WO2022257746A1 - 一种锂离子电池 - Google Patents

一种锂离子电池 Download PDF

Info

Publication number
WO2022257746A1
WO2022257746A1 PCT/CN2022/094535 CN2022094535W WO2022257746A1 WO 2022257746 A1 WO2022257746 A1 WO 2022257746A1 CN 2022094535 W CN2022094535 W CN 2022094535W WO 2022257746 A1 WO2022257746 A1 WO 2022257746A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
groove
tape
negative electrode
insulating tape
Prior art date
Application number
PCT/CN2022/094535
Other languages
English (en)
French (fr)
Inventor
韩攀
李小彬
方双柱
李俊义
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2022257746A1 publication Critical patent/WO2022257746A1/zh
Priority to US18/225,640 priority Critical patent/US20230369733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of lithium-ion batteries, in particular to a lithium-ion battery.
  • Lithium-ion battery is a new type of secondary battery. It mainly relies on lithium ions to move between the positive and negative electrodes. It has high energy density and power density, high working voltage, light weight, small size, long cycle life, and safety. Good, green and environmentally friendly, it has broad application prospects in portable appliances, electric tools, large-scale energy storage, and electric transportation power supplies.
  • the positive tab and negative tab of the traditional winding structure lithium-ion battery are welded to the blank area at the head or tail of the corresponding electrode collector, and then the tabs are used for positioning and winding, and the winding core is rolled out and assembled to a specific size punched. It is packaged in aluminum-plastic film, baked to remove excess water, injected with a specific electrolyte, and left to stand for a certain period of time to activate, evacuate, and divide the battery.
  • the existing winding structure lithium-ion battery removes the active material by using a certain method at a specific position of the current collector that has been coated with the active material, and then welds the tabs on the current collector from which the active material has been removed, and then cuts it with the pole piece. Positioning and winding at the cutting position, and then a series of production processes such as packaging, baking, and liquid injection are carried out according to the normal process.
  • the lithium-ion battery of the existing structure can reduce the internal resistance of the lithium-ion battery, increase the charging speed, and reduce the temperature rise of charging and discharging.
  • the negative electrode tab of the existing winding structure lithium-ion battery has no effective negative active material, and cannot receive the lithium ions released from the positive active material layer corresponding to the negative electrode tab.
  • those skilled in the art usually use Adhesive paper is added to the positive electrode area corresponding to the tab for isolation protection.
  • Adhesive paper is added to the positive electrode area corresponding to the tab for isolation protection.
  • lithium will be deposited in the negative electrode area corresponding to the peripheral area of the protective tape, which will affect the reliability of the electrical performance, especially the safety performance.
  • the occurrence of lithium precipitation in the negative electrode region has become a technical problem to be solved by those skilled in the art.
  • the purpose of this application is to provide a lithium-ion battery.
  • the excessive lithium ions deintercalated from the positive active material layer around the insulating tape are prevented from migrating to the corresponding negative electrode area. , thereby improving the electrical performance and safety performance of lithium-ion batteries.
  • a lithium-ion battery comprising a positive electrode sheet, a negative electrode sheet, a diaphragm arranged between the positive electrode sheet and the negative electrode sheet, and an electrolyte
  • the positive electrode sheet comprising a positive electrode collector, a positive electrode membrane attached to the surface of the positive electrode collector and a positive electrode tab
  • the negative electrode sheet includes a negative electrode current collector, a negative electrode diaphragm attached to the surface of the negative electrode current collector, and a negative electrode tab
  • the negative electrode diaphragm is provided with a first groove
  • the negative electrode tab is provided In the first groove
  • a first insulating tape is provided on the positive electrode sheet opposite to the first groove
  • the positive electrode diaphragm on the edge of the first insulating tape has a first tape groove.
  • first tab tape is provided on the first groove; in the thickness direction of the battery, the projection of the first tab tape is covered by the first insulating tape.
  • the positive electrode diaphragm is provided under the first insulating tape or the positive electrode current collector is placed under the first insulating tape.
  • the positive electrode diaphragm is provided under the first insulating tape
  • the groove of the first adhesive tape is U-shaped or the positive electrode current collector is located under the first insulating tape
  • the first adhesive tape The paper notch is rectangular.
  • the negative electrode sheet is provided with a second groove in the area of the negative electrode diaphragm opposite to the first groove, and a second insulating tape is provided on the positive electrode sheet opposite to the second groove, so that The anode diaphragm on the edge of the second insulating tape has a second tape groove.
  • the second tab tape is provided on the second groove; in the thickness direction of the battery, the projection of the second tab tape is covered by the second insulating tape.
  • the positive electrode diaphragm is provided under the second insulating tape or the positive electrode current collector is placed under the first insulating tape.
  • the positive electrode diaphragm is provided under the second insulating adhesive tape
  • the groove of the second adhesive tape is U-shaped or the positive electrode current collector is located under the second insulating adhesive tape
  • the second adhesive tape The paper notch is rectangular.
  • the positive electrode diaphragm is provided with a third groove
  • the positive electrode tab is arranged in the third groove
  • the third tab adhesive paper is arranged on the third groove.
  • the positive electrode sheet is provided with a fourth groove in the region of the positive electrode diaphragm opposite to the third groove, and a fourth tab tape is arranged on the fourth groove.
  • the width of the negative electrode tab ranges from 4 mm to 6 mm, and the length of the welding end of the negative electrode tab ranges from 20 mm to 30 mm.
  • the width of the first groove ranges from 6 mm to 10.5 mm, and the length of the first groove ranges from 21 mm to 36 mm.
  • the width of the first tab tape is 7mm-15mm, and the length of the first tab tape is 23mm-42mm.
  • the width of the first insulating tape is in the range of 11mm-25mm, and the length of the first insulating tape is in the range of 25-48mm.
  • the maximum dimension between the edge of the first insulating tape and the edge of the groove of the first tape is greater than or equal to 0.5 mm.
  • the width of the second insulating tape is in the range of 11mm-25mm, and the length of the second insulating tape is in the range of 25mm-48mm.
  • the maximum dimension between the edge of the second insulating tape and the edge of the groove of the second tape is greater than or equal to 0.5 mm.
  • Figure 1 is a schematic diagram of the front of the positive electrode collector and the back of the positive electrode collector provided by Embodiment 1 of the present application;
  • Figure 2 is a schematic diagram of the front side of the positive current collector and the back side of the positive current collector provided in Example 2 of the present application (removing the front active material inside the groove of the front isolation insulating tape and the back active material inside the groove of the back isolation insulating tape).
  • the shorter side of the positive electrode is defined as the width direction of the electrode sheet, and the extending direction of the electrode sheet perpendicular to it is defined as the length direction of the electrode sheet.
  • the width direction of the pole piece corresponds to the length direction of the battery core, that is to say, the width direction of the pole piece is in line with the battery length direction.
  • the core width directions are not the same, but are perpendicular to each other.
  • a lithium-ion battery includes a lithium-ion battery cell, an electrolyte (not shown) and a packaging shell (not shown), the battery cell is packaged by using the packaging shell (in this embodiment, an aluminum-plastic film), and the battery is sealed in a vacuum The moisture in the cell is baked under the conditions, and then the electrolyte is injected, and then the battery is chemically formed and sorted to obtain a lithium-ion battery; wherein, the lithium-ion cell includes a positive electrode sheet, a negative electrode sheet (not shown), The separator (not shown), the positive electrode sheet, the separator and the negative electrode sheet are stacked in sequence and then wound.
  • the negative electrode sheet includes a negative electrode current collector, a negative electrode diaphragm attached to the surface of the negative electrode current collector, and a negative electrode tab, the negative electrode diaphragm is provided with a first groove; the negative electrode tab is arranged on The first groove, the first tab tape is provided on the first groove; the negative electrode sheet is provided with a second groove in the negative electrode diaphragm area opposite to the first groove, The second tab tape is provided on the second groove; the negative electrode sheet includes a negative electrode current collector in a rectangular sheet structure, and as a specific embodiment, copper foil is used for the negative electrode current collector.
  • the positive electrode sheet includes a positive electrode current collector, a positive electrode diaphragm attached to the surface of the positive electrode current collector, and a positive electrode tab 300;
  • Positive electrode active area 110 and front positive electrode blank area 120 front positive electrode active area 110 is arranged on positive electrode current collector front 100 head and middle part, front positive electrode blank area 120 is arranged on positive electrode current collector front 100 tail;
  • Front positive electrode active area 110 is attached with The positive electrode diaphragm, the front positive electrode blank area 120 is a blank positive electrode current collector (that is, the front positive electrode blank area 120 is not attached with the positive electrode diaphragm);
  • the positive electrode current collector back side (C face) 200 arranged on the back side of the negative electrode sheet includes a positive electrode active area 210 on the back side and a positive electrode blank area 220 on the back side, and the positive electrode active area 210 on the back side is arranged at the head of the back side 200 of the positive electrode current collector.
  • the positive electrode blank area 220 on the back side is located at the rear of the positive electrode current collector back 200;
  • the positive electrode diaphragm is attached);
  • the positive electrode active area 210 on the back side is provided with the fourth groove, the second insulating tape 230 and the second tail part arranged at the tail of the positive electrode active area 210 on the back side in sequence along the direction from the beginning to the end of the positive electrode sheet Insulating tape 240; in the thickness direction of the battery, the projection of the second tab tape is covered by the second insulating tape 230;
  • the second insulating tape 230 is opposite to the second groove on the negative plate, and the second The anode membrane at the edge of the insulating tape 230 is provided with a second tape groove 212 .
  • the gap size between the edge of the first insulating tape 130 and the edge of the groove of the first tape is greater than or equal to 0.5mm; the gap between the edge of the second insulating tape 230 and the edge of the groove of the second tape The size of the gap is greater than or equal to 0.5 mm; the positive electrode diaphragm is disposed under the first insulating tape 130 and the second insulating tape 230 .
  • the third groove located on the front surface 100 of the positive electrode current collector is rectangular, and the positive electrode active material is removed from the rectangular area where the third groove is located (that is, the bottom of the rectangular area corresponding to the third groove is the positive electrode current collector, positive electrode active material on the side); the positive electrode tab 300 can be arranged in the third groove, and be connected to the positive electrode current collector at the bottom of the third groove by welding; the third electrode ear 300 is welded
  • the groove is covered with a third tab tape 310 for protecting the positive tab 300;
  • the first tape groove 112 is U-shaped, and the positive electrode active material (i.e., the The bottom of the U-shaped area corresponding to the first tape groove 112 is the positive electrode current collector, and the side is the positive electrode active material), and the area where the positive electrode active material is not removed inside the first tape groove 112 (such as the first insulating tape in Figure 1 130 ) is covered with the first insulating tape 130 , and the size of the first insulating tape 130 is larger than the size of the
  • the fourth groove located on the back side 200 of the positive electrode current collector is rectangular, and the positive electrode active material is removed from the rectangular area where the fourth groove is located (that is, the bottom of the rectangular area corresponding to the fourth groove is the positive electrode current collector, positive electrode active material on the side); the positive electrode tab 300 can be arranged in the fourth groove, and be connected to the positive electrode current collector at the bottom of the fourth groove by welding; the fourth electrode with the positive electrode ear 300 welded
  • the groove is covered with the fourth tab tape 320 for protecting the positive tab 300;
  • the second tape groove 212 is U-shaped, and the U-shaped area corresponding to the second tape groove 212 removes the positive electrode active material (that is, the The bottom of the U-shaped area corresponding to the second tape groove 212 is the positive electrode current collector, and the side is the positive electrode active material), and the U-shaped area corresponding to the second tape groove 212 has no positive electrode active material (as shown in Figure 1
  • the dotted area inside the second insulating tape 230 ) is covered with
  • the width of the negative pole lug is 4-6mm, the length of the negative pole lug is 34-50mm, and the length of the welding end of the negative pole lug is 20-30mm;
  • the width of the slot is 6-10.5mm (2mm-5mm wider than the lug width), and the length of the first groove is 21-36mm (1mm-6mm longer than the length of the lug welding end): the first groove is longer than the negative pole.
  • the width of the first tab tape is 7-15mm (1-4mm wider than the first groove), and the length of the first tab tape is 23-42mm (1-4mm wider than the first groove).
  • the groove length is 2-6mm long): the size of the first ear tape is larger than that of the first groove to ensure that the tape completely covers the cleaning position and prevent lithium ions from being separated from the cleaning position.
  • the width range of the first insulating tape 130 is 11mm-25mm (4-10mm wider than the width of the first tab tape), and the width range of the second insulating tape 230 is 11mm-25mm (wider than the width of the first tab tape).
  • the width of the second tab tape is 4-10mm wide
  • the length range of the first insulating tape 130 is 25-48mm (2-6mm longer than the length of the first tab tape)
  • the length range of the second insulating tape 230 is 25-48mm (2-6mm longer than the length of the second tab tape): the first insulating tape 130 and the second insulating tape 230 are larger than the first tab tape to ensure that there is no active material in the area of the negative electrode
  • the positive active material is released, and at the same time, it is ensured that the negative active material can cover the positive active material.
  • the maximum dimension between the edge of the first insulating tape 130 and the edge of the first tape groove 112 is greater than or equal to 0.5 mm, and the distance between the edge of the second insulating tape 230 and the edge of the second tape groove 212 is greater than or equal to 0.5 mm.
  • the maximum dimension between them is greater than or equal to 0.5mm, and the size of the tape groove is larger than that of the insulating tape, in order to remove the positive electrode active material around the insulating tape.
  • the third groove located on the front surface 100 of the positive electrode collector is opposite to the fourth groove located on the back surface 200 of the positive electrode collector;
  • the position difference ⁇ D2 between the groove 112 and the second tape groove 212 located on the negative side of the positive electrode current collector 200 is approximately equal to the length difference ⁇ D1 between the front positive active region 110 and the rear positive active region 210, that is, ⁇ D2 ⁇
  • the active material on the edge of the first insulating tape 130 is removed, and delithiation of the active material around the first insulating tape 130 is avoided;
  • the positive electrode diaphragm that is, the positive electrode diaphragm between the first insulating adhesive tape 130 and the positive electrode current collector
  • the positive electrode diaphragms in other regions of the region 110 are isolated to completely inactivate the positive electrode diaphragms located at the bottom of the first insulating tape 130, reduce the probability of delithiation, and then reduce the risk of lithium deposition in the peripheral area of the corresponding negative electrode tab.
  • this embodiment only removes the positive electrode diaphragm around the first insulating adhesive tape 130, reducing the deterioration of the flatness of the positive electrode collector front 100 probability.
  • the gap size of the first tape groove 112 (ie, the maximum dimension between the outer edge of the first insulating tape 130 and the outer edge of the first tape groove 112 ) is greater than or equal to 0.5 mm;
  • the position of the fourth groove, the position of the second tape groove 212, the position of the second insulating tape 230 and the position of the second tail insulating tape 240 are related to the length, height, thickness and lug of the lithium-ion battery cell. It is related to the position of the margin, which can be determined according to the actual situation.
  • the first insulating tape 130 includes a layer of insulating tape.
  • the first insulating tape 130 includes multiple layers (greater than two layers) of insulating tape, wherein the size of the insulating tape closer to the bottom of the first tape groove 112 is smaller, and the closest to the first tape The size of the insulating tape at the bottom of the paper groove 112 is larger than the size of the region where the positive electrode active material is not removed inside the first tape groove 112; the second insulating tape 230 includes multiple layers of insulating tape, wherein the closer to the second tape The size of the insulating tape in the groove 212 is smaller, and the size of the insulating tape closest to the bottom of the second tape groove 212 is larger than the size of the area inside the second tape groove 212 where the positive electrode active material is not removed.
  • the positive electrode diaphragm includes positive electrode active material layer materials, conductive agents and binders, and the positive electrode active material layer materials include nickel-cobalt-manganese ternary materials, lithium iron phosphate materials, lithium cobalt oxide materials, manganese Lithium acid lithium material, lithium nickelate material, one or a combination of lithium-rich manganese-based materials, activated carbon, etc., are well known to those skilled in the art, so no further details are given;
  • the conductive agent can be conductive carbon black, carbon nanotubes, conductive graphite , one or more of graphene
  • the binder can be polyvinylidene fluoride, vinylidene fluoride-fluorinated olefin copolymer, polytetrafluoroethylene, sodium carboxymethyl cellulose, styrene-butadiene rubber, polyurethane One or more of fluorinated rubber and polyvinyl alcohol, the content (mass percentage) of the positive electrode active material layer
  • the difference between this embodiment and Embodiment 1 is that: remove the positive electrode diaphragm under the first insulating tape 130 and the second insulating tape 230; the first tape groove 112 is rectangular, that is The rectangular area corresponding to the first adhesive paper groove 112 eliminates the positive electrode diaphragm (that is, the bottom of the first adhesive paper groove 112 is the positive electrode current collector, and the side is the positive electrode active material); the second adhesive paper groove 212 is rectangular, That is, the positive electrode active material is removed from the rectangular area corresponding to the second tape groove 212 (that is, the bottom of the second tape groove 212 is the positive electrode current collector, and the side is the positive electrode active material).
  • the inside of the first tape groove 112 is covered with the first insulating tape 130, and the size of the first insulating tape 130 is smaller than the size of the first tape groove 112, so that the first insulating tape
  • the paper 130 is arranged at a certain distance from the positive electrode diaphragm on the positive electrode current collector front surface 100, and the specific interval is determined by the size difference between the first adhesive paper groove 112 and the first insulating adhesive tape 130 and the gap between the first insulating adhesive tape 130 and the first insulating adhesive tape.
  • the positioning inside the groove 112 is related.
  • the inside of the second tape groove 212 is covered with the second insulating tape 230, and the size of the second insulating tape 230 is smaller than the size of the second tape groove 212, so that the second insulating tape
  • the paper 230 is arranged at a certain distance from the positive electrode active material layer on the back surface of the positive electrode current collector 200, and the specific interval is determined by the size difference between the second adhesive paper groove 212 and the second insulating adhesive paper 230 and the second insulating adhesive paper 230 in the second It is related to the positioning inside the adhesive tape groove 212.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了一种锂离子电池,包括正极片、负极片、设置于正极片和负极片之间的隔膜,以及电解液,所述正极片包括正极集流体、附着在所述正极集流体表面的正极膜片和正极极耳,所述负极片包括负极集流体、附着在所述负极集流体表面的负极膜片和负极极耳,所述负极膜片上设置有第一凹槽,所述负极极耳设置在所述第一凹槽,所述第一凹槽相对的所述正极片上设有第一绝缘胶纸,所述第一绝缘胶纸边缘的所述正极膜片有第一胶纸凹槽;本申请通过在正极片上设置隔离绝缘胶纸的凹槽,避免绝缘胶纸周围的正极活性物质层脱嵌的过多锂离子迁移至对应的负极区域,进而提升锂离子电池的电性能和安全性能。

Description

一种锂离子电池
本申请要求于2021年06月09日提交中国专利局、申请号为202110646141.0、申请名称为“一种锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池技术领域,尤其涉及一种锂离子电池。
背景技术
锂离子电池是一种新型二次电池,它主要依靠锂离子在正极和负极之间移动来工作,具有能量密度和功率密度大、工作电压高、重量轻、体积小、循环寿命长、安全性好、绿色环保等优点,在便携式电器、电动工具、大型储能、电动交通动力电源等方面具有广阔的应用前景。
传统卷绕结构锂离子电池的正极极耳和负极极耳焊接在对应极片集流体的头部或尾部空白区域,然后以极耳进行定位卷绕,卷出卷芯装配到冲型好特定尺寸的铝塑膜中进行封装,烘烤出多余水分后,注入特定电解液,静置一定时间后对电芯进行活化、抽气、分容等。
现有卷绕结构锂离子电池通过在已经涂覆了活性物质的集流体特定位置,采用一定方法移除活性物质,再将极耳焊接在移除活性物质的集流体上,然后以极片裁切位置进行定位卷绕,再按照正常的流程进行封装、烘烤、注液等一系列生产过程。相比传统结构的锂离子电池,现有结构的锂离子电池可以降低锂离子电池的内阻,提升充电速度、降低充放电温升。
现有卷绕结构锂离子电池的负极极耳无有效负极活性物质,无法接收与负极极耳对应的正极活性物质层脱出的锂离子,为了解决这一问题,本领域技术人员通常采用在与负极极耳对应的正极区域增加胶纸进行隔离保护。但在电池循环或使用后期,与该保护胶纸位置外围区域对应的负极区域会出现析锂,影响电性能尤其是安全性能的可靠性,如何解决卷绕结构锂离子电池的隔离保护胶纸对应的负极区域出现析锂成为本领域技术 人员需要解决的技术问题。
发明内容
本申请的目的旨在提供一种锂离子电池,通过在该正极片上设置隔离绝缘胶纸的凹槽,避免绝缘胶纸周围的正极活性物质层脱嵌的过多锂离子迁移至对应的负极区域,进而提升锂离子电池的电性能和安全性能。
为了实现本申请的目的,本申请采用了如下技术方案:
一种锂离子电池,包括正极片、负极片、设置于正极片和负极片之间的隔膜,以及电解液,所述正极片包括正极集流体、附着在所述正极集流体表面的正极膜片和正极极耳,所述负极片包括负极集流体、附着在所述负极集流体表面的负极膜片和负极极耳,所述负极膜片上设置有第一凹槽,所述负极极耳设置在所述第一凹槽,所述第一凹槽相对的所述正极片上设有第一绝缘胶纸,第一绝缘胶纸边缘的所述正极膜片有第一胶纸凹槽。
进一步地,所述第一凹槽上设置有所述第一极耳胶纸;在电池厚度方向上,所述第一极耳胶纸的投影被第一绝缘胶纸覆盖。
作为具体的实施方式,第一绝缘胶纸下方设有所述正极膜片或第一绝缘胶纸下方为所述正极集流体。
作为具体的实施方式,第一绝缘胶纸下方设有所述正极膜片,所述第一胶纸凹槽为U形或第一绝缘胶纸下方为所述正极集流体,所述第一胶纸凹槽为矩形。
进一步地,所述负极片在所述第一凹槽相背的负极膜片区域设置有第二凹槽,所述第二凹槽上相对的所述正极片上设有第二绝缘胶纸,所述第二绝缘胶纸边缘的所述正极膜片有第二胶纸凹槽。
进一步地,所述第二凹槽上设置有所述第二极耳胶纸;在电池厚度方向上,所述第二极耳胶纸的投影被第二绝缘胶纸覆盖。
作为具体的实施方式,第二绝缘胶纸下方设有所述正极膜片或第一绝缘胶纸下方为所述正极集流体。
作为具体的实施方式,第二绝缘胶纸下方设有所述正极膜片,所述第二胶纸凹槽为U形或第二绝缘胶纸下方为所述正极集流体,所述第二胶纸凹槽为矩形。
进一步地,所述正极膜片上设置有第三凹槽,第三凹槽内设置有所述正极极耳,所述第三凹槽上设置有第三极耳胶纸。
进一步地,所述正极片在所述第三凹槽相背的正极膜片区域设置有第四凹槽,所述第四凹槽上设置有第四极耳胶纸。
作为具体的实施方式,所述负极极耳的宽度范围为4mm-6mm,负极极耳焊接端的长度范围为20mm-30mm。
作为具体的实施方式,所述第一凹槽的宽度范围为6mm-10.5mm,所述第一凹槽的长度范围为21mm-36mm。
作为具体的实施方式,所述第一极耳胶纸的宽度范围为7mm-15mm,所述第一极耳胶纸的长度范围是23mm-42mm。
作为具体的实施方式,所述第一绝缘胶纸的宽度范围为11mm-25mm,所述第一绝缘胶纸的长度范围为25-48mm。
作为具体的实施方式,第一绝缘胶纸边缘与第一胶纸凹槽边缘之间的最大尺寸大于或等于0.5mm。
作为具体的实施方式,所述第二绝缘胶纸的宽度范围为11mm-25mm,所述第二绝缘胶纸的长度范围是为25mm-48mm。
作为具体的实施方式,所述第二绝缘胶纸边缘与所述第二胶纸凹槽边缘之间的最大尺寸大于或等于0.5mm。
本申请的有益效果:
本申请通过在正极片上设置隔离绝缘胶纸的凹槽,避免绝缘胶纸周围的正极活性物质层脱嵌的过多锂离子迁移至对应的负极区域,进而提升锂离子电池的电性能和安全性能。具体地,通过在正极片上设置隔离绝缘胶纸的凹槽,一方面可以避免绝缘胶纸周围有活性物质脱锂;另一方面可以隔绝绝缘胶纸底部正极活性物质与其他区域的正极活性物质的导通,避免胶纸底部正极活性物质彻底失活,使其完全失去脱锂。进一步地,本申请提供的降低对应负极区域析锂风险的同时,还可以避免移除胶纸底部全部正极活性物质带来的平整度变差的问题。进一步地,通过控制绝缘胶纸的尺寸、凹槽的尺寸降低极耳特殊结构对电芯能量密度的影响。
附图说明
为了更清楚地说明本申请实施例,下面对实施例中所需要使用的附图做简单的介绍。下面描述中的附图仅仅是本申请中的实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1是本申请实施例一提供的正极集流体正面和正极集流体背面示意图;
图2是本申请实施例二提供的正极集流体正面和正极集流体背面示意图(移除正面隔离绝缘胶纸凹槽内部的正面活性物质以及背面隔离绝缘胶纸凹槽内部的背面活性物质)。
具体实施方式
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“厚度”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
为了便于说明,本申请将正极片的较短边定义为极片宽度方向,与其垂直的极片延伸方向定义为极片长度方向。很容易理解,由于极片卷绕都是沿长度方向进行的,因此在最终卷绕成的电芯中,极片宽度方向对应的是电芯长度方向,也就是说,极片宽度方向与电芯宽度方向并不相同,而是彼此垂直的。
实施例一
一种锂离子电池包括锂离子电芯、电解液(未图示)以及包装外壳(未图示),采用包装外壳(在本实施例中是铝塑膜)对电芯进行封装,并在真空条件下烘烤除去电芯中的水分,随后注入电解液,再对电池进行化成和分选等处理,得到锂离子电池;其中,锂离子电芯包括正极片、负极片(未图示)、隔膜(未图示),所述正极片、隔膜和负极片依次堆叠后卷绕设置。
在本实施例中,负极片包括负极集流体、附着在所述负极集流体表面的负极膜片和负极极耳,所述负极膜片上设置有第一凹槽;所述负极极耳 设置在所述第一凹槽,所述第一凹槽上设置有所述第一极耳胶纸;所述负极片在所述第一凹槽相背的负极膜片区域设置有第二凹槽,所述第二凹槽上设置有所述第二极耳胶纸;所述负极片包括呈矩形片状结构的负极集流体,作为一种具体的实施方式,负极集流体采用铜箔。
在本实施例中,正极片包括正极集流体、附着在所述正极集流体表面的正极膜片和正极极耳300;设置在负极片正面一侧的正极集流体正面(A面)100包括正面正极活性区110和正面正极空白区120,正面正极活性区110设在正极集流体正面100头部和中部,正面正极空白区120设在正极集流体正面100尾部;正面正极活性区110上附着有所述正极膜片,正面正极空白区120为空白的正极集流体(即正面正极空白区120未附着有所述正极膜片);正面正极活性区110上沿着正极片从头到尾的方向依次设有第三凹槽、第一绝缘胶纸130以及设置在正面正极活性区110尾部的第一尾部绝缘胶纸140;在电池厚度方向上,第一极耳胶纸的投影被第一绝缘胶纸130覆盖;第三凹槽内设有所述正极极耳300;第一绝缘胶纸130与所述负极片上的第一凹槽相对,第一绝缘胶纸130边缘的所述正极膜片设有第一胶纸凹槽112;作为一种具体的实施方式,正极集流体呈矩形片状结构,正极集流体采用铝箔。
如图1所示,设置在负极片背面一侧的正极集流体背面(C面)200包括背面正极活性区210和背面正极空白区220,背面正极活性区210设在正极集流体背面200的头部和中部,背面正极空白区220设在正极集流体背面200尾部;背面正极活性区210附着有所述正极膜片,背面正极空白区220为空白的正极集流体(即背面正极空白区220未附着有所述正极膜片);背面正极活性区210沿着正极片从头到尾的方向依次设有第四凹槽、第二绝缘胶纸230以及设置在背面正极活性区210尾部的第二尾部绝缘胶纸240;在电池厚度方向上,所述第二极耳胶纸的投影被第二绝缘胶纸230覆盖;第二绝缘胶纸230与所述负极片上的第二凹槽相对,第二绝缘胶纸230边缘的所述正极膜片设有第二胶纸凹槽212。
在本实施例中,第一绝缘胶纸130边缘与第一胶纸凹槽边缘之间的间隙尺寸大于或等于0.5mm;第二绝缘胶纸230边缘与第二胶纸凹槽边缘之间的间隙尺寸大于或等于0.5mm;第一绝缘胶纸130和第二绝缘胶纸230 下方设有所述正极膜片。
在本实施例中,位于正极集流体正面100的第三凹槽呈矩形,第三凹槽所在矩形区域剔除了正极活性物质(即所述第三凹槽对应的矩形区域底部为正极集流体,侧面为正极活性物质);所述正极极耳300可以设在所述第三凹槽内,并通过焊接连接于所述第三凹槽底部的正极集流体;焊接有正极极耳300的第三凹槽覆盖有用于保护正极极耳300的第三极耳胶纸310;第一胶纸凹槽112呈U型,第一胶纸凹槽112所在U型区域剔除了正极活性物质(即所述第一胶纸凹槽112对应的U型区域底部为正极集流体,侧面为正极活性物质),第一胶纸凹槽112内部未剔除正极活性物质的区域(如图1中第一绝缘胶纸130内部的虚线区域)覆盖有所述第一绝缘胶纸130,且第一绝缘胶纸130的尺寸大于第一胶纸凹槽112内部未剔除正极活性物质的区域尺寸。
在本实施例中,位于正极集流体背面200的第四凹槽呈矩形,第四凹槽所在矩形区域剔除了正极活性物质(即所述第四凹槽对应的矩形区域底部为正极集流体,侧面为正极活性物质);所述正极极耳300可以设在所述第四凹槽内,并通过焊接连接于所述第四凹槽底部的正极集流体;焊接有正极极耳300的第四凹槽覆盖有用于保护正极极耳300的第四极耳胶纸320;第二胶纸凹槽212呈U型,第二胶纸凹槽212对应的U型区域剔除了正极活性物质(即所述第二胶纸凹槽212对应的U型区域底部为正极集流体,侧面为正极活性物质),第二胶纸凹槽212对应的U型内部未剔正极活性物质的区域(如图1中第二绝缘胶纸230内部的虚线区域)覆盖有所述第二绝缘胶纸230。
在本实施例中,负极极耳的宽度范围为4-6mm,负极极耳的长度范围为34-50mm,负极极耳焊接端的长度范围为20-30mm;用于设置负极极耳的第一凹槽的宽度范围为6-10.5mm(比极耳宽度宽2mm-5mm),第一凹槽的长度范围为21-36mm(比极耳焊接端长度长1mm-6mm):第一凹槽比负极极耳尺寸大,目的是保证波动时极耳不会焊在涂膏上。
在本实施例中,第一极耳胶纸的宽度范围为7-15mm(比第一凹槽宽宽1-4mm),第一极耳胶纸的长度范围是23-42mm(比第一凹槽长度长2-6mm):第一极耳胶纸比第一凹槽尺寸大是为了保证胶纸完全覆盖清洗位置,防止 锂离子从清洗位置析出。
在本实施例中,第一绝缘胶纸130的宽度范围为11mm-25mm(比第一极耳胶纸宽度宽4-10mm),第二绝缘胶纸230的宽度范围为11mm-25mm(比第二极耳胶纸宽度宽4-10mm),第一绝缘胶纸130的长度范围是25-48mm(比第一极耳胶纸长度长2-6mm),第二绝缘胶纸230的长度范围是25-48mm(比第二极耳胶纸长度长2-6mm):第一绝缘胶纸130和第二绝缘胶纸230比第一极耳胶纸尺寸大是为了保证负极没有活性物质的区域没有正极活性物质脱出,同时保证负极活性物质能够覆盖正极活性物质。
在本实施例中,第一绝缘胶纸130边缘与第一胶纸凹槽112边缘之间的最大尺寸大于或等于0.5mm,第二绝缘胶纸230边缘与第二胶纸凹槽212边缘之间的最大尺寸大于或等于0.5mm,胶纸凹槽的尺寸比绝缘胶纸大,是为了移除绝缘胶纸周围的正极活性物质。
在本实施例中,以正极片头部作为基准点,位于正极集流体正面100的第三凹槽与位于正极集流体背面200的第四凹槽相对设置;位于正极集流体正面100的正面正极活性区110的长度D1长于位于正极集流体背面200的背面正极活性区210的长度D2(即正极集流体正面100涂覆正极膜片的长度长于正极集流体背面200涂覆背面活性物质的长度),其中,正面正极活性区110和背面正极活性区210之间的长度差ΔD1=D1-D2≈(电芯宽度-电芯厚度/2)*2;位于正极集流体正面100的第一胶纸凹槽112与位于正极集流体负面200的第二胶纸凹槽212之间的位置差ΔD2大致等于正面正极活性区110和背面正极活性区210之间的长度差ΔD1,即ΔD2≈ΔD1;位于正极集流体正面100的第一尾部绝缘胶纸140与位于正极集流体背面200的第二尾部绝缘胶纸240之间的位置差ΔD3大致等于正面正极活性区110和背面正极活性区210之间的长度差ΔD1,即ΔD3≈ΔD1。
在本实施例中,通过将第一绝缘胶纸130设置在第一胶纸凹槽112内部,去除第一绝缘胶纸130边缘的活性物质,避免第一绝缘胶纸130周围活性物质脱锂;另一方面,通过第一胶纸凹槽112将设在第一绝缘胶纸130底部的正极膜片(即第一绝缘胶纸130与正极集流体之间的正极膜片)与位 于正面正极活性区110其它区域的正极膜片隔离开来,使将设在第一绝缘胶纸130底部的正极膜片彻底失活,降低其脱锂的几率,进而降低对应负极极耳外围区域析锂的风险;与此同时,相比移除第一绝缘胶纸130底部的正极膜片,本实施例仅移除第一绝缘胶纸130周围的正极膜片,降低对正极集流体正面100平整度变差的几率。
在本实施例中,第一胶纸凹槽112的间隙尺寸(即第一绝缘胶纸130的外侧边缘与位于第一胶纸凹槽112外侧边缘之间的最大尺寸)大于或等于0.5mm;位于正极集流体正面100的第三凹槽的位置、第一胶纸凹槽112的位置、第一绝缘胶纸130的位置以及第一尾部绝缘胶纸140的位置以及位于正极集流体背面200的第四凹槽的位置、第二胶纸凹槽212的位置、第二绝缘胶纸230的位置以及第二尾部绝缘胶纸240的位置,与锂离子电芯的长度、高度、厚度以及极耳距边位置有关,具体可以根据实际情况确定。
在本实施例中,第一绝缘胶纸130包括一层绝缘胶纸。
在其它实施例中,第一绝缘胶纸130包括多层(大于两层)绝缘胶纸,其中,越靠近第一胶纸凹槽112底部的绝缘胶纸尺寸越小,且最靠近第一胶纸凹槽112底部的绝缘胶纸的尺寸大于第一胶纸凹槽112内部未剔除正极活性物质的区域尺寸;第二绝缘胶纸230包括多层绝缘胶纸,其中,越靠近第二胶纸凹槽212的绝缘胶纸尺寸越小,且最靠近第二胶纸凹槽212底部的绝缘胶纸的尺寸大于第二胶纸凹槽212内部未剔除正极活性物质的区域尺寸。
作为一种具体的实施方式,正极膜片中包括正极活性物质层材料、导电剂和粘结剂,正极活性物质层材料包括镍钴锰三元材料、磷酸铁锂材料、钴酸锂材料、锰酸锂材料、镍酸锂材料、富锂锰基材料、活性炭等的一种或组合,为本领域技术人员所公知,故不作进一步赘述;导电剂可以是导电炭黑、碳纳米管、导电石墨、石墨烯中的一种或多种,粘结剂可以是聚偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶、聚乙烯醇中的一种或多种,正极活性物质层中正极活性物质层材料的含量(质量百分比)为96~98.5%,导电剂的含量为0.5~2.5%,粘结剂的含量为1~1.5%。
实施例二
如图2所示,本实施例与实施例一的区别在于:第一绝缘胶纸130和第二绝缘胶纸230下方移除所述正极膜片;第一胶纸凹槽112呈矩形,即第一胶纸凹槽112对应的矩形区域剔除了正极膜片(即所述第一胶纸凹槽112底部为正极集流体,侧面为正极活性物质);第二胶纸凹槽212呈矩形,即第二胶纸凹槽212对应的矩形区域剔除了正极活性物质(即所述第二胶纸凹槽212底部为正极集流体,侧面为正极活性物质)。
在本实施例中,第一胶纸凹槽112内部覆盖有所述第一绝缘胶纸130,且第一绝缘胶纸130的尺寸小于第一胶纸凹槽112的尺寸,使第一绝缘胶纸130与正极集流体正面100的正极膜片相隔一定距离设置,具体的间隔由第一胶纸凹槽112与第一绝缘胶纸130的尺寸差以及第一绝缘胶纸130在第一胶纸凹槽112内部的定位有关。
在本实施例中,第二胶纸凹槽212内部覆盖有所述第二绝缘胶纸230,且第二绝缘胶纸230的尺寸小于第二胶纸凹槽212的尺寸,使第二绝缘胶纸230与正极集流体背面200的背面正极活性物质层相隔一定距离设置,具体的间隔由第二胶纸凹槽212与第二绝缘胶纸230的尺寸差以及第二绝缘胶纸230在第二胶纸凹槽212内部的定位有关。
在本实施例中,通过将第一绝缘胶纸130设置在第一胶纸凹槽112内部,去除第一绝缘胶纸130底部及周围的正极膜片,避免第一绝缘胶纸130底部和周围活性物质脱锂。
以上所述仅是本申请的优选实施例,本申请的保护范围并不仅局限于上述实施例,凡属于本申请思路下的技术方案均属于本申请的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理前提下的至少一个改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (17)

  1. 一种锂离子电池,包括正极片、负极片、设置于正极片和负极片之间的隔膜,以及电解液,所述正极片包括正极集流体、附着在所述正极集流体表面的正极膜片和正极极耳,所述负极片包括负极集流体、附着在所述负极集流体表面的负极膜片和负极极耳,其中:所述负极膜片上设置有第一凹槽,所述负极极耳设置在所述第一凹槽,所述第一凹槽相对的所述正极片上设有第一绝缘胶纸,第一绝缘胶纸边缘的所述正极膜片有第一胶纸凹槽。
  2. 根据权利要求1所述的锂离子电池,其中:所述第一凹槽上设置有所述第一极耳胶纸;在电池厚度方向上,所述第一极耳胶纸的投影被第一绝缘胶纸覆盖。
  3. 根据权利要求1所述的锂离子电池,其中:第一绝缘胶纸下方设有所述正极膜片或第一绝缘胶纸下方为所述正极集流体。
  4. 根据权利要求3所述的锂离子电池,其中:第一绝缘胶纸下方设有所述正极膜片,所述第一胶纸凹槽为U形或第一绝缘胶纸下方为所述正极集流体,所述第一胶纸凹槽为矩形。
  5. 根据权利要求1所述的锂离子电池,其中:所述负极片在所述第一凹槽相背的负极膜片区域设置有第二凹槽,所述第二凹槽上相对的所述正极片上设有第二绝缘胶纸,所述第二绝缘胶纸边缘的所述正极膜片有第二胶纸凹槽。
  6. 根据权利要求5所述的锂离子电池,其中:所述第二凹槽上设置有所述第二极耳胶纸;在电池厚度方向上,所述第二极耳胶纸的投影被第二绝缘胶纸覆盖。
  7. 根据权利要求5所述的锂离子电池,其中:第二绝缘胶纸下方设有所述正极膜片或第一绝缘胶纸下方为所述正极集流体。
  8. 根据权利要求7所述的锂离子电池,其中:第二绝缘胶纸下方设有所述正极膜片,所述第二胶纸凹槽为U形或第二绝缘胶纸下方为所述正极集流体,所述第二胶纸凹槽为矩形。
  9. 根据权利要求1-8任意一项所述的锂离子电池,其中:所述正极膜片上设置有第三凹槽,第三凹槽内设置有所述正极极耳,所述第三凹槽上设置有 第三极耳胶纸。
  10. 根据权利要求1-9任意一项所述的锂离子电池,其中:所述正极片在所述第三凹槽相背的正极膜片区域设置有第四凹槽,所述第四凹槽上设置有第四极耳胶纸。
  11. 根据权利要求1-8任意一项所述的锂离子电池,其中:所述负极极耳的宽度范围为4mm-6mm,负极极耳焊接端的长度范围为20mm-30mm。
  12. 根据权利要求1-8任意一项所述的锂离子电池,其中:所述第一凹槽的宽度范围为6mm-10.5mm,所述第一凹槽的长度范围为21mm-36mm。
  13. 根据权利要求1-8任意一项所述的锂离子电池,其中:所述第一极耳胶纸的宽度范围为7mm-15mm,所述第一极耳胶纸的长度范围是23mm-42mm。
  14. 根据权利要求1-8任意一项所述的锂离子电池,其中:所述第一绝缘胶纸的宽度范围为11mm-25mm,所述第一绝缘胶纸的长度范围为25-48mm。
  15. 根据权利要求1-8任意一项所述的锂离子电池,其中:第一绝缘胶纸边缘与第一胶纸凹槽边缘之间的最大尺寸大于或等于0.5mm。
  16. 根据权利要求5-8任意一项所述的锂离子电池,其中:所述第二绝缘胶纸的宽度范围为11mm-25mm,所述第二绝缘胶纸的长度范围是为25mm-48mm。
  17. 根据权利要求5-8任意一项所述的锂离子电池,其中:所述第二绝缘胶纸边缘与所述第二胶纸凹槽边缘之间的最大尺寸大于或等于0.5mm。
PCT/CN2022/094535 2021-06-09 2022-05-23 一种锂离子电池 WO2022257746A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/225,640 US20230369733A1 (en) 2021-06-09 2023-07-24 Lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110646141.0A CN113381058B (zh) 2021-06-09 2021-06-09 一种锂离子电池
CN202110646141.0 2021-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/225,640 Continuation US20230369733A1 (en) 2021-06-09 2023-07-24 Lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2022257746A1 true WO2022257746A1 (zh) 2022-12-15

Family

ID=77573611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094535 WO2022257746A1 (zh) 2021-06-09 2022-05-23 一种锂离子电池

Country Status (3)

Country Link
US (1) US20230369733A1 (zh)
CN (1) CN113381058B (zh)
WO (1) WO2022257746A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381058B (zh) * 2021-06-09 2023-10-31 珠海冠宇电池股份有限公司 一种锂离子电池
CN113889659B (zh) * 2021-09-30 2023-09-26 珠海冠宇电池股份有限公司 电池
CN115380411A (zh) * 2021-11-12 2022-11-22 宁德新能源科技有限公司 电化学装置及包括其的电子装置
CN114122638A (zh) * 2021-11-23 2022-03-01 珠海冠宇电池股份有限公司 一种电池
CN114171852A (zh) * 2021-12-06 2022-03-11 珠海冠宇电池股份有限公司 电芯及电池
CN114464769A (zh) * 2021-12-17 2022-05-10 宁德新能源科技有限公司 电极组件、电化学装置及用电装置
CN114361563A (zh) * 2022-01-07 2022-04-15 珠海冠宇电池股份有限公司 一种电芯结构及电池
CN114447399A (zh) * 2022-01-28 2022-05-06 宁德新能源科技有限公司 电化学装置与电子设备
CN114447443A (zh) * 2022-02-11 2022-05-06 宁德新能源科技有限公司 电化学装置、电化学装置的制造方法及用电设备
CN115332480B (zh) * 2022-10-13 2023-03-24 宁德新能源科技有限公司 一种极片、电化学装置及电子设备
CN116581396B (zh) * 2023-07-10 2024-04-05 宁德新能源科技有限公司 电芯及用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157914A (zh) * 2014-09-02 2014-11-19 山东齐星新能源科技有限责任公司 一种高功率软包装锂离子电池及其制作工艺
CN204905336U (zh) * 2015-07-02 2015-12-23 宁德新能源科技有限公司 电极极片及采用该极片的电芯
CN205159450U (zh) * 2015-10-15 2016-04-13 东莞市致格电池科技有限公司 一种中出极耳式卷绕电芯及功率型电池
US20160126514A1 (en) * 2013-06-19 2016-05-05 Hitachi Automotive Systems, Ltd. Battery module
CN107834014A (zh) * 2017-09-18 2018-03-23 东莞市迈科新能源有限公司 一种高功率圆柱型锂离子电芯
CN113381058A (zh) * 2021-06-09 2021-09-10 珠海冠宇电池股份有限公司 一种锂离子电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203707250U (zh) * 2014-01-24 2014-07-09 湖北金泉新材料有限责任公司 锂电池
CN110729447A (zh) * 2019-10-09 2020-01-24 惠州锂威新能源科技有限公司 一种电芯极片及电芯
CN211980765U (zh) * 2020-05-29 2020-11-20 珠海冠宇电池股份有限公司 一种电池结构和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160126514A1 (en) * 2013-06-19 2016-05-05 Hitachi Automotive Systems, Ltd. Battery module
CN104157914A (zh) * 2014-09-02 2014-11-19 山东齐星新能源科技有限责任公司 一种高功率软包装锂离子电池及其制作工艺
CN204905336U (zh) * 2015-07-02 2015-12-23 宁德新能源科技有限公司 电极极片及采用该极片的电芯
CN205159450U (zh) * 2015-10-15 2016-04-13 东莞市致格电池科技有限公司 一种中出极耳式卷绕电芯及功率型电池
CN107834014A (zh) * 2017-09-18 2018-03-23 东莞市迈科新能源有限公司 一种高功率圆柱型锂离子电芯
CN113381058A (zh) * 2021-06-09 2021-09-10 珠海冠宇电池股份有限公司 一种锂离子电池

Also Published As

Publication number Publication date
US20230369733A1 (en) 2023-11-16
CN113381058A (zh) 2021-09-10
CN113381058B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2022257746A1 (zh) 一种锂离子电池
US7935445B2 (en) Lithium ion secondary battery
CN214589165U (zh) 一种电芯及电池
JP6292678B2 (ja) 二次電池と電極の製造方法
CN206098526U (zh) 卷绕式二次电芯
CN216563208U (zh) 负极片以及电芯
CN212209657U (zh) 电池负极片及电池卷芯
JP3821434B2 (ja) 電池用電極群およびそれを用いた非水電解液二次電池
JP2019067653A (ja) 非水電解液二次電池
WO2023283835A1 (zh) 电化学装置及电子装置
CN114335407A (zh) 一种极片及电池
WO2024087906A1 (zh) 一种电芯及电池
CN219778914U (zh) 电芯结构、锂电池和电子设备
CN211045637U (zh) 一种聚合物电芯
WO2013047515A1 (ja) 非水電解質二次電池
CN216928675U (zh) 一种电池
WO2023273990A1 (zh) 正极片的制备方法、正极片和具有其的电池
CN212676341U (zh) 锂离子电池
JP7484683B2 (ja) 全固体電池
WO2021192666A1 (ja) 非水電解質二次電池
CN212365995U (zh) 一种用于卷绕式多极耳电芯的极片及卷绕式多极耳电芯
TWI616021B (zh) 電池芯極片結構
CN111682219A (zh) 一种阳极片、锂离子电池及锂离子电池的制备方法
CN112952034B (zh) 一种锂离子电芯及采用该电芯的锂离子电池
CN221125988U (zh) 一种负极片、电极组件以及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE