WO2022259554A1 - 交通シミュレーション装置、交通シミュレーション方法および交通シミュレーションプログラム - Google Patents

交通シミュレーション装置、交通シミュレーション方法および交通シミュレーションプログラム Download PDF

Info

Publication number
WO2022259554A1
WO2022259554A1 PCT/JP2021/022413 JP2021022413W WO2022259554A1 WO 2022259554 A1 WO2022259554 A1 WO 2022259554A1 JP 2021022413 W JP2021022413 W JP 2021022413W WO 2022259554 A1 WO2022259554 A1 WO 2022259554A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic simulation
unit
destination
target area
route
Prior art date
Application number
PCT/JP2021/022413
Other languages
English (en)
French (fr)
Inventor
雅 高木
賢士 小宮
淳 磯村
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023526832A priority Critical patent/JPWO2022259554A1/ja
Priority to PCT/JP2021/022413 priority patent/WO2022259554A1/ja
Publication of WO2022259554A1 publication Critical patent/WO2022259554A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a traffic simulation device, a traffic simulation method, and a traffic simulation program.
  • traffic-related simulation technology is known (see Patent Documents 1 and 2).
  • traffic simulation technology when a specific calculation target area is specified, there are restrictions on the specification of the origin/destination of multiple vehicles at the start of calculation. For example, it takes a lot of labor to set the starting points/destinations for all of a plurality of vehicles individually. Therefore, the departure point/destination is designated by rounding the locations of the plurality of vehicles at the start of calculation to a representative point or by randomly selecting within the designated area.
  • the simulation target area is limited and at least one of the starting point/destination is not located far away within the target area.
  • origins or destinations outside the coverage area were substituted with points inside the coverage area in that direction.
  • the present invention has been made in view of the above, and aims to perform simulations related to traffic in line with the actual situation.
  • the traffic simulation device includes an acquisition unit that acquires a departure point or destination outside a target area, and from the acquired departure point or destination: characterized by having an estimating unit that estimates a route passing through the target area, and a replacing unit that replaces the obtained departure point or the destination with an end point of the target area on the estimated route.
  • FIG. 1 is a figure for explaining the outline of the traffic simulation device concerning a 1st embodiment.
  • FIG. 2 is a schematic diagram illustrating the schematic configuration of the traffic simulation device according to the first embodiment.
  • FIG. 3 is a flow chart showing a traffic simulation processing procedure according to the first embodiment.
  • FIG. 4 is a diagram for explaining the outline of the traffic simulation device according to the second embodiment.
  • FIG. 5 is a schematic diagram illustrating a schematic configuration of a traffic simulation device according to the second embodiment.
  • FIG. 6 is a flowchart showing a traffic simulation processing procedure according to the second embodiment.
  • FIG. 7 is a diagram showing an example of a computer that executes a traffic simulation program.
  • Drawing 1 is a figure for explaining the outline of the traffic simulation device concerning a 1st embodiment.
  • traffic simulations such as vehicle traffic conditions by specifying a departure point/destination
  • the distance between the departure point and the destination is long, calculation is possible It is divided into areas and routes (passing points) are defined within each area.
  • the traffic simulation device of the present embodiment defines a plurality of points with a probability distribution instead of rounding the departure point or the destination to a representative point of each area, thereby generating a plurality of route candidates with a probability distribution. Define.
  • a plurality of points are defined by allocating vehicles to each area within an area based on the residential distribution of vehicle users.
  • multiple points are defined by assigning vehicles to each facility such as stations and city halls within the area according to PoI (Point of Interest) information and facility scale. .
  • PoI Point of Interest
  • multiple route candidates are similarly defined by probability distribution for routes.
  • the traffic simulation device can define route candidates that are in line with the actual situation and perform traffic simulation on the defined route candidates.
  • FIG. 2 is a schematic diagram illustrating the schematic configuration of the traffic simulation device according to the first embodiment.
  • the traffic simulation device 10 of the present embodiment is implemented by a general-purpose computer such as a personal computer, and includes an input unit 11, an output unit 12, a communication control unit 13, a storage unit 14, and a control unit 15. .
  • the input unit 11 is implemented using input devices such as a keyboard and a mouse, and inputs various instruction information such as processing start to the control unit 15 in response to input operations by the operator.
  • the output unit 12 is implemented by a display device such as a liquid crystal display, a printer, or the like. For example, the output unit 12 displays the results of traffic simulation processing, which will be described later.
  • the communication control unit 13 is realized by a NIC (Network Interface Card) or the like, and controls communication between an external device and the control unit 15 via an electrical communication line such as a LAN (Local Area Network) or the Internet.
  • the communication control unit 13 controls communication between the control unit 15 and a management device or the like that manages various information such as map data, PoI information, facility information, and population distribution in an area to be processed.
  • the storage unit 14 is implemented by semiconductor memory devices such as RAM (Random Access Memory) and flash memory, or storage devices such as hard disks and optical disks.
  • a processing program for operating the traffic simulation device 10 data used during execution of the processing program, and the like are stored in advance, or are temporarily stored each time processing is performed.
  • the storage unit 14 may be configured to communicate with the control unit 15 via the communication control unit 13 .
  • the storage unit 14 may acquire and store in advance various information such as map data, PoI information and facility information in the area to be processed, population distribution, etc. necessary for the traffic simulation process described later.
  • the control unit 15 is implemented using a CPU (Central Processing Unit) or the like, and executes a processing program stored in memory. Thereby, the control unit 15 functions as an acquisition unit 15a, a definition unit 15b, and a calculation unit 15c, as illustrated in FIG. Note that these functional units may be implemented in different hardware, respectively or partially. Also, the control unit 15 may include other functional units.
  • a CPU Central Processing Unit
  • the control unit 15 may include other functional units.
  • the acquisition unit 15a acquires a plurality of predetermined points within the target area and a predetermined probability distribution regarding the plurality of points. For example, the acquisition unit 15a acquires PoI information in the target area on the map and information indicating the size of each facility. Alternatively, the acquisition unit 15a acquires the population distribution of multiple regions within the target area. The acquisition unit 15a acquires these pieces of information via the input unit 11 or via the communication control unit 13 from a management device or the like. The acquisition unit 15a may cause the storage unit 14 to store the acquired information.
  • the acquisition unit 15a acquires the number of vehicles entering the target area, which is necessary for the processing of the calculation unit 15c, which will be described later.
  • the definition unit 15b defines, with a predetermined probability distribution, a plurality of routes whose starting point or destination is each of a plurality of predetermined points within the target area. For example, as illustrated in FIG. 1B, the defining unit 15b defines the presence of vehicles with a probability distribution corresponding to the population distribution of a plurality of regions within the target area, thereby determining each of the plurality of regions. Define multiple routes with origins or destinations.
  • the probability distributions corresponding to the respective population distributions of A town, B town, This is effective, for example, when the starting point or return destination (destination) of each vehicle can be grasped in advance at the municipal level.
  • the definition unit 15b can similarly define a plurality of routes by using the vehicle ownership distribution instead of the population distribution.
  • the target area is not limited to the unit of municipality, but may be the unit of ward, town, chome, or mesh of several meters in an urban area.
  • the definition unit 15b may adjust the probability distribution by referring to the traffic congestion data of the day, for example, by setting the selection probability of a route with traffic congestion to be relatively low.
  • the definition unit 15b defines the existence of a vehicle with a probability distribution corresponding to the scale of a plurality of predetermined facilities in the target area, as illustrated in FIG. Define multiple routes that start or end at .
  • the probability distribution according to the scale of each facility such as ⁇ City Hall, ⁇ Research Institute, ⁇ Station, etc. in the target area indicates that the route that the vehicle passes through each facility is Defined.
  • the definition unit 15b may output a plurality of defined routes. For example, a plurality of routes may be defined and stored in the storage unit 14 prior to processing by the calculation unit 15c, which will be described later. Alternatively, the definition unit 15b may immediately transfer the defined multiple routes to the calculation unit 15c, which will be described later, without storing them in the storage unit 14. FIG. Alternatively, the definition unit 15b may output the plurality of defined routes to the output unit 12 or to another device via the communication control unit 13. FIG.
  • the definition unit 15b may define and output a plurality of routes in the target area by a probability distribution in which each is selected by a vehicle, as illustrated in FIG. 1(d).
  • a probability distribution in which each is selected by a vehicle, as illustrated in FIG. 1(d).
  • two routes, the XX motorway and the XX motorway are defined with a probability distribution of 50% each as a route from the departure point a city to the destination b city. be done.
  • the definition unit 15b may output a plurality of defined routes.
  • the calculation unit 15c performs a traffic simulation on multiple defined routes. For example, the calculation unit 15c distributes the number of vehicles entering the target area acquired by the acquisition unit 15a to a plurality of defined routes according to their respective probability distributions. This result is nothing but the situation of traffic congestion in the target area. In this way, the calculation unit 15c derives the traffic congestion situation in the target area and outputs it via the output unit 12 or the communication control unit 13.
  • FIG. 1 A traffic simulation on multiple defined routes. For example, the calculation unit 15c distributes the number of vehicles entering the target area acquired by the acquisition unit 15a to a plurality of defined routes according to their respective probability distributions. This result is nothing but the situation of traffic congestion in the target area. In this way, the calculation unit 15c derives the traffic congestion situation in the target area and outputs it via the output unit 12 or the communication control unit 13.
  • FIG. 3 is a flow chart showing a traffic simulation processing procedure according to the first embodiment.
  • the flowchart in FIG. 3 is started, for example, at the timing when the user performs an operation input instructing the start.
  • the acquisition unit 15a acquires a plurality of predetermined points within the target area and a predetermined probability distribution regarding the plurality of points (step S1). For example, the acquisition unit 15a acquires PoI information in the target area on the map and information indicating the size of each facility. Alternatively, the acquisition unit 15a acquires the population distribution of multiple regions within the target area.
  • the definition unit 15b defines a plurality of routes with a predetermined probability distribution, each of which departs from or ends at a plurality of predetermined points within the target area (step S2). For example, the definition unit 15b defines the presence of vehicles with a probability distribution according to the population distribution of a plurality of regions within the target area, thereby creating a plurality of routes with departure points or destinations in each of the plurality of regions. Define.
  • the definition unit 15b defines the presence of vehicles with a probability distribution according to the scale of a plurality of predetermined facilities in the target area, thereby creating a plurality of routes with each of the plurality of facilities as a starting point or a destination.
  • the calculation unit 15c executes a traffic simulation for the defined multiple routes (step S3). For example, the calculation unit 15c distributes the number of vehicles flowing into the target area acquired by the acquisition unit 15a to a plurality of defined routes according to their respective probability distributions, and outputs the traffic congestion situation to the output unit 12 or the like. Output. This completes a series of traffic simulation processes.
  • FIG. 4 is a diagram for explaining the outline of the traffic simulation device of the second embodiment.
  • the direction of the departure point or destination A point in the area was substituted.
  • a point in the target area closest to the departure point or the destination is substituted on the straight line route from the departure point or the straight line route to the destination.
  • the nearest expressway IC InterChange
  • the traffic simulation device 10a of the present embodiment roughly estimates the route from the departure point or the route to the destination, and defines the route by substituting the end point that can be seen from the target area on each route. .
  • the traffic simulation device can define a realistic route and perform a traffic simulation on the defined route.
  • FIG. 5 is a schematic diagram illustrating a schematic configuration of a traffic simulation device according to the second embodiment.
  • the traffic simulation device 10a shown in FIG. 5 differs from the traffic simulation device 10 of the first embodiment shown in FIG. 2 in that it includes an estimating unit 15d and a replacing unit 15e. Description of other functional units similar to those of the traffic simulation apparatus 10 shown in FIG. 2 will be omitted.
  • the acquisition unit 15a acquires a departure point or destination outside the target area. In addition, the acquiring unit 15a acquires the number of vehicles entering the target area in the same manner as in the first embodiment described above.
  • the estimation unit 15d estimates a route passing through the target area from the acquired departure point or destination. For example, the estimating unit 15d uses a well-known route search algorithm to estimate a rough route that includes sections outside the target area and passes through the target area.
  • the replacement unit 15e replaces the acquired starting point or destination with the endpoint of the target area on the estimated route. For example, as shown in FIG. 4(c), the replacing unit 15e substitutes the starting point or the destination with an end point that is cut off from the target area on the estimated route.
  • the replacement unit 15e may set the entrance of the expressway as the endpoint of the target area. Further, the replacing unit 15e may output the replaced end points. That is, the replacing unit 15e may cause the storage unit 14 to store the path defined by replacing the endpoints prior to the processing of the calculating unit 15c, which will be described later. Alternatively, the replacement unit 15e may immediately transfer the defined route to the calculation unit 15c, which will be described later, without storing it in the storage unit 14. FIG. Alternatively, the replacement unit 15 e may output the defined route to the output unit 12 or to another device via the communication control unit 13 .
  • FIG. 4(c) illustrates a case where the estimating unit 15d estimates a plurality of routes A to C.
  • the replacement unit 15e sets each end point of the target area corresponding to each route as the starting point or destination of the area.
  • the estimating unit 15d estimates a plurality of routes, as shown in FIG. Multiple routes are defined with probability distributions according to the utilization (selection) rate.
  • three routes A to C from the departure point d research institute to the destination e station are defined by probability distributions according to the vehicle utilization rate of each route.
  • calculation unit 15c performs a traffic simulation of the traffic congestion situation, etc. for the route defined in this way, as in the first embodiment.
  • FIG. 6 is a flowchart showing a traffic simulation processing procedure according to the second embodiment.
  • the flowchart of FIG. 6 is started, for example, at the timing when the user performs an operation input instructing the start.
  • the acquisition unit 15a acquires a departure point or destination outside the target area (step S11).
  • the estimation unit 15d estimates a route passing through the target area from the obtained departure point or destination (step S12).
  • the estimating unit 15d uses a well-known route search algorithm to estimate a rough route that includes sections outside the target area and passes through the target area.
  • the replacement unit 15e replaces the acquired starting point or destination with the endpoint of the target area on the estimated route (step S13). For example, the replacement unit 15e replaces the starting point or the destination with an end point that is cut off from the target area on the estimated route. Thereby, the replacing unit 15e defines a route within the target area.
  • the calculation unit 15c executes a traffic simulation, such as traffic jam conditions, on the defined route (step S14). This completes a series of traffic simulation processes.
  • the acquisition unit 15a acquires a departure point or destination outside the target area. Further, the estimation unit 15d estimates a route passing through the target area from the obtained departure point or destination. Also, the replacing unit 15e replaces the acquired starting point or destination with the end point of the target area on the estimated route. As a result, the traffic simulation device 10a can define a route in line with the actual situation.
  • route search algorithms such as conventional car navigation systems
  • a clear point within the range of the map is designated as the destination.
  • the destination is specified by area, it is processed by rounding to a representative point such as a city hall.
  • route candidates are presented according to the search conditions, but it is assumed that the route candidates are finally narrowed down to one.
  • the search conditions are the same, the same route is assigned to a plurality of vehicles. Also, after the departure point and the destination are clarified, the route search is performed on demand.
  • the traffic simulation device 10a it is possible to specify an ambiguous point, such as a municipality unit, as the destination, not limited to within the range of the map. Also, when the destination is specified by area, the destination is set stochastically according to the population distribution in the area. Also, multiple route candidates are maintained along with the selection probability of each route. Also, different routes are assigned to each vehicle according to the selection probability. In addition, routes can be defined in advance for a small number of combinations of origin and destination. Therefore, according to the traffic simulation device 10a, the existence of the vehicle is defined in accordance with the actual situation, and the route is defined in accordance with the actual situation. Therefore, it is possible to perform traffic simulation with high accuracy in accordance with the actual situation. .
  • an ambiguous point such as a municipality unit
  • the defining unit 15b defines the plurality of routes with a probability distribution according to the utilization rate of each route by vehicles. This also makes it possible to define the presence of the vehicle in accordance with the actual situation and define the route in accordance with the actual situation.
  • the replacement unit 15e outputs the end point of the target area replaced with the departure point or the destination. This makes it possible to distribute the processing load by performing processing in advance before executing the traffic simulation.
  • the traffic simulation devices 10 and 10a can be implemented by installing a traffic simulation program for executing the traffic simulation processing as package software or online software in a desired computer.
  • the information processing device can function as the traffic simulation devices 10 and 10a by causing the information processing device to execute the above traffic simulation program.
  • the information processing apparatus referred to here includes a desktop or notebook personal computer.
  • information processing devices include smart phones, mobile communication terminals such as mobile phones and PHSs (Personal Handyphone Systems), and slate terminals such as PDAs (Personal Digital Assistants).
  • FIG. 7 is a diagram showing an example of a computer that executes a traffic simulation program.
  • Computer 1000 includes, for example, memory 1010 , CPU 1020 , hard disk drive interface 1030 , disk drive interface 1040 , serial port interface 1050 , video adapter 1060 and network interface 1070 . These units are connected by a bus 1080 .
  • the memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012 .
  • the ROM 1011 stores a boot program such as BIOS (Basic Input Output System).
  • BIOS Basic Input Output System
  • Hard disk drive interface 1030 is connected to hard disk drive 1031 .
  • Disk drive interface 1040 is connected to disk drive 1041 .
  • a removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1041, for example.
  • a mouse 1051 and a keyboard 1052 are connected to the serial port interface 1050, for example.
  • a display 1061 is connected to the video adapter 1060 .
  • the hard disk drive 1031 stores an OS 1091, application programs 1092, program modules 1093 and program data 1094, for example. Each piece of information described in the above embodiment is stored in the hard disk drive 1031 or the memory 1010, for example.
  • the traffic simulation program is stored in the hard disk drive 1031 as a program module 1093 in which commands to be executed by the computer 1000 are described, for example.
  • the hard disk drive 1031 stores a program module 1093 that describes each process executed by the traffic simulation apparatus 10 described in the above embodiment.
  • data used for information processing by the traffic simulation program is stored as program data 1094 in the hard disk drive 1031, for example. Then, the CPU 1020 reads out the program module 1093 and the program data 1094 stored in the hard disk drive 1031 to the RAM 1012 as necessary, and executes each procedure described above.
  • program modules 1093 and program data 1094 related to the traffic simulation program are not limited to being stored in the hard disk drive 1031.
  • they may be stored in a removable storage medium and read by the CPU 1020 via the disk drive 1041 or the like. may be issued.
  • program modules 1093 and program data 1094 related to the traffic simulation program are stored in another computer connected via a network such as LAN or WAN (Wide Area Network), and are read by CPU 1020 via network interface 1070. may be

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

取得部(15a)が、対象エリア外の出発地または目的地を取得する。推定部(15d)が、取得された出発地または目的地から対象エリアを経由する経路を推定する。置換部(15e)が、取得された出発地または目的地を、推定された経路上における対象エリアの端点に置換する。

Description

交通シミュレーション装置、交通シミュレーション方法および交通シミュレーションプログラム
 本発明は、交通シミュレーション装置、交通シミュレーション方法および交通シミュレーションプログラムに関する。
 従来、交通に関するシミュレーション技術が知られている(特許文献1,2参照)。交通に関するシミュレーション技術において、ある特定の計算対象領域を指定した場合に、計算開始時点における複数の車両の出発地/目的地の指定に制約があった。例えば、複数の車両の全てについて出発地/目的地を個別に指定する設定作業には、多大な労力を要する。そこで、計算開始時点における複数の車両の配置場所を代表地点に丸めたり、指定領域内でランダム選択したりすることにより、出発地/目的地を指定していた。
 あるいは、各車両の出発地/目的地を指定する計算量の制約を回避するために、シミュレーションの対象エリアを限定し、出発地/目的地の少なくとも一方が遠く離れて対象エリア内に位置しない場合に、対象エリア外の出発地または目的地を、その方角の対象エリア内の地点で代用していた。
特開2020-160960号公報 特開2009-259158号公報
 しかしながら、従来技術によれば、交通に関するシミュレーションを実態に即して行うことが困難であった。例えば、複数の車両の配置場所を代表地点に丸めることにより、計算開始時点において複数の車両の配置場所の数が少ないうえに、実際の車両の配置場所や配置数との乖離が大きかった。
 また、対象エリア外の出発地または目的地を、対象エリア内の特定の位置ではなく出発地または目的地の方角の地点で代用することにより、実際の走行経路に即していない計算を行っていた。
 本発明は、上記に鑑みてなされたものであって、交通に関するシミュレーションを実態に即して行うことを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る交通シミュレーション装置は、対象エリア外の出発地または目的地を取得する取得部と、取得された前記出発地または前記目的地から前記対象エリアを経由する経路を推定する推定部と、取得された前記出発地または前記目的地を、推定された前記経路上における前記対象エリアの端点に置換する置換部と、を有することを特徴とする。
 本発明によれば、交通に関するシミュレーションを実態に即して行うことが可能となる。
図1は、第1の実施形態に係る交通シミュレーション装置の概要を説明するための図である。 図2は、第1の実施形態に係る交通シミュレーション装置の概略構成を例示する模式図である。 図3は、第1の実施形態に係る交通シミュレーション処理手順を示すフローチャートである。 図4は、第2の実施形態に係る交通シミュレーション装置の概要を説明するための図である。 図5は、第2の実施形態に係る交通シミュレーション装置の概略構成を例示する模式図である。 図6は、第2の実施形態に係る交通シミュレーション処理手順を示すフローチャートである。 図7は、交通シミュレーションプログラムを実行するコンピュータの一例を示す図である。
 以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
[第1の実施形態]
 図1は、第1の実施形態に係る交通シミュレーション装置の概要を説明するための図である。従来、出発地/目的地を指定して車両の交通状況等の交通に関するシミュレーション(以下、交通シミュレーションと記す)を行う場合に、出発地と目的地との距離が遠い場合には、計算可能なエリアに分割して、各エリア内で経路(通過点)を定義している。
 ここで、出発地または目的地が市町村単位やエリア単位などで曖昧に指定された場合に、従来は、図1(a)に示すように、各エリアの複数の車両の出発地/目的地を、市町村役場あるいはエリアの中央地点などの代表地点に丸めていた。そのため、計算開始時点において複数の車両の配置場所の数が少ないうえに、実際の車両の配置場所や配置数との乖離が大きかった。
 これに対し、本実施形態の交通シミュレーション装置は、出発地または目的地を、各エリアの代表地点に丸める代わりに、複数の地点を確率分布で定義することにより、複数の経路候補を確率分布で定義する。
 例えば、図1(b)に示すように、車両の利用者の居住地分布に基づき、エリア内の各地域に車両を割り当てることにより、複数の地点を定義する。または、図1(c)に示すように、PoI(Point of Interest)情報および施設の規模に応じて、エリア内の駅や市役所等の各施設に車両を割り当てることにより、複数の地点を定義する。
 また、図1(d)に示すように、経路についても同様に、複数の経路候補を確率分布で定義する。このように、交通シミュレーション装置は、実態に即した経路候補を定義して、定義した経路候補に対する交通シミュレーションを行うことが可能となる。
[交通シミュレーション装置の構成]
 図2は、第1の実施形態に係る交通シミュレーション装置の概略構成を例示する模式図である。図2に例示するように、本実施形態の交通シミュレーション装置10は、パソコン等の汎用コンピュータで実現され、入力部11、出力部12、通信制御部13、記憶部14、および制御部15を備える。
 入力部11は、キーボードやマウス等の入力デバイスを用いて実現され、操作者による入力操作に対応して、制御部15に対する処理開始などの各種指示情報を入力する。出力部12は、液晶ディスプレイなどの表示装置、プリンター等によって実現される。例えば、出力部12には、後述する交通シミュレーション処理の結果が表示される。
 通信制御部13は、NIC(Network Interface Card)等で実現され、LAN(Local Area Network)やインターネットなどの電気通信回線を介した外部の装置と制御部15との通信を制御する。例えば、通信制御部13は、地図データや、処理対象のエリア内のPoI情報や施設情報、人口分布等の各種情報を管理する管理装置等と、制御部15との通信を制御する。
 記憶部14は、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。記憶部14には、交通シミュレーション装置10を動作させる処理プログラムや、処理プログラムの実行中に使用されるデータなどが予め記憶され、あるいは処理の都度一時的に記憶される。なお、記憶部14は、通信制御部13を介して制御部15と通信する構成でもよい。また、記憶部14は、地図データや、処理対象のエリア内のPoI情報や施設情報、人口分布等、後述する交通シミュレーション処理に必要な各種情報等を予め取得して記憶してもよい。
 制御部15は、CPU(Central Processing Unit)等を用いて実現され、メモリに記憶された処理プログラムを実行する。これにより、制御部15は、図2に例示するように、取得部15a、定義部15b、および計算部15cとして機能する。なお、これらの機能部は、それぞれ、あるいは一部が異なるハードウェアに実装されてもよい。また、制御部15は、その他の機能部を備えてもよい。
 取得部15aは、対象エリア内の所定の複数の地点と、該複数の地点に関する所定の確率分布とを取得する。例えば、取得部15aは、地図上の対象エリア内のPoI情報や各施設の規模を示す情報を取得する。あるいは取得部15aは、対象エリア内の複数の地域の人口分布を取得する。取得部15aは、これらの情報を、入力部11を介して、または管理装置等から通信制御部13を介して取得する。取得部15aは、取得した情報を記憶部14に記憶させてもよい。
 また、取得部15aは、後述する計算部15cの処理に必要となる対象エリアに流入する車両の台数を取得する。
 定義部15bは、対象エリア内の所定の複数の地点のそれぞれを出発地または目的地とする複数の経路を所定の確率分布で定義する。例えば、定義部15bは、図1(b)に例示したように、対象エリア内の複数の地域の人口分布に応じた確率分布で車両の存在を定義することにより、該複数の地域のそれぞれを出発地または目的地とする複数の経路を定義する。
 図1(b)に示した例では、対象エリア内のA町、B町、…のそれぞれの人口分布に応じた確率分布で、それぞれの地域を車両が通過する経路が定義される。これは、各車両の出発地または帰宅先(目的地)が市町村レベルで事前に把握できている場合等に有効である。
 なお、定義部15bは、人口分布のかわりに、車両所有台数分布を用いても、同様に複数の経路を定義することが可能である。また、対象エリアは、市町村単位に限定されず、都市部の区単位、町単位、丁目単位、あるいは数メートルメッシュ単位であってもよい。また、定義部15bは、例えば、渋滞が発生している経路の選択確率を相対的に低く設定する等、当日の渋滞データを参照して、確率分布を調整してもよい。
 または、定義部15bは、図1(c)に例示したように、対象エリア内の複数の所定の施設の規模に応じた確率分布で車両の存在を定義することにより、該複数の施設のそれぞれを出発地または目的地とする複数の経路を定義する。図1(c)に示した例では、対象エリア内のα市役所、β研究所、γ駅等の複数の施設のそれぞれの規模に応じた確率分布で、それぞれの施設を車両が通過する経路が定義される。
 定義部15bは、定義した複数の経路を出力してもよい。例えば、後述する計算部15cの処理に先立って、複数の経路を定義して、記憶部14に記憶させてもよい。あるいは、定義部15bは、定義した複数の経路を、記憶部14に記憶させずに直ちに後述する計算部15cに転送してもよい。または、定義部15bは、定義した複数の経路を、出力部12に、あるいは通信制御部13を介して他の装置に出力してもよい。
 また、定義部15bは、図1(d)に例示したように、対象エリア内の複数の経路を、それぞれが車両により選択される確率分布で定義して出力してもよい。図1(d)に示した例では、例えば、出発地a市から目的地b市への経路として、〇〇自動車道と××自動車道との2つの経路がそれぞれ50%の確率分布で定義される。定義部15bは、定義した複数の経路を出力してもよい。
 計算部15cは、定義された複数の経路に対して、交通シミュレーションを行う。例えば、計算部15cは、取得部15aが取得した対象エリアに流入する車両の台数を、定義された複数の経路に、それぞれの確率分布に応じて配分する。この結果は、対象エリア内の渋滞の状況に他ならない。このようにして、計算部15cは、対象エリア内の渋滞の状況を導出し、出力部12あるいは通信制御部13を介して出力する。
[交通シミュレーション処理]
 次に、図3を参照して、第1の実施形態に係る交通シミュレーション装置10による交通シミュレーション処理について説明する。図3は、第1の実施形態に係る交通シミュレーション処理手順を示すフローチャートである。図3のフローチャートは、例えば、ユーザが開始を指示する操作入力を行ったタイミングで開始される。
 まず、取得部15aは、対象エリア内の所定の複数の地点と、該複数の地点に関する所定の確率分布とを取得する(ステップS1)。例えば、取得部15aは、地図上の対象エリア内のPoI情報や各施設の規模を示す情報を取得する。あるいは取得部15aは、対象エリア内の複数の地域の人口分布を取得する。
 次に、定義部15bが、対象エリア内の所定の複数の地点のそれぞれを出発地または目的地する複数の経路を所定の確率分布で定義する(ステップS2)。例えば、定義部15bは、対象エリア内の複数の地域の人口分布に応じた確率分布で車両の存在を定義することにより、該複数の地域のそれぞれを出発地または目的地とする複数の経路を定義する。
 または、定義部15bは、対象エリア内の複数の所定の施設の規模に応じた確率分布で車両の存在を定義することにより、該複数の施設のそれぞれを出発地または目的地とする複数の経路を定義する。
 また、計算部15cが、定義された複数の経路に対して、交通シミュレーションを実行する(ステップS3)。例えば、計算部15cは、取得部15aが取得した対象エリアに流入する車両の台数を、定義された複数の経路に、それぞれの確率分布に応じて配分し、渋滞の状況として出力部12等に出力する。これにより、一連の交通シミュレーション処理が終了する。
[第2の実施形態]
 図4は、第2の実施形態の交通シミュレーション装置の概要を説明するための図である。従来の交通シミュレーションでは、図4(a)、(b)に示すように、与えられた出発地または目的地が交通シミュレーションの対象エリア外であった場合に、出発地または目的地の方角の対象エリア内の地点で代用していた。例えば、図4(a)に示す例では、出発地からの直線経路上または目的地までの直線経路上で、出発地または目的地に最寄りの対象エリア内の地点で代用している。あるいは、図4(b)に示す例では、最寄りの高速道路IC(InterChange)で代用している。
 これに対し、本実施形態の交通シミュレーション装置10aは、出発地からの経路または目的地への経路を大まかに推定し、各経路上の対象エリアから見切れる端点で代用することにより、経路を定義する。これにより、交通シミュレーション装置は、実態に即した経路を定義して、定義した経路に対する交通シミュレーションを行うことが可能となる。
[交通シミュレーション装置の構成]
 図5は、第2の実施形態に係る交通シミュレーション装置の概略構成を例示する模式図である。図5に示す交通シミュレーション装置10aは、推定部15dおよび置換部15eを備える点が、図2に示した第1の実施形態の交通シミュレーション装置10とは異なる。その他の図2に示した交通シミュレーション装置10と同様の機能部については、説明を省略する。
 取得部15aは、対象エリア外の出発地または目的地を取得する。また、取得部15aは、上記した第1の実施形態と同様に、対象エリアに流入する車両の台数を取得する。
 推定部15dは、取得された出発地または目的地から対象エリアを経由する経路を推定する。例えば、推定部15dは、周知の経路探索アルゴリズムを用いて、対象エリア外の区間を含んで対象エリアを経由する大まかな経路を推定する。
 置換部15eは、取得された出発地または目的地を、推定された経路上における対象エリアの端点に置換する。例えば、置換部15eは、図4(c)に示したように、出発地または目的地を、推定された経路上の対象エリアから見切れる端点で代用する。
 なお、置換部15eは、推定された経路が高速道路を経由する場合には、高速道路の入口を対象エリアの端点としてもよい。また、置換部15eは、置換した端点を出力してもよい。すなわち、置換部15eは、後述する計算部15cの処理に先立って、端点で置換して定義した経路を、記憶部14に記憶させてもよい。あるいは、置換部15eは、定義した経路を、記憶部14に記憶させずに直ちに後述する計算部15cに転送してもよい。または、置換部15eは、定義した経路を、出力部12に、あるいは通信制御部13を介して他の装置に出力してもよい。
 図4(c)には、推定部15dが複数の経路A~Cを推定した場合が例示されている。この場合には、置換部15eは、各経路に対応する対象エリアの各端点を当該エリアの出発地または目的地とする。
 このように、推定部15dが複数の経路を推定した場合には、図4(d)に示したように、上記した第1の実施形態と同様に、定義部15bが、各経路の車両による利用(選択)率に応じた確率分布で、複数の経路を定義する。図4(d)に示した例では、出発地d研究所から目的地e駅への3つの経路A~Cが、各経路の車両による利用率に応じた確率分布で定義されている。
 また、計算部15cが、このようにして定義された経路について、第1の実施形態と同様に、渋滞の状況等の交通シミュレーションを行う。
[交通シミュレーション処理]
 次に、図6を参照して、第2の実施形態に係る交通シミュレーション装置10aによる交通シミュレーション処理について説明する。図6は、第2の実施形態に係る交通シミュレーション処理手順を示すフローチャートである。図6のフローチャートは、例えば、ユーザが開始を指示する操作入力を行ったタイミングで開始される。
 まず、取得部15aが、対象エリア外の出発地または目的地を取得する(ステップS11)。次に、推定部15dが、取得された出発地または目的地から対象エリアを経由する経路を推定する(ステップS12)。例えば、推定部15dは、周知の経路探索アルゴリズムを用いて、対象エリア外の区間を含んで対象エリアを経由する大まかな経路を推定する。
 そして、置換部15eが、取得された出発地または目的地を、推定された経路上における対象エリアの端点に置換する(ステップS13)。例えば、置換部15eは、出発地または目的地を、推定された経路上の対象エリアから見切れる端点で代用する。これにより、置換部15eは、対象エリア内の経路を定義する。
 最後に、計算部15cが、定義された経路に対して、渋滞の状況等の交通シミュレーションを実行する(ステップS14)。これにより、一連の交通シミュレーション処理が終了する。
 以上、説明したように、本実施形態の交通シミュレーション装置10aにおいて、取得部15aが、対象エリア外の出発地または目的地を取得する。また、推定部15dが、取得された出発地または目的地から対象エリアを経由する経路を推定する。また、置換部15eが、取得された出発地または目的地を、推定された経路上における対象エリアの端点に置換する。これにより、交通シミュレーション装置10aは、実態に即した経路を定義することが可能となる。
 ここで、従来のカーナビ等の経路探索アルゴリズムでは、目的地として、地図の範囲内の明確な地点が指定される。また、目的地がエリアで指定された場合には、市役所等の代表地点に丸めて処理される。また、探索条件に応じて経路候補が提示されるが、最終的に1つに絞り込まれることが前提とされている。また、探索条件が同じであれば、複数の車両に対して同一の経路が割り当てられる。また、出発地と目的地とが明確になってから、オンデマンドで経路探索が実施される。
 これに対し、交通シミュレーション装置10aでは、目的地として、地図の範囲内とは限らず、市町村単位等の曖昧な地点の指定も可能である。また、目的地がエリアで指定された場合には、エリア内の人口分布等に応じて、確率的に目的地が設定される。また、複数の経路候補が、各経路の選択確率とともに保持される。また、選択確率に応じて、車両ごとに異なる経路が割り当てられる。また、出発地と目的地との数少ない組み合わせについて、事前に経路の定義が可能である。したがって、交通シミュレーション装置10aによれば、実態に即して車両の存在が定義され、実態に即した経路が定義されるので、交通に関するシミュレーションを実態に即して精度高く行うことが可能となる。
 また、推定部15dが複数の経路を推定した場合に、定義部15bが、各経路の車両による利用率に応じた確率分布で、該複数の経路を定義する。これによっても、実態に即して車両の存在が定義され、実態に即した経路を定義することが可能となる。
 また、置換部15eは、出発地または目的地に置換した対象エリアの端点を出力する。これにより、交通シミュレーションを実行する前に事前に処理を行って、処理負荷を分散させることが可能となる。
[プログラム]
 上記実施形態に係る交通シミュレーション装置10、10aが実行する処理をコンピュータが実行可能な言語で記述したプログラムを作成することもできる。一実施形態として、交通シミュレーション装置10、10aは、パッケージソフトウェアやオンラインソフトウェアとして上記の交通シミュレーション処理を実行する交通シミュレーションプログラムを所望のコンピュータにインストールさせることによって実装できる。例えば、上記の交通シミュレーションプログラムを情報処理装置に実行させることにより、情報処理装置を交通シミュレーション装置10、10aとして機能させることができる。ここで言う情報処理装置には、デスクトップ型またはノート型のパーソナルコンピュータが含まれる。また、その他にも、情報処理装置にはスマートフォン、携帯電話機やPHS(Personal Handyphone System)などの移動体通信端末、さらには、PDA(Personal Digital Assistant)などのスレート端末などがその範疇に含まれる。また、交通シミュレーション装置10、10aの機能を、クラウドサーバに実装してもよい。
 図7は、交通シミュレーションプログラムを実行するコンピュータの一例を示す図である。コンピュータ1000は、例えば、メモリ1010と、CPU1020と、ハードディスクドライブインタフェース1030と、ディスクドライブインタフェース1040と、シリアルポートインタフェース1050と、ビデオアダプタ1060と、ネットワークインタフェース1070とを有する。これらの各部は、バス1080によって接続される。
 メモリ1010は、ROM(Read Only Memory)1011およびRAM1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、ハードディスクドライブ1031に接続される。ディスクドライブインタフェース1040は、ディスクドライブ1041に接続される。ディスクドライブ1041には、例えば、磁気ディスクや光ディスク等の着脱可能な記憶媒体が挿入される。シリアルポートインタフェース1050には、例えば、マウス1051およびキーボード1052が接続される。ビデオアダプタ1060には、例えば、ディスプレイ1061が接続される。
 ここで、ハードディスクドライブ1031は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093およびプログラムデータ1094を記憶する。上記実施形態で説明した各情報は、例えばハードディスクドライブ1031やメモリ1010に記憶される。
 また、交通シミュレーションプログラムは、例えば、コンピュータ1000によって実行される指令が記述されたプログラムモジュール1093として、ハードディスクドライブ1031に記憶される。具体的には、上記実施形態で説明した交通シミュレーション装置10が実行する各処理が記述されたプログラムモジュール1093が、ハードディスクドライブ1031に記憶される。
 また、交通シミュレーションプログラムによる情報処理に用いられるデータは、プログラムデータ1094として、例えば、ハードディスクドライブ1031に記憶される。そして、CPU1020が、ハードディスクドライブ1031に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出して、上述した各手順を実行する。
 なお、交通シミュレーションプログラムに係るプログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1031に記憶される場合に限られず、例えば、着脱可能な記憶媒体に記憶されて、ディスクドライブ1041等を介してCPU1020によって読み出されてもよい。あるいは、交通シミュレーションプログラムに係るプログラムモジュール1093やプログラムデータ1094は、LANやWAN(Wide Area Network)等のネットワークを介して接続された他のコンピュータに記憶され、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。
 以上、本発明者によってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれる。
 10、10a 交通シミュレーション装置
 11 入力部
 12 出力部
 13 通信制御部
 14 記憶部
 15 制御部
 15a 取得部
 15b 定義部
 15c 計算部
 15d 推定部
 15e 置換部

Claims (5)

  1.  対象エリア外の出発地または目的地を取得する取得部と、
     取得された前記出発地または前記目的地から前記対象エリアを経由する経路を推定する推定部と、
     取得された前記出発地または前記目的地を、推定された前記経路上における前記対象エリアの端点に置換する置換部と、
     を有することを特徴とする交通シミュレーション装置。
  2.  前記推定部が複数の経路を推定した場合に、各経路の車両による利用率に応じた確率分布で、該複数の経路を定義する定義部をさらに有することを特徴とする請求項1に記載の交通シミュレーション装置。
  3.  前記置換部は、前記端点を出力することを特徴とする請求項1に記載の交通シミュレーション装置。
  4.  交通シミュレーション装置が実行する交通シミュレーション方法であって、
     対象エリア外の出発地または目的地を取得する取得工程と、
     取得された前記出発地または前記目的地から前記対象エリアを経由する経路を推定する推定工程と、
     取得された前記出発地または前記目的地を、推定された前記経路上における前記対象エリアの端点に置換する置換工程と、
     を含んだことを特徴とする交通シミュレーション方法。
  5.  対象エリア外の出発地または目的地を取得する取得ステップと、
     取得された前記出発地または前記目的地から前記対象エリアを経由する経路を推定する推定ステップと、
     取得された前記出発地または前記目的地を、推定された前記経路上における前記対象エリアの端点に置換する置換ステップと、
     をコンピュータに実行させるための交通シミュレーションプログラム。
PCT/JP2021/022413 2021-06-11 2021-06-11 交通シミュレーション装置、交通シミュレーション方法および交通シミュレーションプログラム WO2022259554A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023526832A JPWO2022259554A1 (ja) 2021-06-11 2021-06-11
PCT/JP2021/022413 WO2022259554A1 (ja) 2021-06-11 2021-06-11 交通シミュレーション装置、交通シミュレーション方法および交通シミュレーションプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022413 WO2022259554A1 (ja) 2021-06-11 2021-06-11 交通シミュレーション装置、交通シミュレーション方法および交通シミュレーションプログラム

Publications (1)

Publication Number Publication Date
WO2022259554A1 true WO2022259554A1 (ja) 2022-12-15

Family

ID=84424625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022413 WO2022259554A1 (ja) 2021-06-11 2021-06-11 交通シミュレーション装置、交通シミュレーション方法および交通シミュレーションプログラム

Country Status (2)

Country Link
JP (1) JPWO2022259554A1 (ja)
WO (1) WO2022259554A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935183A (ja) * 1995-07-14 1997-02-07 Hitachi Ltd 動的経路探索方法およびナビゲーション装置
JP2019028526A (ja) * 2017-07-26 2019-02-21 株式会社日立製作所 混雑予測装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935183A (ja) * 1995-07-14 1997-02-07 Hitachi Ltd 動的経路探索方法およびナビゲーション装置
JP2019028526A (ja) * 2017-07-26 2019-02-21 株式会社日立製作所 混雑予測装置

Also Published As

Publication number Publication date
JPWO2022259554A1 (ja) 2022-12-15

Similar Documents

Publication Publication Date Title
CN109506669B (zh) 动态路径规划方法、装置、系统以及存储介质
EP3229152A1 (en) Distributed online learning for privacy-preserving personal predictive models
EP2645063A1 (en) Path searching method and path search device
JP5421949B2 (ja) 交通量予測装置、交通量予測方法およびプログラム
CN104683405A (zh) 在车联网中集群服务器分发地图匹配任务的方法和装置
CN113763700B (zh) 信息处理方法、装置、计算机设备及存储介质
GB2499177A (en) Routing system, routing method, and routing program
CN109886529B (zh) 一种资源分配方法及装置、电子终端及存储介质
US8706389B2 (en) Range- and/or consumption calculation with energy costs associated with area segments
WO2020024406A1 (zh) 电子装置、基于路况因子的车险查勘调度方法及存储介质
CN111539402B (zh) 基于深度学习的车道线检测方法、装置、终端及存储介质
CN115410410B (zh) 车位推荐方法、装置、设备以及存储介质
JP7145184B2 (ja) ナビゲーションに用いられる方法、装置、デバイス、及びコンピュータが読み取り可能な記憶媒体
CN113792061A (zh) 地图数据的更新方法、装置及电子设备
CN114911804A (zh) 一种地图瓦片更新方法和装置
CN114036411A (zh) 一种路线规划方法、装置、设备及介质
CN114004077A (zh) 交通仿真转换方法、装置、计算机设备及存储介质
WO2022259554A1 (ja) 交通シミュレーション装置、交通シミュレーション方法および交通シミュレーションプログラム
WO2022259553A1 (ja) 交通シミュレーション装置、交通シミュレーション方法および交通シミュレーションプログラム
JP7239053B2 (ja) 生成装置、生成方法及び生成プログラム
US9952055B2 (en) Method for determining correction values for a route calculation algorithm
CN111612198B (zh) 预测拼单成功率的方法、装置和电子设备
CN113008246B (zh) 地图匹配方法和装置
JP2021009027A (ja) 経路出力装置、方法、及びプログラム
CN111862584A (zh) 道路信息获取方法、装置、电子设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023526832

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18568290

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945223

Country of ref document: EP

Kind code of ref document: A1