18のダイオード整流器で整流される。インバータ14の正極側のスイッチングトランジスタ1相、あるいは全相をオンオフ制御し、整流された電力をバッテリ10に供給して充電する。例えば、インバータ14の正極側のスイッチングトランジスタ全相を同位相でオンオフ制御することで、外部交流電源22からの電力をバッテリ10に充電する。すなわち、インバータ14の正極側のスイッチングトランジスタと負極側のダイオードを利用して、正極側のスイッチングトランジスタの1相のみ、あるいは全相をオンすると、モータ16の漏れリアクトルに外部交流電源22の整流電圧が印加されてリアクトル電流が増大する。その後、オンしているスイッチングトランジスタをオフにすると、モータ16の漏れリアクトルに蓄積されたエネルギがダイオードを介してバッテリ10に供給され、バッテリ10を充電できる。なお、コンデンサ12に大容量のものを使用する場合、充電時に交流側の入力電流波形が歪む可能性がある。このため、図1に示すように、インバータ14にコンデンサ12と並列に、コンデンサ12よりも小容量の第2コンデンサ21を接続することもできる。また、この場合、インバータ14の正極側とダイオード整流器の直流側正極との間の、図1にS1で示す位置にスイッチを設けるとともに、インバータ14の正極側とコンデンサ12との間の、図1にS2で示す位置にスイッチを設けることもできる。このように構成する場合、バッテリ10の充電時には、S2位置のスイッチを切り離し、かつ、S1位置のスイッチを接続し、走行時には、S1位置のスイッチを切り離し、かつ、S2位置のスイッチを接続する。例えば、第2コンデンサ21として、サージ電圧吸収用の小容量のコンデンサを使用することができる。このように構成すれば、充電時に交流側の入力電流波形が歪むのを抑制することができる。
<第2実施形態>
図2に、本実施形態の構成を示す。基本構成は従来技術と同様であり、バッテリ10の一端(正極側)はモータ16のスター結線された固定子巻線の中性点に接続され、バッテリ10の他端(負極側)はインバータ14の直流側に並列接続された平滑コンデンサ12とインバータ14との接続点の一方に接続され、バッテリ10の電圧及び電流がインバータ14の交流出力側からモータ16を介して見たときに零相となるように構成する。そして、時間分割により、インバータ14がモータ16との間で電力を授受し、かつ、インバータ14による零電圧ベクトルの出力時にバッテリ10との間で零相電力を授受する。インバータ14は、3相の各相(各アーム)毎に直列接続される一対のスイッチングトランジスタ、各スイッチングトランジスタに逆並列接続されるダイオードを有する。3相電圧形インバータ14の3アームはあたかも零電圧ベクトルの比でスイッチング動作する1つのアームとみなされ、コンバータとして作用するので、インバータ14により零相電圧を制御することでコンバータを代用することができる。さらに、モータ16は漏れインダクタンスの値をもつリアクトルと考えることができるので、バッテリ10とコンデンサ12との間で零相電力を送受する。
一方、本実施形態では、このような基本構成に加え、コネクタ23を介して外部直流電源24が接続される。外部直流電源24の負極はバッテリ10の正極側に接続され、外部直流電源24の正極はインバータ14の直流正極側に接続される。インバータ14の正極側のスイッチングトランジスタ1相、あるいは全相をオンオフ制御し、整流された電力をバッテリ10に供給して充電する。例えば、インバータ14の正極側のスイッチングトランジスタ全相を同位相でオンオフ制御することで、外部直流電源24からの電力をバッテリ10に充電する。すなわち、インバータ14の正極側のスイッチングトランジスタと負極側のダイオードを利用して、正極側のスイッチングトランジスタの1相のみ、あるいは全相をオンすると、モータ16の漏れリアクトルに外部直流電源24の電圧が印加されてリアクトル電流が増大する。その後、オンしているスイッチングトランジスタをオフにすると、モータ16の漏れリアクトルに蓄積されたエネルギがダイオードを介してバッテリ10に供給され、バッテリ10を充電できる。なお、本実施形態において、図1に示した構成と同様に、インバータ14にコンデンサ12と並列に、コンデンサ12よりも小容量の第2コンデンサ21を接続し、インバータ14の正極側とダイオード整流器の直流側正極との間の、図2にS1で示す位置にスイッチを設けるとともに、インバータ14の正極側とコンデンサ12との間の、図2にS2で示す位置にスイッチを設けることもできる。
<第3実施形態>
図3に、本実施形態の構成を示す。バッテリ10の正極側はスイッチ26を介してインバータ14の直流側に並列接続された平滑コンデンサ12とインバータ14との接続点の一方(インバータ14の直流側正極)に接続され、バッテリ10の他端(負極側)は平滑コンデンサ12とインバータ14との接続点の他方(インバータ直流側負極)に接続される。スイッチ26は接点a、bを有し、スイッチ26を接点a側に切り替えると、バッテリ10の正極側はモータ16のスター結線された固定子巻線の中性点に接続され、バッテリ10の電圧及び電流がインバータ14の交流出力側からモータ16を介して見たときに零相となるように構成される。インバータ14は、3相の各相(各アーム)毎に直列接続される一対のスイッチングトランジスタ、各スイッチングトランジスタに逆並列接続されるダイオードを有する。3相電圧形インバータ14の3アームはあたかも零電圧ベクトルの比でスイッチング動作する1つのアームとみなされ、コンバータとして作用するので、インバータ14により零相電圧を制御することでコンバータを代用することができる。さらに、モータ16は漏れインダクタンスの値をもつリアクトルと考えることができるので、バッテリ10とコンデンサ12との間で零相電力を送受する。
そして、本実施形態では、さらにスイッチ28及び充電付加回路18を備える。充電付加回路18にはコネクタ20が接続され、コネクタ20を介して外部交流電源(商用電源)22が接続される。充電付加回路18はダイオード整流器を有し、ダイオード整流器の直流側負極はバッテリ10の負極側に接続され、ダイオード整流器の直流側正極はスイッチ28を介してモータ16の中性点に接続される。外部交流電源22からの電力は充電付加回路18のダイオード整流器で整流される。
モータ駆動時には既述したようにスイッチ26を接点a側に切り替え、スイッチ28をオフにする。一方、バッテリ10の充電時には、スイッチ26を接点b側に切り替え、スイッチ28をオンにする。このようにスイッチ26,28を切り替えることで、バッテリ10の正極は平滑コンデンサ12とインバータ14の接続点の一方、すなわちインバータ14の直流側正極に接続され、充電付加回路18のダイオード整流器正極がモータ16の中性点に接続される。この回路構成において、インバータ14の負極側のスイッチングトランジスタと正極側のダイオードを利用して、負極側のスイッチングトランジスタの1相のみ、あるいは全相をオンするとモータ16の漏れリアクトルにより外部交流電源22の整流電圧が印加されてリアクトル電流が増大する。その後、オンしているスイッチングトランジスタをオフするとモータ16の漏れリアクトルに蓄積されたエネルギがバッテリ10に供給されて充電される。例えば、インバータ14の負極側のスイッチングトランジスタ全相を同位相でオンオフ制御することで、外部交流電源22からの電力をバッテリ10に充電する。
<第4実施形態>
図4に、本実施形態の構成を示す。基本構成は従来技術と同様であり、バッテリ10の一端(正極側)はモータ16のスター結線された固定子巻線の中性点に接続され、バッテリ10の他端(負極側)はインバータ14の直流側に並列接続された平滑コンデンサ12とインバータ14との接続点の一方(インバータ14の直流側負極)に接続され、バッテリ10の電圧及び電流がインバータ14の交流出力側からモータ16を介して見たときに零相となるように構成する。そして、時間分割により、インバータ14がモータ16との間で電力を授受し、かつ、インバータ14による零電圧ベクトルの出力時にバッテリ10との間で零相電力を授受する。インバータ14は、3相の各相(各アーム)毎に直列接続される一対のスイッチングトランジスタ、各スイッチングトランジスタに逆並列接続されるダイオードを有する。3相電圧形インバータ14の3アームはあたかも零電圧ベクトルの比でスイッチング動作する1つのアームとみなされ、コンバータとして作用するので、インバータ14により零相電圧を制御することでコンバータを代用することができる。さらに、モータ16は漏れインダクタンスの値をもつリアクトルと考えることができるので、バッテリ10とコンデンサ12との間で零相電力を送受する。
一方、本実施形態では、このような基本構成に加え、充電付加回路18を備える。充電付加回路18にはコネクタ20が接続され、コネクタ20を介して外部交流電源(商用電源)22が接続される。充電付加回路18はダイオード整流器を有し、ダイオード整流器の直流側正極は平滑コンデンサ12とインバータ14との接続点(インバータ14の直流側正極)に接続され、ダイオード整流器の直流側負極はバッテリ10の負極側に接続される。外部交流電源22からの電力は充電付加回路18のダイオード整流器で整流される。
インバータ14の正極側のスイッチングトランジスタと負極側のダイオードを利用して、正極側のスイッチングトランジスタの1相のみ、あるいは全相をオンすると外部交流電源22とバッテリ10とが接続されて外部交流電源22からバッテリ10にエネルギが供給される。オンしているスイッチングトランジスタをオフすると外部交流電源22とバッテリ10とが切り離され、リアクトル電流がバッテリ10に流入してバッテリ10が充電される。例えば、インバータ14の正極側のスイッチングトランジスタ全相を同位相でオンオフ制御することで、外部交流電源22からの電力をバッテリ10に充電する。バッテリ10の電圧が外部交流電源22の最大電圧よりも低い場合に有効な充電方式である。なお、本実施形態において、図1に示した構成と同様に、インバータ14にコンデンサ12と並列に、コンデンサ12よりも小容量の第2コンデンサ21を接続し、インバータ14の正極側とダイオード整流器の直流側正極との間の、図2にS1で示す位置にスイッチを設けるとともに、インバータ14の正極側とコンデンサ12との間の、図2にS2で示す位置にスイッチを設けることもできる。
<第5実施形態>
図5に、本実施形態の構成を示す。図2の構成と同様に外部直流電源24によりバッテリ10を充電する構成である。外部直流電源24の正極は平滑コンデンサ12とインバータ14との接続点の一方、すなわちインバータ14の直流側正極に接続され、外部直流電源24の負極はバッテリ10の負極に接続される。
インバータ14の正極側のスイッチングトランジスタと負極側のダイオードを利用して、正極側のスイッチング素子の1相のみ、あるいは全相をオンすると、外部直流電源24とバッテリ10が接続されているため外部直流電源24からバッテリ10にエネルギが供給される。その後、オンしているスイッチングトランジスタをオフすると外部直流電源24とバッテリ10が切り離され、リアクトル電流がバッテリ10に流入するためバッテリ10が充電される。例えば、インバータ14の正極側のスイッチングトランジスタ全相を同位相でオンオフ制御することで、外部交流電源22からの電力をバッテリ10に充電する。バッテリ10の電圧が外部直流電源24の最大電圧よりも低い場合に有効な充電方式である。なお、本実施形態において、図1に示した構成と同様に、インバータ14にコンデンサ12と並列に、コンデンサ12よりも小容量の第2コンデンサ21を接続し、インバータ14の正極側とダイオード整流器の直流側正極との間の、図2にS1で示す位置にスイッチを設けるとともに、インバータ14の正極側とコンデンサ12との間の、図2にS2で示す位置にスイッチを設けることもできる。
<第6実施形態>
図6に、本実施形態の構成を示す。バッテリ10の正極はスイッチ30を介してインバータ14の直流側正極に接続され、バッテリ10の負極はインバータ14の直流側負極に接続される。また、バッテリ10の正極は、スイッチ32を介してモータ16の中性点に接続される。充電付加回路18は、ダイオード整流器を有し、ダイオード整流器の直流側正極はスイッチ34を介してインバータ14の直流側正極に接続され、ダイオード整流器の負極はインバータ14の直流側負極に接続される。充電付加回路18にはコネクタ20が接続され、コネクタ20を介して外部交流電源22が接続される。
モータ16を駆動する場合には、スイッチ30をオンにし、スイッチ32,34をオフにする。一方、バッテリ10を充電する場合には、スイッチ30をオフにし、スイッチ32,34をオンにする。このスイッチの切り替えにより、バッテリ10の正極はモータ16の中性点に接続され、充電付加回路18のダイオード整流器の直流側正極はインバータ14の直流側正極に接続される。この場合、図4の構成と同様となり、インバータ14の正極側のスイッチングトランジスタと負極側のダイオードを利用して、正極側のスイッチングトランジスタの1相のみ、あるいは全相をオンすると外部交流電源22とバッテリ10とが接続されて外部交流電源22からバッテリ10にエネルギが供給される。オンしているスイッチングトランジスタをオフすると外部交流電源22とバッテリ10とが切り離され、リアクトル電流がバッテリ10に流入してバッテリ10が充電される。例えば、インバータ14の正極側のスイッチングトランジスタ全相を同位相でオンオフ制御することで、外部交流電源22からの電力をバッテリ10に充電する。バッテリ10の電圧が外部交流電源22の最大電圧よりも低い場合に有効な充電方式である。
<第7実施形態>
図7、図8に、本実施形態の構成を示す。図7に示すように、バッテリ10の正極は第1スイッチであるスイッチ36を介してインバータ14の直流側正極に接続され、バッテリ10の負極はインバータ14の直流側負極に接続される。また、バッテリ10の正極は、第2スイッチであるスイッチ38、及び第3スイッチであるスイッチ40を介してモータ16の固定子巻線の中性点に接続される。充電付加回路18は、ダイオード整流器を有し、ダイオード整流器の直流側正極はインバータ14の直流側正極に接続され、ダイオード整流器の直流側負極はスイッチ40を介して、モータ16の固定子巻線の中性点に接続されるとともに、スイッチ38を介して、バッテリ10の正極に接続される。すなわち、インバータ14の直流側正極とモータ16の固定子巻線の中性点との間にスイッチ40を介して充電付加回路18が接続されている。充電付加回路18にはコネクタ20が接続され、コネクタ20を介して外部交流電源22が接続される。ダイオード整流器は、例えばダイオード整流ブリッジを含む。
モータ16を駆動する場合には、スイッチ36をオンにし、スイッチ38,40をオフにする。一方、バッテリ10を充電する場合には、スイッチ36をオフにし、スイッチ38,40をオンにする。このスイッチの切り替えにより、バッテリ10の正極はモータ16の中性点に接続され、充電付加回路18のダイオード整流器の直流側正極はインバータ14の直流側正極に接続される。また、充電付加回路18の直流側負極はモータ16の中性点に接続される。この場合、インバータ14の正極側のトランジスタ、IGBT等のスイッチング素子と負極側のダイオードとを利用して、外部交流電源22からバッテリ10への充電が可能となる。図8は、本実施形態において、充電時にインバータ及びモータを利用して電圧変換を行う様子を説明するための回路図である。図8では、インバータ14について、1相のスイッチング素子とダイオードとのみを示している。図8に示すように、インバータ14の正極側の3相のスイッチング素子をオンオフ制御し、充電付加回路18のダイオード整流器で整流された電力をバッテリ10に供給して充電する。この際、インバータ14の正極側のスイッチング素子をオンすると、図8の実線矢印で示す方向に電流が流れる。この場合、電源短絡モードが造られ、モータ16の固定子巻線に外部交流電源22側からエネルギが蓄えられる。これに対して、正極側のスイッチング素子をオフすると、図8の破線矢印で示す方向に電流が流れ、負極側のスイッチング素子に並列接続された、負極側のダイオードを介してモータ16の固定子巻線に蓄積されたエネルギがバッテリ10に供給され、バッテリ10が充電される。すなわち、オンしている正極側のスイッチング素子をオフすると外部交流電源22とバッテリ10とが切り離され、リアクトル電流がバッテリ10に流入してバッテリ10が充電される。例えば、インバータ14の正極側のスイッチング素子全相を同位相でオンオフ制御することで、外部交流電源22からの電力をバッテリ10に充電できる。充電電力と交流入力電流波形とは、インバータ14の正極側スイッチング素子のオンとオフとのデューティ比で制御される。なお、スイッチ40(図7)は、モータ16の固定子巻線の中性点と充電付加回路18のダイオード整流器の直流側負極との間に設けるのではなく、インバータ14の直流側正極と充電付加回路18のダイオード整流器の直流側正極との間である、図7のP位置に設けることもできる。
<第8実施形態>
図9、図10に、本実施形態の構成を示す。図9に示すように、本実施の形態では、図7に示した第7実施形態で、コンデンサとダイオード整流器とを含む充電付加回路18と、コネクタ20との代わりに、EMIフィルタ42とダイオード整流器44とを含む充電付加回路19を設けている。なお、充電付加回路19と外部交流電源22との間にコネクタ20(図7参照)を設けることもできる。EMIフィルタ42は、交流フィルタであり、コンデンサを含む。EMIフィルタ42は、インバータ14のスイッチングに起因する交流入力電流のリップルを除去する機能を有する。ダイオード整流器44は、例えばダイオード整流ブリッジを含む。
また、本実施の形態の電力制御装置は、インバータ14に接続されたモータ16が有するリアクトル成分の電流であって、モータ16の固定子巻線の中性点電流を検出する電流検出部である電流センサ46と、制御部48とを備える。制御部48は、CPU、メモリ等を有するマイクロコンピュータ等を含み、減算器50と、演算部52と、3相キャリア信号出力部54と、3相PWM信号出力部56とを有する。減算器50は、充電電力に対応する外部交流電源22に対し、正弦波の電流指令値の絶対値に対応する値であり、力率1の正弦波の電流指令値の絶対値|i*|と、電流センサ46で検出したモータ16の中性点電流iとの偏差を演算部52に出力する。
なお、電流指令値の絶対値|i*|を使用するのは、半波整流とするためである。また、力率1の正弦波の電流指令値の絶対値|i*|を求めるために、例えば、制御部48は、図10に示す電流指令生成部60を有し、図示しない外部制御部から受ける充放電電力指令値PR、及び、外部交流電源22の電圧VA(V(t))を検出する電圧センサ(図示せず)からの検出値に基づいて、外部交流電源22に対して力率1の正弦波の電流指令値の絶対値|i*|を生成する。例えば、電流指令生成部60は、実効値演算部62と、位相検出部64と、正弦波生成部66と、除算部68と、乗算部70と、絶対値算出部72とを有する。実効値演算部62は、外部交流電源22(図9)の電圧VAからピーク電圧を検出し、検出したピーク電圧に基づいて電圧VAの実効値を算出する。位相検出部64は、電圧VAのゼロクロス点を算出し、検出したゼロクロス点に基づいて電圧VAの位相を検出する。
正弦波生成部66は、位相検出部64によって検出された電圧VAの位相に基づいて、例えば、正弦波関数のテーブルを用いて、電圧VAと同相の正弦波を生成する。除算部68は、実効値演算部62からの電圧VAの実効値により充放電電力指令値PRを除算し、その演算結果を乗算部70へ出力し、乗算部70では、除算部68の演算結果に正弦波生成部66からの正弦波を乗算する。絶対値算出部72では、乗算部70の演算結果の絶対値を算出し、その算出結果を電流指令の絶対値|i*|として出力する。電流指令生成部60の出力|i*|は、減算器50(図9)に入力する。なお、電圧VAの実効値と位相とを利用するものであれば、電流指令生成の絶対値はこのような方法で生成するものに限らず種々の方法で生成できる。例えば、電流指令生成の絶対値を予め定めておくこともできる。
図9に戻り、演算部52は、減算器50から入力された偏差が0になるようにインバータ14駆動用の制御電圧指令値を、例えばPI制御のような制御則で演算する。すなわち、演算部52は、偏差に基づいてインバータ14に入力する制御電圧指令値を演算する。
3相キャリア信号出力部54は、位相が120度ずつ異なる3相のキャリア信号C1、C2、C3を出力する。すなわち、3相のキャリア信号C1、C2、C3は、それぞれ位相が0度、120度、240度のPWMキャリア信号である。尚、本実施の形態で、3相とは、モータ16の駆動のためにインバータ14に電流を供給する場合の、モータ16のU,V,W相に対応する3相をいう。
3相PWM信号出力部56は、コンパレータ58を有し、演算部52で演算して得られた制御電圧指令値と、位相が120度ずつ異なる3相のキャリア信号C1、C2、C3とをコンパレータ58で比較して得られた算出値に応じて、位相が120度ずつ異なる各相用のPWM信号Pu,Pv,Pwを生成する。そして、3相PWM信号出力部56は、インバータ14を構成する3相のアームAu,Av,Awの正極側のスイッチング素子のゲートに、各相用のPWM信号Pu,Pv,Pwを出力する。
このような電力制御装置により、3相PWM信号出力部56からインバータ14の3相の正極側のスイッチング素子のゲートに各相用のPWM信号Pu,Pv,Pwが出力され、インバータ14の正極側のスイッチング素子を、各相のスイッチング素子同士でスイッチングするタイミングを120度ずつ位相をずらせるようにオンオフ制御される。すなわち、インバータ14の正極側のスイッチング素子の全相を、位相が120度ずつ異なるキャリア信号を使用してオンオフ制御する。このため、外部交流電源22からバッテリ10への充電が可能となる。本実施形態の場合、インバータ14及びモータ16は、充電する場合に昇降圧装置としての機能を有し、外部交流電源22からダイオード整流器44を介してインバータ14に送られた直流電圧を、インバータ14とモータ16とで昇圧または降圧してバッテリ10に供給する。また、インバータ14のスイッチング素子をオフとなるように制御することで、外部交流電源22からダイオード整流器44を介してインバータ14に送られた直流電圧を、昇降圧させることなくバッテリ10に供給することもできる。
このような構成によれば、専用の充電器を用いることなく外部からの車載のバッテリ10の充電を可能とし、かつ、電流リップルを除去するための電気部品の小型化を図れ、かつ、充電時にモータ16での効率向上を図れる。具体的には本実施形態によれば、モータ16の中性点を利用して零相の電流を制御しているため、充電の際にモータ16にトルクが生じず、モータ16が回転しない。また、充電機能を持たないモータ駆動装置にダイオード整流器44を追加し、外部交流電源22の電圧を直流に変換し、ダイオード整流器44の直流側からバッテリ10側を見た構成は、等価的に昇降圧コンバータと等価な回路構成となる。このため、外部交流電源22よりも高い、または低い電圧のバッテリへ充電することが可能となる。
また、インバータ14のスイッチング動作で外部交流電源22の電流を正弦波状に近い波形に制御できるため、高調波電流の発生も抑制できる。この際、U相、V相、W相の3相のキャリア信号C1,C2,C3の位相を120度ずつずらしているので、スイッチング周波数に対して、モータ16の相の自己インダクタンス及び相互インダクタンスが利用できるようになる。このため、各相の固定子巻線を流れる電流のリップルが低減され、さらに、3相の電流の合成により得られる、中性点から流出する電流リップルの周波数がキャリア信号C1,C2,C3の位相をずらせない場合に比べて3倍となる。この結果、外部交流電源22の電流のリップルの値が大幅に低減され、電流リップルを除去するための電気部品である、EMIフィルタ42を小型化できる。
また、充電時にモータ16のインダクタンスを等価的に大きくできる。このため、同じスイッチング素子を使用する場合において、流れる電流を小さくできるため、損失を小さくでき、出力を大きくできる。したがって、充電時のモータ16での効率向上を図れる。また、同じ出力を得る場合にモータ16の小型化も図れる。なお、スイッチ40を図9に示す位置に設けるのではなく、インバータ14の直流側正極とダイオード整流器44との間の、図9に点Pで示す位置、または、モータ16の固定子巻線の中性点とダイオード整流器44との間の、図9に点Qで示す位置にスイッチ40を設けることもできる。
なお、本実施形態と異なり、上記の特許文献2では、外部の交流電源と蓄電池との間で電力を授受可能なモータ駆動力処理装置が開示されている。このモータ駆動力処理装置は、蓄電池と、インバータIA,IBと、誘導電動機MA,MBと、制御回路とを備える。誘導電動機MA,MBは、Y結線された巻線CA,CBをそれぞれ含む。巻線CA,CBの中性点NA,NBには、EMIフィルタを介して入出力ポートが接続される。インバータIA,IBは、それぞれ誘導電動機MA,MBに対応して設けられ、それぞれ巻線CA,CBに接続される。インバータIA,IBは、蓄電池に並列に接続される。このモータ駆動装置においては、再充電モードで作動する場合、入出力ポートに接続される単相電源から単相再充電電力を、巻線CA,CBの中性点NA,NB節に印加することができ、単相の調整された交流電力を中性点NA,NB節から得ることができるとされている。
ただし、このような特許文献2に記載のモータ駆動力処理装置の場合、2台のインバータIA,IBと、2台の誘導電動機MA,MBで等価的に単相ブリッジコンバータを構成し、単相交流電圧を直流電圧に変換している。このため、この直流電圧値は、単相交流電圧の最大値以上となる。したがって、電池電圧がこの電圧よりも低い場合には、さらに降圧コンバータを用いて直流電圧を電池電圧まで降圧する必要が生じる。このため、降圧コンバータの追加により、装置全体が大型化し、コスト及び損失が増加する原因となっている。これに対して、本実施形態の構成の場合には、このような降圧コンバータを追加することなく、外部交流電源22からの電圧を適切な電池電圧まで降圧させてバッテリ10を充電することができ、特許文献2に記載の技術に対して有利な効果を得られる。
<第9実施形態>
図11Aに、本実施形態の構成を示す。本実施の形態の電力制御装置の電気回路は、ハーフブリッジ形と呼ばれるもので、電力制御装置は、バッテリとして、それぞれ片側蓄電部、他側蓄電部である、片側バッテリ74と他側バッテリ76とを直列接続した直列接続バッテリ(直列接続蓄電部)78を使用している。また、片側バッテリ74の正極をインバータ14の直流側正極に接続し、他側バッテリ76の負極をインバータ14の直流側負極に接続している。また、コンデンサを含み、ダイオード整流器が省略された充電付加回路である、EMIフィルタ42は、直列接続バッテリ78の中点である、片側バッテリ74の負極及び他側バッテリ76の正極の間と、モータ16の固定子巻線の中性点との間にスイッチ80を介して接続している。また、外部交流電源22は、EMIフィルタ42を介して、モータ16の固定子巻線の中性点と、片側バッテリ74の負極及び他側バッテリ76の正極の間とに接続している。
モータ16を駆動する場合には、スイッチ80をオフにする。一方、直列接続バッテリ78を充電する場合には、スイッチ80をオンにして、片側バッテリ74及び他側バッテリ76の間とモータ16の固定子巻線の中性点とをEMIフィルタ42を介して接続する。この場合、インバータ14の正極側のスイッチング素子と負極側のダイオードを利用して、外部交流電源22から直列接続バッテリ78に充電することができる。例えば、インバータ14の正極側のスイッチング素子の全相を同位相でオンオフ制御することで、外部交流電源22からの電力を直列接続バッテリ78に充電する。このような構成では、直列接続バッテリ78の両端間の電圧は、外部交流電源22の電圧の2倍となる。また、本実施形態では、外部交流電源22から直列接続バッテリ78に充電するだけでなく、直列接続バッテリ78側から負荷側に電力を取り出すこともでき、双方向の充放電が可能となる。また、モータ16の固定子巻線の中性点を流れる電流を検出する電流センサ46(図9参照)を設けて、図9、図10に示した第8実施形態の場合と同様に、直列接続バッテリ78の充電時に電流センサ46の検出値を利用して、インバータ14のスイッチング素子のオンオフを制御することもできる。また、直列接続バッテリ78の代わりに、それぞれ蓄電部である片側コンデンサ及び他側コンデンサを直列に接続した直列接続コンデンサを使用することもできる。
<第10実施形態>
図11Bに、本実施形態の構成を示す。本実施の形態の電力制御装置の電気回路も、ハーフブリッジ形と呼ばれるもので、電力制御装置は、バッテリ10とインバータ14との間に、インバータ14に対し並列に直列接続コンデンサ92を接続している。直列接続コンデンサ92は、片側コンデンサ94と他側コンデンサ96とを2個直列に接続している。また、コンデンサを含み、ダイオード整流器が省略された充電付加回路である、EMIフィルタ42は、直列接続コンデンサ92の中点である、2個のコンデンサ94,96の間と、モータ16の固定子巻線の中性点との間にスイッチ80を介して接続している。また、外部交流電源22は、EMIフィルタ42を介して、モータ16の固定子巻線の中性点と、2個のコンデンサ94,96の間とに接続している。このような直列接続コンデンサ92として、バッテリ10に並列に接続されるフィルタコンデンサを使用でき、上記の図11Aの第9実施の形態の場合と異なり、バッテリ10の中性点を使えないまたは使いにくい場合に、フィルタコンデンサの中性点を使用して回路を構成することができる。
このような図11Bの構成は、等価回路的に上記の図11Aに示した第9実施形態の構成と同様な効果を得られる。その他の構成及び作用は、上記の第9実施形態と同様である。すなわち、バッテリ10の充電時には前記スイッチ80をオンにして、片側コンデンサ94及び他側コンデンサ96の間とモータ16の固定子巻線の中性点とがEMIフィルタ42を介して接続され、外部交流電源22はEMIフィルタ42を介してモータ16の固定子巻線の中性点に接続される。そして、インバータ14の正極側のスイッチング素子をオンオフ制御することで外部交流電源22からバッテリ10に充電する。
<第11実施形態>
図12は、本実施形態の電力制御装置を、電動車両であるハイブリッド車両を構成するモータ駆動装置と組み合わせた様子を示す回路図である。本実施形態の電力制御装置は、発電機である第1モータジェネレータ82と、走行用モータである第2モータジェネレータ84と、図示しないエンジンとを備えるハイブリッド車両に搭載して使用する。エンジン及び第2モータジェネレータ84は、ハイブリッド車両の駆動源として使用する。第1モータジェネレータ82は、主として発電機として使用するが、モータとしての機能も有する。第2モータジェネレータ84は、主としてモータとして使用するが、発電機としての機能も有する。
各モータジェネレータ82,84の回転軸及びエンジンの出力軸は、遊星歯車機構により構成する動力分割機構(図示せず)により結合し、第1モータジェネレータ82によりエンジンを駆動可能とし、第2モータジェネレータ84の動力を、図示しない減速機構等を介して車輪に連結された動力伝達軸(図示せず)に取り出し可能としている。モータ駆動装置は、バッテリ10と、各モータジェネレータ82,84と、バッテリ10から電力が供給される、各モータジェネレータ82,84駆動用の2個のインバータ86,88と、バッテリ10と各インバータ86,88との間に接続された昇降圧コンバータ90とを備える。
本実施形態では、このようなモータ駆動装置に、モータ駆動装置用のバッテリ10を使用するように、電力制御装置を接続している。電力制御装置自体の構成は、上記の図9、図10に示した第8実施形態の場合と同様である。本実施形態では、電力制御装置を構成するモータとして、車両に搭載される空気調和装置(エアコン)のコンプレッサ(図示せず)を駆動するモータである、補機用のモータ16を使用する。また、電力制御装置を構成するインバータとして、このモータ16を駆動するインバータである、補機用のインバータ14を使用する。このように構成するため、電力制御装置を構成するバッテリ10は、第2モータジェネレータ84と空気調和装置用のモータ16との共通する電力源として使用する。このような本実施形態の場合、空気調和装置用のモータ16とインバータ14とを用いて、外部交流電源22からバッテリ10に充電することが可能となる。
このような本実施形態によれば、電力制御装置を構成するモータとして車両駆動用の第2モータジェネレータ84等の、走行用モータを使用する場合に比べて、小型のモータ16を使用できるため、制御用の周波数を高くできることにより制御性を高くでき、漏れノイズも小さくでき、さらに高効率化を図れる。その他の構成及び作用は、上記の図9、図10に示した第8実施形態と同様である。
以上説明したように、本実施形態では、専用の充電器を設ける必要が無く、簡易に外部交流電源あるいは外部直流電源から車載のバッテリ10等のバッテリ、コンデンサ等の蓄電部を充電することが可能である。
10 直流電源,バッテリ(車載バッテリ)、12 平滑コンデンサ、14 インバータ、16 モータ(3相モータ)、18,19 充電付加回路、20 コネクタ、21 第2コンデンサ、22 外部交流電源、23 コネクタ、24 外部直流電源、26,28,30,32,34,36,38 スイッチ、42 EMIフィルタ、44 ダイオード整流器、46 電流センサ、48 制御部、50 減算器、52 演算部、54 3相キャリア信号出力部、56 3相PWM信号出力部、58 コンパレータ、60 電流指令生成部、62 実効値演算部、64 位相検出部、66 正弦波生成部、68 除算部、70 乗算部、72 絶対値算出部、74 片側バッテリ、76 他側バッテリ、78 直列接続バッテリ、80 スイッチ、82 第1モータジェネレータ、84 第2モータジェネレータ、86,88 インバータ、90 昇降圧コンバータ、92 直列接続コンデンサ、94 片側コンデンサ、96 他側コンデンサ。

Claims (10)

  1. バッテリと、
    前記バッテリに接続されたインバータと、
    前記インバータに接続されたモータと、
    を有し、
    外部交流電源は、ダイオード整流器を含む充電付加回路を介して前記インバータに接続され、前記インバータの正極側または負極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電することを特徴とする電力制御装置。
  2. 請求項1に記載の電力制御装置において、
    前記インバータの正極側または負極側のスイッチング素子の1相のみをオンオフ制御する、または全相を同位相でオンオフ制御する、または全相を位相が120度ずつ異なるキャリア信号を使用してオンオフ制御することで前記外部交流電源から前記バッテリに充電することを特徴とする電力制御装置。
  3. 請求項1または請求項2に記載の電力制御装置において、
    前記バッテリの正極が前記モータの固定子巻線の中性点に接続され、負極が前記インバータの直流側負極に接続され、
    前記充電付加回路は、前記インバータの直流側正極と前記バッテリの正極との間に接続され、
    前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電することを特徴とする電力制御装置。
  4. 請求項1または請求項2に記載の電力制御装置において、
    前記バッテリの正極が前記モータの固定子巻線の中性点に接続され、負極が前記インバータの直流側負極に接続され、
    前記充電付加回路は、前記モータの固定子巻線の中性点と前記インバータの直流側負極との間に第1スイッチを介して接続され、
    前記バッテリの正極は第2スイッチを介して前記モータの固定子巻線の中性点に接続され、
    前記バッテリの充電時には前記第1スイッチをオンするとともに前記第2スイッチを切り替えて前記バッテリの正極は前記インバータの直流側正極に接続され、
    前記インバータの負極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電することを特徴とする電力制御装置。
  5. 請求項1または請求項2に記載の電力制御装置において、
    前記バッテリの正極が前記モータの固定子巻線の中性点に接続され、負極が前記インバータの直流側負極に接続され、
    前記充電付加回路は、前記インバータの直流側正極と前記バッテリの負極との間に接続され、
    前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電することを特徴とする電力制御装置。
  6. 請求項1または請求項2に記載の電力制御装置において、
    前記バッテリの正極と前記インバータの直流側正極とは第1スイッチを介して接続され、
    前記バッテリの正極と前記モータの固定子巻線の中性点とは第2スイッチを介して接続され、
    前記充電付加回路は、前記インバータの直流側正極と前記インバータの直流側負極との間に第3スイッチを介して接続され、
    前記バッテリの充電時には前記第1スイッチをオフにするとともに前記第2スイッチ及び第3スイッチをオンにして、前記バッテリの正極と前記モータの固定子巻線の中性点とが接続されるとともに前記インバータの直流側正極と前記インバータの直流側負極との間に前記充電付加回路が接続され、
    前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電することを特徴とする電力制御装置。
  7. 請求項1または請求項2に記載の電力制御装置において、
    前記バッテリの正極と前記インバータの直流側正極とは第1スイッチを介して接続され、
    前記バッテリの正極と前記モータの固定子巻線の中性点とは、第2スイッチ、または第2スイッチ及び第3スイッチを介して接続され、
    前記充電付加回路は、前記インバータの直流側正極と前記モータの固定子巻線の中性点との間に第3スイッチを介して接続され、
    前記バッテリの充電時には前記第1スイッチをオフにするとともに前記第2スイッチ及び第3スイッチをオンにして、前記バッテリの正極と前記モータの固定子巻線の中性点とが接続されるとともに前記インバータの直流側正極と前記モータの固定子巻線の中性点との間に前記充電付加回路が接続され、
    前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電することを特徴とする電力制御装置。
  8. バッテリと、
    前記バッテリに接続されたインバータと、
    前記インバータに接続されたモータと、
    を有し、前記バッテリの正極が前記モータの固定子巻線の中性点に接続され、負極が前記インバータの直流側負極に接続され、
    前記インバータの直流側正極と前記バッテリの正極または負極との間に外部直流電源を接続するためのコネクタを備え、
    前記外部直流電源は、前記コネクタを介して前記インバータに接続され、前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部直流電源から前記バッテリに充電することを特徴とする電力制御装置。
  9. 互いに直列に接続された片側バッテリ及び他側バッテリにより構成する直列接続バッテリと、
    前記直列接続バッテリに接続されたインバータと、
    前記インバータに接続されたモータと、
    を有し、
    前記片側バッテリの正極側は前記インバータの直流側正極に接続され、
    前記他側バッテリの負極側は前記インバータの直流側負極に接続され、
    前記片側バッテリ及び前記他側バッテリの間と前記モータの固定子巻線の中性点との間にスイッチを介してコンデンサを含むフィルタが接続され、
    前記各バッテリの充電時には前記スイッチをオンにして、前記片側バッテリ及び前記他側バッテリの間と前記モータの固定子巻線の中性点とが前記フィルタを介して接続され、
    外部交流電源は前記フィルタを介して前記モータの固定子巻線の中性点に接続され、
    前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記直列接続バッテリに充電することを特徴とする電力制御装置。
  10. バッテリと、
    前記バッテリに接続されたインバータと、
    前記インバータに接続されたモータと、
    前記バッテリと前記インバータとの間に、前記インバータに対し並列に接続され、互いに直列に接続された片側コンデンサ及び他側コンデンサにより構成する直列接続コンデンサと、を有し、
    前記片側コンデンサ及び前記他側コンデンサの間と前記モータの固定子巻線の中性点との間にスイッチを介してコンデンサを含むフィルタが接続され、
    前記バッテリの充電時には前記スイッチをオンにして、前記片側コンデンサ及び前記他側コンデンサの間と前記モータの固定子巻線の中性点とが前記フィルタを介して接続され、
    外部交流電源は前記フィルタを介して前記モータの固定子巻線の中性点に接続され、
    前記インバータの正極側のスイッチング素子をオンオフ制御することで前記外部交流電源から前記バッテリに充電することを特徴とする電力制御装置。
JP2009163745A 2008-07-16 2009-07-10 電力制御装置 Expired - Fee Related JP5644070B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163745A JP5644070B2 (ja) 2008-07-16 2009-07-10 電力制御装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008185179 2008-07-16
JP2008185179 2008-07-16
JP2009163745A JP5644070B2 (ja) 2008-07-16 2009-07-10 電力制御装置

Publications (2)

Publication Number Publication Date
JP2010045961A true JP2010045961A (ja) 2010-02-25
JP5644070B2 JP5644070B2 (ja) 2014-12-24

Family

ID=42016841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163745A Expired - Fee Related JP5644070B2 (ja) 2008-07-16 2009-07-10 電力制御装置

Country Status (1)

Country Link
JP (1) JP5644070B2 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010426A (ja) * 2009-06-25 2011-01-13 Toyota Central R&D Labs Inc 電力制御装置
JP2011015495A (ja) * 2009-06-30 2011-01-20 Toyota Central R&D Labs Inc 電力制御装置
WO2012035832A1 (ja) * 2010-09-14 2012-03-22 ヤンマー株式会社 電動作業機
JP2012110090A (ja) * 2010-11-16 2012-06-07 Denso Corp 車両のモータ制御装置
JP2012135173A (ja) * 2010-12-24 2012-07-12 Toyota Central R&D Labs Inc バッテリの充電装置
WO2012157116A1 (ja) * 2011-05-19 2012-11-22 トヨタ自動車株式会社 車両の電源装置
JP2013009587A (ja) * 2011-06-23 2013-01-10 Ls Industrial Systems Co Ltd 電気自動車のスイッチング装置及びその制御方法
CN103081347A (zh) * 2010-06-29 2013-05-01 Ac动力公司 具有集成充电装置的开放式三角电机驱动器
KR20130095083A (ko) * 2012-02-17 2013-08-27 엘지전자 주식회사 전기 자동차 및 이의 구동 방법
CN103427456A (zh) * 2012-05-21 2013-12-04 Ls产电株式会社 用于电动车的逆变器-充电器组合设备及其方法
JP2014502130A (ja) * 2010-09-07 2014-01-23 ルノー エス.ア.エス. 自動車用バッテリ充電装置及びその制御方法
KR20160010158A (ko) * 2014-07-18 2016-01-27 자동차부품연구원 충전기 내장형 전기 구동 장치
FR3028683A1 (fr) * 2014-11-17 2016-05-20 Lohr Electromecanique Procede de recharge de moyens d'accumulation d'energie equipant un vehicule electrique ou hybride
WO2016207969A1 (ja) * 2015-06-23 2016-12-29 日産自動車株式会社 充電共用インバータ
JP2017530678A (ja) * 2014-09-22 2017-10-12 ルノー エス.ア.エス. 電気自動車またはハイブリッド自動車に用いられる、ガルバニック絶縁なしのバッテリ充電器の中性電流設定値を補正する装置及び方法
JP2017200428A (ja) * 2016-04-25 2017-11-02 ゼネラル・エレクトリック・カンパニイ 車両用統合充電器およびその製造方法
EP3487029A1 (en) * 2017-11-15 2019-05-22 Danfoss Mobile Electrification Oy A power converter, an electric power system, and a method for controlling an electric power system
JP2020537479A (ja) * 2017-10-13 2020-12-17 ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロントThe Governing Council Of The University Of Toronto 電動車両用オンボード双方向ac急速充電器
CN112537214A (zh) * 2019-09-20 2021-03-23 丰田自动车株式会社 电源装置
JP2021061691A (ja) * 2019-10-07 2021-04-15 トヨタ自動車株式会社 電動車両の電源回路
WO2022259867A1 (ja) * 2021-06-07 2022-12-15 株式会社デンソー 電力変換装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018004748A2 (pt) 2015-09-11 2018-09-25 Invertedpower Pty Ltd controlador para uma carga indutiva tendo um ou mais enrolamentos indutivos
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207664A (ja) * 1992-01-24 1993-08-13 Nissan Motor Co Ltd 電気自動車
JPH0787616A (ja) * 1993-09-17 1995-03-31 Matsushita Electric Ind Co Ltd 電気自動車の充電方法および電気自動車用充電回路
JPH08126122A (ja) * 1994-10-26 1996-05-17 Meidensha Corp 電気自動車用充電器
JPH08126121A (ja) * 1994-10-19 1996-05-17 Toyota Motor Corp 電気自動車の車載充電装置
JPH09233709A (ja) * 1996-02-29 1997-09-05 Denso Corp 電気自動車用充電器
JPH09322413A (ja) * 1996-06-04 1997-12-12 Matsushita Electric Ind Co Ltd 電気自動車の充電方法および電気自動車用充電回路
JPH10304688A (ja) * 1997-04-24 1998-11-13 Nippon Densan Corp 充電回路付き駆動装置
JPH10337047A (ja) * 1997-06-03 1998-12-18 Fuji Electric Co Ltd 多相出力電力変換回路
JPH1198713A (ja) * 1997-09-25 1999-04-09 Aisin Aw Co Ltd 充電制御装置及び充電制御方法
JP2002153090A (ja) * 2000-11-15 2002-05-24 Toyota Motor Corp 動力出力装置およびその制御方法
JP2002165370A (ja) * 2000-11-27 2002-06-07 Toyota Motor Corp 充電装置および電動車輌
JP2007195336A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp 車両の電源装置
JP2009065808A (ja) * 2007-09-10 2009-03-26 Toyota Motor Corp 電気自動車用充電装置及び制御方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207664A (ja) * 1992-01-24 1993-08-13 Nissan Motor Co Ltd 電気自動車
JPH0787616A (ja) * 1993-09-17 1995-03-31 Matsushita Electric Ind Co Ltd 電気自動車の充電方法および電気自動車用充電回路
JPH08126121A (ja) * 1994-10-19 1996-05-17 Toyota Motor Corp 電気自動車の車載充電装置
JPH08126122A (ja) * 1994-10-26 1996-05-17 Meidensha Corp 電気自動車用充電器
JPH09233709A (ja) * 1996-02-29 1997-09-05 Denso Corp 電気自動車用充電器
JPH09322413A (ja) * 1996-06-04 1997-12-12 Matsushita Electric Ind Co Ltd 電気自動車の充電方法および電気自動車用充電回路
JPH10304688A (ja) * 1997-04-24 1998-11-13 Nippon Densan Corp 充電回路付き駆動装置
JPH10337047A (ja) * 1997-06-03 1998-12-18 Fuji Electric Co Ltd 多相出力電力変換回路
JPH1198713A (ja) * 1997-09-25 1999-04-09 Aisin Aw Co Ltd 充電制御装置及び充電制御方法
JP2002153090A (ja) * 2000-11-15 2002-05-24 Toyota Motor Corp 動力出力装置およびその制御方法
JP2002165370A (ja) * 2000-11-27 2002-06-07 Toyota Motor Corp 充電装置および電動車輌
JP2007195336A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp 車両の電源装置
JP2009065808A (ja) * 2007-09-10 2009-03-26 Toyota Motor Corp 電気自動車用充電装置及び制御方法

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010426A (ja) * 2009-06-25 2011-01-13 Toyota Central R&D Labs Inc 電力制御装置
JP2011015495A (ja) * 2009-06-30 2011-01-20 Toyota Central R&D Labs Inc 電力制御装置
CN103081347A (zh) * 2010-06-29 2013-05-01 Ac动力公司 具有集成充电装置的开放式三角电机驱动器
JP2013531461A (ja) * 2010-06-29 2013-08-01 エーシー プロパルジョン, インコーポレッド 一体型充電を用いたオープンデルタモータ駆動装置
JP2014502130A (ja) * 2010-09-07 2014-01-23 ルノー エス.ア.エス. 自動車用バッテリ充電装置及びその制御方法
KR101860412B1 (ko) 2010-09-07 2018-05-23 르노 에스.아.에스. 자동차 배터리를 재충전하기 위한 기기 및 그 기기를 관리하기 위한 방법
WO2012035832A1 (ja) * 2010-09-14 2012-03-22 ヤンマー株式会社 電動作業機
JP2012110090A (ja) * 2010-11-16 2012-06-07 Denso Corp 車両のモータ制御装置
JP2012135173A (ja) * 2010-12-24 2012-07-12 Toyota Central R&D Labs Inc バッテリの充電装置
WO2012157116A1 (ja) * 2011-05-19 2012-11-22 トヨタ自動車株式会社 車両の電源装置
CN103547474A (zh) * 2011-05-19 2014-01-29 丰田自动车株式会社 车辆的电源装置
CN103547474B (zh) * 2011-05-19 2015-11-25 丰田自动车株式会社 车辆的电源装置
JP2013009587A (ja) * 2011-06-23 2013-01-10 Ls Industrial Systems Co Ltd 電気自動車のスイッチング装置及びその制御方法
EP2537701A3 (en) * 2011-06-23 2017-03-22 LSIS Co., Ltd. Switching device for electric vehicle and method of controlling the switching device
US8981730B2 (en) 2011-06-23 2015-03-17 Lsis Co., Ltd. Switching device for electric vehicle and method of controlling the switching device
KR20130095083A (ko) * 2012-02-17 2013-08-27 엘지전자 주식회사 전기 자동차 및 이의 구동 방법
KR102010294B1 (ko) * 2012-02-17 2019-08-13 엘지전자 주식회사 전기 자동차 및 이의 구동 방법
JP2013243920A (ja) * 2012-05-21 2013-12-05 Ls Industrial Systems Co Ltd 電気自動車用インバータ−充電器統合装置及び制御方法
US9496804B2 (en) 2012-05-21 2016-11-15 Lsis Co., Ltd. Inverter-charger combined device for electric vehicles and method thereof
CN103427456A (zh) * 2012-05-21 2013-12-04 Ls产电株式会社 用于电动车的逆变器-充电器组合设备及其方法
CN103427456B (zh) * 2012-05-21 2015-08-19 Ls产电株式会社 用于电动车的逆变器-充电器组合设备及其方法
KR20160010158A (ko) * 2014-07-18 2016-01-27 자동차부품연구원 충전기 내장형 전기 구동 장치
JP2017530678A (ja) * 2014-09-22 2017-10-12 ルノー エス.ア.エス. 電気自動車またはハイブリッド自動車に用いられる、ガルバニック絶縁なしのバッテリ充電器の中性電流設定値を補正する装置及び方法
WO2016079413A1 (fr) * 2014-11-17 2016-05-26 Lohr Electromecanique Procédé de recharge de moyens d'accumulation d'énergie équipant un véhicule électrique ou hybride
FR3028683A1 (fr) * 2014-11-17 2016-05-20 Lohr Electromecanique Procede de recharge de moyens d'accumulation d'energie equipant un vehicule electrique ou hybride
RU2671947C1 (ru) * 2015-06-23 2018-11-08 Ниссан Мотор Ко., Лтд. Инвертор с возможностью заряда
WO2016207969A1 (ja) * 2015-06-23 2016-12-29 日産自動車株式会社 充電共用インバータ
US10439516B2 (en) 2015-06-23 2019-10-08 Nissan Motor Co., Ltd. Inverter with charging capability
JPWO2016207969A1 (ja) * 2015-06-23 2018-04-05 日産自動車株式会社 充電共用インバータ
KR101853600B1 (ko) 2015-06-23 2018-04-30 닛산 지도우샤 가부시키가이샤 충전 공용 인버터
KR20170121697A (ko) * 2016-04-25 2017-11-02 제네럴 일렉트릭 컴퍼니 차량용 통합 충전기 및 이를 제조하는 방법
CN107364350A (zh) * 2016-04-25 2017-11-21 通用电气公司 用于车辆的集成充电器及其制造方法
JP2017200428A (ja) * 2016-04-25 2017-11-02 ゼネラル・エレクトリック・カンパニイ 車両用統合充電器およびその製造方法
KR102370937B1 (ko) * 2016-04-25 2022-03-07 제네럴 일렉트릭 컴퍼니 차량용 통합 충전기 및 이를 제조하는 방법
JP2020537479A (ja) * 2017-10-13 2020-12-17 ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロントThe Governing Council Of The University Of Toronto 電動車両用オンボード双方向ac急速充電器
US10826408B2 (en) 2017-11-15 2020-11-03 Danfoss Mobile Electrification Oy Power converter, an electric power system, and a method for controlling an electric power system
EP3487029A1 (en) * 2017-11-15 2019-05-22 Danfoss Mobile Electrification Oy A power converter, an electric power system, and a method for controlling an electric power system
CN112537214B (zh) * 2019-09-20 2023-04-07 丰田自动车株式会社 电源装置
CN112537214A (zh) * 2019-09-20 2021-03-23 丰田自动车株式会社 电源装置
EP3795409A1 (en) * 2019-09-20 2021-03-24 Toyota Jidosha Kabushiki Kaisha Power supply device
KR20210034484A (ko) * 2019-09-20 2021-03-30 도요타 지도샤(주) 전원 장치
KR102385473B1 (ko) 2019-09-20 2022-04-11 도요타 지도샤(주) 전원 장치
US11431184B2 (en) 2019-09-20 2022-08-30 Toyota Jidosha Kabushiki Kaisha Power supply device
JP2021061691A (ja) * 2019-10-07 2021-04-15 トヨタ自動車株式会社 電動車両の電源回路
JP7200902B2 (ja) 2019-10-07 2023-01-10 トヨタ自動車株式会社 電動車両の電源回路
US11453303B2 (en) 2019-10-07 2022-09-27 Toyota Jidosha Kabushiki Kaisha Power supply circuit of electrified vehicle
WO2022259867A1 (ja) * 2021-06-07 2022-12-15 株式会社デンソー 電力変換装置

Also Published As

Publication number Publication date
JP5644070B2 (ja) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5644070B2 (ja) 電力制御装置
JP5471079B2 (ja) 電力制御装置
US10562404B1 (en) Integrated onboard chargers for plug-in electric vehicles
JP5686131B2 (ja) 電力変換装置
US9227523B2 (en) Apparatus for energy transfer using converter and method of manufacturing same
US8054013B2 (en) Electric power control device and vehicle with the same
US8299739B2 (en) Motor drive
US8212506B2 (en) AC motor driving circuit and electric car driving circuit
JPH0630505A (ja) 電気自動車の電気システム
JP6426426B2 (ja) 電動機駆動装置
JP3477850B2 (ja) 電気自動車用充電器
WO2018088110A1 (ja) 駆動システム
CN106208641B (zh) 一种交直流复用的电路
JP2014524731A (ja) 電気駆動装置の構成部分を使用した電気駆動装置のバッテリの充電方法および装置
WO2014083980A1 (ja) 電力変換システム及びその制御方法
WO2011004588A1 (ja) 電気車制御装置
CN103647321A (zh) 电动汽车多功能车载充电电路
JP2010051092A (ja) 充電システムおよびそれを備えた車両
JP2012135141A (ja) モータ駆動システム
KR20220062832A (ko) 모터 구동 장치를 이용한 멀티 입력 충전 시스템 및 방법
JP2010051144A (ja) 充電システムおよびそれを備えた車両
JP5321282B2 (ja) 電力制御装置
Shah et al. Integrated power converter with G2V and V2G capabilities for 4-phase SRM drive based EV application
Feng et al. An integrated BLIL boost converter-based switched reluctance motor drive for PEV applications with PFC charging function
JP2009284560A (ja) モータ駆動システムの充電方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R151 Written notification of patent or utility model registration

Ref document number: 5644070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees