WO2022257605A1 - 壳体及其制备方法和电子设备 - Google Patents

壳体及其制备方法和电子设备 Download PDF

Info

Publication number
WO2022257605A1
WO2022257605A1 PCT/CN2022/087299 CN2022087299W WO2022257605A1 WO 2022257605 A1 WO2022257605 A1 WO 2022257605A1 CN 2022087299 W CN2022087299 W CN 2022087299W WO 2022257605 A1 WO2022257605 A1 WO 2022257605A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
ceramic powder
ceramic
composite layer
powder
Prior art date
Application number
PCT/CN2022/087299
Other languages
English (en)
French (fr)
Inventor
胡梦
陈奕君
李聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022257605A1 publication Critical patent/WO2022257605A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the application belongs to the technical field of electronic products, and in particular relates to a casing, a preparation method thereof, and electronic equipment.
  • composite materials are prepared by blending some inorganic powders and resins to achieve certain characteristics, such as adding irregular calcium carbonate, barium sulfate and plastics to achieve cost reduction and strengthening effects; adding carbon nanotubes, glass fibers and plastics Composite to achieve toughness; add graphite, graphene, metal particles and plastic to compound to achieve electrical conduction and heat conduction; the main material of these composite materials is still resin, and the products prepared are mainly plastic texture.
  • ceramic materials have become a hot spot in the research of electronic equipment casings due to their warm and moist texture.
  • products are prepared by homogeneous composite materials formed by resin and ceramic powder, but compared with real ceramic products, the products are quite different in terms of hardness, luster and moist touch, and it is difficult to obtain real ceramic texture.
  • the present application provides a casing, a preparation method thereof, and an electronic device.
  • the present application provides a casing, the casing includes a polymer-ceramic composite layer, and the polymer-ceramic composite layer includes at least one of rod-shaped ceramic powder and fiber material, and flake-shaped ceramic powder bodies and polymers.
  • the present application provides a method for preparing a shell, including:
  • the mixed material After the mixed material is modified, mixed with an initiator, and granulated to obtain a mixed powder, the mixed material includes at least one of a rod-shaped ceramic powder and a fiber material and a sheet-shaped ceramic powder;
  • the mixed powder is blended with polymer, banburying and granulating to form injection molding feed;
  • the injection molding feed is formed into a polymer ceramic composite sheet after injection molding
  • the polymer-ceramic composite layer is obtained through heat treatment, and the casing is obtained.
  • the present application provides an electronic device, including a casing and a display screen connected to the casing, the casing includes a polymer-ceramic composite layer, and the polymer-ceramic composite layer includes rod-shaped ceramic powder and at least one of fibrous materials, as well as flake ceramic powders and polymers.
  • FIG. 1 is a schematic structural diagram of a casing provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of distribution of ceramic powder in a polymer-ceramic composite layer according to an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a housing provided in another embodiment of the present application.
  • FIG. 4 is a flowchart of a method for preparing a housing provided in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of ceramic powder overlapping provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • Polymer ceramic composite layer-10, protective layer-20, shell-100 Polymer ceramic composite layer-10, protective layer-20, shell-100.
  • An embodiment of the present application provides a casing, the casing includes a polymer ceramic composite layer, and the polymer ceramic composite layer includes at least one of rod-shaped ceramic powder and fiber material, and flake ceramic powder and polymer.
  • the rod-shaped ceramic powder and/or the fiber material interweave with the sheet-shaped ceramic powder to form a three-dimensional network structure.
  • the mass proportion of the rod-shaped ceramic powder and/or the fiber material is greater than or equal to 2.5%, and the mass proportion of the sheet-shaped ceramic powder is greater than or equal to 2.5%.
  • the mass proportion of the fiber material in the polymer-ceramic composite layer is 2.5%-15%.
  • the length of the rod-shaped ceramic powder is 5 ⁇ m-30 ⁇ m, and the aspect ratio is 10-60.
  • the aspect ratio of the fiber material is greater than 200, and the fiber material includes at least one of glass fiber, carbon fiber and polymer fiber.
  • the length of the fiber material is 50 ⁇ m-200 ⁇ m.
  • the length of the flaky ceramic powder is 3 ⁇ m-20 ⁇ m
  • the width is 3 ⁇ m-20 ⁇ m
  • the thickness is 100 nm-500 nm.
  • the rod-shaped ceramic powder and the sheet-shaped ceramic powder are micron-scale ceramic powder
  • the polymer ceramic composite layer also includes submicron-scale ceramic powder and nano-scale ceramic powder
  • the polymer ceramic The total mass ratio of the submicron-sized ceramic powder and the nano-sized ceramic powder in the composite layer is 50%-85%.
  • the mass ratio of the polymer in the polymer ceramic composite layer is less than or equal to 45%; the polymer includes polyphenylene sulfide, polycarbonate, polyamide, polybutylene terephthalate and at least one of polymethyl methacrylate.
  • the rod-shaped ceramic powder and the sheet-shaped ceramic powder are oriented in parallel on the surface of the polymer ceramic layer, and arranged in a staggered manner inside the polymer ceramic layer.
  • the housing further includes a protective layer, and the protective layer is arranged on the surface of the polymer-ceramic composite layer.
  • the material of the flaky ceramic powder includes at least one of Al 2 O 3 , AlN, SiC, Si 3 N 4 and TiO 2 ;
  • the material of the rod-shaped ceramic powder includes Al 2 O 3 , AlN, SiC, Si 3 At least one of N 4 and TiO 2 .
  • the glossiness of the surface of the polymer ceramic composite layer is greater than or equal to 140; the pencil hardness of the surface of the polymer ceramic composite layer is greater than or equal to 5H; the thermal conductivity of the polymer ceramic composite layer is greater than or equal to 2W/( m ⁇ K); the porosity of the shell is less than 5%; the surface roughness of the shell is less than 0.1 ⁇ m.
  • An embodiment of the present application provides a method for preparing a shell, including: mixing the mixed material with an initiator after modification, and granulating to obtain a mixed powder, the mixed material including at least one of a rod-shaped ceramic powder and a fiber material and flake ceramic powder; the mixed powder is blended with the polymer, banburying and granulated to form injection molding feed; the injection molding feed is formed into a polymer ceramic composite sheet after injection molding; the polymer ceramic is pressed together After the composite sheet, the polymer-ceramic composite layer is obtained through heat treatment, and the shell is obtained.
  • the mass ratio of the initiator to the mixed material is 0.5%-3%; the initiator includes peroxide, and the peroxide includes ammonium persulfate, potassium persulfate, hydrogen peroxide and peroxide at least one of benzoyl.
  • pressing the polymer ceramic composite sheet includes: performing warm isostatic pressing on the polymer ceramic composite sheet, wherein the temperature of the warm isostatic pressing is 80°C-300°C, and the warm isostatic pressing The pressing temperature is higher than the glass transition temperature of the polymer, the time of the warm isostatic pressing is 0.5h-2h, and the pressure of the warm isostatic pressing is 50MPa-500MPa.
  • the heat treatment includes treating at 100°C-350°C for 6h-36h.
  • the mixed material is modified and mixed with the initiator, including: mixing the mixed material with a surfactant, drying, and then mixed with the initiator, wherein the surface modifier and the The mass ratio of the mixed material is 0.3%-5%.
  • An embodiment of the present application provides an electronic device, including a casing and a display screen connected to the casing, the casing includes a polymer-ceramic composite layer, and the polymer-ceramic composite layer includes rod-shaped ceramic powder and fiber At least one of the materials, as well as flake ceramic powder and polymer.
  • FIG. 1 is a schematic structural diagram of a housing provided in an embodiment of the present application.
  • the housing 100 includes a polymer ceramic composite layer 10, and the polymer ceramic composite layer 10 includes at least one of rod-shaped ceramic powder and fiber material, and flake ceramic powders and polymers.
  • the polymer ceramic composite layer 10 in the housing 100 is uniformly dispersed with rod-shaped ceramic powder and/or fiber material and sheet-like ceramic powder, wherein the rod-shaped ceramic powder and fiber material have a linear shape, Rod-shaped ceramic powder and/or fiber material, and sheet-shaped ceramic powder can be overlapped to form a three-dimensional network heat conduction path, which improves the thermal conductivity of the shell 100; at the same time, the heat conduction path formed by the overlap also improves the internal Strength and toughness; at the same time, the flake ceramic powder has a large specific surface area and good light reflection effect, which can effectively improve the glossiness and ceramic texture of the shell surface.
  • the housing 100 has a polymer, which reduces the use of ceramic powder, which in turn can effectively reduce the quality of the housing 100, meets the needs of light and thin use, and is also conducive to reducing the processing difficulty and The processing cost improves the processing yield; the housing 100 has ceramic powder, so that the housing 100 has a ceramic texture and appearance, which is more conducive to its application.
  • the shell 100 provided by the present application has ceramic powder, thereby improving the mechanical properties of the shell 100, and has a high-grade texture of ceramics, which improves product competitiveness; compared with ceramic shells, the shell 100 provided by this application
  • the casing 100 has a light and thin texture, high thermal conductivity and high toughness.
  • the rod-shaped ceramic powder and/or fiber material interweaves with the sheet-shaped ceramic powder to form a three-dimensional network structure.
  • Heat conduction is achieved through the formed three-dimensional network structure, that is, between rod-shaped ceramic powders, between fiber materials, between sheet-like ceramic powders, between rod-shaped ceramic powders and sheet-like ceramic powders, between fiber materials and sheet-like ceramics.
  • the interweaving between the powders, and/or between the rod-shaped ceramic powder and the fiber material forms a heat conduction path, which improves the heat conduction performance of the casing 100 .
  • the polymer-ceramic composite layer 10 includes ceramic powder and polymer, and the ceramic powder includes rod-shaped ceramic powder and sheet-shaped ceramic powder.
  • the polymer-ceramic composite layer 10 includes ceramic powder, fiber material and polymer, and the ceramic powder includes flake ceramic powder.
  • the polymer-ceramic composite layer 10 includes ceramic powder, fiber material and polymer, and the ceramic powder includes rod-shaped ceramic powder and sheet-shaped ceramic powder.
  • the rod-shaped ceramic powder and/or fiber material overlaps with the sheet-like ceramic powder to form a three-dimensional network structure, thereby forming a heat conduction path, which is beneficial to the improvement of the heat dissipation performance of the housing 100; at the same time, the rod-shaped ceramic powder and/or fiber material
  • the three-dimensional network structure formed by overlapping with the sheet ceramic powder has better mechanical properties and stronger structural stability than the three-dimensional network structure formed by the polymer. Transfer to the ceramic powder and/or fiber material to effectively disperse and homogenize the received external force, thereby avoiding the concentration of external force and avoiding the generation and expansion of cracks, thereby reducing the brittleness of the shell 100 and improving the shell The toughness and strength of the body 100.
  • the polymer ceramic composite layer 10 includes flake ceramic powder. Compared with ceramic powders with other shapes, the flake ceramic powder has a larger specific surface area and better light reflection effect, which is conducive to improving the glossiness and ceramic texture of the surface of the shell 100; at the same time, the flake ceramic powder can participate in heat conduction The overlapping of the network improves the heat conduction effect of the casing 100 .
  • the mass proportion of the flake ceramic powder in the polymer-ceramic composite layer 10 is greater than or equal to 2.5%. It is beneficial to improve the glossiness of the surface of the casing 100 by providing the above-mentioned content of the flake ceramic powder.
  • the mass proportion of the flake ceramic powder in the polymer-ceramic composite layer 10 is 2.5%-15%. Not only is it beneficial to improve the glossiness of the surface of the shell 100, but also it is beneficial to add ceramic powders with other shapes, and improve the matching effect of ceramic powders with different shapes. Specifically, the mass proportion of the flake ceramic powder in the polymer ceramic composite layer 10 can be, but not limited to, 2.5%, 3%, 5%, 7%, 8%, 10%, 12%, 13% or 15%. Wait.
  • the flake ceramic powder is a micron-sized ceramic powder. That is to say, the lateral dimension of the flake ceramic powder is in micron order.
  • the specific surface area of the flake ceramic powder is further increased, and the glossiness of the surface of the casing 100 is improved. It can be understood that above 1 ⁇ m is a micron-scale size, 1 nm-100 nm is a nano-scale size, and greater than 100 nm and less than 1 ⁇ m is a sub-micron size.
  • the lateral size of the flake ceramic powder is 3 ⁇ m-20 ⁇ m, and the thickness is 100 nm-500 nm.
  • the lateral dimension is the largest dimension of the flake ceramic powder on a plane perpendicular to the thickness direction.
  • the specific surface area of the flaky ceramic powder can be increased, the glossiness of the surface of the housing 100 can be improved, and the relationship between the flaky ceramic powder and the rod-shaped ceramic powder and/or fiber material can be improved. The overlap between them further improves the heat conduction effect.
  • the length of the flake ceramic powder is 3 ⁇ m-20 ⁇ m
  • the width is 3 ⁇ m-20 ⁇ m
  • the thickness is 100 nm-500 nm.
  • the length of the flake ceramic powder is 8 ⁇ m-18 ⁇ m
  • the width is 5 ⁇ m-15 ⁇ m
  • the thickness is 150 nm-400 nm.
  • the length of the flake ceramic powder can be but not limited to 5 ⁇ m, 9 ⁇ m, 10 ⁇ m, 13 ⁇ m, 15 ⁇ m, 18 ⁇ m or 20 ⁇ m, etc.
  • the width of the flake ceramic powder can be but not limited to 5 ⁇ m, 7 ⁇ m, 10 ⁇ m, 12 ⁇ m, 13 ⁇ m, 15 ⁇ m or 17 ⁇ m, etc.
  • the thickness of the flake ceramic powder can be but not limited to 120nm, 170nm, 200nm, 230nm, 250nm, 280nm, 300nm, 320nm, 350nm, 400nm or 440nm.
  • the polymer-ceramic composite layer 10 has rod-shaped ceramic powder, and when no fiber material is contained, the mass proportion of the rod-shaped ceramic powder in the polymer-ceramic composite layer 10 is greater than or equal to 2.5%.
  • the mass proportion of the rod-shaped ceramic powder in the polymer-ceramic composite layer 10 is 2.5%-15%.
  • the mass proportion of the rod-shaped ceramic powder in the polymer-ceramic composite layer 10 may be, but not limited to, 2.5%, 3%, 5%, 7%, 8%, 10%, 12% or 15%.
  • the rod-shaped ceramic powder is a micron-sized ceramic powder. That is to say, the length of the rod-shaped ceramic powder is on the order of microns.
  • the heat dissipation effect of the heat conduction path can be improved by arranging micron-level rod-shaped ceramic powder.
  • the length of the rod-shaped ceramic powder is 5 ⁇ m-30 ⁇ m, and the aspect ratio is 10-60.
  • the rod-shaped ceramic powder with the above-mentioned size can improve the overlapping effect of the rod-shaped ceramic powder, which is beneficial to the formation of a mesh heat conduction path, and is also beneficial to the improvement of the toughness and strength of the housing 100 .
  • the length of the rod-shaped ceramic powder is 5 ⁇ m-18 ⁇ m, 8 ⁇ m-15 ⁇ m, 10 ⁇ m-25 ⁇ m, 15 ⁇ m-20 ⁇ m or 22 ⁇ m-30 ⁇ m. Specifically, the length of the rod-shaped ceramic powder can be, but not limited to, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 15 ⁇ m, 17 ⁇ m, 20 ⁇ m, 23 ⁇ m or 25 ⁇ m. Further, the aspect ratio of the rod-shaped ceramic powder is 15-55. Furthermore, the aspect ratio of the rod-shaped ceramic powder is 20-50. Specifically, the aspect ratio of the rod-shaped ceramic powder may be, but not limited to, 12, 17, 23, 25, 30, 40, 45, or 50.
  • the polymer-ceramic composite layer 10 has fiber material, and when rod-shaped ceramic powder is not included, the mass proportion of the fiber material in the polymer-ceramic composite layer 10 is greater than or equal to 2.5%.
  • the mass proportion of the fiber material in the polymer-ceramic composite layer 10 is 2.5%-15%. Not only is it beneficial to improve the heat dissipation performance of the housing 100, but at the same time, it does not affect the proportion of ceramic powder and polymer.
  • the mass proportion of the fiber material in the polymer-ceramic composite layer 10 may be, but not limited to, 2.5%, 3%, 5%, 6%, 9%, 10%, 13%, 14% or 15%.
  • the fiber material includes at least one of glass fiber, carbon fiber and polymer fiber. The provision of the fiber material is beneficial to improve the internal toughness and thermal conductivity of the casing 100 .
  • the fiber material is of micron size. That is to say, the length of the fiber material is on the order of microns. In one embodiment of the present application, the fiber material has a length of 50 ⁇ m-200 ⁇ m. By arranging longer fiber materials, interweaving and overlapping of the fiber materials are facilitated to form a large-area mesh heat conduction path and improve the heat conduction performance of the casing 100 . Further, the length of the fiber material is 80 ⁇ m-170 ⁇ m. Furthermore, the length of the fiber material is 100 ⁇ m-150 ⁇ m. In another embodiment of the present application, the aspect ratio of the fiber material is greater than 200. The aspect ratio of the fiber material is large, so that a heat conduction path with a larger area and better heat conduction effect can be formed to further improve the heat conduction effect of the casing 100 .
  • the total mass ratio of the rod-shaped ceramic powder and fiber material in the polymer-ceramic composite layer 10 is greater than or equal to 2.5%.
  • the total mass ratio of rod-shaped ceramic powder and fiber material in the polymer ceramic composite layer 10 is 2.5%-30%.
  • the total mass of the rod-shaped ceramic powder and fiber material in the polymer-ceramic composite layer 10 is 2.5%-15%.
  • the proportion of the total mass of rod-shaped ceramic powder and fiber material in the polymer ceramic composite layer 10 can be, but not limited to, 2.5%, 3%, 5%, 7%, 8%, 10%, 12%, 15%, 18%, 20%, 21% or 24%, etc.
  • the fiber material is longer than the rod-shaped ceramic powder.
  • the content of the fiber material in the polymer-ceramic composite layer 10 is greater than that of the rod-shaped ceramic powder. Therefore, it is beneficial to obtain a mesh-shaped heat conduction path with a larger area, and improve the heat conduction effect of the casing 100 .
  • the polymer-ceramic composite layer 10 has sheet-shaped ceramic powder, and may also have rod-shaped ceramic powder, and may also have ceramic powder with other shapes.
  • ceramic powder with other shapes can be but not limited to It is not limited to spherical ceramic powder, spherical ceramic powder, spindle-shaped ceramic powder, irregular ceramic powder, etc.
  • the rod-shaped ceramic powder and the sheet-shaped ceramic powder are micron-sized ceramic powders, and ceramic powders also include sub-micron-sized powders and nano-sized powders.
  • ceramic powders also include sub-micron-sized powders and nano-sized powders.
  • the shape of the submicron powder and the nano powder can be, but not limited to, spherical, spherical, spindle, irregular, etc.
  • the total mass proportion of the submicron powder and the nano powder in the polymer ceramic composite layer 10 is 50%-85%. Therefore, it is beneficial to improve the compactness inside the housing 100 and ensure the dispersion effect of ceramic powders with other shapes.
  • the total mass proportion of the submicron powder and the nano powder in the polymer ceramic composite layer 10 is 60%-80%.
  • the total mass ratio of the submicron-sized powder and nano-sized powder in the polymer-ceramic composite layer 10 may be, but not limited to, 62%, 65%, 70%, 75%, 78% or 80%.
  • the polymer-ceramic composite layer 10 includes at least one of rod-shaped ceramic powder and fiber material, as well as sheet-shaped ceramic powder, polymer, submicron-sized powder and nano-sized powder,
  • the mass proportion of rod-shaped ceramic powder and/or fiber material in the polymer-ceramic composite layer 10 is 2.5%-15%
  • the mass proportion of sheet-shaped ceramic powder is 2.5%-15%
  • the submicron powder and nano The total mass proportion of grade powder is 50%-85%.
  • the submicron-scale powder and nano-scale powder play a filling role, and can improve the dispersion effect of various substances in the polymer ceramic composite layer 10, thereby helping to improve the heat conduction effect of the formed heat conduction path, and also improve the shell Density of 100.
  • FIG. 2 is a schematic diagram of the distribution of ceramic powder in the polymer-ceramic composite layer provided by an embodiment of the present application, wherein the ceramic powder includes rod-shaped ceramic powder, flake-shaped ceramic powder and spherical ceramic powder.
  • the quasi-spherical ceramic powder is evenly dispersed in the polymer ceramic composite layer 10; the flake ceramic powder is oriented parallel to the surface of the polymer ceramic composite layer 10, and is uniformly staggered inside the polymer ceramic composite layer 10; the rod-shaped ceramic powder is The surfaces of the polymer ceramic composite layer 10 are oriented parallel to each other, uniformly staggered inside the polymer ceramic composite layer 10, and the rod-shaped ceramic powder and the sheet-shaped ceramic powder overlap each other to form a mesh heat conduction path.
  • the rod-shaped ceramic powder and the flake-shaped ceramic powder are micron-scale powders, and the spherical ceramic powders are sub-micron-scale powders and nano-scale powders.
  • the spherical-shaped ceramic powders are small in size and can play a filling role. Improve the compactness of the polymer ceramic composite layer 10 .
  • the mass proportion of the rod-shaped ceramic powder in the polymer-ceramic composite layer 10 is 2.5%-15%
  • the mass proportion of the sheet-shaped ceramic powder is 2.5%-15%
  • the mass proportion of the spherical ceramic powder is The mass ratio is 50%-85%.
  • the small-sized powder plays a filling role to ensure the compactness of the shell 100, and at the same time ensure the dispersion effect of the rod-shaped ceramic powder and the sheet-shaped ceramic powder, which is conducive to the formation of heat conduction paths and improves The heat conduction effect and the glossiness of the surface of the casing 100 .
  • the flake ceramic powders are oriented parallel to the surface of the polymer ceramic layer 10 and arranged in a staggered manner inside the polymer ceramic layer 10 . Due to the influence of the preparation process of the polymer ceramic layer 10, the flaky ceramic powder close to the surface of the polymer ceramic layer 10 can be oriented in parallel, that is to say, the flaky ceramic powder close to the surface of the polymer ceramic layer 10 is parallel to the polymer ceramic The surface of the layer 10 is distributed, and the flake ceramic powder inside the polymer ceramic layer 10 is distributed in a staggered manner, so that they can be overlapped together.
  • the rod-shaped ceramic powders are oriented parallel on the surface of the polymer ceramic layer 10 and arranged in a staggered manner inside the polymer ceramic layer 10 . That is to say, the rod-shaped ceramic powders close to the surface of the polymer ceramic layer 10 are distributed parallel to the surface of the polymer ceramic layer 10 , while the rod-shaped ceramic powders inside the polymer ceramic layer 10 are distributed in a staggered manner, so that they can be overlapped together.
  • the content of ceramic powder in the polymer-ceramic composite layer 10 is 55%-85%.
  • the content of ceramic powder in the polymer-ceramic composite layer 10 is relatively large, which can increase the surface hardness and improve the texture of ceramics at the same time.
  • the content of ceramic powder in the polymer-ceramic composite layer 10 is 60%-85%.
  • the content of ceramic powder in the polymer-ceramic composite layer 10 is 70%-80%.
  • the content of ceramic powder in the polymer-ceramic composite layer 10 may be, but not limited to, 60%, 65%, 66%, 68%, 70%, 75%, 80% or 85%.
  • ceramic powder materials and polymers suitable for the casing 100 can be selected.
  • the ceramic powder refers to rod-shaped ceramic powder and sheet ceramic powder; when the polymer ceramic composite layer 10 has submicron ceramic powder Body and nanoscale ceramic powder, ceramic powder refers to sheet ceramic powder, submicron ceramic powder and nanoscale ceramic powder; when the polymer ceramic composite layer 10 has rod-shaped ceramic powder, submicron ceramic powder Ceramic powder and nano-scale ceramic powder, ceramic powder refers to rod-shaped ceramic powder, sheet-shaped ceramic powder, sub-micron ceramic powder and nano-scale ceramic powder.
  • the ceramic powder includes at least one of Al 2 O 3 , AlN, SiC, ZrO 2 , Si 3 N 4 , TiO 2 and Si.
  • the above-mentioned ceramics are resistant to high temperature, corrosion, high in hardness and good in strength, which is beneficial to the use of the casing 100 .
  • the material of the flake ceramic powder includes at least one of Al 2 O 3 , AlN, SiC, Si 3 N 4 and TiO 2 .
  • the material of the rod-shaped ceramic powder includes at least one of Al 2 O 3 , AlN, SiC, Si 3 N 4 and TiO 2 . It can be understood that when the polymer-ceramic composite layer 10 has ceramic powders with different shapes, the materials of the ceramic powders with different shapes can be the same or different.
  • the refractive index of the ceramic powder is greater than 2. By setting the ceramic powder with a high refractive index, the glossiness and ceramic texture of the surface of the housing 100 are improved, so that the appearance of the housing 100 is closer to a ceramic shell.
  • the mass proportion of the polymer in the polymer-ceramic composite layer 10 is smaller than that of the ceramic powder. Further, the mass proportion of the polymer in the polymer-ceramic composite layer 10 is less than or equal to 45%. Furthermore, the mass proportion of the polymer in the polymer-ceramic composite layer 10 is 5%-45%. Specifically, the mass proportion of the polymer in the polymer-ceramic composite layer 10 may be, but not limited to, 5%, 8%, 10%, 12%, 15%, 20%, 25%, 30% or 40%. Using the polymer in the above content further enhances the ceramic texture of the polymer-ceramic composite layer 10 .
  • the polymer includes at least one of polyphenylene sulfide, polycarbonate, polyamide, polybutylene terephthalate and polymethyl methacrylate.
  • the physical and chemical properties of the above-mentioned polymer can match the preparation process of the housing 100 , and will not decompose during the preparation process, and will not increase the difficulty of the preparation process, which is beneficial to reduce production costs.
  • the polymer has a refractive index greater than 1.6. By setting a polymer with a high refractive index, the glossiness and ceramic texture of the surface of the housing 100 are improved, so that the appearance of the housing 100 is closer to a ceramic shell. It can be understood that the materials of the ceramic powder and the polymer can also be selected from other ceramic powders and polymers not listed above.
  • FIG. 3 is a schematic structural diagram of a housing provided in another embodiment of the present application.
  • the housing 100 further includes a protective layer 20 disposed on the surface of the polymer-ceramic composite layer 10 .
  • the casing 100 has an inner surface and an outer surface oppositely disposed during use, and the protective layer 20 is located on one side of the outer surface, so as to play a protective role in the use of the casing 100 .
  • the protective layer 20 may be, but not limited to, an anti-fingerprint layer, a hardened layer, and the like.
  • the thickness of the protection layer 20 may be, but not limited to, 5nm-20nm.
  • the protection layer 20 includes an anti-fingerprint layer.
  • the contact angle of the anti-fingerprint layer is greater than 105°.
  • the contact angle is an important parameter to measure the wettability of the liquid on the surface of the material.
  • the contact angle of the anti-fingerprint layer is greater than 105°, indicating that the liquid is easy to move on the anti-fingerprint layer, thereby avoiding pollution to its surface, and has excellent anti-fingerprint properties. performance.
  • the anti-fingerprint layer includes fluorine-containing compounds.
  • the fluorine-containing compound may be, but not limited to, fluorosilicone resin, perfluoropolyether, fluorine-containing acrylate, and the like.
  • the anti-fingerprint layer also includes silicon dioxide, and the friction resistance of the anti-fingerprint layer is further improved by adding silicon dioxide.
  • the protective layer 20 includes a hardened layer. The surface hardness of the casing 100 is further improved by providing a hardened layer.
  • the material of the hardening layer includes at least one of polyurethane acrylate, silicone resin, and perfluoropolyether acrylate.
  • the polymer-ceramic composite layer 10 has a colorant, so that the casing 100 has different color appearances and improves the visual effect.
  • the coloring agent can be, but not limited to, at least one selected from iron oxide, cobalt oxide, cerium oxide, nickel oxide, bismuth oxide, zinc oxide, manganese oxide, chromium oxide, copper oxide, vanadium oxide and tin oxide.
  • the mass content of the colorant in the polymer-ceramic composite layer 10 is less than or equal to 10%. Therefore, the color of the polymer-ceramic composite layer 10 can be improved without affecting the content of ceramic powder and polymer. Further, the mass content of the colorant in the polymer-ceramic composite layer 10 is 0.5%-10%.
  • the thickness of the housing 100 can be selected according to the needs of its application scenarios, which is not limited; in one embodiment, the housing 100 can be used as a housing, a middle frame, a decoration, etc. of an electronic device, such as as Mobile phone, tablet computer, notebook computer, watch, MP3, MP4, GPS navigator, digital camera casing, etc.
  • the casing 100 in the embodiment of the present application may have a 2D structure, a 2.5D structure, a 3D structure, etc., which may be specifically selected according to needs. In one embodiment, when the casing 100 is used as a mobile phone back cover, the thickness of the casing 100 is 0.6mm-1.2mm.
  • the thickness of the housing 100 may be, but not limited to, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1mm, 1.1mm or 1.2mm.
  • the case 100 when the case 100 is used as the back cover of a mobile phone, the case 100 includes a main body and an extension portion disposed on the edge of the main body, and the extension is bent toward the main body; at this time, the case 100 is curved.
  • the glossiness of the surface of the polymer ceramic composite layer 10 is greater than or equal to 140.
  • the polymer-ceramic composite layer 10 has high gloss, which helps to enhance the ceramic texture of the casing 100 . Further, the glossiness of the polymer ceramic composite layer 10 is 150-200. In one embodiment, the glossiness of the polymer-ceramic composite layer 10 made of ceramic powder with a refractive index greater than 2 is greater than or equal to 140. Further, the glossiness of the polymer ceramic composite layer 10 is 140-200.
  • the performance of the housing 100 is tested by using the falling ball impact performance test, wherein the falling ball is a 32g stainless steel ball, the housing 100 is a polymer-ceramic composite layer 10, and the thickness of the housing 100 is 0.8mm.
  • the housing 100 is supported on the jig, wherein the surrounding edges of the housing 100 are supported by 3 mm, and the middle part is suspended; a 32 g stainless steel ball is freely dropped from a certain height to the surface of the housing 100 to be tested. For the point to be detected, record the height at which the casing 100 is broken as the falling ball height.
  • a 32g stainless steel ball was freely dropped from a certain height to five detection points at the four corners and the center of the surface of the casing 100 to be tested, and the height at which the casing 100 was broken was recorded as the falling ball height.
  • the height of the falling ball is 70cm-120cm. Further, the height of the falling ball is 70cm-100cm. Furthermore, the height of the falling ball is 80cm-100cm.
  • the present application detects the pencil hardness on the surface of the polymer-ceramic composite layer 10 by adopting GB/T 6739-1996.
  • the pencil hardness of the surface of the polymer-ceramic composite layer 10 is greater than or equal to 5H.
  • the pencil hardness of the surface of the polymer-ceramic composite layer 10 is 5H-9H, thereby greatly improving the hardness of the casing 100 and enhancing the strength of the casing 100 .
  • the pencil hardness of the surface of the polymer-ceramic composite layer 10 may be, but not limited to, 5H, 6H, 7H, 8H or 9H.
  • the thermal conductivity of the polymer ceramic composite layer 10 is greater than or equal to 2W/(m ⁇ K). Further, the thermal conductivity of the polymer ceramic composite layer 10 is 2W/(m ⁇ K)-10W/(m ⁇ K). Further, the thermal conductivity of the polymer ceramic composite layer 10 is 2W/(m ⁇ K)-8W/(m ⁇ K). Specifically, the thermal conductivity of the polymer ceramic composite layer 10 can be, but not limited to, 2W/(m ⁇ K), 3W/(m ⁇ K), 4W/(m ⁇ K), 5W/(m ⁇ K), 6W /(m ⁇ K), 7W/(m ⁇ K) or 8W/(m ⁇ K).
  • the porosity of the casing 100 is less than 5%. That is, the density of the casing 100 is greater than or equal to 95%.
  • the low porosity of the casing 100 ensures the bonding strength inside the casing 100 , which is beneficial to the improvement of the mechanical properties of the casing 100 .
  • the porosity of the casing 100 is less than 1%, which further improves the compactness of the casing 100 .
  • the surface roughness of the casing 100 is less than 0.1 ⁇ m. By providing the casing 100 with a small surface roughness, it is beneficial to enhance its surface gloss and ceramic texture, and improve the visual effect. Further, the surface roughness of the casing 100 is 0.02 ⁇ m-0.08 ⁇ m.
  • FIG. 4 is a flowchart of a method for preparing a housing provided in an embodiment of the present application.
  • the preparation method prepares the housing 100 of any of the above embodiments, including:
  • the mixed material is modified, mixed with an initiator, and granulated to obtain a mixed powder.
  • the mixed material includes at least one of rod-shaped ceramic powder and fiber material, and sheet-shaped ceramic powder.
  • the preparation method of the shell 100 provided in the present application is simple to operate, easy to produce on a large scale, and can produce the shell 100 with excellent performance, which is beneficial to its application.
  • the modification includes mixing and drying the mixed material and the surface modifier.
  • the polymer-ceramic composite layer 10 also includes other inorganic materials other than rod-shaped ceramic powders, fiber materials and sheet-shaped ceramic powders, other inorganic materials also need to be modified, for example, when polymer ceramics
  • at least one of submicron ceramic powder and nanoscale ceramic powder is included in the composite layer 10
  • at least one of submicron ceramic powder and nanoscale ceramic powder is also combined with surface modification during the preparation process. Agent mixing for modification.
  • the surface modifier may include, but is not limited to, at least one of coupling agent, surfactant, silicone, dispersant, etc., and the surface modifier may be selected according to the properties of the polymer.
  • a coupling agent can be selected for modification.
  • the coupling agent may be, but not limited to, a silane coupling agent, a titanate coupling agent, and the like.
  • the surface modifier also includes a dispersant.
  • the dispersant can be but not limited to at least one of sodium benzoate, sodium hexametaphosphate and polyethylene glycol.
  • the mass ratio of the surface modifier to the mixed material is 0.3%-5%.
  • the mass ratio of the surface modifier to the mixed material is 0.5%-3%.
  • the mass ratio of the surface modifier to the mixed material may be, but not limited to, 1%, 1.5%, 2%, 2.5%, 2.7% or 3%.
  • the mass ratio of the coupling agent to the mixed material is 0.5%-3%
  • the mass ratio of the dispersant to the mixed material is 0.3%-2%.
  • the shape of the ceramic powder in the mixed material may include other shape ceramic powder besides rod shape and flake shape; specifically, other shape ceramic powder may include but not limited to spherical shape, spherical shape, spindle shape, etc.
  • the particle size D50 of the ceramic powder with other shapes is 200 nm-5 ⁇ m.
  • the modification is performed by mixing and grinding the mixed material, the surface modifier and sanding beads.
  • the particle size of the sanding beads may be, but not limited to, 0.5 nm-10 nm, and the sanding beads may be, but not limited to, zirconium beads.
  • the grinding includes 300r/min-1500r/min, the number of grinding cycles is 10-100 times, and the grinding time is 5min/cycle-30min/cycle.
  • the surface modifying agent is dissolved in an alcohol solvent, water or a mixed solvent of alcohol and water, and the mixed material is added for mixing, sanding and drying.
  • drying in a flash dryer is enough.
  • the modified mixed material is mixed with an initiator and granulated to obtain a mixed powder.
  • the mass ratio of the initiator to the mixed material is 0.5%-3%.
  • the initiator accounts for 0.5%-3% of the total mass of rod-shaped ceramic powder and flake-shaped ceramic powder;
  • the mixed material is fiber material and flake-shaped ceramic powder , the initiator accounts for 0.5%-3% of the total mass of the fiber material and the sheet ceramic powder;
  • the mixed material is a rod-shaped ceramic powder, fiber material and sheet ceramic powder, the initiator accounts for And 0.5%-3% of the total mass of the flake ceramic powder.
  • the mass ratio of the initiator to the mixed material may be, but not limited to, 1%-3%, 1.5%-2.5%, or 1.2%-2%.
  • the initiator in the subsequent heat treatment operation, can promote the chemical reaction at the overlapping joints of the mixed materials to form a strong connection, improve the strength of the formed network heat conduction path, and at the same time promote the polymer to break the chain, extend the chain and form a strong connection.
  • Chemically grafted to the surface of the mixed material to improve the compatibility and connection between the mixed powder and the polymer, and improve the toughness.
  • the initiator includes peroxide. By setting the peroxide, the modified mixed materials are promoted to form a stable connection in the subsequent heat treatment process.
  • the peroxide includes at least one of inorganic peroxide and organic peroxide.
  • the peroxide includes at least one of ammonium persulfate, potassium persulfate, hydrogen peroxide and benzoyl peroxide.
  • the mixed material is modified and mixed with the initiator in a dry or wet method, it is dried and granulated by air flow at low temperature to obtain a mixed powder.
  • the temperature of airflow low-temperature drying and granulation is not higher than the decomposition temperature of the initiator.
  • the mixed powder is blended with the polymer, and the injection molding feed suitable for injection molding is obtained after banburying and granulation.
  • the polymer includes at least one of polyphenylene sulfide, polycarbonate, polyamide, polybutylene terephthalate, and polymethyl methacrylate.
  • other suitable polymers for the housing 100 can also be selected.
  • a coupling agent with epoxy groups can be selected to modify the ceramic powder. It can be understood that the amount of the polymer added can be selected according to the content of the polymer in the polymer-ceramic composite layer 10 , which is not limited.
  • the mass proportion of the polymer is 10%-50%, and the mass proportion of the modified ceramic powder is 50%-90% for mixing.
  • an auxiliary agent is also added during the blending, and the auxiliary agent includes at least one of a leveling agent, a co-solvent and an antioxidant.
  • the mass proportion of the additive after blending is 0.1%-1%.
  • blending includes dry or wet milling. Further, blending is carried out by dry method to improve efficiency. In this application, after blending to obtain a blend, the blend can be placed in an integrated mixer and granulation machine for banburying and granulation, which is beneficial to the injection molding process.
  • the temperature of banburying and granulation is higher than the melting point of the polymer and lower than the decomposition temperature of the polymer.
  • the temperature of banburying and granulation can be, but not limited to, 150°C-350°C
  • the time of banburying and granulation can be, but not limited to, 1h-12h.
  • the banburying pressure is less than 0.01 MPa or the banburying is carried out in a nitrogen atmosphere, which can effectively prevent the polymer from being oxidized and effectively promote the elimination of gases generated by side reactions.
  • the injection molding feedstock has a diameter of 2mm-3mm and a length of 3mm-4mm, which facilitates the injection molding.
  • the technical parameters of injection molding can be selected according to the properties of the selected polymer.
  • the injection temperature is 200°C-350°C
  • the injection rate is 50%-95%
  • the injection pressure is 80MPa-120MPa. Adopting the injection molding conditions of high injection speed and high injection pressure mentioned above is conducive to the regular orientation arrangement of ceramic powder and fiber material after injection molding.
  • the injection molding temperature may be 290°C-330°C.
  • the shape of the polymer-ceramic composite sheet obtained by injection molding can be selected as needed, and the thickness of the polymer-ceramic composite sheet can also be selected according to needs. At the same time, the thickness will decrease during subsequent pressing and processing.
  • the method of injection molding is simpler to operate, and compared with tape casting, there is no need to consider the compatibility problem between the solvent and the polymer, and the preparation cost is low. It can be understood that other molding methods such as tape casting can also be used to prepare polymer ceramic composite sheets.
  • pressing the polymer-ceramic composite sheet includes: performing warm isostatic pressing on the polymer-ceramic composite sheet.
  • the pores inside the polymer ceramic composite sheet are reduced by warm isostatic pressing, the compactness between the ceramic powder, fiber material and polymer is enhanced, and a pressed structure is obtained.
  • Isostatic pressing technology is a technology that uses the products in the closed high-pressure container to form under the uniform ultra-high pressure state in all directions. Isostatic pressing technology is divided into three different types: cold isostatic pressing, warm isostatic pressing, and hot isostatic pressing according to the temperature during forming and consolidation. In the present application, the temperature of the warm isostatic pressing is greater than the glass transition temperature of the polymer.
  • the polymer in the polymer-ceramic composite sheet can be softened, and at the same time, the compactness is better under the action of pressure, the pores in the polymer-ceramic composite sheet are eliminated, and the bonding force between the ceramic powder and the polymer is improved.
  • the pressure of warm isostatic pressing is 50MPa-500MPa, and the temperature is 80°C-300°C; thus it is beneficial to fully compact the polymer-ceramic composite sheet, and the process has low requirements on equipment and good safety. It is more conducive to practical operation and application; at the same time, it is also conducive to the formation of a continuous and complete network structure inside, which helps to improve the heat conduction, heat uniformity and strength of the overall structure.
  • the pressure of the warm isostatic pressing is 100MPa-400MPa, and the temperature is 100°C-280°C.
  • the time of warm isostatic pressing can be selected according to the thickness of the polymer ceramic composite sheet.
  • the temperature of the warm isostatic pressing is 80°C-300°C
  • the time of the warm isostatic pressing is 0.5h-2h
  • the pressure of the warm isostatic pressing is 50MPa-500MPa. Therefore, the porosity of the polymer ceramic composite sheet can be further reduced, and the internal bonding force can be improved.
  • the polymer-ceramic composite sheet can be vacuum-sealed and then subjected to warm isostatic pressing.
  • the heat treatment can excite the initiator on the surface of the mixed powder, so that a chemical reaction occurs at the overlap between the rod-shaped ceramic powder and/or fiber material, and the sheet-shaped ceramic powder to form a strong connection and improve the heat conduction of the formed network. At the same time, it can promote the polymer to break the chain, extend the chain and chemically graft to the surface of the mixed powder, improve the compatibility and connection force between the mixed powder and the polymer, and improve the toughness.
  • the heat treatment includes treatment at 100°C-350°C for 6h-36h, which is beneficial to improve the continuity and integrity of the formed three-dimensional network heat conduction pathway. Further, the heat treatment includes processing at 150°C-310°C for 10h-30h. In a specific embodiment, the thermal treatment includes treatment at 310°C. In a specific embodiment, the heat treatment time is 24 hours.
  • Figure 5 is a schematic diagram of ceramic powder overlapping provided in an embodiment of the present application, wherein the ceramic powder includes rod-shaped ceramic powder and sheet-shaped ceramic powder; Surface treatment, modifying rod-shaped ceramic powder and sheet-shaped ceramic powder, connecting modified groups on the surface of rod-shaped ceramic powder and sheet-shaped ceramic powder; then modified rod-shaped ceramic powder and sheet-shaped ceramic powder It is mixed with an initiator, and after banburying, granulation, and injection molding, a polymer-ceramic composite sheet is obtained. After heat treatment, the presence of the initiator makes the rod-shaped ceramic powder, rod-shaped ceramic powder and sheet-shaped ceramic powder pass through The surface modifying groups react to bond and overlap to form a thermally conductive network pathway. It can be understood that when the polymer-ceramic composite layer 10 has fiber materials, the overlapping process is similar to that shown in FIG. 5 , and will not be repeated here.
  • the manufacturing method of the housing 100 further includes performing computer digital control precision machining (CNC machining) on the housing 100 .
  • the housing 100 with the final required assembly size is obtained through CNC machining.
  • the housing 100 is made flatter by CNC machining.
  • the manufacturing method of the housing 100 further includes grinding the housing 100 .
  • polishing and grinding the surface of the housing 100 the roughness of the surface of the housing 100 is reduced, and the ceramic texture of the surface of the housing 100 is improved.
  • the surface roughness of the casing 100 is less than 0.1 ⁇ m.
  • the surface roughness of the casing 100 is 0.02 ⁇ m-0.08 ⁇ m.
  • a protective material may be sprayed or evaporated on the surface of the casing 100 to form the protective layer 20 .
  • an anti-fingerprint layer is formed by evaporating an anti-fingerprint material on the surface of the housing 100 to improve the anti-fingerprint effect of the housing 100 .
  • the present application also provides an electronic device, including the casing 100 of any one of the above-mentioned embodiments.
  • the electronic device may be, but not limited to, a mobile phone, a tablet computer, a notebook computer, a watch, MP3, MP4, GPS navigator, digital camera, etc.
  • FIG. 6 is a schematic structural diagram of an electronic device provided in an embodiment of the present application, wherein the electronic device includes a casing 100 and a display screen connected to the casing 100 .
  • the casing 100 can improve the heat dissipation performance and toughness of the electronic equipment, endow the electronic equipment with a ceramic texture appearance, and not increase the weight of the electronic equipment too much, thereby improving the product competitiveness of the electronic equipment.
  • a shell comprising flaky silicon powder, rod-shaped zirconia, spherical alumina and polyphenylene sulfide, wherein the mass proportion of flake silicon powder in the shell is 5%, and the mass proportion of rod-shaped zirconia is 5%, and the mass proportion of spherical alumina is 70%.
  • a shell comprising flaky zirconia, rod-shaped silicon carbide, spherical alumina and polyphenylene sulfide, wherein the mass proportion of flaky zirconia in the shell is 5%, and the mass proportion of rod-shaped silicon carbide is 5%, and the mass proportion of spherical alumina is 70%.
  • a shell including flaky titanium oxide, rod-shaped aluminum nitride, spherical aluminum oxide and polyphenylene sulfide, wherein the mass proportion of flaky titanium oxide in the shell is 5%, and the mass proportion of rod-shaped aluminum nitride is 5%.
  • the ratio is 5%, and the mass ratio of spherical alumina is 70%.
  • a shell is made of polyphenylene sulfide.
  • a zirconia ceramic shell is formed by sintering zirconia ceramic powder.
  • Adopt GB/T 6739-1996 to detect the pencil hardness of the shell surface that above-mentioned embodiment and comparative example provide;
  • Adopt thermal conductivity meter to detect the thermal conductivity of the shell that above-mentioned embodiment and comparative example provide;
  • Adopt GB/T T8807-1988 detects the glossiness of the shell surface provided in the above-mentioned examples and comparative examples, and the angle of the gloss meter is 60°; provides the shells in the above-mentioned examples and comparative examples, and the shell dimensions are 150mm ⁇ 73mm ⁇ 0.8mm, respectively support the above-mentioned shell on the jig (the four sides are supported by 3mm, and the middle is suspended), use a 32g stainless steel ball to drop freely from a certain height to the surface to be tested, there are five points in the four corners and the center of the shell, each Each point was measured 5 times until it was broken, and the height of the falling ball was recorded.
  • Table 1 The test results are shown in Table 1.
  • the housing provided by the present application Compared with the housing provided in Comparative Example 1, the housing provided by the present application has high pencil hardness, thermal conductivity and gloss, and has excellent wear resistance, thermal conductivity and ceramic texture; compared with the housing provided in Comparative Example 2 Compared with the shell provided by the present application, the detection value of the falling ball height is high, and it has excellent toughness. At the same time, the shell provided by the present application is equivalent to the thermal conductivity and gloss of the shell provided by Comparative Example 2, and even better than Comparative Example 2; Therefore, compared with the comparative example, the housing provided by the present application has excellent overall performance, which is beneficial to its application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请提供了一种壳体,所述壳体包括聚合物陶瓷复合层,所述聚合物陶瓷复合层包括棒状陶瓷粉体和纤维材料中的至少一种,以及片状陶瓷粉体和聚合物。该壳体中棒状陶瓷粉体和/或纤维材料与片状陶瓷粉体相互搭接形成网状导热通路,进而提升壳体的导热性能和部强度,同时片状陶瓷粉体的比表面积大,光反射效果好,提升壳体表面光泽度和陶瓷质感,更有利于其应用。本申请还提供了壳体的制备方法和电子设备。

Description

壳体及其制备方法和电子设备 技术领域
本申请属于电子产品技术领域,具体涉及壳体及其制备方法和电子设备。
背景技术
随着消费水平的提高,消费者对电子产品的壳体的外观、质感、性能的要求也越来越高。目前通过将一些无机粉体与树脂共混制备复合材料以实现某些特性,如加入不规则的碳酸钙、硫酸钡与塑料复合实现降本、增强的效果;加入碳纳米管、玻纤与塑料复合实现增韧;加入石墨、石墨烯、金属粒子与塑料复合实现导电、导热等;这些复合材料的主体材料还是树脂,制备出的产品以塑料质感为主。近年来,陶瓷材料以其温润的质感成为电子设备壳体的研究的热点。相关技术中通过树脂与陶瓷粉体形成的均相复合材料制备产品,但是产品与真正的陶瓷产品相比,无论是从硬度、光泽还是温润手感上都差异较大,难以获得真正的陶瓷质感。
因此,目前陶瓷壳体及其制备方法仍有待改进。
发明内容
鉴于此,本申请提供了一种壳体及其制备方法和电子设备。
第一方面,本申请提供了一种壳体,所述壳体包括聚合物陶瓷复合层,所述聚合物陶瓷复合层包括棒状陶瓷粉体和纤维材料中的至少一种,以及片状陶瓷粉体和聚合物。
第二方面,本申请提供了一种壳体的制备方法,包括:
混合材料经改性后与引发剂混合、造粒得到混合粉体,所述混合材料包括棒状陶瓷粉体和纤维材料中的至少一种以及片状陶瓷粉体;
所述混合粉体与聚合物共混、密炼造粒形成注塑喂料;
所述注塑喂料经注塑后形成聚合物陶瓷复合片;
压合所述聚合物陶瓷复合片后,再经热处理得到聚合物陶瓷复合层,制得壳体。
第三方面,本申请提供了一种电子设备,包括壳体以及与所述壳体连接的显示屏,所述壳体包括聚合物陶瓷复合层,所述聚合物陶瓷复合层包括棒状陶瓷粉体和纤维材料中的至少一种,以及片状陶瓷粉体和聚合物。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对本申请实施方式中所需要使用的附图进行说明。
图1为本申请一实施方式提供的壳体的结构示意图。
图2为本申请一实施方式提供的聚合物陶瓷复合层中陶瓷粉体的分布示意图。
图3为本申请另一实施方式提供的壳体的结构示意图。
图4为本申请一实施方式提供的壳体的制备方法流程图。
图5为本申请一实施方式提供的陶瓷粉体搭接示意图。
图6为本申请一实施方式提供的电子设备的结构示意图。
标号说明:
聚合物陶瓷复合层-10、保护层-20、壳体-100。
具体实施方式
以下是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本申请实施例提供了一种壳体,所述壳体包括聚合物陶瓷复合层,所述聚合物陶瓷复合层包括棒状陶瓷粉体和纤维材料中的至少一种,以及片状陶瓷粉体和聚合物。
其中,所述聚合物陶瓷复合层中,所述棒状陶瓷粉体和/或所述纤维材料与所述片状陶瓷粉体交织形成三维网状结构。
其中,所述聚合物陶瓷复合层中,所述棒状陶瓷粉体和/或所述纤维材料的质量占比大于或等于2.5%,所述片状陶瓷粉体的质量占比大于或等于2.5%。
其中,所述聚合物陶瓷复合层中所述纤维材料的质量占比为2.5%-15%。
其中,所述棒状陶瓷粉体的长度为5μm-30μm,长径比为10-60。
其中,所述纤维材料的长径比大于200,所述纤维材料包括玻璃纤维、碳纤维和聚合物纤维中的至少一种。
其中,所述纤维材料的长度为50μm-200μm。
其中,所述片状陶瓷粉体的长度为3μm-20μm,宽度为3μm-20μm,厚度为100nm-500nm。
其中,所述棒状陶瓷粉体和所述片状陶瓷粉体为微米级陶瓷粉体,所述聚合物陶瓷复合层还包括亚微米级陶瓷粉体和纳米级陶瓷粉体,所述聚合物陶瓷复合层中所述亚微米级陶瓷粉体和所述纳米级陶瓷粉体的总质量占比为50%-85%。
其中,所述聚合物陶瓷复合层中所述聚合物的质量占比小于或等于45%;所述聚合物包括聚苯硫醚、聚碳酸酯、聚酰胺、聚对苯二甲酸丁二醇酯和聚甲基丙烯酸甲酯中的至少一种。
其中,所述棒状陶瓷粉体和所述片状陶瓷粉体在所述聚合物陶瓷层的表面平行取向,在所述聚合物陶瓷层的内部交错排布。
其中,所述壳体还包括保护层,所述保护层设置在所述聚合物陶瓷复合层的表面。
其中,片状陶瓷粉体的材质包括Al 2O 3、AlN、SiC、Si 3N 4和TiO 2中的至少一种;棒状陶瓷粉体的材质包括Al 2O 3、AlN、SiC、Si 3N 4和TiO 2中的至少一种。
其中,所述聚合物陶瓷复合层表面的光泽度大于或等于140;所述聚合物陶瓷复合层表面的铅笔硬度大于或等于5H;所述聚合物陶瓷复合层的导热系数大于或等于2W/(m·K);所述壳体的气孔率小于5%;所述壳体的表面粗糙度小于0.1μm。
本申请实施例提供了一种壳体的制备方法,包括:混合材料经改性后与引发剂混合、造粒得到混合粉体,所述混合材料包括棒状陶瓷粉体和纤维材料中的至少一种以及片状陶瓷粉体;所述混合粉体与聚合物共混、密炼造粒形成注塑喂料;所述注塑喂料经注塑后形成聚合物陶瓷复合片;压合所述聚合物陶瓷复合片后,再经热处理得到聚合物陶瓷复合层,制得壳体。
其中,所述引发剂与所述混合材料的质量比为0.5%-3%;所述引发剂包括过氧化物,所述过氧化物包括过硫酸铵、过硫酸钾、过氧化氢和过氧化苯甲酰中的至少一种。
其中,压合所述聚合物陶瓷复合片包括:将所述聚合物陶瓷复合片进行温等静压,其中,所述温等静压的温度为80℃-300℃,且所述温等静压的温度高于所述聚合物的玻璃化转变温度,所述温等静压的时间为0.5h-2h,所述温等静压的压力为50MPa-500MPa。
其中,所述热处理包括在100℃-350℃处理6h-36h。
其中,所述混合材料经改性后与引发剂混合,包括:将所述混合材料与表面活性剂混合、干燥后,再与所述引发剂混合,其中,所述表面改性剂与所述混合材料的质量比为0.3%-5%。
本申请实施例提供了一种电子设备,包括壳体以及与所述壳体连接的显示屏,所述壳体包括聚合物陶瓷复合层,所述聚合物陶瓷复合层包括棒状陶瓷粉体和纤维材料中的至少一种,以及片状陶瓷粉体和聚合物。
请参考图1,为本申请一实施方式提供的壳体的结构示意图,壳体100包括聚合物陶瓷复合层10,聚合物陶瓷复合层10包括棒状陶瓷粉体和纤维材料中的至少一种,以及片状陶瓷粉体和聚合物。
在本申请中,壳体100中的聚合物陶瓷复合层10中均匀分散有棒状陶瓷粉体和/或纤维材料以及片状陶瓷粉体,其中,棒状陶瓷粉体、纤维材料呈线性形貌,棒状陶瓷粉体和/或纤维材料、片状陶瓷粉体之间可以搭接形成三维网状导热通路,提升壳体100的导热性能;同时搭接形成的导热通路也提升了壳体100的内部强度和韧性;与此同时,片状陶瓷粉体的比表面积大,光反射效果好,能够有效提升壳体表面的光泽度以及陶瓷质感。在本申请中,壳体100中具有聚合物,降低了陶瓷粉体的使用,进而可以有效降低壳体100的质量,符合轻薄化的使用需求,并且也有利于降低壳体100的加工难度和加工成本,提升加工良率;壳体100中具有陶瓷粉体,使壳体100具有陶瓷质感和外观,更有利于其应用。相较于塑料壳,本申请提供的壳体100具有陶瓷粉体,从而提升了壳体100的机械性能,并且具有陶瓷的高级质感,提升产品竞争力;相较于陶瓷壳,本申请提供的壳体100的质感轻薄,导热性和韧性高。
在本申请实施方式中,棒状陶瓷粉体和/或纤维材料与片状陶瓷粉体交织形成三维网状结构。通过形成的三维网状结构实现导热,即棒状陶瓷粉体之间、纤维材料之间、片状陶瓷粉体之间、棒状陶瓷粉体与片状陶瓷粉体之间、纤维材料与片状陶瓷粉体之间、和/或棒状陶瓷粉体与纤维材料之间交织形成导热通路,提升壳体100导热性能。
在本申请一实施方式中,聚合物陶瓷复合层10包括陶瓷粉体和聚合物,陶瓷粉体包括棒状陶瓷粉体和片状陶瓷粉体。在本申请另一实施方式中,聚合物陶瓷复合层10包括陶瓷粉体、纤维材料和聚合物,陶瓷粉体包括片状陶瓷粉体。在本申请又一实施方式中,聚合物陶瓷复合层10包括陶瓷粉体、纤维材料和聚合物,陶瓷粉体包括棒状陶瓷粉体和片状陶瓷粉体。棒状陶瓷粉体和/或纤维材料与片状陶瓷粉体相互搭接形成三维网状结构,进而形成导热通路,从而有利于壳体100散热性能的提升;同时棒状陶瓷粉体和/或纤维材料与片状陶瓷粉体相互搭接形成三维网状结构比聚合物形成的三维网状结构的力学性能更好、结构稳定性更强,在受到外部作用力时,可以迅速将外力从性能聚合物传递至陶瓷粉体和/或纤维材料上,有效分散和均化受到的外部作用力,从而避免了外力的集中以及避免了裂纹的产生和扩充,从而降低了壳体100的脆性,提升了壳体100的韧性和强度。
在本申请中,聚合物陶瓷复合层10包括片状陶瓷粉体。相比于其他形貌的陶瓷粉体,片状陶瓷粉体的比表面积大,光反射效果好,从而有利于提升壳体100表面的光泽度和陶瓷质感;同时片状陶瓷粉体可以参与导热网路的搭接,提升壳体100导热效果。在本申请实施方式中,聚合物陶瓷复合层10中片状陶瓷粉体的质量占比大于或等于2.5%。通过设置上述含量的片状陶瓷粉体,有利于提高壳体100表面的光泽度。进一步的,聚合物陶瓷复合层10中片状陶瓷粉体的质量占比为2.5%-15%。既有利于提高壳体100表面的光泽度,还有利于其他形貌的陶瓷粉体的加入,提高不同形貌陶瓷粉体的配合效果。具体的,聚合物陶瓷复合层10中片状陶瓷粉体的质量占比可以但不限于为2.5%、3%、5%、7%、8%、10%、12%、13%或15%等。
在本申请实施方式中,片状陶瓷粉体为微米级陶瓷粉体。也就是说,片状陶瓷粉体的横向尺寸为微米级。通过设置微米级的片状陶瓷粉体,进一步提高片状陶瓷粉体的比表面积,提高壳体100表面的光泽度。可以理解的,在1μm以上是微米级尺寸,1nm-100nm是纳米级尺寸,大于100nm且小于1μm为亚微米尺寸。在本申请一实施例中,片状陶瓷粉体的横向尺寸为3μm-20μm,厚度为100nm-500nm。可以理解的,横向尺寸为垂直于厚度方向的平面上片状陶瓷粉体的最大尺寸。通过设置上述尺寸的片状陶瓷粉体,可以提高片状陶瓷粉体的比表面积,提高壳体100表面的光泽度,同时有利于片状陶瓷粉体和棒状陶瓷粉体和/或纤维材料之间的搭接,进一步提高导热效果。进一步的,片状陶瓷粉体的长度为3μm-20μm,宽度为3μm-20μm,厚度为100nm-500nm。更进一步的,片状陶瓷粉体的长度为8μm-18μm,宽度为5μm-15μm,厚度为150nm-400nm。具体的,片状陶瓷粉体的长度可以但不限于为5μm、9μm、10μm、13μm、15μm、18μm或20μm等,片状陶瓷粉体的宽度可以但不限于为5μm、7μm、10μm、12μm、13μm、15μm或17μm等,片状陶瓷粉体的厚度可以但不限于为120nm、170nm、200nm、230nm、250nm、280nm、300nm、320nm、350nm、 400nm或440nm等。
在本申请实施方式中,聚合物陶瓷复合层10中具有棒状陶瓷粉体,不含纤维材料时,聚合物陶瓷复合层10中棒状陶瓷粉体的质量占比大于或等于2.5%。通过设置上述含量的棒状陶瓷粉体,有利于聚合物陶瓷复合层10中大量网状导热通路的形成,提升壳体100的散热性能、韧性和强度。在本申请一实施例中,聚合物陶瓷复合层10中棒状陶瓷粉体的质量占比为2.5%-15%。既有利于形成导热通路,同时又可以提升聚合物陶瓷复合层10中棒状陶瓷粉体的分散效果,提高导热通路的散热效果,还有利于其他形貌的陶瓷粉体的加入,提高不同形貌陶瓷粉体的配合效果。具体的,聚合物陶瓷复合层10中棒状陶瓷粉体的质量占比可以但不限于为2.5%、3%、5%、7%、8%、10%、12%或15%等。
在本申请实施方式中,棒状陶瓷粉体为微米级陶瓷粉体。也就是说,棒状陶瓷粉体的长度为微米级。通过设置微米级的棒状陶瓷粉体,从而可以提高导热通路的散热效果。在本申请一实施例中,棒状陶瓷粉体的长度为5μm-30μm,长径比为10-60。通过上述尺寸的棒状陶瓷粉体,可以提高棒状陶瓷粉体的搭接效果,有利于网状导热通路的形成,同时有利于壳体100韧性和强度的提升。进一步的,棒状陶瓷粉体的长度为5μm-18μm、8μm-15μm、10μm-25μm、15μm-20μm或22μm-30μm。具体的,棒状陶瓷粉体的长度可以但不限于为5μm、8μm、10μm、15μm、17μm、20μm、23μm或25μm等。进一步的,棒状陶瓷粉体的长径比为15-55。更进一步的,棒状陶瓷粉体的长径比为20-50。具体的,棒状陶瓷粉体的长径比可以但不限于为12、17、23、25、30、40、45或50等。
在本申请实施方式中,聚合物陶瓷复合层10中具有纤维材料,不含棒状陶瓷粉体时,聚合物陶瓷复合层10中纤维材料的质量占比大于或等于2.5%。通过设置上述含量的纤维材料,有利于聚合物陶瓷复合层10中大量网状导热通路的形成,提升壳体100的散热性能、韧性和强度。在本申请一实施例中,聚合物陶瓷复合层10中纤维材料的质量占比为2.5%-15%。既有利于提高壳体100的散热性能,同时又不过影响陶瓷粉体和聚合物的占比。具体的,聚合物陶瓷复合层10中纤维材料的质量占比可以但不限于为2.5%、3%、5%、6%、9%、10%、13%、14%或15%等。在本申请实施方式中,纤维材料包括玻璃纤维、碳纤维和聚合物纤维中的至少一种。设置上述纤维材料有利于提升壳体100内部韧性和导热性能。
在本申请实施方式中,纤维材料为微米级尺寸。也就是说,纤维材料的长度为微米级。在本申请一实施方式中,纤维材料的长度为50μm-200μm。通过设置较长的纤维材料,有利于纤维材料的交织和搭接,以形成大面积的网状导热通路,提升壳体100导热性能。进一步的,纤维材料的长度为80μm-170μm。更进一步的,纤维材料的长度为100μm-150μm。在本申请另一实施方式中,纤维材料的长径比大于200。纤维材料的长径比大,从而可以形成面积更大、导热效果更好的导热通路,进一步提升壳体100的导热效果。
在本申请实施方式中,聚合物陶瓷复合层10中具有棒状陶瓷粉体和纤维材料时,聚合物陶瓷复合层10中棒状陶瓷粉体和纤维材料总质量占比大于或等于2.5%。通过设置上述含量的棒状陶瓷粉体和纤维材料,有利于聚合物陶瓷复合层10中网状导热通路的形成,提升壳体100的散热性能、韧性和强度。在本申请一实施例中,聚合物陶瓷复合层10中棒状 陶瓷粉体和纤维材料总质量占比为2.5%-30%。既有利于形成导热通路,同时又可以提升聚合物陶瓷复合层10中棒状陶瓷粉体和纤维材料的分散效果,提高导热通路的散热效果。进一步的,聚合物陶瓷复合层10中棒状陶瓷粉体和纤维材料总质量占比为2.5%-15%。具体的,聚合物陶瓷复合层10中棒状陶瓷粉体和纤维材料总质量占比可以但不限于为2.5%、3%、5%、7%、8%、10%、12%、15%、18%、20%、21%或24%等。在一实施例中,纤维材料的长度大于棒状陶瓷粉体。相比于棒状陶瓷粉体,长度更大的纤维材料较容易获得。进一步的,聚合物陶瓷复合层10中纤维材料的含量大于棒状陶瓷粉体的含量。从而有利于获得面积更大的网状导热通路,提高壳体100导热效果。
在本申请中,聚合物陶瓷复合层10中具有片状陶瓷粉体,还可以具有棒状陶瓷粉体,也可以具有其他形貌陶瓷粉体,具体的,其他形貌陶瓷粉体可以但不限于为类球形陶瓷粉体、球形陶瓷粉体、纺锤形陶瓷粉体、不规则形状陶瓷粉体等,对此不作限定。
在本申请实施方式中,棒状陶瓷粉体和片状陶瓷粉体为微米级陶瓷粉体,陶瓷粉体还包括亚微米级粉体和纳米级粉体。通过设置亚微米级粉体和纳米级粉体,从而可以起到填充作用,保证壳体100的致密性。具体的,亚微米级粉体和纳米级粉体的形状可以但不限于为球形、类球形、纺锤形、不规则形状等。进一步的,聚合物陶瓷复合层10中亚微米级粉体和纳米级粉体的总质量占比为50%-85%。从而有利于提高壳体100内部的致密性,并保证其他形貌陶瓷粉体的分散效果。进一步的,聚合物陶瓷复合层10中亚微米级粉体和纳米级粉体的总质量占比为60%-80%。具体的,聚合物陶瓷复合层10中亚微米级粉体和纳米级粉体的总质量占比可以但不限于为62%、65%、70%、75%、78%或80%等。在本申请一实施例中,聚合物陶瓷复合层10中包括棒状陶瓷粉体和纤维材料中的至少一种,以及片状陶瓷粉体、聚合物、亚微米级粉体和纳米级粉体,聚合物陶瓷复合层10中棒状陶瓷粉体和/或纤维材料的质量占比为2.5%-15%,片状陶瓷粉体的质量占比为2.5%-15%,亚微米级粉体和纳米级粉体的总质量占比为50%-85%。亚微米级粉体和纳米级粉体起到填充作用,并可以提高聚合物陶瓷复合层10中各物质的分散效果,从而有助于提升形成的导热通路的导热效果,并且还提高了壳体100的致密性。请参阅图2,为本申请一实施方式提供的聚合物陶瓷复合层中陶瓷粉体的分布示意图,其中陶瓷粉体包括棒状陶瓷粉体、片状陶瓷粉体和类球形陶瓷粉体。类球形陶瓷粉体均匀分散在聚合物陶瓷复合层10中;片状陶瓷粉体在聚合物陶瓷复合层10表面平行取向,在聚合物陶瓷复合层10内部均一交错排列;棒状陶瓷粉体在聚合物陶瓷复合层10表面平行取向,在聚合物陶瓷复合层10内部均一交错排列,棒状陶瓷粉体和片状陶瓷粉体相互搭接形成网状导热通路。进一步的,棒状陶瓷粉体和片状陶瓷粉体为微米级粉体,类球形陶瓷粉体为亚微米级粉体和纳米级粉体,类球形陶瓷粉体尺寸小,可以起到填充作用,提高聚合物陶瓷复合层10致密性。在一实施例中,聚合物陶瓷复合层10中棒状陶瓷粉体的质量占比为2.5%-15%,片状陶瓷粉体的质量占比为2.5%-15%,类球形陶瓷粉体的质量占比为50%-85%。通过设置上述含量的陶瓷粉体,小尺寸粉体起到填充作用,保证壳体100的致密性,同时保证棒状陶瓷粉体和片状陶瓷粉体的分散效果,有利于导热通路的形成,提高导热效果以及壳体100表面的光泽度。
在本申请一实施方式中,片状陶瓷粉体在聚合物陶瓷层10的表面平行取向,在聚合物陶瓷层10的内部交错排布。由于聚合物陶瓷层10制备过程的影响,使得靠近聚合物陶瓷层10表面的片状陶瓷粉体能够平行取向,也就是说靠近聚合物陶瓷层10表面的片状陶瓷粉体平行于聚合物陶瓷层10的表面分布,而在聚合物陶瓷层10内部的片状陶瓷粉体则交错分布,从而可以搭接在一起。在本申请另一实施方式中,当聚合物陶瓷层10具有棒状陶瓷粉体时,棒状陶瓷粉体在聚合物陶瓷层10的表面平行取向,在聚合物陶瓷层10的内部交错排布。也就是说靠近聚合物陶瓷层10表面的棒状陶瓷粉体平行于聚合物陶瓷层10的表面分布,而在聚合物陶瓷层10内部的棒状陶瓷粉体则交错分布,从而可以搭接在一起。
在本申请实施方式中,聚合物陶瓷复合层10中陶瓷粉体的含量为55%-85%。聚合物陶瓷复合层10中陶瓷粉体的含量较多,可以提高表面硬度,同时提升陶瓷质感。在一实施例中,聚合物陶瓷复合层10中陶瓷粉体的含量为60%-85%。在另一实施例中,聚合物陶瓷复合层10中陶瓷粉体的含量为70%-80%。具体的,聚合物陶瓷复合层10中陶瓷粉体的含量可以但不限于为60%、65%、66%、68%、70%、75%、80%或85%等。在本申请中,可以选择适用于壳体100的陶瓷粉体材料和聚合物。可以理解的,当聚合物陶瓷复合层10中具有棒状陶瓷粉体时,陶瓷粉体指的是棒状陶瓷粉体和片状陶瓷粉体;当聚合物陶瓷复合层10中具有亚微米级陶瓷粉体和纳米级陶瓷粉体时,陶瓷粉体指的是片状陶瓷粉体、亚微米级陶瓷粉体和纳米级陶瓷粉体;当聚合物陶瓷复合层10中具有棒状陶瓷粉体、亚微米级陶瓷粉体和纳米级陶瓷粉体时,陶瓷粉体指的是棒状陶瓷粉体、片状陶瓷粉体、亚微米级陶瓷粉体和纳米级陶瓷粉体。在本申请一实施方式中,陶瓷粉体包括Al 2O 3、AlN、SiC、ZrO 2、Si 3N 4、TiO 2和Si中的至少一种。上述陶瓷耐高温、耐腐蚀、硬度高、强度佳,有利于壳体100使用。在一具体实施例中,片状陶瓷粉体的材质包括Al 2O 3、AlN、SiC、Si 3N 4和TiO 2中的至少一种。在另一具体实施例中,棒状陶瓷粉体的材质包括Al 2O 3、AlN、SiC、Si 3N 4和TiO 2中的至少一种。可以理解的,当聚合物陶瓷复合层10中具有不同形貌的陶瓷粉体时,不同形貌的陶瓷粉体的材质可以相同也可以不同。在本申请另一实施方式中,陶瓷粉体的折射率大于2。通过设置具有高折射率的陶瓷粉体,从而提高壳体100表面的光泽度和陶瓷质感,使得壳体100的外观更接近于陶瓷壳。
在本申请实施方式中,聚合物陶瓷复合层10中聚合物的质量占比小于陶瓷粉体的质量占比。进一步的,聚合物陶瓷复合层10中聚合物的质量占比小于或等于45%。更进一步的,聚合物陶瓷复合层10中聚合物的质量占比为5%-45%。具体的,聚合物陶瓷复合层10中聚合物的质量占比可以但不限于为5%、8%、10%、12%、15%、20%、25%、30%或40%等。采用上述含量的聚合物进一步提升聚合物陶瓷复合层10的陶瓷质感。在本申请一实施方式中,聚合物包括聚苯硫醚、聚碳酸酯、聚酰胺、聚对苯二甲酸丁二醇酯和聚甲基丙烯酸甲酯中的至少一种。上述聚合物的理化性能可以匹配壳体100的制备工艺,不会在制备过程中发生分解,同时也不会增加制备工艺难度,有利于降低生产成本。在本申请另一实施方式中,聚合物的折射率大于1.6。通过设置具有高折射率的聚合物,从而提高壳体100表面的光泽度和陶瓷质感,使得壳体100的外观更接近于陶瓷壳。可以理解的,陶瓷粉体 和聚合物的材质还可以选择上述未列举的其他陶瓷粉体和聚合物。
请参阅图3,为本申请另一实施方式提供的壳体的结构示意图,壳体100还包括保护层20,保护层20设置在聚合物陶瓷复合层10的表面。壳体100在使用过程中具有相对设置的内表面和外表面,保护层20位于外表面一侧,从而在壳体100的使用中起到保护作用。具体的,保护层20可以但不限于为抗指纹层、硬化层等。具体的,保护层20的厚度可以但不限于为5nm-20nm。在一实施例中,保护层20包括抗指纹层。可选的,抗指纹层的接触角大于105°。接触角是衡量液体对材料表面润湿性能的重要参数,抗指纹层的接触角大于105°,表明液体很容易在抗指纹层上移动,从而避免对其表面的污染,具有优异的抗指纹的性能。可选的,抗指纹层包括含氟化合物。具体的,含氟化合物可以但不限于为氟硅树脂、全氟聚醚、含氟丙烯酸酯等。进一步的,抗指纹层还包括二氧化硅,通过添加二氧化硅进一步提升抗指纹层的耐摩擦性能。在另一实施例中,保护层20包括硬化层。通过设置硬化层进一步提升壳体100的表面硬度。可选的,硬化层的材质包括聚氨酯丙烯酸酯、有机硅树脂、全氟聚醚丙烯酸酯中的至少一种。
在本申请实施方式中,聚合物陶瓷复合层10中具有着色剂,从而使得壳体100具有不同的颜色外观,改善视觉效果。具体的,着色剂可以但不限于为分别选自氧化铁、氧化钴、氧化铈、氧化镍、氧化铋、氧化锌、氧化锰、氧化铬、氧化铜、氧化钒和氧化锡中的至少一种。在一实施例中,聚合物陶瓷复合层10中着色剂的质量含量小于或等于10%。从而既能够改善聚合物陶瓷复合层10的颜色,同时又不会影响陶瓷粉体和聚合物的含量。进一步的,聚合物陶瓷复合层10中着色剂的质量含量为0.5%-10%。
在本申请中,壳体100的厚度可以根据其应用场景的需要进行选择,对此不作限定;在一实施方式中,壳体100可以作为电子设备的外壳、中框、装饰件等,如作为手机、平板电脑、笔记本电脑、手表、MP3、MP4、GPS导航仪、数码相机的外壳等。本申请实施方式中的壳体100可以为2D结构、2.5D结构、3D结构等,具体的可以根据需要进行选择。在一实施例中,壳体100作为手机后盖使用时,壳体100的厚度为0.6mm-1.2mm。具体的,壳体100的厚度可以但不限于为0.6mm、0.7mm、0.8mm、0.9mm、1mm、1.1mm或1.2mm。在另一实施例中,壳体100作为手机后盖使用时,壳体100包括主体部和设置在主体部边缘的延伸部,延伸部向主体部弯折;此时壳体100呈曲面状。
在本申请实施方式中,采用GB/T 8807-1988标准进行光泽度的检测。聚合物陶瓷复合层10表面的光泽度大于或等于140。聚合物陶瓷复合层10具有高光泽度,从而有助于加强壳体100的陶瓷质感。进一步的,聚合物陶瓷复合层10的光泽度为150-200。在一实施例中,选用折射率大于2的陶瓷粉体制得的聚合物陶瓷复合层10的光泽度大于或等于140。进一步的,聚合物陶瓷复合层10的光泽度为140-200。
在本申请中,采用落球冲击性能测试检测壳体100的性能,其中,落球为32g的不锈钢球,壳体100为聚合物陶瓷复合层10,壳体100厚度为0.8mm。在一实施例中,将壳体100支撑于治具上,其中壳体100的四周边缘有3mm的支撑,中部悬空;将32g的不锈钢球从一定高度自由落下至待测壳体100表面上的待检测点,记录使壳体100破碎的高度为 落球高度。进一步的,将32g的不锈钢球从一定高度自由落下至待测壳体100表面的四角和中心共五个检测点,记录使壳体100破碎的高度为落球高度。在本申请实施方式中,落球高度为70cm-120cm。进一步的,落球高度为70cm-100cm。更进一步的,落球高度为80cm-100cm。
本申请通过采用GB/T 6739-1996对聚合物陶瓷复合层10表面的铅笔硬度进行检测。在本申请实施方式中,聚合物陶瓷复合层10表面的铅笔硬度大于或等于5H。进一步的,聚合物陶瓷复合层10表面的铅笔硬度为5H-9H,从而大幅度提高了壳体100的硬度,增强壳体100强度。具体的,聚合物陶瓷复合层10表面的铅笔硬度可以但不限于为5H、6H、7H、8H或9H等。
在本申请实施方式中,聚合物陶瓷复合层10的导热系数大于或等于2W/(m·K)。进一步的,聚合物陶瓷复合层10的导热系数为2W/(m·K)-10W/(m·K)。进一步的,聚合物陶瓷复合层10的导热系数为2W/(m·K)-8W/(m·K)。具体的,聚合物陶瓷复合层10的导热系数可以但不限于为2W/(m·K)、3W/(m·K)、4W/(m·K)、5W/(m·K)、6W/(m·K)、7W/(m·K)或8W/(m·K)。
本申请通过采用GB/T 25995-2010对壳体100的气孔率进行检测。在本申请实施方式中,壳体100的气孔率小于5%。即壳体100的致密度大于或等于95%。壳体100的低气孔率保证了壳体100内部的结合强度,有利于壳体100机械性能的提升。进一步的,壳体100的气孔率小于1%,进一步提升壳体100的致密性。
在本申请实施方式中,壳体100的表面粗糙度小于0.1μm。通过提供表面粗糙度小的壳体100,进而有利于增强其表面光泽度和陶瓷质感,提升视觉效果。进一步的,壳体100的表面粗糙度为0.02μm-0.08μm。
请参阅图4,为本申请一实施方式提供的壳体的制备方法流程图,该制备方法制备上述任一实施例的壳体100,包括:
S101:混合材料经改性后与引发剂混合、造粒得到混合粉体,混合材料包括棒状陶瓷粉体和纤维材料中的至少一种以及片状陶瓷粉体。
S102:混合粉体与聚合物共混、密炼造粒形成注塑喂料。
S103:注塑喂料经注塑后形成聚合物陶瓷复合片。
S104:压合聚合物陶瓷复合片后,再经热处理得到聚合物陶瓷复合层,制得壳体。
本申请提供的壳体100的制备方法操作简单,易于大规模生产,可以制得具有优异性能的壳体100,有利于其应用。
在S101中,需要将棒状陶瓷粉体和/或纤维材料,以及片状陶瓷粉体进行改性,以便于与聚合物更好地混合。在本申请一实施方式中,改性包括将混合材料与表面改性剂混合、干燥。可以理解的,当聚合物陶瓷复合层10中还包括除棒状陶瓷粉体、纤维材料和片状陶瓷粉体以外的其他无机材料时,其他无机材料也需要进行改性处理,例如当聚合物陶瓷复合层10中包括亚微米级陶瓷粉体和纳米级陶瓷粉体中的至少一种时,在制备过程中亚微米级陶瓷粉体和纳米级陶瓷粉体中的至少一种也与表面改性剂混合进行改性。在本申请中, 表面改性剂可以但不限于包括偶联剂、表面活性剂、有机硅、分散剂等中的至少一种,表面改性剂可以根据聚合物的性质进行选择。在一实施例中,可以选择偶联剂进行改性。具体的,偶联剂可以但不限于为硅烷偶联剂、钛酸酯偶联剂等。进一步的,表面改性剂还包括分散剂。具体的,分散剂可以但不限于为苯甲酸钠、六偏磷酸钠和聚乙二醇中的至少一种。在另一实施例中,表面改性剂与混合材料的质量比为0.3%-5%。从而可以使得混合材料的表面改性完全,并且不会造成表面改性剂之间发生团聚。进一步的,表面改性剂与混合材料的质量比为0.5%-3%。具体的,表面改性剂与混合材料的质量比可以但不限于为1%、1.5%、2%、2.5%、2.7%或3%等。例如,偶联剂与混合材料的质量比为0.5%-3%,分散剂与混合材料的质量比为0.3%-2%。在本申请中,混合材料中陶瓷粉体的形貌除了棒状和片状,还可以包括其他形貌陶瓷粉体;具体的,其他形貌陶瓷粉体可以但不限于包括球形、类球形、纺锤形、不规则形状等。在一实施例中,其他形貌陶瓷粉体的粒径D50为200nm-5μm。在又一实施例中,通过将混合材料、表面改性剂与砂磨珠混合研磨进行改性。具体的,砂磨珠的粒径可以但不限于为0.5nm-10nm,砂磨珠可以但不限于为锆珠。进一步的,研磨包括在300r/min-1500r/min下,研磨循环次数为10次-100次,研磨时间为5min/循环-30min/循环。在一具体实施例中,将表面改性剂溶于醇溶剂中、水中或醇水混合溶剂中,并加入混合材料进行混合砂磨和干燥即可。在另一具体实施例中,将表面改性剂与纤维材料混合后,在闪蒸干燥机中干燥即可。
在S101中,改性后的混合材料与引发剂混合,经造粒得到混合粉体。在本申请实施方式中,引发剂与混合材料的质量比为0.5%-3%。当混合材料为棒状陶瓷粉体和片状陶瓷粉体时,引发剂占棒状陶瓷粉体和片状陶瓷粉体总质量的0.5%-3%;当混合材料为纤维材料和片状陶瓷粉体时,引发剂占纤维材料和片状陶瓷粉体总质量的0.5%-3%;当混合材料为棒状陶瓷粉体、纤维材料和片状陶瓷粉体时,引发剂占陶瓷粉体、纤维材料和片状陶瓷粉体总质量的0.5%-3%。具体的,引发剂与混合材料的质量比可以但不限于为1%-3%、1.5%-2.5%或1.2%-2%等。在本申请中,在后续热处理操作中,引发剂可以促进混合材料的搭接处发生化学反应形成强连接,提高形成的网状导热通路的强度,同时还可以促进聚合物中断链、扩链并化学接枝到混合材料表面,提高混合粉体与聚合物的相容性以及连接力,提升韧性。在本申请实施方式中,引发剂包括过氧化物。通过设置过氧化物,从而在后续热处理过程中,促进改性后的混合材料之间形成稳定连接。进一步的,过氧化物包括无机过氧化物和有机过氧化物中的至少一种。在一实施例中,过氧化物包括过硫酸铵、过硫酸钾、过氧化氢和过氧化苯甲酰中的至少一种。在一具体实施例中,混合材料经改性后与引发剂干法或湿法混合后,通过气流低温干燥造粒,得到混合粉体。其中,气流低温干燥造粒的温度不高于引发剂的分解温度。
在S102中,混合粉体与聚合物共混、密炼造粒后获得适用于注塑的注塑喂料。在一实施例中,聚合物包括聚苯硫醚、聚碳酸酯、聚酰胺、聚对苯二甲酸丁二醇酯和聚甲基丙烯酸甲酯中的至少一种。当然还可以选择其他适用于壳体100的聚合物。在一具体实施例中,当聚合物为聚苯硫醚时,可以选择具有环氧基的偶联剂对陶瓷粉体进行改性。可以理解的, 聚合物的添加量可以根据聚合物陶瓷复合层10中聚合物的含量进行选择,对此不作限定。在另一实施例中,聚合物的质量占比为10%-50%,改性陶瓷粉体的质量占比为50%-90%进行混合。进一步的,共混时还加入了助剂,助剂包括流平剂、助溶剂和抗氧剂中的至少一种。具体的,共混后助剂的质量占比为0.1%-1%。在另一实施例中,共混包括采用干法或湿法研磨的方式进行。进一步的,通过干法进行共混,提高效率。在本申请中,共混后得到共混物,可以但不限于将共混物置于密炼造粒一体机中进行密炼造粒,有利于注塑过程的进行。在一实施例中,密炼造粒的温度高于聚合物的熔点,且低于聚合物的分解温度。具体的,密炼造粒的温度可以但不限于为150℃-350℃,密炼造粒的时间可以但不限于为1h-12h。进一步的,密炼气压小于0.01MPa或密炼在氮气气氛中进行,从而可以有效防止聚合物被氧化,并可以有效促进副反应生成的气体的排除。在另一实施例中,注塑喂料的直径为2mm-3mm,长度为3mm-4mm,从而有利于注塑的进行。
在S103中,注塑的工艺参数可以根据选用的聚合物的性质进行选择。在一实施例中,注塑温度为200℃-350℃,注塑射速为50%-95%,射压为80MPa-120MPa。采用上述高射速、高射压的注塑条件,有利于陶瓷粉体、纤维材料在注塑后的取向排列规整。在一具体实施例中,聚合物选择聚苯硫醚时,注塑温度可以为290℃-330℃。注塑得到的聚合物陶瓷复合片的形状可以需要进行选择,聚合物陶瓷复合片的厚度也可以根据需要进行选择,同时后续压合和加工过程中厚度会有所减小,因此,在注塑时可增加厚度。在本申请中,采用注塑成型的方法操作更加简单,相较于流延成型,无需考虑溶剂与聚合物之间的相容性问题,制备成本低。可以理解,还可以采用流延成型等其他成型方式制备聚合物陶瓷复合片。
在S104中,压合聚合物陶瓷复合片包括:将聚合物陶瓷复合片进行温等静压。通过温等静压降低聚合物陶瓷复合片内部的气孔,增强陶瓷粉体、纤维材料与聚合物之间的密实度,得到压合结构。等静压技术是利用密闭高压容器内制品在各向均等的超高压压力状态下成型的技术。等静压技术按成型和固结时的温度高低,分为冷等静压、温等静压、热等静压三种不同类型。在本申请中,温等静压的温度大于聚合物的玻璃化转变温度。从而使得聚合物陶瓷复合片中的聚合物可以发生软化,同时在压力作用下致密性更好,消除聚合物陶瓷复合片内的气孔,提高陶瓷粉体与聚合物之间的结合力。在一实施例中,温等静压的压力为50MPa-500MPa,温度为80℃-300℃;从而有利于充分压实聚合物陶瓷复合片,并且该过程对设备要求不高,安全性好,更有利于在实际中操作和应用;同时还有利于内部形成连续完整的网络结构,有助于提高整体结构的导热、均热性能以及强度。进一步的,温等静压的压力为100MPa-400MPa,温度为100℃-280℃。在本申请中,温等静压的时间可以根据聚合物陶瓷复合片的厚度进行选择。在一实施例中,温等静压的温度为80℃-300℃,温等静压的时间为0.5h-2h,温等静压的压力为50MPa-500MPa。从而可以进一步降低聚合物陶瓷复合片的孔隙度,提高内部的结合力。在一具体实施例中,可以将聚合物陶瓷复合片真空密封后进行温等静压。
在S104中,热处理可以激发混合粉体表面的引发剂,使得棒状陶瓷粉体和/或纤维材料、片状陶瓷粉体之间的搭接处发生化学反应形成强连接,提高形成的网状导热通路的强 度,同时还可以促进聚合物中断链、扩链并化学接枝到混合粉体表面,提高混合粉体与聚合物的相容性以及连接力,提升韧性。在本申请实施方式中,热处理包括在100℃-350℃处理6h-36h,从而有利于提升形成的三维网状导热通路的连续性和完整性。进一步的,热处理包括在150℃-310℃处理10h-30h。在一具体实施例中,热处理包括在310℃下处理。在一具体实施例中,热处理的时间为24h。
请参阅图5,为本申请一实施方式提供的陶瓷粉体搭接示意图,其中,陶瓷粉体包括棒状陶瓷粉体和片状陶瓷粉体;通过将棒状陶瓷粉体和片状陶瓷粉体进行表面处理,使棒状陶瓷粉体和片状陶瓷粉体改性,在棒状陶瓷粉体和片状陶瓷粉体表面上连接改性基团;而后改性的棒状陶瓷粉体和片状陶瓷粉体与引发剂混合,经过密炼造粒、注塑后得到聚合物陶瓷复合片,再经过热处理后,引发剂的存在使得棒状陶瓷粉体之间、棒状陶瓷粉体和片状陶瓷粉体之间通过表面改性基团的反应发生键合搭接在一起,从而形成导热网路通路。可以理解的,当聚合物陶瓷复合层10中具有纤维材料时,搭接过程与图5类似,在此不再赘述。
在本申请实施方式中,壳体100的制备方法还包括对壳体100进行计算机数字化控制精密机械加工(CNC加工)。通过CNC加工获得最终所需组装配合尺寸的壳体100。例如,通过CNC加工使得壳体100更加平整等。在本申请另一实施方式中,壳体100的制备方法还包括对壳体100进行打磨处理。通过对壳体100表面进行抛光研磨,从而降低壳体100表面的粗糙度,提高壳体100表面的陶瓷质感。在一实施例中,壳体100的表面粗糙度小于0.1μm。通过提供表面粗糙度小的壳体100,进而有利于增强其表面光泽度和陶瓷质感,提升视觉效果。进一步的,壳体100的表面粗糙度为0.02μm-0.08μm。在本申请实施方式中,可以在壳体100表面喷涂或蒸镀保护材料,形成保护层20。在一实施例中,通过在壳体100表面蒸镀抗指纹材料,形成抗指纹层,提升壳体100的抗指纹效果。
本申请还提供了一种电子设备,包括上述任一实施例的壳体100。可以理解的,电子设备可以但不限于为手机、平板电脑、笔记本电脑、手表、MP3、MP4、GPS导航仪、数码相机等。请参阅图6,为本申请一实施方式提供的电子设备的结构示意图,其中,电子设备包括壳体100以及与壳体100连接的显示屏。该壳体100可以提升电子设备的散热性能和韧性,赋予电子设备陶瓷质感的外观,而且不会过多增加电子设备的重量,提高电子设备的产品竞争力。
实施例1
一种壳体,包括片状硅粉、棒状氧化锆、类球形氧化铝和聚苯硫醚,其中,壳体中片状硅粉的质量占比为5%,棒状氧化锆的质量占比为5%,类球形氧化铝的质量占比为70%。
实施例2
一种壳体,包括片状氧化锆、棒状碳化硅、类球形氧化铝和聚苯硫醚,其中,壳体中片状氧化锆的质量占比为5%,棒状碳化硅的质量占比为5%,类球形氧化铝的质量占比为70%。
实施例3
一种壳体,包括片状氧化钛、棒状氮化铝、类球形氧化铝和聚苯硫醚,其中,壳体中片状氧化钛的质量占比为5%,棒状氮化铝的质量占比为5%,类球形氧化铝的质量占比为70%。
对比例1
一种壳体,壳体的材质为聚苯硫醚。
对比例2
一种氧化锆陶瓷壳体,由氧化锆陶瓷粉体烧结而成。
性能检测
采用GB/T 6739-1996对上述实施例和对比例提供的壳体表面的铅笔硬度进行检测;采用导热系数测定仪对上述实施例和对比例提供的壳体的导热系数进行检测;采用GB/T8807-1988对上述实施例和对比例提供的壳体表面的光泽度进行检测,光泽度仪角度为60°;提供上述实施例和对比例中的壳体,壳体尺寸均为150mm×73mm×0.8mm,分别将上述壳体支撑于治具上(四边各有3mm支撑,中部悬空),使用32g的不锈钢球从一定高度自由落下至待测表面,壳体四角和中心共五个点,每个点测5次,直至破碎,记录落球高度,检测结果如表1所示。
表1性能检测结果
Figure PCTCN2022087299-appb-000001
与对比例1提供的壳体相比,本申请提供的壳体的铅笔硬度、导热系数和光泽度高,具有优异的耐磨性能、导热性能和陶瓷质感;与对比例2提供的壳体相比,本申请提供的壳体的落球高度检测值高,具有优异的韧性,同时本申请提供的壳体与对比例2提供的壳体的导热性能和光泽度相当,甚至优于对比例2;因此,相较于对比例,本申请提供的壳体的综合性能优异,有利于其应用。
以上对本申请实施方式所提供的内容进行了详细介绍,本文对本申请的原理及实施方式进行了阐述与说明,以上说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种壳体,其特征在于,所述壳体包括聚合物陶瓷复合层,所述聚合物陶瓷复合层包括棒状陶瓷粉体和纤维材料中的至少一种,以及片状陶瓷粉体和聚合物。
  2. 如权利要求1所述的壳体,其特征在于,所述聚合物陶瓷复合层中,所述棒状陶瓷粉体和/或所述纤维材料与所述片状陶瓷粉体交织形成三维网状结构。
  3. 如权利要求1所述的壳体,其特征在于,所述聚合物陶瓷复合层中,所述棒状陶瓷粉体和/或所述纤维材料的质量占比大于或等于2.5%,所述片状陶瓷粉体的质量占比大于或等于2.5%。
  4. 如权利要求3所述的壳体,其特征在于,所述聚合物陶瓷复合层中所述纤维材料的质量占比为2.5%-15%。
  5. 如权利要求1所述的壳体,其特征在于,所述棒状陶瓷粉体的长度为5μm-30μm,长径比为10-60。
  6. 如权利要求1所述的壳体,其特征在于,所述纤维材料的长径比大于200,所述纤维材料包括玻璃纤维、碳纤维和聚合物纤维中的至少一种。
  7. 如权利要求1所述的壳体,其特征在于,所述纤维材料的长度为50μm-200μm。
  8. 如权利要求1所述的壳体,其特征在于,所述片状陶瓷粉体的长度为3μm-20μm,宽度为3μm-20μm,厚度为100nm-500nm。
  9. 如权利要求1所述的壳体,其特征在于,所述棒状陶瓷粉体和所述片状陶瓷粉体为微米级陶瓷粉体,所述聚合物陶瓷复合层还包括亚微米级陶瓷粉体和纳米级陶瓷粉体,所述聚合物陶瓷复合层中所述亚微米级陶瓷粉体和所述纳米级陶瓷粉体的总质量占比为50%-85%。
  10. 如权利要求1所述的壳体,其特征在于,所述聚合物陶瓷复合层中所述聚合物的质量占比小于或等于45%;所述聚合物包括聚苯硫醚、聚碳酸酯、聚酰胺、聚对苯二甲酸丁二醇酯和聚甲基丙烯酸甲酯中的至少一种。
  11. 如权利要求1-10任一项所述的壳体,所述棒状陶瓷粉体和所述片状陶瓷粉体在所述聚合物陶瓷层的表面平行取向,在所述聚合物陶瓷层的内部交错排布。
  12. 如权利要求1所述的壳体,其特征在于,所述壳体还包括保护层,所述保护层设置在所述聚合物陶瓷复合层的表面。
  13. 如权利要求1所述的壳体,其特征在于,片状陶瓷粉体的材质包括Al 2O 3、AlN、SiC、Si 3N 4和TiO 2中的至少一种;棒状陶瓷粉体的材质包括Al 2O 3、AlN、SiC、Si 3N 4和TiO 2中的至少一种。
  14. 如权利要求1所述的壳体,其特征在于,所述聚合物陶瓷复合层表面的光泽度大于或等于140;
    所述聚合物陶瓷复合层表面的铅笔硬度大于或等于5H;
    所述聚合物陶瓷复合层的导热系数大于或等于2W/(m·K);
    所述壳体的气孔率小于5%;
    所述壳体的表面粗糙度小于0.1μm。
  15. 一种壳体的制备方法,其特征在于,包括:
    混合材料经改性后与引发剂混合、造粒得到混合粉体,所述混合材料包括棒状陶瓷粉体和纤维材料中的至少一种以及片状陶瓷粉体;
    所述混合粉体与聚合物共混、密炼造粒形成注塑喂料;
    所述注塑喂料经注塑后形成聚合物陶瓷复合片;
    压合所述聚合物陶瓷复合片后,再经热处理得到聚合物陶瓷复合层,制得壳体。
  16. 如权利要求15所述的制备方法,其特征在于,所述引发剂与所述混合材料的质量比为0.5%-3%;所述引发剂包括过氧化物,所述过氧化物包括过硫酸铵、过硫酸钾、过氧化氢和过氧化苯甲酰中的至少一种。
  17. 如权利要求15所述的制备方法,其特征在于,压合所述聚合物陶瓷复合片包括:
    将所述聚合物陶瓷复合片进行温等静压,其中,所述温等静压的温度为80℃-300℃,且所述温等静压的温度高于所述聚合物的玻璃化转变温度,所述温等静压的时间为0.5h-2h,所述温等静压的压力为50MPa-500MPa。
  18. 如权利要求15所述的制备方法,其特征在于,所述热处理包括在100℃-350℃处理6h-36h。
  19. 如权利要求15所述的制备方法,其特征在于,所述混合材料经改性后与引发剂混合,包括:将所述混合材料与表面活性剂混合、干燥后,再与所述引发剂混合,其中,所述表面改性剂与所述混合材料的质量比为0.3%-5%。
  20. 一种电子设备,其特征在于,包括壳体以及与所述壳体连接的显示屏,所述壳体包括聚合物陶瓷复合层,所述聚合物陶瓷复合层包括棒状陶瓷粉体和纤维材料中的至少一种,以及片状陶瓷粉体和聚合物。
PCT/CN2022/087299 2021-06-08 2022-04-18 壳体及其制备方法和电子设备 WO2022257605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110641148.3 2021-06-08
CN202110641148.3A CN113395855B (zh) 2021-06-08 2021-06-08 壳体及其制备方法和电子设备

Publications (1)

Publication Number Publication Date
WO2022257605A1 true WO2022257605A1 (zh) 2022-12-15

Family

ID=77618693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087299 WO2022257605A1 (zh) 2021-06-08 2022-04-18 壳体及其制备方法和电子设备

Country Status (2)

Country Link
CN (1) CN113395855B (zh)
WO (1) WO2022257605A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117466629A (zh) * 2023-12-27 2024-01-30 富优特(山东)新材料科技有限公司 一种石墨烯增强氧化铝陶瓷及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113395855B (zh) * 2021-06-08 2022-12-13 Oppo广东移动通信有限公司 壳体及其制备方法和电子设备
CN113395860B (zh) * 2021-06-30 2023-01-31 Oppo广东移动通信有限公司 壳体及其制备方法和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334759A (zh) * 1999-01-06 2002-02-06 塞拉麦特复合材料有限公司 层条状金属-陶瓷复合材料
CN101164995A (zh) * 2006-10-16 2008-04-23 宁波大学 一种含炭纤维的碳化硅陶瓷组合物制造方法
CN107673658A (zh) * 2017-09-25 2018-02-09 南通通州湾新材料科技有限公司 氧化锆陶瓷复合外壳的制备方法及其应用
CN108726994A (zh) * 2017-05-19 2018-11-02 宁波健立电子有限公司 一种复合陶瓷盖板及其制造方法
CN109206841A (zh) * 2018-02-26 2019-01-15 大连疆宇新材料科技有限公司 一种高强度耐磨芳香族复合材料及其制备方法和应用
WO2021069722A1 (de) * 2019-10-11 2021-04-15 Sgl Carbon Se Keramische faserverbundbauteile
CN113395855A (zh) * 2021-06-08 2021-09-14 Oppo广东移动通信有限公司 壳体及其制备方法和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201248054Y (zh) * 2008-07-25 2009-05-27 西安理工大学 一种陶瓷高分子复合结构的手机壳体
CN103172973B (zh) * 2013-03-26 2015-07-01 上海交通大学 一种高导热聚合物复合材料及制备方法
CN110636158A (zh) * 2019-09-12 2019-12-31 华为技术有限公司 一种中框、后盖及其制备方法和电子设备
CN112479630A (zh) * 2020-11-18 2021-03-12 广州视源电子科技股份有限公司 一种陶瓷复合散热器件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334759A (zh) * 1999-01-06 2002-02-06 塞拉麦特复合材料有限公司 层条状金属-陶瓷复合材料
CN101164995A (zh) * 2006-10-16 2008-04-23 宁波大学 一种含炭纤维的碳化硅陶瓷组合物制造方法
CN108726994A (zh) * 2017-05-19 2018-11-02 宁波健立电子有限公司 一种复合陶瓷盖板及其制造方法
CN107673658A (zh) * 2017-09-25 2018-02-09 南通通州湾新材料科技有限公司 氧化锆陶瓷复合外壳的制备方法及其应用
CN109206841A (zh) * 2018-02-26 2019-01-15 大连疆宇新材料科技有限公司 一种高强度耐磨芳香族复合材料及其制备方法和应用
WO2021069722A1 (de) * 2019-10-11 2021-04-15 Sgl Carbon Se Keramische faserverbundbauteile
CN113395855A (zh) * 2021-06-08 2021-09-14 Oppo广东移动通信有限公司 壳体及其制备方法和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117466629A (zh) * 2023-12-27 2024-01-30 富优特(山东)新材料科技有限公司 一种石墨烯增强氧化铝陶瓷及其制备方法

Also Published As

Publication number Publication date
CN113395855B (zh) 2022-12-13
CN113395855A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2022257605A1 (zh) 壳体及其制备方法和电子设备
Wang et al. A general approach to composites containing nonmetallic fillers and liquid gallium
Dong et al. Enhanced solid particle erosion properties of thermoplastic polyurethane‐carbon nanotube nanocomposites
CN108641288B (zh) 一种纳米氧化锆/环氧树脂复合材料及其制备方法
Liu et al. Research on the interface properties and strengthening–toughening mechanism of nanocarbon-toughened ceramic matrix composites
Liu et al. Enhanced tribological properties of bismaleimides filled with aligned graphene nanosheets coated with Fe 3 O 4 nanorods
TW201538642A (zh) 石墨烯色母粒
CN111925630B (zh) 高强电磁屏蔽及导热pbt/pet纳米复合材料及制备方法
WO2023279800A1 (zh) 壳体及其制备方法和电子设备
CN104877283A (zh) 抗静电碳纳米材料-聚四氟乙烯复合材料的制备方法
KR20170102590A (ko) 자동차 조명 하우징 적용을 위한 고열전도성 복합조성물 및 그 제조방법
Huang et al. Parameters optimization of binder jetting process using modified silicate as a binder
CA3064271A1 (en) Surface modified inorganic particulate in sintered products
WO2023273504A1 (zh) 壳体及其制备方法和电子设备
Guo et al. Flexible aramid nanofiber/Ag nanowires/graphene nanosheets composite films with sandwich structure for high-performance electromagnetic interference shielding and Joule heating
WO2022252726A1 (zh) 壳体及其制备方法和电子设备
Zhang-Ao et al. Influence of high-temperature oxidation of SiC powders on curing properties of SiC slurry for digital light processing.
Zhang et al. Fabrication of thermally conductive polymer composites based on hexagonal boron nitride: recent progresses and prospects
WO2018061830A1 (ja) グラファイト成形体の製造方法
He et al. Preparation of FeSiAl–Fe3O4 reinforced graphene/polylactic acid composites and their microwave absorption properties
Liang et al. Impressive high-temperature lubrication of carbon/epoxy composites endowed by the microscopic dimensionality of carbon fillers
Sun et al. Fabrication of High Thermally Conductive and Electrical Insulating Composites by Boron Nitride‐Nanosheet‐Coated PEEK Fiber
CN104478473A (zh) 一种泡沫陶瓷吸波材料
CA3064270A1 (en) Surface modified metallic particulate in sintered products
Huang et al. Enhanced tough recyclable hemiaminal dynamic covalent network with boron nitride composites material with high thermal conductivity at low filler content

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE