WO2022257285A1 - 钕铁硼磁体及其制备方法 - Google Patents

钕铁硼磁体及其制备方法 Download PDF

Info

Publication number
WO2022257285A1
WO2022257285A1 PCT/CN2021/116296 CN2021116296W WO2022257285A1 WO 2022257285 A1 WO2022257285 A1 WO 2022257285A1 CN 2021116296 W CN2021116296 W CN 2021116296W WO 2022257285 A1 WO2022257285 A1 WO 2022257285A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
treatment
preparation
raw material
mixed powder
Prior art date
Application number
PCT/CN2021/116296
Other languages
English (en)
French (fr)
Inventor
黎龙贵
张燕
李超
谢宝祥
Original Assignee
赣州市东磁稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赣州市东磁稀土有限公司 filed Critical 赣州市东磁稀土有限公司
Priority to EP21942136.9A priority Critical patent/EP4145475A4/en
Publication of WO2022257285A1 publication Critical patent/WO2022257285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Definitions

  • the invention relates to the field of neodymium iron boron, in particular to an neodymium iron boron magnet and a preparation method thereof.
  • the magnetic energy product represents the energy of an external magnetic field generated by a magnet per unit volume.
  • the high magnetic energy product means that smaller magnets can be used on the motor to output more power.
  • Sintered NdFeB magnet is the permanent magnet material with the strongest comprehensive magnetic properties in the world today. With its excellent characteristics and cost performance surpassing traditional permanent magnet materials, it is widely used in energy, transportation, machinery, medical, computer, home appliances and other fields , play an important role in the national economy.
  • NdFeB is an important rare-earth permanent magnet material with high magnetic energy product, high coercive force, light weight and low cost. The emergence of NdFeB has made magnetic devices develop in the direction of high efficiency, miniaturization and light weight.
  • patent publication number 201810154877.4 "a high-performance sintered NdFeB magnet and its preparation method”
  • patent publication number 201210419107.0 a sintered NdFeB magnet and its preparation method
  • the content of Dy and Tb is the key to determine the cost of high-performance sintered NdFeB materials.
  • the price of heavy rare earths has been increasing in recent years.
  • Chinese Physical Society, 2021 The academic paper discloses that the coercive force of the formed sintered magnet can be improved to a certain extent by adjusting the content of each component in the alloy (especially the content of Nd and Ga) and the hydrogen crushing treatment temperature.
  • NdFeB magnet which has a simpler preparation process, is more conducive to mass production, has a higher coercive force, and has better remanence and magnetic stability.
  • the main purpose of the present invention is to provide a kind of NdFeB magnet and its preparation method, to solve the problems existing in the prior art when increasing the coercive force of NdFeB magnets on the basis of adding little or no Dy and Tb. It is beneficial to mass production, and the coercive force of the sintered magnet formed is small, and the stability of remanence and magnetic properties is poor.
  • a method for preparing an NdFeB magnet comprises the following steps: S1, mixing the alloy A and the alloy B, and performing powder-making treatment to obtain a mixed powder; S2, performing compression molding on the mixed powder to obtain a pressed product; S3, performing sintering treatment on the pressed product in sequence and tempering treatment to obtain NdFeB magnets; wherein, by weight percentage, the raw material components of alloy A include 28-35wt% of Re, 64-71.2wt% of T and 0.8-1.0wt% of B; wherein, Re One or more of La, Ce, Pr or Nd, T is one or more of Fe, Co, Al, Si, Cu, Nb, Zr and Ga; by weight percentage, the raw material of alloy B
  • the composition includes 40-60wt% Re, 39.2-59.5wt% T and 0.5-0.8wt% B; wherein, Re is one or more of La, Ce, Pr or Nd, T includes Fe
  • the amount of the alloy B is 1-10% of the weight of the alloy A.
  • the raw material composition of alloy B includes 40-60wt% Re, 0-2wt% Co, 3-10wt% Cu, 3-10wt% Ga, 0-0.5wt% Nb and/or Zr, 0.5 ⁇ 0.8wt% B and balance Fe.
  • the raw material composition of alloy A includes: Nd, 30-32wt%; Co, 1.0-2.0wt%; Cu, 0.05-0.1wt%; Al, 0.3-0.8wt%; Ga, 0.1-0.15wt%; Zr , 0.12 ⁇ 0.15wt%; B, 0.9 ⁇ 0.92wt% and the balance of Fe;
  • the raw material composition of alloy B includes: Nd, 40 ⁇ 50wt%; Co, 1.0 ⁇ 1.5wt%; Cu, 5 ⁇ 8wt%; Al , 0.1-0.4wt%; Ga, 5-8wt%; Nb, 0.2-0.3wt%; B, 0.65-0.75wt% and the balance of Fe.
  • the raw material composition of alloy A includes: Nd, 32wt%; Co, 1.5wt%; Cu, 0.1wt%; Al, 0.8wt%; Ga, 0.1wt%; Zr, 0.15wt%; and the rest of Fe;
  • the raw material composition of alloy B includes: Nd, 50wt%; Co, 1.0wt%; Cu, 6wt%; Al, 0.4wt%; Ga, 6wt%; Nb, 0.3wt%; % and the balance of Fe; or, the raw material composition of alloy A includes: Nd, 31.5wt%; Co, 1.5wt%; Cu, 0.1wt%; Al, 0.6wt%; Ga, 0.1wt%; Zr, 0.15wt% %; B, 0.9wt% and the rest of Fe; the raw material composition of alloy B includes: Nd, 45wt%; Co, 1.0wt%; Cu, 5wt%; Al, 0.1wt%; Ga, 5wt%; Nb
  • the average particle size of the mixed powder is 2.8-3.0 ⁇ m.
  • the treatment temperature is 1000-1100° C.
  • the treatment time is 5-10 hours.
  • the tempering treatment includes sequential primary tempering treatment and secondary tempering treatment; preferably, during the primary tempering treatment, the treatment temperature is 880-920°C, and the treatment time is 2-4h; preferably Specifically, during the secondary tempering treatment, the treatment temperature is 450-550° C., and the treatment time is 4-6 hours.
  • the preparation method also includes the steps of mixing alloy A and alloy B and sequentially performing hydrogen crushing treatment and dehydrogenation treatment; preferably, during the dehydrogenation treatment, the treatment temperature is 450-500°C, The treatment time is 5-10 hours; preferably, the hydrogen content in the mixed powder is 600-1200 ppm, and the oxygen content is 1000-1500 ppm.
  • a neodymium iron boron magnet is provided.
  • the NdFeB magnet is produced by the above-mentioned NdFeB magnet preparation method.
  • Fig. 1 shows a flow chart of a preparation method of an NdFeB magnet according to the present invention.
  • the present invention provides a preparation method of NdFeB magnets, as shown in Figure 1, the preparation method comprises the following steps: S1, after mixing alloy A and alloy B, carry out powder making treatment to obtain Mixed powder; S2, press the mixed powder to obtain a pressed product; S3, sequentially sinter and temper the pressed product to obtain an NdFeB magnet; in terms of weight percentage, the raw material composition of alloy A contains 28 ⁇ 35wt% Re, 64 ⁇ 71.2wt% T and 0.8 ⁇ 1.0wt% B; wherein, Re is one or more of La, Ce, Pr or Nd, and T is Fe, Co, Al, Si One or more of , Cu, Nb, Zr and Ga; by weight percentage, the raw material composition of alloy B includes 40-60wt% Re, 39.2-59.5wt% T and 0.5-0.8wt% B; Wherein, Re is one or more of La, Ce, Pr or Nd, T contains Fe and Ga, and at the same time, T also contains one or more of Co
  • alloy A and alloy B are obtained by conventional smelting of their raw materials, and the specific smelting process is well known in the art, such as resin transfer molding (RTM) and vacuum quick-setting furnace smelting process.
  • the amount of the alloy B used is 1-10% by weight of the alloy A.
  • the coercive force of NdFeB magnets is higher and has better stability of magnetic properties.
  • the preparation method has a simple operation process and is more conducive to mass production.
  • the content of each component in alloy A is as follows: Nd, 30-32wt%; Co, 1.0-2.0wt%; Cu, 0.05-0.1wt%; Al, 0.3-0.8wt%; Ga, 0.1 ⁇ 0.15wt%; Zr, 0.12 ⁇ 0.15wt%; B, 0.9 ⁇ 0.92wt% and the rest of Fe;
  • the content of each component in alloy B is as follows: Nd, 40 ⁇ 50wt%; Co, 1.0 ⁇ 1.5wt%; Cu, 5-8wt%; Al, 0.1-0.4wt%; Ga, 5-8wt%; Nb, 0.2-0.3wt%; B, 0.65-0.75wt% and the balance of Fe. Based on this, the coercive force of the magnet is greatly improved, and at the same time, its residual magnetism and magnetic performance stability are also better.
  • the content of each component in the alloy A is as follows: Nd, 32wt%; Co, 1.5wt%; Cu, 0.1wt%; Al, 0.8wt% %; Ga, 0.1wt%; Zr, 0.15wt%; B, 0.9wt% and the rest of Fe;
  • the content of each component in alloy B is as follows: Nd, 50wt%; Co, 1.0wt%; Cu, 6wt%; Al , 0.4wt%; Ga, 6wt%; Nb, 0.3wt%; B, 0.75wt% and the rest of Fe; or, the contents of each component in alloy A are as follows: Nd, 31.5wt%; Co, 1.5wt%; Cu , 0.1wt%; Al, 0.6wt%; Ga, 0.1wt%; Zr, 0.15wt%; wt%; Cu, 5wt%; Al,
  • the average particle size of the mixed powder is 2.8-3.0 ⁇ m, and 50% of the powder in the normal distribution has a particle size smaller than 3.5 ⁇ m.
  • the mixing uniformity of the alloy A and the alloy B is better, and the subsequent forming efficiency can be further improved, thereby improving the stability of the magnetic properties of the magnet.
  • the treatment temperature is 1000-1100° C., and the treatment time is 5-10 hours.
  • the preferred tempering treatment includes a sequential primary tempering treatment and secondary tempering treatment; preferably, the primary tempering treatment During the process, the treatment temperature is 880-920° C., and the treatment time is 2-4 hours; preferably, during the secondary tempering treatment, the treatment temperature is 450-550° C., and the treatment time is 4-6 hours.
  • the preparation method before the pulverization treatment, also includes the steps of mixing alloy A and alloy B and sequentially performing hydrogen crushing treatment and dehydrogenation treatment; preferably, during the dehydrogenation treatment, the treatment temperature is 450-500°C, The treatment time is 5-10 hours; preferably, the hydrogen crushing treatment in the mixed powder can pre-crunch the mixture of alloy A and alloy B, so as to further improve the subsequent powder making efficiency.
  • the hydrogen content in the mixed powder can be better controlled to be 600-1200ppm, and the oxygen content to be 1000-1500ppm.
  • the mixed powder is subjected to compression molding in an orientation magnetic field, and the magnetic field strength of the orientation magnetic field is greater than or equal to 1.4T.
  • the magnetic field strength of the orientation magnetic field is greater than or equal to 1.4T.
  • the present invention also provides a neodymium-iron-boron magnet, which is manufactured by the above-mentioned neodymium-iron-boron magnet preparation method.
  • the coercive force of the NdFeB magnet of the present invention is greatly improved without adding any dysprosium/terbium, and at the same time, the remanence and magnetic properties are more stable and more Facilitate mass production.
  • Remanence (Br) test A permanent magnet non-destructive testing instrument NIM-10000 is used.
  • hydrogen crushing treatment After mixing alloy A and alloy B (the amount of alloy B used is 5% of the weight of alloy A), hydrogen crushing treatment, dehydrogenation treatment and powder making treatment are carried out in sequence to obtain mixed powder.
  • the hydrogen crushing dehydrogenation treatment temperature is 480°C
  • the dehydrogenation treatment time is 6 hours
  • the hydrogen content in the dehydrogenated powder is 980ppm
  • the oxygen content is 1100ppm.
  • the powder after hydrogen crushing is processed by jet milling.
  • the particle size of the mixed powder conforms to the normal distribution.
  • the average particle size is 2.8 ⁇ m, and the particle size of 50% of the powder in the normal distribution is less than 3.25 ⁇ m.
  • Example 2 The only difference from Example 1 is that the amount of alloy B used is 12% of the weight of alloy A. Take a standard sample of ⁇ 10 ⁇ 10(mm) for testing, and the test results are shown in Table 2 below.
  • the hydrogen crushing dehydrogenation treatment temperature is 470°C
  • the dehydrogenation treatment time is 6 hours
  • the hydrogen content in the dehydrogenated powder is 1020ppm
  • the oxygen content is 1060ppm.
  • the powder after hydrogen crushing is processed by jet milling.
  • the particle size of the mixed powder conforms to the normal distribution, with an average particle size of 2.95 ⁇ m, and 50% of the powder particle size in the normal distribution is less than 3.42 ⁇ m.
  • Example 3 The only difference from Example 3 is that the amount of alloy B used is 11% of the weight of alloy A. Take a standard sample of ⁇ 10 ⁇ 10(mm) for testing, and the test results are shown in Table 4 below.
  • the hydrogen crushing dehydrogenation treatment temperature is 490°C
  • the dehydrogenation treatment time is 6 hours
  • the hydrogen content in the dehydrogenated powder is 980ppm
  • the oxygen content is 1050ppm.
  • the powder after hydrogen crushing is processed by jet milling.
  • the particle size of the mixed powder conforms to the normal distribution.
  • the average particle size is 2.87 ⁇ m
  • 50% of the powder particle size in the normal distribution is less than 3.28 ⁇ m.
  • Example 5 The only difference from Example 5 is that the amount of alloy B used is 13% of the weight of alloy A. Take a standard sample of ⁇ 10 ⁇ 10(mm) for testing, and the test results are shown in Table 6 below.
  • Example 1 The difference from Example 1 is that the NdFeB magnets are produced after the raw materials are made into an alloy together. specifically:
  • alloy C By weight (Nd, Pr), 32.14wt%, Co, 1.48wt%, Cu, 0.33wt%, Al, 0.58wt%, Ga, 0.24wt%, Zr, 0.16wt%, B, 0.89wt% and the rest A certain amount of Fe formula is smelted in a vacuum quick-setting furnace to obtain alloy C, and alloy C is subjected to hydrogen crushing, dehydrogenation and powder making to obtain powder.
  • the hydrogen crushing dehydrogenation treatment temperature is 480°C
  • the dehydrogenation treatment time is 6 hours
  • the hydrogen content in the dehydrogenated powder is 980ppm
  • the oxygen content is 1100ppm.
  • the powder after hydrogen crushing is processed by jet milling.
  • the particle size of the mixed powder conforms to the normal distribution.
  • the average particle size is 2.8 ⁇ m, and the particle size of 50% of the powder in the normal distribution is less than 3.25 ⁇ m.
  • the weight ratio of Nd and Pr in both Alloy A and Alloy B is 2:8.
  • Example 3 The difference from Example 3 lies in that the NdFeB magnets are manufactured after the raw materials are jointly made into an alloy. specifically:
  • the powder after hydrogen crushing is processed by jet milling.
  • the particle size of the mixed powder conforms to the normal distribution, with an average particle size of 2.95 ⁇ m, and 50% of the powder particle size in the normal distribution is less than 3.42 ⁇ m.
  • the weight ratio of Nd and Pr in both Alloy A and Alloy B is 2:8.
  • the powder after hydrogen crushing is processed by jet milling.
  • the particle size of the mixed powder conforms to the normal distribution, and its average particle size is 2.87 ⁇ m. In the normal distribution, 50% of the powder particle size is less than 3.28 ⁇ m.
  • the weight ratio of Nd and Pr in both Alloy A and Alloy B is 2:8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种钕铁硼磁体及其制备方法。该制备方法包括以下步骤:S1,将合金A及合金B混合后,进行制粉处理,得到混合粉料;S2,将混合粉料进行压制成型,得到压制制品;S3,将压制制品依次进行烧结处理及回火处理,得到钕铁硼磁体。本发明基于特定组分含量的合金A及合金B作为原材料,经过制粉、成型、烧结及回火多步骤处理后制得钕铁硼磁体。在不添加Dy、Tb的基础上,本发明的钕铁硼磁体矫顽力提升更高,且剩磁及磁性能稳定性也较佳。同时,该制备方法操作过程简单,更利于批量生产。

Description

钕铁硼磁体及其制备方法 技术领域
本发明涉及钕铁硼领域,具体而言,涉及一种钕铁硼磁体及其制备方法。
背景技术
磁性材料的技术指标中,磁能积最为重要。磁能积表示单位体积的磁体产生外磁场的能量大小。磁能积高,意味着电机上可以用较小的磁体输出更大的动力。烧结钕铁硼磁体是当今世界上综合磁性能最强的永磁材料,以其超越于传统永磁材料的优异特性和性价比,广泛的应用在能源、交通、机械、医疗、计算机、家电等领域,在国民经济中扮演重要角色。钕铁硼是一种重要的稀土永磁材料,具有高磁能积、高矫顽力、重量轻、成本低等特性,是迄今为止性价比最高的磁体,获誉“磁王”。钕铁硼的出现,使磁性器件向高效化、小型化、轻型化方向发展。
目前,在工业生产中提高烧结NdFeB磁体矫顽力的主要方法有两种:一是把重稀土Dy/Tb等重稀土直接通过熔炼添加到母合金中,然后采用传统工艺制备磁体,但是直接添加Dy/Tb取代主相Nd 2Fe 14B中的Nd后,生成新相(Nd,Dy) 2Fe 14B和(Nd,Dy) 2Fe 14B的各向异性比主相大,因而可以明显提高烧结磁体的矫顽力。二是晶界扩散工艺,利用晶界扩散工艺制备的磁体样品受限于磁体的厚度。如专利公布号为201810154877.4“一种高性能烧结钕铁硼磁体及其制备方法”、专利公布号为201210419107.0“一种烧结钕铁硼磁体及其制备方法”都未涉及高性能无重稀土钕铁硼磁体生产方法。
Dy、Tb的含量是决定高性能烧结钕铁硼材料成本的关键所在,但近年重稀土价格在提升,如何在少加或者不加Dy、Tb的基础上提高钕铁硼磁体的矫顽力成研究重点。Effectsofpost-sinterannealingonmicrostructureandmagneticpropertiesofNd-Fe-BsinteredmagnetswithNd-Gaintergranularaddition[J].ChinesePhysicalSociety,2021。该学术论文中公开了通过调控合金中各成分的含量(尤其是Nd及Ga的含量)以及氢碎处理温度,从而促使形成的烧结磁铁矫顽力有一定的提高。然而,此篇文献中主要且优先是形成 Re 2T 14B主相,次要形成Re 6Fe 13Ga相,且形成Re 6Fe 13Ga相的条件苛刻,不利于批量生产。而且,通过上述方法形成的烧结磁铁矫顽力提升较小,剩磁及磁性能稳定性较差。
基于此,有必要提供一种钕铁硼磁体,其制备过程更简单、更利于批量生产,且矫顽力提升更高,剩磁性能及磁性能稳定性也较佳。
发明内容
本发明的主要目的在于提供一种钕铁硼磁体及其制备方法,以解决现有技术中在少加或者不加Dy、Tb的基础上提高钕铁硼磁体的矫顽力时,存在的不利于批量生产,且形成的烧结磁铁矫顽力提升较小,剩磁及磁性能稳定性较差的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种钕铁硼磁体的制备方法。制备方法包括以下步骤:S1,将合金A及合金B混合后,进行制粉处理,得到混合粉料;S2,将混合粉料进行压制成型,得到压制制品;S3,将压制制品依次进行烧结处理及回火处理,得到钕铁硼磁体;其中,按重量百分比计,合金A的原料成分包含28~35wt%的Re、64~71.2wt%的T以及0.8~1.0wt%的B;其中,Re为La、Ce、Pr或Nd中的一种或多种,T为Fe、Co、Al、Si、Cu、Nb、Zr和Ga中的一种或多种;按重量百分比计,合金B的原料成分包含40~60wt%的Re、39.2~59.5wt%的T以及0.5~0.8wt%的B;其中,Re为La、Ce、Pr或Nd中的一种或多种,T包含Fe和Ga,同时,T还包含Co、Cu、Nb或Zr中的一种或多种。
进一步地,合金B的用量为合金A重量的1~10%。
进一步地,合金B的原料成分包含40~60wt%的Re、0~2wt%的Co、3~10wt%的Cu、3~10wt%的Ga、0~0.5wt%的Nb和/或Zr、0.5~0.8wt%的B以及余量的Fe。
进一步地,合金A的原料成分包含:Nd、30~32wt%;Co、1.0~2.0wt%;Cu、0.05~0.1wt%;Al、0.3~0.8wt%;Ga、0.1~0.15wt%;Zr、0.12~0.15wt%;B、0.9~0.92wt%及余量的Fe;合金B的原料成分包含:Nd、40~50wt%;Co、1.0~1.5wt%;Cu、5~8wt%;Al、0.1~0.4wt%;Ga、5~8wt%;Nb、0.2~0.3wt%;B、0.65~0.75wt%及余量的Fe。
优选地,合金A的原料成分包含:Nd、32wt%;Co、1.5wt%;Cu、0.1wt%;Al、0.8wt%;Ga、0.1wt%;Zr、0.15wt%;B、0.9wt%及余量的Fe;合金B的原料成分包含:Nd、50wt%;Co、1.0wt%;Cu、6wt%;Al、0.4wt%;Ga、6wt%;Nb、0.3wt%; B、0.75wt%及余量的Fe;或者,合金A的原料成分包含:Nd、31.5wt%;Co、1.5wt%;Cu、0.1wt%;Al、0.6wt%;Ga、0.1wt%;Zr、0.15wt%;B、0.9wt%及余量的Fe;合金B的原料成分包含:Nd、45wt%;Co、1.0wt%;Cu、5wt%;Al、0.1wt%;Ga、5wt%;Nb、0.3wt%;B、0.7wt%及余量的Fe。
进一步地,混合粉料的平均粒度为2.8~3.0μm。
进一步地,烧结处理过程中,处理温度为1000~1100℃,处理时间为5~10h。
进一步地,回火处理包括顺次进行的一级回火处理及二级回火处理;优选地,一级回火处理过程中,处理温度为880~920℃,处理时间为2~4h;优选地,二级回火处理过程中,处理温度为450~550℃,处理时间为4~6h。
进一步地,在制粉处理前,制备方法还包括将合金A及合金B混合并依次进行氢碎处理及脱氢处理的步骤;优选地,脱氢处理过程中,处理温度为450~500℃,处理时间为5~10h;优选地,混合粉料中氢含量为600~1200ppm,氧含量为1000~1500ppm。
进一步地,压制成型过程中,将混合粉料在取向磁场中进行压制成型,取向磁场的磁场强度≥1.4T。
为了实现上述目的,根据本发明的一个方面,提供了一种钕铁硼磁体。钕铁硼磁体由上述的钕铁硼磁体制备方法制得。
本发明基于特定组分含量的合金A及合金B作为原材料,经过制粉、成型、烧结及回火多步骤处理后制得钕铁硼磁体,磁体中Re 6Fe 13Ga相可以更均匀、更平稳地掺杂在Re 2T 14B主相的晶界表面之间,以形成隔离层。进而,在不添加Dy、Tb的基础上,本发明的钕铁硼磁体矫顽力提升更高,且剩磁及磁性能稳定性也较佳。同时,该制备方法操作过程简单,更利于批量生产。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明一种钕铁硼磁体的制备方法流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
正如背景技术部分中所描述的,现有技术中在少加或者不加Dy、Tb的基础上提高钕铁硼磁体的矫顽力时,存在的不利于批量生产,且形成的烧结磁铁矫顽力提升较小,剩磁及磁性能稳定性较差的问题。为了解决这一问题,本发明提供了一种钕铁硼磁体的制备方法,如图1所示,该制备方法包括以下步骤:S1,将合金A及合金B混合后,进行制粉处理,得到混合粉料;S2,将混合粉料进行压制成型,得到压制制品;S3,将压制制品依次进行烧结处理及回火处理,得到钕铁硼磁体;按重量百分比计,合金A的原料成分包含28~35wt%的Re、64~71.2wt%的T以及0.8~1.0wt%的B;其中,Re为La、Ce、Pr或Nd中的一种或多种,T为Fe、Co、Al、Si、Cu、Nb、Zr和Ga中的一种或多种;按重量百分比计,合金B的原料成分包含40~60wt%的Re、39.2~59.5wt%的T以及0.5~0.8wt%的B;其中,Re为La、Ce、Pr或Nd中的一种或多种,T包含Fe和Ga,同时,T还包含Co、Cu、Nb或Zr中的一种或多种。
本发明基于上述特定组分含量的合金A及合金B作为原材料,经过制粉、成型、烧结及回火多步骤处理后制得钕铁硼磁体,磁体中Re 6Fe 13Ga相可以更均匀、更平稳地掺杂在Re 2T 14B主相的晶界表面之间,以形成隔离层。进而,在不添加Dy、Tb的基础上,本发明的钕铁硼磁体矫顽力提升更高,且剩磁及磁性能稳定性也较佳。同时,该制备方法操作过程简单,更利于批量生产。
需说明的是,上述合金A及合金B是以其原料经过常规熔炼制得,具体的冶炼工艺是本领域公知的,比如树脂传递模塑成型工艺(RTM)、真空速凝炉熔炼工艺。
出于进一步提高Re 6Fe 13Ga相的掺杂均匀性及平稳性,优选合金B的用量为合金A重量的1~10%。在此范围内,钕铁硼磁体的矫顽力提升更高,具有更好的磁性能稳定性。且该制备方法操作过程简单,更利于批量生产。
出于进一步提高磁体的矫顽力地目的,优选合金B的原料成分包含40~60wt%的Re、0~2wt%的Co、3~10wt%的Cu、3~10wt%的Ga、0~0.5wt%的Nb和/或Zr、0.5~0.8wt%的B以及余量的Fe。
在一种优选的实施方案中,合金A中各成分含量如下:Nd、30~32wt%;Co、1.0~2.0wt%;Cu、0.05~0.1wt%;Al、0.3~0.8wt%;Ga、0.1~0.15wt%;Zr、0.12~0.15wt%; B、0.9~0.92wt%及余量的Fe;合金B中各成分含量如下:Nd、40~50wt%;Co、1.0~1.5wt%;Cu、5~8wt%;Al、0.1~0.4wt%;Ga、5~8wt%;Nb、0.2~0.3wt%;B、0.65~0.75wt%及余量的Fe。基于此,磁体的矫顽力得到更大幅度地提升,同时,其剩磁及磁性能稳定性也较佳。
为了进一步提高磁体的矫顽力、剩磁及磁性能稳定性,更优选地,合金A中各成分含量如下:Nd、32wt%;Co、1.5wt%;Cu、0.1wt%;Al、0.8wt%;Ga、0.1wt%;Zr、0.15wt%;B、0.9wt%及余量的Fe;合金B中各成分含量如下:Nd、50wt%;Co、1.0wt%;Cu、6wt%;Al、0.4wt%;Ga、6wt%;Nb、0.3wt%;B、0.75wt%及余量的Fe;或者,合金A中各成分含量如下:Nd、31.5wt%;Co、1.5wt%;Cu、0.1wt%;Al、0.6wt%;Ga、0.1wt%;Zr、0.15wt%;B、0.9wt%及余量的Fe;合金B中各成分含量如下:Nd、45wt%;Co、1.0wt%;Cu、5wt%;Al、0.1wt%;Ga、5wt%;Nb、0.3wt%;B、0.7wt%及余量的Fe。
优选地,混合粉料的平均粒度为2.8~3.0μm,正态分布中50%的粉料粒度小于3.5μm。这样,合金A及合金B的混合均匀性更佳,且可以进一步提高后续的成型效率,进而促使磁体的磁性能稳定性更佳。
出于进一步提高钕铁硼磁体的磁性能稳定性的目的,烧结处理过程中,处理温度为1000~1100℃,处理时间为5~10h。
出于进一步平衡Re 6Fe 13Ga相的掺杂稳定性及均匀性的目的,优选回火处理包括顺次进行的一级回火处理及二级回火处理;优选地,一级回火处理过程中,处理温度为880~920℃,处理时间为2~4h;优选地,二级回火处理过程中,处理温度为450~550℃,处理时间为4~6h。
优选地,在制粉处理前,制备方法还包括将合金A及合金B混合并依次进行氢碎处理及脱氢处理的步骤;优选地,脱氢处理过程中,处理温度为450~500℃,处理时间为5~10h;优选地,混合粉料中氢碎处理可以将合金A及合金B的混合物先进行预破碎处理,从而进一步提高后续的制粉效率。氢碎之后基于上述脱氢处理操作,可以更好地控制混合粉料中氢含量为600~1200ppm,氧含量为1000~1500ppm。
优选地,压制成型过程中,将混合粉料在取向磁场中进行压制成型,取向磁场的磁场强度≥1.4T。这样,能够促使压制制得的制品更加紧密,且制品中合金A及合金B的混合更加均匀,进而在后续烧结及回火处理后,磁体的内禀矫顽力提升更大、剩磁更优、最大磁积能更优,且磁体的磁性能更稳定。
本发明还提供了一种钕铁硼磁体,该钕铁硼磁体由上述的钕铁硼磁体制备方法制得。
基于前文的各项原因,本发明的钕铁硼磁体,在未添加任何镝/铽的基础上,其矫顽力得到大幅度地提升,同时,剩磁及磁性能稳定性更佳,且更利于批量生产。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
性能测试:
(1)剩磁性能(Br)测试:采用永磁无损检测仪NIM-10000。
(2)内禀矫顽力(Hcj)测试:采用永磁无损检测仪NIM-10000。
(3)最大磁积能(BH max)测试:采用永磁无损检测仪NIM-10000。
实施例1
按重量含量(Nd,Pr)、31.5wt%,Co、1.5wt%,Cu、0.1wt%,Al、0.6wt%,Ga、0.1wt%,Zr、0.15wt%,B、0.90wt%以及余量的Fe配方通过制得合金A铸片。按重量含量(Nd、Pr)、45wt%,Co、1.0wt%,Cu、5wt%,Al、0.1wt%,Ga、5wt%,Nb、0.3wt%,B、0.70wt%以及余量的Fe配方通过真空速凝炉熔炼工艺制得合金B铸片。合金A和合金B中Nd和Pr的重量比均为2:8。
将合金A及合金B混合(合金B的用量为合金A重量的5%)后,依次进行氢碎处理、脱氢处理及制粉处理,得到混合粉料。其中,氢碎脱氢处理温度为480℃,脱氢处理时间为6h,脱氢后粉料中氢含量为980ppm,氧含量为1100ppm。氢碎后的粉料再经过气流磨制制粉处理,混合粉料的粒度符合正态分布,其平均粒度为2.8μm,正态分布中50%的粉料粒度小于3.25μm。
将混合粉料在≥1.4T的取向磁场中压制成型为60×35×40(mm)的方块毛坯,将毛坯放入高真空烧结炉内,在1070℃下烧结7小时,顺次在900℃一级回火3小时、在510℃二级回火5小时,制得钕铁硼磁体。取Φ10×10(mm)的标样进行测试,测试结果见下表1。
表1
磁体来源 剩磁Br(kGs) 内禀矫顽Hcj(kOe) 最大磁能积(BH)max(MGOe)
实施例1 13.12 21.6 40.75
合金A 13.5 17.2 43.56
合金B 10.2 11.2 29.15
实施例2
和实施例1的区别仅在于合金B的用量为合金A重量的12%。取Φ10×10(mm)的标样进行测试,测试结果见下表2。
表2
磁体来源 剩磁Br(kGs) 内禀矫顽Hcj(kOe) 最大磁能积(BH)max(MGOe)
实施例2 12.65 18.9 37.23
合金A 13.5 17.2 43.56
合金B 10.2 11.2 29.15
实施例3
按重量含量(Nd,Pr)、30wt%,Co、1.0wt%,Cu、0.05wt%,Al、0.3wt%,Ga、0.1wt%,Zr、0.12wt%,B、0.92wt%以及余量的Fe配方通过制得合金A铸片。按重量含量(Nd、Pr)、40wt%,Co、1.0wt%,Cu、8wt%,Al、0.1wt%,Ga、8wt%,Nb、0.2wt%,B、0.65wt%以及余量的Fe配方通过真空速凝炉熔炼制得合金B铸片。合金A和合金B中Nd和Pr的重量比均为2:8。
将合金A及合金B混合(合金B的用量为合金A重量的6%)后,依次进行氢碎处理、脱氢处理及制粉处理,得到混合粉料。其中,氢碎脱氢处理温度为470℃,脱氢处理时间为6h,脱氢后粉料中氢含量为1020ppm,氧含量为1060ppm。氢碎后的粉料再经过气流磨制制粉处理,混合粉料的粒度符合正态分布,其平均粒度为2.95μm,正态分布中50%的粉料粒度小于3.42μm。
将混合粉料在≥1.4T的取向磁场中压制成型为70×50×35(mm)的方块毛坯,将毛坯放入高真空烧结炉内,在1060℃下烧结7小时,顺次在900℃一级回火3小时、在510℃二级回火5小时,制得钕铁硼磁体。取Φ10×10(mm)的标样进行测试,测试结果见下表3。
表3
Figure PCTCN2021116296-appb-000001
实施例4
和实施例3的区别仅在于合金B的用量为合金A重量的11%。取Φ10×10(mm)的标样进行测试,测试结果见下表4。
表4
Figure PCTCN2021116296-appb-000002
实施例5
按重量含量(Nd,Pr)、32wt%,Co、1.5wt%,Cu、0.1wt%,Al、0.8wt%,Ga、0.1wt%,Zr、0.15wt%,B、0.90wt%以及余量的Fe配方通过真空速凝炉熔炼制得合金A铸片。按重量含量(Nd、Pr)、50wt%,Co、1.0wt%,Cu、6wt%,Al、0.4wt%,Ga、6wt%,Nb、0.3wt%,B、0.75wt%以及余量的Fe配方通过真空速凝炉熔炼制得合金B铸片。合金A和合金B中Nd和Pr的重量比均为2:8。
将合金A及合金B混合(合金B的用量为合金A重量的8%)后,依次进行氢碎处理、脱氢处理及制粉处理,得到混合粉料。其中,氢碎脱氢处理温度为490℃,脱氢处理时间为6h,脱氢后粉料中氢含量为980ppm,氧含量为1050ppm。氢碎后的粉料再经过气流磨制制粉处理,混合粉料的粒度符合正态分布,其平均粒度为2.87μm,正态分布中50%的粉料粒度小于3.28μm。
将混合粉料在≥1.4T的取向磁场中压制成型为70×50×35(mm)的方块毛坯,将毛坯放入高真空烧结炉内,在1080℃下烧结7小时,顺次在900℃一级回火3小时、在510℃二级回火5小时,制得钕铁硼磁体。取Φ10×10(mm)的标样进行测试,测试结果见下表5。
表5
Figure PCTCN2021116296-appb-000003
实施例6
和实施例5的区别仅在于合金B的用量为合金A重量的13%。取Φ10×10(mm)的标样进行测试,测试结果见下表6。
表6
Figure PCTCN2021116296-appb-000004
对比例1
与实施例1的区别在于,将各原料共同制为合金后再行制作钕铁硼磁体。具体地:
按重量含量(Nd,Pr)、32.14wt%,Co、1.48wt%,Cu、0.33wt%,Al、0.58wt%,Ga、0.24wt%,Zr、0.16wt%,B、0.89wt%以及余量的Fe配方通过真空速凝炉熔炼制得合金C,将合金C进行氢碎处理、脱氢处理及制粉处理,得到粉料。其中,氢碎脱氢处理温度为480℃,脱氢处理时间为6h,脱氢后粉料中氢含量为980ppm,氧含量为1100ppm。氢碎后的粉料再经过气流磨制制粉处理,混合粉料的粒度符合正态分布, 其平均粒度为2.8μm,正态分布中50%的粉料粒度小于3.25μm。合金A和合金B中Nd和Pr的重量比均为2:8。
将粉料在≥1.4T的取向磁场中压制成型为60×35×40(mm)的方块毛坯,将毛坯放入高真空烧结炉内,在1070℃下烧结7小时,顺次在900℃一级回火3小时、在510℃二级回火5小时,制得钕铁硼磁体。取Φ10×10(mm)的标样进行测试,测试结果见下表7。
对比例2
与实施例3的区别在于,将各原料共同制为合金后再行制作钕铁硼磁体。具体地:
按重量含量(Nd,Pr)、30.57wt%,Co、1.0wt%,Cu、0.5wt%,Al、0.29wt%,Ga、0.55wt%,Zr、0.11wt%,B、0.90wt%以及余量的Fe配方通过真空速凝炉熔炼制得合金D铸片,将合金D进行氢碎出料,依脱氢处理及制粉处理,得到粉料。其中,氢碎脱氢处理温度为470℃,脱氢处理时间为6h,脱氢后粉料中氢含量为1020ppm,氧含量为1060ppm。氢碎后的粉料再经过气流磨制制粉处理,混合粉料的粒度符合正态分布,其平均粒度为2.95μm,正态分布中50%的粉料粒度小于3.42μm。合金A和合金B中Nd和Pr的重量比均为2:8。
将粉料在≥1.4T的取向磁场中压制成型为70×50×35(mm)的方块毛坯,将毛坯放入高真空烧结炉内,在1060℃下烧结7小时,顺次在900℃一级回火3小时、在510℃二级回火5小时,制得钕铁硼磁体。取Φ10×10(mm)的标样进行测试,测试结果见下表7。
对比例3
与实施例5的区别在于,将各原料共同制为合金后再行制作钕铁硼磁体。具体地:
按重量含量(Nd,Pr)、33.33wt%,Co、1.46wt%,Cu、0.54wt%,Al、0.77wt%,Ga、0.54wt%,Zr、0.14wt%,Nb、0.02wt%,B、0.89wt%以及余量的Fe配方通过真空速凝炉熔炼制得合金E铸片,将合金E进行氢碎出料,依脱氢处理及制粉处理,得到粉料。其中,氢碎脱氢处理温度为490℃,脱氢处理时间为6h,脱氢后粉料中氢含 量为980ppm,氧含量为1050ppm。氢碎后的粉料再经过气流磨制制粉处理,混合粉料的粒度符合正态分布,其平均粒度为2.87μm,正态分布中50%的粉料粒度小于3.28μm。合金A和合金B中Nd和Pr的重量比均为2:8。
将粉料在≥1.4T的取向磁场中压制成型为70×50×35(mm)的方块毛坯,将毛坯放入高真空烧结炉内,在1080℃下烧结7小时,顺次在900℃一级回火3小时、在510℃二级回火5小时,制得钕铁硼磁体。取Φ10×10(mm)的标样进行测试,测试结果见下表7。
表7
Figure PCTCN2021116296-appb-000005
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种钕铁硼磁体的制备方法,其特征在于,所述制备方法包括以下步骤:
    S1,将合金A及合金B混合后,进行制粉处理,得到混合粉料;
    S2,将所述混合粉料进行压制成型,得到压制制品;
    S3,将所述压制制品依次进行烧结处理及回火处理,得到所述钕铁硼磁体;
    其中,
    按重量百分比计,所述合金A的原料成分包含28~35wt%的Re、64~71.2wt%的T以及0.8~1.0wt%的B;其中,Re为La、Ce、Pr或Nd中的一种或多种,T为Fe、Co、Al、Si、Cu、Nb、Zr和Ga中的一种或多种;
    按重量百分比计,所述合金B的原料成分包含40~60wt%的Re、39.2~59.5wt%的T以及0.5~0.8wt%的B;其中,Re为La、Ce、Pr或Nd中的一种或多种,T包含Fe和Ga,同时,T还包含Co、Cu、Nb或Zr中的一种或多种。
  2. 根据权利要求1所述的制备方法,其特征在于,所述合金B的用量为所述合金A重量的1~10%。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述合金B的原料成分包含40~60wt%的Re、0~2wt%的Co、3~10wt%的Cu、3~10wt%的Ga、0~0.5wt%的Nb和/或Zr、0.5~0.8wt%的B以及余量的Fe。
  4. 根据权利要求1至3中任一项所述的制备方法,其特征在于,所述合金A的原料成分包含:Nd、30~32wt%;Co、1.0~2.0wt%;Cu、0.05~0.1wt%;Al、0.3~0.8wt%;Ga、0.1~0.15wt%;Zr、0.12~0.15wt%;B、0.9~0.92wt%及余量的Fe;所述合金B的原料成分包含:Nd、40~50wt%;Co、1.0~1.5wt%;Cu、5~8wt%;Al、0.1~0.4wt%;Ga、5~8wt%;Nb、0.2~0.3wt%;B、0.65~0.75wt%及余量的Fe;优选地,
    所述合金A的原料成分包含:Nd、32wt%;Co、1.5wt%;Cu、0.1wt%;Al、0.8wt%;Ga、0.1wt%;Zr、0.15wt%;B、0.9wt%及余量的Fe;所述合金B的原料成分包含:Nd、50wt%;Co、1.0wt%;Cu、6wt%;Al、0.4wt%;Ga、6wt%; Nb、0.3wt%;B、0.75wt%及余量的Fe;或者,
    所述合金A的原料成分包含:Nd、31.5wt%;Co、1.5wt%;Cu、0.1wt%;Al、0.6wt%;Ga、0.1wt%;Zr、0.15wt%;B、0.9wt%及余量的Fe;所述合金B的原料成分包含:Nd、45wt%;Co、1.0wt%;Cu、5wt%;Al、0.1wt%;Ga、5wt%;Nb、0.3wt%;B、0.7wt%及余量的Fe。
  5. 根据权利要求1至4中任一项所述的制备方法,其特征在于,所述混合粉料的平均粒度为2.8~3.0μm。
  6. 根据权利要求1至4中任一项所述的制备方法,其特征在于,所述烧结处理过程中,处理温度为1000~1100℃,处理时间为5~10h。
  7. 根据权利要求1至6中任一项所述的制备方法,其特征在于,所述回火处理包括顺次进行的一级回火处理及二级回火处理;优选地,所述一级回火处理过程中,处理温度为880~920℃,处理时间为2~4h;优选地,所述二级回火处理过程中,处理温度为450~550℃,处理时间为4~6h。
  8. 根据权利要求1至7中任一项所述的制备方法,其特征在于,在所述制粉处理前,所述制备方法还包括将所述合金A及所述合金B混合并依次进行氢碎处理及脱氢处理的步骤;优选地,所述脱氢处理过程中,处理温度为450~500℃,处理时间为5~10h;优选地,所述混合粉料中氢含量为600~1200ppm,氧含量为1000~1500ppm。
  9. 根据权利要求1至7中任一项所述的制备方法,其特征在于,所述压制成型过程中,将所述混合粉料在取向磁场中进行压制成型,所述取向磁场的磁场强度≥1.4T。
  10. 一种钕铁硼磁体,其特征在于,所述钕铁硼磁体由权利要求1至9中任一项所述的钕铁硼磁体制备方法制得。
PCT/CN2021/116296 2021-06-10 2021-09-02 钕铁硼磁体及其制备方法 WO2022257285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21942136.9A EP4145475A4 (en) 2021-06-10 2021-09-02 NEODYMIUM-IRON-BORON MAGNET AND PREPARATION METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110651274.7A CN115472408A (zh) 2021-06-10 2021-06-10 钕铁硼磁体及其制备方法
CN202110651274.7 2021-06-10

Publications (1)

Publication Number Publication Date
WO2022257285A1 true WO2022257285A1 (zh) 2022-12-15

Family

ID=84364754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116296 WO2022257285A1 (zh) 2021-06-10 2021-09-02 钕铁硼磁体及其制备方法

Country Status (3)

Country Link
EP (1) EP4145475A4 (zh)
CN (1) CN115472408A (zh)
WO (1) WO2022257285A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103442A (zh) * 2013-02-28 2013-05-15 包头稀土研究院 主辅合金法制备钕铁硼的方法
CN105575577A (zh) * 2016-03-04 2016-05-11 四川大学 烧结富铈稀土永磁材料及其制备方法
CN105931784A (zh) * 2016-06-30 2016-09-07 成都八九九科技有限公司 一种耐腐蚀含铈稀土永磁材料及其制备方法
CN110431646A (zh) * 2017-03-29 2019-11-08 日立金属株式会社 R-t-b系烧结磁体的制造方法
CN111378907A (zh) * 2020-04-08 2020-07-07 甘肃稀土新材料股份有限公司 一种提高钕铁硼永磁材料矫顽力的辅助合金及应用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103442A (zh) * 2013-02-28 2013-05-15 包头稀土研究院 主辅合金法制备钕铁硼的方法
CN105575577A (zh) * 2016-03-04 2016-05-11 四川大学 烧结富铈稀土永磁材料及其制备方法
CN105931784A (zh) * 2016-06-30 2016-09-07 成都八九九科技有限公司 一种耐腐蚀含铈稀土永磁材料及其制备方法
CN110431646A (zh) * 2017-03-29 2019-11-08 日立金属株式会社 R-t-b系烧结磁体的制造方法
CN111378907A (zh) * 2020-04-08 2020-07-07 甘肃稀土新材料股份有限公司 一种提高钕铁硼永磁材料矫顽力的辅助合金及应用方法

Also Published As

Publication number Publication date
CN115472408A (zh) 2022-12-13
EP4145475A4 (en) 2024-06-05
EP4145475A1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
WO2020015389A1 (zh) 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法
CN103985533B (zh) 共晶合金氢化物掺杂提高烧结钕铁硼磁体矫顽力的方法
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
WO2016086398A1 (zh) 一种高矫顽力烧结钕铁硼的制备方法及产品
TWI751788B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
TWI738592B (zh) R-t-b系燒結磁體及其製備方法
JP7214044B2 (ja) R-t-b系永久磁石材料、原料組成物、製造方法、並びに応用
TW202127474A (zh) 釹鐵硼永磁材料、製備方法、應用
JP2022094920A (ja) 焼結磁性体の製造方法
JP2019535121A (ja) 高温耐性ネオジム・鉄・ボロン磁石及びその製造方法
CN111378907A (zh) 一种提高钕铁硼永磁材料矫顽力的辅助合金及应用方法
WO2021169906A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN110648813B (zh) 一种r-t-b系永磁材料、原料组合物、制备方法、应用
CN112992463A (zh) 一种r-t-b磁体及其制备方法
CN112086255A (zh) 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法
JP2023177262A (ja) 希土類磁性体及びその製造方法
WO2022257285A1 (zh) 钕铁硼磁体及其制备方法
EP4156213A1 (en) A high temperature resistant magnet and a method thereof
TWI806462B (zh) 一種r-t-b磁體及其製備方法
WO2022193819A1 (zh) 一种r-t-b磁体及其制备方法
EP3975212A1 (en) A method for preparation of a sintered type ndfeb permanent magnet with an adjusted grain boundary
CN113012925B (zh) 一种高磁性低稀土含量的钕铁硼磁体的制备方法
TW202238633A (zh) 一種r-t-b系永磁材料及其製備方法和應用
CN113205939B (zh) 一种含锆烧结钕铁硼磁体及其制备方法
US20240127993A1 (en) AUXILIARY ALLOY CASTING PIECE, HIGH-REMANENCE AND HIGH-COERCIVE FORCE NdFeB PERMANENT MAGNET, AND PREPARATION METHODS THEREOF

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022572632

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17928623

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021942136

Country of ref document: EP

Effective date: 20221130

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE