WO2022259396A1 - Air-conditioning apparatus - Google Patents

Air-conditioning apparatus Download PDF

Info

Publication number
WO2022259396A1
WO2022259396A1 PCT/JP2021/021843 JP2021021843W WO2022259396A1 WO 2022259396 A1 WO2022259396 A1 WO 2022259396A1 JP 2021021843 W JP2021021843 W JP 2021021843W WO 2022259396 A1 WO2022259396 A1 WO 2022259396A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
heat medium
heat
control device
pump
Prior art date
Application number
PCT/JP2021/021843
Other languages
French (fr)
Japanese (ja)
Inventor
幸二 古谷
博紀 鷲山
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/021843 priority Critical patent/WO2022259396A1/en
Priority to EP21945073.1A priority patent/EP4354031A1/en
Publication of WO2022259396A1 publication Critical patent/WO2022259396A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • This technology relates to air conditioners. In particular, it relates to assistance of the capability related to the lift of a pump that pressurizes to circulate the heat medium.
  • air conditioners that perform air conditioning by forming a heat medium circulation circuit that circulates a heat medium containing water or brine between a heat source side device and an indoor unit having an indoor heat exchanger.
  • the heat source side device heats or cools the heat medium to supply heat to the indoor unit.
  • the indoor unit heats or cools indoor air with the heat supplied by the heat medium to perform air conditioning (see, for example, Patent Document 1).
  • An air conditioner has a pump that pressurizes a heat medium to circulate in a heat medium circulation circuit. In the heat source side device, the pump pressurizes the heat medium that has exchanged hot or cold heat with the heat source side refrigerant and sends it to the indoor unit side.
  • the capacity of the pump is selected based on the pressure loss due to scale adhesion, etc., and installed on the heat medium circulation circuit.
  • pumps are often selected based on the pressure loss in the heat transfer medium path up to the highest and most remote indoor units. Therefore, the pump used in the heat medium circulation circuit is required to have a head capacity.
  • the installation range of the indoor unit is defined based on the capacity of the pump. In order to expand the installation range of the indoor unit, the pump needs to have a head capacity. At this time, if the capacity required for supplying the heat medium to the entire heat medium circulation circuit is compensated for by a high-performance pump, the system cost of the entire air conditioner increases.
  • an object of the present invention to provide an air conditioner with a configuration that can assist the pump head capacity, reduce costs, and expand the installation range of indoor units.
  • the disclosed air conditioner includes a heat source side device that heats or cools a heat medium serving as a heat transfer medium, a plurality of indoor heat exchangers that exchange heat between the indoor air to be air-conditioned and the heat medium, and heat An air conditioner comprising a heat medium circulation circuit that pressurizes a medium and circulates the heat medium by pipe connection with a main pump that supplies the medium to an indoor heat exchanger, the air conditioner being installed in the heat medium circulation circuit and having a head of the main pump. It is equipped with a pump for head adjustment that assists the ability related to.
  • a head adjustment pump is installed in the heat medium circulation circuit to assist the ability related to the head of the main pump that supplies the heat medium to the indoor heat exchanger. Therefore, by driving the head adjustment pump, even if the main pump is not a high-capacity, high-cost main pump, the heat source side device and the indoor heat exchanger installed at a higher place or farther from the main pump can achieve the required flow rate. A heat carrier can be supplied. Therefore, it is possible to obtain an air conditioner in which the indoor heat exchanger can be installed in a wide range.
  • FIG. 1 is a diagram showing an outline of an installation example of an air conditioner 0 according to Embodiment 1.
  • FIG. 1 is a diagram showing an example of the configuration of an air conditioner 0 according to Embodiment 1.
  • FIG. 4 is a diagram showing the QH line when selecting a head adjusting pump 34 according to Embodiment 1; 4 is a diagram showing the flow of processing related to regular control performed by the control device in the air conditioner 0 of Embodiment 1.
  • FIG. 4 is a diagram showing the flow of processing related to control of the main pump 22 in regular control of the air conditioner 0 of Embodiment 1.
  • FIG. 4 is a diagram showing the flow of processing related to regular control by the head adjusting pump 34 in the air conditioner 0 of Embodiment 1.
  • FIG. 10 is a diagram showing an example of the configuration of an air conditioner 0 according to Embodiment 2;
  • FIG. 10 is a diagram showing a flow of processing related to regular control performed by a control device in the air conditioner 0 of Embodiment 2;
  • FIG. 10 is a diagram showing the flow of processing related to regular control by the head adjustment pump 34 in the air conditioner 0 of Embodiment 2.
  • FIG. 10 is a diagram showing an example of the configuration of an air conditioner 0 according to Embodiment 2;
  • FIG. 10 is a diagram showing a flow of processing related to regular control performed by a control device in the air conditioner 0 of Embodiment 2;
  • FIG. 10 is a diagram showing the flow of processing related to regular control by the head adjustment pump 34 in the air conditioner 0 of Embodiment 2.
  • FIG. 1 is a diagram showing an outline of an installation example of an air conditioner 0 according to Embodiment 1.
  • the air conditioner 0 includes a heat source side refrigerant circulation circuit A that circulates the heat source side refrigerant, and a heat source side refrigerant circulation circuit A that circulates the heat source side refrigerant, and water that does not change its state in the use temperature range.
  • a heat medium circulation circuit B is provided for circulating the heat medium in a circuit-like path for the heat medium.
  • the air conditioner 0 performs air conditioning by heating and cooling.
  • the heat source side refrigerant circulation circuit A heats or cools the heat medium in the heat medium circulation circuit B, thereby functioning as a heat source side device that supplies hot or cold heat to the indoor side.
  • the air conditioner 0 includes one outdoor unit 1 serving as a heat source device, a plurality of indoor units 3 serving as indoor units (indoor unit 3a to indoor unit 3d), and a relay unit 2.
  • the relay unit 2 is a unit that relays heat transfer between the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B.
  • the outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 6 that serves as a flow path for the heat source side refrigerant.
  • a plurality of relay units 2 can be connected in parallel to one outdoor unit 1 .
  • each indoor unit 3 is connected to the relay unit 2 by a heat medium pipe 5 that serves as a heat medium flow path.
  • a heat medium with a high flow velocity flows through the heat medium pipe 5, the oxide film that plays a role in protecting the pipe peels off inside the pipe, causing erosion that corrodes the metal of the pipe in a horseshoe shape. .
  • the temperature of the heat transfer medium is high, erosion is likely to occur.
  • the flow velocity at which erosion occurs differs depending on the type of metal used as the piping material.
  • Examples of the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A include single refrigerants such as R-22 and R-134a, quasi-azeotropic mixture refrigerants such as R-410A and R-404A, and R-407C. Non-azeotropic refrigerant mixtures can be used.
  • the heat medium circulating in the heat medium circulation circuit B for example, brine (antifreeze), water, a mixed solution of brine and water, a mixed solution of an additive having a high anticorrosive effect and water, etc. can be used.
  • brine antifreeze
  • water a mixed solution of brine and water
  • a highly safe heat medium can be used.
  • FIG. 2 is a diagram showing an example of the configuration of the air conditioner 0 according to Embodiment 1.
  • FIG. 2 Based on FIG. 2, the configuration of the equipment and the like included in the air conditioner 0 will be described.
  • the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 6 .
  • the relay unit 2 and each indoor unit 3 are connected by a heat medium pipe 5 .
  • four indoor units 3 are connected to the relay unit 2 via heat medium pipes 5 .
  • the number of connected indoor units 3 is not limited to four.
  • the outdoor unit 1 is a unit that circulates the heat source side refrigerant in the heat source side refrigerant circulation circuit A to transfer heat, and performs heat exchange with the heat medium in the heat medium heat exchanger 21 of the relay unit 2 .
  • the outdoor unit 1 has a compressor 10, a heat source side heat exchanger 12, an expansion device 13 and an accumulator 14 in a housing.
  • the compressor 10 , the refrigerant flow switching device 11 , the heat source side heat exchanger 12 and the accumulator 14 are connected by refrigerant piping 6 and mounted.
  • the compressor 10 sucks in the heat source side refrigerant, compresses it, changes it to a high temperature and high pressure state, and discharges it.
  • the compressor 10 may be composed of, for example, a capacity-controllable compressor.
  • the refrigerant flow switching device 11 is a device that switches the flow path of the heat source side refrigerant depending on the cooling operation mode or the heating operation mode.
  • the refrigerant flow switching device 11 has a four-way valve and the like. If only the cooling operation or the heating operation is performed, it is not necessary to install the refrigerant flow switching device 11 .
  • the heat source side heat exchanger 12 exchanges heat between the outdoor air supplied from the heat source side blower 15 and the heat source side refrigerant.
  • the heat source side heat exchanger 12 functions as an evaporator and causes the heat source side refrigerant to absorb heat.
  • the heat source side heat exchanger 12 functions as a condenser or a radiator, and causes the heat source side refrigerant to radiate heat.
  • the expansion device 13 is a device that functions as a pressure reducing valve and an expansion valve to decompress and expand the heat source side refrigerant.
  • the expansion device 13 is preferably a device such as an electronic expansion valve that can control the degree of opening to an arbitrary size and can arbitrarily adjust the flow rate of the heat source side refrigerant. Further, the diaphragm device 13 may be installed in the relay unit 2 in some cases.
  • the accumulator 14 is a tank provided on the suction side of the compressor 10 . The accumulator 14 stores, for example, the difference in the amount of refrigerant used between the heating operation mode and the cooling operation mode, and the surplus refrigerant that occurs during transitional periods when the operation changes. Here, the accumulator 14 may not be installed in the heat source side refrigerant circulation circuit A.
  • the indoor unit 3 is a unit that sends conditioned air to the indoor space.
  • Each indoor unit 3 of Embodiment 1 has an indoor heat exchanger 31 (indoor heat exchanger 31a to indoor heat exchanger 31d) and an indoor blower 33 (indoor blower 33a to indoor blower 33d).
  • the indoor unit 3a and the indoor unit 3b each have an indoor flow rate adjusting device 32 (an indoor flow rate adjusting device 32a and an indoor flow rate adjusting device 32b).
  • the indoor unit 3c and the indoor unit 3d each have a lift adjusting pump 34 (lift adjusting pump 34c and lift adjusting pump 34d).
  • the indoor heat exchanger 31, the indoor flow rate adjusting device 32, and the head adjusting pump 34 are devices that constitute the heat medium circulation circuit B. As shown in FIG. Here, the indoor flow rate adjusting device 32 and the head adjusting pump 34 may not be installed in the heat medium circulation circuit B depending on the system.
  • the indoor heat exchanger 31 has, for example, heat transfer tubes and fins.
  • the heat medium passes through the heat transfer tubes of the indoor heat exchanger 31 .
  • the indoor heat exchanger 31 exchanges heat between the indoor air supplied from the indoor blower 33 and the heat medium. When a heat medium colder than air passes through the heat transfer tubes, the air is cooled and the indoor space is cooled.
  • the indoor-side blower 33 passes the air in the indoor space through the indoor heat exchanger 31 to generate a flow of air returning to the indoor space.
  • the indoor flow rate adjusting device 32 has, for example, a two-way valve that can control the degree of opening (opening area) of the valve.
  • the indoor flow rate adjusting device 32 controls the flow rate of the heat medium flowing in and out of the indoor heat exchanger 31 (heat medium amount flowing per unit time) by adjusting the degree of opening. Then, the indoor flow rate adjusting device 32 adjusts the amount of the heat medium passing through the indoor heat exchanger 31 based on the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out of the indoor unit 3. 31 enables heat exchange with the amount of heat corresponding to the heat load in the room.
  • the indoor heat exchanger 31 does not need to exchange heat with the heat load, such as when the indoor flow rate adjusting device 32 is stopped or the thermostat is turned off, the valve is fully closed and the indoor heat is The supply can be stopped so that the heat medium does not flow into or out of the exchanger 31 .
  • the indoor flow control device 32 is installed in the piping on the heat medium outflow side of the indoor heat exchanger 31, but it is not limited to this.
  • the indoor flow control device 32 may be installed on the heat medium inflow side of the indoor heat exchanger 31 .
  • FIG. 3 is a diagram showing the QH line when selecting the head adjusting pump 34 according to the first embodiment.
  • the head adjusting pump 34 assists the heat medium supply of the main pump 22 .
  • a head adjustment pump 34 is installed in place of the indoor flow rate adjustment device 32 .
  • the head adjusting pump 34 is directly connected to the main pump 22 and is connected in parallel with the other head adjusting pumps 34 .
  • the head adjustment pump 34 is described as a device that the indoor unit 3 has, and is connected to the indoor unit 3 and installed on the heat medium path, but it is not limited to this.
  • the head adjusting pump 34 may be a device independent of the separately installed indoor unit 3 .
  • ⁇ Pr be the path pressure loss in the heat medium path from the relay unit 2 to the indoor unit 3 when the rated flow rate Q1 set according to the capacity of the indoor unit 3 flows.
  • P be the total lift of the main pump 22 of the relay unit 2 and the lift adjustment pump 34 connected to the indoor unit 3 .
  • the head adjustment pump 34 is selected so as to satisfy the relation of total head P>path pressure loss ⁇ Pr.
  • the head adjustment pump 34 adjusts the amount of heat medium passing through the indoor heat exchanger 31 based on the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out of the indoor unit 3, so that the indoor heat exchanger 31 , to enable heat exchange with a heat amount corresponding to the heat load in the room.
  • the indoor unit control device 300 which will be described later, has map data that maps the relationship between the voltage applied to the main pump 22 and the flow rate during the trial operation, which will be described later.
  • the voltage applied to the head adjustment pump 34 is adjusted so that the rated flow rate Q1 passing through the indoor unit 3 is obtained.
  • the head adjustment pump 34 is installed in the piping on the heat medium outflow side of the indoor heat exchanger 31, but it is not limited to this.
  • the head adjusting pump 34 may be installed on the heat medium inflow side of the indoor heat exchanger 31 .
  • the head adjusting pump 34 of Embodiment 1 can block the passage of the heat medium to stop the flow when the operation of the indoor unit 3 is stopped. Therefore, the head adjusting pump 34 functions not only as a pressurizing device but also as a flow rate adjusting device.
  • the relay unit 2 is a unit having a device related to heat transfer between the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B.
  • FIG. The relay unit 2 has a heat medium heat exchanger 21 and a main pump 22 .
  • the heat medium heat exchanger 21 performs heat exchange between the heat source side refrigerant and the heat medium, and transfers heat from the heat source side refrigerant side to the heat medium side.
  • the heat medium heat exchanger 21 functions as a condenser or a radiator, and causes the heat source side refrigerant to radiate heat.
  • the heat medium heat exchanger 21 When cooling the heat medium, the heat medium heat exchanger 21 functions as an evaporator and causes the heat source side refrigerant to absorb heat.
  • the main pump 22 is a device that draws in the heat medium, pressurizes it, and circulates it through the heat medium circulation circuit B. As shown in FIG.
  • the compressor 10 sucks in the heat source side refrigerant, compresses it, and discharges it in a state of high temperature and high pressure.
  • the discharged heat source side refrigerant flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11 .
  • the heat source side heat exchanger 12 exchanges heat between the air supplied by the heat source side blower 15 and the heat source side refrigerant to condense and liquefy the heat source side refrigerant.
  • the condensed and liquefied heat source side refrigerant passes through the expansion device 13 .
  • the expansion device 13 decompresses the condensed and liquefied heat source side refrigerant passing through.
  • the depressurized heat source side refrigerant flows out of the outdoor unit 1 , passes through the refrigerant pipe 6 , and flows into the heat medium heat exchanger 21 of the relay unit 2 .
  • the heat medium heat exchanger 21 exchanges heat between the passing heat source side refrigerant and the heat medium, and evaporates the heat source side refrigerant. At this time, the heat medium is cooled.
  • the heat source side refrigerant that has flowed out of the heat medium heat exchanger 21 flows out of the relay unit 2 , passes through the refrigerant pipe 6 , and flows into the outdoor unit 1 . Then, the compressor 10 sucks the evaporated and gasified heat source side refrigerant that has passed through the refrigerant flow switching device 11 again.
  • the compressor 10 sucks in the heat source side refrigerant, compresses it, and discharges it in a state of high temperature and high pressure.
  • the discharged heat source side refrigerant flows out of the outdoor unit 1 via the refrigerant flow switching device 11 , passes through the refrigerant pipe 6 , and flows into the heat medium heat exchanger 21 of the relay unit 2 .
  • the heat medium heat exchanger 21 exchanges heat between the heat source side refrigerant and the heat medium passing therethrough to condense and liquefy the heat source side refrigerant. At this time, the heat medium is heated.
  • the depressurized heat source side refrigerant flows into the heat source side heat exchanger 12 .
  • the heat source side heat exchanger 12 exchanges heat between the air supplied by the heat source side blower 15 and the heat source side refrigerant, and evaporates the heat source side refrigerant. Then, the compressor 10 sucks the evaporated and gasified heat source side refrigerant that has passed through the refrigerant flow switching device 11 again.
  • the air conditioner 0 is equipped with various sensors that serve as detection devices that detect physical quantities.
  • a discharge temperature sensor 501 detects the temperature of the refrigerant discharged from the compressor 10 and outputs a discharge temperature detection signal.
  • the outdoor unit control device 100 to be described later obtains a discharge temperature detection signal output by the discharge temperature sensor 501 .
  • the discharge temperature sensor 501 has a thermistor or the like. Also, other temperature sensors to be described below are assumed to have a thermistor or the like.
  • a discharge pressure sensor 502 detects the pressure of the refrigerant discharged from the compressor 10 and outputs a discharge pressure detection signal.
  • the outdoor unit control device 100 which will be described later, obtains a discharge pressure detection signal output by the discharge pressure sensor 502.
  • FIG. The outdoor temperature sensor 503 is installed in the air inflow portion of the heat source side heat exchanger 12 in the outdoor unit 1 .
  • the outdoor temperature sensor 503 detects, for example, the outdoor temperature, which is the ambient temperature of the outdoor unit 1, and outputs an outdoor temperature detection signal.
  • the outdoor unit control device 100 which will be described later, obtains an outdoor temperature detection signal output by the outdoor temperature sensor 503.
  • a first refrigerant temperature sensor 504 and a second refrigerant temperature sensor 505 are installed on the relay unit 2 side.
  • the first refrigerant temperature sensor 504 is installed in the piping on the refrigerant inflow side of the heat medium heat exchanger 21 when cooling the heat medium in the refrigerant flow in the heat source side refrigerant circulation circuit A.
  • the first refrigerant temperature sensor 504 and the second refrigerant temperature sensor 505 detect the temperature of the refrigerant flowing in and out of the heat medium heat exchanger 21 and output a refrigerant side detection signal.
  • Relay unit control device 200 which will be described later, obtains refrigerant-side detection signals output by first refrigerant temperature sensor 504 and second refrigerant temperature sensor 505 .
  • a heat medium inlet side temperature sensor 511 and a heat medium outlet side temperature sensor 512 are installed on the relay unit 2 side.
  • the heat medium inlet side temperature sensor 511 is installed in the piping on the heat medium inlet side of the heat medium heat exchanger 21 in the flow of the heat medium in the heat medium circulation circuit B. As shown in FIG.
  • the heat medium inlet side temperature sensor 511 detects the temperature of the heat medium flowing into the heat medium heat exchanger 21 and outputs a heat medium inlet side detection signal.
  • a relay unit control device 200 which will be described later, obtains a heat medium inlet side detection signal output by the heat medium inlet side temperature sensor 511.
  • the heat medium outlet side temperature sensor 512 is installed in the pipe on the heat medium outlet side of the heat medium heat exchanger 21 in the flow of the heat medium in the heat medium circulation circuit B.
  • the heat medium outlet side temperature sensor 512 detects the temperature of the heat medium flowing out of the heat medium heat exchanger 21 and outputs a heat medium outlet side detection signal.
  • a relay unit control device 200 which will be described later, obtains a heat medium outflow side detection signal output by the heat medium outflow side temperature sensor 512.
  • FIG. although not installed in the air conditioner 0 of Embodiment 1, in the heat medium circulation circuit B, a detection device such as a pressure sensor or a flow rate sensor may be installed on the relay unit 2 side.
  • an indoor inlet side temperature sensor 513 (indoor inlet side temperature sensor 513a to indoor inlet side temperature sensor 513d) is installed on each indoor unit 3 side. Further, indoor outlet side temperature sensors 514 (indoor outlet side temperature sensors 514a to indoor outlet side temperature sensors 514d) are installed.
  • the indoor inlet side temperature sensor 513 detects the temperature of the heat medium flowing into the indoor heat exchanger 31 and outputs an inlet side detection signal.
  • An indoor unit control device 300 included in each indoor unit 3 to be described later obtains an inflow side detection signal output by the corresponding indoor outlet side temperature sensor 514 .
  • Each indoor outlet side temperature sensor 514 detects the temperature of the heat medium flowing out from the indoor heat exchanger 31 and outputs an outlet side detection signal.
  • An indoor unit control device 300 which will be described later, obtains an inflow side detection signal output by the corresponding indoor outlet side temperature sensor 514.
  • an indoor inflow-side pressure sensor 521 (indoor inflow-side pressure sensor 521a to indoor inflow-side pressure sensor 521b) is installed on the indoor unit 3 side. Further, an indoor outflow side pressure sensor 522 (indoor outflow side pressure sensor 522a to indoor outflow side pressure sensor 522b) is installed.
  • the indoor inflow-side pressure sensor 521 and the indoor outflow-side pressure sensor 522 are installed on the heat medium inflow/outflow side of the indoor flow rate adjusting device 32 of each indoor unit 3, and send a signal according to the detected pressure.
  • the indoor inflow side pressure sensor 521 can be omitted. can be done.
  • a flow rate detection device that detects the flow rate may be installed instead of the pressure sensor.
  • the head adjustment pump 34 installed in the indoor unit 3 has an applied voltage-rotational speed-flow rate map, the flow rate can be detected from the applied voltage-rotational speed, and the pressure sensor can be omitted.
  • a calorific value detector capable of detecting the calorific value associated with heat exchange with the air in the indoor space, which is the heat load, may be installed.
  • Each indoor unit control device 300 acquires the amount of heat associated with heat exchange in the indoor heat exchanger 31 by performing calculations or the like. Then, each indoor unit control device 300 sends a signal including the acquired heat quantity data to the relay unit control device 200 .
  • an indoor temperature sensor 515 (room temperature sensor 515a to room temperature sensor 515d) is installed on each indoor unit 3 side.
  • the indoor temperature sensor 515 detects the intake temperature, which is the temperature of the air flowing into the indoor heat exchanger 31 due to the flow of air driven by the indoor blower 33, and outputs an intake temperature detection signal.
  • the suction temperature can be the temperature of the indoor air to be air-conditioned in the indoor space, which is the heat load.
  • each unit has a control device that controls the equipment of each unit. Further, each control device performs processing based on signals such as data of physical quantities contained in signals sent from various sensors, instructions and settings sent from an input device (not shown) or the like. Further, each control device is connected to other control devices for wired communication or wireless communication, and can communicate signals including various data with the other control devices.
  • the outdoor unit 1 has an outdoor unit controller 100 . Also, the relay unit 2 has a relay unit control device 200 .
  • Each indoor unit 3 has an indoor unit controller 300 (indoor unit controller 300a to indoor unit controller 300d).
  • each control device has a microcomputer.
  • the microcomputer has, for example, a control processing unit such as a CPU (Central Processing Unit). Further, each control device has an I/O port for managing input/output of various signals.
  • the microcomputer also includes, for example, a volatile storage device (not shown) such as a random access memory (RAM) that can temporarily store data, and a non-volatile auxiliary storage device (not shown) such as a hard disk and flash memory. as a storage device.
  • RAM random access memory
  • auxiliary storage device such as a hard disk and flash memory.
  • Each control device can store various data contained in signals sent from other control devices and various sensors, data resulting from arithmetic processing, and the like in a storage device.
  • the storage device has data in which processing procedures to be performed by the control arithmetic processing unit are programmed.
  • control arithmetic processing unit executes processing based on the data of the program to realize the processing of each section.
  • each device may be composed of dedicated equipment (hardware).
  • the control device has a timing device such as a timer for timing.
  • each indoor unit control device 300 includes data such as pressure and temperature detected by a sensor in the corresponding indoor unit 3 in a signal, and relay unit 2 has It can be sent to the relay unit control device 200 .
  • Each indoor unit control device 300 can also send to the relay unit control device 200 data related to the indoor set temperature input from a remote controller (not shown), data obtained by calculating the amount of heat, and the like.
  • the relay unit control device 200 or the indoor unit control device 300 performs processing related to flow rate control of the head adjusting pump 34, which will be described later.
  • the head adjustment pump 34 may have a control device and independently perform flow rate control processing based on map data, which will be described later.
  • the relay unit control device 200 controls the devices in the test run by controlling the devices or sending instructions to the indoor unit control device 300 .
  • the processing is not limited to this, and another control device may perform the processing.
  • the air conditioner 0 When conducting a test run, the air conditioner 0 is first operated with the opening degrees of the indoor flow control devices 32 in all the indoor units 3 fully open. At this time, the main pump 22 of the relay unit 2 and all the head adjustment pumps 34 are driven with the maximum applied voltage. Then, based on the map data showing the relationship between the voltage applied to the indoor inflow side pressure sensor 521, the indoor outflow side pressure sensor 522, and the lift adjustment pump 34 - the number of rotations - the flow rate, the air conditioner 0 is installed in all the indoor units 3 Check that the heat transfer medium is circulating in the
  • the air conditioner 0 is operated with all the indoor flow control devices 32 other than the indoor flow control device 32a among the plurality of indoor units 3 closed. At this time, all the head adjusting pumps 34 are stopped. Furthermore, the main pump 22 of the relay unit 2 is driven with the maximum applied voltage. In this way, in a state in which the opening degree of the indoor flow rate adjusting device 32a of the indoor unit 3a is fully opened, the relay unit control device 200 controls the connection between the indoor outflow side pressure sensor 522 and the indoor inflow side pressure sensor 521 of the relay unit 2. Calculate the pressure difference ⁇ P between Furthermore, the relay unit control device 200 calculates the path pressure loss ⁇ Pr from the pressure difference ⁇ P, and records the data of the path pressure loss ⁇ Pr.
  • the relay unit control device 200 records the data of the flow rate Qa of the heat medium flowing through the indoor unit 3a. At this time, the relay unit control device 200 calculates the pressure difference ⁇ Pa between the indoor inflow side pressure sensor 521 and the indoor outflow side pressure sensor 522 when the indoor unit 3a is passed. Also, the relay unit control device 200 obtains the flow rate Qa of the heat medium based on the pressure difference ⁇ Pa. As a method of obtaining the flow rate Qa of the heat medium, for example, as described above, there is a method of calculating from the pressure difference ⁇ P between the pressure sensors installed in the indoor unit 3 or the relay unit 2 and the Cv value in the flow path through which the heat medium flows. be.
  • the relay unit control device 200 calculates the path pressure loss ⁇ Pra_t when the rated flow Q1a corresponding to the capacity of the indoor unit 3a flows.
  • the relay unit control device 200 records data of the calculated path pressure loss ⁇ Pra_t.
  • the air conditioner 0 is operated with the indoor flow rate adjusting device 32a of the indoor unit 3a closed and the indoor flow rate adjusting device 32b fully opened.
  • the relay unit control device 200 records data obtained by operating the air conditioner 0 .
  • the air conditioner 0 repeats the above operation until the relay unit control device 200 records the data for all the indoor units 3 .
  • the data of the path pressure loss ⁇ Pr_t when the rated flow rate Q1 flows in each indoor unit 3 is recorded in the relay unit control device 200.
  • the air conditioner 0 is operated with the indoor flow control devices 32 in all the indoor units 3 closed.
  • the main pump 22 of the relay unit 2 and the head adjustment pump 34c of the indoor unit 3c are driven.
  • the main pump 22 is driven at maximum applied voltage.
  • the head adjusting pump 34c is driven by applying a voltage so that the rated flow rate Q1c corresponding to the capacity of the indoor unit 3c is achieved.
  • the voltage applied to the head adjustment pump 34c at this time is assumed to be Vc_t_max%.
  • the relay unit controller 200 records Vc_t_max% data.
  • the main pump 22 of the relay unit 2 is driven with the applied voltage reduced to x% of the maximum applied voltage.
  • the head adjusting pump 34c is driven by applying a voltage so that the rated flow rate Q1c corresponding to the capacity of the indoor unit 3c is achieved.
  • the voltage applied to the head adjustment pump 34c at this time is assumed to be Vc_t_x%.
  • the relay unit controller 200 records Vc_t_x% data.
  • the air conditioner 0 repeats the above operation while changing the voltage applied to the main pump 22 of the relay unit 2 .
  • the relay unit control device 200 stores the data indicating the relationship between the voltage applied to the main pump 22 of the relay unit 2 and the voltage applied to the head adjustment pump 34c to achieve the rated flow rate Q1c corresponding to the capacity of the indoor unit 3c as map data. Record as
  • the air conditioner 0 stops the lift adjustment pump 34c of the indoor unit 3c and drives the lift adjustment pump 34d of the indoor unit 3d to operate.
  • the relay unit control device 200 records data obtained by operating the air conditioner 0 .
  • the air conditioner 0 repeats the above operation until the relay unit control device 200 records the data obtained by driving the respective head adjustment pumps 34 . Then, the air conditioner 0 ends the test run operation.
  • FIG. 4 is a diagram showing the flow of processing related to regular control performed by the control device in the air conditioner 0 of Embodiment 1. As shown in FIG. Next, processing related to air conditioning in the air conditioner 0 of Embodiment 1 will be described.
  • the process in FIG. 4 is mainly controlled by the indoor unit controller 300 of each indoor unit 3 in cooperation with the outdoor unit controller 100 and the relay unit controller 200 .
  • the processing is not limited to this, and processing may be performed centrally by one control device.
  • the indoor unit 3 (the indoor unit 3c and the indoor unit 3d) in which the head adjustment pump 34 is installed in the heat medium path is in a stopped state.
  • the indoor unit 3 the indoor unit 3a or the indoor unit 3b
  • the indoor unit control device 300 opens the indoor flow control device 32 in order to circulate the heat medium according to the operation mode to be started.
  • the indoor unit control device 300 operates the indoor air blower 33 (step S1).
  • each indoor unit control device 300 opens the indoor flow rate adjusting device 32 with an opening degree obtained by multiplying the opening degree according to the capacity of the indoor unit 3 by the correction value Cv_h.
  • the correction value Cv_h is determined by the path pressure loss ⁇ Pr_t in each indoor unit 3 recorded in the relay unit control device 200 during trial operation.
  • the correction value Cv_h increases as the path pressure loss ⁇ Pr_t increases. Therefore, the degree of opening of the indoor flow rate adjusting device 32 is increased.
  • the indoor unit control device 300 sends a signal to the relay unit control device 200 of the relay unit 2 when the indoor flow rate adjusting device 32 is opened.
  • the relay unit control device 200 starts driving the main pump 22 (step S2).
  • the relay unit control device 200 determines the applied voltage to be applied to the main pump 22 of the relay unit 2 according to the total capacity of the indoor units 3 in operation.
  • the relay unit control device 200 drives the main pump 22 to ensure the flow rate of the heat medium in the heat medium circulation circuit B, and then transmits an operation signal to the outdoor unit control device 100 of the outdoor unit 1 .
  • the outdoor unit control device 100 starts driving the compressor 10 of the outdoor unit 1 (step S3).
  • the indoor unit control device 300 After the compressor 10 is driven, the indoor unit control device 300 performs regular control to control the degree of opening of the indoor flow control device 32 to be controlled at regular intervals according to the load in the room where the indoor unit 3 is installed. process.
  • Each indoor unit control device 300 calculates the temperature difference ⁇ To between the indoor temperature sensor 515 and the indoor set temperature To, and the temperature difference value ⁇ To (t) calculated this time and the temperature difference ⁇ To value ⁇ To (t ⁇ 1) to make a determination (step S4). Based on the determination, each indoor unit control device 300 controls the degree of opening of the indoor flow rate adjusting device 32 at regular time intervals t.
  • the indoor unit controller 300 determines that the indoor load is higher than the capacity of the indoor unit 3. judged to be large. Then, the indoor unit control device 300 issues an instruction to increase the opening degree of the indoor flow rate adjusting device 32, thereby increasing the flow rate of the heat medium passing through the indoor heat exchanger 31 to secure the capacity (step S5).
  • the indoor unit control device 300 detects that the indoor load is on the indoor unit 3. judged to be less than ability. Then, the indoor unit control device 300 issues an instruction to reduce the opening degree of the indoor flow rate adjusting device 32, thereby reducing the flow rate of the heat medium passing through the indoor heat exchanger 31 and suppressing the capacity (step S6).
  • the indoor unit control device 300 closes the indoor flow rate adjusting device 32, The operation of the indoor unit 3 is stopped (step S7).
  • FIG. 5 is a diagram showing the flow of processing related to control of the main pump 22 in regular control of the air conditioner 0 of Embodiment 1.
  • the relay unit control device 200 determines the applied voltage to be applied to the main pump 22 of the relay unit 2, and starts driving the main pump 22.
  • the relay unit control device 200 performs regular control processing for controlling the driving of the main pump 22 at regular time intervals.
  • control of the main pump 22 included in the relay unit 2 in the air conditioner 0 of Embodiment 1 will be described.
  • the processing in FIG. 5 is mainly performed by the relay unit control device 200.
  • FIG. However, the processing is not limited to this, and processing may be performed centrally by one control device.
  • the relay unit control device 200 transmits the operation signal to the outdoor unit control device 100 of the outdoor unit 1 in step S3 of FIG. 4, it controls the voltage applied to the main pump 22 while the air conditioner 0 is operating. Thereby, the air conditioner 0 controls the flow rate of the heat medium for all the indoor units 3 .
  • the relay unit control device 200 determines whether the opening degree of the indoor flow rate adjusting device 32 of each indoor unit 3 is smaller than the initial opening degree when the indoor unit 3 starts operating (step S11). When the relay unit control device 200 determines that the opening degrees of all the indoor flow rate adjusting devices 32 are smaller than the initial opening degrees, the relay unit control device 200 determines that the flow rate of the heat medium in the heat medium circulation circuit B is secured, and switches the heat medium to the main pump 22. The applied voltage is lowered to decelerate the main pump 22 (step S12).
  • the relay unit control device 200 determines that the flow rate of the heat medium in the heat medium circulation circuit B is insufficient, and the main pump 22 is increased to increase the speed of the main pump 22 (step S13).
  • the relay unit control device 200 adjusts the flow rate of the heat medium according to the load of each indoor unit 3 by repeating the above-described processing during regular control.
  • FIG. 6 is a diagram showing the flow of processing related to regular control by the head adjustment pump 34 in the air conditioner 0 of Embodiment 1.
  • the indoor unit 3 in which the head adjustment pump 34 is installed in the heat medium path operates in response to an operation command will be described.
  • the process related to the drive of the head adjustment pump 34 when the indoor unit 3 (the indoor unit 3c or the indoor unit 3d) in which the head adjustment pump 34 is installed in the heat medium path operates will be mainly described.
  • the indoor unit control device 300 causes the heat medium to pass through the indoor unit 3 in which the head adjustment pump 34 is installed in the heat medium path. Therefore, the driving of the head adjustment pump 34 is started. Also, the indoor unit control device 300 drives the indoor blower 33 (step S21). At this time, the indoor unit controller 300 determines the applied voltage so that the head adjustment pump 34 is driven at the rated flow rate Q1 based on the applied voltage of the main pump 22 and the map data recorded during the test run.
  • the indoor unit control device 300 controls the driving of the head adjusting pump 34 according to the air conditioning load in the indoor unit 3 .
  • the indoor unit control device 300 calculates the temperature difference ⁇ To between the indoor temperature sensor 515 and the indoor set temperature To, and the temperature difference value ⁇ To(t) calculated this time and the temperature difference ⁇ To value ⁇ To(t ⁇ 1 ) to determine (step S22). Based on the determination, the indoor unit control device 300 then controls the driving of the head adjustment pump 34 at regular time intervals t.
  • the indoor unit control device 300 determines that the indoor air conditioning load exceeds the capacity of the indoor unit 3. determined to be greater than Then, the indoor unit control device 300 issues an instruction to increase the voltage applied to the lift adjustment pump 34, speeds up the lift adjustment pump 34, and increases the flow rate of the heat medium passing through the indoor heat exchanger 31. to secure the ability (step S23).
  • the indoor unit control device 300 determines that the indoor air conditioning load is reduced to the indoor unit 3 is smaller than the ability of Then, the indoor unit control device 300 instructs to lower the voltage applied to the lift adjustment pump 34, decelerates the lift adjustment pump 34, and reduces the flow rate of the heat medium passing through the indoor heat exchanger 31. Suppress ability (step S24).
  • the indoor unit control device 300 stops the head adjustment pump 34, The operation of the indoor unit 3 is stopped (step S25).
  • the indoor unit control device 300 drives and controls the lift adjustment pump 34 according to the air conditioning load in the room where the indoor unit 3 is installed, but this is not restrictive.
  • the indoor unit control device 300 adjusts the voltage applied to the pump for adjusting the lift 34 so that the heat medium passing through the indoor unit 3 has the rated flow rate Q1 based on the applied voltage-rotational speed-flow rate map data described above. You may control and drive.
  • the control of the main pump 22 performed by the relay unit control device 200 is basically the same as the control described with reference to FIG.
  • the relay unit control device 200 determines that the heat medium supplied to the indoor unit 3 to which the lift adjustment pump 34 is connected is insufficient. do.
  • the relay unit control device 200 then increases the voltage applied to the main pump 22 to speed up the main pump 22 .
  • the drive control described above is repeated to adjust the flow rate of the heat medium.
  • the indoor unit 3 (the indoor heat exchanger 31 ) is connected to the head adjustment pump 34 as an auxiliary pump.
  • the indoor heat exchanger 31 can be supplied with the required flow rate of the heat medium.
  • the heat medium can be sent without using the main pump 22 having a high head capability corresponding to the indoor unit 3 installed in a path such as a high place or a distant place where the head is insufficient. Therefore, it is possible to obtain the air conditioner 0 in which the indoor unit 3 can be installed in a wide range while achieving low cost.
  • the heat medium passing through the indoor unit 3 is operated so as to have the rated flow rate Q1, and the data on the relationship between the head adjusting pump 34 and the main pump 22 is stored in the storage device of the relay unit controller 200.
  • map data relating to the rated flow rate Q1 created based on the stored data is stored in the indoor unit controller 300.
  • the indoor unit control device 300 drives the head adjusting pump 34 based on the map data. Therefore, when the air conditioning apparatus 0 is operated, it is possible to suppress performance variations due to uneven flow rates of the indoor units 3 installed near and far.
  • the heat medium can be circulated according to the load in the room where the indoor unit 3 is installed. Moreover, the indoor unit 3 can pass the heat medium of the flow volume according to the installed indoor load. Therefore, the power consumption of the air conditioner 0 can be apportioned among the indoor units 3 .
  • the head adjusting pump 34 is configured to be able to block the passage of the heat medium, for example, when the operation of the indoor unit 3 is stopped. Therefore, it is possible to prevent passage of the heat medium to the indoor unit 3 that does not need to be supplied.
  • FIG. 7 is a diagram showing an example of the configuration of the air conditioner 0 according to Embodiment 2. As shown in FIG. Based on FIG. 7, the configuration of the equipment and the like included in the air conditioner 0 will be described. In the second embodiment, devices and the like that are not specifically described perform the same operations and processes as those described for the devices in the first embodiment.
  • the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 6. Also, the relay unit 2 and each indoor unit 3 are connected by a heat medium pipe 5 .
  • the relay unit 2 and each indoor unit 3 are connected by a heat medium pipe 5 .
  • four indoor units 3 are connected to the relay unit 2 via heat medium pipes 5 .
  • the number of connected indoor units 3 is not limited to four.
  • the indoor unit 3 can basically freely select either the cooling mode or the heating mode as the operation mode.
  • the indoor unit 3c and the indoor unit 3d are in the same mode.
  • the outdoor unit 1 is a unit that circulates the heat source side refrigerant in the heat source side refrigerant circulation circuit A to transfer heat, and performs heat exchange with the heat medium in the heat medium heat exchanger 21 of the relay unit 2 .
  • the outdoor unit 1 has a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, an accumulator 14, and a heat source side blower 15 in a housing.
  • the outdoor unit 1 further has a first connection pipe 16, a second connection pipe 17, and first backflow prevention devices 18a to 18d.
  • check valves are used as the first backflow prevention devices 18a to 18d.
  • the first backflow prevention device 18a is a device that prevents high-temperature and high-pressure gas refrigerant from flowing back from the first connection pipe 16 to the heat source side heat exchanger 12 in the heating only operation mode and the heating main operation mode.
  • the first backflow prevention device 18b is a device that prevents high-pressure liquid or gas-liquid two-phase refrigerant from flowing back from the first connection pipe 16 to the accumulator 14 during the cooling only operation mode and the cooling main operation mode. is.
  • the first backflow prevention device 18c is a device that prevents the high-pressure liquid or gas-liquid two-phase refrigerant from flowing back from the second connection pipe 17 to the accumulator 14 during the cooling only operation mode and the cooling main operation mode. is.
  • the first backflow prevention device 18d prevents high-temperature and high-pressure gas refrigerant from flowing back from the discharge-side flow path of the compressor 10 to the second connection pipe 17 during the heating-only operation mode and the heating-main operation mode. It is a device that
  • the flow of the refrigerant flowing into the relay unit 2 can be prevented regardless of the operation requested by the indoor unit 3.
  • check valves are used as the first backflow prevention devices 18a to 18d, but any device that can prevent backflow of the refrigerant may be used.
  • an opening/closing device, an expansion device having a fully closing function, or the like can be used as the first backflow prevention device 18a to the first backflow prevention device 18d.
  • the indoor unit 3 is a unit that sends conditioned air to the indoor space.
  • Each indoor unit 3 of Embodiment 2 has an indoor heat exchanger 31 (indoor heat exchanger 31a to indoor heat exchanger 31d) and an indoor fan 33 (indoor fan 33a to indoor fan 33d).
  • the indoor unit 3b and the indoor unit 3d have a lift adjustment pump 34b and a lift adjustment pump 34d, respectively.
  • the relay unit 2 has the heat medium flow rate adjusting device 28, unlike the first embodiment, the indoor flow rate adjusting device 32 in the indoor unit 3 becomes unnecessary.
  • the indoor heat exchanger 31 and the head adjustment pump 34 are devices that constitute the heat medium circulation circuit B. As shown in FIG.
  • the head adjustment pump 34 is a device installed in the heat medium circulation circuit B depending on the system.
  • a head adjusting pump 34 that assists the main pump 22 in supplying the heat medium is installed corresponding to the indoor unit 3 installed at a high place or far away.
  • the head adjustment pump 34 adjusts the amount of heat medium that passes through the indoor heat exchanger 31 based on the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out.
  • the indoor unit control device 300 has map data that maps the relationship between the voltage applied to the main pump 22 and the flow rate during a trial operation, which will be described later. When the indoor unit controller 300 starts operating the indoor unit 3, the voltage applied to the head adjustment pump 34 is adjusted so that the rated flow rate Q1 passing through the indoor unit 3 is obtained.
  • the head adjustment pump 34 is installed in the piping on the heat medium outflow side of the indoor heat exchanger 31, but it is not limited to this.
  • the head adjusting pump 34 may be installed on the heat medium inflow side of the indoor heat exchanger 31 .
  • the head adjusting pump 34 of Embodiment 1 can block the passage of the heat medium to stop the flow when the operation of the indoor unit 3 is stopped. Therefore, the head adjusting pump 34 functions not only as a pressurizing device but also as a flow rate adjusting device.
  • the indoor heat exchanger 31 has, for example, heat transfer tubes and fins.
  • the heat medium passes through the heat transfer tubes of the indoor heat exchanger 31 .
  • the indoor heat exchanger 31 exchanges heat between the indoor air supplied from the indoor blower 33 and the heat medium. When a heat medium colder than air passes through the heat transfer tubes, the air is cooled and the indoor space is cooled.
  • the indoor-side blower 33 passes the air in the indoor space through the indoor heat exchanger 31 to generate a flow of air returning to the indoor space.
  • the relay unit 2 has a heat medium heat exchanger 21 that exchanges heat between a heat source side refrigerant and a heat medium, and two main pumps 22 that convey heat to the indoor unit 3 . Also, the relay unit 2 has two relay-side expansion devices 23 , two opening-closing devices 24 , and two relay-side refrigerant flow switching devices 25 in the heat source side refrigerant circulation circuit A. In addition, the relay unit 2 has a first heat medium flow switching device 26 , a second heat medium flow switching device 27 and a heat medium flow control device 28 in the heat medium circulation circuit B.
  • the two heat medium heat exchangers 21 function as condensers (radiators) or evaporators.
  • the heat medium heat exchanger 21a is provided between the relay side expansion device 23a and the relay side refrigerant flow switching device 25a in the heat source side refrigerant circulation circuit A, and heats the heat medium in the cooling/heating mixed operation mode. It becomes a heat exchanger.
  • the heat medium heat exchanger 21b is provided between the relay side expansion device 23b and the relay side refrigerant flow switching device 25b in the heat source side refrigerant circulation circuit A, and in the cooling/heating mixed operation mode, the heat medium heat exchanger 21b becomes a heat exchanger that cools the
  • the two relay-side throttle devices 23 function as pressure reducing valves and expansion valves, and reduce the pressure of the heat source side refrigerant to expand it.
  • the relay-side expansion device 23a is provided upstream of the heat medium heat exchanger 21a in the flow of the heat source-side refrigerant during the cooling operation.
  • the relay-side expansion device 23b is provided upstream of the heat medium heat exchanger 21b in the flow of the heat source-side refrigerant during the cooling operation.
  • the two relay-side expansion devices 23 are composed of, for example, electronic expansion valves whose opening can be controlled.
  • the two opening/closing devices 24 are composed of two-way valves and the like, and open and close the heat medium pipes 5.
  • the opening/closing device 24a is provided in the heat medium pipe 5 on the inlet side of the heat source side refrigerant.
  • the opening/closing device 24b is provided with a pipe connecting the inlet side and the outlet side of the heat source side refrigerant.
  • the opening/closing device 24 may be an electronic expansion valve such as a throttle device.
  • the two relay-side refrigerant flow switching devices 25 are composed of four-way valves or the like, and control the flow of the heat source-side refrigerant according to the operation mode. switch.
  • the relay-side refrigerant flow switching device 25a is provided downstream of the heat medium heat exchanger 21a in the flow of the heat source-side refrigerant during cooling operation.
  • the relay-side refrigerant flow switching device 25b is provided downstream of the heat medium heat exchanger 21b in the flow of the heat source-side refrigerant during the cooling only operation.
  • the two main pumps 22 pressurize the heat medium passing through the heat medium pipe 5 to circulate the heat medium circulation circuit B.
  • the main pump 22 a is provided in the heat medium pipe 5 between the heat medium heat exchanger 21 a and the second heat medium flow switching device 27 .
  • the main pump 22 b is provided in the heat medium pipe 5 between the heat medium heat exchanger 21 b and the second heat medium flow switching device 27 .
  • the first heat medium flow switching device 26 (first heat medium flow switching device 26a to first heat medium flow switching device 26c) is composed of a three-way valve or the like, and switches the heat medium flow channel.
  • the number of the first heat medium flow switching devices 26 corresponding to the number of branches connected to the indoor unit 3 is provided.
  • a plurality of indoor units 3 may be connected to the branches of the relay unit 2 and the indoor unit 3 .
  • One of the three flow paths of the first heat medium flow switching device 26 is connected to the heat medium heat exchanger 21a. Another one is connected to the heat medium heat exchanger 21b. Another one is connected to the heat medium flow control device 28 .
  • the first heat medium flow switching device 26 is provided on the outlet side of the heat medium flow path in the indoor heat exchanger 31 .
  • the second heat medium flow switching device 27 (second heat medium flow switching device 27a to second heat medium flow switching device 27c) is composed of a three-way valve or the like, and switches the heat medium flow channel.
  • the number of second heat medium flow switching devices 27 is provided according to the number of indoor units 3 installed.
  • One of the three flow paths of the second heat medium flow switching device 27 is connected to the heat medium heat exchanger 21a.
  • Another one is connected to the heat medium heat exchanger 21b.
  • Another one is connected to the indoor heat exchanger 31 .
  • the second heat medium flow switching device 27 is provided on the inlet side of the heat medium flow path in the indoor heat exchanger 31 .
  • the heat medium flow rate adjusting device 28 (heat medium flow rate adjusting device 28 a to heat medium flow rate adjusting device 28 c ) is a device that adjusts the flow rate of the heat medium flowing through the indoor unit 3 .
  • the heat medium flow rate adjusting device 28 is composed of a two-way valve or the like capable of controlling the opening area, and controls the flow rate of the heat medium pipe 5 .
  • the number of heat medium flow control devices 28 corresponding to the number of branches connected to the indoor unit 3 is provided.
  • One end of the heat medium flow control device 28 is connected to the indoor heat exchanger 31 .
  • the other is connected to the first heat medium flow switching device 26 .
  • the heat medium flow control device 28 is provided on the outlet side of the heat medium flow path in the indoor heat exchanger 31 .
  • the heat medium flow control device 28 may be provided on the inlet side of the heat medium flow path of the indoor heat exchanger 31 .
  • the relay unit control device 200 controls the devices in the test run by controlling the devices or sending instructions to the indoor unit control device 300 .
  • the processing is not limited to this, and another control device may perform the processing.
  • the relay unit control device 200 directs the branch of the relay unit 2 corresponding to the indoor unit 3b to which the head adjustment pump 34b is connected to the main pump 22a side, and the first heat medium flow switching device 26b.
  • the second heat medium flow switching device 27b is switched.
  • the relay unit control device 200 fully opens the heat medium flow control device 28b.
  • the relay unit control device 200 drives the main pump 22 and all the head adjustment pumps 34b of the relay unit 2 with the maximum applied voltage. After that, the relay unit control device 200 decreases the voltage applied to the head adjustment pump 34 until the rated flow rate Q1b corresponding to the capacity of the indoor unit 3b is reached. Then, the relay unit control device 200 records the data of the applied voltage Vb_t_100% of the head adjustment pump 34 at the maximum applied voltage of the main pump 22 of the relay unit 2 .
  • the relay unit control device 200 reduces the voltage applied to the main pump 22a, and adjusts the voltage Vb_t_x% applied to the head adjustment pump 34b so that the rated flow rate Q1b corresponding to the capacity of the indoor unit 3b is reached.
  • Relay unit control device 200 records the data of applied voltage Vb_t_x%.
  • the air conditioner 0 repeats the above operations. Then, the relay unit control device 200 stores the data indicating the relationship between the voltage applied to the main pump 22 of the relay unit 2 and the voltage applied to the head adjustment pump 34c to achieve the rated flow rate Q1b corresponding to the capacity of the indoor unit 3b as map data. Record as
  • the air conditioner 0 stops the lift adjustment pump 34b of the indoor unit 3b and drives the lift adjustment pump 34d of the indoor unit 3d to operate.
  • the relay unit control device 200 records data obtained by operating the air conditioner 0 .
  • the air conditioner 0 repeats the above operation until the relay unit control device 200 records the data obtained by driving the respective head adjustment pumps 34 . Then, the air conditioner 0 ends the test run operation.
  • FIG. 8 is a diagram showing the flow of processing related to regular control performed by the control device in the air conditioner 0 of Embodiment 2. As shown in FIG. Next, processing related to air conditioning in the air conditioner 0 of Embodiment 1 will be described. 8 is mainly controlled by the relay unit control device 200 in cooperation with the outdoor unit control device 100 and the indoor unit control device 300 of each indoor unit 3. FIG. However, the processing is not limited to this, and another control device may perform the processing. To simplify the explanation, first, the indoor unit 3 (indoor unit 3b to indoor unit 3d) including the head adjustment pump 34 in the heat medium path is stopped and the head adjustment pump 34 is not connected. A case where the indoor unit 3a operates will be described.
  • the relay unit control device 200 adjusts the flow rate of the branched heat medium connected to the indoor unit 3a by pipes in order to circulate the heat medium according to the operation mode of the indoor unit 3a to start operating.
  • Device 28a is opened. Further, the relay unit control device 200 switches the first heat medium flow switching device 26a and the second heat medium flow switching device 27a to the main pump 22 side related to the operation mode (step S31). At that time, the branch heat medium flow control device 28a to which the indoor unit 3 is connected is determined by the capacity of the indoor unit 3a. Also, the indoor unit control device 300a operates the indoor-side blower 33 .
  • the relay unit control device 200 When the operation signal is transmitted from the indoor unit control device 300 of the indoor unit 3, the relay unit control device 200 starts driving the main pump 22 corresponding to the operation mode (step S32). After the relay unit controller 200 drives the main pump 22 to ensure the flow rate of the heat medium in the heat medium circulation circuit B, the relay unit controller 200 transmits an operation signal to the outdoor unit controller 100 of the outdoor unit 1 . The outdoor unit control device 100 starts driving the compressor 10 of the outdoor unit 1 (step S33).
  • the relay unit control device 200 controls the heat medium flow control device 28a of the relay unit 2 according to the air conditioning load of the indoor unit 3a. Based on the signal sent from the indoor unit control device 300, the relay unit control device 200 determines the temperature between the temperature detected by the indoor inlet side temperature sensor 513a of the indoor unit 3a and the temperature detected by the indoor outlet side temperature sensor 514a. Calculate the difference ⁇ Ta. Then, the relay unit control device 200 makes a determination based on a comparison between the temperature difference ⁇ Ta and the preset rated temperature difference ⁇ T_t (step S34).
  • the relay unit control device 200 determines that the indoor load is greater than the capacity of the indoor unit 3 when the temperature difference ⁇ Ta is greater than the rated temperature difference ⁇ T_t.
  • the relay unit control device 200 increases the degree of opening of the heat medium flow control device 28a to increase the flow rate of the heat medium passing through the indoor heat exchanger 31a to secure the capacity (step S35).
  • the relay unit control device 200 determines that the indoor load is smaller than the capacity of the indoor unit 3 when the temperature difference ⁇ Ta is smaller than the rated temperature difference ⁇ T_t.
  • the relay unit control device 200 reduces the opening degree of the heat medium flow rate adjusting device 28a to reduce the flow rate of the heat medium passing through the indoor heat exchanger 31a to suppress the capacity (step S36). If the temperature difference ⁇ Ta is the same as the rated temperature difference ⁇ T_t, the relay unit control device 200 returns to step S34 and continues the regular control process. As described above, the relay unit control device 200 performs regular control according to the load in the room by controlling the opening degree of the heat medium flow control device 28a to open or close it.
  • the relay unit control device 200 of the relay unit 2 controls the voltage applied to each main pump 22 of the relay unit 2, and the flow rate of the heat medium to all the indoor units 3 in operation. control.
  • the relay unit control device 200 secures the flow rate of the heat medium when the largest opening degree among the opening degrees of the heat medium flow control device 28 through which the heat medium of the main pump 22 passes is smaller than the initial opening degree. , the voltage applied to the main pump 22 is lowered to decelerate.
  • the relay unit control device 200 determines that the flow rate of the heat medium in the heat medium path is Assuming that it is insufficient, the voltage applied to the main pump 22 is increased to speed it up. During regular control, the relay unit control device 200 adjusts the flow rate of the heat medium according to the load of the indoor unit 3 by repeating the control described above.
  • FIG. 9 is a diagram showing the flow of processing related to regular control by the head adjustment pump 34 in the air conditioner 0 of Embodiment 2.
  • the relay unit control device 200 adjusts the flow rate of the branched heat medium connected to the indoor unit 3 by piping in order to circulate the heat medium according to the operation mode of the indoor unit 3 that is to start operating.
  • Device 28 is opened. Further, the relay unit control device 200 switches the first heat medium flow switching device 26 and the second heat medium flow switching device 27 to the main pump 22 side related to the operation mode (step S41).
  • the relay unit control device 200 adjusts the heat medium flow rate. Fully open device 28 . Further, when the indoor unit 3 to which the head adjustment pump 34 is not connected, such as the indoor unit 3c and the indoor unit d, is also on the branched heat medium path, the relay unit control device 200 controls the indoor unit on the path. The total capacity of the unit 3 determines the initial opening.
  • the relay unit control device 200 drives the main pump 22 corresponding to the operation mode (step S42). After the relay unit controller 200 drives the main pump 22 to ensure the flow rate of the heat medium in the heat medium circulation circuit B, the relay unit controller 200 transmits an operation signal to the outdoor unit controller 100 of the outdoor unit 1 .
  • the outdoor unit control device 100 drives the compressor 10 of the outdoor unit 1 (step S43).
  • the relay unit control device 200 drives the head adjustment pump 34 so that the heat medium passes through the indoor unit 3 installed in the heat medium path (step S44).
  • the relay unit control device 200 When only the indoor unit 3 in which the head adjustment pump 34 is installed in the heat medium path is on the branched heat medium path like the indoor unit 3b, after the compressor 10 is driven, the relay unit control device 200 The head adjustment pump 34 is controlled according to the air conditioning load of the indoor unit 3 . Based on the signal sent from the indoor unit control device 300b, the relay unit control device 200 determines the temperature between the temperature detected by the indoor inlet side temperature sensor 513b of the indoor unit 3b and the temperature detected by the indoor outlet side temperature sensor 514b. A difference ⁇ Tb is calculated. Then, the relay unit control device 200 makes a determination based on the temperature difference ⁇ Tb (step S45).
  • the relay unit control device 200 determines that the indoor load is greater than the capacity of the indoor unit 3b when the temperature difference ⁇ Tb is greater than the preset rated temperature difference ⁇ T_t.
  • the relay unit control device 200 increases the voltage applied to the head adjusting pump 34b to increase the flow rate of the heat medium passing through the indoor heat exchanger 31b to secure the capacity (step S46).
  • the relay unit control device 200 determines that the indoor load is smaller than the capacity of the indoor unit 3b.
  • the relay unit control device 200 lowers the voltage applied to the head adjustment pump 34b to reduce the flow rate of the heat medium passing through the indoor heat exchanger 31b to suppress the capacity (step S47). If the temperature difference ⁇ Tb is the same as the rated temperature difference ⁇ T_t, the relay unit control device 200 returns to step S45 and continues the regular control process. As described above, the relay unit control device 200 performs regular control according to the load in the room by controlling the opening degree of the heat medium flow control device 28b and opening/closing it.
  • the relay unit control device 200 adjusts the lift adjusting pump based on the temperature difference ⁇ Td between the indoor inlet side temperature sensor 513d and the indoor outlet side temperature sensor 514d. It controls the voltage applied to the pump 34d.
  • the relay unit control device 200 determines the temperature difference ⁇ Tc between the indoor inlet side temperature sensor 513c and the indoor outlet side temperature sensor 514c. It controls the degree of opening of the medium flow rate adjusting device 28c.
  • the relay unit control device 200 drives and controls the lift adjustment pump 34 in accordance with the load in the room where the indoor unit 3 is installed, but it is not limited to this.
  • the indoor unit control device 300 adjusts the voltage applied to the pump for adjusting the lift 34 so that the heat medium passing through the indoor unit 3 has the rated flow rate Q1 based on the applied voltage-rotational speed-flow rate map data described above. You may control and drive.
  • the head adjustment pump 34 is installed in the heat medium path. It is the same as the case of the indoor unit 3 which is not installed.
  • the relay unit control device 200 determines that the heat medium supplied to the indoor unit 3 to which the lift adjustment pump 34 is connected is insufficient. do.
  • the relay unit control device 200 then increases the voltage applied to the corresponding main pump 22 to speed up the main pump 22 .
  • the drive control described above is repeated to adjust the flow rate of the heat medium.
  • the indoor unit 3 (indoor heat exchanger 31 ) is connected to a pump 34 for adjusting the lift as an auxiliary pump.
  • the indoor heat exchanger 31 can be supplied with the required flow rate of the heat medium.
  • the heat medium can be sent without using the main pump 22 having a high head capability corresponding to the indoor unit 3 installed in a path such as a high place or a distant place where the head is insufficient. Therefore, it is possible to obtain the air conditioner 0 in which the indoor unit 3 can be installed in a wide range while achieving low cost.

Abstract

Provided is an air-conditioning apparatus comprising a heat medium circulation circuit in which a heat-source-side device that heats or cools a heat medium serving as a medium for transporting heat, a plurality of indoor heat exchangers that perform heat exchange between the heat medium and indoor air to be air-conditioned, and a main pump that pressurizes the heat medium and supplies the pressurized heat medium to the indoor heat exchangers are connected by piping, and in which the heat medium is caused to circulate, the air-conditioning apparatus also comprising a lifting-height-adjusting pump that is installed in the heat medium circulation circuit and that supplements performance pertaining to the lifting height of the main pump.

Description

空気調和装置air conditioner
 この技術は、空気調和装置に関するものである。特に、熱媒体を循環させるために加圧するポンプの揚程に係る能力の補助に係るものである。 This technology relates to air conditioners. In particular, it relates to assistance of the capability related to the lift of a pump that pressurizes to circulate the heat medium.
 熱源側装置と室内熱交換器を有する室内ユニットとの間で、水またはブラインを含む熱媒体を循環させる熱媒体循環回路を構成して、空気調和を行う空気調和装置がある。このような空気調和装置では、熱源側装置は、熱媒体を加熱または冷却して、室内ユニットに熱を供給する。室内ユニットは、熱媒体により供給された熱で、室内の空気を加熱または冷却し、空気調和を行う(たとえば、特許文献1参照)。空気調和装置は、熱媒体を加圧して熱媒体循環回路を循環させるポンプを有する。ポンプは、熱源側装置において、熱源側冷媒と温熱または冷熱を熱交換した熱媒体を加圧して室内ユニット側に送る。 There are air conditioners that perform air conditioning by forming a heat medium circulation circuit that circulates a heat medium containing water or brine between a heat source side device and an indoor unit having an indoor heat exchanger. In such an air conditioner, the heat source side device heats or cools the heat medium to supply heat to the indoor unit. The indoor unit heats or cools indoor air with the heat supplied by the heat medium to perform air conditioning (see, for example, Patent Document 1). An air conditioner has a pump that pressurizes a heat medium to circulate in a heat medium circulation circuit. In the heat source side device, the pump pressurizes the heat medium that has exchanged hot or cold heat with the heat source side refrigerant and sends it to the indoor unit side.
特開2017-053507号公報JP 2017-053507 A
 ここで、空気調和装置を設置する際、ポンプは、スケール付着による圧力損失などに基づいて能力が選定され、熱媒体循環回路上に設置される。特に、ポンプは、最も高所および遠方に設置される室内ユニットに至るまでの熱媒体経路における圧力損失に基づいて選定されることが多い。このため、熱媒体循環回路に用いられるポンプは、揚程に係る能力が求められることになる。そして、空気調和装置は、ポンプの能力に基づいて室内ユニットの設置範囲が規定されることになる。室内ユニットの設置範囲を広げるには、ポンプにおいて揚程に係る能力が必要となる。このとき、熱媒体循環回路全体の熱媒体供給に必要な能力を、能力の高いポンプで補おうとすると、空気調和装置全体のシステムコストが高くなる。 Here, when installing an air conditioner, the capacity of the pump is selected based on the pressure loss due to scale adhesion, etc., and installed on the heat medium circulation circuit. In particular, pumps are often selected based on the pressure loss in the heat transfer medium path up to the highest and most remote indoor units. Therefore, the pump used in the heat medium circulation circuit is required to have a head capacity. In the air conditioner, the installation range of the indoor unit is defined based on the capacity of the pump. In order to expand the installation range of the indoor unit, the pump needs to have a head capacity. At this time, if the capacity required for supplying the heat medium to the entire heat medium circulation circuit is compensated for by a high-performance pump, the system cost of the entire air conditioner increases.
 そこで、上記のような課題を解決するため、ポンプの揚程に係る能力を補助し、コストを抑制して室内ユニットの設置範囲を広げることができる構成の空気調和装置を得ることを目的とする。 Therefore, in order to solve the above problems, it is an object of the present invention to provide an air conditioner with a configuration that can assist the pump head capacity, reduce costs, and expand the installation range of indoor units.
 開示に係る空気調和装置は、熱を搬送する媒体となる熱媒体を加熱または冷却する熱源側装置と、空気調和対象の室内空気と熱媒体とを熱交換する複数の室内熱交換器と、熱媒体を加圧し、室内熱交換器に供給する主ポンプとを配管接続して熱媒体を循環させる熱媒体循環回路を備える空気調和装置であって、熱媒体循環回路に設置され、主ポンプの揚程に係る能力を補助する揚程調整用ポンプを備えるものである。 The disclosed air conditioner includes a heat source side device that heats or cools a heat medium serving as a heat transfer medium, a plurality of indoor heat exchangers that exchange heat between the indoor air to be air-conditioned and the heat medium, and heat An air conditioner comprising a heat medium circulation circuit that pressurizes a medium and circulates the heat medium by pipe connection with a main pump that supplies the medium to an indoor heat exchanger, the air conditioner being installed in the heat medium circulation circuit and having a head of the main pump. It is equipped with a pump for head adjustment that assists the ability related to.
 開示に係る空気調和装置によれば、室内熱交換器に熱媒体を供給する主ポンプの揚程に係る能力を補助する揚程調整用ポンプを熱媒体循環回路に設置する。このため、揚程調整用ポンプを駆動させることで、能力が高い高コストの主ポンプでなくても、熱源側装置および主ポンプより高所または遠方に設置される室内熱交換器に、必要流量の熱媒体を供給することができる。したがって、室内熱交換器を広範囲に設置できる空気調和装置を得ることができる。 According to the disclosed air conditioner, a head adjustment pump is installed in the heat medium circulation circuit to assist the ability related to the head of the main pump that supplies the heat medium to the indoor heat exchanger. Therefore, by driving the head adjustment pump, even if the main pump is not a high-capacity, high-cost main pump, the heat source side device and the indoor heat exchanger installed at a higher place or farther from the main pump can achieve the required flow rate. A heat carrier can be supplied. Therefore, it is possible to obtain an air conditioner in which the indoor heat exchanger can be installed in a wide range.
実施の形態1に係る空気調和装置0の設置例の概略を示す図である。1 is a diagram showing an outline of an installation example of an air conditioner 0 according to Embodiment 1. FIG. 実施の形態1に係る空気調和装置0の構成の一例を示す図である。1 is a diagram showing an example of the configuration of an air conditioner 0 according to Embodiment 1. FIG. 実施の形態1に係る揚程調整用ポンプ34を選定する際のQ-H線を示す図である。FIG. 4 is a diagram showing the QH line when selecting a head adjusting pump 34 according to Embodiment 1; 実施の形態1の空気調和装置0における制御装置が行う定時制御に係る処理の流れを示す図である。4 is a diagram showing the flow of processing related to regular control performed by the control device in the air conditioner 0 of Embodiment 1. FIG. 実施の形態1の空気調和装置0の定時制御における主ポンプ22の制御に係る処理の流れを示す図である。4 is a diagram showing the flow of processing related to control of the main pump 22 in regular control of the air conditioner 0 of Embodiment 1. FIG. 実施の形態1の空気調和装置0における揚程調整用ポンプ34による定時制御に係る処理の流れを示す図である。4 is a diagram showing the flow of processing related to regular control by the head adjusting pump 34 in the air conditioner 0 of Embodiment 1. FIG. 実施の形態2に係る空気調和装置0の構成の一例を示す図である。FIG. 10 is a diagram showing an example of the configuration of an air conditioner 0 according to Embodiment 2; 実施の形態2の空気調和装置0における制御装置が行う定時制御に係る処理の流れを示す図である。FIG. 10 is a diagram showing a flow of processing related to regular control performed by a control device in the air conditioner 0 of Embodiment 2; 実施の形態2の空気調和装置0における揚程調整用ポンプ34による定時制御に係る処理の流れを示す図である。FIG. 10 is a diagram showing the flow of processing related to regular control by the head adjustment pump 34 in the air conditioner 0 of Embodiment 2. FIG.
 以下、実施の形態に係る空気調和装置について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態および動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。 An air conditioner according to an embodiment will be described below with reference to the drawings. In the following drawings, the same reference numerals denote the same or corresponding parts, and are common throughout the embodiments described below. Also, in the drawings, the size relationship of each component may differ from the actual size. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification. In particular, the combination of components is not limited only to the combinations in each embodiment, and the components described in other embodiments can be applied to other embodiments. Further, the levels of pressure and temperature are not determined in relation to absolute values, but relatively determined by the state and operation of the device. In addition, when there is no need to distinguish or specify a plurality of devices of the same type that are distinguished by subscripts, the subscripts may be omitted.
実施の形態1.
 図1は、実施の形態1に係る空気調和装置0の設置例の概略を示す図である。図1に基づいて、実施の形態1に係る空気調和装置0の設置例について説明する。空気調和装置0は、熱源側冷媒の経路が回路状となって熱源側冷媒を循環させる熱源側冷媒循環回路Aおよび熱の授受、搬送などを行う、利用温度範囲で態変化をしない水などの熱媒体の経路が回路状となって熱媒体を循環させる熱媒体循環回路Bを備える。そして、空気調和装置0は、冷暖房などにより、空気調和を行う。熱源側冷媒循環回路Aは、熱媒体循環回路B内の熱媒体を加熱または冷却することで、室内側に温熱または冷熱の供給を行う熱源側装置として機能する。
Embodiment 1.
FIG. 1 is a diagram showing an outline of an installation example of an air conditioner 0 according to Embodiment 1. FIG. An installation example of the air conditioner 0 according to Embodiment 1 will be described with reference to FIG. The air conditioner 0 includes a heat source side refrigerant circulation circuit A that circulates the heat source side refrigerant, and a heat source side refrigerant circulation circuit A that circulates the heat source side refrigerant, and water that does not change its state in the use temperature range. A heat medium circulation circuit B is provided for circulating the heat medium in a circuit-like path for the heat medium. The air conditioner 0 performs air conditioning by heating and cooling. The heat source side refrigerant circulation circuit A heats or cools the heat medium in the heat medium circulation circuit B, thereby functioning as a heat source side device that supplies hot or cold heat to the indoor side.
 図1では、実施の形態1に係る空気調和装置0は、熱源機となる1台の室外ユニット1、室内機となる複数台の室内ユニット3(室内ユニット3a~室内ユニット3d)および中継ユニット2を有する。中継ユニット2は、熱源側冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体との間の伝熱を中継するユニットである。室外ユニット1と中継ユニット2とは、熱源側冷媒の流路となる冷媒配管6で接続されている。ここで、1台の室外ユニット1に対して、複数台の中継ユニット2を並列に接続することもできる。 In FIG. 1, the air conditioner 0 according to Embodiment 1 includes one outdoor unit 1 serving as a heat source device, a plurality of indoor units 3 serving as indoor units (indoor unit 3a to indoor unit 3d), and a relay unit 2. have The relay unit 2 is a unit that relays heat transfer between the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B. The outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 6 that serves as a flow path for the heat source side refrigerant. Here, a plurality of relay units 2 can be connected in parallel to one outdoor unit 1 .
 また、各室内ユニット3は、熱媒体の流路となる熱媒体配管5で中継ユニット2と接続されている。ここで、熱媒体配管5に、流速が速い熱媒体が流れることで、配管内において、配管を保護する役割を果たす酸化膜が剥離などして、配管の金属を馬蹄形に腐食させる潰食が生じる。特に、熱媒体の温度が高いと潰食が生じやすくなる。潰食を防ぐには、配管を流れる熱媒体の流速を抑える必要がある。配管材料となる金属の種類により、潰食が発生する流速は異なるが、たとえば、銅の場合は、熱媒体を1.5m/s以下の流速にする。ここでは、熱媒体配管5に潰食が発生するものとして説明するが、熱媒体循環回路Bにおいて、熱媒体循環回路Bの機器内を流れる流路に潰食が発生する可能性もある。 Also, each indoor unit 3 is connected to the relay unit 2 by a heat medium pipe 5 that serves as a heat medium flow path. Here, when a heat medium with a high flow velocity flows through the heat medium pipe 5, the oxide film that plays a role in protecting the pipe peels off inside the pipe, causing erosion that corrodes the metal of the pipe in a horseshoe shape. . In particular, when the temperature of the heat transfer medium is high, erosion is likely to occur. In order to prevent erosion, it is necessary to suppress the flow velocity of the heat medium flowing through the piping. The flow velocity at which erosion occurs differs depending on the type of metal used as the piping material. Here, it is assumed that erosion occurs in the heat medium pipe 5, but in the heat medium circulation circuit B, erosion may occur in the flow path in the equipment of the heat medium circulation circuit B.
 熱源側冷媒循環回路Aを循環する熱源側冷媒としては、たとえば、R-22、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒を用いることができる。また、化学式内に二重結合を含む、CFCF=CHなどの地球温暖化係数が比較的小さい値である冷媒やその混合物、CO、プロパンなどの自然冷媒などを用いることができる。さらに、熱媒体循環回路Bを循環する熱媒体としては、たとえば、ブライン(不凍液)、水、ブラインと水との混合液、防食効果が高い添加剤と水との混合液などを用いることができる。このように、実施の形態1の空気調和装置0では、安全性の高いものを熱媒体に使用することができる。 Examples of the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A include single refrigerants such as R-22 and R-134a, quasi-azeotropic mixture refrigerants such as R-410A and R-404A, and R-407C. Non-azeotropic refrigerant mixtures can be used. In addition, refrigerants having a relatively low global warming potential, such as CF 3 CF=CH 2 , which contain double bonds in their chemical formulas, mixtures thereof, and natural refrigerants such as CO 2 and propane can also be used. Furthermore, as the heat medium circulating in the heat medium circulation circuit B, for example, brine (antifreeze), water, a mixed solution of brine and water, a mixed solution of an additive having a high anticorrosive effect and water, etc. can be used. . Thus, in the air conditioner 0 of Embodiment 1, a highly safe heat medium can be used.
 図2は、実施の形態1に係る空気調和装置0の構成の一例を示す図である。図2に基づいて、空気調和装置0が有する機器などの構成について説明する。前述したように、室外ユニット1と中継ユニット2とが、冷媒配管6で接続されている。また、中継ユニット2と各室内ユニット3とが熱媒体配管5で接続されている。ここで、図2においては、4台の室内ユニット3が、熱媒体配管5を介して中継ユニット2と接続されている。ただし、室内ユニット3の接続台数は、4台に限定されない。 FIG. 2 is a diagram showing an example of the configuration of the air conditioner 0 according to Embodiment 1. FIG. Based on FIG. 2, the configuration of the equipment and the like included in the air conditioner 0 will be described. As described above, the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 6 . Also, the relay unit 2 and each indoor unit 3 are connected by a heat medium pipe 5 . Here, in FIG. 2 , four indoor units 3 are connected to the relay unit 2 via heat medium pipes 5 . However, the number of connected indoor units 3 is not limited to four.
<室外ユニット1>
 室外ユニット1は、熱源側冷媒循環回路Aにおいて熱源側冷媒を循環させて熱を搬送し、中継ユニット2の熱媒体熱交換器21において、熱媒体との熱交換を行わせるユニットである。室外ユニット1は、筐体内に、圧縮機10、熱源側熱交換器12、絞り装置13およびアキュムレータ14を有する。圧縮機10、冷媒流路切替装置11、熱源側熱交換器12およびアキュムレータ14は、冷媒配管6で配管接続されて搭載されている。圧縮機10は、熱源側冷媒を、吸入し、圧縮して、高温および高圧状態にして吐出する。ここで、圧縮機10は、たとえば、容量制御可能な圧縮機などで構成するとよい。冷媒流路切替装置11は、冷房運転モードまたは暖房運転モードによって、熱源側冷媒の流路を切り替える装置である。冷媒流路切替装置11は、四方弁などを有する。冷房運転または暖房運転しか行わない場合には、冷媒流路切替装置11を設置する必要はない。
<Outdoor unit 1>
The outdoor unit 1 is a unit that circulates the heat source side refrigerant in the heat source side refrigerant circulation circuit A to transfer heat, and performs heat exchange with the heat medium in the heat medium heat exchanger 21 of the relay unit 2 . The outdoor unit 1 has a compressor 10, a heat source side heat exchanger 12, an expansion device 13 and an accumulator 14 in a housing. The compressor 10 , the refrigerant flow switching device 11 , the heat source side heat exchanger 12 and the accumulator 14 are connected by refrigerant piping 6 and mounted. The compressor 10 sucks in the heat source side refrigerant, compresses it, changes it to a high temperature and high pressure state, and discharges it. Here, the compressor 10 may be composed of, for example, a capacity-controllable compressor. The refrigerant flow switching device 11 is a device that switches the flow path of the heat source side refrigerant depending on the cooling operation mode or the heating operation mode. The refrigerant flow switching device 11 has a four-way valve and the like. If only the cooling operation or the heating operation is performed, it is not necessary to install the refrigerant flow switching device 11 .
 熱源側熱交換器12は、たとえば、熱源側送風機15から供給される室外の空気と熱源側冷媒との間で熱交換を行う。熱源側熱交換器12は、暖房運転モードにおいては、蒸発器として機能し、熱源側冷媒に吸熱させる。また、熱源側熱交換器12は、冷房運転モードにおいては、凝縮器または放熱器として機能し、熱源側冷媒に放熱させる。また、絞り装置13は、減圧弁および膨張弁として機能し、熱源側冷媒を減圧して膨張させる装置である。ここで、絞り装置13は、たとえば、開度を任意の大きさに制御することができ、熱源側冷媒の流量などを任意に調整することができる電子式膨張弁などのような装置がよい。また、絞り装置13は、中継ユニット2に設置される場合もある。アキュムレータ14は、圧縮機10の吸入側に設けられるタンクである。アキュムレータ14は、たとえば、暖房運転モードと冷房運転モードとで用いられる冷媒量の違い、運転が変化するときの過渡期などに生じる余剰冷媒を蓄える。ここで、アキュムレータ14は、熱源側冷媒循環回路Aに設置されない場合もある。 The heat source side heat exchanger 12, for example, exchanges heat between the outdoor air supplied from the heat source side blower 15 and the heat source side refrigerant. In the heating operation mode, the heat source side heat exchanger 12 functions as an evaporator and causes the heat source side refrigerant to absorb heat. In the cooling operation mode, the heat source side heat exchanger 12 functions as a condenser or a radiator, and causes the heat source side refrigerant to radiate heat. Further, the expansion device 13 is a device that functions as a pressure reducing valve and an expansion valve to decompress and expand the heat source side refrigerant. Here, the expansion device 13 is preferably a device such as an electronic expansion valve that can control the degree of opening to an arbitrary size and can arbitrarily adjust the flow rate of the heat source side refrigerant. Further, the diaphragm device 13 may be installed in the relay unit 2 in some cases. The accumulator 14 is a tank provided on the suction side of the compressor 10 . The accumulator 14 stores, for example, the difference in the amount of refrigerant used between the heating operation mode and the cooling operation mode, and the surplus refrigerant that occurs during transitional periods when the operation changes. Here, the accumulator 14 may not be installed in the heat source side refrigerant circulation circuit A.
<室内ユニット3>
 室内ユニット3は、調和した空気を室内空間に送るユニットである。実施の形態1の各室内ユニット3は、室内熱交換器31(室内熱交換器31a~室内熱交換器31d)および室内側送風機33(室内側送風機33a~室内側送風機33d)を有する。また、室内ユニット3のうち、室内ユニット3aおよび室内ユニット3bは、それぞれ室内流量調整装置32(室内流量調整装置32a,室内流量調整装置32b)を有する。そして、室内ユニット3cおよび室内ユニット3dは、それぞれ揚程調整用ポンプ34(揚程調整用ポンプ34cおよび揚程調整用ポンプ34d)を有する。室内熱交換器31、室内流量調整装置32および揚程調整用ポンプ34は、熱媒体循環回路Bを構成する機器となる。ここで、室内流量調整装置32および揚程調整用ポンプ34は、システムに応じて熱媒体循環回路Bに設置されない場合がある。
<Indoor unit 3>
The indoor unit 3 is a unit that sends conditioned air to the indoor space. Each indoor unit 3 of Embodiment 1 has an indoor heat exchanger 31 (indoor heat exchanger 31a to indoor heat exchanger 31d) and an indoor blower 33 (indoor blower 33a to indoor blower 33d). Further, among the indoor units 3, the indoor unit 3a and the indoor unit 3b each have an indoor flow rate adjusting device 32 (an indoor flow rate adjusting device 32a and an indoor flow rate adjusting device 32b). The indoor unit 3c and the indoor unit 3d each have a lift adjusting pump 34 (lift adjusting pump 34c and lift adjusting pump 34d). The indoor heat exchanger 31, the indoor flow rate adjusting device 32, and the head adjusting pump 34 are devices that constitute the heat medium circulation circuit B. As shown in FIG. Here, the indoor flow rate adjusting device 32 and the head adjusting pump 34 may not be installed in the heat medium circulation circuit B depending on the system.
 室内熱交換器31は、たとえば、伝熱管およびフィンを有する。そして、室内熱交換器31の伝熱管内を熱媒体が通過する。室内熱交換器31は、室内側送風機33から供給される室内空間の空気と熱媒体との間で熱交換を行う。空気よりも冷たい熱媒体が伝熱管内を通過すれば、空気は冷却され、室内空間は冷房される。室内側送風機33は、室内空間の空気を室内熱交換器31に通過させ、室内空間に戻す空気の流れを生成する。 The indoor heat exchanger 31 has, for example, heat transfer tubes and fins. The heat medium passes through the heat transfer tubes of the indoor heat exchanger 31 . The indoor heat exchanger 31 exchanges heat between the indoor air supplied from the indoor blower 33 and the heat medium. When a heat medium colder than air passes through the heat transfer tubes, the air is cooled and the indoor space is cooled. The indoor-side blower 33 passes the air in the indoor space through the indoor heat exchanger 31 to generate a flow of air returning to the indoor space.
 また、室内流量調整装置32は、たとえば、弁の開度(開口面積)を制御することができる二方弁などを有する。室内流量調整装置32は、開度を調整することで、室内熱交換器31を流入出する熱媒体の流量(単位時間に流れる熱媒体量)を制御する。そして、室内流量調整装置32は、室内ユニット3へ流入する熱媒体の温度および流出する熱媒体の温度に基づいて、室内熱交換器31を通過させる熱媒体の量を調整し、室内熱交換器31が、室内の熱負荷に応じた熱量による熱交換を行えるようにする。ここで、室内流量調整装置32は、停止、サーモOFFなどのときのように、室内熱交換器31が熱負荷との熱交換をする必要がないときは、弁を全閉にして、室内熱交換器31に熱媒体が流入出しないように供給を止めることができる。図2において、室内流量調整装置32は、室内熱交換器31の熱媒体流出側の配管に設置されているが、これに限定するものではない。たとえば、室内流量調整装置32が、室内熱交換器31の熱媒体流入側に設置されてもよい。 In addition, the indoor flow rate adjusting device 32 has, for example, a two-way valve that can control the degree of opening (opening area) of the valve. The indoor flow rate adjusting device 32 controls the flow rate of the heat medium flowing in and out of the indoor heat exchanger 31 (heat medium amount flowing per unit time) by adjusting the degree of opening. Then, the indoor flow rate adjusting device 32 adjusts the amount of the heat medium passing through the indoor heat exchanger 31 based on the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out of the indoor unit 3. 31 enables heat exchange with the amount of heat corresponding to the heat load in the room. Here, when the indoor heat exchanger 31 does not need to exchange heat with the heat load, such as when the indoor flow rate adjusting device 32 is stopped or the thermostat is turned off, the valve is fully closed and the indoor heat is The supply can be stopped so that the heat medium does not flow into or out of the exchanger 31 . In FIG. 2, the indoor flow control device 32 is installed in the piping on the heat medium outflow side of the indoor heat exchanger 31, but it is not limited to this. For example, the indoor flow control device 32 may be installed on the heat medium inflow side of the indoor heat exchanger 31 .
 図3は、実施の形態1に係る揚程調整用ポンプ34を選定する際のQ-H線を示す図である。揚程調整用ポンプ34は、主ポンプ22の熱媒体供給を補助する。たとえば、中継ユニット2から高所または遠方などにある室内ユニット3のように、主ポンプ22の揚程に係る能力では熱媒体を十分に供給が困難な熱媒体経路の室内ユニット3に対応して、室内流量調整装置32の代わりに揚程調整用ポンプ34が設置される。熱媒体循環回路Bにおいて、揚程調整用ポンプ34は、主ポンプ22は直接に接続され、他の揚程調整用ポンプ34とは並列に接続されることになる。ここでは、揚程調整用ポンプ34は、室内ユニット3が有する装置として、室内ユニット3に接続されて熱媒体経路上に設置されるものとして説明するが、これに限定するものではない。揚程調整用ポンプ34は、別途設置される室内ユニット3とは独立した装置としてもよい。 FIG. 3 is a diagram showing the QH line when selecting the head adjusting pump 34 according to the first embodiment. The head adjusting pump 34 assists the heat medium supply of the main pump 22 . For example, for an indoor unit 3 located at a high place or far away from the relay unit 2, corresponding to the indoor unit 3 in the heat medium path where it is difficult to sufficiently supply the heat medium with the capacity related to the head of the main pump 22, A head adjustment pump 34 is installed in place of the indoor flow rate adjustment device 32 . In the heat medium circulation circuit B, the head adjusting pump 34 is directly connected to the main pump 22 and is connected in parallel with the other head adjusting pumps 34 . Here, the head adjustment pump 34 is described as a device that the indoor unit 3 has, and is connected to the indoor unit 3 and installed on the heat medium path, but it is not limited to this. The head adjusting pump 34 may be a device independent of the separately installed indoor unit 3 .
 ここで、室内ユニット3の容量に応じて設定される定格流量Q1が流れる際の中継ユニット2から室内ユニット3までの熱媒体経路での経路圧損をΔPrとする。また、中継ユニット2の主ポンプ22と室内ユニット3に接続される揚程調整用ポンプ34との合計揚程をPとする。このとき、揚程調整用ポンプ34は、合計揚程P>経路圧損ΔPrを満たすように選定される。 Here, let ΔPr be the path pressure loss in the heat medium path from the relay unit 2 to the indoor unit 3 when the rated flow rate Q1 set according to the capacity of the indoor unit 3 flows. Further, let P be the total lift of the main pump 22 of the relay unit 2 and the lift adjustment pump 34 connected to the indoor unit 3 . At this time, the head adjustment pump 34 is selected so as to satisfy the relation of total head P>path pressure loss ΔPr.
 揚程調整用ポンプ34は、室内ユニット3へ流入する熱媒体の温度および流出する熱媒体の温度に基づいて、室内熱交換器31を通過させる熱媒体の量を調整し、室内熱交換器31が、室内の熱負荷に応じた熱量による熱交換を行えるようにする。 The head adjustment pump 34 adjusts the amount of heat medium passing through the indoor heat exchanger 31 based on the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out of the indoor unit 3, so that the indoor heat exchanger 31 , to enable heat exchange with a heat amount corresponding to the heat load in the room.
 後述する室内ユニット制御装置300は、後述する試運転において、主ポンプ22との印加電圧-流量の関係をマップにしたマップデータを有する。室内ユニット制御装置300は、室内ユニット3の運転を開始するときに、室内ユニット3を通過する定格流量Q1になるように、揚程調整用ポンプ34は印加電圧が調整される。ここで、図2においては、揚程調整用ポンプ34は、室内熱交換器31の熱媒体流出側の配管に設置されているが、これに限定するものではない。たとえば、揚程調整用ポンプ34が、室内熱交換器31の熱媒体流入側に設置されてもよい。ここで、実施の形態1の揚程調整用ポンプ34は、室内ユニット3の運転を停止したときなど、熱媒体の通過を遮断して流れを停止することができる。したがって、揚程調整用ポンプ34は、加圧装置だけでなく、流量調整装置としても機能する。 The indoor unit control device 300, which will be described later, has map data that maps the relationship between the voltage applied to the main pump 22 and the flow rate during the trial operation, which will be described later. When the indoor unit controller 300 starts operating the indoor unit 3, the voltage applied to the head adjustment pump 34 is adjusted so that the rated flow rate Q1 passing through the indoor unit 3 is obtained. Here, in FIG. 2, the head adjustment pump 34 is installed in the piping on the heat medium outflow side of the indoor heat exchanger 31, but it is not limited to this. For example, the head adjusting pump 34 may be installed on the heat medium inflow side of the indoor heat exchanger 31 . Here, the head adjusting pump 34 of Embodiment 1 can block the passage of the heat medium to stop the flow when the operation of the indoor unit 3 is stopped. Therefore, the head adjusting pump 34 functions not only as a pressurizing device but also as a flow rate adjusting device.
<中継ユニット2>
 次に、中継ユニット2の構成について説明する。中継ユニット2は、熱源側冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体との伝熱に係る機器を有するユニットである。中継ユニット2は、熱媒体熱交換器21、主ポンプ22を有する。熱媒体熱交換器21は、熱源側冷媒と熱媒体との熱交換を行って、熱源側冷媒側から熱媒体側に熱を伝える。熱媒体熱交換器21は、熱媒体を加熱する場合には、凝縮器または放熱器として機能し、熱源側冷媒に放熱させる。また、熱媒体熱交換器21は、熱媒体を冷却する場合には、蒸発器として機能し、熱源側冷媒に吸熱させる。主ポンプ22は、熱媒体を吸引し、加圧して熱媒体循環回路Bを循環させる装置である。
<Relay unit 2>
Next, the configuration of the relay unit 2 will be described. The relay unit 2 is a unit having a device related to heat transfer between the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B. FIG. The relay unit 2 has a heat medium heat exchanger 21 and a main pump 22 . The heat medium heat exchanger 21 performs heat exchange between the heat source side refrigerant and the heat medium, and transfers heat from the heat source side refrigerant side to the heat medium side. When heating the heat medium, the heat medium heat exchanger 21 functions as a condenser or a radiator, and causes the heat source side refrigerant to radiate heat. When cooling the heat medium, the heat medium heat exchanger 21 functions as an evaporator and causes the heat source side refrigerant to absorb heat. The main pump 22 is a device that draws in the heat medium, pressurizes it, and circulates it through the heat medium circulation circuit B. As shown in FIG.
 ここで、空気調和装置0の熱源側冷媒循環回路A側の構成機器における動作などについて、熱源側冷媒循環回路Aを循環する熱源側冷媒の流れに基づいて説明する。まず、熱媒体を冷却する場合について説明する。圧縮機10は、熱源側冷媒を吸入し、圧縮して高温および高圧の状態にして吐出する。吐出された熱源側冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12へ流入する。熱源側熱交換器12は、熱源側送風機15により供給される空気と熱源側冷媒との間で熱交換を行い、熱源側冷媒を凝縮液化させる。凝縮液化された熱源側冷媒は、絞り装置13を通過する。絞り装置13は、通過する凝縮液化した熱源側冷媒を減圧する。減圧された熱源側冷媒は、室外ユニット1から流出し、冷媒配管6を通過して、中継ユニット2の熱媒体熱交換器21に流入する。熱媒体熱交換器21は、通過する熱源側冷媒と熱媒体との間で熱交換を行い、熱源側冷媒を蒸発ガス化させる。このとき、熱媒体は冷却される。熱媒体熱交換器21から流出した熱源側冷媒は、中継ユニット2から流出し、冷媒配管6を通過して、室外ユニット1に流入する。そして、冷媒流路切替装置11を再度通過した蒸発ガス化した熱源側冷媒を圧縮機10が吸入する。 Here, the operation of the components on the heat source side refrigerant circulation circuit A side of the air conditioner 0 will be described based on the flow of the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A. First, the case of cooling the heat medium will be described. The compressor 10 sucks in the heat source side refrigerant, compresses it, and discharges it in a state of high temperature and high pressure. The discharged heat source side refrigerant flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11 . The heat source side heat exchanger 12 exchanges heat between the air supplied by the heat source side blower 15 and the heat source side refrigerant to condense and liquefy the heat source side refrigerant. The condensed and liquefied heat source side refrigerant passes through the expansion device 13 . The expansion device 13 decompresses the condensed and liquefied heat source side refrigerant passing through. The depressurized heat source side refrigerant flows out of the outdoor unit 1 , passes through the refrigerant pipe 6 , and flows into the heat medium heat exchanger 21 of the relay unit 2 . The heat medium heat exchanger 21 exchanges heat between the passing heat source side refrigerant and the heat medium, and evaporates the heat source side refrigerant. At this time, the heat medium is cooled. The heat source side refrigerant that has flowed out of the heat medium heat exchanger 21 flows out of the relay unit 2 , passes through the refrigerant pipe 6 , and flows into the outdoor unit 1 . Then, the compressor 10 sucks the evaporated and gasified heat source side refrigerant that has passed through the refrigerant flow switching device 11 again.
 次に、熱媒体を加熱する場合について説明する。圧縮機10は、熱源側冷媒を吸入し、圧縮して高温および高圧の状態にして吐出する。吐出された熱源側冷媒は、冷媒流路切替装置11を介して、室外ユニット1から流出し、冷媒配管6を通過して、中継ユニット2の熱媒体熱交換器21に流入する。熱媒体熱交換器21は、通過する熱源側冷媒と熱媒体との間で熱交換を行い、熱源側冷媒を凝縮液化させる。このとき、熱媒体は加熱される。凝縮液化された熱源側冷媒は、熱媒体熱交換器21から流出した熱源側冷媒は、中継ユニット2から流出し、冷媒配管6を通過して、室外ユニット1の絞り装置13を通過する。絞り装置13は、通過する凝縮液化した熱源側冷媒を減圧する。減圧された熱源側冷媒は、熱源側熱交換器12へ流入する。熱源側熱交換器12は、熱源側送風機15により供給される空気と熱源側冷媒との間で熱交換を行い、熱源側冷媒を蒸発ガス化させる。そして、冷媒流路切替装置11を再度通過した蒸発ガス化した熱源側冷媒を圧縮機10が吸入する。 Next, the case of heating the heat medium will be explained. The compressor 10 sucks in the heat source side refrigerant, compresses it, and discharges it in a state of high temperature and high pressure. The discharged heat source side refrigerant flows out of the outdoor unit 1 via the refrigerant flow switching device 11 , passes through the refrigerant pipe 6 , and flows into the heat medium heat exchanger 21 of the relay unit 2 . The heat medium heat exchanger 21 exchanges heat between the heat source side refrigerant and the heat medium passing therethrough to condense and liquefy the heat source side refrigerant. At this time, the heat medium is heated. The condensed and liquefied heat source side refrigerant that flows out of the heat medium heat exchanger 21 flows out of the relay unit 2, passes through the refrigerant pipe 6, and passes through the expansion device 13 of the outdoor unit 1. The expansion device 13 decompresses the condensed and liquefied heat source side refrigerant passing through. The depressurized heat source side refrigerant flows into the heat source side heat exchanger 12 . The heat source side heat exchanger 12 exchanges heat between the air supplied by the heat source side blower 15 and the heat source side refrigerant, and evaporates the heat source side refrigerant. Then, the compressor 10 sucks the evaporated and gasified heat source side refrigerant that has passed through the refrigerant flow switching device 11 again.
 また、空気調和装置0には、物理量を検出する検出装置となる各種センサが設置されている。熱源側冷媒循環回路Aにおいて、室外ユニット1側に、吐出温度センサ501、吐出圧力センサ502および室外温度センサ503が設置されている。吐出温度センサ501は、圧縮機10が吐出する冷媒の温度を検出し、吐出温度検出信号を出力する。後述する室外ユニット制御装置100が、吐出温度センサ501が出力した吐出温度検出信号を得る。ここで、吐出温度センサ501は、サーミスタなどを有する。また、以下に説明する、他の温度センサについても、サーミスタなどを有するものとする。吐出圧力センサ502は、圧縮機10が吐出する冷媒の圧力を検出し、吐出圧力検出信号を出力する。後述する室外ユニット制御装置100が、吐出圧力センサ502が出力した吐出圧力検出信号を得る。室外温度センサ503は、室外ユニット1において、熱源側熱交換器12の空気流入部分に設置される。室外温度センサ503は、たとえば、室外ユニット1の周囲の温度となる室外温度を検出し、室外温度検出信号を出力する。後述する室外ユニット制御装置100が、室外温度センサ503が出力した室外温度検出信号を得る。 In addition, the air conditioner 0 is equipped with various sensors that serve as detection devices that detect physical quantities. In the heat source side refrigerant circulation circuit A, a discharge temperature sensor 501, a discharge pressure sensor 502 and an outdoor temperature sensor 503 are installed on the outdoor unit 1 side. A discharge temperature sensor 501 detects the temperature of the refrigerant discharged from the compressor 10 and outputs a discharge temperature detection signal. The outdoor unit control device 100 to be described later obtains a discharge temperature detection signal output by the discharge temperature sensor 501 . Here, the discharge temperature sensor 501 has a thermistor or the like. Also, other temperature sensors to be described below are assumed to have a thermistor or the like. A discharge pressure sensor 502 detects the pressure of the refrigerant discharged from the compressor 10 and outputs a discharge pressure detection signal. The outdoor unit control device 100, which will be described later, obtains a discharge pressure detection signal output by the discharge pressure sensor 502. FIG. The outdoor temperature sensor 503 is installed in the air inflow portion of the heat source side heat exchanger 12 in the outdoor unit 1 . The outdoor temperature sensor 503 detects, for example, the outdoor temperature, which is the ambient temperature of the outdoor unit 1, and outputs an outdoor temperature detection signal. The outdoor unit control device 100, which will be described later, obtains an outdoor temperature detection signal output by the outdoor temperature sensor 503. FIG.
 また、熱源側冷媒循環回路Aにおいて、中継ユニット2側に、第1冷媒温度センサ504および第2冷媒温度センサ505が設置されている。第1冷媒温度センサ504は、熱源側冷媒循環回路Aにおける冷媒の流れにおいて、熱媒体を冷却する際における熱媒体熱交換器21の冷媒流入側の配管に設置される。そして、第1冷媒温度センサ504および第2冷媒温度センサ505は、熱媒体熱交換器21を流入出する冷媒の温度を検出し、冷媒側検出信号を出力する。後述する中継ユニット制御装置200が、第1冷媒温度センサ504および第2冷媒温度センサ505が出力した冷媒側検出信号を得る。 Also, in the heat source side refrigerant circulation circuit A, a first refrigerant temperature sensor 504 and a second refrigerant temperature sensor 505 are installed on the relay unit 2 side. The first refrigerant temperature sensor 504 is installed in the piping on the refrigerant inflow side of the heat medium heat exchanger 21 when cooling the heat medium in the refrigerant flow in the heat source side refrigerant circulation circuit A. The first refrigerant temperature sensor 504 and the second refrigerant temperature sensor 505 detect the temperature of the refrigerant flowing in and out of the heat medium heat exchanger 21 and output a refrigerant side detection signal. Relay unit control device 200 , which will be described later, obtains refrigerant-side detection signals output by first refrigerant temperature sensor 504 and second refrigerant temperature sensor 505 .
 一方、熱媒体循環回路Bにおいて、中継ユニット2側に、熱媒体流入口側温度センサ511、熱媒体流出口側温度センサ512が設置されている。熱媒体流入口側温度センサ511は、熱媒体循環回路Bにおける熱媒体の流れにおいて、熱媒体熱交換器21の熱媒体流入側の配管に設置される。そして、熱媒体流入口側温度センサ511は、熱媒体熱交換器21に流入する熱媒体の温度を検出し、熱媒体流入側検出信号を出力する。後述する中継ユニット制御装置200が、熱媒体流入口側温度センサ511が出力した熱媒体流入側検出信号を得る。そして、熱媒体流出口側温度センサ512は、熱媒体循環回路Bにおける熱媒体の流れにおいて、熱媒体熱交換器21の熱媒体流出側の配管に設置される。そして、熱媒体流出口側温度センサ512は、熱媒体熱交換器21から流出する熱媒体の温度を検出し、熱媒体流出側検出信号を出力する。後述する中継ユニット制御装置200が、熱媒体流出口側温度センサ512が出力した熱媒体流出側検出信号を得る。ここで、実施の形態1の空気調和装置0では設置していないが、熱媒体循環回路Bにおいて、中継ユニット2側に、圧力センサ、流量センサなどの検出装置を設置するようにしてもよい。 On the other hand, in the heat medium circulation circuit B, a heat medium inlet side temperature sensor 511 and a heat medium outlet side temperature sensor 512 are installed on the relay unit 2 side. The heat medium inlet side temperature sensor 511 is installed in the piping on the heat medium inlet side of the heat medium heat exchanger 21 in the flow of the heat medium in the heat medium circulation circuit B. As shown in FIG. The heat medium inlet side temperature sensor 511 detects the temperature of the heat medium flowing into the heat medium heat exchanger 21 and outputs a heat medium inlet side detection signal. A relay unit control device 200, which will be described later, obtains a heat medium inlet side detection signal output by the heat medium inlet side temperature sensor 511. FIG. The heat medium outlet side temperature sensor 512 is installed in the pipe on the heat medium outlet side of the heat medium heat exchanger 21 in the flow of the heat medium in the heat medium circulation circuit B. The heat medium outlet side temperature sensor 512 detects the temperature of the heat medium flowing out of the heat medium heat exchanger 21 and outputs a heat medium outlet side detection signal. A relay unit control device 200, which will be described later, obtains a heat medium outflow side detection signal output by the heat medium outflow side temperature sensor 512. FIG. Here, although not installed in the air conditioner 0 of Embodiment 1, in the heat medium circulation circuit B, a detection device such as a pressure sensor or a flow rate sensor may be installed on the relay unit 2 side.
 熱媒体循環回路Bにおいて、各室内ユニット3側には、室内流入口側温度センサ513(室内流入口側温度センサ513a~室内流入口側温度センサ513d)が設置されている。また、室内流出口側温度センサ514(室内流出口側温度センサ514a~室内流出口側温度センサ514d)が設置されている。室内流入口側温度センサ513は、室内熱交換器31に流入する熱媒体の温度を検出し、流入側検出信号を出力する。後述する各室内ユニット3が有する室内ユニット制御装置300が、対応する室内流出口側温度センサ514が出力した流入側検出信号を得る。各室内流出口側温度センサ514は、室内熱交換器31から流出する熱媒体の温度を検出し、流出側検出信号を出力する。後述する室内ユニット制御装置300が、対応する室内流出口側温度センサ514が出力した流入側検出信号を得る。 In the heat medium circulation circuit B, an indoor inlet side temperature sensor 513 (indoor inlet side temperature sensor 513a to indoor inlet side temperature sensor 513d) is installed on each indoor unit 3 side. Further, indoor outlet side temperature sensors 514 (indoor outlet side temperature sensors 514a to indoor outlet side temperature sensors 514d) are installed. The indoor inlet side temperature sensor 513 detects the temperature of the heat medium flowing into the indoor heat exchanger 31 and outputs an inlet side detection signal. An indoor unit control device 300 included in each indoor unit 3 to be described later obtains an inflow side detection signal output by the corresponding indoor outlet side temperature sensor 514 . Each indoor outlet side temperature sensor 514 detects the temperature of the heat medium flowing out from the indoor heat exchanger 31 and outputs an outlet side detection signal. An indoor unit control device 300, which will be described later, obtains an inflow side detection signal output by the corresponding indoor outlet side temperature sensor 514. FIG.
 さらに、熱媒体循環回路Bにおいて、室内ユニット3側には、室内流入側圧力センサ521(室内流入側圧力センサ521a~室内流入側圧力センサ521b)が設置されている。また、室内流出側圧力センサ522(室内流出側圧力センサ522a~室内流出側圧力センサ522b)が設置されている。室内流入側圧力センサ521および室内流出側圧力センサ522は、各室内ユニット3の室内流量調整装置32における熱媒体流入出側にそれぞれ設置され、検出した圧力に応じた信号を送る。後述する各室内ユニット3が有する室内ユニット制御装置300が、対応する室内流入側圧力センサ521および室内流出側圧力センサ522が出力した圧力に応じた信号を得る。 Furthermore, in the heat medium circulation circuit B, an indoor inflow-side pressure sensor 521 (indoor inflow-side pressure sensor 521a to indoor inflow-side pressure sensor 521b) is installed on the indoor unit 3 side. Further, an indoor outflow side pressure sensor 522 (indoor outflow side pressure sensor 522a to indoor outflow side pressure sensor 522b) is installed. The indoor inflow-side pressure sensor 521 and the indoor outflow-side pressure sensor 522 are installed on the heat medium inflow/outflow side of the indoor flow rate adjusting device 32 of each indoor unit 3, and send a signal according to the detected pressure. An indoor unit controller 300 included in each indoor unit 3, which will be described later, obtains a signal corresponding to the pressure output by the corresponding indoor inflow-side pressure sensor 521 and indoor outflow-side pressure sensor 522. FIG.
 ここで、たとえば、中継ユニット2に、熱媒体循環回路Bを循環する熱媒体の全体の圧力を検出する圧力センサが設置されているなどの場合には、室内流入側圧力センサ521を省略することができる。また、流量を検出する流量検出装置を、圧力センサの代わりに設置するようにしてもよい。また、室内ユニット3に設置される揚程調整用ポンプ34が、印加電圧-回転数-流量のマップを有する場合、印加電圧-回転数から流量を検知し、圧力センサを省略することができる。また、熱負荷である室内空間の空気との熱交換に係る熱量を検出することができる熱量検出装置を設置するようにしてもよい。各室内ユニット制御装置300は、室内熱交換器31における熱交換に係る熱量を、演算などを行って取得する。そして、各室内ユニット制御装置300は、取得した熱量のデータを含む信号を、中継ユニット制御装置200に送る。 Here, for example, if a pressure sensor for detecting the overall pressure of the heat medium circulating in the heat medium circulation circuit B is installed in the relay unit 2, the indoor inflow side pressure sensor 521 can be omitted. can be done. Also, a flow rate detection device that detects the flow rate may be installed instead of the pressure sensor. Further, when the head adjustment pump 34 installed in the indoor unit 3 has an applied voltage-rotational speed-flow rate map, the flow rate can be detected from the applied voltage-rotational speed, and the pressure sensor can be omitted. Further, a calorific value detector capable of detecting the calorific value associated with heat exchange with the air in the indoor space, which is the heat load, may be installed. Each indoor unit control device 300 acquires the amount of heat associated with heat exchange in the indoor heat exchanger 31 by performing calculations or the like. Then, each indoor unit control device 300 sends a signal including the acquired heat quantity data to the relay unit control device 200 .
 また、各室内ユニット3側には、室内温度センサ515(室内温度センサ515a~室内温度センサ515d)が設置されている。室内温度センサ515は、室内側送風機33の駆動による空気の流れにより、室内熱交換器31に流入する空気の温度である吸込温度を検出し、吸込温度検出信号を出力する。ここで、吸込温度は、熱負荷である室内空間において空気調和対象となる室内空気の温度とすることができる。 Also, an indoor temperature sensor 515 (room temperature sensor 515a to room temperature sensor 515d) is installed on each indoor unit 3 side. The indoor temperature sensor 515 detects the intake temperature, which is the temperature of the air flowing into the indoor heat exchanger 31 due to the flow of air driven by the indoor blower 33, and outputs an intake temperature detection signal. Here, the suction temperature can be the temperature of the indoor air to be air-conditioned in the indoor space, which is the heat load.
 次に、実施の形態1に係る空気調和装置0における制御系装置の構成について説明する。図2に示すように、各ユニットは、それぞれのユニットが有する機器を制御する制御装置を有する。また、各制御装置は、各種センサから送られる信号に含まれる物理量のデータ、入力装置(図示せず)などから送られる指示、設定など信号に基づく処理を行う。また、各制御装置は、他の制御装置と有線通信接続または無線通信接続され、他の制御装置との間で、各種データを含む信号を通信することができる。室外ユニット1は、室外ユニット制御装置100を有する。また、中継ユニット2は、中継ユニット制御装置200を有する。各室内ユニット3は、室内ユニット制御装置300(室内ユニット制御装置300a~室内ユニット制御装置300d)を有する。 Next, the configuration of the control system device in the air conditioner 0 according to Embodiment 1 will be described. As shown in FIG. 2, each unit has a control device that controls the equipment of each unit. Further, each control device performs processing based on signals such as data of physical quantities contained in signals sent from various sensors, instructions and settings sent from an input device (not shown) or the like. Further, each control device is connected to other control devices for wired communication or wireless communication, and can communicate signals including various data with the other control devices. The outdoor unit 1 has an outdoor unit controller 100 . Also, the relay unit 2 has a relay unit control device 200 . Each indoor unit 3 has an indoor unit controller 300 (indoor unit controller 300a to indoor unit controller 300d).
 ここで、各制御装置は、マイクロコンピュータを有している。マイクロコンピュータは、たとえば、CPU(Central Processing Unit)などの制御演算処理装置を有している。また、各制御装置は、各種信号の入出力を管理するI/Oポートを有する。また、マイクロコンピュータは、たとえば、データを一時的に記憶できるランダムアクセスメモリ(RAM)などの揮発性記憶装置(図示せず)およびハードディスク、フラッシュメモリなどの不揮発性の補助記憶装置(図示せず)を、記憶装置として有する。各制御装置は、他の制御装置および各種センサから送られる信号に含まれる各種データ、演算処理した結果のデータなどを記憶装置に記憶することができる。また、記憶装置には、制御演算処理装置が行う処理手順をプログラムとしたデータを有している。そして、制御演算処理装置がプログラムのデータに基づいて処理を実行して各部の処理を実現する。ただ、これに限定するものではなく、各装置を専用機器(ハードウェア)で構成してもよい。また、制御装置は、計時を行うタイマなどの計時装置を有する。 Here, each control device has a microcomputer. The microcomputer has, for example, a control processing unit such as a CPU (Central Processing Unit). Further, each control device has an I/O port for managing input/output of various signals. The microcomputer also includes, for example, a volatile storage device (not shown) such as a random access memory (RAM) that can temporarily store data, and a non-volatile auxiliary storage device (not shown) such as a hard disk and flash memory. as a storage device. Each control device can store various data contained in signals sent from other control devices and various sensors, data resulting from arithmetic processing, and the like in a storage device. In addition, the storage device has data in which processing procedures to be performed by the control arithmetic processing unit are programmed. Then, the control arithmetic processing unit executes processing based on the data of the program to realize the processing of each section. However, the present invention is not limited to this, and each device may be composed of dedicated equipment (hardware). In addition, the control device has a timing device such as a timer for timing.
 実施の形態1における各制御装置間の通信について、各室内ユニット制御装置300は、対応する室内ユニット3内のセンサにおいて検出された圧力、温度などのデータを信号に含めて、中継ユニット2が有する中継ユニット制御装置200に送ることができる。各室内ユニット制御装置300は、他にも、リモートコントローラ(図示せず)から入力された室内設定温度に係るデータ、熱量などを演算したデータなどを中継ユニット制御装置200に送ることができる。また、室内熱交換器31の熱交換容量など、対応する室内ユニット3が有する機器の特性に関するデータを中継ユニット制御装置200に送ることができる。 Regarding communication between each control device in Embodiment 1, each indoor unit control device 300 includes data such as pressure and temperature detected by a sensor in the corresponding indoor unit 3 in a signal, and relay unit 2 has It can be sent to the relay unit control device 200 . Each indoor unit control device 300 can also send to the relay unit control device 200 data related to the indoor set temperature input from a remote controller (not shown), data obtained by calculating the amount of heat, and the like. In addition, it is possible to send to the relay unit control device 200 data relating to the characteristics of the equipment of the corresponding indoor unit 3 , such as the heat exchange capacity of the indoor heat exchanger 31 .
 ここで、特に、後述する揚程調整用ポンプ34の流量制御に係る処理は、中継ユニット制御装置200または室内ユニット制御装置300が行うものとして説明する。ただし、これに限定するものではない。たとえば、揚程調整用ポンプ34が制御装置を有し、後述するマップデータなどに基づいて、流量制御に係る処理を独立して行ってもよい。 Here, it is assumed that the relay unit control device 200 or the indoor unit control device 300 performs processing related to flow rate control of the head adjusting pump 34, which will be described later. However, it is not limited to this. For example, the head adjustment pump 34 may have a control device and independently perform flow rate control processing based on map data, which will be described later.
 次に、実施の形態1の空気調和装置0における熱媒体循環回路Bの試運転動作について説明する。ここでは、中継ユニット制御装置200が、機器を制御または室内ユニット制御装置300に指示を送るなどして、試運転における機器の制御を行うものとして説明する。ただし、これに限定するものではなく、他の制御装置が処理を行ってもよい。 Next, the test run operation of the heat medium circulation circuit B in the air conditioner 0 of Embodiment 1 will be described. Here, it is assumed that the relay unit control device 200 controls the devices in the test run by controlling the devices or sending instructions to the indoor unit control device 300 . However, the processing is not limited to this, and another control device may perform the processing.
 試運転を行う際、まず、空気調和装置0は、すべての室内ユニット3における室内流量調整装置32の開度を全開にして運転する。このとき、中継ユニット2の主ポンプ22およびすべての揚程調整用ポンプ34は、最大印加電圧で駆動する。そして、室内流入側圧力センサ521、室内流出側圧力センサ522および揚程調整用ポンプ34の印加電圧-回転数-流量の関係を示すマップデータに基づいて、空気調和装置0が、すべての室内ユニット3に熱媒体を循環させて運転していることを確認する。 When conducting a test run, the air conditioner 0 is first operated with the opening degrees of the indoor flow control devices 32 in all the indoor units 3 fully open. At this time, the main pump 22 of the relay unit 2 and all the head adjustment pumps 34 are driven with the maximum applied voltage. Then, based on the map data showing the relationship between the voltage applied to the indoor inflow side pressure sensor 521, the indoor outflow side pressure sensor 522, and the lift adjustment pump 34 - the number of rotations - the flow rate, the air conditioner 0 is installed in all the indoor units 3 Check that the heat transfer medium is circulating in the
 次に、空気調和装置0は、複数の室内ユニット3のうち、室内流量調整装置32a以外のすべての室内流量調整装置32を閉止して運転する。このとき、すべての揚程調整用ポンプ34は停止する。さらに、中継ユニット2の主ポンプ22は、最大印加電圧で駆動する。このように、室内ユニット3aの室内流量調整装置32aの開度を全開にした状態において、中継ユニット制御装置200は、中継ユニット2が有する室内流出側圧力センサ522と室内流入側圧力センサ521との間の圧力差ΔPを算出する。さらに、中継ユニット制御装置200は、圧力差ΔPから経路圧損ΔPrを算出し、経路圧損ΔPrのデータを記録する。 Next, the air conditioner 0 is operated with all the indoor flow control devices 32 other than the indoor flow control device 32a among the plurality of indoor units 3 closed. At this time, all the head adjusting pumps 34 are stopped. Furthermore, the main pump 22 of the relay unit 2 is driven with the maximum applied voltage. In this way, in a state in which the opening degree of the indoor flow rate adjusting device 32a of the indoor unit 3a is fully opened, the relay unit control device 200 controls the connection between the indoor outflow side pressure sensor 522 and the indoor inflow side pressure sensor 521 of the relay unit 2. Calculate the pressure difference ΔP between Furthermore, the relay unit control device 200 calculates the path pressure loss ΔPr from the pressure difference ΔP, and records the data of the path pressure loss ΔPr.
 また、中継ユニット制御装置200は、室内ユニット3aに流れる熱媒体の流量Qaのデータを記録する。このとき、中継ユニット制御装置200は、室内ユニット3aを通過させたときの室内流入側圧力センサ521と室内流出側圧力センサ522との圧力差ΔPaを算出する。また、中継ユニット制御装置200は、圧力差ΔPaに基づいて、熱媒体の流量Qaを得る。熱媒体の流量Qaを得る方法は、たとえば、上述のように、室内ユニット3または中継ユニット2に設置された圧力センサ間の圧力差ΔPおよび熱媒体が流れる流路におけるCv値より算出する方法がある。また、流量検出装置などを設置して検出する方法がある。ここで、圧力センサ間の圧力差ΔPによって熱媒体の流量Qを算出する場合、Q=45.58×Cv×(ΔP/G)1/2などで表すことができる。ここで、Cvは、熱媒体が液体のときの熱媒体が流れる流路のCv値である。また、Gは、熱媒体の比重である。 Further, the relay unit control device 200 records the data of the flow rate Qa of the heat medium flowing through the indoor unit 3a. At this time, the relay unit control device 200 calculates the pressure difference ΔPa between the indoor inflow side pressure sensor 521 and the indoor outflow side pressure sensor 522 when the indoor unit 3a is passed. Also, the relay unit control device 200 obtains the flow rate Qa of the heat medium based on the pressure difference ΔPa. As a method of obtaining the flow rate Qa of the heat medium, for example, as described above, there is a method of calculating from the pressure difference ΔP between the pressure sensors installed in the indoor unit 3 or the relay unit 2 and the Cv value in the flow path through which the heat medium flows. be. There is also a method of installing a flow rate detection device or the like for detection. Here, when calculating the flow rate Q of the heat medium from the pressure difference ΔP between the pressure sensors, it can be expressed as Q=45.58×Cv×(ΔP/G) 1/2 . Here, Cv is the Cv value of the flow path through which the heat medium flows when the heat medium is liquid. Also, G is the specific gravity of the heat medium.
 次に、中継ユニット制御装置200は、室内ユニット3aの容量に応じた定格流量Q1aが流れる際の経路圧損ΔPra_tを算出する。経路圧損ΔPra_tは、上述したように、中継ユニット制御装置200が算出した経路圧損ΔPraおよび熱媒体の流量Qaから、ΔPra_t=ΔPra×(Q1a/Qa)によって算出することができる。中継ユニット制御装置200は、算出した経路圧損ΔPra_tのデータを記録する。 Next, the relay unit control device 200 calculates the path pressure loss ΔPra_t when the rated flow Q1a corresponding to the capacity of the indoor unit 3a flows. As described above, the path pressure loss ΔPra_t can be calculated from the path pressure loss ΔPra calculated by the relay unit control device 200 and the heat medium flow rate Qa by ΔPra_t=ΔPra×(Q1a/Qa) 2 . The relay unit control device 200 records data of the calculated path pressure loss ΔPra_t.
 次に、空気調和装置0は、室内ユニット3aの室内流量調整装置32aを閉止し、室内流量調整装置32bの開度を全開にして運転する。中継ユニット制御装置200は、空気調和装置0の運転によって得られたデータを記録する。以上の動作を、空気調和装置0は、中継ユニット制御装置200がすべての室内ユニット3に対するデータを記録するまで繰り返す。以上のようにして、各室内ユニット3において定格流量Q1が流れる際の経路圧損ΔPr_tのデータが中継ユニット制御装置200に記録される。 Next, the air conditioner 0 is operated with the indoor flow rate adjusting device 32a of the indoor unit 3a closed and the indoor flow rate adjusting device 32b fully opened. The relay unit control device 200 records data obtained by operating the air conditioner 0 . The air conditioner 0 repeats the above operation until the relay unit control device 200 records the data for all the indoor units 3 . As described above, the data of the path pressure loss ΔPr_t when the rated flow rate Q1 flows in each indoor unit 3 is recorded in the relay unit control device 200. FIG.
 さらに、空気調和装置0は、すべての室内ユニット3における室内流量調整装置32を閉止して運転する。このとき、空気調和装置0では、中継ユニット2が有する主ポンプ22と室内ユニット3cが有する揚程調整用ポンプ34cとが駆動する。主ポンプ22は、最大印加電圧で駆動する。また、揚程調整用ポンプ34cは、室内ユニット3cの容量に応じた定格流量Q1cになるように電圧が印加されて駆動する。このときの揚程調整用ポンプ34cに印加される電圧を、Vc_t_max%とする。中継ユニット制御装置200は、Vc_t_max%のデータを記録する。次に、中継ユニット2の主ポンプ22は、最大印加電圧のx%まで低下させた印加電圧で駆動する。また、揚程調整用ポンプ34cは、室内ユニット3cの容量に応じた定格流量Q1cになるように電圧が印加されて駆動する。このときの揚程調整用ポンプ34cに印加される電圧を、Vc_t_x%とする。中継ユニット制御装置200は、Vc_t_x%のデータを記録する。 Furthermore, the air conditioner 0 is operated with the indoor flow control devices 32 in all the indoor units 3 closed. At this time, in the air conditioner 0, the main pump 22 of the relay unit 2 and the head adjustment pump 34c of the indoor unit 3c are driven. The main pump 22 is driven at maximum applied voltage. Further, the head adjusting pump 34c is driven by applying a voltage so that the rated flow rate Q1c corresponding to the capacity of the indoor unit 3c is achieved. The voltage applied to the head adjustment pump 34c at this time is assumed to be Vc_t_max%. The relay unit controller 200 records Vc_t_max% data. Next, the main pump 22 of the relay unit 2 is driven with the applied voltage reduced to x% of the maximum applied voltage. Further, the head adjusting pump 34c is driven by applying a voltage so that the rated flow rate Q1c corresponding to the capacity of the indoor unit 3c is achieved. The voltage applied to the head adjustment pump 34c at this time is assumed to be Vc_t_x%. The relay unit controller 200 records Vc_t_x% data.
 以上の動作を、空気調和装置0は、中継ユニット2の主ポンプ22における印加電圧を変更して繰り返し行う。そして、中継ユニット制御装置200は、室内ユニット3cの容量に応じた定格流量Q1cになる中継ユニット2の主ポンプ22の印加電圧と揚程調整用ポンプ34cの印加電圧との関係を示すデータをマップデータとして記録する。 The air conditioner 0 repeats the above operation while changing the voltage applied to the main pump 22 of the relay unit 2 . Then, the relay unit control device 200 stores the data indicating the relationship between the voltage applied to the main pump 22 of the relay unit 2 and the voltage applied to the head adjustment pump 34c to achieve the rated flow rate Q1c corresponding to the capacity of the indoor unit 3c as map data. Record as
 その後、空気調和装置0は、室内ユニット3cの揚程調整用ポンプ34cを停止させ、室内ユニット3dの揚程調整用ポンプ34dを駆動して運転する。中継ユニット制御装置200は、空気調和装置0の運転によって得られたデータを記録する。以上の動作を、空気調和装置0は、中継ユニット制御装置200がそれぞれの揚程調整用ポンプ34を駆動させて得られるデータを記録するまで繰り返す。そして、空気調和装置0は、試運転動作を終了する。 After that, the air conditioner 0 stops the lift adjustment pump 34c of the indoor unit 3c and drives the lift adjustment pump 34d of the indoor unit 3d to operate. The relay unit control device 200 records data obtained by operating the air conditioner 0 . The air conditioner 0 repeats the above operation until the relay unit control device 200 records the data obtained by driving the respective head adjustment pumps 34 . Then, the air conditioner 0 ends the test run operation.
 図4は、実施の形態1の空気調和装置0における制御装置が行う定時制御に係る処理の流れを示す図である。次に、実施の形態1の空気調和装置0における空気調和に係る処理について説明する。図4における処理は、主として、各室内ユニット3の室内ユニット制御装置300が、室外ユニット制御装置100および中継ユニット制御装置200と連携して制御するものである。ただし、これに限定するものではなく、1台の制御装置が集中して処理を行うなどしてもよい。ここでは、説明を簡単にするため、揚程調整用ポンプ34が熱媒体経路に設置された室内ユニット3(室内ユニット3cおよび室内ユニット3d)は運転停止した状態であるものとする。そして、揚程調整用ポンプ34が接続されていない室内ユニット3(室内ユニット3aまたは室内ユニット3b)が運転を行う場合について説明する。 FIG. 4 is a diagram showing the flow of processing related to regular control performed by the control device in the air conditioner 0 of Embodiment 1. As shown in FIG. Next, processing related to air conditioning in the air conditioner 0 of Embodiment 1 will be described. The process in FIG. 4 is mainly controlled by the indoor unit controller 300 of each indoor unit 3 in cooperation with the outdoor unit controller 100 and the relay unit controller 200 . However, the processing is not limited to this, and processing may be performed centrally by one control device. Here, to simplify the explanation, it is assumed that the indoor unit 3 (the indoor unit 3c and the indoor unit 3d) in which the head adjustment pump 34 is installed in the heat medium path is in a stopped state. Next, a case where the indoor unit 3 (the indoor unit 3a or the indoor unit 3b) to which the head adjustment pump 34 is not connected is operated will be described.
 運転を行う室内ユニット3において、室内ユニット制御装置300は、開始する運転モードに応じて熱媒体を循環させるため、室内流量調整装置32を開かせる。また、室内ユニット制御装置300は、室内側送風機33を動作させる(ステップS1)。その際、各室内ユニット制御装置300は、室内ユニット3の容量に応じた開度に、補正値Cv_hをかけた開度で、室内流量調整装置32を開く。補正値Cv_hは、試運転時に、中継ユニット制御装置200に記録された、それぞれの室内ユニット3における経路圧損ΔPr_tによって決定される。補正値Cv_hは、経路圧損ΔPr_tが大きいほど値が大きくなる。このため、室内流量調整装置32の開度が大きくなる。 In the indoor unit 3 that operates, the indoor unit control device 300 opens the indoor flow control device 32 in order to circulate the heat medium according to the operation mode to be started. In addition, the indoor unit control device 300 operates the indoor air blower 33 (step S1). At that time, each indoor unit control device 300 opens the indoor flow rate adjusting device 32 with an opening degree obtained by multiplying the opening degree according to the capacity of the indoor unit 3 by the correction value Cv_h. The correction value Cv_h is determined by the path pressure loss ΔPr_t in each indoor unit 3 recorded in the relay unit control device 200 during trial operation. The correction value Cv_h increases as the path pressure loss ΔPr_t increases. Therefore, the degree of opening of the indoor flow rate adjusting device 32 is increased.
 室内ユニット制御装置300は、室内流量調整装置32を開かせると、中継ユニット2の中継ユニット制御装置200に信号を送る。中継ユニット制御装置200は、主ポンプ22の駆動を開始させる(ステップS2)。このとき、中継ユニット制御装置200は、運転を行っている室内ユニット3の合計容量によって中継ユニット2の主ポンプ22に印加する印加電圧を決定する。 The indoor unit control device 300 sends a signal to the relay unit control device 200 of the relay unit 2 when the indoor flow rate adjusting device 32 is opened. The relay unit control device 200 starts driving the main pump 22 (step S2). At this time, the relay unit control device 200 determines the applied voltage to be applied to the main pump 22 of the relay unit 2 according to the total capacity of the indoor units 3 in operation.
 中継ユニット制御装置200は、主ポンプ22を駆動させ、熱媒体循環回路Bにおける熱媒体の流量を確保した後に、室外ユニット1の室外ユニット制御装置100に運転信号を送信する。室外ユニット制御装置100は、室外ユニット1が有する圧縮機10の駆動を開始させる(ステップS3)。 The relay unit control device 200 drives the main pump 22 to ensure the flow rate of the heat medium in the heat medium circulation circuit B, and then transmits an operation signal to the outdoor unit control device 100 of the outdoor unit 1 . The outdoor unit control device 100 starts driving the compressor 10 of the outdoor unit 1 (step S3).
 圧縮機10が駆動した後、室内ユニット制御装置300は、室内ユニット3が設置された室内の負荷に応じて、制御対象の室内流量調整装置32の開度制御を一定時間毎に行う定時制御の処理を行う。各室内ユニット制御装置300は、室内温度センサ515と室内設定温度Toの温度差ΔToを算出し、今回算出した温度差の値ΔTo(t)と、前回算出した温度差ΔToの値ΔTo(t-1)と比較して判定を行う(ステップS4)。そして、各室内ユニット制御装置300は、判定に基づいて、一定時間間隔tで、室内流量調整装置32の開度制御を行う。 After the compressor 10 is driven, the indoor unit control device 300 performs regular control to control the degree of opening of the indoor flow control device 32 to be controlled at regular intervals according to the load in the room where the indoor unit 3 is installed. process. Each indoor unit control device 300 calculates the temperature difference ΔTo between the indoor temperature sensor 515 and the indoor set temperature To, and the temperature difference value ΔTo (t) calculated this time and the temperature difference ΔTo value ΔTo (t− 1) to make a determination (step S4). Based on the determination, each indoor unit control device 300 controls the degree of opening of the indoor flow rate adjusting device 32 at regular time intervals t.
 室内ユニット制御装置300は、室内温度センサ515と室内設定温度Toの温度差ΔTo(t)が、前回値ΔTo(t-1)における値より大きい場合は、室内の負荷が室内ユニット3の能力より大きいと判定する。そして、室内ユニット制御装置300は、室内流量調整装置32の開度を大きくする指示を行い、室内熱交換器31を通過させる熱媒体の流量を多くして能力を確保する(ステップS5)。 When the temperature difference ΔTo(t) between the indoor temperature sensor 515 and the indoor set temperature To is greater than the previous value ΔTo(t−1), the indoor unit controller 300 determines that the indoor load is higher than the capacity of the indoor unit 3. judged to be large. Then, the indoor unit control device 300 issues an instruction to increase the opening degree of the indoor flow rate adjusting device 32, thereby increasing the flow rate of the heat medium passing through the indoor heat exchanger 31 to secure the capacity (step S5).
 また、室内ユニット制御装置300は、室内温度センサ515と室内設定温度Toの温度差ΔTo(t)が、前回値ΔTo(t-1)における値より小さい場合は、室内の負荷が室内ユニット3の能力より小さいと判定する。そして、室内ユニット制御装置300は、室内流量調整装置32の開度を小さくする指示を行い、室内熱交換器31を通過させる熱媒体の流量を少なくして能力を抑える(ステップS6)。 Further, when the temperature difference ΔTo(t) between the indoor temperature sensor 515 and the indoor set temperature To is smaller than the previous value ΔTo(t−1), the indoor unit control device 300 detects that the indoor load is on the indoor unit 3. judged to be less than ability. Then, the indoor unit control device 300 issues an instruction to reduce the opening degree of the indoor flow rate adjusting device 32, thereby reducing the flow rate of the heat medium passing through the indoor heat exchanger 31 and suppressing the capacity (step S6).
 室内ユニット制御装置300は、室内温度センサ515と室内設定温度Toの温度差ΔTo(t)が、前回値ΔTo(t-1)における値と同じ場合は、室内流量調整装置32を閉止させて、室内ユニット3における運転を停止させる(ステップS7)。 When the temperature difference ΔTo (t) between the indoor temperature sensor 515 and the indoor set temperature To is the same as the previous value ΔTo (t−1), the indoor unit control device 300 closes the indoor flow rate adjusting device 32, The operation of the indoor unit 3 is stopped (step S7).
 図5は、実施の形態1の空気調和装置0の定時制御における主ポンプ22の制御に係る処理の流れを示す図である。図4のステップS2に示すように、中継ユニット制御装置200は、中継ユニット2の主ポンプ22に印加する印加電圧を決定し、主ポンプ22の駆動を開始させる。中継ユニット制御装置200は、主ポンプ22を駆動させた後、主ポンプ22の駆動制御を一定時間毎に行う定時制御の処理を行う。次に、実施の形態1の空気調和装置0における中継ユニット2が有する主ポンプ22の制御について説明する。図5における処理は、主として、中継ユニット制御装置200が行う。ただし、これに限定するものではなく、1台の制御装置が集中して処理を行うなどしてもよい。 FIG. 5 is a diagram showing the flow of processing related to control of the main pump 22 in regular control of the air conditioner 0 of Embodiment 1. As shown in FIG. As shown in step S2 of FIG. 4, the relay unit control device 200 determines the applied voltage to be applied to the main pump 22 of the relay unit 2, and starts driving the main pump 22. As shown in FIG. After driving the main pump 22 , the relay unit control device 200 performs regular control processing for controlling the driving of the main pump 22 at regular time intervals. Next, control of the main pump 22 included in the relay unit 2 in the air conditioner 0 of Embodiment 1 will be described. The processing in FIG. 5 is mainly performed by the relay unit control device 200. FIG. However, the processing is not limited to this, and processing may be performed centrally by one control device.
 中継ユニット制御装置200は、図4のステップS3において室外ユニット1の室外ユニット制御装置100に運転信号を送信すると、空気調和装置0の運転中、主ポンプ22へ印加する印加電圧を制御する。これにより、空気調和装置0は、すべての室内ユニット3に対して、熱媒体の流量の制御を行う。 When the relay unit control device 200 transmits the operation signal to the outdoor unit control device 100 of the outdoor unit 1 in step S3 of FIG. 4, it controls the voltage applied to the main pump 22 while the air conditioner 0 is operating. Thereby, the air conditioner 0 controls the flow rate of the heat medium for all the indoor units 3 .
 中継ユニット制御装置200は、各室内ユニット3が有する室内流量調整装置32の開度が、室内ユニット3の運転を開始したときの初期開度よりも小さいかどうかを判定する(ステップS11)。中継ユニット制御装置200は、すべての室内流量調整装置32の開度が初期開度よりも小さいと判定すると、熱媒体循環回路Bにおける熱媒体の流量が確保されているとして、主ポンプ22への印加電圧を低下させ、主ポンプ22を減速させる(ステップS12)。 The relay unit control device 200 determines whether the opening degree of the indoor flow rate adjusting device 32 of each indoor unit 3 is smaller than the initial opening degree when the indoor unit 3 starts operating (step S11). When the relay unit control device 200 determines that the opening degrees of all the indoor flow rate adjusting devices 32 are smaller than the initial opening degrees, the relay unit control device 200 determines that the flow rate of the heat medium in the heat medium circulation circuit B is secured, and switches the heat medium to the main pump 22. The applied voltage is lowered to decelerate the main pump 22 (step S12).
 一方、中継ユニット制御装置200は、1つでも室内流量調整装置32の開度が初期開度よりも大きいときは、熱媒体循環回路Bにおける熱媒体の流量が不足しているとして、主ポンプ22への印加電圧を上昇させ、主ポンプ22を増速させる(ステップS13)。中継ユニット制御装置200は、定時制御時において、上述した処理を繰り返すことにより、各室内ユニット3の負荷に応じた熱媒体の流量調整を行う。 On the other hand, when the opening degree of even one indoor flow rate adjusting device 32 is larger than the initial opening degree, the relay unit control device 200 determines that the flow rate of the heat medium in the heat medium circulation circuit B is insufficient, and the main pump 22 is increased to increase the speed of the main pump 22 (step S13). The relay unit control device 200 adjusts the flow rate of the heat medium according to the load of each indoor unit 3 by repeating the above-described processing during regular control.
 図6は、実施の形態1の空気調和装置0における揚程調整用ポンプ34による定時制御に係る処理の流れを示す図である。次に、揚程調整用ポンプ34が熱媒体経路に設置された室内ユニット3が運転指令を受けて運転する場合について説明する。ここでは、主として、揚程調整用ポンプ34が熱媒体経路に設置された室内ユニット3(室内ユニット3cまたは室内ユニット3d)が運転を行う場合の揚程調整用ポンプ34の駆動に係る処理について説明する。 FIG. 6 is a diagram showing the flow of processing related to regular control by the head adjustment pump 34 in the air conditioner 0 of Embodiment 1. As shown in FIG. Next, the case where the indoor unit 3 in which the head adjustment pump 34 is installed in the heat medium path operates in response to an operation command will be described. Here, the process related to the drive of the head adjustment pump 34 when the indoor unit 3 (the indoor unit 3c or the indoor unit 3d) in which the head adjustment pump 34 is installed in the heat medium path operates will be mainly described.
 中継ユニット制御装置200が、図4のステップS2およびステップS3の処理を行うと、室内ユニット制御装置300は、揚程調整用ポンプ34が熱媒体経路に設置された室内ユニット3に熱媒体を通過させるため、揚程調整用ポンプ34の駆動を開始させる。また、室内ユニット制御装置300は、室内側送風機33を駆動させる(ステップS21)。このとき、室内ユニット制御装置300は、主ポンプ22の印加電圧および試運転時に記録したマップデータに基づいて、揚程調整用ポンプ34が定格流量Q1で駆動するように印加電圧を決定する。 When the relay unit control device 200 performs the processing of steps S2 and S3 in FIG. 4, the indoor unit control device 300 causes the heat medium to pass through the indoor unit 3 in which the head adjustment pump 34 is installed in the heat medium path. Therefore, the driving of the head adjustment pump 34 is started. Also, the indoor unit control device 300 drives the indoor blower 33 (step S21). At this time, the indoor unit controller 300 determines the applied voltage so that the head adjustment pump 34 is driven at the rated flow rate Q1 based on the applied voltage of the main pump 22 and the map data recorded during the test run.
 圧縮機10が駆動した後、室内ユニット制御装置300は、室内ユニット3における空調負荷に応じて、揚程調整用ポンプ34の駆動制御を行う。室内ユニット制御装置300は、室内温度センサ515と室内設定温度Toの温度差ΔToを算出し、今回算出した温度差の値ΔTo(t)と、前回算出した温度差ΔToの値ΔTo(t-1)と比較して判定を行う(ステップS22)。そして、室内ユニット制御装置300は、判定に基づいて、一定時間間隔tで、揚程調整用ポンプ34の駆動制御を行う。 After the compressor 10 is driven, the indoor unit control device 300 controls the driving of the head adjusting pump 34 according to the air conditioning load in the indoor unit 3 . The indoor unit control device 300 calculates the temperature difference ΔTo between the indoor temperature sensor 515 and the indoor set temperature To, and the temperature difference value ΔTo(t) calculated this time and the temperature difference ΔTo value ΔTo(t−1 ) to determine (step S22). Based on the determination, the indoor unit control device 300 then controls the driving of the head adjustment pump 34 at regular time intervals t.
 室内ユニット制御装置300は、室内温度センサ515と室内設定温度Toの温度差ΔTo(t)が、前回値ΔTo(t-1)における値より大きい場合は、室内の空調負荷が室内ユニット3の能力より大きいと判定する。そして、室内ユニット制御装置300は、揚程調整用ポンプ34の印加電圧を高くする指示を行い、揚程調整用ポンプ34を増速させて、室内熱交換器31を通過させる熱媒体の流量を多くして能力を確保する(ステップS23)。 When the temperature difference ΔTo(t) between the indoor temperature sensor 515 and the indoor set temperature To is greater than the previous value ΔTo(t−1), the indoor unit control device 300 determines that the indoor air conditioning load exceeds the capacity of the indoor unit 3. determined to be greater than Then, the indoor unit control device 300 issues an instruction to increase the voltage applied to the lift adjustment pump 34, speeds up the lift adjustment pump 34, and increases the flow rate of the heat medium passing through the indoor heat exchanger 31. to secure the ability (step S23).
 また、室内ユニット制御装置300は、室内温度センサ515と室内設定温度Toの温度差ΔTo(t)が、前回値ΔTo(t-1)における値より小さい場合は、室内の空調負荷が室内ユニット3の能力より小さいと判定する。そして、室内ユニット制御装置300は、揚程調整用ポンプ34の印加電圧を低くする指示を行い、揚程調整用ポンプ34を減速させて、室内熱交換器31を通過させる熱媒体の流量を少なくして能力を抑える(ステップS24)。 Further, when the temperature difference ΔTo(t) between the indoor temperature sensor 515 and the indoor set temperature To is smaller than the previous value ΔTo(t−1), the indoor unit control device 300 determines that the indoor air conditioning load is reduced to the indoor unit 3 is smaller than the ability of Then, the indoor unit control device 300 instructs to lower the voltage applied to the lift adjustment pump 34, decelerates the lift adjustment pump 34, and reduces the flow rate of the heat medium passing through the indoor heat exchanger 31. Suppress ability (step S24).
 室内ユニット制御装置300は、室内温度センサ515と室内設定温度Toの温度差ΔTo(t)が、前回値ΔTo(t-1)における値と同じ場合は、揚程調整用ポンプ34を停止させて、室内ユニット3における運転を停止させる(ステップS25)。 When the temperature difference ΔTo(t) between the indoor temperature sensor 515 and the indoor set temperature To is the same as the previous value ΔTo(t−1), the indoor unit control device 300 stops the head adjustment pump 34, The operation of the indoor unit 3 is stopped (step S25).
 ここでは、室内ユニット制御装置300は、室内ユニット3が設置された室内の空調負荷に応じて、揚程調整用ポンプ34を駆動制御するようにしたが、これに限定するものではない。たとえば、室内ユニット制御装置300は、前述した印加電圧-回転数-流量のマップデータに基づき、室内ユニット3を通過する熱媒体が定格流量Q1になるように、揚程調整用ポンプ34の印加電圧を制御して、駆動制御をしてもよい。 Here, the indoor unit control device 300 drives and controls the lift adjustment pump 34 according to the air conditioning load in the room where the indoor unit 3 is installed, but this is not restrictive. For example, the indoor unit control device 300 adjusts the voltage applied to the pump for adjusting the lift 34 so that the heat medium passing through the indoor unit 3 has the rated flow rate Q1 based on the applied voltage-rotational speed-flow rate map data described above. You may control and drive.
 定時制御において、中継ユニット制御装置200が行う主ポンプ22の制御については、基本的には、図5に基づいて説明した内容と同様の制御である。ここで、中継ユニット制御装置200は、揚程調整用ポンプ34の印加電圧が最大である場合は、揚程調整用ポンプ34が接続されている室内ユニット3に供給する熱媒体が不足していると判定する。そして、中継ユニット制御装置200は、主ポンプ22への印加電圧を増加させ、主ポンプ22を増速させる。定時制御において、揚程調整用ポンプ34が動作している場合は、前述した駆動制御を繰り返して、熱媒体の流量調整を行う。 In the regular control, the control of the main pump 22 performed by the relay unit control device 200 is basically the same as the control described with reference to FIG. Here, when the voltage applied to the lift adjustment pump 34 is the maximum, the relay unit control device 200 determines that the heat medium supplied to the indoor unit 3 to which the lift adjustment pump 34 is connected is insufficient. do. The relay unit control device 200 then increases the voltage applied to the main pump 22 to speed up the main pump 22 . In regular control, when the head adjustment pump 34 is operating, the drive control described above is repeated to adjust the flow rate of the heat medium.
 以上のように、実施の形態1の空気調和装置0によれば、中継ユニット2が有する主ポンプ22の揚程能力では能力不足となる熱媒体経路に設置された室内ユニット3(室内熱交換器31)に、補助ポンプとなる揚程調整用ポンプ34を接続する。そして、揚程調整用ポンプ34を駆動させることで、室内熱交換器31に必要となる流量の熱媒体を供給することができる。このため、高所または遠方などの揚程不足となる経路に設置された室内ユニット3に対応した高揚程の能力を有する主ポンプ22にしなくても、熱媒体を送ることができる。したがって、低コストを実現しつつ、室内ユニット3の設置範囲が広い空気調和装置0を得ることができる。 As described above, according to the air conditioner 0 of Embodiment 1, the indoor unit 3 (the indoor heat exchanger 31 ) is connected to the head adjustment pump 34 as an auxiliary pump. By driving the head adjusting pump 34, the indoor heat exchanger 31 can be supplied with the required flow rate of the heat medium. For this reason, the heat medium can be sent without using the main pump 22 having a high head capability corresponding to the indoor unit 3 installed in a path such as a high place or a distant place where the head is insufficient. Therefore, it is possible to obtain the air conditioner 0 in which the indoor unit 3 can be installed in a wide range while achieving low cost.
 また、試運転時に、室内ユニット3を通過する熱媒体が定格流量Q1になるように運転し、揚程調整用ポンプ34と主ポンプ22との関係のデータを、中継ユニット制御装置200が有する記憶装置に記憶する。そして、記憶されたデータに基づいて作成された定格流量Q1に係るマップデータが、室内ユニット制御装置300に記憶される。そして、揚程調整用ポンプ34が熱媒体経路に設置された室内ユニット3が運転指令を受けて運転するときには、室内ユニット制御装置300は、マップデータに基づいて揚程調整用ポンプ34を駆動させる。このため、空気調和装置0を運転するときに、運転において、近傍と遠方に設置された室内ユニット3の流量偏りによる能力ばらつきを抑制することができる。このため、室内ユニット3が設置された室内の負荷に応じて熱媒体を循環することができる。また、室内ユニット3は、設置された室内の負荷に応じた流量の熱媒体を通過させることができる。このため、空気調和装置0の消費電力を、各室内ユニット3で按分することができる。 Further, during trial operation, the heat medium passing through the indoor unit 3 is operated so as to have the rated flow rate Q1, and the data on the relationship between the head adjusting pump 34 and the main pump 22 is stored in the storage device of the relay unit controller 200. Remember. Then, map data relating to the rated flow rate Q1 created based on the stored data is stored in the indoor unit controller 300. FIG. Then, when the indoor unit 3 in which the head adjusting pump 34 is installed in the heat medium path operates in response to an operation command, the indoor unit control device 300 drives the head adjusting pump 34 based on the map data. Therefore, when the air conditioning apparatus 0 is operated, it is possible to suppress performance variations due to uneven flow rates of the indoor units 3 installed near and far. Therefore, the heat medium can be circulated according to the load in the room where the indoor unit 3 is installed. Moreover, the indoor unit 3 can pass the heat medium of the flow volume according to the installed indoor load. Therefore, the power consumption of the air conditioner 0 can be apportioned among the indoor units 3 .
 揚程調整用ポンプ34は、たとえば、室内ユニット3の運転停止時などに、熱媒体の通過を遮断することができる構成である。したがって、熱媒体の供給が不要な室内ユニット3への通過を防ぐことができる。 The head adjusting pump 34 is configured to be able to block the passage of the heat medium, for example, when the operation of the indoor unit 3 is stopped. Therefore, it is possible to prevent passage of the heat medium to the indoor unit 3 that does not need to be supplied.
実施の形態2.
 図7は、実施の形態2に係る空気調和装置0の構成の一例を示す図である。図7に基づいて、空気調和装置0が有する機器などの構成について説明する。実施の形態2において、特に説明しない機器などについては、実施の形態1における機器の説明と同様の動作、処理などを行う。
Embodiment 2.
FIG. 7 is a diagram showing an example of the configuration of the air conditioner 0 according to Embodiment 2. As shown in FIG. Based on FIG. 7, the configuration of the equipment and the like included in the air conditioner 0 will be described. In the second embodiment, devices and the like that are not specifically described perform the same operations and processes as those described for the devices in the first embodiment.
 前述したように、室外ユニット1と中継ユニット2とが、冷媒配管6で接続されている。また、中継ユニット2と各室内ユニット3とが熱媒体配管5で接続されている。ここで、図7においては、4台の室内ユニット3が、熱媒体配管5を介して中継ユニット2と接続されている。ただし、室内ユニット3の接続台数は、4台に限定されない。実施の形態2における空気調和装置0は、室内ユニット3は、基本的には、運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。ただし、室内ユニット3cと室内ユニット3dとは、同じモードとなる。 As described above, the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 6. Also, the relay unit 2 and each indoor unit 3 are connected by a heat medium pipe 5 . Here, in FIG. 7 , four indoor units 3 are connected to the relay unit 2 via heat medium pipes 5 . However, the number of connected indoor units 3 is not limited to four. In the air conditioner 0 according to Embodiment 2, the indoor unit 3 can basically freely select either the cooling mode or the heating mode as the operation mode. However, the indoor unit 3c and the indoor unit 3d are in the same mode.
<室外ユニット1>
 室外ユニット1は、熱源側冷媒循環回路Aにおいて熱源側冷媒を循環させて熱を搬送し、中継ユニット2の熱媒体熱交換器21において、熱媒体との熱交換を行わせるユニットである。室外ユニット1は、筐体内に、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12およびアキュムレータ14および熱源側送風機15を有している。
<Outdoor unit 1>
The outdoor unit 1 is a unit that circulates the heat source side refrigerant in the heat source side refrigerant circulation circuit A to transfer heat, and performs heat exchange with the heat medium in the heat medium heat exchanger 21 of the relay unit 2 . The outdoor unit 1 has a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, an accumulator 14, and a heat source side blower 15 in a housing.
 室外ユニット1は、さらに、第1接続配管16、第2接続配管17および第1逆流防止装置18a~第1逆流防止装置18dを有する。ここでは、第1逆流防止装置18a~第1逆流防止装置18dとして、逆止弁が用いられている。第1逆流防止装置18aは、全暖房運転モードおよび暖房主体運転モードの際に、第1接続配管16から熱源側熱交換器12に、高温および高圧のガス冷媒が逆流することを防止する装置である。第1逆流防止装置18bは、全冷房運転モードおよび冷房主体運転モードの際に、第1接続配管16からアキュムレータ14に、高圧の液または気液二相状態の冷媒が逆流することを防止する装置である。第1逆流防止装置18cは、全冷房運転モードおよび冷房主体運転モードの際に、第2接続配管17からアキュムレータ14に、高圧の液または気液二相状態の冷媒が逆流することを防止する装置である。第1逆流防止装置18dは、全暖房運転モードおよび暖房主体運転モードの際に、圧縮機10の吐出側の流路から第2接続配管17に、高温および高圧のガス冷媒が逆流することを防止する装置である。 The outdoor unit 1 further has a first connection pipe 16, a second connection pipe 17, and first backflow prevention devices 18a to 18d. Here, check valves are used as the first backflow prevention devices 18a to 18d. The first backflow prevention device 18a is a device that prevents high-temperature and high-pressure gas refrigerant from flowing back from the first connection pipe 16 to the heat source side heat exchanger 12 in the heating only operation mode and the heating main operation mode. be. The first backflow prevention device 18b is a device that prevents high-pressure liquid or gas-liquid two-phase refrigerant from flowing back from the first connection pipe 16 to the accumulator 14 during the cooling only operation mode and the cooling main operation mode. is. The first backflow prevention device 18c is a device that prevents the high-pressure liquid or gas-liquid two-phase refrigerant from flowing back from the second connection pipe 17 to the accumulator 14 during the cooling only operation mode and the cooling main operation mode. is. The first backflow prevention device 18d prevents high-temperature and high-pressure gas refrigerant from flowing back from the discharge-side flow path of the compressor 10 to the second connection pipe 17 during the heating-only operation mode and the heating-main operation mode. It is a device that
 このように、第1接続配管16、第2接続配管17および第1逆流防止装置18a~18dを設けることにより、室内ユニット3の要求する運転に関わらず、中継ユニット2に流入させる冷媒の流れを一定方向にすることができる。ここでは、第1逆流防止装置18a~第1逆流防止装置18dとして逆止弁が用いられているが、冷媒の逆流を防止できるものであればよい。たとえば、第1逆流防止装置18a~第1逆流防止装置18dとして、開閉装置、全閉機能を有する絞り装置などを用いることもできる。 By providing the first connecting pipe 16, the second connecting pipe 17, and the first backflow prevention devices 18a to 18d in this manner, the flow of the refrigerant flowing into the relay unit 2 can be prevented regardless of the operation requested by the indoor unit 3. Can be unidirectional. Here, check valves are used as the first backflow prevention devices 18a to 18d, but any device that can prevent backflow of the refrigerant may be used. For example, as the first backflow prevention device 18a to the first backflow prevention device 18d, an opening/closing device, an expansion device having a fully closing function, or the like can be used.
<室内ユニット3>
 室内ユニット3は、調和した空気を室内空間に送るユニットである。実施の形態2の各室内ユニット3は、室内熱交換器31(室内熱交換器31a~室内熱交換器31d)および室内側送風機33(室内側送風機33a~室内側送風機33d)を有する。また、室内ユニット3のうち、室内ユニット3bおよび室内ユニット3dは、それぞれ揚程調整用ポンプ34bおよび揚程調整用ポンプ34dを有する。後述するように、中継ユニット2が熱媒体流量調整装置28を有するため、実施の形態1とは異なり、室内ユニット3における室内流量調整装置32は不要となる。室内熱交換器31および揚程調整用ポンプ34は、熱媒体循環回路Bを構成する機器となる。ここで、揚程調整用ポンプ34は、システムに応じて熱媒体循環回路Bに設置される装置である。たとえば、高所または遠方に設置される室内ユニット3に対応して、主ポンプ22の熱媒体供給を補助する揚程調整用ポンプ34が設置される。
<Indoor unit 3>
The indoor unit 3 is a unit that sends conditioned air to the indoor space. Each indoor unit 3 of Embodiment 2 has an indoor heat exchanger 31 (indoor heat exchanger 31a to indoor heat exchanger 31d) and an indoor fan 33 (indoor fan 33a to indoor fan 33d). Further, among the indoor units 3, the indoor unit 3b and the indoor unit 3d have a lift adjustment pump 34b and a lift adjustment pump 34d, respectively. As will be described later, since the relay unit 2 has the heat medium flow rate adjusting device 28, unlike the first embodiment, the indoor flow rate adjusting device 32 in the indoor unit 3 becomes unnecessary. The indoor heat exchanger 31 and the head adjustment pump 34 are devices that constitute the heat medium circulation circuit B. As shown in FIG. Here, the head adjustment pump 34 is a device installed in the heat medium circulation circuit B depending on the system. For example, a head adjusting pump 34 that assists the main pump 22 in supplying the heat medium is installed corresponding to the indoor unit 3 installed at a high place or far away.
 揚程調整用ポンプ34は、室内ユニット3へ流入する熱媒体の温度および流出する熱媒体の温度に基づいて、室内熱交換器31を通過させる熱媒体の量を調整する。室内ユニット制御装置300は、後述する試運転において、主ポンプ22との印加電圧-流量の関係をマップにしたマップデータを有する。室内ユニット制御装置300は、室内ユニット3の運転を開始するときに、室内ユニット3を通過する定格流量Q1になるように、揚程調整用ポンプ34は印加電圧が調整される。ここで、図7において、揚程調整用ポンプ34は、室内熱交換器31の熱媒体流出側の配管に設置されているが、これに限定するものではない。たとえば、揚程調整用ポンプ34が、室内熱交換器31の熱媒体流入側に設置されてもよい。ここで、実施の形態1の揚程調整用ポンプ34は、室内ユニット3の運転を停止したときなど、熱媒体の通過を遮断して流れを停止することができる。したがって、揚程調整用ポンプ34は、加圧装置だけでなく、流量調整装置としても機能する。 The head adjustment pump 34 adjusts the amount of heat medium that passes through the indoor heat exchanger 31 based on the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out. The indoor unit control device 300 has map data that maps the relationship between the voltage applied to the main pump 22 and the flow rate during a trial operation, which will be described later. When the indoor unit controller 300 starts operating the indoor unit 3, the voltage applied to the head adjustment pump 34 is adjusted so that the rated flow rate Q1 passing through the indoor unit 3 is obtained. Here, in FIG. 7, the head adjustment pump 34 is installed in the piping on the heat medium outflow side of the indoor heat exchanger 31, but it is not limited to this. For example, the head adjusting pump 34 may be installed on the heat medium inflow side of the indoor heat exchanger 31 . Here, the head adjusting pump 34 of Embodiment 1 can block the passage of the heat medium to stop the flow when the operation of the indoor unit 3 is stopped. Therefore, the head adjusting pump 34 functions not only as a pressurizing device but also as a flow rate adjusting device.
 また、室内熱交換器31は、たとえば、伝熱管およびフィンを有する。そして、室内熱交換器31の伝熱管内を熱媒体が通過する。室内熱交換器31は、室内側送風機33から供給される室内空間の空気と熱媒体との間で熱交換を行う。空気よりも冷たい熱媒体が伝熱管内を通過すれば、空気は冷却され、室内空間は冷房される。室内側送風機33は、室内空間の空気を室内熱交換器31に通過させ、室内空間に戻す空気の流れを生成する。 Also, the indoor heat exchanger 31 has, for example, heat transfer tubes and fins. The heat medium passes through the heat transfer tubes of the indoor heat exchanger 31 . The indoor heat exchanger 31 exchanges heat between the indoor air supplied from the indoor blower 33 and the heat medium. When a heat medium colder than air passes through the heat transfer tubes, the air is cooled and the indoor space is cooled. The indoor-side blower 33 passes the air in the indoor space through the indoor heat exchanger 31 to generate a flow of air returning to the indoor space.
<中継ユニット2>
 中継ユニット2は、熱源側冷媒と熱媒体を熱交換する熱媒体熱交換器21および、熱を室内ユニット3に搬送する主ポンプ22を2台有する。また、中継ユニット2は、熱源側冷媒循環回路Aに、2台の中継側絞り装置23、2台の開閉装置24および2台の中継側冷媒流路切替装置25を有する。また、中継ユニット2は、熱媒体循環回路Bに、第1熱媒体流路切替装置26、第2熱媒体流路切替装置27および熱媒体流量調整装置28を有する。
<Relay unit 2>
The relay unit 2 has a heat medium heat exchanger 21 that exchanges heat between a heat source side refrigerant and a heat medium, and two main pumps 22 that convey heat to the indoor unit 3 . Also, the relay unit 2 has two relay-side expansion devices 23 , two opening-closing devices 24 , and two relay-side refrigerant flow switching devices 25 in the heat source side refrigerant circulation circuit A. In addition, the relay unit 2 has a first heat medium flow switching device 26 , a second heat medium flow switching device 27 and a heat medium flow control device 28 in the heat medium circulation circuit B.
 2台の熱媒体熱交換器21(熱媒体熱交換器21a、熱媒体熱交換器21b)は、凝縮器(放熱器)または蒸発器として機能する。熱媒体熱交換器21aは、熱源側冷媒循環回路Aにおける中継側絞り装置23aと中継側冷媒流路切替装置25aとの間に設けられており、冷房暖房混在運転モード時において熱媒体を加熱する熱交換器となる。また、熱媒体熱交換器21bは、熱源側冷媒循環回路Aにおける中継側絞り装置23bと中継側冷媒流路切替装置25bとの間に設けられており、冷房暖房混在運転モード時において、熱媒体を冷却する熱交換器となる。 The two heat medium heat exchangers 21 (heat medium heat exchanger 21a, heat medium heat exchanger 21b) function as condensers (radiators) or evaporators. The heat medium heat exchanger 21a is provided between the relay side expansion device 23a and the relay side refrigerant flow switching device 25a in the heat source side refrigerant circulation circuit A, and heats the heat medium in the cooling/heating mixed operation mode. It becomes a heat exchanger. Further, the heat medium heat exchanger 21b is provided between the relay side expansion device 23b and the relay side refrigerant flow switching device 25b in the heat source side refrigerant circulation circuit A, and in the cooling/heating mixed operation mode, the heat medium heat exchanger 21b becomes a heat exchanger that cools the
 2台の中継側絞り装置23(中継側絞り装置23a、中継側絞り装置23b)は、減圧弁および膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させる。中継側絞り装置23aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体熱交換器21aの上流側に設けられている。また、中継側絞り装置23bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体熱交換器21bの上流側に設けられている。2台の中継側絞り装置23は、たとえば、開度を制御することができる電子式膨張弁などで構成する。 The two relay-side throttle devices 23 (relay-side throttle device 23a, relay-side throttle device 23b) function as pressure reducing valves and expansion valves, and reduce the pressure of the heat source side refrigerant to expand it. The relay-side expansion device 23a is provided upstream of the heat medium heat exchanger 21a in the flow of the heat source-side refrigerant during the cooling operation. Further, the relay-side expansion device 23b is provided upstream of the heat medium heat exchanger 21b in the flow of the heat source-side refrigerant during the cooling operation. The two relay-side expansion devices 23 are composed of, for example, electronic expansion valves whose opening can be controlled.
 2台の開閉装置24(開閉装置24a、開閉装置24b)は、二方弁などで構成されており、熱媒体配管5を開閉する。開閉装置24aは、熱源側冷媒の流入口側における熱媒体配管5に設けられている。また、開閉装置24bは、熱源側冷媒の入口側と出口側を接続する配管を設けられている。この開閉装置24は、絞り装置のような電子式膨張弁でもよい。 The two opening/closing devices 24 (opening/closing device 24a and opening/closing device 24b) are composed of two-way valves and the like, and open and close the heat medium pipes 5. The opening/closing device 24a is provided in the heat medium pipe 5 on the inlet side of the heat source side refrigerant. Further, the opening/closing device 24b is provided with a pipe connecting the inlet side and the outlet side of the heat source side refrigerant. The opening/closing device 24 may be an electronic expansion valve such as a throttle device.
 2台の中継側冷媒流路切替装置25(中継側冷媒流路切替装置25a、中継側冷媒流路切替装置25b)は、四方弁などで構成され、運転モードに応じて熱源側冷媒の流れを切り替える。中継側冷媒流路切替装置25aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体熱交換器21aの下流側に設けられている。また、中継側冷媒流路切替装置25bは、全冷房運転時の熱源側冷媒の流れにおいて熱媒体熱交換器21bの下流側に設けられている。 The two relay-side refrigerant flow switching devices 25 (relay-side refrigerant flow switching device 25a, relay-side refrigerant flow switching device 25b) are composed of four-way valves or the like, and control the flow of the heat source-side refrigerant according to the operation mode. switch. The relay-side refrigerant flow switching device 25a is provided downstream of the heat medium heat exchanger 21a in the flow of the heat source-side refrigerant during cooling operation. Further, the relay-side refrigerant flow switching device 25b is provided downstream of the heat medium heat exchanger 21b in the flow of the heat source-side refrigerant during the cooling only operation.
 2台の主ポンプ22(主ポンプ22a、主ポンプ22b)は、熱媒体配管5を導通する熱媒体を加圧して、熱媒体循環回路Bを循環させる。主ポンプ22aは、熱媒体熱交換器21aと第2熱媒体流路切替装置27との間における熱媒体配管5に設けられている。また、主ポンプ22bは、熱媒体熱交換器21bと第2熱媒体流路切替装置27との間における熱媒体配管5に設けられている。 The two main pumps 22 (main pump 22a, main pump 22b) pressurize the heat medium passing through the heat medium pipe 5 to circulate the heat medium circulation circuit B. The main pump 22 a is provided in the heat medium pipe 5 between the heat medium heat exchanger 21 a and the second heat medium flow switching device 27 . Also, the main pump 22 b is provided in the heat medium pipe 5 between the heat medium heat exchanger 21 b and the second heat medium flow switching device 27 .
 第1熱媒体流路切替装置26(第1熱媒体流路切替装置26a~第1熱媒体流路切替装置26c)は、三方弁などで構成されており、熱媒体の流路を切り替える。第1熱媒体流路切替装置26は、室内ユニット3に接続の分岐数に応じた数量が設けられる。中継ユニット2と室内ユニット3の分岐には、室内ユニット3が複数台接続されてもよい。第1熱媒体流路切替装置26は、三方の流路のうち、1つが熱媒体熱交換器21aに接続される。また、他の1つが熱媒体熱交換器21bに接続される。そして、もう1つが熱媒体流量調整装置28に接続される。第1熱媒体流路切替装置26は、室内熱交換器31における熱媒体流路の出口側に設けられている。 The first heat medium flow switching device 26 (first heat medium flow switching device 26a to first heat medium flow switching device 26c) is composed of a three-way valve or the like, and switches the heat medium flow channel. The number of the first heat medium flow switching devices 26 corresponding to the number of branches connected to the indoor unit 3 is provided. A plurality of indoor units 3 may be connected to the branches of the relay unit 2 and the indoor unit 3 . One of the three flow paths of the first heat medium flow switching device 26 is connected to the heat medium heat exchanger 21a. Another one is connected to the heat medium heat exchanger 21b. Another one is connected to the heat medium flow control device 28 . The first heat medium flow switching device 26 is provided on the outlet side of the heat medium flow path in the indoor heat exchanger 31 .
 第2熱媒体流路切替装置27(第2熱媒体流路切替装置27a~第2熱媒体流路切替装置27c)は、三方弁などで構成されており、熱媒体の流路を切り替える。第2熱媒体流路切替装置27は、室内ユニット3の設置台数に応じた数量が設けられる。第2熱媒体流路切替装置27は、三方の流路の1つが熱媒体熱交換器21aに接続される。また、他の1つが熱媒体熱交換器21bに接続される。そして、もう1つが室内熱交換器31に接続される。第2熱媒体流路切替装置27は、室内熱交換器31における熱媒体流路の入口側に設けられている。 The second heat medium flow switching device 27 (second heat medium flow switching device 27a to second heat medium flow switching device 27c) is composed of a three-way valve or the like, and switches the heat medium flow channel. The number of second heat medium flow switching devices 27 is provided according to the number of indoor units 3 installed. One of the three flow paths of the second heat medium flow switching device 27 is connected to the heat medium heat exchanger 21a. Another one is connected to the heat medium heat exchanger 21b. Another one is connected to the indoor heat exchanger 31 . The second heat medium flow switching device 27 is provided on the inlet side of the heat medium flow path in the indoor heat exchanger 31 .
 熱媒体流量調整装置28(熱媒体流量調整装置28a~熱媒体流量調整装置28c)は、室内ユニット3に流れる熱媒体の流量を調整する装置である。熱媒体流量調整装置28は、開口面積を制御できる二方弁などで構成されており、熱媒体配管5に流れる流量を制御する。熱媒体流量調整装置28は、室内ユニット3に接続の分岐数に応じた数量が設けられる。熱媒体流量調整装置28は、一端が室内熱交換器31に接続される。また、他方が第1熱媒体流路切替装置26に接続される。ここでは、熱媒体流量調整装置28は、室内熱交換器31における熱媒体流路の出口側に設けられている。ただし、熱媒体流量調整装置28が室内熱交換器31の熱媒体流路の入口側に設けられてもよい。 The heat medium flow rate adjusting device 28 (heat medium flow rate adjusting device 28 a to heat medium flow rate adjusting device 28 c ) is a device that adjusts the flow rate of the heat medium flowing through the indoor unit 3 . The heat medium flow rate adjusting device 28 is composed of a two-way valve or the like capable of controlling the opening area, and controls the flow rate of the heat medium pipe 5 . The number of heat medium flow control devices 28 corresponding to the number of branches connected to the indoor unit 3 is provided. One end of the heat medium flow control device 28 is connected to the indoor heat exchanger 31 . The other is connected to the first heat medium flow switching device 26 . Here, the heat medium flow control device 28 is provided on the outlet side of the heat medium flow path in the indoor heat exchanger 31 . However, the heat medium flow control device 28 may be provided on the inlet side of the heat medium flow path of the indoor heat exchanger 31 .
 次に、実施の形態1の空気調和装置0における熱媒体循環回路Bの試運転動作について説明する。ここでは、中継ユニット制御装置200が、機器を制御または室内ユニット制御装置300に指示を送るなどして、試運転における機器の制御を行うものとして説明する。ただし、これに限定するものではなく、他の制御装置が処理を行ってもよい。 Next, the test run operation of the heat medium circulation circuit B in the air conditioner 0 of Embodiment 1 will be described. Here, it is assumed that the relay unit control device 200 controls the devices in the test run by controlling the devices or sending instructions to the indoor unit control device 300 . However, the processing is not limited to this, and another control device may perform the processing.
 まず、中継ユニット制御装置200は、揚程調整用ポンプ34bが接続されている室内ユニット3bに対応する中継ユニット2の分岐を主ポンプ22a側になるように、第1熱媒体流路切替装置26bと第2熱媒体流路切替装置27bを切り替える。そして、中継ユニット制御装置200は、熱媒体流量調整装置28bを全開にする。 First, the relay unit control device 200 directs the branch of the relay unit 2 corresponding to the indoor unit 3b to which the head adjustment pump 34b is connected to the main pump 22a side, and the first heat medium flow switching device 26b. The second heat medium flow switching device 27b is switched. Then, the relay unit control device 200 fully opens the heat medium flow control device 28b.
 次に、中継ユニット制御装置200は、中継ユニット2の主ポンプ22およびすべての揚程調整用ポンプ34bを最大印加電圧で駆動させる。その後、中継ユニット制御装置200は、室内ユニット3bの容量に応じた定格流量Q1bになるまで、揚程調整用ポンプ34の印加電圧を低下させていく。そして、中継ユニット制御装置200は、中継ユニット2の主ポンプ22の最大印加電圧における揚程調整用ポンプ34の印加電圧Vb_t_100%のデータを記録する。 Next, the relay unit control device 200 drives the main pump 22 and all the head adjustment pumps 34b of the relay unit 2 with the maximum applied voltage. After that, the relay unit control device 200 decreases the voltage applied to the head adjustment pump 34 until the rated flow rate Q1b corresponding to the capacity of the indoor unit 3b is reached. Then, the relay unit control device 200 records the data of the applied voltage Vb_t_100% of the head adjustment pump 34 at the maximum applied voltage of the main pump 22 of the relay unit 2 .
 次に、中継ユニット制御装置200は、主ポンプ22aの印加電圧を低下させ、室内ユニット3bの容量に応じた定格流量Q1bになるように、揚程調整用ポンプ34bの印加電圧Vb_t_x%を調整する。中継ユニット制御装置200は、印加電圧Vb_t_x%のデータを記録する。 Next, the relay unit control device 200 reduces the voltage applied to the main pump 22a, and adjusts the voltage Vb_t_x% applied to the head adjustment pump 34b so that the rated flow rate Q1b corresponding to the capacity of the indoor unit 3b is reached. Relay unit control device 200 records the data of applied voltage Vb_t_x%.
 以上の動作を、空気調和装置0は、繰り返し行う。そして、中継ユニット制御装置200は、室内ユニット3bの容量に応じた定格流量Q1bになる中継ユニット2の主ポンプ22の印加電圧と揚程調整用ポンプ34cの印加電圧との関係を示すデータをマップデータとして記録する。 The air conditioner 0 repeats the above operations. Then, the relay unit control device 200 stores the data indicating the relationship between the voltage applied to the main pump 22 of the relay unit 2 and the voltage applied to the head adjustment pump 34c to achieve the rated flow rate Q1b corresponding to the capacity of the indoor unit 3b as map data. Record as
 その後、空気調和装置0は、室内ユニット3bの揚程調整用ポンプ34bを停止させ、室内ユニット3dの揚程調整用ポンプ34dを駆動して運転する。中継ユニット制御装置200は、空気調和装置0の運転によって得られたデータを記録する。以上の動作を、空気調和装置0は、中継ユニット制御装置200がそれぞれの揚程調整用ポンプ34を駆動させて得られるデータを記録するまで繰り返す。そして、空気調和装置0は、試運転動作を終了する。 After that, the air conditioner 0 stops the lift adjustment pump 34b of the indoor unit 3b and drives the lift adjustment pump 34d of the indoor unit 3d to operate. The relay unit control device 200 records data obtained by operating the air conditioner 0 . The air conditioner 0 repeats the above operation until the relay unit control device 200 records the data obtained by driving the respective head adjustment pumps 34 . Then, the air conditioner 0 ends the test run operation.
 図8は、実施の形態2の空気調和装置0における制御装置が行う定時制御に係る処理の流れを示す図である。次に、実施の形態1の空気調和装置0における空気調和に係る処理について説明する。図8における処理は、主として、中継ユニット制御装置200が、室外ユニット制御装置100および各室内ユニット3の室内ユニット制御装置300と連携して制御するものである。ただし、これに限定するものではなく、他の制御装置が処理を行うなどしてもよい。説明を簡単にするため、まず、揚程調整用ポンプ34を熱媒体経路に含む室内ユニット3(室内ユニット3b~室内ユニット3d)が運転が停止した状態で、揚程調整用ポンプ34が接続されていない室内ユニット3aが運転を行う場合について説明する。 FIG. 8 is a diagram showing the flow of processing related to regular control performed by the control device in the air conditioner 0 of Embodiment 2. As shown in FIG. Next, processing related to air conditioning in the air conditioner 0 of Embodiment 1 will be described. 8 is mainly controlled by the relay unit control device 200 in cooperation with the outdoor unit control device 100 and the indoor unit control device 300 of each indoor unit 3. FIG. However, the processing is not limited to this, and another control device may perform the processing. To simplify the explanation, first, the indoor unit 3 (indoor unit 3b to indoor unit 3d) including the head adjustment pump 34 in the heat medium path is stopped and the head adjustment pump 34 is not connected. A case where the indoor unit 3a operates will be described.
 運転を行う室内ユニット3において、中継ユニット制御装置200は、運転を開始する室内ユニット3aの運転モードに応じて熱媒体を循環させるため、室内ユニット3aと配管接続されている分岐の熱媒体流量調整装置28aを開にする。また、中継ユニット制御装置200は、第1熱媒体流路切替装置26aおよび第2熱媒体流路切替装置27aを、運転モードに係る主ポンプ22側になるように切り替える(ステップS31)。その際、室内ユニット3が接続されている分岐の熱媒体流量調整装置28aは室内ユニット3aの容量によって決定される。また、室内ユニット制御装置300aは、室内側送風機33を動作させる。 In the indoor unit 3 to be operated, the relay unit control device 200 adjusts the flow rate of the branched heat medium connected to the indoor unit 3a by pipes in order to circulate the heat medium according to the operation mode of the indoor unit 3a to start operating. Device 28a is opened. Further, the relay unit control device 200 switches the first heat medium flow switching device 26a and the second heat medium flow switching device 27a to the main pump 22 side related to the operation mode (step S31). At that time, the branch heat medium flow control device 28a to which the indoor unit 3 is connected is determined by the capacity of the indoor unit 3a. Also, the indoor unit control device 300a operates the indoor-side blower 33 .
 中継ユニット制御装置200は、室内ユニット3の室内ユニット制御装置300から運転信号が送信されると、運転モードに対応した主ポンプ22の駆動を開始させる(ステップS32)。中継ユニット制御装置200は、主ポンプ22を駆動させ、熱媒体循環回路Bにおける熱媒体の流量を確保した後に、室外ユニット1の室外ユニット制御装置100に運転信号を送信する。室外ユニット制御装置100は、室外ユニット1が有する圧縮機10の駆動を開始させる(ステップS33)。 When the operation signal is transmitted from the indoor unit control device 300 of the indoor unit 3, the relay unit control device 200 starts driving the main pump 22 corresponding to the operation mode (step S32). After the relay unit controller 200 drives the main pump 22 to ensure the flow rate of the heat medium in the heat medium circulation circuit B, the relay unit controller 200 transmits an operation signal to the outdoor unit controller 100 of the outdoor unit 1 . The outdoor unit control device 100 starts driving the compressor 10 of the outdoor unit 1 (step S33).
 圧縮機10が駆動した後、中継ユニット制御装置200は、室内ユニット3aの空調負荷に応じて、中継ユニット2の熱媒体流量調整装置28aの制御を行う。中継ユニット制御装置200は、室内ユニット制御装置300から送られる信号に基づいて、室内ユニット3aの室内流入口側温度センサ513aが検出する温度と室内流出口側温度センサ514aが検出する温度との温度差ΔTaを算出する。そして、中継ユニット制御装置200は、温度差ΔTaとあらかじめ設定した定格温度差ΔT_tの比較に基づく判定を行う(ステップS34)。 After the compressor 10 is driven, the relay unit control device 200 controls the heat medium flow control device 28a of the relay unit 2 according to the air conditioning load of the indoor unit 3a. Based on the signal sent from the indoor unit control device 300, the relay unit control device 200 determines the temperature between the temperature detected by the indoor inlet side temperature sensor 513a of the indoor unit 3a and the temperature detected by the indoor outlet side temperature sensor 514a. Calculate the difference ΔTa. Then, the relay unit control device 200 makes a determination based on a comparison between the temperature difference ΔTa and the preset rated temperature difference ΔT_t (step S34).
 中継ユニット制御装置200は、温度差ΔTaが定格温度差ΔT_tより大きい場合は、室内の負荷が室内ユニット3の能力より大きいと判定する。中継ユニット制御装置200は、熱媒体流量調整装置28aの開度を大きくさせ、室内熱交換器31aを通過させる熱媒体の流量を多くして能力を確保する(ステップS35)。 The relay unit control device 200 determines that the indoor load is greater than the capacity of the indoor unit 3 when the temperature difference ΔTa is greater than the rated temperature difference ΔT_t. The relay unit control device 200 increases the degree of opening of the heat medium flow control device 28a to increase the flow rate of the heat medium passing through the indoor heat exchanger 31a to secure the capacity (step S35).
 一方、中継ユニット制御装置200は、温度差ΔTaが定格温度差ΔT_tより小さい場合は、室内の負荷が室内ユニット3の能力より小さいと判定する。中継ユニット制御装置200は、熱媒体流量調整装置28aの開度を小さくさせ、室内熱交換器31aを通過させる熱媒体の流量を少なくして能力を抑える(ステップS36)。温度差ΔTaが定格温度差ΔT_tと同じ場合には、中継ユニット制御装置200は、ステップS34に戻って、定時制御の処理を続ける。以上のように、中継ユニット制御装置200は、熱媒体流量調整装置28aの開度を制御して開閉により、室内の負荷に応じた定時制御を行う。 On the other hand, the relay unit control device 200 determines that the indoor load is smaller than the capacity of the indoor unit 3 when the temperature difference ΔTa is smaller than the rated temperature difference ΔT_t. The relay unit control device 200 reduces the opening degree of the heat medium flow rate adjusting device 28a to reduce the flow rate of the heat medium passing through the indoor heat exchanger 31a to suppress the capacity (step S36). If the temperature difference ΔTa is the same as the rated temperature difference ΔT_t, the relay unit control device 200 returns to step S34 and continues the regular control process. As described above, the relay unit control device 200 performs regular control according to the load in the room by controlling the opening degree of the heat medium flow control device 28a to open or close it.
 また、定時制御中、中継ユニット2の中継ユニット制御装置200は、中継ユニット2の各主ポンプ22に印加する印加電圧を制御し、運転を行っているすべての室内ユニット3への熱媒体の流量の制御を行う。中継ユニット制御装置200は、主ポンプ22の熱媒体を通過させる熱媒体流量調整装置28の開度のうち、最も大きい開度が初期開度より小さい場合は、熱媒体の流量が確保されているとして、主ポンプ22への印加電圧を低下させて減速させる。一方、中継ユニット制御装置200は、主ポンプ22の熱媒体を通過させる熱媒体流量調整装置28の開度のうち、1つでも初期開度より大きい場合は、熱媒体経路における熱媒体の流量が不足しているとして、主ポンプ22への印加電圧を増加させて増速させる。定時制御時において、中継ユニット制御装置200は、以上のような制御を繰り返すことにより、室内ユニット3の負荷に応じた熱媒体の流量調整を行う。 Further, during regular control, the relay unit control device 200 of the relay unit 2 controls the voltage applied to each main pump 22 of the relay unit 2, and the flow rate of the heat medium to all the indoor units 3 in operation. control. The relay unit control device 200 secures the flow rate of the heat medium when the largest opening degree among the opening degrees of the heat medium flow control device 28 through which the heat medium of the main pump 22 passes is smaller than the initial opening degree. , the voltage applied to the main pump 22 is lowered to decelerate. On the other hand, if even one of the opening degrees of the heat medium flow control device 28 through which the heat medium of the main pump 22 passes is larger than the initial opening degree, the relay unit control device 200 determines that the flow rate of the heat medium in the heat medium path is Assuming that it is insufficient, the voltage applied to the main pump 22 is increased to speed it up. During regular control, the relay unit control device 200 adjusts the flow rate of the heat medium according to the load of the indoor unit 3 by repeating the control described above.
 図9は、実施の形態2の空気調和装置0における揚程調整用ポンプ34による定時制御に係る処理の流れを示す図である。次に、揚程調整用ポンプ34が熱媒体経路に設置された室内ユニット3が運転指令を受けて運転する場合について説明する。運転を行う室内ユニット3において、中継ユニット制御装置200は、運転を開始する室内ユニット3の運転モードに応じて熱媒体を循環させるため、室内ユニット3と配管接続されている分岐の熱媒体流量調整装置28を開にする。また、中継ユニット制御装置200は、第1熱媒体流路切替装置26および第2熱媒体流路切替装置27を、運転モードに係る主ポンプ22側になるように切り替える(ステップS41)。 FIG. 9 is a diagram showing the flow of processing related to regular control by the head adjustment pump 34 in the air conditioner 0 of Embodiment 2. As shown in FIG. Next, the case where the indoor unit 3 in which the head adjustment pump 34 is installed in the heat medium path operates in response to an operation command will be described. In the indoor unit 3 that is to be operated, the relay unit control device 200 adjusts the flow rate of the branched heat medium connected to the indoor unit 3 by piping in order to circulate the heat medium according to the operation mode of the indoor unit 3 that is to start operating. Device 28 is opened. Further, the relay unit control device 200 switches the first heat medium flow switching device 26 and the second heat medium flow switching device 27 to the main pump 22 side related to the operation mode (step S41).
 このとき、室内ユニット3bのように、揚程調整用ポンプ34が熱媒体経路に設置された室内ユニット3だけが分岐された熱媒体経路上にある場合、中継ユニット制御装置200は、熱媒体流量調整装置28を全開にする。また、室内ユニット3cおよび室内ユニットdのように、揚程調整用ポンプ34が接続されていない室内ユニット3も分岐された熱媒体経路上にある場合、中継ユニット制御装置200は、その経路上における室内ユニット3の合計容量によって初期開度を決定する。 At this time, when only the indoor unit 3 in which the head adjustment pump 34 is installed in the heat medium path, such as the indoor unit 3b, is on the branched heat medium path, the relay unit control device 200 adjusts the heat medium flow rate. Fully open device 28 . Further, when the indoor unit 3 to which the head adjustment pump 34 is not connected, such as the indoor unit 3c and the indoor unit d, is also on the branched heat medium path, the relay unit control device 200 controls the indoor unit on the path. The total capacity of the unit 3 determines the initial opening.
 中継ユニット制御装置200は、室内ユニット3の室内ユニット制御装置300から運転信号が送信されると、運転モードの対応した主ポンプ22を駆動させる(ステップS42)。中継ユニット制御装置200は、主ポンプ22を駆動させ、熱媒体循環回路Bにおける熱媒体の流量を確保した後に、室外ユニット1の室外ユニット制御装置100に運転信号を送信する。室外ユニット制御装置100は、室外ユニット1が有する圧縮機10を駆動させる(ステップS43)。
 また、中継ユニット制御装置200は、揚程調整用ポンプ34が熱媒体経路に設置された室内ユニット3に熱媒体を通過させるため、揚程調整用ポンプ34を駆動させる(ステップS44)。
When the operation signal is transmitted from the indoor unit control device 300 of the indoor unit 3, the relay unit control device 200 drives the main pump 22 corresponding to the operation mode (step S42). After the relay unit controller 200 drives the main pump 22 to ensure the flow rate of the heat medium in the heat medium circulation circuit B, the relay unit controller 200 transmits an operation signal to the outdoor unit controller 100 of the outdoor unit 1 . The outdoor unit control device 100 drives the compressor 10 of the outdoor unit 1 (step S43).
In addition, the relay unit control device 200 drives the head adjustment pump 34 so that the heat medium passes through the indoor unit 3 installed in the heat medium path (step S44).
 室内ユニット3bのように、揚程調整用ポンプ34が熱媒体経路に設置された室内ユニット3だけが分岐された熱媒体経路上にある場合、圧縮機10の駆動後、中継ユニット制御装置200は、室内ユニット3の空調負荷に応じて揚程調整用ポンプ34を制御する。中継ユニット制御装置200は、室内ユニット制御装置300bから送られる信号に基づいて、室内ユニット3bの室内流入口側温度センサ513bが検出する温度と室内流出口側温度センサ514bが検出する温度との温度差ΔTbを算出する。そして、中継ユニット制御装置200は、温度差ΔTbに基づく判定を行う(ステップS45)。 When only the indoor unit 3 in which the head adjustment pump 34 is installed in the heat medium path is on the branched heat medium path like the indoor unit 3b, after the compressor 10 is driven, the relay unit control device 200 The head adjustment pump 34 is controlled according to the air conditioning load of the indoor unit 3 . Based on the signal sent from the indoor unit control device 300b, the relay unit control device 200 determines the temperature between the temperature detected by the indoor inlet side temperature sensor 513b of the indoor unit 3b and the temperature detected by the indoor outlet side temperature sensor 514b. A difference ΔTb is calculated. Then, the relay unit control device 200 makes a determination based on the temperature difference ΔTb (step S45).
 中継ユニット制御装置200は、温度差ΔTbがあらかじめ設定した定格温度差ΔT_tより大きい場合は、室内の負荷が室内ユニット3bの能力より大きいと判定する。中継ユニット制御装置200は、揚程調整用ポンプ34bの印加電圧を高くして、室内熱交換器31bを通過させる熱媒体の流量を多くして能力を確保する(ステップS46)。 The relay unit control device 200 determines that the indoor load is greater than the capacity of the indoor unit 3b when the temperature difference ΔTb is greater than the preset rated temperature difference ΔT_t. The relay unit control device 200 increases the voltage applied to the head adjusting pump 34b to increase the flow rate of the heat medium passing through the indoor heat exchanger 31b to secure the capacity (step S46).
 一方、中継ユニット制御装置200は、温度差ΔTbが定格温度差ΔT_tより小さい場合は、室内の負荷が室内ユニット3bの能力より小さいと判定する。中継ユニット制御装置200は、揚程調整用ポンプ34bの印加電圧を低くして、室内熱交換器31bを通過させる熱媒体の流量を少なくして能力を抑える(ステップS47)。
温度差ΔTbが定格温度差ΔT_tと同じ場合には、中継ユニット制御装置200は、ステップS45に戻って、定時制御の処理を続ける。以上のように、中継ユニット制御装置200は、熱媒体流量調整装置28bの開度を制御して開閉により、室内の負荷に応じた定時制御を行う。
On the other hand, when the temperature difference ΔTb is smaller than the rated temperature difference ΔT_t, the relay unit control device 200 determines that the indoor load is smaller than the capacity of the indoor unit 3b. The relay unit control device 200 lowers the voltage applied to the head adjustment pump 34b to reduce the flow rate of the heat medium passing through the indoor heat exchanger 31b to suppress the capacity (step S47).
If the temperature difference ΔTb is the same as the rated temperature difference ΔT_t, the relay unit control device 200 returns to step S45 and continues the regular control process. As described above, the relay unit control device 200 performs regular control according to the load in the room by controlling the opening degree of the heat medium flow control device 28b and opening/closing it.
 次に、室内ユニット3cおよび室内ユニット3dのように、揚程調整用ポンプ34が接続されていない室内ユニット3も分岐された熱媒体経路上にある場合について説明する。中継ユニット制御装置200は、揚程調整用ポンプ34dが接続されている室内ユニット3dについては、室内流入口側温度センサ513dと室内流出口側温度センサ514dとの温度差ΔTdに基づいて、揚程調整用ポンプ34dへの印加電圧を制御する。一方、中継ユニット制御装置200は、揚程調整用ポンプ34が接続されていない室内ユニット3cについては、室内流入口側温度センサ513cと室内流出口側温度センサ514cとの温度差ΔTcに基づいて、熱媒体流量調整装置28cの開度を制御する。 Next, a case where the indoor unit 3 to which the head adjusting pump 34 is not connected, like the indoor unit 3c and the indoor unit 3d, is also on the branched heat medium path will be described. For the indoor unit 3d to which the lift adjusting pump 34d is connected, the relay unit control device 200 adjusts the lift adjusting pump based on the temperature difference ΔTd between the indoor inlet side temperature sensor 513d and the indoor outlet side temperature sensor 514d. It controls the voltage applied to the pump 34d. On the other hand, for the indoor unit 3c to which the head adjustment pump 34 is not connected, the relay unit control device 200 determines the temperature difference ΔTc between the indoor inlet side temperature sensor 513c and the indoor outlet side temperature sensor 514c. It controls the degree of opening of the medium flow rate adjusting device 28c.
 ここでは、中継ユニット制御装置200は、室内ユニット3が設置された室内の負荷に応じて、揚程調整用ポンプ34を駆動制御するようにしたが、これに限定するものではない。たとえば、室内ユニット制御装置300は、前述した印加電圧-回転数-流量のマップデータに基づき、室内ユニット3を通過する熱媒体が定格流量Q1になるように、揚程調整用ポンプ34の印加電圧を制御して、駆動制御をしてもよい。 Here, the relay unit control device 200 drives and controls the lift adjustment pump 34 in accordance with the load in the room where the indoor unit 3 is installed, but it is not limited to this. For example, the indoor unit control device 300 adjusts the voltage applied to the pump for adjusting the lift 34 so that the heat medium passing through the indoor unit 3 has the rated flow rate Q1 based on the applied voltage-rotational speed-flow rate map data described above. You may control and drive.
 定時制御における揚程調整用ポンプ34が熱媒体経路に設置された室内ユニット3が運転する場合の中継ユニット制御装置200が行う主ポンプ22の制御については、揚程調整用ポンプ34が熱媒体経路に設置されていない室内ユニット3の場合と同様である。ここで、中継ユニット制御装置200は、揚程調整用ポンプ34の印加電圧が最大である場合は、揚程調整用ポンプ34が接続されている室内ユニット3に供給する熱媒体が不足していると判定する。そして、中継ユニット制御装置200は、対応する主ポンプ22への印加電圧を増加させ、主ポンプ22を増速させる。定時制御において、揚程調整用ポンプ34が動作している場合は、前述した駆動制御を繰り返して、熱媒体の流量調整を行う。 Regarding the control of the main pump 22 performed by the relay unit control device 200 when the indoor unit 3 in which the head adjustment pump 34 is installed in the heat medium path in regular control operates, the head adjustment pump 34 is installed in the heat medium path. It is the same as the case of the indoor unit 3 which is not installed. Here, when the voltage applied to the lift adjustment pump 34 is the maximum, the relay unit control device 200 determines that the heat medium supplied to the indoor unit 3 to which the lift adjustment pump 34 is connected is insufficient. do. The relay unit control device 200 then increases the voltage applied to the corresponding main pump 22 to speed up the main pump 22 . In regular control, when the head adjustment pump 34 is operating, the drive control described above is repeated to adjust the flow rate of the heat medium.
 以上のように、実施の形態2の空気調和装置0によれば、中継ユニット2が有する主ポンプ22の揚程能力では能力不足となる熱媒体経路に設置された室内ユニット3(室内熱交換器31)の熱媒体経路に、補助ポンプとなる揚程調整用ポンプ34を接続する。そして、揚程調整用ポンプ34を駆動させることで、室内熱交換器31に必要となる流量の熱媒体を供給することができる。このため、高所または遠方などの揚程不足となる経路に設置された室内ユニット3に対応した高揚程の能力を有する主ポンプ22にしなくても、熱媒体を送ることができる。したがって、低コストを実現しつつ、室内ユニット3の設置範囲が広い空気調和装置0を得ることができる。 As described above, according to the air conditioner 0 of Embodiment 2, the indoor unit 3 (indoor heat exchanger 31 ) is connected to a pump 34 for adjusting the lift as an auxiliary pump. By driving the head adjusting pump 34, the indoor heat exchanger 31 can be supplied with the required flow rate of the heat medium. For this reason, the heat medium can be sent without using the main pump 22 having a high head capability corresponding to the indoor unit 3 installed in a path such as a high place or a distant place where the head is insufficient. Therefore, it is possible to obtain the air conditioner 0 in which the indoor unit 3 can be installed in a wide range while achieving low cost.
 0 空気調和装置、1 室外ユニット、2 中継ユニット、3,3a,3b,3c,3d 室内ユニット、5 熱媒体配管、6 冷媒配管、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 絞り装置、14 アキュムレータ、15 熱源側送風機、16 第1接続配管、17 第2接続配管、18a,18b,18c,18d 第1逆流防止装置、21,21a,21b 熱媒体熱交換器、22,22a,22b 主ポンプ、23,23a,23b 中継側絞り装置、24,24a,24b 開閉装置、25,25a,25b 中継側冷媒流路切替装置、26,26a,26b,26c 第1熱媒体流路切替装置、27,27a,27b,27c 第2熱媒体流路切替装置、28,28a,28b,28c 熱媒体流量調整装置、31,31a,31b,31c,31d 室内熱交換器、32,32a,32b 室内流量調整装置、33,33a,33b,33c,33d 室内側送風機、34,34b,34c,34d 揚程調整用ポンプ、100 室外ユニット制御装置、200 中継ユニット制御装置、300,300a,300b,300c,300d 室内ユニット制御装置、501 吐出温度センサ、502 吐出圧力センサ、503 室外温度センサ、504 第1冷媒温度センサ、505 第2冷媒温度センサ、511 熱媒体流入口側温度センサ、512 熱媒体流出口側温度センサ、513,513a,513b,513c,513d 室内流入口側温度センサ、514,514a,514b,514c,514d 室内流出口側温度センサ、515,515a,515b,515c,515d 室内温度センサ、521,521a,521b 室内流入側圧力センサ、522,522a,522b 室内流出側圧力センサ。 0 air conditioner, 1 outdoor unit, 2 relay unit, 3, 3a, 3b, 3c, 3d indoor unit, 5 heat medium pipe, 6 refrigerant pipe, 10 compressor, 11 refrigerant flow switching device, 12 heat source side heat exchange vessel, 13 expansion device, 14 accumulator, 15 heat source side blower, 16 first connection pipe, 17 second connection pipe, 18a, 18b, 18c, 18d first backflow prevention device, 21, 21a, 21b heat medium heat exchanger, 22, 22a, 22b Main pump, 23, 23a, 23b Relay side throttle device, 24, 24a, 24b Switching device, 25, 25a, 25b Relay side refrigerant flow switching device, 26, 26a, 26b, 26c First heat medium Flow switching device, 27, 27a, 27b, 27c Second heat medium flow switching device, 28, 28a, 28b, 28c Heat medium flow control device, 31, 31a, 31b, 31c, 31d Indoor heat exchanger, 32, 32a, 32b Indoor flow control device, 33, 33a, 33b, 33c, 33d Indoor blower, 34, 34b, 34c, 34d Lift adjustment pump, 100 Outdoor unit control device, 200 Relay unit control device, 300, 300a, 300b , 300c, 300d Indoor unit control device, 501 Discharge temperature sensor, 502 Discharge pressure sensor, 503 Outdoor temperature sensor, 504 First refrigerant temperature sensor, 505 Second refrigerant temperature sensor, 511 Heat medium inlet side temperature sensor, 512 Heat medium Outlet side temperature sensors 513, 513a, 513b, 513c, 513d Indoor inlet side temperature sensors 514, 514a, 514b, 514c, 514d Indoor outlet side temperature sensors 515, 515a, 515b, 515c, 515d Indoor temperature sensors , 521, 521a, 521b: Indoor inflow side pressure sensors, 522, 522a, 522b: Indoor outflow side pressure sensors.

Claims (8)

  1.  熱を搬送する媒体となる熱媒体を加熱または冷却する熱源側装置と、
     空気調和対象の室内空気と前記熱媒体とを熱交換する複数の室内熱交換器と、
     前記熱媒体を加圧し、前記室内熱交換器に供給する主ポンプと
    を配管接続して前記熱媒体を循環させる熱媒体循環回路を備える空気調和装置であって、
     前記熱媒体循環回路に設置され、前記主ポンプの揚程に係る能力を補助する揚程調整用ポンプを備える空気調和装置。
    a heat source side device for heating or cooling a heat medium serving as a heat transfer medium;
    a plurality of indoor heat exchangers that exchange heat between indoor air to be air-conditioned and the heat medium;
    An air conditioner comprising a heat medium circulation circuit that pressurizes the heat medium and circulates the heat medium by pipe connection with a main pump that supplies the heat medium to the indoor heat exchanger,
    An air conditioner comprising a pump for head adjustment installed in the heat medium circulation circuit and assisting the ability related to the head of the main pump.
  2.  前記揚程調整用ポンプは、前記熱媒体循環回路において前記主ポンプの前記揚程が不足する熱媒体経路上の前記室内熱交換器に対応して設置される請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein the head adjusting pump is installed corresponding to the indoor heat exchanger on the heat medium path where the head of the main pump is insufficient in the heat medium circulation circuit.
  3.  前記揚程調整用ポンプの駆動を制御する制御装置を備え、
     前記制御装置は、前記揚程調整用ポンプを駆動させて、複数の前記室内熱交換器を通過する前記熱媒体の流量を調整する請求項1または請求項2に記載の空気調和装置。
    A control device for controlling the driving of the pump for adjusting the lift,
    The air conditioner according to claim 1 or 2, wherein the control device drives the head adjustment pump to adjust the flow rate of the heat medium passing through the plurality of indoor heat exchangers.
  4.  前記揚程調整用ポンプの駆動を制御する制御装置を備え、
     前記制御装置は、前記揚程調整用ポンプが送る前記熱媒体の流量を検出する請求項1~請求項3のいずれか一項に記載の空気調和装置。
    A control device for controlling the driving of the pump for adjusting the lift,
    The air conditioner according to any one of claims 1 to 3, wherein the control device detects the flow rate of the heat medium sent by the head adjusting pump.
  5.  前記揚程調整用ポンプの駆動を制御する制御装置を備え、
     前記揚程調整用ポンプは、前記熱媒体の通過を遮断する機能を有し、
     前記制御装置は、前記揚程調整用ポンプに、熱交換を停止している前記室内熱交換器への前記熱媒体の通過を遮断させる請求項1~請求項4のいずれか一項に記載の空気調和装置。
    A control device for controlling the driving of the pump for adjusting the lift,
    The head adjustment pump has a function of blocking passage of the heat medium,
    The air according to any one of claims 1 to 4, wherein the control device causes the head adjustment pump to block passage of the heat medium to the indoor heat exchanger that has stopped heat exchange. Harmony device.
  6.  前記室内空気の温度を検出する室内温度センサと、
     前記揚程調整用ポンプの駆動を制御する制御装置と
    を備え、
     前記制御装置は、前記室内空気の温度と室内設定温度との温度差に基づいて、前記揚程調整用ポンプに印加する印加電圧を制御する請求項1~請求項5のいずれか一項に記載の空気調和装置。
    an indoor temperature sensor that detects the temperature of the indoor air;
    A control device for controlling the driving of the pump for adjusting the head,
    6. The control device according to any one of claims 1 to 5, wherein the control device controls the applied voltage applied to the head adjustment pump based on the temperature difference between the indoor air temperature and the indoor set temperature. Air conditioner.
  7.  前記室内熱交換器に流入する前記熱媒体の温度を検出する室内流入口側温度センサと、
     前記室内熱交換器から流出する前記熱媒体の温度を検出する室内流出口側温度センサと、
     前記揚程調整用ポンプの駆動を制御する制御装置と
    を備え、
     前記制御装置は、前記室内流入口側温度センサが検出する温度と前記室内流出口側温度センサが検出する温度との温度差に基づいて、前記揚程調整用ポンプに印加する印加電圧を制御する請求項1~請求項5のいずれか一項に記載の空気調和装置。
    an indoor inlet side temperature sensor that detects the temperature of the heat medium flowing into the indoor heat exchanger;
    an indoor outlet side temperature sensor that detects the temperature of the heat medium flowing out of the indoor heat exchanger;
    A control device for controlling the driving of the pump for adjusting the head,
    The control device controls the voltage applied to the pump for adjusting the lift based on the temperature difference between the temperature detected by the indoor inlet side temperature sensor and the temperature detected by the indoor outlet side temperature sensor. The air conditioner according to any one of claims 1 to 5.
  8.  前記熱媒体循環回路は、水またはブラインを含む前記熱媒体を循環させる請求項1~請求項7のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 7, wherein the heat medium circulation circuit circulates the heat medium containing water or brine.
PCT/JP2021/021843 2021-06-09 2021-06-09 Air-conditioning apparatus WO2022259396A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/021843 WO2022259396A1 (en) 2021-06-09 2021-06-09 Air-conditioning apparatus
EP21945073.1A EP4354031A1 (en) 2021-06-09 2021-06-09 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021843 WO2022259396A1 (en) 2021-06-09 2021-06-09 Air-conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2022259396A1 true WO2022259396A1 (en) 2022-12-15

Family

ID=84425902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021843 WO2022259396A1 (en) 2021-06-09 2021-06-09 Air-conditioning apparatus

Country Status (2)

Country Link
EP (1) EP4354031A1 (en)
WO (1) WO2022259396A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124645A (en) * 1981-01-26 1982-08-03 Yamatake Honeywell Co Ltd Fan coil unit control system
JP2010112699A (en) * 2008-10-09 2010-05-20 Sanki Eng Co Ltd Heating medium piping system
JP2011002180A (en) * 2009-06-19 2011-01-06 Toyo Netsu Kogyo Kk Local pump system in heating medium supplying facility
JP2017053507A (en) 2015-09-07 2017-03-16 パナソニックIpマネジメント株式会社 Air conditioning system, controller to be used in air conditioning system, program
JP2021046953A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner
JP2021046952A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124645A (en) * 1981-01-26 1982-08-03 Yamatake Honeywell Co Ltd Fan coil unit control system
JP2010112699A (en) * 2008-10-09 2010-05-20 Sanki Eng Co Ltd Heating medium piping system
JP2011002180A (en) * 2009-06-19 2011-01-06 Toyo Netsu Kogyo Kk Local pump system in heating medium supplying facility
JP2017053507A (en) 2015-09-07 2017-03-16 パナソニックIpマネジメント株式会社 Air conditioning system, controller to be used in air conditioning system, program
JP2021046953A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner
JP2021046952A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner

Also Published As

Publication number Publication date
EP4354031A1 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
EP2634508B1 (en) Refrigeration cycle device and refrigeration cycle control method
JP4670329B2 (en) Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
EP2677251B1 (en) Refrigeration cycle device and refrigeration cycle control method
US9797605B2 (en) Heat pump system
US10816224B2 (en) Heat-pump air-conditioning hot-water supply device
JP6129520B2 (en) Multi-type air conditioner and control method of multi-type air conditioner
WO2012172605A1 (en) Air conditioner
JP6479181B2 (en) Air conditioner
JP7069298B2 (en) Air conditioner
JP6589946B2 (en) Refrigeration equipment
JP5889347B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
US11506435B2 (en) Water regulator
WO2022259396A1 (en) Air-conditioning apparatus
JP7309075B2 (en) air conditioner
JP7019066B2 (en) Air conditioner
JP5479625B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
WO2019163042A1 (en) Air conditioning device and air handling unit
JP6937933B2 (en) Air conditioner
US20230250992A1 (en) Air-conditioning apparatus
WO2021024411A1 (en) Air-conditioning device
JP2008145038A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021945073

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021945073

Country of ref document: EP

Effective date: 20240109