WO2022257132A1 - 一种动力驱动系统、电动汽车、降低减速器产生的噪声的方法 - Google Patents

一种动力驱动系统、电动汽车、降低减速器产生的噪声的方法 Download PDF

Info

Publication number
WO2022257132A1
WO2022257132A1 PCT/CN2021/099821 CN2021099821W WO2022257132A1 WO 2022257132 A1 WO2022257132 A1 WO 2022257132A1 CN 2021099821 W CN2021099821 W CN 2021099821W WO 2022257132 A1 WO2022257132 A1 WO 2022257132A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
reducer
excitation
harmonic
Prior art date
Application number
PCT/CN2021/099821
Other languages
English (en)
French (fr)
Inventor
梅雪钰
唐正义
卢春宏
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202180069417.1A priority Critical patent/CN116472193A/zh
Priority to PCT/CN2021/099821 priority patent/WO2022257132A1/zh
Publication of WO2022257132A1 publication Critical patent/WO2022257132A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/12Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of electric gearing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting

Definitions

  • the present application relates to the field of motor control, in particular to a power drive system, an electric vehicle, and a method for reducing noise generated by a reducer.
  • the power drive system is the power source of electric vehicles and an indispensable and important component.
  • the noise, vibration, and harshness (NVH) of the power drive system affect the user experience. For example, a power drive system with poor NVH performance will generate a lot of noise when driving an electric vehicle, which will affect the experience of users riding an electric vehicle.
  • the power drive system with better NVH performance produces less noise when driving an electric vehicle, and the user experience of riding an electric vehicle is better.
  • a power drive system includes a motor drive motor and a reducer.
  • the noise generated by the power drive system when driving an electric vehicle usually includes reducer noise and motor noise.
  • the noise of the reducer is mainly generated when the gears mesh.
  • the generated excitation is usually related to the number of gear teeth, and the whistling noise can be reduced by modifying the shape of the gear tooth surface. Due to the limitations of the power drive system structure, manufacturing technology, and cost, the effect of reducing howling noise by modifying the tooth surface is limited.
  • the present application provides a power drive system, an electric vehicle, and a method for reducing noise generated by a reducer, so as to reduce the overall noise level of the drive system, reduce the howling noise generated by the reducer, and improve the NVH performance of the drive system.
  • the present application provides a power drive system, which mainly includes a motor, a reducer and a motor drive device.
  • the motor is connected to the speed reducer, and the motor driving device is connected to the motor.
  • the motor drive device is configured to adjust the first current input to the motor based on the direct-axis voltage and the quadrature-axis voltage of the preset current, wherein the harmonic current component of the first current includes the preset current;
  • the motor is used to output torque under the driving of the first current, and the torque includes the driving torque generated under the driving of the fundamental current component of the first current and the driving torque due to the preset current
  • the harmonic torque generated under driving, the harmonic torque is used to make the motor generate the first excitation;
  • the reducer is used to operate under the action of the driving torque, when the reducer is running Gear meshing produces a second excitation; wherein said first excitation is used to partially or fully counteract said second excitation.
  • the first current provided by the motor drive device to the motor may be a periodic non-sinusoidal current.
  • the first current may include a fundamental current component and a harmonic current component.
  • the motor driving device can adjust the first current by using the subsequent voltage of the preset current and the quadrature axis voltage, so that the harmonic current component of the first current input to the motor includes the preset current.
  • the motor generates harmonic torque under the drive of the preset current.
  • the harmonic torque is used to make the motor generate the first excitation, and the first excitation interacts with the second excitation generated when the reducer gear meshes, which can partially or completely offset the second excitation, that is, the first excitation can have part or all
  • the effect of effectively suppressing the specific order noise of the reducer that is, howling noise
  • the Fourier series expansion form of the first current includes the fundamental current component and the harmonic current component having a frequency greater than that of the fundamental current component.
  • the first current may be a periodic non-sinusoidal wave
  • the Fourier series expansion form of the first current may include a fundamental current component and a harmonic current component.
  • the fundamental current component is a sine wave component with the same frequency as the first current
  • the harmonic current component may be a sine wave component with a frequency higher than that of the fundamental current component.
  • the preset current is included in the harmonic current component, that is, the preset current component is included in the harmonic current component.
  • the motor drive device may pre-store the corresponding relationship between the operating parameters and the harmonic current parameters.
  • the motor drive device can obtain the first operating parameters of the motor, such as speed, torque, current, voltage, etc., and search for the harmonic current parameters corresponding to the first operating parameters from the corresponding relationship between the operating parameters and the harmonic current parameters.
  • the current parameter corresponding to the first operating parameter can be used to determine the quadrature-axis voltage and the direct-axis voltage of the preset current.
  • the corresponding relationship between the pre-stored operating parameters of the motor drive device and the harmonic current parameters may be determined according to simulation results or experimental results.
  • the motor operating conditions are different, and the noise generated by the reducer is usually different.
  • the operating parameters of the motor can represent the operating conditions of the motor.
  • the motor drive device can describe the corresponding relationship with the harmonic current parameters during operation, and search for the current parameters corresponding to the obtained motor operation parameters.
  • the found current parameters can be used to determine the direct-axis voltage and the quadrature-axis voltage to the preset current, so as to adjust the harmonic current component of the first current input to the motor to include the preset current, so that the first excitation generated by the motor can be
  • the second excitation generated by the reducer under the current operating condition of the motor is offset to realize dynamic noise reduction of the noise generated by the reducer.
  • the second excitation is generated when the first gear in the reducer meshes, and the first gear is the gear in the reducer connected to the motor; the found
  • the current parameters corresponding to the first operating parameters include a first amplitude set, a first order, an electrical angular velocity of the motor, and a first phase angle relative to a reference electrical angle of the motor, the first amplitude
  • the set includes one or more of direct axis positive sequence voltage amplitude, direct axis negative sequence voltage amplitude, quadrature axis positive sequence voltage amplitude, and quadrature axis negative sequence voltage amplitude, wherein the first order is the first A ratio of a quantity to a second quantity, the first quantity being the number of teeth of the first gear, the second quantity being the number of magnetic pole pairs included in the rotor in the motor; the order of the first excitation is the first quantity.
  • the motor drive device injects a first current with a harmonic current component including a preset current to the motor, so that the first excitation generated by the motor can cancel the second excitation generated when the first gear meshes.
  • the parameters used to determine the direct-axis voltage and quadrature-axis voltage of the preset current may include positive sequence or negative sequence voltage amplitude, order, electrical angular velocity, phase angle, etc. in the dimension of electrical angle of the motor.
  • the current input to the motor by the motor drive device includes the target harmonic current, which can cause the motor to generate the first excitation of the first order, that is, the order of the first excitation is the same as the number of teeth of the first gear, that is, the order of the second excitation same.
  • the motor drive device is further configured to: determine the direct-axis voltage and the quadrature-axis voltage based on the harmonic current parameter corresponding to the first operating parameter by using the following formula:
  • U d1 is the described direct-axis voltage at time t
  • U q1 is the described quadrature-axis voltage at time t as the quadrature-axis voltage
  • a d11 is the direct-axis positive-sequence voltage amplitude
  • a d12 is the direct-axis negative-sequence voltage amplitude Value
  • a q11 is the quadrature axis positive sequence voltage amplitude
  • a q12 is the quadrature axis negative sequence voltage amplitude
  • k is the first order
  • ⁇ 1 is the electrical angular velocity of the motor, is the first phase angle relative to the reference electrical angle of the motor.
  • the target harmonic current injected into the motor by the motor drive device may be the k ⁇ 1st current harmonic.
  • the motor drive device inputs current including k ⁇ 1 current harmonics to the motor, so that the output torque of the motor includes the harmonic torque of the first order, and the resonance torque of the first order can make the motor generate the first
  • the order of magnitude of the first excitation partially or completely suppresses the second excitation produced by the first gear.
  • the second excitation is generated when the first gear in the reducer meshes, and the first gear is the gear in the reducer connected to the motor; the found
  • the harmonic current parameters corresponding to the first operating parameters include a second set of amplitudes, a second order, a mechanical angular velocity of the motor, and a second phase angle relative to a reference mechanical angle of the motor, wherein the The second order is the number of teeth of the first gear; the order of the first excitation is the first number.
  • the motor drive device injects a first current with a harmonic current component including a preset current to the motor, so that the first excitation generated by the motor can cancel the second excitation generated when the first gear meshes.
  • the current parameters used to determine the direct-axis voltage and the quadrature-axis voltage of the preset current may include amplitude, order, mechanical angular velocity, phase angle, etc. in the mechanical angle dimension of the motor.
  • the current input to the motor by the motor drive device includes the target harmonic current, which can cause the motor to generate the first excitation of the first order, that is, the order of the first excitation is the same as the number of teeth of the first gear, that is, the order of the second excitation same.
  • the motor drive device is further configured to determine the direct-axis voltage and the quadrature-axis voltage based on the harmonic current parameter corresponding to the first operating parameter by using the following formula:
  • U d2 is the direct-axis voltage at time t
  • U q2 is the quadrature-axis voltage at time t
  • a d21 is the direct-axis positive-sequence voltage amplitude
  • a d22 is the direct-axis negative-sequence voltage amplitude
  • a q21 is the positive sequence voltage amplitude of the quadrature axis
  • Aq22 is the negative sequence voltage amplitude of the quadrature axis
  • z is the second order, and is also the number of teeth of the input shaft gear
  • ⁇ 1 is the mechanical angular velocity of the motor, is the second phase angle relative to the reference electrical angle of the motor.
  • the target harmonic current injected into the motor by the motor drive device may be the z ⁇ nth current harmonic, where n is the current harmonic in the motor The number of pole pairs included in the rotor.
  • the motor drive device inputs current including z ⁇ n-order current harmonics to the motor, so that the output torque of the motor includes the first-order harmonic torque, and the z-order resonant torque can make the motor generate the z-order harmonic torque
  • One excitation partially or completely suppresses the second excitation produced by the first gear.
  • the present application provides an electric vehicle, which may include wheels, axle shafts, and the power drive system in the first aspect and any possible manner thereof.
  • the power drive system can be connected to the wheel through the half shaft to drive the electric vehicle. Due to the better NVH performance of the power drive system and the lower noise level of the reducer, the electric vehicle has better NVH performance.
  • the present application provides a method for reducing noise generated by a reducer in a power drive system, and the method can be applied to the above-mentioned motor drive device in the power drive system.
  • the effect of the corresponding technical solution in the third aspect can refer to the technical effect that can be obtained by the corresponding solution in the first aspect, and the repeated parts will not be described in detail.
  • the method for reducing the noise generated by the reducer in the power drive system mainly includes: the motor drive device adjusts the first current input to the motor based on the direct-axis voltage and the quadrature-axis voltage of the preset current, wherein the first current
  • the harmonic current component includes the preset current; wherein, the first current is used to drive the motor output torque, and the torque includes the fundamental current component driven by the first current.
  • the drive torque and the harmonic torque generated under the driving of the preset current, the harmonic torque is used to make the motor generate the first excitation; the drive torque is used to drive the reducer to run , the first excitation is used to partially or completely offset the second excitation generated by the speed reducer when the running gear meshes.
  • the Fourier series expansion form of the first current includes the fundamental current component and the harmonic current component having a frequency greater than that of the fundamental current component.
  • the motor drive device may also obtain the first operating parameter of the motor; from the correspondence relationship between the preset operating parameter and the harmonic current parameter and The first operating parameter is to search for a current parameter corresponding to the first operating parameter, and the current parameter corresponding to the first operating parameter is used to determine the quadrature axis voltage and the direct axis voltage of the preset current.
  • the second excitation is generated when the first gear in the reducer meshes, and the first gear is the gear in the reducer connected to the motor; the found
  • the current parameters corresponding to the first operating parameters include a first amplitude set, a first order, an electrical angular velocity of the motor, and a first phase angle relative to a reference electrical angle of the motor, wherein the first The first order is the ratio of the first number to the second number, the first number is the number of teeth of the first gear, and the second number is the number of magnetic pole pairs included in the rotor in the motor;
  • the order of an excitation is the first quantity.
  • the motor drive device may determine the direct-axis voltage and the quadrature-axis voltage based on the harmonic current parameter corresponding to the first operating parameter by using the following formula:
  • U d1 is the described direct-axis voltage at time t
  • U q1 is the described quadrature-axis voltage at time t as the quadrature-axis voltage
  • a d11 is the direct-axis positive-sequence voltage amplitude
  • a d12 is the direct-axis negative-sequence voltage amplitude Value
  • a q11 is the quadrature axis positive sequence voltage amplitude
  • a q12 is the quadrature axis negative sequence voltage amplitude
  • k is the first order
  • ⁇ 1 is the electrical angular velocity of the motor, is the first phase angle relative to the reference electrical angle of the motor.
  • the second excitation is generated when the first gear in the reducer meshes, and the first gear is the gear in the reducer connected to the motor; the found
  • the current parameters corresponding to the first operating parameters include a second amplitude set, a second order, a mechanical angular velocity of the motor, and a second phase angle relative to a reference mechanical angle of the motor, wherein the first The second order is the number of teeth of the first gear; the order of the first excitation is the first number.
  • the motor drive device may determine the direct-axis voltage and the quadrature-axis voltage based on the harmonic current parameter corresponding to the first operating parameter by using the following formula:
  • U d2 is the direct-axis voltage at time t
  • U q2 is the quadrature-axis voltage at time t
  • a d21 is the direct-axis positive-sequence voltage amplitude
  • a d22 is the direct-axis negative-sequence voltage amplitude
  • a q21 is the positive sequence voltage amplitude of the quadrature axis
  • Aq22 is the negative sequence voltage amplitude of the quadrature axis
  • z is the second order, and is also the number of teeth of the input shaft gear
  • ⁇ 1 is the mechanical angular velocity of the motor, is the second phase angle relative to the reference electrical angle of the motor.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium having a computer for executing the method described in the above-mentioned third aspect or any possible design of the third aspect program.
  • the embodiment of the present application also provides a computer program product, including a computer program.
  • a computer program product including a computer program.
  • the computer program When the computer program is executed, it can realize the above-mentioned third aspect or any possible design of the third aspect. method.
  • FIG. 1 is a schematic structural diagram of a power drive system provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the suppression process of howling noise by harmonic torque
  • Fig. 3 is a schematic diagram of the control process of the motor drive device
  • Fig. 4 (a) is a schematic diagram of the target harmonic injected into the motor by a motor driving device
  • Fig. 4 (b) is a schematic diagram of the target harmonic injected into the motor by a motor driving device
  • Figure 5 is a schematic diagram of the 23rd-order noise change in the NVH test of the power drive system before and after the motor drive device injects the target harmonic into the motor;
  • Figure 6(a) is a schematic diagram of the order near the carrier of the NVH Campbell diagram of the power drive system before the motor drive device injects the target harmonic into the motor;
  • Figure 6(b) is a schematic diagram of the order near the carrier of the NVH Campbell diagram of the power drive system after the motor drive device injects the target harmonic into the motor;
  • Figure 6(c) is a schematic diagram of the NVH Campbell diagram carrier of the power drive system after the motor drive device injects the target harmonic into the motor in a part of the speed range;
  • Fig. 7 is a schematic diagram of the 14th-order noise change of the power drive system NVH test before and after the motor drive device injects the target harmonic into the motor;
  • Fig. 8 is a schematic diagram of the total noise change of the NVH test of the power drive system before and after the motor drive device injects the target harmonic into the motor;
  • FIG. 9 is a schematic flowchart of a method for reducing noise generated by a reducer in a power drive system provided by an embodiment of the present application.
  • the cross-section of the rotor core of the motor is a circle, and its spatial geometric angle is 360°. From an electromagnetic point of view, a pair of N poles and S poles constitutes a magnetic field cycle, and the direction of the current changes once the conductor passes through a pair of magnetic poles, so the electrical angle defining a pair of magnetic poles is 360°. If the number of magnetic pole pairs of the motor is p, the electrical angle corresponding to a 360° revolution of the motor is p ⁇ 360. In this application, the initial electrical angle of the motor is a reference electrical angle. The initial electrical angle of the motor can be determined according to the initial position of the N pole of the rotor in the motor relative to the phase axis of the A phase.
  • the mechanical angle is a spatial geometric angle.
  • the mechanical angle of rotation is 360°.
  • the rotor of the motor can form a circle when it rotates once.
  • the reference mechanical angle may be an angle between a specified N pole of the rotor and a specified direction of the stator.
  • the mechanical angular velocity can describe the speed at which the motor rotor rotates, that is, the speed at which the rotor makes circular motion.
  • the mechanical angle that the rotor rotates within the time ⁇ t is ⁇ , and the mechanical angular velocity of the rotor is ⁇ / ⁇ t.
  • phase sequence In a three-phase power system, taking the positive half-wave amplitude as an example, the sequence in which the voltage or current of each phase reaches its maximum value in sequence is called the phase sequence.
  • the order in which the positive phase sequence reaches the maximum value is A phase, B phase and C phase.
  • asymmetrical situations can occur in a system. Any group of asymmetric three-phase sinusoidal voltage or current vectors can be decomposed into three-phase symmetrical components, one group is positive sequence components, and the phase sequence is consistent with the phase sequence of the original asymmetrical sinusoidal vector, that is, clockwise A phase, B phase, In the sequence of phase C, each phase differs by 120°.
  • One group is the negative sequence component, and the phase sequence is opposite to the original sine quantity, that is, clockwise A phase, C phase, B phase, and the difference between each phase is 120°.
  • the other group is the zero-sequence component, and the phases of the three phases are the same.
  • the positive sequence is in the order of clockwise A-B-C.
  • the A phase is fixed, the B phase is rotated 120° counterclockwise, and the C phase is rotated 120° clockwise.
  • the negative sequence is in the order of counterclockwise A-C-B.
  • the A phase is fixed, the B phase is rotated 120° clockwise, and the C phase is rotated 120° counterclockwise.
  • connection involved in this application describes the connection relationship between two objects, and can represent two connection relationships.
  • the present application provides a power drive system.
  • the power drive system may include a motor, a reducer, and a motor drive device.
  • the motor driving device is connected with the motor and can drive the motor.
  • the motor drive device can also be called a controller, which can convert the DC power provided by the power supply for the power drive system into AC power and drive the motor.
  • the motor drive device can adjust the current used to drive the motor, so as to adjust the torque output by the motor.
  • An electric motor may include a motor shaft, a stator, and a rotor.
  • the motor drive can input alternating current to the stator.
  • the stator generates a rotating magnetic field under the action of alternating current.
  • the rotor is arranged on the motor shaft, and the rotor rotates under the action of the rotating magnetic field, which also drives the motor shaft to rotate, which can generate a driving torque, which can make the reducer run.
  • the motor can be a three-phase motor.
  • a reducer can include one or more pairs of gears and an input shaft connected to one gear.
  • the reducer is connected to the motor drive.
  • the motor and the input shaft of the reducer are connected by splines.
  • the rotation of the motor shaft can drive the input shaft of the reducer to rotate, and the gear connected with the input shaft can be rotated.
  • the rotation of the motor shaft can directly drive the rotation of the gear connected to the input shaft.
  • the gear connected to the input shaft in the reducer is called the input shaft gear, or the primary gear.
  • a reducer may include an output shaft.
  • the output shaft can be connected with the actuator.
  • the reducer can transmit the torque output by the motor to the actuator, or match the speed of the motor and the actuator.
  • the reducer can increase torque, reduce speed, change the direction of torque transmission and other functions.
  • the input shaft gear can mesh with other gears (eg, gear a as shown in Figure 1).
  • gear a as shown in Figure 1
  • the number of teeth of gear a is more than that of the input shaft gear.
  • the speed of gear a is lower than that of the input shaft gear, which can realize mechanical reduction of speed.
  • the input shaft gear and gear a can be recorded as a pair of gears.
  • gear a can be connected with the output shaft.
  • the reducer includes multiple pairs of gears.
  • a pair of gears includes input shaft gear and gear a.
  • Another pair of gears may include gear b and gear c.
  • Gear a is connected to gear b
  • gear b can mesh with gear c
  • gear c can be connected to the output shaft.
  • the rotation of gear a can drive the rotation of gear b
  • the gear c also rotates due to the meshing with gear b, which can make the output shaft connected to gear c rotate.
  • the whistling noise generated when each pair of gears mesh in the reducer is a periodic excitation.
  • the human ear can hear most of the howling noise.
  • the whistling noise generated when the input shaft gear meshes in the reducer is closely related to the output torque and/or speed of the motor. For example, when the motor outputs different torques and/or rotational speeds, the energy of the whistling noise generated by the input shaft gear of the reducer is different.
  • the order of the periodic excitation generated when the reducer input shaft gear meshes is fixed, and the order of the excitation is the same as the number of teeth of the input shaft gear.
  • the motor drive device can adjust the first current input (or injected) to the motor so that the harmonic current component of the first current (in the frequency domain) input to the motor Include preset current.
  • the waveform of the first current provided by the motor driving device to the motor is a periodic non-sinusoidal wave.
  • the Fourier series expansion form of the first current can be obtained by performing Fourier series decomposition on the first current.
  • the Fourier expanded form of the first current typically a periodic non-sinusoidal wave
  • the fundamental current component refers to a current component having the same frequency as that of the first current.
  • the frequency of the first current may be the fundamental frequency or the fundamental frequency.
  • the harmonic current component is a current component with a frequency higher than the fundamental frequency, and the harmonic current component may include current components with multiple frequencies.
  • the current component whose frequency is n times the fundamental frequency (n is an integer) can be called nth harmonic current, or nth harmonic.
  • the motor driving device can adjust the first current input to the motor, and can adjust the harmonic current component of the first current so that the harmonic current component of the first current includes a preset current, or in other words, make the first
  • the harmonic current component of the current includes a preset harmonic current (target harmonic, target harmonic current or target harmonic current component).
  • the waveform of the harmonic current component and the waveform of the fundamental current component superimposed are the same as the waveform of the first current input by the motor drive device to the motor, where the harmonic current component includes the target harmonic, which can also be called Injects target harmonics into the motor.
  • the motor drive device uses the adjusted first current to drive the motor, so that the output torque of the motor includes the harmonic torque generated by the drive of the target harmonic current.
  • the motor can generate excitation (referred to as the first excitation for easy distinction), and the order of the first excitation is the same as the number of teeth of the input shaft gear.
  • the first excitation can offset part or all of the second excitation, that is, it can offset the whistling noise generated by the input shaft gear.
  • the first excitation can reduce (weaken) or suppress the noise generated when the gears of the input shaft of the reducer are engaged.
  • the first current waveform input by the motor drive device to the motor includes a fundamental current waveform and a noise harmonic current waveform.
  • the noise harmonic current may be generated when the motor drive device converts direct current into alternating current.
  • the motor produces torque fluctuations.
  • the output torque of the motor includes driving torque and torque ripple (or torque ripple).
  • the drive torque can be used to drive the reducer. Torque fluctuations will cause the motor to vibrate and generate noise (which can be understood as the noise generated by the motor itself).
  • the harmonics of the first current input to the motor may include target harmonics, or the harmonic current components of the first current include target harmonic currents.
  • the harmonic current components of the currents input to the respective phases of the motor may each include the target harmonic current.
  • the motor output torque may include drive torque, torque ripple, and harmonic torque.
  • the harmonic torque is generated by the motor under the action of the target harmonic, and the harmonic torque can be used to make the motor generate the first excitation, and the order of the first excitation can be the same as that of the second excitation.
  • the motor drive device can also inject other harmonics (such as second harmonics) into the motor to suppress the noise harmonics in the input current to the motor, so as to weaken the torque ripple output by the motor, thereby suppressing the The noise generated by the vibration of the motor caused by the torque fluctuation (that is, the noise generated by the motor itself).
  • other harmonics such as second harmonics
  • the thin solid line is the second excitation generated by the reducer
  • the dotted line shows the first excitation generated by the motor under the action of harmonic torque.
  • the first excitation generated by the motor can suppress (offset, reduce, or weaken) part or all of the howling noise
  • the thick solid line shows the interaction between the first excitation and the second excitation subsequent incentives.
  • the energy of the excitation shown by the thick solid line in Fig. 2 is small. It can be seen that the harmonic torque generated by the motor driven by the target harmonic current makes the first excitation generated by the motor suppress the howling noise caused by the second excitation, thereby improving the overall NVH performance of the power drive system.
  • the second excitation generated by the input shaft gear of the reducer is different, that is, the noise generated by the reducer is also different.
  • the order of the second excitation generated by the input shaft gear of the reducer is the same, and the number of teeth of the input shaft gear is the same.
  • the operating parameters of the motor can be used to characterize the operating state of the motor.
  • the operating parameters of the motor may include, but are not limited to, parameters such as rotational speed and torque. The following takes the operating parameters of the motor including the rotational speed and/or torque as an example.
  • the motor drive device can cause the motor to generate the first excitation for suppressing the second excitation.
  • the motor drive device may pre-store the corresponding relationship between different rotational speeds and/or torques output by the motor and parameters of the target harmonic current.
  • the power drive system may include a rotational speed sensor for acquiring the output rotational speed of the motor, and providing the acquired rotational speed to the motor drive device for storage or use by the motor drive device.
  • the corresponding target harmonic current parameter is the parameter of the target harmonic a.
  • the corresponding target harmonic current parameter is the parameter of the target harmonic b.
  • the motor driving device may include a current acquisition module and a voltage acquisition module. The current acquisition module and the voltage acquisition module are used to obtain the motor output current and voltage respectively. The motor drive device can use the current and voltage output by the motor to determine the torque output by the motor.
  • the corresponding relationship between the different speeds and/or torques output by the motor and the parameters of the target harmonic current stored in advance by the motor drive device can also be referred to as the relationship between the operating parameters and the parameters of the target harmonic current corresponding relationship.
  • the corresponding relationship between the operating parameters and the parameters of the target harmonic current may be determined, obtained, or obtained through simulation, simulation, actual measurement, and the like.
  • the motor drive device may output different rotational speeds and/or torques of the motor based on the corresponding relationship between the parameters of the target harmonic current and the motor output rotational speed n1 and/or torque T1, Determine the parameters of the target harmonic current Ia corresponding to the rotational speed n1 and/or the torque T1.
  • the motor driving device may inject a current including a component of the target harmonic current Ia into the motor based on the determined parameters of the target harmonic current Ia, so that the motor outputs a harmonic torque ma. Under the action of harmonic torque ma, the motor generates the first excitation qa. After the second excitation pa interacts with the first excitation qa, the overall noise level of the power drive system can be reduced, and the howling noise na can also be weakened or suppressed.
  • the motor drive device can adopt a harmonic current parameter optimization strategy to determine the target injected into the motor according to the obtained information such as the motor speed and/or torque (which can be determined according to the motor output current and voltage) Parameters of harmonic currents.
  • the harmonic current parameters are modified in real time, the noise level of the power drive system is recorded after the first current including harmonic current is injected into the motor, and the optimal harmonic current parameters are retained.
  • the parameters of the target harmonic current may include multiple parameters used to determine the direct-axis voltage and the quadrature-axis voltage of the target harmonic current, such as the amplitude set, angular velocity, order, phase angle, etc., and the amplitude set may include the direct axis One or more of positive sequence voltage, direct axis negative sequence voltage, quadrature axis positive sequence voltage and quadrature axis negative sequence voltage.
  • the motor drive device can adjust the first current input to the motor based on the target harmonic voltage (such as direct-axis voltage and quadrature-axis voltage), so that the harmonic components of the first current input to the motor include the target harmonic current.
  • the parameters of the target harmonic current may include the first amplitude set, the first order k, the electrical angular velocity ⁇ 1 of the motor, and the relative The first phase angle of the reference electrical angle of the motor
  • the first order k is Wherein, z is the number of teeth of the input shaft gear (which can be recorded as the first number), and n is the number of magnetic pole pairs included in the rotor in the motor (which can be recorded as the second number).
  • the motor drive device can determine the target harmonic voltage according to the parameters of the target harmonic current.
  • the target harmonic voltage may include d-axis harmonic voltage (direct-axis voltage) U d1 and q-axis harmonic voltage (quad-axis voltage) U q1 .
  • the motor drive device can determine the direct-axis voltage U d1 and the quadrature-axis voltage U q1 of the target harmonic current according to the relationship between the direct-axis voltage and the quadrature-axis voltage and the parameters of the target harmonic current, and the parameters of the target harmonic current.
  • the first value set may include direct-axis positive-sequence voltage amplitude and quadrature-axis positive-sequence voltage amplitude.
  • the relationship between the direct-axis voltage U d1 and quadrature-axis voltage U q1 and the parameters of the target harmonic current can be referred to the following formula:
  • U d1 is the direct-axis voltage at time t
  • U q1 is the quadrature-axis voltage at time t
  • a d11 is the d-axis positive-sequence voltage amplitude
  • a q11 is the q-axis positive-sequence voltage amplitude
  • k is the first order
  • ⁇ 1 is the electrical angular velocity of the motor, is the first phase angle relative to the reference electrical angle of the motor.
  • the direct-axis positive-sequence voltage amplitude A d11 may be equal to the quadrature-axis positive-sequence voltage amplitude A q11 .
  • the first value set may include the direct-axis negative-sequence voltage amplitude and the quadrature-axis negative-sequence voltage amplitude.
  • the relationship between the direct-axis voltage Ud , the quadrature-axis voltage Uq and the parameters of the target harmonic current can be referred to the following formula:
  • U d1 is the direct-axis voltage at time t
  • U q1 is the quadrature-axis voltage at time t
  • a d12 is the magnitude of the direct-axis negative-sequence voltage
  • a q12 is the magnitude of the quadrature-axis negative-sequence voltage
  • k is the first order
  • ⁇ 1 is the electrical angular velocity of the motor, is the first phase angle relative to the reference electrical angle of the motor.
  • the direct-axis positive-sequence voltage amplitude A d12 may be equal to the quadrature-axis positive-sequence voltage amplitude A q12 .
  • the first value set may include direct-axis positive-sequence voltage amplitude, quadrature-axis positive-sequence voltage amplitude, direct-axis negative-sequence voltage amplitude and quadrature-axis negative-sequence voltage amplitude, direct-axis voltage U d1 and quadrature-axis voltage U q1
  • the relationship with the parameters of the target harmonic current can be referred to the following formula:
  • U d1 is the described direct-axis voltage at time t
  • U q1 is the described quadrature-axis voltage at time t as the quadrature-axis voltage
  • a d11 is the direct-axis positive-sequence voltage amplitude
  • a d12 is the direct-axis negative-sequence voltage amplitude Value
  • a q11 is the quadrature axis positive sequence voltage amplitude
  • a q12 is the quadrature axis negative sequence voltage amplitude
  • k is the first order
  • ⁇ 1 is the electrical angular velocity of the motor, is the first phase angle relative to the reference electrical angle of the motor.
  • the direct-axis positive sequence voltage amplitude A d11 may be equal to the quadrature axis positive sequence voltage amplitude A q11
  • the direct axis positive sequence voltage amplitude A d12 may be equal to the quadrature axis positive sequence voltage amplitude A q12 .
  • the motor drive device adjusts the first current input to the motor based on the direct-axis voltage and the quadrature-axis voltage of the target harmonic current, so that the harmonic current component of the first current input to the motor includes the target harmonic wave current, the target harmonic current can be k ⁇ 1 order harmonic current, that is second harmonic current.
  • the target harmonic current can be k ⁇ 1 order harmonic current, that is second harmonic current.
  • physical quantities such as amplitude, phase angle, or electrical angular velocity among the parameters of the target harmonic current may be different, but the first order k is the same.
  • the harmonic torque that can be generated can make the motor produce the first z-order excitation.
  • the parameters of the target harmonic current may include the second amplitude set, the second order z, the mechanical angular velocity ⁇ 2 of the motor, and the relative The second phase angle of the reference mechanical angle of the motor
  • z is the number of teeth of the input shaft gear (which can be recorded as the second number).
  • the motor drive device can determine the direct-axis voltage U d2 and the quadrature-axis voltage U q2 of the target harmonic current according to the relationship between the direct-axis voltage and the quadrature-axis voltage and the parameters of the target harmonic current, and the parameters of the target harmonic current.
  • the second amplitude set may include direct-axis positive-sequence voltage amplitude and quadrature-axis positive-sequence voltage amplitude.
  • the relationship between the direct-axis voltage U d2 and quadrature-axis voltage U q2 and the parameters of the target harmonic current can be referred to the following formula:
  • U d2 is the direct-axis voltage at time t
  • U q2 is the quadrature-axis voltage at time t
  • a d21 is the direct-axis positive-sequence voltage amplitude
  • a q21 is the quadrature-axis positive-sequence voltage amplitude
  • z is The second order is also the number of teeth of the input shaft gear
  • ⁇ 1 is the mechanical angular velocity of the motor
  • the direct-axis positive-sequence voltage amplitude A d21 may be equal to the quadrature-axis positive-sequence voltage amplitude A q21 .
  • the second amplitude set may include direct-axis negative-sequence voltage amplitude and quadrature-axis negative-sequence voltage amplitude.
  • the relationship between the direct-axis voltage U d2 and quadrature-axis voltage U q2 and the parameters of the target harmonic current can be referred to the following formula:
  • U d2 is the direct-axis voltage at time t
  • U q2 is the quadrature-axis voltage at time t
  • a d22 is the direct-axis negative-sequence voltage amplitude
  • a q22 is the quadrature-axis negative-sequence voltage amplitude
  • z is The second order is also the number of teeth of the input shaft gear
  • ⁇ 1 is the mechanical angular velocity of the motor
  • the direct-axis negative-sequence voltage amplitude A d22 may be equal to the quadrature-axis negative-sequence voltage amplitude A q22 .
  • the second set of amplitudes may include direct axis positive sequence voltage amplitude, quadrature axis positive sequence voltage amplitude, direct axis negative sequence voltage amplitude and quadrature axis negative sequence voltage amplitude, direct axis voltage U d and quadrature axis voltage U q
  • the relationship with the parameters of the target harmonic current can be referred to the following formula:
  • U d2 is the direct-axis voltage at time t
  • U q2 is the quadrature-axis voltage at time t
  • a d21 is the direct-axis positive-sequence voltage amplitude
  • a d22 is the direct-axis negative-sequence voltage amplitude
  • a q21 is the positive sequence voltage amplitude of the quadrature axis
  • Aq22 is the negative sequence voltage amplitude of the quadrature axis
  • z is the second order, and is also the number of teeth of the input shaft gear
  • ⁇ 1 is the mechanical angular velocity of the motor, is the second phase angle relative to the reference electrical angle of the motor.
  • the direct-axis positive-sequence voltage amplitude A d21 may be equal to the quadrature-axis positive-sequence voltage amplitude A q21
  • the direct-axis negative-sequence voltage amplitude A d22 may be equal to the quadrature-axis negative-sequence voltage amplitude A q22 .
  • the motor drive device adjusts the first current input to the motor based on the direct-axis voltage and the quadrature-axis voltage of the target harmonic voltage, so that the target harmonic current component included in the first current input to the motor is
  • the harmonic current of z ⁇ n order that is, the harmonic current of z ⁇ n order (n is the number of magnetic pole pairs included in the rotor in the motor).
  • physical quantities such as amplitude, phase angle, or mechanical angular velocity among the parameters of the target harmonic current may be different, while the second order z is the same.
  • the motor can generate harmonic torque to make the motor generate the first excitation of z order.
  • the motor drive device can adjust the current provided to the motor (each phase) based on the voltage of the target harmonic current, so that the current input to the motor includes the target harmonic current component and fundamental current components.
  • the motor drive device can use space vector pulse width modulation (SVPWM) technology or method to determine the current provided to the motor based on the target harmonic voltage (such as direct axis voltage and quadrature axis voltage) (called for the desired current).
  • SVPWM space vector pulse width modulation
  • the motor driving device may include an inverter and a controller.
  • Fig. 3 shows a controller execution process according to an exemplary embodiment.
  • the controller can obtain operating parameters of the motor, such as parameters such as rotational speed and/or torque.
  • the controller can determine the parameters of the target harmonic current according to the acquired operating parameters. For example, based on the stored correspondence between the rotational speed and/or torque and the harmonic current parameter, the obtained harmonic current parameter corresponding to the rotational speed and/or torque is determined as a parameter of the target harmonic current.
  • the controller can use the target harmonic current parameters to determine the voltage (direct-axis voltage and quadrature-axis voltage) of the target harmonic current and other operations.
  • the controller is connected with the inverter, and the inverter is connected with the motor.
  • the controller can generate an inverter driving signal based on the target harmonic voltage and adopt SVPWM technology to drive the inverter so that the first current input by the inverter to the motor includes the target harmonic current component and the fundamental current portion.
  • the controller is powered by a low voltage power supply.
  • the inverter can convert the DC power provided by the high-voltage DC bus power supply into AC power and provide it to the motor.
  • an inverter may include a three-phase output and a motor include a three-phase input.
  • the three-phase output terminals are in one-to-one correspondence with the three-phase input terminals.
  • the one-phase output terminal of the inverter is connected to the one-phase input terminal of the corresponding motor, and can supply the current including the target harmonic current component to the one-phase input terminal of the corresponding motor.
  • the motor control device drives the motor with the current including the target harmonic current component and the fundamental current component, so that the torque output by the motor includes the harmonic torque generated by the drive of the target harmonic current, and the harmonic torque
  • the motor can generate the first z-order excitation, and the z-order first excitation interacts with the z-order second excitation generated by the input shaft gear of the reducer, which can reduce the overall noise level of the power drive system and can also offset the z-order first excitation generated by the reducer Howling noise caused by two excitations. For example, to counteract the whistling noise generated by the input shaft gear of the reducer.
  • the first order in the parameters of the target harmonic current can be an integer or a fraction (value that is not an integer).
  • the number of teeth of the input shaft gear in the reducer can be adjusted according to the order of the motor.
  • the first order k of the target harmonic is a fraction.
  • Fig. 4(a) shows the waveform of the target harmonic when the order of the target harmonic is a fraction.
  • Fig. 4(b) shows the waveform of the target harmonic when the first order of the target harmonic is an integer.
  • the target harmonic injected into the motor by the motor driving device can cause the motor to generate the first z-order excitation.
  • the z-order first excitation interacts with the z-order second excitation generated by the input shaft gear in the reducer, which has the effect of suppressing the whistling noise generated by the input shaft gear and reduces the noise level of the power drive system.
  • the current provided by the motor drive unit to the motor will be described below.
  • the reference mechanical angle of the motor when the motor driving device drives the motor with a current including the target harmonic current, z ⁇ n order current harmonics may be generated in the motor.
  • the three-phase input terminals in the motor are respectively recorded as A phase, B phase, and C phase. After the motor drive device injects the target harmonic into the motor, the current in the motor will be described by taking phase A as an example.
  • the A-phase current is denoted as ia, and ia includes fundamental wave i fundamental wave component, carrier i carrier and its harmonic components, and target harmonic i target harmonic component.
  • ia includes fundamental wave i fundamental wave component, carrier i carrier and its harmonic components, and target harmonic i target harmonic component.
  • i a i fundamental + i carrier and its harmonics + i target harmonics
  • I 1 is the amplitude of the fundamental wave
  • ⁇ 1 is the angular frequency of the fundamental wave
  • I zn is the amplitude of zn harmonic current
  • I z+n is the amplitude of z+n harmonic current
  • ⁇ 1 is the mechanical angular velocity of the motor.
  • I s , I s+2 , I s-2 , I s+4 , and I s-4 are respectively the sth, s+2, s-2, s+4, and sth times of the carrier -
  • the magnitude of the 4th harmonic, ⁇ s is the angular frequency of the carrier. They are the phase angles of the sth, s+2, s-2, s+4, and s-4 harmonics of the carrier wave respectively.
  • the expression of the fundamental wave voltage of phase A can be Among them, E 1 is the voltage amplitude of phase A, ⁇ 1 is the fundamental angular frequency, is the voltage phase angle.
  • the motor output torque can be T e , Where ⁇ is the mechanical angular velocity of the motor, u a is the fundamental voltage of phase A, i a is the current of phase A, u b is the fundamental voltage of phase B, i b is the current of phase B, u c is the fundamental voltage of phase C, ic is the C-phase current.
  • the motor output torque T e includes drive torque and z-order harmonic torque.
  • the driving torque is used to drive the reducer to run, and the z-order harmonic torque is used to make the motor generate the first z-order excitation, and interact with the second z-order excitation generated by the input shaft gear of the reducer to reduce the overall noise of the power drive system Level, reduce the whistling noise generated by the input shaft gear of the reducer.
  • the motor drive device may inject harmonic currents including z-n order and z+n order into the motor based on the direct-axis voltage and the quadrature-axis voltage of the target harmonic current.
  • the motor Under the action of z-n order and z+n order harmonic currents, the motor can generate the first z-order excitation.
  • the z-order first excitation interacts with the z-order second excitation generated by the reducer input shaft gear, which can change the vibration distribution of the power drive system and reduce the average noise of the power drive system.
  • the noise reduction effect (reduction effect, suppression effect) generated by the z-order first excitation output by the motor on the reducer can not only be felt by the human ear to the noise intensity, but also through the NVH
  • the NVH test system is used for testing.
  • the NVH test system may include sensors (such as sound sensors and vibration sensors), data acquisition cards and data analyzers. Sensors can be arranged around the power drive system to collect vibration and noise during the working process of the power drive system.
  • the sound sensor can generally be set at a position 1 meter away from the power drive system, and/or at a position 0.1 meter away from the power drive system.
  • the data acquisition card can receive the signal collected by the sensor and provide it to the data analyzer.
  • the data analyzer can display Campbell diagrams, overall curves, noise curves of various orders, etc. Campbell plots, overall curves and order noise curves are the most commonly used references for NVH analysis.
  • the Campbell diagram is usually the variation curve of each modal frequency with the rotation speed in the scene where the characteristic frequency of the rotating structure is related to its rotation speed.
  • the overall curve is used to measure the total energy in the signal, and to characterize the relationship between the total energy and the change of time or rotational speed.
  • the order noise curve is used to measure the energy of the corresponding order in the signal, and to characterize the relationship between the energy of a specific order and the change of time or rotational speed.
  • the motor drive device injects a target harmonic current into the motor, for example, a z ⁇ n order current harmonic, and the motor can output a 23rd order harmonic torque under the action of the current harmonic.
  • Fig. 5 shows the 23rd-order noise variation (overall curve) in the NVH test of the power drive system before and after the target harmonic is injected into the motor by the motor drive device.
  • the dotted line is the change of noise before the motor drive device injects the target harmonic into the motor, that is, the howling noise generated by the input shaft gear of the reducer.
  • the solid line is the change of noise energy after the motor drive device injects the target harmonic into the motor. It can be seen that in the case of different motor output speeds, when the motor outputs most of the speed, after the motor drive device injects the target harmonic into the motor, the 23rd order noise level of the power drive system is lower than that when the motor drive device does not inject the target harmonic into the motor 23 levels of noise.
  • the power drive system provided by the embodiment of the present application can suppress the whistling noise generated by the input gear of the reducer, and has better NVH characteristics.
  • the Campbell diagram generated during the NVH test can reflect that the motor is at different speeds, and there are ⁇ s ⁇ n ⁇ 1 , ⁇ s ⁇ 3n ⁇ 1 , ⁇ s ⁇ 5n ⁇ 1 ... angular frequency characteristics near the carrier, that is, the carrier frequency f There are f s ⁇ nf 1 , f s ⁇ 3nf 1 , f s ⁇ 5nf 1 ... frequency features near s , that is, there are 3, 9, 15 ... order features near the carrier.
  • the target harmonic is injected into the motor, ⁇ s ⁇ (z ⁇ n) ⁇ 1 , ⁇ s ⁇ (z ⁇ 3n) ⁇ 1 , ⁇ s ⁇ ( z ⁇ 5n ) ⁇ 1 ...the angular frequency characteristic, that is, there may be 8, 14, 20, 26, 31, or 38 order energy changes.
  • Fig. 6(a) shows the Campbell diagram (schematic diagram) of the order of the NVH test carrier of the power drive system of the motor drive device before the target harmonic is injected into the motor.
  • Fig. 6(b) shows the Campbell diagram (schematic diagram) of the order of the NVH test near the carrier of the motor drive device in the power drive system injected with target harmonics in all speed ranges. It can be seen that after the motor drive device injects the target harmonic component into the motor, in the entire speed range, obvious energy lines appear at the positions corresponding to the 14th order at both ends of the carrier frequency f s .
  • Fig. 6(b) shows the Campbell diagram (schematic diagram) of the order of the NVH test near the carrier of the motor drive device in the power drive system injected with target harmonics in all speed ranges. It can be seen that after the motor drive device injects the target harmonic component into the motor, in the entire speed range, obvious energy lines appear at the positions corresponding to the 14th order at both ends of the carrier frequency f
  • FIG. 6(c) shows the Campbell diagram (schematic diagram) of the order of the NVH test near the carrier wave of the motor drive device injected into the power drive system after injecting target harmonics in a partial speed range. It can be seen that after the motor drive device injects the target harmonic current into the motor, in the part of the speed range, obvious energy lines appear at the positions corresponding to the 14th order at both ends of the carrier frequency f s .
  • the motor drive device injects target harmonics into the motor
  • the power drive system generates 14th-order energy, that is, 14th-order noise.
  • this noise energy source is lower than the 23rd-order fundamental wave energy, and because of the high carrier frequency, it has limited influence on the overall noise level of the system. Therefore, the order (such as 8, 14, 20, 26, 31, or 38 order) noise near the carrier frequency has little effect on the NVH characteristics of the power drive system.
  • Fig. 8 shows the change curve (overall curve) of the total noise of the NVH test of the power drive system before and after the motor drive device injects the target harmonic current into the motor.
  • the dotted line is the change of the total system noise before the motor drive device injects the target harmonic current into the motor
  • the solid line is the change of the total system noise energy after the motor drive device injects the target harmonic current into the motor.
  • the total noise level of the power drive system is lower than the noise level when the motor drive device does not inject the target harmonic current into the motor.
  • the power drive system provided by the embodiments of the present application has better NVH characteristics.
  • An embodiment of the present application provides an electric vehicle, which may include the power drive system provided in the foregoing embodiments.
  • the overall noise level of the power drive system provided by the foregoing embodiments is low, and the NVH performance of the power drive system is better, so that the electric vehicle has a lower noise level, better NVH performance, and better user experience.
  • the embodiment of the present application also provides a method for reducing the noise of the reducer in the power drive system, which can be applied to the motor drive device in the power drive system.
  • a method for reducing the noise of the reducer in the power drive system may include the following steps:
  • Step S101 acquiring a first operating parameter of the motor.
  • the first operating parameter may include speed and/or torque.
  • the motor drive can acquire the operating speed and/or torque of the motor.
  • the motor drive device may include a rotational speed acquisition module to acquire the rotational speed of the motor.
  • the motor driving device can obtain the output current and/or voltage of the motor, and calculate the torque of the motor.
  • Step S102 from the correspondence between preset operating parameters and harmonic current parameters, search for the current parameters corresponding to the first operating parameters, and determine the target harmonic current based on the harmonic current parameters corresponding to the first operating parameters Direct axis voltage and quadrature axis voltage.
  • the motor drive device can store the corresponding relationship between preset operating parameters and harmonic current parameters.
  • the motor drive device may determine the parameter of the target harmonic current based on the stored correspondence between the operating parameter and the harmonic current parameter and the acquired first operating parameter.
  • the parameters of the target harmonic current may include a first amplitude set, a first order k, an electrical angular velocity ⁇ 1 of the motor, and a first relative to a reference electrical angle of the motor.
  • the first amplitude set includes one or more of direct-axis positive-sequence voltage amplitude, direct-axis negative-sequence voltage amplitude, quadrature-axis positive-sequence voltage amplitude, and quadrature-axis negative-sequence voltage amplitude.
  • k is n is the number of magnetic pole pairs included in the rotor in the motor
  • z is the number of teeth of the input shaft gear.
  • the motor drive device can determine the voltage of the target harmonic current according to the parameters of the target harmonic current.
  • the voltage of the target harmonic current may include d-axis harmonic voltage (direct-axis voltage) U d1 and q-axis harmonic voltage (quad-axis voltage) U q1 .
  • the first amplitude set may include direct-axis positive-sequence voltage amplitude and quadrature-axis positive-sequence voltage amplitude.
  • the relationship between the direct-axis voltage U d1 and quadrature-axis voltage U q1 and the parameters of the target harmonic current can be referred to as follows formula:
  • U d1 is the direct-axis voltage at time t
  • U q1 is the quadrature-axis voltage at time t
  • a d11 is the d-axis positive-sequence voltage amplitude
  • a q11 is the q-axis positive-sequence voltage amplitude
  • k is the first order
  • ⁇ 1 is the electrical angular velocity of the motor, is the first phase angle relative to the reference electrical angle of the motor.
  • the direct-axis positive-sequence voltage amplitude A d11 may be equal to the quadrature-axis positive-sequence voltage amplitude A q11 .
  • the first set of amplitudes may include direct-axis negative-sequence voltage amplitudes and quadrature-axis negative-sequence voltage amplitudes.
  • the relationship between the direct-axis voltage U d and the quadrature-axis voltage U q and the parameters of the target harmonic current can be found in The following formula:
  • U d1 is the direct-axis voltage at time t
  • U q1 is the quadrature-axis voltage at time t
  • a d12 is the magnitude of the direct-axis negative-sequence voltage
  • a q12 is the magnitude of the quadrature-axis negative-sequence voltage
  • k is the first order
  • ⁇ 1 is the electrical angular velocity of the motor, is the first phase angle relative to the reference electrical angle of the motor.
  • the direct-axis positive-sequence voltage amplitude A d12 may be equal to the quadrature-axis positive-sequence voltage amplitude A q12 .
  • the first set of amplitudes may include direct-axis positive-sequence voltage amplitudes, quadrature-axis positive-sequence voltage amplitudes, direct-axis negative-sequence voltage amplitudes, and quadrature-axis negative-sequence voltage amplitudes.
  • the direct-axis voltages U d1 and The relationship between the quadrature axis voltage U q1 and the parameters of the target harmonic current can be referred to the following formula:
  • U d1 is the described direct-axis voltage at time t
  • U q1 is the described quadrature-axis voltage at time t as the quadrature-axis voltage
  • a d11 is the direct-axis positive-sequence voltage amplitude
  • a d12 is the direct-axis negative-sequence voltage amplitude Value
  • a q11 is the quadrature axis positive sequence voltage amplitude
  • a q12 is the quadrature axis negative sequence voltage amplitude
  • k is the first order
  • ⁇ 1 is the electrical angular velocity of the motor, is the first phase angle relative to the reference electrical angle of the motor.
  • the direct-axis positive sequence voltage amplitude A d11 may be equal to the quadrature axis positive sequence voltage amplitude A q11
  • the direct axis positive sequence voltage amplitude A d12 may be equal to the quadrature axis positive sequence voltage amplitude A q12 .
  • the parameters of the target harmonic current may include a second amplitude set, a second order z, a mechanical angular velocity ⁇ 2 of the motor, and a relative to a reference mechanical angle of the motor second phase angle
  • the second set of amplitudes may include one or more of direct-axis positive-sequence voltage amplitudes, direct-axis negative-sequence voltage amplitudes, quadrature-axis positive-sequence voltage amplitudes, and quadrature-axis negative-sequence voltage amplitudes.
  • z is the number of teeth of the input shaft gear.
  • the motor drive device can determine the voltage of the target harmonic according to the parameter of the target harmonic current.
  • the target harmonic voltage may include a d-axis harmonic voltage (direct-axis voltage) U d2 and a q-axis harmonic voltage (quad-axis voltage) U q2 .
  • the second amplitude set may include direct-axis positive-sequence voltage amplitude and quadrature-axis positive-sequence voltage amplitude, and the relationship between the direct-axis voltage U d2 and quadrature-axis voltage U q2 and the parameters of the target harmonic current can be referred to as follows formula:
  • U d2 is the direct-axis voltage at time t
  • U q2 is the quadrature-axis voltage at time t
  • a d21 is the direct-axis positive-sequence voltage amplitude
  • a q21 is the quadrature-axis positive-sequence voltage amplitude
  • z is The second order is also the number of teeth of the input shaft gear
  • ⁇ 1 is the mechanical angular velocity of the motor
  • the direct-axis positive-sequence voltage amplitude A d21 may be equal to the quadrature-axis positive-sequence voltage amplitude A q21 .
  • the second set of amplitudes may include direct-axis negative-sequence voltage amplitudes and quadrature-axis negative-sequence voltage amplitudes.
  • the relationship between the direct-axis voltage U d2 and the quadrature-axis voltage U q2 and the parameters of the target harmonic current can be found in The following formula:
  • U d2 is the direct-axis voltage at time t
  • U q2 is the quadrature-axis voltage at time t
  • a d22 is the direct-axis negative-sequence voltage amplitude
  • a q22 is the quadrature-axis negative-sequence voltage amplitude
  • z is The second order is also the number of teeth of the input shaft gear
  • ⁇ 1 is the mechanical angular velocity of the motor
  • the direct-axis negative-sequence voltage amplitude A d22 may be equal to the quadrature-axis negative-sequence voltage amplitude A q22 .
  • the second set of amplitudes may include direct-axis positive-sequence voltage amplitudes, quadrature-axis positive-sequence voltage amplitudes, direct-axis negative-sequence voltage amplitudes, and quadrature-axis negative-sequence voltage amplitudes, the direct-axis voltages U d and
  • the relationship between the quadrature axis voltage U q and the parameters of the target harmonic current can be referred to the following formula:
  • U d2 is the direct-axis voltage at time t
  • U q2 is the quadrature-axis voltage at time t
  • a d21 is the direct-axis positive-sequence voltage amplitude
  • a d22 is the direct-axis negative-sequence voltage amplitude
  • a q21 is the positive sequence voltage amplitude of the quadrature axis
  • Aq22 is the negative sequence voltage amplitude of the quadrature axis
  • z is the second order, and is also the number of teeth of the input shaft gear
  • ⁇ 1 is the mechanical angular velocity of the motor, is the second phase angle relative to the reference electrical angle of the motor.
  • the direct-axis positive-sequence voltage amplitude A d21 may be equal to the quadrature-axis positive-sequence voltage amplitude A q21
  • the direct-axis negative-sequence voltage amplitude A d22 may be equal to the quadrature-axis negative-sequence voltage amplitude A q22 .
  • Step S103 adjusting the first current input to the motor based on the direct-axis voltage and the quadrature-axis voltage of the target harmonic current, wherein the harmonic current component of the first current includes the target harmonic current, so
  • the first current is used to drive the motor to output torque
  • the torque includes the driving torque generated by the fundamental current component of the first current and the torque generated by the preset current.
  • Harmonic torque the harmonic torque is used to make the motor generate a first excitation; the driving torque is used to drive the reducer to run, and the first excitation is used to partially or completely offset the The second excitation generated by the gear reducer meshing in operation.
  • the motor drive device can use SVPWM technology to adjust the current supplied to the motor based on the direct-axis voltage and the quadrature-axis voltage of the target harmonic, or in other words, adjust the first current input to the motor so that the input current includes the target harmonic current component .
  • the motor drive device inputs alternating current to the motor to drive the motor, and the motor outputs torque.
  • the AC input to the motor includes target harmonics.
  • the output torque of the motor can include harmonic torque, that is, the motor generates harmonic torque when driven by the target harmonics.
  • the target harmonic current of the motor drive device input current to the motor may be k ⁇ 1 order current harmonics.
  • the target harmonic can make the motor output z-order harmonic torque, and the z-order harmonic torque can make the motor generate z-order first excitation, and can suppress the z-order second excitation generated by the input shaft gear of the reducer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device. Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)), and the like.
  • An embodiment of the present application further provides a readable storage medium for storing the method or algorithm provided in the foregoing embodiments.
  • a readable storage medium for storing the method or algorithm provided in the foregoing embodiments.
  • random access memory random access memory
  • flash memory read only memory
  • EPROM memory EPROM memory
  • non-volatile read-only memory Electrical Programmable ROM, EPROM
  • registers hard disk, programmable Removable disk or any other storage medium in this field.
  • the steps of the methods or algorithms described in the embodiments of the present application can be directly embedded in the motor drive device.
  • the motor drive device may include RAM memory, flash memory, ROM memory, EPROM memory, registers, hard disk, removable disk or other storage media in any form in the art for storing the steps of the methods or algorithms provided by the embodiments of the present application.
  • the storage medium can be connected with the processor or the controller, so that the processor or the controller can read information from the storage medium, and can write information to the storage medium.
  • the storage medium can also be integrated into the processor or controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本申请公开了一种动力驱动系统、电动汽车及降低减速器产生的噪声的方法。动力驱动系统主要包括电机、减速器和电机驱动装置;电机与减速器传动连接;电机驱动装置与电机连接;电机驱动装置,用于基于预设电流的直轴电压和交轴电压,调整输入电机的第一电流,其中第一电流的谐波电流分量包括预设电流;电机,用于在第一电流的驱动下输出转矩,转矩包括因第一电流的基波电流分量的驱动下产生的驱动转矩和因预设电流的驱动下产生的谐波转矩,谐波转矩用于使电机产生第一激励;减速器,用于在驱动转矩的作用下运行,减速器运行时齿轮啮合产生第二激励;其中,第一激励用于部分地或全部地抵消第二激励。

Description

一种动力驱动系统、电动汽车、降低减速器产生噪声方法 技术领域
本申请涉及电机控制领域,尤其涉及一种动力驱动系统、电动汽车、降低减速器产生噪声方法。
背景技术
动力驱动系统是电动汽车的动力来源,也是不可或缺的重要组件。动力驱动系统的噪声、振动与声振粗糙度(Noise、Vibration、Harshness,NVH),影响用户体验。例如,NVH性能较差的动力驱动系统,在驱动电动汽车时会产生较大的噪声,影响乘坐电动汽车的用户的体验。而NVH性能较优的动力驱动系统,在驱动电动汽车时产生的噪声较小,乘坐电动汽车的用户的体验较好。
通常,动力驱动系统包括电机驱动装置电机和减速器。动力驱动系统在驱动电动汽车时产生的噪声,通常包括减速器噪声和电机噪声。减速器噪声主要是齿轮啮合时产生的。在齿轮啮合过程中,齿轮刚度变化以及啮合冲击会产生周期性的激励(即带有明显的齿轮啮合阶次特征),形成啸叫噪声。所产生的激励通常与齿轮齿数相关,可以通过修改齿轮齿面形状,以减少啸叫噪声。由于动力驱动系统结构、制造技术、及成本等方面的限制,通过对齿面修形来降低啸叫噪声的效果有限。
发明内容
本申请提供一种动力驱动系统、电动汽车、降低减速器产生噪声的方法,以降低动力驱动系统的整体噪声水平,可以降低减速器产生的啸叫噪声,提升动力驱动系统NVH的性能。
第一方面,本申请提供一种动力驱动系统,其主要包括电机、减速器和电机驱动装置。电机与减速器传动连接,电机驱动装置与电机连接。所述电机驱动装置,用于基于预设电流的直轴电压和交轴电压,调整输入所述电机的第一电流,其中所述第一电流的谐波电流分量包括所述预设电流;所述电机,用于在所述第一电流的驱动下输出转矩,所述转矩包括因所述第一电流的基波电流分量的驱动下产生的驱动转矩和因所述预设电流的驱动下产生的谐波转矩,所述谐波转矩用于使所述电机产生第一激励;所述减速器,用于在所述驱动转矩的作用下运行,所述减速器运行时齿轮啮合产生第二激励;其中,所述第一激励用于部分地或全部地抵消所述第二激励。
在本申请中,电机驱动装置为电机提供的第一电流可以为周期性的非正弦电流。第一电流可以包括基波电流分量和谐波电流分量。电机驱动装置可以利用预设电流的之后电压和交轴电压对第一电流进行调整,可使输入电机的第一电流的谐波电流分量包括预设电流。电机因预设电流的驱动下产生谐波转矩。该谐波转矩用于使电机产生第一激励,第一激励与减速器齿轮啮合时产生的第二激励相互作用,可以部分或全部抵消第二激励,也即第一激励可以具有部分或全部地抑制减速器特定阶次噪声(即啸叫噪声)的作用,可以降低动力驱动系统的整体噪声水平。
一种可能的实现方式中,所述第一电流的傅里叶级数展开形式包括所述基波电流分量 和频率大于所述基波电流分量的频率的所述谐波电流分量。本申请中,第一电流可以为周期性的非正弦波,第一电流的傅里叶级数展开形式可以包括基波电流分量和谐波电流分量。基波电流分量为与第一电流频率相同的正弦波分量,谐波电流分量可以为频率大于基波电流分量的频率的正弦波分量。其中,谐波电流分量中包括所述预设电流,也即谐波电流分量中包括预设的电流分量。
一种可能的实现方式中,电机驱动装置可以预先存储运行参数与谐波电流参数的对应关系。电机驱动装置可以获取电机的第一运行参数,如转速、转矩、电流、电压等,从运行参数与谐波电流参数的对应关系,查找第一运行参数相应的谐波电流参数。第一运行参数相应的电流参数可以用于确定所述预设电流的交轴电压和直轴电压。
在本申请中,电机驱动装置预先存储的运行参数与谐波电流参数的对应关系,可以是根据仿真结果或者实验结果确定的。通常电机运行工况不同,减速器产生的噪声通常也不相同。电机的运行参数可以表征电机运行工况。电机驱动装置可以在运行阐述与谐波电流参数的对应关系,查找获取的电机运行参数对应的电流参数。查找出的电流参数可以用于确定向预设电流的直轴电压和交轴电压,以为调整向电机输入的第一电流的谐波电流分量中包括预设电流,使得电机产生的第一激励可以抵消电机当前运行工况下减速器产生的第二激励,实现对减速器产生的噪声进行动态降噪。
一种可能的实施方式中,所述第二激励为所述减速器中的第一齿轮啮合时产生的,所述第一齿轮为所述减速器中与所述电机相连的齿轮;查找到的所述第一运行参数相应的电流参数包括第一幅值集合、第一阶次、所述电机的电角速度、以及相对所述电机的参考电角度的第一相位角,所述第一幅值集合包括直轴正序电压幅值、直轴负序电压幅值、交轴正序电压幅值、交轴负序电压幅值中的一个或多个,其中,所述第一阶次为第一数量与第二数量的比值,所述第一数量为所述第一齿轮的齿数,所述第二数量为所述电机中的转子所包括的磁极对数量;所述第一激励的阶次为所述第一数量。
在本申请中,电机驱动装置向电机注入谐波电流分量包括预设电流的第一电流,使电机产生的第一激励可以抵消第一齿轮啮合时产生的第二激励。其中,用于确定预设电流的直轴电压和交轴电压的参数可以包括以电机电角度维度上的正序或负序电压幅值、阶次、电角速度、相位角等。电机驱动装置输入电机的电流中包括目标谐波电流,可使电机产生第一数量阶的第一激励,也即第一激励阶次与第一齿轮的齿数相同,即与第二激励的阶次相同。
一种可能的实施方式中,所述电机驱动装置还用于:基于所述第一运行参数相应的谐波电流参数,采用如下公式确定所述直轴电压和所述交轴电压:
Figure PCTCN2021099821-appb-000001
Figure PCTCN2021099821-appb-000002
其中,U d1为t时刻的所述直轴电压,U q1为交轴电压为t时刻的所述交轴电压,A d11为直轴正序电压幅值,A d12为直轴负序电压幅值,A q11为交轴正序电压幅值,A q12为交轴负序电压幅值,k为所述第一阶次,ω 1为所述电机的电角速度,
Figure PCTCN2021099821-appb-000003
为相对所述电机的参考电角度的第一相位角。
在本申请实施例中,电机驱动装置基于确定出的目标谐波的直轴电压和交轴电压,向电机注入的目标谐波电流可以为k±1次电流谐波。电机驱动装置向电机输入包括k±1次电流谐波的电流,可使电机输出的转矩中包括第一数量阶的谐波转矩,第一数量阶的谐振 转矩可以使电机产生第一数量阶的第一激励,部分地或全部的抑制第一齿轮产生的第二激励。
一种可能的实施方式中,所述第二激励为所述减速器中的第一齿轮啮合时产生的,所述第一齿轮为所述减速器中与所述电机相连的齿轮;查找到的所述第一运行参数相应的谐波电流参数包括第二幅值集合、第二阶次、所述电机的机械角速度、以及相对所述电机的参考机械角的第二相位角,其中,所述第二阶次为所述第一齿轮的齿数;所述第一激励的阶次为所述第一数量。
在本申请中,电机驱动装置向电机注入谐波电流分量包括预设电流的第一电流,使电机产生的第一激励可以抵消第一齿轮啮合时产生的第二激励。其中,用于确定预设电流的直轴电压和交轴电压的电流参数可以包括以电机机械角度维度上的幅值、阶次、机械角速度、相位角等。电机驱动装置输入电机的电流中包括目标谐波电流,可使电机产生第一数量阶的第一激励,也即第一激励阶次与第一齿轮的齿数相同,即与第二激励的阶次相同。
一种可能的实施方式中,所述电机驱动装置,还用于基于所述第一运行参数相应的谐波电流参数,采用如下公式确定所述直轴电压和所述交轴电压:
Figure PCTCN2021099821-appb-000004
Figure PCTCN2021099821-appb-000005
其中,U d2为t时刻的所述直轴电压,U q2为t时刻的所述交轴电压,A d21为直轴正序电压幅值,A d22为直轴负序电压幅值,A q21为交轴正序电压幅值,A q22为交轴负序电压幅值,z为所述第二阶次,也是输入轴齿轮的齿数,Ω 1为所述电机的机械角速度,
Figure PCTCN2021099821-appb-000006
为相对所述电机的参考电角度的第二相位角。
在本申请实施例中,电机驱动装置基于确定出的目标谐波的直轴电压和交轴电压,向电机注入的目标谐波电流可以为z±n次电流谐波,n为所述电机中的转子所包括的磁极对数量。电机驱动装置向电机输入包括z±n次电流谐波的电流,可使电机输出的转矩中包括第一数量阶的谐波转矩,z阶的谐振转矩可以使电机产生z阶的第一激励,部分地或全部的抑制第一齿轮产生的第二激励。
第二方面,本申请提供一种电动汽车,可以包括车轮、半轴以及第一方面及其任一可能的方式中的动力驱动系统。所述动力驱动系统可以通过所述半轴与所述车轮传动连接,以驱动所述电动汽车行驶。因动力驱动系统具有较优的NVH性能,以及较低的减速器噪声水平,从而电动汽车具有较优的NVH性能。
第三方面,本申请提供一种降低动力驱动系统中减速器产生噪声方法,该方法可以应用于上述动力驱动系统中的电机驱动装置中。第三方面中相应技术方案的效果可以参照第一方面中对应方案可以得到的技术效果,重复之处不予详述。
本申请所提供的降低动力驱动系统中减速器产生噪声方法主要包括:电机驱动装置基于预设电流的直轴电压和交轴电压,调整输入所述电机的第一电流,其中所述第一电流的谐波电流分量包括所述预设电流;其中,所述第一电流用于驱动所述电机输出转矩,所述转矩包括因所述第一电流的基波电流分量的驱动下产生的驱动转矩和因所述预设电流的驱动下产生的谐波转矩,所述谐波转矩用于使所述电机产生第一激励;所述驱动转矩用于驱动所述减速器运行,所述第一激励用于部分地或全部地抵消所述减速器在运行齿轮啮合产生的第二激励。
一种可能的实施方式中,所述第一电流的傅里叶级数展开形式包括所述基波电流分量 和频率大于所述基波电流分量的频率的所述谐波电流分量。
一种可能的实施方式中,电机驱动装置在所述调整输入所述电机的电流之前,还可以获取所述电机的第一运行参数;从预设的运行参数与谐波电流参数的对应关系和所述第一运行参数,查找所述第一运行参数相应的电流参数,所述第一运行参数相应的电流参数用于确定所述预设电流的所述交轴电压和所述直轴电压。
一种可能的实施方式中,所述第二激励为所述减速器中的第一齿轮啮合时产生的,所述第一齿轮为所述减速器中与所述电机相连的齿轮;查找到的所述第一运行参数相应的电流参数包括第一幅值集合、第一阶次、所述电机的电角速度、以及相对于所述电机的参考电角度的第一相位角,其中,所述第一阶次为第一数量与第二数量的比值,所述第一数量为所述第一齿轮的齿数,所述第二数量为所述电机中的转子所包括的磁极对数量;所述第一激励的阶次为所述第一数量。
一种可能的实施方式中,电机驱动装置可以基于所述第一运行参数相应的谐波电流参数,采用如下公式确定所述直轴电压和所述交轴电压:
Figure PCTCN2021099821-appb-000007
Figure PCTCN2021099821-appb-000008
其中,U d1为t时刻的所述直轴电压,U q1为交轴电压为t时刻的所述交轴电压,A d11为直轴正序电压幅值,A d12为直轴负序电压幅值,A q11为交轴正序电压幅值,A q12为交轴负序电压幅值,k为所述第一阶次,ω 1为所述电机的电角速度,
Figure PCTCN2021099821-appb-000009
为相对所述电机的参考电角度的第一相位角。
一种可能的实施方式中,所述第二激励为所述减速器中的第一齿轮啮合时产生的,所述第一齿轮为所述减速器中与所述电机相连的齿轮;查找到的所述第一运行参数相应的电流参数包括第二幅值集合、第二阶次、所述电机的机械角速度、以及相对于所述电机的参考机械角的第二相位角,其中,所述第二阶次为所述第一齿轮的齿数;所述第一激励的阶次为所述第一数量。
一种可能的实施方式中,所述电机驱动装置可以基于所述第一运行参数相应的谐波电流参数,采用如下公式确定所述直轴电压和所述交轴电压:
Figure PCTCN2021099821-appb-000010
Figure PCTCN2021099821-appb-000011
其中,U d2为t时刻的所述直轴电压,U q2为t时刻的所述交轴电压,A d21为直轴正序电压幅值,A d22为直轴负序电压幅值,A q21为交轴正序电压幅值,A q22为交轴负序电压幅值,z为所述第二阶次,也是输入轴齿轮的齿数,Ω 1为所述电机的机械角速度,
Figure PCTCN2021099821-appb-000012
为相对所述电机的参考电角度的第二相位角。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质具有用于执行上述第三方面或者第三方面的任一种可能的设计中所述的方法的计算机程序。
第五方面,本申请实施例还提供一种计算机程序产品,包括计算机程序,当所述计算机程序被执行时,可以实现上述第三方面或者第三方面的任一种可能的设计中所述的方法。
上述第三方面至第五方面所能达到的技术效果请参照上述第一方面所能达到的技术效果,这里不再重复赘述。本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种动力驱动系统结构示意图;
图2为谐波转矩对啸叫噪声抑制过程示意图;
图3为电机驱动装置控制过程示意图;
图4(a)为一种电机驱动装置向电机注入的目标谐波的示意图;
图4(b)为一种电机驱动装置向电机注入的目标谐波的示意图;
图5为电机驱动装置向电机注入目标谐波前后动力驱动系统NVH测试中23阶噪声变化示意图;
图6(a)为电机驱动装置向电机注入目标谐波前动力驱动系统NVH坎贝尔图载波附近阶次示意图;
图6(b)为电机驱动装置向电机注入目标谐波后动力驱动系统NVH坎贝尔图载波附近阶次示意图;
图6(c)为电机驱动装置在部分转速区间内向电机注入目标谐波后动力驱动系统NVH坎贝尔图载波附近阶次示意图;
图7为电机驱动装置向电机注入目标谐波前后动力驱动系统NVH测试14阶噪声变化示意图;
图8为电机驱动装置向电机注入目标谐波前后动力驱动系统NVH测试总噪声变化示意图;
图9为本申请实施例提供的一种降低动力驱动系统中减速器产生噪声的方法流程示意图。
具体实施方式
在介绍本申请实施例之前,首先对本申请实施例中涉及的部分用语进行解释说明,以便于本领域技术人员理解。
1)、参考电角度
电机的转子铁心的横截面是一个圆,其空间几何角度为360°。从电磁角度看,一对N极和S极构成一个磁场周期,导体每经过一对磁极电流方向改变一次,因此定义一对磁极的电角度为360°。若电机的磁极对数为p,则电机一圈360°对应的电角度为p×360。本申请中,电机的电角度初始角度为参考电角度。电机的电角度初始角度可以根据电机中转子N极相对于A相相轴的初始位置确定。
2)、电角速度
电机的角速度与电机的电角速度之间具有一定的关系。电机的磁极对数为p,则电机的电角度为p×360°。当电机每转一周,若电机的机械角速度为Ω,那么电机的电角速度为p×Ω。
3)、参考机械角度
机械角度为空间几何角度。电机转子旋转一周时,旋转的机械角度为360°。本申请中,电机转子旋转一周可形成一个圆形。参考机械角度可以为转子某一个指定N极与定子某一个指定方向之间的角度。
4)、机械角速度
本申请中,机械角速度可描述电机转子旋转的快慢,也即转子做圆周运动的快慢。转子在时间Δt内转过的机械角度为Δθ,则转子的机械角速度为Δθ/Δt。
5)、正/负序电压
在三相电力系统中,以正半波幅值为例,各相电压或电流依顺序分别达到最大值的次序,称为相序。正相序分别达到最大值的次序为A相、B相和C相。通常,系统可能发生不对称的情形。任意一组不对称的三相正弦电压或电流向量都可以分解成三相对称分量,一组是正序分量,相序与原不对称正弦向量的相序一致,即顺时针A相、B相、C相的次序,各相位间相差120°。一组是负序分量,相序与原正弦量相反,即顺时针A相、C相、B相,各相间相差120°。另一组是零序分量,三相的相位相同。
正序为顺时针A-B-C的次序,确定三相正弦电压的正序电压向量时,A相固定不动,将B相逆时针旋转120°,将C相顺时针旋转120°。
负序为逆时针A-C-B的次序,确定三相正弦电压的负序电压向量时,A相固定不动,将B相顺时针旋转120°,将C相逆时针旋转120°。
本申请实施例中“或”,描述关联对象的关联关系,表示可以存在两种关系,例如,A或B,可以表示:单独存在A,单独存在B的情况,其中A、B可以是单数或者复数。
本申请中所涉及术语“连接”,描述两个对象的连接关系,可以表示两种连接关系,例如,A和B连接,可以表示:A与B直接连接,A通过C和B连接这两种情况。
在本申请实施例中,“示例的”“在一些实施例中”“在另一实施例中”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面将结合附图,对本申请实施例进行详细描述。首先,本申请提供一种动力驱动系统,如图1所示,动力驱动系统可以包括电机、减速器和电机驱动装置。
电机驱动装置与电机连接,可以驱动电机。电机驱动装置也可称为控制器,可以将为动力驱动系统供电的电源提供的直流电转换为交流电,并驱动电机。电机驱动装置可以调整用于驱动电机的电流,以实现调整电机输出的转矩。
电机可以包括电机轴、定子以及转子。电机驱动装置可以将交流电输入至定子上。定子在交流电的作用下,产生旋转磁场。转子设置在电机轴上,转子在旋转磁场的作用下转动,也带动电机轴转动,可产生驱动转矩,该驱动转矩可以使减速器运行。可选地,电机可以为三相电机。
减速器可以包括一对或多对齿轮以及输入轴,输入轴与一个齿轮连接。减速器和电机传动连接。例如,电机与减速器的输入轴通过花键连接。电机轴转动可以带动减速器输入轴转动,可使与输入轴连接的齿轮转动。又例如,电机的电机轴与减速器的输入轴为同一个轴,则电机轴转动可以直接带动与输入轴连接的齿轮转动。为便于描述,将与减速器中输入轴连接的齿轮称为输入轴齿轮,或一级齿轮。
通常,减速器可以包括输出轴。输出轴可以与执行机构连接。减速器可以将电机输出的转矩传递至执行机构,或者匹配电机和执行机构的转速。例如,减速器可以增大转矩、降低转速、改变转矩传递方向等功能。输入轴齿轮可以与其它齿轮(如图1中示出的齿轮 a)啮合。通常,齿轮a的齿数比输入轴齿轮的齿数多,输入轴齿轮与齿轮a啮合过程中,齿轮a的转速比输入轴齿轮的转速低,可以实现机械降低转速。输入轴齿轮和齿轮a可以记为一对齿轮。可选地,齿轮a可以与输出轴连接。
一个示例中,减速器包括多对齿轮。如图1所示,一对齿轮包括输入轴齿轮和齿轮a。另一对齿轮可以包括齿轮b和齿轮c。齿轮a与齿轮b连接,齿轮b与齿轮c可啮合,齿轮c可以与输出轴连接。输入轴齿轮与齿轮a啮合过程中,齿轮a转动可以带动齿轮b转动,齿轮c因与齿轮b啮合也发生转动,可使与齿轮c连接的输出轴发生转动。
减速器中各对齿轮啮合时产生的啸叫噪声为具有周期性的激励。在实际应用场景中,人耳可以听到大部分的啸叫噪声。减速器中输入轴齿轮啮合时产生的啸叫噪声,与电机输出转矩和/或转速密切相关。例如,在电机输出不同转矩和/或转速的情形下,减速器输入轴齿轮产生的啸叫噪声的能量不同。但减速器输入轴齿轮啮合时产生的周期性的激励的阶次是固定的,该激励的阶次与输入轴齿轮的齿数相同。
为降低(减弱)或抑制减速器产生的啸叫噪声,电机驱动装置可以调整向电机输入(或注入)的第一电流,使输入电机的第一电流(在频域上)的谐波电流分量中包括预设电流。通常,电机驱动装置向电机提供的第一电流的波形为周期性的非正弦波。对第一电流进行傅里叶级数分解,可以得到第一电流的傅里叶级数展开形式。一般来说,第一电流(通常为周期性的非正弦波)的傅里叶展开形式包括基波电流分量和谐波电流分量。基波电流分量是指频率与第一电流的频率相同的电流分量。第一电流的频率可以成为基本频率或者基波频率。谐波电流分量为频率大于基波频率的电流分量,谐波电流分量中可以包括多个频率的电流分量。频率为基波频率n倍(n为整数)的电流分量,可称为n次谐波电流,或n次谐波。
本申请实施例中,电机驱动装置可以调整向电机输入的第一电流,可实现调整第一电流的谐波电流分量,使第一电流的谐波电流分量包括预设电流,或者说使第一电流的谐波电流分量包括预设谐波电流(目标谐波,目标谐波电流或者目标谐波电流分量)。换个角度来说,谐波电流分量的波形和基波电流分量波形叠加后的波形与电机驱动装置向电机输入的第一电流的波形相同,其中谐波电流分量包括目标谐波,也可以称为向电机注入目标谐波。
电机驱动装置利用调整后的第一电流对电机进行驱动,使电机输出的转矩中包括因目标谐波电流驱动下产生的谐波转矩。电机在该谐波转矩的作用下可以产生激励(便于区分,记为第一激励),并且该第一激励的阶次与输入轴齿轮的齿数相同。
由于,该第一激励和减速器输入轴齿轮啮合时产生的激励(便于描述,记为第二激励)均作用在动力驱动系统,该第一激励和第二激励共同作用下,动力驱动系统的整体噪声水平降低。该第一激励可以抵消部分或全部第二激励,也即可以抵消输入轴齿轮产生的啸叫噪声。或者说,该第一激励可以降低(减弱)或抑制减速器输入轴齿轮啮合时产生的噪声。
通常,电机驱动装置向电机输入的第一电流波形中包括基波电流波形和噪声谐波电流波形。其中,噪声谐波电流可能为电机驱动装置将直流电逆变为交流电时产生的。电机在该噪声谐波的作用下,产生转矩波动。在此情形下,电机驱动装置驱动电机时,电机输出转矩中包括驱动转矩和转矩波动(或者转矩脉动)。驱动转矩可以用于驱动减速器。转矩波动会引起电机振动产生噪声(可以理解为电机自身产生的噪声)。
而本申请提供的动力驱动系统中,电机驱动装置在驱动电机时,向电机输入的第一电 流的谐波可以包括目标谐波,或者说第一电流的谐波电流分量包括目标谐波电流。例如,向电机的各相输入的电流的谐波电流分量可以均包括目标谐波电流。电机输出转矩可以包括驱动转矩、转矩波动以及谐波转矩。其中,谐波转矩是电机受到目标谐波的作用产生的,谐波转矩可用于使电机产生第一激励,并且第一激励的阶次可以与第二激励的阶次相同。动力驱动系统在第一激励的作用下,动力驱动系统的整体噪声水平下降,该第一激励可以用于部分地或全部地抑制该第二激励,也即部分地或全部地抑制输入轴齿轮产生的啸叫噪声。可选地,电机驱动装置也可以向电机注入其它谐波(例如第二谐波),用于抑制向电机输入电流中的噪声谐波,以减弱电机输出的转矩波动,从而抑制因所述转矩波动引起的电机振动产生的噪声(即电机自身产生的噪声)。
如图2所示,细实线为减速器产生的第二激励,虚线示为电机在谐波转矩作用下产生的第一激励。电机驱动装置向电机注入目标谐波后,电机产生的第一激励可以抑制(抵消、降低、或减弱)部分或全部的啸叫噪声,粗实线示出了第一激励和第二激励相互作用后的激励。图2中粗实线示出的激励的能量较小。可见,电机因目标谐波电流驱动下产生的谐波转矩使得电机产生的第一激励对第二激励引起的啸叫噪声具有抑制效果,实现提升动力驱动系统整体的NVH性能。
通常,在电机处于不同运行状态下,减速器输入轴齿轮产生的第二激励也不相同,即减速器产生的噪声也不相同。但在电机处于不同运行状态下,减速器输入轴齿轮产生的第二激励的阶次是相同的,并且与输入轴齿轮的齿数相同。电机的运行参数可以用于表征电机的运行状态。电机的运行参数可以包括但不限于转速和转矩等参数。下面以电机的运行参数包括转速和/或转矩作为举例。为抑制电机输出不同转速和/或转矩的情形下,减速器产生的第二激励(啸叫噪声),电机驱动装置可以使电机产生用于抑制第二激励的第一激励。
一种可能的设计中,电机驱动装置可以预先存储电机输出不同转速和/或转矩,与目标谐波电流的参数之间的对应关系。可选的,动力驱动系统可以包括转速传感器,用于获取电机输出转速,将获取的转速提供给电机驱动装置,以便电机驱动装置存储或使用。例如,电机输出转速n1和/或转矩T1时,相应的目标谐波电流参数为目标谐波a的参数。电机输出转速n2和/或转矩T2时,相应的目标谐波电流参数为目标谐波b的参数。电机驱动装置可以包括电流采集模块和电压采集模块。电流采集模块和电压采集模块分别用于获取电机输出电流和电压。电机驱动装置可以利用电机输出的电流和电压确定电机输出的转矩。
本申请实施例中,电机驱动装置预先存储的电机输出不同转速和/或转矩,与目标谐波电流的参数之间的对应关系,也可以称为运行参数与目标谐波电流的参数之间的对应关系。其中,运行参数与目标谐波电流的参数的对应关系可以通过仿真、模拟、实测等方式确定、获得、或者获取。
一个示例中,电机输出转速n1和/或转矩T1时,减速器输入轴齿轮产生的第二激励pa,相应的噪声为啸叫噪声na。为抑制该啸叫噪声na,电机驱动装置可以基于存储的电机输出不同转速和/或转矩,与目标谐波电流的参数之间的对应关系,以及电机输出转速n1和/或转矩T1,确定所述转速n1和/或转矩T1对应的目标谐波电流Ia的参数。
电机驱动装置可以基于确定出的目标谐波电流Ia的参数,向电机注入包括目标谐波电流Ia分量的电流,以使电机输出谐波转矩ma。在谐波转矩ma作用下电机产生第一激励qa。该第二激励pa该和第一激励qa相互作用后,可使动力驱动系统的整体噪声水平降低, 也可以减弱或抑制啸叫噪声na。
另一种可能的设计中,电机驱动装置可以采用谐波电流参数寻优策略,依据获取的电机转速和/或转矩(可以根据电机输出电流和电压确定)等信息,确定向电机注入的目标谐波电流的参数。例如,实时修改谐波电流参数,记录向电机注入包括谐波电流的第一电流后,动力驱动系统的噪声水平情况,并保留最优谐波电流参数。
目标谐波电流的参数可以包括用于确定目标谐波电流的直轴电压和交轴电压的多个参量,如幅值集合、角速度、阶次、相位角等,幅值集合中可以包括直轴正序电压、直轴负序电压、交轴正序电压以及交轴负序电压中一个或多个。电机驱动装置可以基于目标谐波电压(如直轴电压和交轴电压),调整输入电机的第一电流,可使输入电机的第一电流的谐波分量包括目标谐波电流。
一个示例中,以电机的参考电角度作为相位角参考基准,所述目标谐波电流的参数可以包括第一幅值集合、第一阶次k、所述电机的电角速度ω 1、以及相对所述电机的参考电角度的第一相位角
Figure PCTCN2021099821-appb-000013
所述第一阶次k为
Figure PCTCN2021099821-appb-000014
其中,z为输入轴齿轮的齿数(可记为第一数量),n为电机中转子所包括的磁极对的数量(可记为第二数量)。
电机驱动装置可以根据目标谐波电流的参数,确定目标谐波电压。在dq坐标系中,目标谐波电压可以包括d轴谐波电压(直轴电压)U d1和q轴谐波电压(交轴电压)U q1。电机驱动装置可以根据直轴电压和交轴电压与目标谐波电流的参数的关系,以及目标谐波电流的参数,确定目标谐波电流的直轴电压U d1和交轴电压U q1
第一幅值集合可以包括直轴正序电压幅值和交轴正序电压幅值,直轴电压U d1和交轴电压U q1与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000015
Figure PCTCN2021099821-appb-000016
其中,U d1为t时刻的直轴电压,U q1为t时刻的交轴电压,A d11为d轴正序电压幅值,A q11为q轴正序电压幅值,k为所述第一阶次,ω 1为所述电机的电角速度,
Figure PCTCN2021099821-appb-000017
为相对所述电机的参考电角度的第一相位角。可选地,直轴正序电压幅值A d11可以等于交轴正序电压幅值A q11
第一幅值集合可以包括直轴负序电压幅值和交轴负序电压幅值,直轴电压U d和交轴电压U q与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000018
Figure PCTCN2021099821-appb-000019
其中,U d1为t时刻的直轴电压,U q1为t时刻的交轴电压,A d12为直轴负序电压幅值,A q12为交轴负序电压幅值,k为所述第一阶次,ω 1为所述电机的电角速度,
Figure PCTCN2021099821-appb-000020
为相对所述电机的参考电角度的第一相位角。可选地,直轴正序电压幅值A d12可以等于交轴正序电压幅值A q12
第一幅值集合可以包括直轴正序电压幅值、交轴正序电压幅值、直轴负序电压幅值和交轴负序电压幅值,直轴电压U d1和交轴电压U q1与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000021
Figure PCTCN2021099821-appb-000022
其中,U d1为t时刻的所述直轴电压,U q1为交轴电压为t时刻的所述交轴电压,A d11为直轴正序电压幅值,A d12为直轴负序电压幅值,A q11为交轴正序电压幅值,A q12为交轴负序电压幅值,k为所述第一阶次,ω 1为所述电机的电角速度,
Figure PCTCN2021099821-appb-000023
为相对所述电机的参考电角度的第一相位角。可选地,直轴正序电压幅值A d11可以等于交轴正序电压幅值A q11,直轴正序电压幅值A d12可以等于交轴正序电压幅值A q12
本申请实施例中,电机驱动装置基于目标谐波电流的直轴电压和交轴电压,调整向电机输入的第一电流,以使向电机输入的第一电流的谐波电流分量中包括目标谐波电流,目标谐波电流可以为k±1次的谐波电流,即
Figure PCTCN2021099821-appb-000024
次的谐波电流。在电机输出转速和/或转矩不同的情形下,目标谐波电流的参数中的幅值、相位角、或电角速度等物理量可以不同,而第一阶次k相同。电机在
Figure PCTCN2021099821-appb-000025
次的谐波电流的作用下,可以产生的谐波转矩可以使电机产生z阶的第一激励。
另一个示例中,以电机的参考机械角度作为相位角参考基准,所述目标谐波电流的参数可以包括第二幅值集合,第二阶次z,所述电机的机械角速度Ω 2,以及相对所述电机的参考机械角度的第二相位角
Figure PCTCN2021099821-appb-000026
其中,z为输入轴齿轮的齿数(可记为第二数量)。
电机驱动装置可以根据直轴电压和交轴电压与目标谐波电流的参数的关系,以及目标谐波电流的参数,确定目标谐波电流的直轴电压U d2和交轴电压U q2
第二幅值集合可以包括直轴正序电压幅值和交轴正序电压幅值,直轴电压U d2和交轴电压U q2与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000027
Figure PCTCN2021099821-appb-000028
其中,U d2为t时刻的所述直轴电压,U q2为t时刻的所述交轴电压,A d21为直轴正序电压幅值,A q21为交轴正序电压幅值,z为所述第二阶次,也是输入轴齿轮的齿数,Ω 1为所述电机的机械角速度,
Figure PCTCN2021099821-appb-000029
为相对所述电机的参考电角度的第二相位角。可选地,直轴正序电压幅值A d21可以等于交轴正序电压幅值A q21
第二幅值集合可以包括直轴负序电压幅值和交轴负序电压幅值,直轴电压U d2和交轴电压U q2与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000030
Figure PCTCN2021099821-appb-000031
其中,U d2为t时刻的所述直轴电压,U q2为t时刻的所述交轴电压,A d22为直轴负序电压幅值,A q22为交轴负序电压幅值,z为所述第二阶次,也是输入轴齿轮的齿数,Ω 1为所述电机的机械角速度,
Figure PCTCN2021099821-appb-000032
为相对所述电机的参考电角度的第二相位角。可选地,直轴负序电压幅值A d22可以等于交轴负序电压幅值A q22
第二幅值集合可以包括直轴正序电压幅值、交轴正序电压幅值、直轴负序电压幅值和交轴负序电压幅值,直轴电压U d和交轴电压U q与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000033
Figure PCTCN2021099821-appb-000034
其中,U d2为t时刻的所述直轴电压,U q2为t时刻的所述交轴电压,A d21为直轴正序电压幅值,A d22为直轴负序电压幅值,A q21为交轴正序电压幅值,A q22为交轴负序电压幅值,z为所述第二阶次,也是输入轴齿轮的齿数,Ω 1为所述电机的机械角速度,
Figure PCTCN2021099821-appb-000035
为相对所述电机的参考电角度的第二相位角。可选地,直轴正序电压幅值A d21可以等于交轴正序电压幅值A q21,直轴负序电压幅值A d22可以等于交轴负序电压幅值A q22
本申请实施例中,电机驱动装置基于目标谐波电压的直轴电压和交轴电压,调整向电机输入的第一电流,以使向电机输入的第一电流中包括的目标谐波电流分量为z±n次的谐波电流,即z±n次的谐波电流(n为电机中转子所包括的磁极对的数量)。在电机输出转速和/或转矩不同的情形下,目标谐波电流的参数中的幅值、相位角、或机械角速度等物理量可以不同,而第二阶次z相同。电机在z±n次的谐波电流的作用下,可以产生的谐波转矩可以使电机产生z阶的第一激励。
电机驱动装置在确定目标谐波电流的直轴电压和交轴电压后,可以基于目标谐波电流的电压调整为电机(各相)提供的电流,使输入电机的电流包括该目标谐波电流分量和基波电流分量。例如,电机驱动装置可以采用空间矢量脉宽调制(space vector pulse width modulation,SVPWM)技术或方法,基于目标谐波电压(如直轴电压和交轴电压),确定为电机提供的电流(可称为期望电流)。
如图3所示,电机驱动装置可以包括逆变器和控制器。图3根据一示例性实施例示出控制器执行过程。控制器可以获取电机的运行参数,如转速和/或转矩等参数。控制器可以依据获取的运行参数,确定目标谐波电流的参数。例如,基于存储的转速和/或转矩与谐波电流参数的对应关系,确定获取的转速和/或转矩对应的谐波电流参数,作为目标谐波电流的参数。控制器可以利用目标谐波电流参数,确定目标谐波电流的电压(直轴电压和交轴电压)等操作。
控制器与逆变器连接,逆变器与电机连接。控制器可以基于目标谐波电压,采用SVPWM技术,生成逆变器驱动信号,对逆变器进行驱动,以使逆变器向电机输入的第一电流中包括目标谐波电流分量和基波电流分量。通常控制器由低压电源供电。逆变器在控制器的驱动下,可以将高压直流母线电源提供的直流电转换为交流电,并提供给电机。
例如,逆变器可以包括三相输出端,电机包括三相输入端。所述三相输出端与所述三相输入端一一对应。逆变器的一相输出端与相应的电机的一相输入端连接,可以将包括目标谐波电流分量的电流提供给该相应的电机的一相输入端。
电机控制装置利用包括目标谐波电流分量和基波电流分量的电流对电机进行驱动,使电机输出的转矩中包括在与因目标谐波电流驱动产生的谐波转矩,该谐波转矩可使电机产生z阶第一激励,z阶第一激励与减速器输入轴齿轮产生的z阶第二激励相互作用,可降低动力驱动系统整体噪声水平,也可以抵消减速器产生的z阶第二激励造成的啸叫噪声。例如,抵消减速器的输入轴齿轮产生的啸叫噪声。
一个示例中,在以电机的参考电角度作为相位角参考基准的情形下,所述目标谐波电流的参数中的第一阶次
Figure PCTCN2021099821-appb-000036
可以为整数,也可以为分数(不是整数的数值)。通常,为了避免减速器中齿轮啮合阶次和电机阶次出现共振,减速器中输入轴齿轮的齿数可以根据电机的阶次进行调整。通常情况下,所述目标谐波的第一阶次k为分数。图4(a)中示出了目标谐波的阶次为分数的情形下,目标谐波的波形情况。图4(b)中示出了目标谐波的第一阶次为整数的情形下,目标谐波的波形情况。
本申请实施例中,电机驱动装置向电机注入的目标谐波,可使电机产生z阶第一激励。该z阶第一激励与减速器中输入轴齿轮产生的z阶第二激励相互作用,具有抑制输入轴齿轮产生的啸叫噪声的作用,降低动力驱动系统的噪声水平。
下面对电机驱动装置向电机提供的电流进行介绍。在以电机的参考机械角度作为目标谐波的相位角参考基准的情形下,电机驱动装置利用包括目标谐波电流的电流对电机进行驱动时,电机中可以产生z±n次的电流谐波。电机中的三相输入端分别记为A相、B相、C相。电机驱动装置将目标谐波注入电机后,以A相为例,对电机中的电流进行说明。
A相电流记为i a,i a中包括基波i 基波分量、载波i 载波及其谐波分量和目标谐波i 目标谐波分量。在电机中转子极对数为3,减速器输入轴齿轮齿数为23(即n=3,z=23)的场景中,逆变器为A相输入端提供的电流i a情况见如下公式:
i a=i 基波+i 载波及其谐波+i 目标谐波
Figure PCTCN2021099821-appb-000037
Figure PCTCN2021099821-appb-000038
Figure PCTCN2021099821-appb-000039
其中,I 1为基波幅值,ω 1为基波角频率,
Figure PCTCN2021099821-appb-000040
为基波电流相位角。I z-n为z-n次谐波电流的幅值,I z+n为z+n次谐波电流的幅值,
Figure PCTCN2021099821-appb-000041
为z-n次谐波电流的相位角,
Figure PCTCN2021099821-appb-000042
为z+n次谐波电流的相位角,Ω 1为电机的机械角速度。I s,I s+2,I s-2,I s+4,I s-4分别为载波的第s次,第s+2次,第s-2次,第s+4次,第s-4次谐波的幅值,ω s为载波角频率。
Figure PCTCN2021099821-appb-000043
Figure PCTCN2021099821-appb-000044
分别为载波的第s次,第s+2次,第s-2次,第s+4次,第s-4次谐波的相位角。
在实际应用场景中,若不考虑同步电机三相反电动势3、5、7等阶次谐波,A相基波电压表达式可为
Figure PCTCN2021099821-appb-000045
其中,E 1是A相电压幅值,ω 1为基波角频率,
Figure PCTCN2021099821-appb-000046
是电压相位角。电机输出转矩可为T e
Figure PCTCN2021099821-appb-000047
其中Ω为电机机械角速度,u a为A相基波电压,i a为A相电流,u b为B相基波电压,i b为B相电流,u c为C相基波电压,i c为C相电流。
电机输出转矩T e包括驱动转矩和z阶谐波转矩。驱动转矩用于驱动减速器运行,z阶谐波转矩用于使电机产生z阶第一激励,并与减速器输入轴齿轮产生的z阶第二激励相互作用,降低动力驱动系统整体噪声水平,降低减速器的输入轴齿轮产生的啸叫噪声。
本申请实施例中,电机驱动装置基于目标谐波电流的直轴电压和交轴电压,可以向电机注入包括z-n次和z+n次的谐波电流。电机在z-n次和z+n次的谐波电流的作用下,可以使电机产生z阶第一激励。z阶第一激励与减速器输入轴齿轮产生的z阶第二激励相互作用,可以改变动力驱动系统振动分布,降低动力驱动系统的平均噪声。
电机驱动装置向电机注入目标谐波后,电机输出的z阶第一激励对减速器产生的噪声减弱效果(降低效果、抑制效果)除通过人耳对噪声强度进行感受之外,也可以通过NVH测试情况反映。例如通过NVH测试系统进行测试,通常NVH测试系统可以包括传感器(如声音传感器和振动传感器)、数据采集卡和数据分析仪。传感器可以布置在动力驱动系统四周,用于采集动力驱动系统工作过程中的振动和噪声。例如,声音传感器一般可以设置在距离动力驱动系统1米的位置,和/或,距离动力驱动系统0.1米的位置。
数据采集卡可以接收传感器采集的信号,并提供给数据分析仪。数据分析仪经过数据处理,可以显示坎贝尔图、overall曲线、各阶次噪声曲线等。坎贝尔图、overall曲线和阶次噪声曲线是NVH分析最为常用的参考依据。
坎贝尔图(campbell)通常为旋转结构的特征频率与其旋转速度相关的场景中,各模态频率随转动速度的变化曲线。overall曲线用于衡量信号中的总能量,表征总能量随时间或者转速的变化关系。阶次噪声曲线是用于衡量信号中对应阶次的能量,表征特定阶次能量随时间或者转速的变化关系。
以减速器中输入轴齿轮齿数为23,电机中转子所包括的磁极对数量为3的动力驱动系统作为举例,在以电机的参考机械角度作为相位角参考基准的情形下。在对该动力驱动系统进行NVH测试中,电机驱动装置向电机注入目标谐波电流,例如z±n次的电流谐波,电机在该电流谐波的作用下可输出23阶谐波转矩。
图5中示出了电机驱动装置向电机注入目标谐波前后动力驱动系统NVH测试中23阶噪声变化情况(overall曲线图)。其中,虚线为电机驱动装置向电机注入目标谐波前噪声 变化情况,也即减速器的输入轴齿轮产生的啸叫噪声。实线为电机驱动装置向电机注入目标谐波后噪声能量变化情况。可见,电机输出不同转速的情形中,电机输出大部分转速时,电机驱动装置向电机注入目标谐波后,动力驱动系统的23阶噪声水平低于电机驱动装置未向电机注入目标谐波时的23阶噪声水平。本申请实施例提供的动力驱动系统,可以抑制减速器输入齿轮产生的啸叫噪声,具有较优的NVH特性。
在NVH测试过程中生成的坎贝尔图可反映出,电机处于不同转速下,载波附近带有ω s±nω 1、ω s±3nω 1、ω s±5nω 1…角频率特征,也即载波频率f s附近存在f s±nf 1、f s±3nf 1、f s±5nf 1…频率特征,即载波附近存在3,9,15…阶次特征。如果向电机注入的目标谐波,NVH载波频率f s两端伞状附近可以存在ω s±(z±n)ω 1、ω s±(z±3n)ω 1、ω s±(z±5n)ω 1…角频率特征,也即可以存在8、14、20、26、31、或者38阶次能量变化。
图6(a)示出了电机驱动装置在向电机注入目标谐波前的动力驱动系统进行NVH测试载波附近阶次情况的坎贝尔图(示意图)。图6(b)示出了电机驱动装置在全部转速区间内向注入目标谐波后的动力驱动系统进行NVH测试载波附近阶次情况的坎贝尔图(示意图)。可见,电机驱动装置在向电机注入目标谐波分量后,在全部转速区间内,载波频率f s两端14阶对应的位置出现明显能量线。图6(c)示出了电机驱动装置在部分转速区间内向注入目标谐波后的动力驱动系统进行NVH测试载波附近阶次情况的坎贝尔图(示意图)。可见,电机驱动装置在向电机注入目标谐波电流后,在所述部分转速区内,载波频率f s两端14阶对应的位置出现明显能量线。
通过图6(a)、图6(b)及图6(c),可见电机驱动装置向电机注入目标谐波电流后,动力驱动系统中出现14阶噪声。对载波频率f s一端14阶噪声提取,如图7所示,电机驱动装置向电机注入目标谐波电流前后动力驱动系统NVH测试中载波频率f s一端14阶噪声情况。其中,虚线为电机驱动装置向电机注入目标谐波电流前噪声变化情况,实线为电机驱动装置向电机注入目标谐波电流后,动力驱动系统噪声能量变化情况。
虽然电机驱动装置向电机注入目标谐波后,动力驱动系统产生14阶能量,即产生14阶噪声。但是该噪声能量源低于23阶基波能量,并且由于载波频率较高,对系统整体噪声水平影响有限。因此在载波频率附近的阶次(如8、14、20、26、31、或者38阶次)噪声,这些噪声对动力驱动系统的NVH特性影响不大。
图8中示出了电机驱动装置向电机注入目标谐波电流前后动力驱动系统NVH测试总噪声变化曲线(overall曲线图)。其中,虚线为电机驱动装置向电机注入目标谐波电流前系统总噪声变化情况,实线为电机驱动装置向电机注入目标谐波电流后系统总噪声能量变化情况。在大部分转速下,电机驱动装置向电机注入目标谐波电流后,动力驱动系统的总噪声水平低于电机驱动装置未向电机注入目标谐波时的噪声水平。本申请实施例提供的动力驱动系统具有较优的NVH特性。
本申请实施例提供一种电动汽车,可以包括前述实施例提供的动力驱动系统。前述实施例提供的动力驱动系统整体噪声水平较低,动力驱动系统的NVH性能较优,可使电动汽车的噪声水平较低,具有较优的NVH性能,用户体验较好。
本申请实施例还提供一种降低动力驱动系统中减速器噪声的方法,可以应用于动力驱动系统中的电机驱动装置。动力驱动系统可以参见前述实施例中的介绍,此处不再赘述。如图9所示,降低动力驱动系统中减速器噪声的方法可以包括如下步骤:
步骤S101,获取电机的第一运行参数。
第一运行参数可以包括转速和/或转矩。电机驱动装置可以获取电机运行转速和/或转矩。例如,电机驱动装置可以包括转速采集模块,采集电机的转速。电机驱动装置可以获取电机输出电流和/或电压,计算电机的转矩。
步骤S102,从预设运行参数与谐波电流参数的对应关系中,查找所述第一运行参数相应的电流参数,并基于所述第一运行参数相应的谐波电流参数确定目标谐波电流的直轴电压和交轴电压。
电机驱动装置可以存储预设运行参数与谐波电流参数的对应关系。电机驱动装置可以基于存储的运行参数与谐波电流参数的对应关系以及获取的第一运行参数,确定目标谐波电流的参数。
一种可能的实施方式中,所述目标谐波电流的参数可以包括第一幅值集合、第一阶次k、所述电机的电角速度Ω 1、以及相对所述电机的参考电角度的第一相位角
Figure PCTCN2021099821-appb-000048
所述第一幅值集合包括直轴正序电压幅值、直轴负序电压幅值、交轴正序电压幅值、交轴负序电压幅值中的一个或多个。其中,k为
Figure PCTCN2021099821-appb-000049
n为电机中转子所包括的磁极对的数量,z为输入轴齿轮的齿数。
电机驱动装置可以根据所述目标谐波电流的参数,确定目标谐波电流的电压。在dq坐标系中,目标谐波电流的电压可以包括d轴谐波电压(直轴电压)U d1和q轴谐波电压(交轴电压)U q1
一个示例中,第一幅值集合可以包括直轴正序电压幅值和交轴正序电压幅值,直轴电压U d1和交轴电压U q1与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000050
Figure PCTCN2021099821-appb-000051
其中,U d1为t时刻的直轴电压,U q1为t时刻的交轴电压,A d11为d轴正序电压幅值,A q11为q轴正序电压幅值,k为所述第一阶次,ω 1为所述电机的电角速度,
Figure PCTCN2021099821-appb-000052
为相对所述电机的参考电角度的第一相位角。可选地,直轴正序电压幅值A d11可以等于交轴正序电压幅值A q11
另一个示例中,第一幅值集合可以包括直轴负序电压幅值和交轴负序电压幅值,直轴电压U d和交轴电压U q与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000053
Figure PCTCN2021099821-appb-000054
其中,U d1为t时刻的直轴电压,U q1为t时刻的交轴电压,A d12为直轴负序电压幅值,A q12为交轴负序电压幅值,k为所述第一阶次,ω 1为所述电机的电角速度,
Figure PCTCN2021099821-appb-000055
为相对所述电机的参考电角度的第一相位角。可选地,直轴正序电压幅值A d12可以等于交轴正序电压幅值A q12
又一个示例中,第一幅值集合可以包括直轴正序电压幅值、交轴正序电压幅值、直轴负序电压幅值和交轴负序电压幅值,直轴电压U d1和交轴电压U q1与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000056
Figure PCTCN2021099821-appb-000057
其中,U d1为t时刻的所述直轴电压,U q1为交轴电压为t时刻的所述交轴电压,A d11为直轴正序电压幅值,A d12为直轴负序电压幅值,A q11为交轴正序电压幅值,A q12为交轴负序电压幅值,k为所述第一阶次,ω 1为所述电机的电角速度,
Figure PCTCN2021099821-appb-000058
为相对所述电机的参考电角度的第一相位角。可选地,直轴正序电压幅值A d11可以等于交轴正序电压幅值A q11,直轴正序电压幅值A d12可以等于交轴正序电压幅值A q12
另一种可能的实施方式中,所述目标谐波电流的参数可以包括第二幅值集合、第二阶次z,所述电机的机械角速度Ω 2,以及相对所述电机的参考机械角度的第二相位角
Figure PCTCN2021099821-appb-000059
第二幅值集合可以包括直轴正序电压幅值、直轴负序电压幅值、交轴正序电压幅值、交轴负序电压幅值中的一个或多个。其中,z为输入轴齿轮的齿数。
电机驱动装置可以根据所述目标谐波电流的参数,确定目标谐波的电压。在dq坐标系中,目标谐波的电压可以包括d轴谐波电压(直轴电压)U d2和q轴谐波电压(交轴电压)U q2
一个示例中,第二幅值集合可以包括直轴正序电压幅值和交轴正序电压幅值,直轴电压U d2和交轴电压U q2与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000060
Figure PCTCN2021099821-appb-000061
其中,U d2为t时刻的所述直轴电压,U q2为t时刻的所述交轴电压,A d21为直轴正序电压幅值,A q21为交轴正序电压幅值,z为所述第二阶次,也是输入轴齿轮的齿数,Ω 1为所述电机的机械角速度,
Figure PCTCN2021099821-appb-000062
为相对所述电机的参考电角度的第二相位角。可选地,直轴正序电压幅值A d21可以等于交轴正序电压幅值A q21
另一个示例中,第二幅值集合可以包括直轴负序电压幅值和交轴负序电压幅值,直轴电压U d2和交轴电压U q2与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000063
Figure PCTCN2021099821-appb-000064
其中,U d2为t时刻的所述直轴电压,U q2为t时刻的所述交轴电压,A d22为直轴负序电压幅值,A q22为交轴负序电压幅值,z为所述第二阶次,也是输入轴齿轮的齿数,Ω 1为所述电机的机械角速度,
Figure PCTCN2021099821-appb-000065
为相对所述电机的参考电角度的第二相位角。可选地,直轴负序电压幅值A d22可以等于交轴负序电压幅值A q22
又一个示例中,第二幅值集合可以包括直轴正序电压幅值、交轴正序电压幅值、直轴负序电压幅值和交轴负序电压幅值,直轴电压U d和交轴电压U q与目标谐波电流的参数的关系可以参见如下公式:
Figure PCTCN2021099821-appb-000066
Figure PCTCN2021099821-appb-000067
其中,U d2为t时刻的所述直轴电压,U q2为t时刻的所述交轴电压,A d21为直轴正序电压幅值,A d22为直轴负序电压幅值,A q21为交轴正序电压幅值,A q22为交轴负序电压幅值,z为所述第二阶次,也是输入轴齿轮的齿数,Ω 1为所述电机的机械角速度,
Figure PCTCN2021099821-appb-000068
为相对所述电机的参考电角度的第二相位角。可选地,直轴正序电压幅值A d21可以等于交轴正序电压幅值A q21,直轴负序电压幅值A d22可以等于交轴负序电压幅值A q22
步骤S103,基于所述目标谐波电流的直轴电压和交轴电压,调整输入所述电机的第一电流,其中,所述第一电流的谐波电流分量包括所述目标谐波电流,所述第一电流用于驱动所述电机输出转矩,所述转矩包括因所述第一电流的基波电流分量的驱动下产生的驱动转矩和因所述预设电流的驱动下产生的谐波转矩,所述谐波转矩用于使所述电机产生第一激励;所述驱动转矩用于驱动所述减速器运行,所述第一激励用于部分地或全部地抵消所述减速器在运行齿轮啮合产生的第二激励。
电机驱动装置可以采用SVPWM技术,基于目标谐波的直轴电压和交轴电压,调整为电机提供的电流,或者说,调整向电机输入的第一电流,使输入电流中包括目标谐波电流分量。
电机驱动装置向电机输入交流电,对电机进行驱动,电机输出转矩。向电机输入的交流电中包括目标谐波,目标谐波输入电机后可使电机输出转矩中包括谐波转矩,即电机因 目标谐波驱动下产生谐波转矩。
示例性的,电机驱动装置向电机输入电流的目标谐波电流可为k±1次的电流谐波。该目标谐波可使电机输出z阶谐波转矩,该z阶谐波转矩可以使电机产生z阶的第一激励,可抑制减速器输入轴齿轮产生的z阶的第二激励。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种可读存储介质,用于存储上述实施例提供的方法或算法。例如,随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、EPROM存储器、非易失性只读存储器(Electronic Programmable ROM,EPROM)、寄存器、硬盘、可移动磁盘或本领域中其它任意形式的存储媒介。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入电机驱动装置。电机驱动装置可以包括RAM存储器、闪存、ROM存储器、EPROM存储器、寄存器、硬盘、可移动磁盘或本领域中其它任意形式的存储媒介,用于存储本申请实施例提供的方法或算法的步骤。示例性地,存储媒介可以与处理器或控制器连接,以使得处理器或控制器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器或控制器中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (13)

  1. 一种动力驱动系统,其特征在于,包括电机、减速器和电机驱动装置;所述电机与所述减速器传动连接;所述电机驱动装置与所述电机连接;
    所述电机驱动装置,用于基于预设电流的直轴电压和交轴电压,调整输入所述电机的第一电流,其中所述第一电流的谐波电流分量包括所述预设电流;
    所述电机,用于在所述第一电流的驱动下输出转矩,所述转矩包括因所述第一电流的基波电流分量的驱动下产生的驱动转矩和因所述预设电流的驱动下产生的谐波转矩,所述谐波转矩用于使所述电机产生第一激励;
    所述减速器,用于在所述驱动转矩的作用下运行,所述减速器运行时齿轮啮合产生第二激励;
    其中,所述第一激励用于部分地或全部地抵消所述第二激励。
  2. 如权利要求1所述的动力驱动系统,其特征在于,所述第一电流的傅里叶级数展开形式包括所述基波电流分量和频率大于所述基波电流分量的频率的所述谐波电流分量。
  3. 如权利要求1或2所述的动力驱动系统,其特征在于,所述电机驱动装置还用于:
    获取所述电机的第一运行参数;
    从预设的运行参数与谐波电流参数的对应关系中,查找所述第一运行参数相应的电流参数,所述第一运行参数相应的电流参数用于确定所述预设电流的所述交轴电压和所述直轴电压。
  4. 如权利要求3所述的动力驱动系统,其特征在于,所述第二激励为所述减速器中的第一齿轮啮合时产生的,所述第一齿轮为所述减速器中与所述电机相连的齿轮;
    查找到的所述第一运行参数相应的电流参数包括第一幅值集合、第一阶次、所述电机的电角速度、以及相对于所述电机的参考电角度的第一相位角,所述第一幅值集合包括直轴正序电压幅值、直轴负序电压幅值、交轴正序电压幅值、交轴负序电压幅值中的一个或多个,其中,所述第一阶次为第一数量与第二数量的比值,所述第一数量为所述第一齿轮的齿数,所述第二数量为所述电机中的转子所包括的磁极对数量;
    所述第一激励的阶次为所述第一数量。
  5. 如权利要求3所述的动力驱动系统,其特征在于,所述第二激励为所述减速器中的第一齿轮啮合时产生的,所述第一齿轮为所述减速器中与所述电机相连的齿轮;
    查找到的所述第一运行参数相应的电流参数包括第二幅值集合、第二阶次、所述电机的机械角速度、以及相对于所述电机的参考机械角的第二相位角,所述第二幅值集合包括直轴正序电压幅值、直轴负序电压幅值、交轴正序电压幅值、交轴负序电压幅值中的一个或多个,其中,所述第二阶次为所述第一齿轮的齿数;
    所述第一激励的阶次为所述第一数量。
  6. 一种电动汽车,其特征在于,包括车轮、半轴以及如权利要求1-5中任一所述的动力驱动系统,所述动力驱动系统通过所述半轴与所述车轮传动连接,以驱动所述电动汽车行驶。
  7. 一种降低动力驱动系统中减速器产生噪声的方法,其特征在于,应用于电机驱动装置,所述电机驱动装置与电机连接,所述电机与减速器传动连接;所述方法包括:
    基于预设电流的直轴电压和交轴电压,调整输入所述电机的第一电流,其中所述第一 电流的谐波电流分量包括所述预设电流;
    其中,所述第一电流用于驱动所述电机输出转矩,所述转矩包括因所述第一电流的基波电流分量的驱动下产生的驱动转矩和因所述预设电流的驱动下产生的谐波转矩,所述谐波转矩用于使所述电机产生第一激励;所述驱动转矩用于驱动所述减速器运行,所述第一激励用于部分地或全部地抵消所述减速器在运行齿轮啮合产生的第二激励。
  8. 如权利要求7所述的方法,其特征在于,所述第一电流的傅里叶级数展开形式包括所述基波电流分量和频率大于所述基波电流分量的频率的所述谐波电流分量。
  9. 如权利要求7或8所述的方法,其特征在于,在所述控制输入所述电机的交流电之前,所述方法还包括:
    获取所述电机的第一运行参数;
    从预设的运行参数与谐波电流参数的对应关系和所述第一运行参数,查找所述第一运行参数相应的电流参数,所述第一运行参数相应的电流参数用于确定所述预设电流的所述交轴电压和所述直轴电压。
  10. 如权利要求9所述的方法,其特征在于,所述第二激励为所述减速器中的第一齿轮啮合时产生的,所述第一齿轮为所述减速器中与所述电机相连的齿轮;
    查找到的所述第一运行参数相应的电流参数包括第一幅值集合、第一阶次、所述电机的电角速度、以及相对于所述电机的参考电角度的第一相位角,所述第一幅值集合包括直轴正序电压幅值、直轴负序电压幅值、交轴正序电压幅值、交轴负序电压幅值中的一个或多个,其中,所述第一阶次为第一数量与第二数量的比值,所述第一数量为所述第一齿轮的齿数,所述第二数量为所述电机中的转子所包括的磁极对数量;
    所述第一激励的阶次为所述第一数量。
  11. 如权利要求9所述的方法,其特征在于,所述第二激励为所述减速器中的第一齿轮啮合时产生的,所述第一齿轮为所述减速器中与所述电机相连的齿轮;
    查找到的所述第一运行参数相应的电流参数包括第二幅值集合、第二阶次、所述电机的机械角速度、以及相对于所述电机的参考机械角的第二相位角,所述第二幅值集合包括直轴正序电压幅值、直轴负序电压幅值、交轴正序电压幅值、交轴负序电压幅值中的一个或多个,其中,所述第二阶次为所述第一齿轮的齿数;
    所述第一激励的阶次为所述第一数量。
  12. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机执行,当所述计算机可读存储介质中的计算机指令被电机驱动装置执行时,使得所述电机驱动装置执行所述权利要求7-11任一项权利要求所述的方法。
  13. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序执行时,实现如权利要求7-11中任一项所述的方法。
PCT/CN2021/099821 2021-06-11 2021-06-11 一种动力驱动系统、电动汽车、降低减速器产生的噪声的方法 WO2022257132A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180069417.1A CN116472193A (zh) 2021-06-11 2021-06-11 一种动力驱动系统、电动汽车、降低减速器产生的噪声的方法
PCT/CN2021/099821 WO2022257132A1 (zh) 2021-06-11 2021-06-11 一种动力驱动系统、电动汽车、降低减速器产生的噪声的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/099821 WO2022257132A1 (zh) 2021-06-11 2021-06-11 一种动力驱动系统、电动汽车、降低减速器产生的噪声的方法

Publications (1)

Publication Number Publication Date
WO2022257132A1 true WO2022257132A1 (zh) 2022-12-15

Family

ID=84425623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099821 WO2022257132A1 (zh) 2021-06-11 2021-06-11 一种动力驱动系统、电动汽车、降低减速器产生的噪声的方法

Country Status (2)

Country Link
CN (1) CN116472193A (zh)
WO (1) WO2022257132A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868816A (zh) * 2015-06-12 2015-08-26 珠海格力电器股份有限公司 一种电机的自适应降噪方法及系统
US20180154786A1 (en) * 2016-12-01 2018-06-07 Ford Global Technologies, Llc Dithering A Pulse Width Modulated Base Frequency To Reduce EV Noise
CN110233590A (zh) * 2019-06-18 2019-09-13 北京理工大学 一种基于谐波注入的新能源汽车永磁同步电机噪声控制方法
CN111245326A (zh) * 2018-11-28 2020-06-05 安徽美芝精密制造有限公司 矢量控制系统、抑制方法、抑制装置、电机和存储介质
CN111464085A (zh) * 2020-04-29 2020-07-28 华南理工大学 一种基于阶次提取的电机电流谐波及转矩脉动抑制方法
CN111865160A (zh) * 2019-04-23 2020-10-30 广州汽车集团股份有限公司 一种电机振动或噪声的控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868816A (zh) * 2015-06-12 2015-08-26 珠海格力电器股份有限公司 一种电机的自适应降噪方法及系统
US20180154786A1 (en) * 2016-12-01 2018-06-07 Ford Global Technologies, Llc Dithering A Pulse Width Modulated Base Frequency To Reduce EV Noise
CN111245326A (zh) * 2018-11-28 2020-06-05 安徽美芝精密制造有限公司 矢量控制系统、抑制方法、抑制装置、电机和存储介质
CN111865160A (zh) * 2019-04-23 2020-10-30 广州汽车集团股份有限公司 一种电机振动或噪声的控制方法及装置
CN110233590A (zh) * 2019-06-18 2019-09-13 北京理工大学 一种基于谐波注入的新能源汽车永磁同步电机噪声控制方法
CN111464085A (zh) * 2020-04-29 2020-07-28 华南理工大学 一种基于阶次提取的电机电流谐波及转矩脉动抑制方法

Also Published As

Publication number Publication date
CN116472193A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
Chai et al. Analysis of radial vibration caused by magnetic force and torque pulsation in interior permanent magnet synchronous motors considering air-gap deformations
CN104579042A (zh) 永磁同步电机的控制系统及其力矩波动抑制方法
CN107943121B (zh) 一种考虑非线性特性的永磁同步电动机模拟器及其控制方法
Ma et al. A novel black and white box method for diagnosis and reduction of abnormal noise of hub permanent-magnet synchronous motors for electric vehicles
JP2014513910A (ja) 可変動作速度において可変スイッチング周波数で電気モータを制御する方法およびシステム
CN104980079B (zh) 电机的转动惯量的测量方法及测量装置和电机控制系统
Wu et al. Order-domain-based harmonic injection method for multiple speed harmonics suppression of PMSM
US20130314011A1 (en) Methods, systems and apparatus for computing a voltage advance used in controlling operation of an electric machine
WO2016188069A1 (zh) 风力发电机的振动抑制方法及装置
CN104980078A (zh) 电机的转动惯量的测量方法及测量装置和电机控制系统
CN103580576A (zh) 多谐波分量的转矩脉动的减小
CN108809185B (zh) 一种电动汽车的电机扭矩控制的方法及系统
CN106655958A (zh) 永磁电机转矩补偿方法及装置
MX2012011414A (es) Sistema y metodo de amortiguacion en modo de torsion a base de rectificador e inversor.
Zuo et al. Analysis and suppression of longitudinal vibration of electric wheel system considering rotor position error
CN110729922A (zh) 电机控制方法、电机控制装置及计算机设备
WO2022257132A1 (zh) 一种动力驱动系统、电动汽车、降低减速器产生的噪声的方法
CN102906991A (zh) 无传感器扭转模态阻尼系统和方法
EP2747273A1 (en) Method and arrangement for torque estimation of a synchronous machine
JP3428885B2 (ja) 同期機シミュレータ及び同期機シミュレーション方法
CN110635742B (zh) 永磁同步电机的初始位置角标定方法和电机控制器
CN109713950B (zh) 永磁同步电机转矩脉动的抑制系统及方法
CN107425761A (zh) 永磁同步电机低频控制方法、装置、压缩机以及空调器
CN111983513A (zh) 一种车辆爪极发电机定子绕组匝间短路故障检测方法
Jiang et al. Tangential Force Noise Reduction of Vehicular PMSM Based on Reference Harmonic Current Analytical Computation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180069417.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE