WO2022255400A1 - Cleaner for indoor water use sites - Google Patents

Cleaner for indoor water use sites Download PDF

Info

Publication number
WO2022255400A1
WO2022255400A1 PCT/JP2022/022271 JP2022022271W WO2022255400A1 WO 2022255400 A1 WO2022255400 A1 WO 2022255400A1 JP 2022022271 W JP2022022271 W JP 2022022271W WO 2022255400 A1 WO2022255400 A1 WO 2022255400A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning agent
acid
agent according
methylobacterium
present disclosure
Prior art date
Application number
PCT/JP2022/022271
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 香野
智和 満井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2022255400A1 publication Critical patent/WO2022255400A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents

Definitions

  • This disclosure relates to cleaning agents and the like for indoor water use locations.
  • Non-Patent Document 1 Sodium hypochlorite, which is a chlorine-based cleaning agent, is known as a cleaning agent for places where indoor water is used (Non-Patent Document 1).
  • sodium hypochlorite is highly corrosive and oxidizing, and may react with acidic detergents to generate toxic chlorine gas.
  • An object of the present disclosure is to provide an indoor water-using place cleaning agent capable of suppressing sliminess.
  • the present inventors have found that at least one selected from the group consisting of hydrolyzable tannins formed by ester bonding of glucose and a plurality of gallic acids, and salts thereof, is slimy. It was found to have an inhibitory action. Based on this knowledge, the inventor of the present invention has completed the invention of the present disclosure as a result of further research. That is, the present disclosure includes the following aspects.
  • Section 1 A cleaning agent for a place where water is used indoors, containing at least one selected from the group consisting of hydrolyzable tannins formed by ester-bonding glucose and a plurality of gallic acids, and salts thereof.
  • Section 2 The place of indoor water use is selected from the group consisting of residences, factories, offices, lodging facilities, hospitals, stores, schools, restaurants, airport facilities, stations, bus terminals, service areas, exercise facilities, and meeting places.
  • Item 1 The cleaning agent according to Item 1, which is at least one indoor water use place.
  • Section 4. The cleaning agent according to any one of Items 1 to 3, wherein the indoor water use place is at least one selected from the group consisting of kitchen, kitchen, bathroom, toilet, kitchen, washroom and water circulation equipment.
  • Item 5 Items 1 to 4, wherein the hydrolyzable tannin is tannic acid.
  • Item 6. The cleaning agent according to any one of Items 1 to 5, which contains a solvent.
  • Item 7 The cleaning agent according to Item 6, wherein the content of the hydrolyzable tannin and its salt per 1 mL of the solvent is 5000 ⁇ g or less.
  • Item 8 The cleaning agent according to Item 6 or 7, wherein the solvent has a pH of 2.0 to 12.0.
  • the solvent is alcohol and water
  • the cleaning agent according to item 6 or 7, which contains a weak acid pH adjuster and the solvent has a pH of 2.0 to 4.0.
  • Item 10 The cleaning agent according to Item 9, containing an antiseptic antifungal agent and a surfactant.
  • Item 11 Item 10, wherein the surfactant is a nonionic surfactant.
  • Item 12. The cleaning agent according to Item 11, wherein the surfactant is polyoxyethylene alkyl ether.
  • Item 13 The cleaning agent according to any one of Items 1 to 12, wherein the hydrolyzable tannin is used at a concentration that does not substantially exhibit a growth-inhibiting effect on bacteria of the genus Methylobacterium.
  • Item 14 The cleaning agent according to any one of Items 1 to 13, for use in contact with slime derived from microorganisms in indoor water use locations.
  • Item 15 The cleaning agent according to any one of Items 1 to 14, which is for suppressing sliminess derived from microorganisms.
  • Item 16 The cleaning agent according to item 14 or 15, wherein the microorganism is at least one selected from the group consisting of bacteria of the genus Methylobacterium, bacteria of the genus Brevundimonas, bacteria of the genus Pseudomonas, bacteria of the genus Xanthomonas, bacteria of the genus Sphingomonas, and bacteria of the genus Rhodococcus. .
  • Item 17 Items 14 to 16, wherein the microorganism is a bacterium belonging to the genus Methylobacterium.
  • Item 18 A method for suppressing sliminess, comprising contacting the cleaning agent according to any one of Items 1 to 17 with a water-using surface in an indoor water-using location.
  • Item 19 The method according to Item 18, comprising contacting the cleaning agent according to any one of Items 1 to 18 with slime derived from microorganisms in a place where indoor water is used.
  • Item 20 A deodorizing method comprising contacting the cleaning agent according to any one of Items 1 to 13 with an odor substance.
  • Item 21 A method for solubilizing fatty acid calcium, comprising contacting the detergent according to any one of Items 1 to 13 with fatty acid calcium.
  • the present disclosure contains at least one selected from the group consisting of hydrolyzable tannins formed by ester bonding of glucose and a plurality of gallic acids, and salts thereof, for indoor water-use cleaning.
  • agent also referred to herein as the “cleaning agent of the present disclosure”. This will be explained below.
  • the cleaning agent of the present disclosure contains at least one selected from the group consisting of hydrolyzable tannins formed by ester bonding of glucose and multiple gallic acids, and salts thereof (herein, " Also referred to as “active ingredient”. ).
  • the hydrolyzable tannin is not particularly limited as long as it is formed by ester-bonding glucose and multiple gallic acids.
  • Glucose is not particularly limited. Glucose can be any of pyranose type (glucopyranose), furanose type (glucofuranose) and linear type, preferably pyranose type. Also, glucose can be either D-type or L-type, preferably D-type. Also, glucose can be either ⁇ -type or ⁇ -type, preferably ⁇ -type. Glucose includes preferably glucopyranose, more preferably D-glucopyranose, still more preferably ⁇ -D-glucopyranose, and the like.
  • the ester bond is an ester bond between a hydroxyl group derived from glucose and a carboxy group derived from gallic acid, and is not particularly limited in this respect.
  • another gallic acid may be linked to gallic acid linked to glucose.
  • at least one hydrolyzable tannin possessed by glucose preferably two or more, more preferably three or more, It is a hydrolyzable tannin in which hydroxyl groups (more preferably 4 or more, particularly preferably 5 or more) and carboxy groups of gallic acid or gallic acid linkages are ester-bonded.
  • the linked form of gallic acid means two or more (preferably 2 to 6, more preferably 2 to 5, still more preferably 2 to 4, even more preferably 2 to 3, particularly preferably 2) gallic acid linked by an ester bond (that is, an ester bond between a hydroxyl group derived from one gallic acid and a carboxy group derived from another gallic acid).
  • the hydroxyl group that forms an ester bond may be either a hydroxyl group at the meta position or a hydroxyl group at the para position, but is preferably a hydroxyl group at the meta position.
  • linked products composed of three or more gallic acids are those in which gallic acids are linked in a straight chain (i.e., only one of the three hydroxyl groups of gallic acid is used for ester bond formation.
  • gallic acid is linked in a branched chain ( That is, for at least one gallic acid, of the three hydroxyl groups of gallic acid, two or more hydroxyl groups are used for ester bond formation), but preferably a linear linker be.
  • gallic acid conjugates include conjugates represented by the following formulas.
  • the hydrolyzable tannin is preferably tannic acid.
  • tannic acid for example, general formula (1):
  • R 1 , R 2 , R 4 and R 5 are the same or different and represent a group obtained by removing the hydroxyl group in the carboxy group from gallic acid or a linker of gallic acid.
  • R 3 represents a hydrogen atom, or a group obtained by removing the hydroxyl group in the carboxy group from gallic acid or a linker of gallic acid.
  • R 1 , R 2 , R 3 , R 4 and R 5 are the same or different and are groups obtained by removing the hydroxyl group in the carboxyl group from gallic acid or a linker of gallic acid. and more preferably, R 1 , R 2 , R 3 , R 4 and R 5 are the same or different and are a group obtained by removing the hydroxyl group in the carboxyl group from a linker of gallic acid.
  • Preferred specific examples of tannic acid include two compounds represented by the following formulas.
  • tannic acid is plant-derived tannic acid such as quintuple tannin and gallic tannin.
  • the molecular weight of the hydrolyzable tannin is, for example, 300-2500, preferably 800-2200, more preferably 1200-2000, still more preferably 1500-1900.
  • the origin and form of the hydrolyzable tannin are not particularly limited, and examples include partially purified hydrolyzable tannins such as plant extracts, hydrolyzable tannins isolated from plants, and artificially synthesized tannins. Hydrolyzable tannins and the like can be used and they can be used alone or in combination.
  • the salt of hydrolyzable tannin is not particularly limited as long as it is a pharmaceutically acceptable salt and can be used as a cleaning agent for places where water is used indoors. , salts with alkaline earth metals such as calcium and magnesium, and salts with amines such as ammonium and triethylamine.
  • the active ingredient can be a single type or a combination of two or more types.
  • the cleaning agents of the present disclosure can contain only active ingredients, or can contain active ingredients and other ingredients.
  • the content of the active ingredient in the cleaning agent of the present disclosure is, for example, 0.00001 to 100% by mass, and the upper and lower limits thereof may be, for example, a range formed by any combination of two of the following numerical values. Possible: 100% by mass, 90% by mass, 70% by mass, 50% by mass , 30% by mass, 20% by mass, 10% by mass, 5% by mass, 2% by mass, 1% by mass, 0.5% by mass, 0.1% by mass , 0.01% by weight, 0.001% by weight, 0.0001% by weight.
  • hydrolyzable tannin is stable.
  • whether or not hydrolyzable tannin is stable in a liquid preparation can be determined by measuring the residual ratio of hydrolyzable tannin or by quantifying gallic acid, which is a hydrolyzate of hydrolyzable tannin.
  • the content of hydrolyzable tannin in the solution is 0.25%, it can be evaluated as stable if the initial rate of gallic acid formation is less than 500 ( ⁇ g/mL/day), preferably 100 ( ⁇ g/mL/day). day), more preferably less than 10 ( ⁇ g/mL/day) less than 1.0 ( ⁇ g/mL/day), most preferably less than 0.1 ( ⁇ g/mL/day).
  • the ratio (%) of hydrolyzed gallic acid in the liquid formulation can be obtained by setting the quantitative value of gallic acid when the hydrolyzable tannin is completely hydrolyzed with tannase as 100%.
  • solvents examples include nonpolar solvents and polar solvents, with polar solvents being preferred.
  • Polar solvents include polar aprotic solvents such as methylene chloride, tetrahydrofuran, acetone, acetonitrile, N,N-dimethylformamide, and dimethylsulfoxide; - Polar protic solvents such as propanol, ethanol, methanol, formic acid, water.
  • Alcohol or water is preferred as the polar protic solvent.
  • the alcohol lower alcohols having 5 or less carbon atoms such as 1,3-butanediol, glycerol, 2-propanol, 1-propanol and ethanol are preferable, and alcohols having 3 or less carbon atoms such as 2-propanol, 1-propanol and ethanol are preferred. Lower alcohols are more preferred.
  • the hydrolyzable tannin in the cleaning agent can be more stably retained.
  • such alcohol can be used by mixing with water. When mixed with water, the content ratio of alcohol to the entire solvent is, for example, 0.00001 to 100% by mass, and the upper and lower limits are, for example, a range obtained by combining any two of the following numerical values.
  • the pH of the solvent can be appropriately set by those skilled in the art according to its effect.
  • the pH of the solvent is, for example, 2.0-12.0.
  • the pH of the solvent may be acidic, e.g., pH 2.0-3.0, 3.0-6.0 It may be weakly acidic of 6.0 to 8.0, neutral of 8.0 to 10.0, weakly alkaline of 8.0 to 10.0, or alkaline of 10.0 to 12.0.
  • the pH of the solvent is preferably 2.0 to 6.0, more preferably 2.0 to 4.0.
  • the cleaning agent of the present disclosure does not generate chlorine gas or the like even under acidic conditions, for example, and is gentle on the body and the environment and can suppress sliminess.
  • a pH adjuster In order to adjust the pH to the above, it is preferable to contain a pH adjuster.
  • the pH adjuster is not particularly limited, it is preferably a weak acid pH adjuster.
  • Weak acid pH adjusters include citric acid, gluconic acid, tartaric acid, lactic acid, acetic acid, malic acid, and the like.
  • the content of the pH adjuster can be appropriately adjusted within the range of 0.0001% by mass to 2% by mass, depending on the desired pH.
  • the content of the active ingredient per 1 mL of the solvent is, for example, 2 ⁇ g or more, 5 ⁇ g or more, 20 ⁇ g or more, 100 ⁇ g or more, 500 ⁇ g or more, 1000 ⁇ g or more, 50000 ⁇ g or less, 40000 ⁇ g or less, 5000 ⁇ g or less.
  • the content of the active ingredient per 1 mL of the solvent is, for example, 2 ⁇ g or more, 5 ⁇ g or more, 20 ⁇ g or more, 100 ⁇ g or more, 500 ⁇ g or more, 1000 ⁇ g or more, 50000 ⁇ g or less, 40000 ⁇ g or less, 5000 ⁇ g or less.
  • other components include, for example, antibacterial/antifungal agents, antiseptic antifungal agents, aromatic sulfonic acid compounds, antioxidants, rust inhibitors, ultraviolet absorbers, light stabilizers, biofouling inhibitors, Additives such as deodorants, organic acids, fatty acid metals, metal compounds, polyvalent metal ion scavengers, cyclodextrins, porous body constituents, pigments, surfactants, and thickeners are included.
  • antibacterial and antifungal agents examples include methyl-2,4-dihydroxy-6-methylbenzoate, ethyl-2,4-dihydroxy-6-methylbenzoate, methyl-2,4-dihydroxy-3,6-dimethylbenzoate , isopropyl-2,4-dihydroxy-6-methylbenzoate, 3-methoxy-5-methylphenyl-2,4-dihydroxy-6-methylbenzoate, ethyl-2,4-dihydroxy-3,6-dimethylbenzoate, ethyl -3-formyl-2,4-dihydroxy-6-methylbenzoate, isopropyl-3-formyl-2,4-dihydroxy-6-methylbenzoate, 3-hydroxy-5-methylphenyl-2,4-dihydroxy-6- methyl benzoate, 3-hydroxy-5-methylphenyl-2-dihydroxy-4-methoxy-6-methylbenzoate, 3-methoxy-5-methylphenyl-2-hydroxy-4 - - phenol-alcohol antibacterial
  • isothiazolone-based antibacterial and antifungal agents Anilide-based antibacterial/antifungal agents such as 4'-hydroxyacetanilide, N-(3-hydroxyphenyl)benzenecarboxamide, and N-(3-hydroxyphenyl)benzamide; Nitrile-based antibacterial/antifungal agents such as monobromocyanoacetamide, dibromocyanoacetamide, 1,2-dibromo-2,4-dicyanobutane, and tetrachlorophthalonitrile; 2-(4-thiazolyl)benzimidazole, 2-benzimidazole methylcarbamate, 1-(butylcarbamoyl)-2-benzimidazole methylcarbamate and other imidazole/thiazole antibacterial/antifungal agents; Aldehyde-based antibacterial/antifungal agents such as dehydroacetic acid; Carboxylic acid-based antibacterial/antifungal agents such as acetic acid, formic acid, and
  • antibacterial/antifungal agents include other ingredients classified above or ingredients not classified above, such as thiabendazole, triclosan, chlorhexidine, zinc pyrithione, chlorxylenol, chitosan, catechin, thymol, hinokitiol, Naturally derived antibacterial ingredients such as moso bamboo extract, mustard essential oil, wasabi essential oil, and the like are included.
  • antiseptic and antifungal agents examples include paraoxybenzoic acid esters (parabens), 2-phenoxyethanol, benzoic acid and its salts, salicylic acid and its salts, sorbic acid and its salts, dehydroacetic acid and its salts, p-toluenesulfone. Acids and their salts, alcohols such as ethanol and isopropanol, quaternary ammonium salts such as benzalkonium chloride, polyhydric alcohols that are raw materials with antiseptic properties, medium-chain fatty acids and their esters, glycerin derivatives, and chelating agents such as EDTA.
  • paraoxybenzoic acid esters parabens
  • 2-phenoxyethanol benzoic acid and its salts
  • salicylic acid and its salts sorbic acid and its salts
  • dehydroacetic acid and its salts p-toluenesulfone.
  • Acids and their salts alcohols such as ethanol and isoprop
  • aromatic sulfonic acid compounds include methoxybenzenesulfonic acid, methoxybenzenedisulfonic acid, dimethoxybenzenesulfonic acid, dimethoxybenzenedisulfonic acid, ethoxybenzenesulfonic acid, ethoxybenzenedisulfonic acid, diethoxybenzenesulfonic acid, and diethoxybenzenedisulfone.
  • antioxidants examples include phenol-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, hindered amine-based antioxidants, and the like.
  • Phenolic antioxidants include, for example, N-octadecyl-3-(4-hydroxy-3,5-di-tert-butylphenyl)propionate, 2,6-di-tert-butyl-4-methylphenol, 2 ,2-thio-diethylene-bis-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], tri-ethylene glycol-bis-[3-(3-tert-butyl-5- methyl-4-hydroxyphenyl)propionate], 3,9-bis[2- ⁇ 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy ⁇ -1,1-dimethylethyl]-2 ,4,8,10-tetraoxaspiro[5.5]undecane, tetrakis ⁇ 3- (3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid ⁇ pentaerythrityl este
  • sulfur-based antioxidants examples include 3,3'-thiodipropionic acid di-N-dodecyl ester, 3,3'-thiodipropionic acid di-N-tetradecyl ester, 3,3-thiodipropionate acid di-N-octadecyl ester, tetrakis(3-dodecylthiopropionic acid) pentaerythrityl ester and the like.
  • phosphorus antioxidants include tris(2,4-di-tert-butylphenyl) phosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,6 -di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bis(2,4-di-cumylphenyl)pentaerythritol diphosphite, tetrakis(2,4-di-tert-butylphenyl)-4, 4'-biphenylenediphosphonite, bis-[2,4-di-tert-butyl,(6-methyl)phenyl]ethylphosphite and the like.
  • hindered amine antioxidants include sebacate bis(2,2,6,6-tetramethyl-4-piperidyl) ester, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, poly[ ⁇ 6-(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl)imino ⁇ -1,6-hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl)imino ⁇ ] and the like.
  • rust inhibitors include alkanolamines, quaternary ammonium salts, alkanethiols, imidazolines, sodium metavanadate, bismuth citrate, phenol derivatives, polyalkenylamines, alkylimidazoline derivatives, dianoalkylamines, carboxylic acid amides, alkylene Diamines, pyrimidines and their carboxylic acids, naphthenic acids, sulfonic acid complexes, calcium nitrites, alkylamines and esters, polyalcohols, polyphenols, alkanolamines, sodium molybdate, sodium tungstate, sodium nitrite, sodium phosphonate, Sodium chromate, sodium silicate, gelatin, polymers of carboxylic acids, aliphatic amines, aliphatic diamines, aromatic amines, aromatic diamines, ethoxylated amines, imidazoles, benzimidazoles, nitro compounds, formalde
  • UV absorbers and light stabilizers include, for example, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]- 2H-benzotriazole, 2-(3-tert-butyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-5'-tert-octylphenyl)benzotriazole, methyl -3-[3-tert-butyl-5-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate-polyethylene glycol, hydroxyphenylbenzotriazole derivatives, 2-(4,6-diphenyl-1, 3,5-triazin-2-yl)-5[(hexyl)oxy]-phenol, 2-ethoxy-2' -ethyl-oxalic acid bisanilide and the like.
  • biofouling agents include tetramethylthiuram disulfide, bis(N,N -dimethyldithiocarbamate)zinc, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, dichloro-N-((dimethylamino)sulfonyl)fluoro-N-(P-tolyl)methanesulfenamide, pyridine -triphenylborane, N,N-dimethyl-N'-phenyl-N'-(fluorodichloromethylthio)sulfamide, cuprous thiocyanate, cuprous oxide, tetrabutylthiuram disulfide, 2,4,5,6 - tetrachloroisophthalonitrile, zinc ethylenebisdithiocarbamate, 2,3,5,6-tetrachloro-4-(methylsulfonyl)pyridine, N-(2,4,6-trichlorophenyl)
  • deodorants include organic acids, fatty acid metals, metal compounds, cyclodextrins, and porous bodies.
  • organic acids examples include lactic acid, succinic acid, malic acid, citric acid, maleic acid, malonic acid, ethylenediaminepolyacetic acid, alkane-1,2-dicarboxylic acids, alkene-1,2-dicarboxylic acids, cycloalkane-1 ,2-dicarboxylic acid, cycloalkene-1,2-dicarboxylic acid, naphthalenesulfonic acid and the like.
  • fatty acid metals examples include zinc undecylenate, zinc 2-ethylhexanoate, and zinc ricinoleate.
  • metal compounds include iron oxide, iron sulfate, zinc oxide, zinc sulfate, zinc chloride, silver oxide, steel oxide, metals (iron, copper, etc.) sodium chlorophyllin, metals (iron, copper, cobalt, etc.) phthalocyanine, metals (Iron, copper, cobalt, etc.) phthalocyanine tetrasulfonate, titanium dioxide, visible light responsive titanium dioxide (nitrogen-doped type, etc.), and the like.
  • polyvalent metal ion scavengers examples include nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DPTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), hydroxyethylidene diphosphonic acid (HEDP), Amino trimethylene phosphonic acid (ATMP), salts thereof, and the like are included.
  • NTA nitrilotriacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • DPTA diethylenetriaminepentaacetic acid
  • HEDTA hydroxyethylethylenediaminetriacetic acid
  • HEDP hydroxyethylidene diphosphonic acid
  • ATMP Amino trimethylene phosphonic acid
  • Cyclodextrins include, for example, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, their methyl derivatives, hydroxypropyl derivatives, glucosyl derivatives, maltosyl derivatives and the like.
  • porous body constituents include polyunsaturated carboxylic acids, aromatic polymers, chitin, chitosan, activated carbon, silica gel, activated alumina, zeolite, and ceramics.
  • pigments examples include carbon black, titanium oxide, phthalocyanine pigments, quinacridone pigments, isoindolinone pigments, perylene pigments, perine pigments, quinophthalone pigments, diketopyrrolo-pyrrole pigments, dioxazine pigments, and disazo condensation pigments. pigments, penzimidazolone-based pigments, and the like.
  • surfactants include cationic surfactants, amphoteric surfactants, anionic surfactants, and nonionic surfactants.
  • Cationic surfactants include, for example, quaternary ammonium salts, primary amine salts, secondary amine salts, tertiary amine salts, quaternary amine salts, pyridine derivatives and the like.
  • amphoteric surfactants examples include betaine-type surfactants, carboxylic acid derivatives, imidazoline derivatives, and the like.
  • anionic surfactants include alkyl phosphate surfactants, sulfated oils, soaps, sulfated ester oils, sulfated amide oils, olefin sulfates, fatty alcohol sulfates, and alkyl sulfates. , fatty acid ethylsulfonates, alkylnaphthalenesulfonates, alkylbenzenesulfonates, sulfonic acid estersulfonates, phosphoric acid ester salts, and the like.
  • Nonionic surfactants include, for example, partial fatty acid esters of polyhydric alcohols, ethylene oxide adducts of fatty alcohols, ethylene oxide adducts of fatty acids, ethylene oxide adducts of fatty amino or fatty acid amides, and ethylene oxide adducts of alkylphenols. , ethylene oxide adducts of partial fatty acid esters of polyhydric alcohols, polyethylene glycols, polyoxyethylene alkyl ethers, alkyl glucosides, fatty acid alkanolamides, and the like.
  • polyoxyethylene alkyl ethers, alkyl glucosides and fatty acid alkanolamides are preferred, polyoxyethylene alkyl ethers and alkyl glucosides are more preferred, and polyoxyethylene alkyl ethers are preferred.
  • Such surfactants are preferable in that they are easy to handle even in an acidic solvent, and that hydrolysis of hydrolyzable tannins is suppressed or within an allowable range when mixed with hydrolyzable tannins.
  • Polyoxyethylene alkyl ethers include, for example, polyethylene glycol monododecyl ether, polyethylene glycol monocetyl ether, coconut oil alkyl ethoxylate, polyethylene glycol (degree of polymerization: 10) tridecyl ether, polyethylene glycol (degree of polymerization: 12) tridecyl ether, polyethylene Glycol (polymerization degree 18) tridecyl ether and the like.
  • Alkylglucosides include, for example, n-octyl- ⁇ -D-glucopyranoside, n-heptyl- ⁇ -D-thioglucoside, n-octyl- ⁇ -D-thioglucoside and the like.
  • the content of the surfactant in the cleaning agent of the present disclosure is, for example, 0.00001 to 60% by mass, and the upper and lower limits thereof are, for example, a range formed by any combination of two of the following numerical values.
  • thickeners examples include oxides or hydroxides such as magnesium and calcium.
  • Additives which are other components, include other components that overlap with the above classifications, or components that are not classified above, such as sticking agents, dispersants, wetting agents, stabilizers, propellants, penetration enhancers, and fragrances. agents, fragrances, dissolution modifiers, colorants, gelling agents, kneading resins, non-volatile oils, pH adjusters, biorepellents, antibiotics, antiviral agents, flame retardants, foaming agents, emulsifiers, brighteners, Binders, inorganic salts, oily ingredients, macromolecular substances, medicinal ingredients, enzymes, fragrances, essential oils, pigments, whitening ingredients, pigments, sulfurs, sebum secretion promoting ingredients, vitamins, Examples include seaweed extracts, cooling substances, and moisturizing ingredients.
  • the content of the active ingredient in the cleaning agent of the present disclosure is, for example, 0.000001 to 50% by mass, and the upper and lower limits are, for example, within the following numerical values.
  • the range can be any combination of the two: 50% by mass, 40% by mass, 30% by mass, 20% by mass, 10% by mass, 5% by mass, 2% by mass, 1% by mass, 0.5% by mass. , 0.1% by weight, 0.01% by weight, 0.001% by weight, 0.0001% by weight, 0.00001% by weight, 0.000001% by weight.
  • the form of the cleaning agent of the present disclosure is not particularly limited, and is a form that enables cleaning indoor water use places. It is not particularly limited as long as it can be brought into contact with the surface.
  • Examples of the form of the detergent of the present disclosure include liquids (oils, emulsions, aqueous solutions, etc.), powders, granules, granules, fine granules, tablets, block agents, baits, pastes, gels, and water. It can be used by preparing formulations such as blends, foam formulations, foam formulations, aerosol formulations, spray formulations, smoking formulations, coating formulations, etc., or carrying them on carriers. These product forms may be in a form adjusted to the working concentration, or may be in a form of high concentration and diluted for use.
  • the indoor water use place has a place where water (preferably tap water) is used indoors of various buildings, i.e., a surface that can come into contact with water (herein, sometimes referred to as a "water use surface"). It is a place, and it is not particularly limited as long as it is. Such locations may be slimy and are suitable for use with the cleaners of the present disclosure.
  • buildings include residences, factories, offices, accommodation facilities, hospitals, shops, schools, restaurants, airport facilities, stations, bus terminals, service areas, exercise facilities, and the like.
  • Factories include printing factories, paper and pulp factories, chemical factories, petrochemical factories, machinery factories, metal factories, steel factories, construction factories, housing factories, food factories, beverage factories, automobile factories, auto parts factories, motorcycle factories, Pharmaceutical factories, cosmetics factories, semiconductor factories, electronics factories, home appliance factories, personal computer factories, distribution factories, etc. are not particularly limited, but paper and pulp factories are preferred.
  • indoor water use locations include kitchens, kitchens, bathrooms, toilets, kitchens, washrooms, and water circulation facilities.
  • a water circulation facility in which sliminess is likely to occur for example, a white water circulation facility in the papermaking process of a paper/pulp factory can be mentioned.
  • the cleaning agent of the present disclosure is particularly suitable for cleaning "around the water" represented by the above specific examples.
  • Cleaning may be to remove all or part of foreign matter from the water-using surface, or may be to suppress adhesion or increase of foreign matter on the water-using surface.
  • the surface on which water is used is not particularly limited as long as it is a target to which foreign matter adheres.
  • Examples include surfaces provided on the substrate, and specific examples include plastics, ceramics, metals, glass, and the like.
  • plastic include fiber reinforced plastic (FRP), polyvinyl chloride, polypropylene, polyethylene, ABS, polyamide, acrylic, polystyrene, and the like.
  • ceramics include various nitrides, carbonitrides, oxides, and the like.
  • metals include iron, stainless steel, aluminum, zinc, silver, and copper.
  • a foreign object is something that should not exist, and a foreign object in an indoor water usage area is an object that should not enter an indoor water usage area.
  • Examples of foreign matter in a place where indoor water is used include foreign matter derived from microorganisms, foreign matter derived from animals, and foreign matter derived from minerals.
  • Examples of foreign substances derived from microorganisms include slime derived from microorganisms (hereinafter sometimes referred to as biofilm).
  • biofilm slime derived from microorganisms
  • “Microorganism-derived slime” refers to substances that have formed a structure by producing biological substances such as polysaccharides, proteins, and nucleic acids from within the microbial cells during the process of microorganisms adhering to and multiplying on a solid surface. A structure containing biological material.
  • Foreign matter to which the cleaning agent of the present disclosure removes or suppresses adhesion is preferably foreign matter derived from microorganisms, and slime derived from microorganisms is preferable. Since the cleaning agent of the present disclosure is particularly effective in suppressing slime derived from microorganisms, it can be used for suppressing slime or in contact with slime.
  • Microorganisms are not particularly limited, such as bacteria and fungi (molds and yeasts), but from the viewpoint of efficiently suppressing sliminess, bacteria are preferred, and bacteria having an outer membrane-like membrane on the outside of the cell wall are preferred. More preferred, Gram-negative bacteria, more preferred Methylobacterium genus. Examples of the outer membrane-like membrane include the outer membrane of Gram-negative bacteria, the mycolic acid membrane of bacteria of the genus Rhodococcus, and the like.
  • fungi examples include Cladosporium genus such as Cladosporium cladosporioides, Penicillium genus such as Penicillium citrinum, Aspergillus genus such as Aspergillus brasiliensis, Alternaria alternata) and other genus Alternaria, Fusarium genus such as Fusariumsolani, Eurotium genus such as Eurotium herbariorum, red yeast such as Rhodotorula mucilaginosa, Aureobasidium (A ureobasidium genus, black yeasts such as Exophiala genus, Phoma genus, Candida genus, Saccharomyces genus, and the like.
  • Cladosporium genus such as Cladosporium cladosporioides
  • Penicillium genus such as Penicillium citrinum
  • Aspergillus genus such as Aspergillus bras
  • the cleaning agent of the present disclosure is preferably used for suppressing slime derived from microorganisms such as bacteria belonging to the genus Methylobacterium, bacteria belonging to the genus Brevundimonas, bacteria belonging to the genus Pseudomonas, bacteria belonging to the genus Xanthomonas, bacteria belonging to the genus Sphingomonas, bacteria belonging to the genus Rhodococcus, etc.
  • microorganisms such as bacteria belonging to the genus Methylobacterium, bacteria belonging to the genus Brevundimonas, bacteria belonging to the genus Pseudomonas, bacteria belonging to the genus Xanthomonas, bacteria belonging to the genus Sphingomonas, bacteria belonging to the genus Rhodococcus, etc.
  • the cleaning agent of the present disclosure is suitable for bacteria of the genus Methylobacterium, which have a particularly high frequency of occurrence among slime-causing bacteria, and is more suitable for bacteria of the genus Methylobacterium, Methylobacterium fujisawaense, which easily forms slime. .
  • the cleaning agent of the present disclosure is suitable for suppressing pink or red slime among slimes.
  • Biopolymers such as nucleic acids, proteins, and polysaccharides, and biopolymer components such as nucleotides, nucleosides, amino acids, sugars, and lipids. , alcohols, amino acids, nucleic acids, antioxidants, organic acids, polyols, vitamins, metabolites of hormones, and the like.
  • the cleaning agent of the present disclosure is preferably used at a concentration that does not substantially inhibit the growth of Methylobacterium bacteria.
  • concentration that does not substantially exhibit a growth-inhibiting effect is, for example, the number of bacteria of the genus Methylobacterium when the cleaning agent of the present disclosure is not used, and the number of bacteria of the genus Methylobacterium when the cleaning agent of the present disclosure is used. means a range of concentrations that are essentially equivalent to each other. Whether the concentrations are in substantially the same range can be determined by comparing the number of bacteria of the genus Methylobacterium when the detergent is not used and the number of bacteria of the genus Methylobacterium when the detergent is used.
  • the method of Experiment 2 in Examples described later is employed. If the ratio of Methylobacterium genus bacteria when detergent is used to Methylobacterium genus bacteria when detergent is not used is 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more It can be said that the concentration does not actually show growth inhibition.
  • the concentration at the time of use of the cleaning agent of the present disclosure (that is, when the cleaning agent of the present disclosure is used as it is without dilution, the concentration of the active ingredient in the cleaning agent of the present disclosure, and the cleaning agent of the present disclosure is diluted or diluted with running water, the concentration of the active ingredient in the resulting diluted solution) is, for example, 300 ⁇ g/mL or less, 200 ⁇ g/mL or less, 100 ⁇ g/mL or less, 50 ⁇ g/mL
  • concentrations of 20 ⁇ g/mL or less and 10 ⁇ g/mL or less can be said to be concentrations that do not substantially inhibit proliferation.
  • the type of cleaning agent disclosed in the present disclosure is not particularly limited, and can vary widely depending on the target indoor water use location, application, form, and method of use.
  • the cleaning agents of the present disclosure include, for example, household cleaning agents, kitchen/kitchen cleaning agents, industrial cleaning agents, slime removers, anti-sliming agents, kitchen drain cleaning agents, bathroom cleaning agents, and toilet cleaning agents. Examples include detergents, in-tank agents, on-tank agents, automatic flush toilet cleaners, drain pipe cleaners, dishwasher cleaners, bath cleaners, bath kettle cleaners, and the like.
  • the method for producing the cleaning agent of the present disclosure is not particularly limited, and includes, for example, a method of mixing active ingredients and other ingredients that are blended as necessary. A suitable method can be adopted depending on the form, type, etc. of the detergent.
  • the method of using the cleaning agent of the present disclosure is not particularly limited when performing cleaning treatment for indoor water use locations.
  • the cleaning agents of the present disclosure may be applied directly to the water-used surface, or the application may be performed by dripping the cleaning agents of the present disclosure onto the water-used surface, using wet wipes. It may be carried out by discharging the cleaning agent of the present disclosure onto a sponge or the like, and then spreading it over the wetted surface.
  • the cleaner of the present disclosure may be filled into a pump container or aerosol container and then dispensed onto a wetted surface.
  • the cleaning agent of the present disclosure is placed at or around a water discharge portion (faucet, etc.) in an indoor water usage location, and the cleaning agent of the present disclosure is diluted with the water discharged from the water discharge portion to obtain
  • the water-using surface can also be cleaned by contacting the water-using surface with a diluent (which is also one aspect of the cleaning agent of the present disclosure).
  • the present disclosure provides a method for suppressing sliminess (hereinafter referred to as "method for suppressing sliminess of the present disclosure”) comprising contacting a cleaning agent of the present disclosure with a water-using surface in an indoor water-using location. ), regarding.
  • the target water-using surface may be a surface on which sliminess already exists, or a surface on which sliminess has not yet been formed.
  • the cleaning agent of the present disclosure by bringing the cleaning agent of the present disclosure into contact with slime derived from microorganisms, it is possible to suppress an increase in sliminess or reduce the sliminess itself.
  • the formation of slime can be inhibited by contacting the wetted surface with the cleaner of the present disclosure.
  • the slime suppression method of the present disclosure may include a step of removing the slime before the step of contacting the water-use surface with the cleaning agent according to one aspect of the present invention.
  • the step of removing the sliminess is not particularly limited, and the sliminess may be removed by a physical method or a chemical method.
  • sliminess can be suppressed safely and environmentally friendly.
  • Conditions for the contact step are not particularly limited.
  • the step may be performed, for example, at a temperature of 20 to 35°C or 25 to 30°C.
  • the pH at the time of use may be acidic from 2.0 to 3.0, weakly acidic from 3.0 to 6.0, neutral from 6.0 to 8.0, or weakly alkaline from 8.0 to 10.0. well, it may be 10.0 to 12.0 alkaline.
  • it does not generate chlorine gas or the like even under acidic conditions, and it is gentle on the body and the environment and can suppress sliminess.
  • the amount of detergent used in the method for suppressing sliminess of the present disclosure can be appropriately set in consideration of the type and concentration of sliminess, the volume of the reaction system, the reaction temperature, and the like.
  • the concentration of the active ingredient at the time of contact with the slime may be 2 ⁇ g/mL or more and 300 ⁇ g/mL or less, or 5 ⁇ g/mL or more and 250 ⁇ g. /mL or less, 10 ⁇ g/mL or more and 200 ⁇ g/mL or less, or 20 ⁇ g/mL or more and 100 ⁇ g or less.
  • the cleaning agent When the cleaning agent exhibits a bactericidal action, the sterilized dead bacteria serve as a scaffold to form the next slime. Therefore, within such a concentration range, slimy formation can be suppressed without exhibiting a bactericidal action, so that slimy can be efficiently suppressed.
  • Whether sliminess is suppressed by the sliminess suppression method of the present disclosure can be determined, for example, by the following method.
  • bacteria are cultured for a period of time in the presence or absence of detergents of the present disclosure. After the culture is completed, the culture medium is removed, and the formed slime is stained with a staining solution such as Crystal Violet. SDS is added to the stained slime, and the absorbance of the solution after dissolving the slime is measured. By comparing the absorbance in the presence of the detergent and in the absence of the detergent, if the absorbance in the presence of the detergent is lower than the absorbance in the absence of the detergent, it can be determined that the sliminess is suppressed.
  • the bacteria to be used Methylobacterium, which is considered to be a major cause of sliminess around water, is preferable.
  • the slime formation rate is preferably small, and the biofilm formation rate calculated in the examples described later is 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, 20%. These include:
  • the present disclosure relates to a deodorizing method (hereinafter referred to as "deodorizing method of the present disclosure") comprising contacting the cleaning agent of the present disclosure with an off-flavor substance.
  • Offensive odor substances that cause problems in indoor water use include N-based substances such as ammonia, trimethylamine and pyridine, S-based substances such as hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide and propanethiol, acetic acid, and propionic acid. , n-butyric acid, isocitric acid, and caproic acid.
  • the conditions of the contact step are not particularly limited, and include the conditions described in the step of contacting the slime.
  • the pH at the time of use is preferably 2.0 to 6.0, more preferably 2.0 to 4.0.
  • Whether or not the offensive odor substance is deodorized by the deodorizing method of the present disclosure can be determined, for example, by the following method. First, after contacting an off-flavor substance in an aqueous solution for a certain period of time in the presence or absence of the cleaning agent of the present disclosure, the off-flavor substance in the aqueous solution is quantified. Comparing the quantified values of off-flavor substances in the presence of detergent and in the absence of detergent, and if the quantified value in the presence of detergent is lower than the quantified value in the absence of detergent, it is determined that the off-flavor substances have been deodorized. be able to.
  • the present disclosure provides a method for solubilizing fatty acid calcium (hereinafter referred to as "method for solubilizing fatty acid calcium of the present disclosure"), which comprises contacting the detergent of the present disclosure with fatty acid calcium. , concerning.
  • fatty acid calcium which is a problem in places where indoor water is used, for example, calcium salts of fatty acids in soap ingredients can be mentioned.
  • Such fatty acid calcium is not particularly limited as long as it is a calcium salt of fatty acid contained in the soap component, and may be saturated fatty acid calcium or unsaturated fatty acid calcium.
  • Such fatty acid calcium is preferably straight-chain fatty acid calcium having 10 to 20 carbon atoms, more preferably straight-chain fatty acid calcium having 12 to 18 carbon atoms.
  • Examples of such fatty acid calcium include calcium laurate, calcium mystate, calcium palmitate, calcium stearate, and calcium oleate.
  • the fatty acid calcium can be solubilized by contacting the detergent of the present disclosure with the fatty acid calcium.
  • the conditions of the contact step are not particularly limited, and include the conditions described in the step of contacting the slime.
  • the pH at the time of use is preferably 2.0 to 6.0, more preferably 2.0 to 4.0.
  • Whether the fatty acid calcium is solubilized by the solubilization method of the present disclosure can be determined, for example, by visually observing the amount of insoluble fatty acid calcium after contacting the fatty acid calcium in an aqueous solution for a certain period of time in the presence or absence of the detergent of the present disclosure. can be determined by a method of confirming with , or a method of quantifying by image analysis. The amounts of fatty acid calcium in the presence of detergent and in the absence of detergent are compared, and if the amount of fatty acid calcium in the presence of detergent is lower than the amount of fatty acid calcium in the absence of detergent, it can be determined that the fatty acid has been solubilized. can.
  • fatty acid calcium is solubilized by the solubilization method of the present disclosure can also be determined, for example, by a method of quantifying fatty acid or calcium derived from solubilized fatty acid calcium.
  • a method of quantifying fatty acid or calcium derived from solubilized fatty acid calcium examples include LC analysis, GC analysis, elemental analysis, and a method using a calcium quantification kit.
  • concentration of free calcium in the presence of detergent is compared with that in the absence of detergent. It can be determined that it has dissolved.
  • Tannic acid used in the examples is manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. and has the following structural formula.
  • a glycerol stock solution of NBRC15843 strain was added at a ratio of 100 ⁇ L/50 mL-R2A medium, and cultured at 30° C. and 150 rpm for 3 days to prepare a pre-culture solution.
  • the turbidity (OD600) of the preculture solution was measured with a turbidity meter (CO80000 cell density meter; WPA biowave).
  • BF formation rate (%) (specimen - BG) / (negative control - BG) x 100 Sample: Measured value when sample is added. Negative control: measured value without addition of sample. BG: measurements of medium only. A: 0% or more and less than 30%. B: 30% or more and less than 70%. C: 70% or more.
  • Table 1 shows the results.
  • the 50% inhibitory concentration (hereinafter referred to as IC50) was 2.8 ⁇ g/mL.
  • a cultured preculture medium was used in the same manner as in Experiment 1.
  • Proliferation rate (%) (specimen - BG) / (negative control - BG) x 100
  • Sample Turbidity when sample is added. Negative control: measured value without addition of sample.
  • BG Turbidity for medium only.
  • Table 2 shows the results.
  • the growth of NBRC15843 strain was not inhibited even at a concentration of 200 ⁇ g/mL of tannic acid.
  • tannic acid did not inhibit the growth of bacteria of the genus Methylobacterium in the range of 2.5-200 ⁇ g/mL, and was thought to inhibit BF formation.
  • Table 3 shows the results.
  • (Method) IC50 was calculated from the BF formation rate in the same manner as in Experiment 1, except that the compounds listed in Table 4 were used as specimens to be evaluated, and classified into A to C according to the following criteria.
  • Table 4 shows the results. Among these samples, tannic acid and 1,2,3,4,6-pentagaloylglucose particularly effectively inhibited biofilm formation of Methylobacterium. The structural formula of 1,2,3,4,6-pentagaloylglucose is shown below.
  • the IC50 was calculated from the BF formation rate in the same manner as in Experiment 1, except that the cells for forming BF and the conditions shown in Table 5 were used as the BF formation time, and classified into A to D according to the following criteria.
  • D 20 ⁇ g/mL or more.
  • Tannic acid inhibited biofilm formation of any of the bacteria listed in Table 5. In particular, it effectively inhibited biofilm formation of bacteria with an outer membrane-like membrane (outer membrane or mycolic acid membrane), and more effectively inhibited biofilm formation of NBRC15843.
  • tannic acid solution was prepared by dissolving tannic acid in a solution adjusted to pH 2 to 12 with 1M sodium hydroxide or 1M hydrochloric acid (tannic acid solution). After shaking the prepared tannic acid solution at room temperature for 24 hours, IC50 was calculated from the BF formation rate in the same manner as in Experiment 1, and classified into A to D according to the following criteria.
  • B ⁇ 3 ⁇ g/mL and less than 10 ⁇ g/mL.
  • C 10 ⁇ g/mL or more and less than 20 ⁇ g/mL.
  • D 20 ⁇ g/mL or more.
  • tannic acid solution was prepared by dissolving tannic acid in a solution adjusted to pH 2-12 with 1M sodium hydroxide or 1M hydrochloric acid.
  • the prepared tannic acid solution was stored at room temperature in the dark for 3 months and then subjected to HPLC analysis.
  • HPLC analysis conditions Column: SUMIPAX ODS A-211 (4.6 mm ⁇ 25 cm, 5 ⁇ m) (manufactured by Sumika Analysis Center) Mobile phase: A solution 0.1w/v% phosphoric acid aqueous solution, B solution 0.1w/v% phosphoric acid-containing methanol Elution method: Gradient Flow rate: 1.0ml/min Column temperature: 40°C Detection: 280 nm
  • Tannic acid residual rate (%) Area value of tannic acid in sample after 3 months/Area value of tannic acid in sample immediately after solution preparation ⁇ 100 Retention time of tannic acid: 10 to 25 minutes A: 80% or more B: 60% or more, less than 80% C: 40% or more, less than 60% D: Less than 40%
  • the gallic acid production rate was calculated by the following formula 4, and judged as A to D according to the following criteria.
  • Table 8 shows the results. Tannic acid remained in the aqueous solution at any pH. Especially in the pH range of 2-6, the tannic acid residual rate is 80% or more and the gallic acid production rate is less than 20%, and in the pH range of 2-4, the tannic acid residual rate is 90% or more and the gallic acid is Generation rate: 5% It was thought that tannic acid existed particularly stably because it was less than.
  • tannic acid solution was prepared by mixing tannic acid as described in Table 9. The prepared tannic acid solution was stored at room temperature for 24 hours and then subjected to HPLC analysis. The initial rate of gallic acid formation was calculated by the following formula 5, and judged as A to E according to the following criteria.
  • a tannic acid solution was prepared by mixing tannic acid as described in Table 10. After storing the prepared tannic acid solution at room temperature for 24 hours, the amount of gallic acid was quantified in the same manner as in Experiment 9, and classified into S to E according to the following criteria.
  • D 100 ( ⁇ g/mL/day) or more and less than 500 ( ⁇ g/mL/day)
  • E 500 ( ⁇ g/mL/day) or more
  • Table 10 shows the results. Since the initial rate of gallic acid production decreased in samples mixed with any alcohol, it was considered that the stability of tannic acid was improved by mixing alcohol.
  • a tannic acid solution was prepared by mixing tannic acid as described in Table 11. After storing the prepared tannic acid solution at room temperature for 24 hours, the amount of gallic acid was quantified in the same manner as in Experiment 9, and classified into A to E according to the following criteria.
  • E 500 ( ⁇ g/mL/day) or more
  • Table 11 shows the results. Samples mixed with acetic acid or phenoxyethanol decreased the initial rate of gallic acid formation, suggesting that the stability of tannic acid is improved. In addition, in samples mixed with sodium dehydroacetate, sodium benzoate, or sodium formate, the initial rate of gallic acid formation increased, but it was within the allowable range, so it was considered possible to mix with tannic acid.
  • a tannic acid solution was prepared by mixing tannic acid as described in Table 12. After storing the prepared tannic acid solution at room temperature for 24 hours, the amount of gallic acid was quantified in the same manner as in Experiment 9, and classified into A to E according to the following criteria.
  • E 500 ( ⁇ g/mL/day) or more
  • Table 12 shows the results. In samples mixed with polyoxyethylene alkyl ether-based surfactants, the initial rate of gallic acid formation decreased, suggesting that the stability of tannic acid is improved.
  • a tannic acid solution was prepared by mixing tannic acid as described in Table 13. After storing the prepared tannic acid solution at room temperature for 24 hours, the amount of gallic acid was quantified in the same manner as in Experiment 9, and classified into A to E according to the following criteria.
  • E 500 ( ⁇ g/mL/day) or more
  • Table 13 shows the results.
  • the initial rate of gallic acid production was decreased in samples mixed with alkylglucoside surfactants, suggesting that the stability of tannic acid was improved.
  • Samples mixed with n-heptyl- ⁇ -D-thioglucoside or n-octyl- ⁇ -D-thioglucoside decreased the initial rate of gallic acid formation, suggesting that the stability of tannic acid is improved.
  • rice field in addition, in the sample mixed with n-octyl- ⁇ -D-glucopyranoside, although the initial rate of gallic acid formation increased, it was within the allowable range, so it was considered possible to mix with tannic acid.
  • tannic acid-containing detergent was prepared by mixing 0.25% tannic acid, 0.5% phenoxyethanol, 0.5% acetic acid, 50% ethanol, and the balance pure water. BF formation inhibition was evaluated in the same manner as in Experiment 1 using the prepared detergent.
  • the prepared tannic acid-containing detergent inhibited biofilm formation at low concentrations.
  • the 50% inhibitory concentration (IC50) was 0.78 ⁇ g/mL in terms of tannic acid.
  • Methyl mercaptan residual rate (%) (absorbance of specimen - absorbance of BG) / (absorbance of negative control - absorbance of BG) x 100 Specimen: tannic acid added negative control: no tannic acid added.
  • Table 15 shows the results. Addition of the aqueous tannic acid solution promoted the solubilization of fatty acid calcium. From this, it was considered that the tannic acid aqueous solution has an effect of solubilizing fatty acid calcium, which is different from the effect of suppressing sliminess.

Abstract

The present disclosure addresses the problem of providing a cleaner for indoor water use sites that is capable of suppressing slime. The present disclosure encompasses the following aspects. A cleaner for indoor water use sites that contains at least one selected from the group consisting of hydrolyzable tannins formed by ester bonding of glucose and a plurality of gallic acids, and salts thereof. A slime suppression method that includes bringing the aforementioned cleaner into contact with a water use surface of an indoor water use site. A deodorizing method that includes bringing the aforementioned cleaner into contact with a malodorous substance. A fatty acid calcium solubilization method that includes bringing the aforementioned cleaner into contact with a fatty acid calcium.

Description

屋内水使用場所用洗浄剤Cleaner for indoor water use
 本開示は、屋内水使用場所用洗浄剤等に関する。 This disclosure relates to cleaning agents and the like for indoor water use locations.
 台所、浴室、トイレ、キッチン、洗面所等の屋内における水使用場所(屋内水使用場所)では、水の存在により繁殖した微生物による汚れが生じる。これらの場所では、代表的には微生物のバイオフィルム形成によって生じるぬめりが問題となっており、衛生上、外観上等の観点から、その抑制が望ましい。 In places where water is used indoors (places where water is used indoors) such as kitchens, bathrooms, toilets, kitchens, and washrooms, stains are caused by microorganisms that have propagated due to the presence of water. In these places, slime typically caused by biofilm formation by microorganisms is a problem, and it is desirable to suppress it from the viewpoint of hygiene and appearance.
 屋内水使用場所の洗浄剤として、塩素系洗浄剤である次亜塩素酸ナトリウムが知られている(非特許文献1)。しかし、次亜塩素酸ナトリウムは、腐食性・酸化性が強く、酸性洗剤と反応して有毒な塩素ガスを発生させることもあるので、より体や環境に優しい洗浄剤が求められている。  Sodium hypochlorite, which is a chlorine-based cleaning agent, is known as a cleaning agent for places where indoor water is used (Non-Patent Document 1). However, sodium hypochlorite is highly corrosive and oxidizing, and may react with acidic detergents to generate toxic chlorine gas.
 本開示は、ぬめりを抑制可能な屋内水使用場所洗浄剤を提供することを課題とする。 An object of the present disclosure is to provide an indoor water-using place cleaning agent capable of suppressing sliminess.
 本発明者は上記課題に鑑みて鋭意研究を進めた結果、グルコースと複数の没食子酸とがエステル結合してなる加水分解性タンニン、及びその塩からなる群より選択される少なくとも1種が、ぬめり抑制作用を有することを見出した。本発明者は、この知見に基づいて
さらに研究を進めた結果、本開示の発明を完成させた。即ち、本開示は、下記の態様を包含する。
As a result of extensive research in view of the above problems, the present inventors have found that at least one selected from the group consisting of hydrolyzable tannins formed by ester bonding of glucose and a plurality of gallic acids, and salts thereof, is slimy. It was found to have an inhibitory action. Based on this knowledge, the inventor of the present invention has completed the invention of the present disclosure as a result of further research. That is, the present disclosure includes the following aspects.
 項1. グルコースと複数の没食子酸とがエステル結合してなる加水分解性タンニン、及びその塩からなる群より選択される少なくとも1種を含有する、屋内水使用場所用洗浄
剤。
Section 1. A cleaning agent for a place where water is used indoors, containing at least one selected from the group consisting of hydrolyzable tannins formed by ester-bonding glucose and a plurality of gallic acids, and salts thereof.
 項2. 前記屋内水使用場所が、住宅、工場、事務所、宿泊施設、病院、店舗、学校、飲食店、空港内施設、駅、バスターミナル、サービスエリア、運動施設及び集会所からなる群より選択される少なくとも1種の屋内の水使用場所である、項1に記載の洗浄剤。 Section 2. The place of indoor water use is selected from the group consisting of residences, factories, offices, lodging facilities, hospitals, stores, schools, restaurants, airport facilities, stations, bus terminals, service areas, exercise facilities, and meeting places. Item 1. The cleaning agent according to Item 1, which is at least one indoor water use place.
 項3. 前記屋内水使用場所が水回りである、項1又は2に記載の洗浄剤。 Section 3. Item 1 or 2, wherein the indoor water usage location is a plumbing area.
 項4. 前記屋内水使用場所が台所、厨房、浴室、トイレ、キッチン、洗面所及び水循環設備からなる群より選択される少なくとも1種である、項1~3のいずれかに記載の洗
浄剤。
Section 4. Item 4. The cleaning agent according to any one of Items 1 to 3, wherein the indoor water use place is at least one selected from the group consisting of kitchen, kitchen, bathroom, toilet, kitchen, washroom and water circulation equipment.
 項5. 前記加水分解性タンニンがタンニン酸である、項1~4のいずれかに記載の洗浄剤。 Item 5. Items 1 to 4, wherein the hydrolyzable tannin is tannic acid.
 項6. 溶媒を含有する、項1~5のいずれかに記載の洗浄剤。 Item 6. Item 5. The cleaning agent according to any one of Items 1 to 5, which contains a solvent.
 項7. 前記溶媒1mLに対する前記加水分解性タンニン及びその塩の含有量が5000μg以下である、項6に記載の洗浄剤。 Item 7. Item 6. The cleaning agent according to Item 6, wherein the content of the hydrolyzable tannin and its salt per 1 mL of the solvent is 5000 μg or less.
 項8. 前記溶媒のpHが2.0~12.0である、項6又は7に記載の洗浄剤。 Item 8. Item 7. The cleaning agent according to Item 6 or 7, wherein the solvent has a pH of 2.0 to 12.0.
 項9. 前記溶媒がアルコール及び水であり、
弱酸のpH調整剤を含有し、且つ溶媒のpHが2.0~4.0である、項6又は7に記載の洗浄剤。
Item 9. the solvent is alcohol and water,
Item 8. The cleaning agent according to item 6 or 7, which contains a weak acid pH adjuster and the solvent has a pH of 2.0 to 4.0.
 項10. 防腐防黴剤及び界面活性剤を含有する、項9に記載の洗浄剤。 Item 10. Item 9. The cleaning agent according to Item 9, containing an antiseptic antifungal agent and a surfactant.
 項11. 前記界面活性剤がノニオン系界面活性剤である、項10に記載の洗浄剤。 Item 11. Item 10, wherein the surfactant is a nonionic surfactant.
 項12. 前記界面活性剤がポリオキシエチレンアルキルエーテルである、項11に記載の洗浄剤。 Item 12. Item 11. The cleaning agent according to Item 11, wherein the surfactant is polyoxyethylene alkyl ether.
 項13. 前記加水分解性タンニンがMethylobacterium属細菌に対して実質的に増殖抑制作用を示さない濃度で使用される、項1~12のいずれかに記載の洗浄剤。 Item 13. Item 13. The cleaning agent according to any one of Items 1 to 12, wherein the hydrolyzable tannin is used at a concentration that does not substantially exhibit a growth-inhibiting effect on bacteria of the genus Methylobacterium.
 項14. 屋内水使用場所の微生物由来のぬめりに接触させて用いるための、項1~13のいずれかに記載の洗浄剤。 Item 14. The cleaning agent according to any one of Items 1 to 13, for use in contact with slime derived from microorganisms in indoor water use locations.
 項15. 微生物由来のぬめり抑制用である、項1~14のいずれかに記載の洗浄剤。 Item 15. The cleaning agent according to any one of Items 1 to 14, which is for suppressing sliminess derived from microorganisms.
 項16. 前記微生物がMethylobacterium属細菌、Brevundimonas属細菌、Pseudomonas属細菌、Xanthomonas属細菌、Sphingomonas属細菌、及びRhodococcus属細菌からなる群より選択される少なくも1種である、項14又は15に記載の洗浄剤。 Item 16. Item 16. The cleaning agent according to item 14 or 15, wherein the microorganism is at least one selected from the group consisting of bacteria of the genus Methylobacterium, bacteria of the genus Brevundimonas, bacteria of the genus Pseudomonas, bacteria of the genus Xanthomonas, bacteria of the genus Sphingomonas, and bacteria of the genus Rhodococcus. .
 項17. 前記微生物がMethylobacterium属細菌である、項14~16のいずれかに記載の洗浄剤。 Item 17. Items 14 to 16, wherein the microorganism is a bacterium belonging to the genus Methylobacterium.
 項18. 項1~17のいずれかに記載の洗浄剤と屋内水使用場所の水使用表面とを接触させることを含む、ぬめり抑制方法。 Item 18. A method for suppressing sliminess, comprising contacting the cleaning agent according to any one of Items 1 to 17 with a water-using surface in an indoor water-using location.
 項19. 項1~18のいずれかに記載の洗浄剤と屋内水使用場所の微生物由来のぬめりとを接触させることを含む、項18に記載の方法。 Item 19. Item 18. The method according to Item 18, comprising contacting the cleaning agent according to any one of Items 1 to 18 with slime derived from microorganisms in a place where indoor water is used.
 項20. 項1~13のいずれかに記載の洗浄剤と異臭物質とを接触させることを含む、脱臭方法。 Item 20. A deodorizing method comprising contacting the cleaning agent according to any one of Items 1 to 13 with an odor substance.
 項21. 項1~13のいずれかに記載の洗浄剤と脂肪酸カルシウムとを接触させることを含む、脂肪酸カルシウム可溶化方法。 Item 21. A method for solubilizing fatty acid calcium, comprising contacting the detergent according to any one of Items 1 to 13 with fatty acid calcium.
 本開示によれば、ぬめりを抑制可能な屋内水使用場所洗浄剤を提供することができる。 According to the present disclosure, it is possible to provide an indoor water-using place cleaning agent capable of suppressing sliminess.
実験1において、タンニン酸が水回りのぬめりの代表菌であるMethylobacteriumのバイオフィルム形成を抑制したことを示す図である。1 is a diagram showing that in Experiment 1, tannic acid inhibited biofilm formation of Methylobacterium, which is a representative bacterium for slimy plumbing.
 本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 In this specification, the expressions "contain" and "include" include the concepts of "contain", "include", "consist essentially of" and "consist only of".
 本開示は、その一態様において、グルコースと複数の没食子酸とがエステル結合してなる加水分解性タンニン、及びその塩からなる群より選択される少なくとも1種を含有する
、屋内水使用場所用洗浄剤(本明細書において、「本開示の洗浄剤」と示すこともある。)に関する。以下に、これについて説明する。
In one aspect, the present disclosure contains at least one selected from the group consisting of hydrolyzable tannins formed by ester bonding of glucose and a plurality of gallic acids, and salts thereof, for indoor water-use cleaning. agent (also referred to herein as the “cleaning agent of the present disclosure”). This will be explained below.
 1.成分
 本開示の洗浄剤は、グルコースと複数の没食子酸とがエステル結合してなる加水分解性タンニン、及びその塩からなる群より選択される少なくとも1種(本明細書において、「
有効成分」と示すこともある。)を含有する。
1. Ingredients The cleaning agent of the present disclosure contains at least one selected from the group consisting of hydrolyzable tannins formed by ester bonding of glucose and multiple gallic acids, and salts thereof (herein, "
Also referred to as “active ingredient”. ).
 加水分解性タンニンは、グルコースと複数の没食子酸とがエステル結合してなるものである限り、特に制限されない。 The hydrolyzable tannin is not particularly limited as long as it is formed by ester-bonding glucose and multiple gallic acids.
 グルコースは、特に制限されない。グルコースは、ピラノース型(グルコピラノース)、フラノース型(グルコフラノース)、及び鎖状型のいずれでもあることができ、好ましくはピラノース型であることができる。また、グルコースは、D型及びL型のいずれでもあることができ、好ましくはD型である。また、グルコースは、α型及びβ型のいずれでも
あることができ、好ましくはβ型である。グルコースとしては、好ましくはグルコピラノース、より好ましくはD-グルコピラノース、さらに好ましくはβ-D-グルコピラノース等が挙げられる。
Glucose is not particularly limited. Glucose can be any of pyranose type (glucopyranose), furanose type (glucofuranose) and linear type, preferably pyranose type. Also, glucose can be either D-type or L-type, preferably D-type. Also, glucose can be either α-type or β-type, preferably β-type. Glucose includes preferably glucopyranose, more preferably D-glucopyranose, still more preferably β-D-glucopyranose, and the like.
 エステル結合は、グルコース由来の水酸基と没食子酸由来のカルボキシ基とのエステル結合であり、この限りにおいて特に制限されない。また、グルコースに連結した没食子酸には、さらに別の没食子酸が連結していてもよい。加水分解性タンニンは、より具体的には、グルコースが有する少なくとも1つ(好ましくは2つ以上、より好ましくは3つ以上、
さらに好ましくは4つ以上、とりわけ好ましくは5つ以上)の水酸基と、没食子酸又は没食子酸の連結体が有するカルボキシ基とがエステル結合してなる加水分解性タンニンである。
The ester bond is an ester bond between a hydroxyl group derived from glucose and a carboxy group derived from gallic acid, and is not particularly limited in this respect. In addition, another gallic acid may be linked to gallic acid linked to glucose. More specifically, at least one hydrolyzable tannin possessed by glucose (preferably two or more, more preferably three or more,
It is a hydrolyzable tannin in which hydroxyl groups (more preferably 4 or more, particularly preferably 5 or more) and carboxy groups of gallic acid or gallic acid linkages are ester-bonded.
 ここで、没食子酸の連結体とは、2つ以上(好ましくは2~6つ、より好ましくは2~5つ
、さらに好ましくは2~4つ、よりさらに好ましくは2~3つ、とりわけ好ましくは2つ)の
没食子酸がエステル結合(すなわち、ある没食子酸由来の水酸基と他の没食子酸由来のカルボキシ基とのエステル結合)により連結してなる分子である。エステル結合を形成する水酸基は、メタ位の水酸基及びパラ位の水酸基のいずれでもよいが、好ましくはメタ位の水酸基である。また、3つ以上の没食子酸から構成される連結体は、没食子酸が直鎖状に
連結したもの(すなわち、没食子酸の3つの水酸基の内、エステル結合形成に使用される
水酸基が1つのみであるもの)であってもよいし、没食子酸が分岐鎖状に連結したもの(
すなわち、少なくとも1つの没食子酸について、没食子酸の3つの水酸基の内、エステル結合形成に使用される水酸基が2つ以上であるもの)であってもよいが、好ましくは直鎖状
の連結体である。
Here, the linked form of gallic acid means two or more (preferably 2 to 6, more preferably 2 to 5, still more preferably 2 to 4, even more preferably 2 to 3, particularly preferably 2) gallic acid linked by an ester bond (that is, an ester bond between a hydroxyl group derived from one gallic acid and a carboxy group derived from another gallic acid). The hydroxyl group that forms an ester bond may be either a hydroxyl group at the meta position or a hydroxyl group at the para position, but is preferably a hydroxyl group at the meta position. In addition, linked products composed of three or more gallic acids are those in which gallic acids are linked in a straight chain (i.e., only one of the three hydroxyl groups of gallic acid is used for ester bond formation. ), or those in which gallic acid is linked in a branched chain (
That is, for at least one gallic acid, of the three hydroxyl groups of gallic acid, two or more hydroxyl groups are used for ester bond formation), but preferably a linear linker be.
 没食子酸の連結体としては、例えば以下の式で表される連結体が挙げられる。
Examples of gallic acid conjugates include conjugates represented by the following formulas.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 加水分解性タンニンは、好ましくはタンニン酸である。タンニン酸としては、例えば一般式(1): The hydrolyzable tannin is preferably tannic acid. As tannic acid, for example, general formula (1):
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
[式中:R1、R2、R4及びR5は同一又は異なって、没食子酸又は没食子酸の連結体からカルボキシ基中の水酸基が除かれてなる基を示す。R3は、水素原子、又は没食子酸若しくは没食子酸の連結体からカルボキシ基中の水酸基が除かれてなる基を示す。]
で表される加水分解性タンニンが挙げられる。
[In the formula, R 1 , R 2 , R 4 and R 5 are the same or different and represent a group obtained by removing the hydroxyl group in the carboxy group from gallic acid or a linker of gallic acid. R 3 represents a hydrogen atom, or a group obtained by removing the hydroxyl group in the carboxy group from gallic acid or a linker of gallic acid. ]
Hydrolyzable tannins represented by
 一般式(1)において、R1、R2、R3、R4及びR5は同一又は異なって、没食子酸又は没食
子酸の連結体からカルボキシ基中の水酸基が除かれてなる基であることが好ましく、R1、R2、R3、R4及びR5は同一又は異なって、没食子酸の連結体からカルボキシ基中の水酸基が除かれてなる基であることがより好ましい。
In the general formula (1), R 1 , R 2 , R 3 , R 4 and R 5 are the same or different and are groups obtained by removing the hydroxyl group in the carboxyl group from gallic acid or a linker of gallic acid. and more preferably, R 1 , R 2 , R 3 , R 4 and R 5 are the same or different and are a group obtained by removing the hydroxyl group in the carboxyl group from a linker of gallic acid.
 タンニン酸の好ましい具体例としては、以下の式で表される2つの化合物が挙げられる







Preferred specific examples of tannic acid include two compounds represented by the following formulas.






Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 また、タンニン酸の別の好ましい具体例としては、五倍子タンニン、没食子タンニン等の植物由来のタンニン酸が挙げられる。 Another preferred specific example of tannic acid is plant-derived tannic acid such as quintuple tannin and gallic tannin.
 加水分解性タンニンの分子量は、例えば300~2500、好ましくは800~2200、より好ましくは1200~2000、さらに好ましくは1500~1900である。 The molecular weight of the hydrolyzable tannin is, for example, 300-2500, preferably 800-2200, more preferably 1200-2000, still more preferably 1500-1900.
 加水分解性タンニンの由来や形態は特に限定されず、例えば、植物抽出物のように部分的に精製された加水分解性タンニン、植物から単離された加水分解性タンニン、人工的に合成された加水分解性タンニンなどを用いることができ、それらを単独で又は組合せて用いることができる。 The origin and form of the hydrolyzable tannin are not particularly limited, and examples include partially purified hydrolyzable tannins such as plant extracts, hydrolyzable tannins isolated from plants, and artificially synthesized tannins. Hydrolyzable tannins and the like can be used and they can be used alone or in combination.
 加水分解性タンニンの塩としては、薬学的に許容できる塩であって、屋内水使用場所用洗浄剤として使用できれば特に制限されないが、例えば、塩基付加塩としては、ナトリウム及びカリウム等のアルカリ金属との塩、カルシウム及びマグネシウム等のアルカリ土類金属との塩、アンモニウム及びトリエチルアミン等のアミン類との塩が挙げられる。 The salt of hydrolyzable tannin is not particularly limited as long as it is a pharmaceutically acceptable salt and can be used as a cleaning agent for places where water is used indoors. , salts with alkaline earth metals such as calcium and magnesium, and salts with amines such as ammonium and triethylamine.
 有効成分は、1種単独であることができ、2種以上の組合せであることもできる。 The active ingredient can be a single type or a combination of two or more types.
 本開示の洗浄剤は、有効成分のみを含むものであることもできるし、有効成分及び他の成分を含むものであることもできる。本開示の洗浄剤中の有効成分の含有量は、例えば0.00001~100質量%であり、またその上限及び下限は、例えば次の数値の内の2つを任意に
組み合わせてなる範囲とすることができる:100質量%、90質量%、70質量%、50質量%
、30質量%、20質量%、10質量%、5質量%、2質量%、1質量%、0.5質量%、0.1質量%
、0.01質量%、0.001質量%、0.0001質量%。
The cleaning agents of the present disclosure can contain only active ingredients, or can contain active ingredients and other ingredients. The content of the active ingredient in the cleaning agent of the present disclosure is, for example, 0.00001 to 100% by mass, and the upper and lower limits thereof may be, for example, a range formed by any combination of two of the following numerical values. Possible: 100% by mass, 90% by mass, 70% by mass, 50% by mass
, 30% by mass, 20% by mass, 10% by mass, 5% by mass, 2% by mass, 1% by mass, 0.5% by mass, 0.1% by mass
, 0.01% by weight, 0.001% by weight, 0.0001% by weight.
 本開示の洗浄剤に含むことのできる他の成分としては、加水分解性タンニンが安定であれば、特に制限されない。例えば液剤において、加水分解性タンニンが安定であるかは、加水分解性タンニンの残存率を測定したり加水分解性タンニンの加水分解物である没食子酸を定量したりすることにより求めることができる。例えば、液剤中の加水分解性タンニンの含有量が0.25%の場合、没食子酸の生成初速度が500(μg/mL/日) 未満であれば安
定と評価でき、好ましくは100(μg/mL/日)未満、より好ましくは10(μg/mL/日)
未満、さらに好ましくは1.0(μg/mL/日)未満、最も好ましくは0.1(μg/mL/日)未満である。また、加水分解性タンニンをタンナーゼで完全加水分解した時の没食子酸の定量値を100%として、液剤中で加水分解した没食子酸の割合(%)を求めることもできる。
Other components that can be included in the detergent of the present disclosure are not particularly limited as long as the hydrolyzable tannin is stable. For example, whether or not hydrolyzable tannin is stable in a liquid preparation can be determined by measuring the residual ratio of hydrolyzable tannin or by quantifying gallic acid, which is a hydrolyzate of hydrolyzable tannin. For example, when the content of hydrolyzable tannin in the solution is 0.25%, it can be evaluated as stable if the initial rate of gallic acid formation is less than 500 (μg/mL/day), preferably 100 (μg/mL/day). day), more preferably less than 10 (μg/mL/day)
less than 1.0 (μg/mL/day), most preferably less than 0.1 (μg/mL/day). Alternatively, the ratio (%) of hydrolyzed gallic acid in the liquid formulation can be obtained by setting the quantitative value of gallic acid when the hydrolyzable tannin is completely hydrolyzed with tannase as 100%.
 他の成分としては、溶媒が挙げられる。溶媒としては、例えば、無極性溶媒、極性溶媒などが挙げられ、極性溶媒が好ましい。 Other ingredients include solvents. Examples of the solvent include nonpolar solvents and polar solvents, with polar solvents being preferred.
 極性溶媒として、塩化メチレン、テトラヒドロフラン、アセトン、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の極性非プロトン性溶媒;酢酸、1-ブタノール、1,3-ブタンジオール、グリセロール、2-プロパノール、1-プロパノール
、エタノール、メタノール、ギ酸、水等の極性プロトン性溶媒が挙げられる。
Polar solvents include polar aprotic solvents such as methylene chloride, tetrahydrofuran, acetone, acetonitrile, N,N-dimethylformamide, and dimethylsulfoxide; - Polar protic solvents such as propanol, ethanol, methanol, formic acid, water.
 極性プロトン性溶媒としては、アルコール、又は、水が好ましい。アルコールとしては、1、3-ブタンジオール、グリセロール、2-プロパノール、1-プロパノール、エタノールなどの炭素数5以下の低級アルコールが好ましく、2-プロパノール、1-プロパノー
ル、エタノールなどの炭素数3以下の低級アルコールがより好ましい。かかるアルコール
を用いることにより、本洗浄剤中の加水分解性タンニンをより安定に保持することができる。また、かかるアルコールは水と混合して用いることもできる。水と混合する場合、溶媒全体に対するアルコールの含有割合は、例えば0.00001~100質量%であり、またその上限及び下限は、例えば次の数値の内の2つを任意に組み合わせてなる範囲とすることがで
きる:90質量%、80質量%、70質量%、60質量%、50質量%、30質量%、20質量%、10質量%、5質量%、2質量%、1質量%、0.5質量%、0.1質量%、0.01質量%、0.001質量%、0.0001質量%。
Alcohol or water is preferred as the polar protic solvent. As the alcohol, lower alcohols having 5 or less carbon atoms such as 1,3-butanediol, glycerol, 2-propanol, 1-propanol and ethanol are preferable, and alcohols having 3 or less carbon atoms such as 2-propanol, 1-propanol and ethanol are preferred. Lower alcohols are more preferred. By using such an alcohol, the hydrolyzable tannin in the cleaning agent can be more stably retained. Also, such alcohol can be used by mixing with water. When mixed with water, the content ratio of alcohol to the entire solvent is, for example, 0.00001 to 100% by mass, and the upper and lower limits are, for example, a range obtained by combining any two of the following numerical values. Can be: 90% by mass, 80% by mass, 70% by mass, 60% by mass, 50% by mass, 30% by mass, 20% by mass, 10% by mass, 5% by mass, 2% by mass, 1% by mass, 0.5% by mass , 0.1% by weight, 0.01% by weight, 0.001% by weight, 0.0001% by weight.
 溶媒のpHは、当業者が適宜その効果に応じて設定することができる。溶媒のpHは例えば2.0~12.0である。溶媒のpHは、例えば、pHは2.0~3.0の酸性であってもよく、3.0~6.0
の弱酸性であってもよく、6.0~8.0の中性であってもよく、8.0~10.0の弱アルカリ性で
あってもよく、10.0~12.0のアルカリ性であってもよいが、本洗浄剤に含まれる加水分解性タンニンの安定性の観点から、溶媒のpHは2.0~6.0が好ましく、2.0~4.0がより好ましい。本開示の洗浄剤は、例えば、酸性条件下においても塩素ガス等を発生させることなく、体や環境にも優しくぬめりを抑制することができる。上記pHに調整するには、pH調整剤を含有することが好ましい。pH調整剤としては特に制限されないが、弱酸のpH調整剤であることが好ましい。弱酸のpH調整剤としては、クエン酸、グルコン酸、酒石酸、乳酸、酢酸、リンゴ酸などが挙げられる。pH調整剤の含有量は、0.0001質量%~2質量%の範囲内
で、目的のpHにあわせて適宜調整することができる。
The pH of the solvent can be appropriately set by those skilled in the art according to its effect. The pH of the solvent is, for example, 2.0-12.0. The pH of the solvent may be acidic, e.g., pH 2.0-3.0, 3.0-6.0
It may be weakly acidic of 6.0 to 8.0, neutral of 8.0 to 10.0, weakly alkaline of 8.0 to 10.0, or alkaline of 10.0 to 12.0. From the viewpoint of the stability of the hydrolyzable tannins that are contained in the solvent, the pH of the solvent is preferably 2.0 to 6.0, more preferably 2.0 to 4.0. The cleaning agent of the present disclosure does not generate chlorine gas or the like even under acidic conditions, for example, and is gentle on the body and the environment and can suppress sliminess. In order to adjust the pH to the above, it is preferable to contain a pH adjuster. Although the pH adjuster is not particularly limited, it is preferably a weak acid pH adjuster. Weak acid pH adjusters include citric acid, gluconic acid, tartaric acid, lactic acid, acetic acid, malic acid, and the like. The content of the pH adjuster can be appropriately adjusted within the range of 0.0001% by mass to 2% by mass, depending on the desired pH.
 本開示の洗浄剤が溶媒を含有する場合、溶媒1mLに対する有効成分の含有量は、例えば2μg以上、5μg以上、20μg以上、100μg以上、500μg以上、1000μg以上であり、50000μg以下、40000μg以下、5000μg以下とすることができる。 When the cleaning agent of the present disclosure contains a solvent, the content of the active ingredient per 1 mL of the solvent is, for example, 2 μg or more, 5 μg or more, 20 μg or more, 100 μg or more, 500 μg or more, 1000 μg or more, 50000 μg or less, 40000 μg or less, 5000 μg or less. can be:
 他の成分としては、溶媒以外にも、例えば抗菌・防カビ剤、防腐防黴剤、芳香族スルホン酸化合物、酸化防止剤、防錆剤、紫外線吸収剤、光安定剤、生物付着防止剤、消臭剤、有機酸類、脂肪酸金属類、金属化合物、多価金属イオン捕捉剤、シクロデキストリン類、多孔質体構成成分、顔料、界面活性剤、増粘剤等の添加剤が挙げられる。 In addition to the solvent, other components include, for example, antibacterial/antifungal agents, antiseptic antifungal agents, aromatic sulfonic acid compounds, antioxidants, rust inhibitors, ultraviolet absorbers, light stabilizers, biofouling inhibitors, Additives such as deodorants, organic acids, fatty acid metals, metal compounds, polyvalent metal ion scavengers, cyclodextrins, porous body constituents, pigments, surfactants, and thickeners are included.
 抗菌・防カビ剤としては、例えば、メチル-2,4-ジヒドロキシ-6-メチルベンゾエート、エチル-2,4-ジヒドロキシ-6-メチルベンゾエート、メチル-2,4-ジヒドロキシ
-3,6-ジメチルベンゾエート、イソプロピル-2,4-ジヒドロキシ-6-メチルベンゾエ
ート、3-メトキシ-5-メチルフェニル-2,4-ジヒドロキシ-6-メチルベンゾエート、エチル-2,4-ジヒドロキシ-3,6-ジメチルベンゾエート、エチル-3-ホルミル-2,4-ジヒドロキシ-6-メチルベンゾエート、イソプロピル-3-ホルミル-2,4-ジヒドロキ
シ-6-メチルベンゾエート、3-ヒドロキシ-5-メチルフェニル-2,4-ジヒドロキシ-6-メチルベンゾエート、3-ヒドロキシ-5-メチルフェニル-2-ジヒドロキシ-4-メ
トキシ-6-メチルベンゾエート、3-メトキシ-5-メチルフェニル-2-ヒドロキシ-4
-メトキシ-6-メチルベンゾエート、3-クロロ-2,6-ジヒドロキシ-4-メチルベンゾエート等のフェノール・アルコール系抗菌・防カビ剤;
 (2-ピリジルチオ-1-オキシド)ナトリウム、ナリジクス酸、ガチフロキサシン、ピリチオン銅、ピリチオン亜鉛等のピリジン・キノリン系抗菌・防カビ剤;
 ヘキサヒドロ-1,3,5-トリス(2-ヒドロキシエチル)-S-トリアジン等のトリアジ
ン系抗菌・防カビ剤;
 1,2-ベンズイソチアゾリン-3オン、2-メチル-5-クロロ-4-イソチアゾロン錯体
、オクチルイソチアゾリノン、メチルイソチアゾリノン、クロロメチルイソチアゾリノン、ジクロロオクチルイソチアゾリノン、ベンズイソチアゾリノン等のイソチアゾロン系抗菌・防カビ剤;
 4’-ヒトロキシアセトアニリド、N-(3-ヒドロキシフェニル)ベンゼンカルボアミ
ド、N-(3-ヒドロキシフェニル)ベンズアミド等のアニリド系抗菌・防カビ剤;
 モノブロモシアノアセトアミド、ジブロモシアノアセトアミド、1,2-ジブロモ-2,4-ジシアノブタン、テトラクロロフタロニトリル等のニトリル系抗菌・防カビ剤;
 2-(4-チアゾリル)ベンゾイミダゾール、2-ベンズイミダゾールカルバミン酸メチ
ル、1-(ブチルカルバモイル)-2-ベンズイミダゾールカルバミン酸メチル等のイミダゾール・チアゾール系抗菌・防カビ剤;
 デヒドロ酢酸等のアルデヒド系抗菌・防カビ剤;
 酢酸、ギ酸、ソルビン酸等のカルボン酸系抗菌・防カビ剤;
 パラオキシ安息香酸エステル等のエステル系抗菌・防カビ剤;
 ジチオ-2,2-ビス(ベンズメチルアミド)、テトラメチルチウラムジスルフィド、ジ
メチルフェニルスルファミド等のジスルフィド化合物;
 マンゼブ、マンネブ、ジネブ、ポリカーバメート等のチオカーバメート化合物;
 1,1-ジブロモ-1-ニトロプロパノール、1,1-ジブロモ-1-ニトロ-2-アセトキシ
プロパン等のニトロ化合物;
 塩化ベンザルコニウム、塩化ベンゼトニウム、塩化メチルベンゼトニウム、塩化セチルピリジニウム、セトリモニウム、塩化ドファニウム、臭化テトラエチルアンモニウム、塩化ジデシルジメチルアンモニウム、臭化ドミフェン等の4級アンモニウム塩;
 メトホルミン、ブホルミン、フェンホルミン、プログアニル、クロロプログアニル、クロルヘキシジン、アレキシジン、ポリアミノプロピルビグアニド、ポリヘキサニド等のビグアナイド;
 アルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルアミン、ラウリルジメチルベンジルアンモニウムクロライド等の界面活性剤;
 銀担持ゼオライト、銅担持ゼオライト、亜鉛担持ゼオライト、銀担持リン酸カルシウム、銅担持リン酸カルシウム、亜鉛担持リン酸カルシウム、酸化チタン等の無機系抗菌剤;等が挙げられる。
Examples of antibacterial and antifungal agents include methyl-2,4-dihydroxy-6-methylbenzoate, ethyl-2,4-dihydroxy-6-methylbenzoate, methyl-2,4-dihydroxy-3,6-dimethylbenzoate , isopropyl-2,4-dihydroxy-6-methylbenzoate, 3-methoxy-5-methylphenyl-2,4-dihydroxy-6-methylbenzoate, ethyl-2,4-dihydroxy-3,6-dimethylbenzoate, ethyl -3-formyl-2,4-dihydroxy-6-methylbenzoate, isopropyl-3-formyl-2,4-dihydroxy-6-methylbenzoate, 3-hydroxy-5-methylphenyl-2,4-dihydroxy-6- methyl benzoate, 3-hydroxy-5-methylphenyl-2-dihydroxy-4-methoxy-6-methylbenzoate, 3-methoxy-5-methylphenyl-2-hydroxy-4
- phenol-alcohol antibacterial/antifungal agents such as methoxy-6-methylbenzoate and 3-chloro-2,6-dihydroxy-4-methylbenzoate;
(2-Pyridylthio-1-oxide) sodium, nalidixic acid, gatifloxacin, pyrithione copper, pyrithione zinc, and other pyridine-quinoline antibacterial and antifungal agents;
Triazine-based antibacterial/antifungal agents such as hexahydro-1,3,5-tris(2-hydroxyethyl)-S-triazine;
1,2-benzisothiazolin-3one, 2-methyl-5-chloro-4-isothiazolone complex, octylisothiazolinone, methylisothiazolinone, chloromethylisothiazolinone, dichlorooctylisothiazolinone, benzisothiazolinone, etc. isothiazolone-based antibacterial and antifungal agents;
Anilide-based antibacterial/antifungal agents such as 4'-hydroxyacetanilide, N-(3-hydroxyphenyl)benzenecarboxamide, and N-(3-hydroxyphenyl)benzamide;
Nitrile-based antibacterial/antifungal agents such as monobromocyanoacetamide, dibromocyanoacetamide, 1,2-dibromo-2,4-dicyanobutane, and tetrachlorophthalonitrile;
2-(4-thiazolyl)benzimidazole, 2-benzimidazole methylcarbamate, 1-(butylcarbamoyl)-2-benzimidazole methylcarbamate and other imidazole/thiazole antibacterial/antifungal agents;
Aldehyde-based antibacterial/antifungal agents such as dehydroacetic acid;
Carboxylic acid-based antibacterial/antifungal agents such as acetic acid, formic acid, and sorbic acid;
Ester-based antibacterial/antifungal agents such as paraoxybenzoic acid ester;
Disulfide compounds such as dithio-2,2-bis(benzmethylamide), tetramethylthiuram disulfide, dimethylphenylsulfamide;
thiocarbamate compounds such as mancozeb, maneb, zineb, polycarbamate;
Nitro compounds such as 1,1-dibromo-1-nitropropanol, 1,1-dibromo-1-nitro-2-acetoxypropane;
quaternary ammonium salts such as benzalkonium chloride, benzethonium chloride, methylbenzethonium chloride, cetylpyridinium chloride, cetrimonium chloride, dophanium chloride, tetraethylammonium bromide, didecyldimethylammonium chloride, domiphen bromide;
biguanides such as metformin, buformin, phenformin, proguanil, chloroproguanil, chlorhexidine, alexidine, polyaminopropyl biguanide, polyhexanide;
Surfactants such as sodium alkylbenzene sulfonate, polyoxyethylene nonylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene stearylamine, lauryldimethylbenzylammonium chloride;
Inorganic antibacterial agents such as silver-supported zeolite, copper-supported zeolite, zinc-supported zeolite, silver-supported calcium phosphate, copper-supported calcium phosphate, zinc-supported calcium phosphate, and titanium oxide;
 また、抗菌・防カビ剤としては、上記に分類される他の成分として、或いは上記に分類されない成分として、例えばチアベンダゾール、トリクロサン、クロルヘキシジン、ジンクピリチオン、クロルキシレノール等や、キトサン、カテキン、チモール、ヒノキチオール、孟宗竹エキス、カラシ精油、ワサビ精油等の天然由来の抗菌成分等が挙げられる。 In addition, antibacterial/antifungal agents include other ingredients classified above or ingredients not classified above, such as thiabendazole, triclosan, chlorhexidine, zinc pyrithione, chlorxylenol, chitosan, catechin, thymol, hinokitiol, Naturally derived antibacterial ingredients such as moso bamboo extract, mustard essential oil, wasabi essential oil, and the like are included.
 防腐防黴剤としては、例えば、パラオキシ安息香酸エステル(パラベン)類、2-フェ
ノキシエタノール、安息香酸及びその塩類、サルチル酸及びその塩類、ソルビン酸及びその塩類、デヒドロ酢酸及びその塩類、p-トルエンスルホン酸及びその塩、エタノールや
イソプロパノール等のアルコール類、塩化ベンザルコニウム等の第四級アンモニウム塩等及び防腐力を有する原料である多価アルコール類、中鎖脂肪酸やそのエステル類、グルセリン誘導体類、及びEDTA等のキレート剤等が挙げられる。
Examples of antiseptic and antifungal agents include paraoxybenzoic acid esters (parabens), 2-phenoxyethanol, benzoic acid and its salts, salicylic acid and its salts, sorbic acid and its salts, dehydroacetic acid and its salts, p-toluenesulfone. Acids and their salts, alcohols such as ethanol and isopropanol, quaternary ammonium salts such as benzalkonium chloride, polyhydric alcohols that are raw materials with antiseptic properties, medium-chain fatty acids and their esters, glycerin derivatives, and chelating agents such as EDTA.
 芳香族スルホン酸化合物としては、例えば、メトキシベンゼンスルホン酸、メトキシベンゼンジスルホン酸、ジメトキシベンゼンスルホン酸、ジメトキシベンゼンジスルホン酸、エトキシベンゼンスルホン酸、エトキシベンゼンジスルホン酸、ジエトキシベンゼンスルホン酸、ジエトキシベンゼンジスルホン酸、プロポキシベンゼンスルホン酸、プロポキシベンゼンジスルホン酸、ブトキシベンゼンスルホン酸、ブトキシベンゼンジスルホン酸、メチルメトキシベンゼンスルホン酸、メチルメトキシベンゼンジスルホン酸、メトキシナフタレンスルホン酸、メトキシナフタレンジスルホン酸、ジメトキシナフタレンスルホン酸、ジメトキシナフタレンジスルホン酸、エトキシナフタレンスルホン酸、エトキシナフタレンジスルホン酸、ジエトキシナフタレンスルホン酸、ジエトキシナフタレンジスルホン酸およびこれらのナトリウム、カリウム、リチウム、カルシウム塩等が挙げられる。 Examples of aromatic sulfonic acid compounds include methoxybenzenesulfonic acid, methoxybenzenedisulfonic acid, dimethoxybenzenesulfonic acid, dimethoxybenzenedisulfonic acid, ethoxybenzenesulfonic acid, ethoxybenzenedisulfonic acid, diethoxybenzenesulfonic acid, and diethoxybenzenedisulfone. acid, propoxybenzenesulfonic acid, propoxybenzenedisulfonic acid, butoxybenzenesulfonic acid, butoxybenzenedisulfonic acid, methylmethoxybenzenesulfonic acid, methylmethoxybenzenedisulfonic acid, methoxynaphthalenesulfonic acid, methoxynaphthalenedisulfonic acid, dimethoxynaphthalenesulfonic acid, dimethoxy Naphthalene disulfonic acid, ethoxynaphthalene sulfonic acid, ethoxynaphthalene disulfonic acid, diethoxynaphthalene sulfonic acid, diethoxynaphthalenedisulfonic acid, sodium, potassium, lithium, calcium salts thereof, and the like.
 酸化防止剤としては、例えば、フェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、ヒンダードアミン系酸化防止剤等が挙げられる。 Examples of antioxidants include phenol-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, hindered amine-based antioxidants, and the like.
 フェノール系酸化防止剤としては、例えば、N-オクタデシル-3-(4-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)プロピオネート、2,6-ジ-tert-ブチル-4-メチルフェノール、2,2-チオ-ジエチレン-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリ-エチレングリコール-ビス-[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[2-{3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジ
メチルエチル]-2,4,8,10-テトラオキサスピロ[5・5]ウンデカン、テトラキス{3-
(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオン酸}ペンタエリスリチルエステル、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5ーメチルベン
ジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-
ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリ
アジン-2,4,6-(1H、3H、5H)-トリオン、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノ-ル)、4,4’-ブチリデンビス(6-tert-ブチル-3-メチルフェノ-
ル)、4,4’-チオビス(6-tert-ブチル-3-メチルフェノ-ル)等が挙げられる。
Phenolic antioxidants include, for example, N-octadecyl-3-(4-hydroxy-3,5-di-tert-butylphenyl)propionate, 2,6-di-tert-butyl-4-methylphenol, 2 ,2-thio-diethylene-bis-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], tri-ethylene glycol-bis-[3-(3-tert-butyl-5- methyl-4-hydroxyphenyl)propionate], 3,9-bis[2-{3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy}-1,1-dimethylethyl]-2 ,4,8,10-tetraoxaspiro[5.5]undecane, tetrakis{3-
(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid} pentaerythrityl ester, 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylbenzyl)-4- methyl phenyl acrylate, 2-[1-(2-hydroxy-3,5-di-tert-
pentylphenyl)ethyl]-4,6-di-tert-pentylphenyl acrylate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene , tris(3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3 ,5-triazine-2,4,6-(1H,3H,5H)-trione, 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 4,4'-butylidenebis(6- tert-butyl-3-methylpheno-
4,4'-thiobis(6-tert-butyl-3-methylphenol) and the like.
 硫黄系酸化防止剤としては、例えば、3,3’-チオジプロピオン酸ジ-N-ドデシルエステル、3,3’-チオジプロピオン酸ジ-N-テトラデシルエステル、3,3-チオジプロピオ
ン酸ジ-N-オクタデシルエステル、テトラキス(3-ドデシルチオプロピオン酸)ペンタエリスリチルエステル等が挙げられる。
Examples of sulfur-based antioxidants include 3,3'-thiodipropionic acid di-N-dodecyl ester, 3,3'-thiodipropionic acid di-N-tetradecyl ester, 3,3-thiodipropionate acid di-N-octadecyl ester, tetrakis(3-dodecylthiopropionic acid) pentaerythrityl ester and the like.
 リン系酸化防止剤としては、例えば、トリス(2,4-ジ-tert-ブチルフェニル)ホス
ファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイ
ト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-クミルフェニル)ペンタエリスリトールジホスファイト、テト
ラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスフォナイト、ビス-[2,4-ジ-tert-ブチル,(6-メチル)フェニル]エチルホスファイト等が挙げら
れる。
Examples of phosphorus antioxidants include tris(2,4-di-tert-butylphenyl) phosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,6 -di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bis(2,4-di-cumylphenyl)pentaerythritol diphosphite, tetrakis(2,4-di-tert-butylphenyl)-4, 4'-biphenylenediphosphonite, bis-[2,4-di-tert-butyl,(6-methyl)phenyl]ethylphosphite and the like.
 ヒンダードアミン系酸化防止剤としては、例えば、セバシン酸ビス(2,2,6,6-テトラ
メチル-4-ピペリジル)エステル、2,2,6,6-テトラメチル-4-ピペリジルメタクリレ
ート、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}-1,6-ヘキサメチレン
{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]等が挙げられる。
Examples of hindered amine antioxidants include sebacate bis(2,2,6,6-tetramethyl-4-piperidyl) ester, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, poly[{ 6-(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl)imino} -1,6-hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl)imino}] and the like.
 防錆剤としては、例えば、アルカノールアミン、第四アンモニウム塩、アルカンチオール、イミダゾリン、メタバナジン酸ナトリウム、クエン酸ビスマス、フェノール誘導体、ポリアルケニルアミン、アルキルイミダゾリン誘導体、ジアノアルキルアミン、カルボン酸アミド、アルキレンジアミン、ピリミジンおよびこれらのカルボン酸、ナフテン酸、スルホン酸複合体、亜硝酸カルシウム、アルキルアミンとエステル、ポリアルコール、ポリフェノール、アルカノールアミン、モリブデン酸ナトリウム、タングステン酸ナトリウム、亜硝酸ナトリウム、ホスホン酸ナトリウム、クロム酸ナトリウム、ケイ酸ナトリウム、ゼラチン、カルボン酸のポリマー、脂肪族アミン、脂肪族ジアミン、芳香族アミン、芳香族ジアミン、エトキシ化アミン、イミダゾール、ベンズイミダゾール、ニトロ化合物、ホルムアルデヒド、アセチレンアルコール、脂肪族チオール、脂肪族スルフィド、芳香族チオール、芳香族スルフィド、スルホキシド、チオ尿素、アセチレンアルコール、2-メル
カプトベンズイミダゾール、アミンまたは第四級アンモニウム塩とハロゲンイオンの混合物、アセチレンチオールおよびスルフィド、ジベンジルスルホキシド、アルキルアミンとヨウ化カリウムの混合物、亜硝酸ジシクロヘキシルアミン、安息香酸シクロヘキシルアミン、ベンゾトリアゾール、タンニンとリン酸ナトリウムの混合物、トリエタノールアミンとラウリルサルコシンとベンゾトリアゾールとの混合物、アルキルアミンとベンゾトリアゾールと亜硝酸ナトリウムとリン酸ナトリウムとの混合物等が挙げられる。
Examples of rust inhibitors include alkanolamines, quaternary ammonium salts, alkanethiols, imidazolines, sodium metavanadate, bismuth citrate, phenol derivatives, polyalkenylamines, alkylimidazoline derivatives, dianoalkylamines, carboxylic acid amides, alkylene Diamines, pyrimidines and their carboxylic acids, naphthenic acids, sulfonic acid complexes, calcium nitrites, alkylamines and esters, polyalcohols, polyphenols, alkanolamines, sodium molybdate, sodium tungstate, sodium nitrite, sodium phosphonate, Sodium chromate, sodium silicate, gelatin, polymers of carboxylic acids, aliphatic amines, aliphatic diamines, aromatic amines, aromatic diamines, ethoxylated amines, imidazoles, benzimidazoles, nitro compounds, formaldehyde, acetylenic alcohols, aliphatics thiols, aliphatic sulfides, aromatic thiols, aromatic sulfides, sulfoxides, thiourea, acetylenic alcohols, 2-mercaptobenzimidazoles, mixtures of amines or quaternary ammonium salts and halogen ions, acetylenithiols and sulfides, dibenzyl sulfoxide, Mixture of alkylamine and potassium iodide, dicyclohexylamine nitrite, cyclohexylamine benzoate, benzotriazole, mixture of tannin and sodium phosphate, mixture of triethanolamine, laurylsarcosine and benzotriazole, alkylamine, benzotriazole and nitrite. A mixture of sodium nitrate and sodium phosphate and the like can be mentioned.
 紫外線吸収剤および光安定剤としては、例えば、2-(5-メチル-2-ヒドロキシフェ
ニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(Α,Α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、メチル-3-[3-tert-ブチル-5-(2H-ベン
ゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオネート-ポリエチレングリコール、ヒドロキシフェニルベンゾトリアゾール誘導体、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5[(ヘキシル)オキシ]-フェノール、2-エトキシ-2’
-エチル-オキサリック酸ビスアニリド等が挙げられる。
UV absorbers and light stabilizers include, for example, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]- 2H-benzotriazole, 2-(3-tert-butyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-5'-tert-octylphenyl)benzotriazole, methyl -3-[3-tert-butyl-5-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate-polyethylene glycol, hydroxyphenylbenzotriazole derivatives, 2-(4,6-diphenyl-1, 3,5-triazin-2-yl)-5[(hexyl)oxy]-phenol, 2-ethoxy-2'
-ethyl-oxalic acid bisanilide and the like.
 生物付着防止剤としては、例えば、テトラメチルチウラムジサルファイド、ビス(N,N
-ジメチルジチオカルバミン酸)亜鉛、3-(3,4-ジクロロフェニル)-1,1-ジメチル
ウレア、ジクロロ-N-((ジメチルアミノ)スルフォニル)フルオロ-N-(P-トリル
)メタンスルフェンアミド、ピリジン-トリフェニルボラン、N,N-ジメチル-N’-フェニル-N’-(フルオロジクロロメチルチオ)スルファミド、チオシアン酸第一銅、酸化
第一銅、テトラブチルチウラムジサルファイド、2,4,5,6-テトラクロロイソフタロニト
リル、ジンクエチレンビスジチオカーバーメート、2,3,5,6-テトラクロロ-4-(メチルスルホニル)ピリジン、N-(2,4,6-トリクロロフェニル)マレイミド、ビス(2-ピリ
ジンチオール-1-オキシド)亜鉛塩、ビス(2-ピリジンチオール-1-オキシド)銅塩
、2-メチルチオ-4-tert-ブチルアミノ-6-シクロプロピルアミノ-S-トリアジン、アルキルピリジン化合物、グラミン系化合物、イソトニル化合物等が挙げられる。
Examples of biofouling agents include tetramethylthiuram disulfide, bis(N,N
-dimethyldithiocarbamate)zinc, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, dichloro-N-((dimethylamino)sulfonyl)fluoro-N-(P-tolyl)methanesulfenamide, pyridine -triphenylborane, N,N-dimethyl-N'-phenyl-N'-(fluorodichloromethylthio)sulfamide, cuprous thiocyanate, cuprous oxide, tetrabutylthiuram disulfide, 2,4,5,6 - tetrachloroisophthalonitrile, zinc ethylenebisdithiocarbamate, 2,3,5,6-tetrachloro-4-(methylsulfonyl)pyridine, N-(2,4,6-trichlorophenyl)maleimide, bis(2) -pyridinethiol-1-oxide) zinc salt, bis(2-pyridinethiol-1-oxide) copper salt, 2-methylthio-4-tert-butylamino-6-cyclopropylamino-S-triazine, alkylpyridine compounds, Gramine-based compounds, isotonyl compounds and the like can be mentioned.
 消臭剤としては、例えば、有機酸類、脂肪酸金属類、金属化合物、シクロデキストリン類、多孔質体等が挙げられる。 Examples of deodorants include organic acids, fatty acid metals, metal compounds, cyclodextrins, and porous bodies.
 有機酸類としては、例えば、乳酸、コハク酸、リンゴ酸、クエン酸、マレイン酸、マロン酸、エチレンジアミンポリ酢酸、アルカン-1,2-ジカルボン酸、アルケン-1,2-ジカルボン酸、シクロアルカン-1,2-ジカルボン酸、シクロアルケン-1,2-ジカルボン酸、ナフタレンスルホン酸等が挙げられる。 Examples of organic acids include lactic acid, succinic acid, malic acid, citric acid, maleic acid, malonic acid, ethylenediaminepolyacetic acid, alkane-1,2-dicarboxylic acids, alkene-1,2-dicarboxylic acids, cycloalkane-1 ,2-dicarboxylic acid, cycloalkene-1,2-dicarboxylic acid, naphthalenesulfonic acid and the like.
 脂肪酸金属類としては、例えば、ウンデシレン酸亜鉛、2-エチルヘキサン酸亜鉛、リ
シノール酸亜鉛等が挙げられる。
Examples of fatty acid metals include zinc undecylenate, zinc 2-ethylhexanoate, and zinc ricinoleate.
 金属化合物としては、例えば、酸化鉄、硫酸鉄、酸化亜鉛、硫酸亜鉛、塩化亜鉛、酸化銀、酸化鋼、金属(鉄、銅等)クロロフィリンナトリウム、金属(鉄、銅、コバルト等)フタロシアニン、金属(鉄、銅、コバルト等)テトラスルホン酸フタロシアニン、二酸化チタン、可視光応答型二酸化チタン(窒素ドープ型等)等が挙げられる。 Examples of metal compounds include iron oxide, iron sulfate, zinc oxide, zinc sulfate, zinc chloride, silver oxide, steel oxide, metals (iron, copper, etc.) sodium chlorophyllin, metals (iron, copper, cobalt, etc.) phthalocyanine, metals (Iron, copper, cobalt, etc.) phthalocyanine tetrasulfonate, titanium dioxide, visible light responsive titanium dioxide (nitrogen-doped type, etc.), and the like.
 多価金属イオン捕捉剤としては、例えば、ニトリロ三酢酸(NTA)、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DPTA)、ヒドロキシエ
チルエチレンジアミン三酢酸(HEDTA)、ヒドロキシエチリデンジホスホン酸(HEDP)、アミノトリメチレンホスホン酸(ATMP)、又はそれらの塩等が挙げられる。
Examples of polyvalent metal ion scavengers include nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DPTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), hydroxyethylidene diphosphonic acid (HEDP), Amino trimethylene phosphonic acid (ATMP), salts thereof, and the like are included.
 シクロデキストリン類としては、例えば、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、そのメチル誘導体、ヒドロキシプロピル誘導体、グルコシル誘導体、マルトシル誘導体等が挙げられる。 Cyclodextrins include, for example, α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, their methyl derivatives, hydroxypropyl derivatives, glucosyl derivatives, maltosyl derivatives and the like.
 多孔質体構成成分としては、例えば、ポリ不飽和カルボン酸、芳香族系ポリマー、キチン、キトサン、活性炭、シリカゲル、活性アルミナ、ゼオライト、セラミック等が挙げられる。 Examples of porous body constituents include polyunsaturated carboxylic acids, aromatic polymers, chitin, chitosan, activated carbon, silica gel, activated alumina, zeolite, and ceramics.
 顔料としては、例えば、カーボンブラック、酸化チタン、フタロシアニン系顔料、キナクリドン系顔料、イソインドリノン系顔料、ペリレン顔料、ペリニン系顔料、キノフタロン系顔料、ジケトピロロ-ピロール系顔料、ジオキサジン系顔料、ジスアゾ縮合系顔料、ペンズイミダゾロン系顔料等が挙げられる。 Examples of pigments include carbon black, titanium oxide, phthalocyanine pigments, quinacridone pigments, isoindolinone pigments, perylene pigments, perine pigments, quinophthalone pigments, diketopyrrolo-pyrrole pigments, dioxazine pigments, and disazo condensation pigments. pigments, penzimidazolone-based pigments, and the like.
 界面活性剤としては、例えば、カチオン界面活性剤、両性界面活性剤、アニオン界面活性剤、ノニオン界面活性剤等が挙げられる。 Examples of surfactants include cationic surfactants, amphoteric surfactants, anionic surfactants, and nonionic surfactants.
 カチオン界面活性剤としては、例えば、4級アンモニウム塩、第1級アミン塩、第2級ア
ミン塩、第3級アミン塩、第4級アミン塩、ピリジン誘導体等が挙げられる。
Cationic surfactants include, for example, quaternary ammonium salts, primary amine salts, secondary amine salts, tertiary amine salts, quaternary amine salts, pyridine derivatives and the like.
 両性界面活性剤としては、例えば、ベタイン型界面活性剤、カルボン酸誘導体、イミダゾリン誘導体等が挙げられる。 Examples of amphoteric surfactants include betaine-type surfactants, carboxylic acid derivatives, imidazoline derivatives, and the like.
 アニオン界面活性剤としては、例えば、リン酸アルキル型界面活性剤、硫酸化油、石鹸、硫酸化エステル油、硫酸化アミド油、オレフィンの硫酸化エステル塩類、脂肪アルコール硫酸エステル塩類、アルキル硫酸エステル塩、脂肪酸エチルスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルベンゼンスルホン酸塩、琉拍酸エステルスルホン酸塩、燐酸エステル塩等が挙げられる。 Examples of anionic surfactants include alkyl phosphate surfactants, sulfated oils, soaps, sulfated ester oils, sulfated amide oils, olefin sulfates, fatty alcohol sulfates, and alkyl sulfates. , fatty acid ethylsulfonates, alkylnaphthalenesulfonates, alkylbenzenesulfonates, sulfonic acid estersulfonates, phosphoric acid ester salts, and the like.
 ノニオン界面活性剤としては、例えば、多価アルコールの部分的脂肪酸エステル、脂肪アルコールのエチレンオキサイド付加物、脂肪酸のエチレンオキサイド付加物、脂肪アミノまたは脂肪酸アミドのエチレンオキサイド付加物、アルキルフェノールのエチレンオキサイド付加物、多価アルコールの部分的脂肪酸エステルのエチレンオキサイド付加物、ポリエチレングリコール、ポリオキシエチレンアルキルエーテル、アルキルグルコシド、脂肪酸アルカノールアミド等が挙げられる。本洗浄剤が含有する加水分解性タンニンの安定性の観点から、ポリオキシエチレンアルキルエーテル、アルキルグルコシド、脂肪酸アルカノールアミドが好ましく、ポリオキシエチレンアルキルエーテル、アルキルグルコシドがより好ましく、ポリオキシエチレンアルキルエーテルが特に好ましい。かかる界面活性剤は,酸性溶媒中でも取扱い易く、さらに、加水分解性タンニンと混合することにより加水分解性タンニンの加水分解が抑制される、又は、許容範囲内である点で好ましい。 Nonionic surfactants include, for example, partial fatty acid esters of polyhydric alcohols, ethylene oxide adducts of fatty alcohols, ethylene oxide adducts of fatty acids, ethylene oxide adducts of fatty amino or fatty acid amides, and ethylene oxide adducts of alkylphenols. , ethylene oxide adducts of partial fatty acid esters of polyhydric alcohols, polyethylene glycols, polyoxyethylene alkyl ethers, alkyl glucosides, fatty acid alkanolamides, and the like. From the viewpoint of the stability of the hydrolyzable tannin contained in the detergent, polyoxyethylene alkyl ethers, alkyl glucosides and fatty acid alkanolamides are preferred, polyoxyethylene alkyl ethers and alkyl glucosides are more preferred, and polyoxyethylene alkyl ethers are preferred. Especially preferred. Such surfactants are preferable in that they are easy to handle even in an acidic solvent, and that hydrolysis of hydrolyzable tannins is suppressed or within an allowable range when mixed with hydrolyzable tannins.
 ポリオキシエチレンアルキルエーテルとしては、例えばポリエチレングリコールモノドデシルエーテル、ポリエチレングリコールモノセチルエーテル、ヤシ油アルキルエトキシレート、ポリエチレングリコール(重合度10)トリデシルエーテル、ポリエチレングリコール(重合度12)トリデシルエーテル、ポリエチレングリコール(重合度18)トリデシルエーテルなどが挙げられる。アルキルグルコシドとしては、例えばn-オクチル-β-D-グルコピラノシド、n-ヘプチル-β-D-チオグルコシド、n-オクチル-β-D-チオグルコシドなどが挙げられる。 Polyoxyethylene alkyl ethers include, for example, polyethylene glycol monododecyl ether, polyethylene glycol monocetyl ether, coconut oil alkyl ethoxylate, polyethylene glycol (degree of polymerization: 10) tridecyl ether, polyethylene glycol (degree of polymerization: 12) tridecyl ether, polyethylene Glycol (polymerization degree 18) tridecyl ether and the like. Alkylglucosides include, for example, n-octyl-β-D-glucopyranoside, n-heptyl-β-D-thioglucoside, n-octyl-β-D-thioglucoside and the like.
 本開示の洗浄剤中の界面活性剤の含有量は、例えば0.00001~60質量%であり、またそ
の上限及び下限は、例えば次の数値の内の2つを任意に組み合わせてなる範囲とすること
ができる:60質量%、50質量%、30質量%、20質量%、10質量%、5質量%、2質量%、1
質量%、0.5質量%、0.1質量%、0.01質量%、0.001質量%、0.0001質量%。
The content of the surfactant in the cleaning agent of the present disclosure is, for example, 0.00001 to 60% by mass, and the upper and lower limits thereof are, for example, a range formed by any combination of two of the following numerical values. Can be: 60% by mass, 50% by mass, 30% by mass, 20% by mass, 10% by mass, 5% by mass, 2% by mass, 1
% by mass, 0.5% by mass, 0.1% by mass, 0.01% by mass, 0.001% by mass, 0.0001% by mass.
 増粘剤としては、例えば、マグネシウム、カルシウム等の酸化物または水酸化物等が挙げられる。 Examples of thickeners include oxides or hydroxides such as magnesium and calcium.
 他の成分である添加剤としては、上記の分類と重複する他の成分として、或いは上記に分類されない成分として、例えば固着剤、分散剤、湿潤剤、安定剤、噴射剤、浸透促進剤、芳香剤、香料、溶解調整剤、着色剤、ゲル化剤、混錬用樹脂、不揮発性オイル、pH調整剤、生物忌避剤、抗生物質、抗ウイルス剤、難燃剤、発泡剤、乳化剤、光沢剤、結着剤、無機塩類、油性成分類、高分子物質類、薬効成分類、酵素類、香料・精油類、顔料類、美白成分類、色素類、イオウ類、皮脂分泌促進成分類、ビタミン類、海藻抽出類、冷感物質類、保湿成分類等が挙げられる。 Additives, which are other components, include other components that overlap with the above classifications, or components that are not classified above, such as sticking agents, dispersants, wetting agents, stabilizers, propellants, penetration enhancers, and fragrances. agents, fragrances, dissolution modifiers, colorants, gelling agents, kneading resins, non-volatile oils, pH adjusters, biorepellents, antibiotics, antiviral agents, flame retardants, foaming agents, emulsifiers, brighteners, Binders, inorganic salts, oily ingredients, macromolecular substances, medicinal ingredients, enzymes, fragrances, essential oils, pigments, whitening ingredients, pigments, sulfurs, sebum secretion promoting ingredients, vitamins, Examples include seaweed extracts, cooling substances, and moisturizing ingredients.
 本開示の洗浄剤が添加剤を含有する場合、本開示の洗浄剤中の有効成分の含有量は、例えば0.000001~50質量%であり、またその上限及び下限は、例えば次の数値の内の2つを
任意に組み合わせてなる範囲とすることができる:50質量%、40質量%、30質量%、20質量%、10質量%、5質量%、2質量%、1質量%、0.5質量%、0.1質量%、0.01質量%、0.001質量%、0.0001質量%、0.00001質量%、0.000001質量%。
When the cleaning agent of the present disclosure contains additives, the content of the active ingredient in the cleaning agent of the present disclosure is, for example, 0.000001 to 50% by mass, and the upper and lower limits are, for example, within the following numerical values. The range can be any combination of the two: 50% by mass, 40% by mass, 30% by mass, 20% by mass, 10% by mass, 5% by mass, 2% by mass, 1% by mass, 0.5% by mass. , 0.1% by weight, 0.01% by weight, 0.001% by weight, 0.0001% by weight, 0.00001% by weight, 0.000001% by weight.
 2.形態、用途
 本開示の洗浄剤の形態は、特に制限されず、屋内水使用場所の洗浄が可能である形態、具体的には本開示の洗浄剤中の有効成分を屋内水使用場所の水使用表面に接触させることができる限りにおいて、特に制限されない。本開示の洗浄剤の形態としては、例えば液剤(油剤、乳剤、水溶液剤等)、粉剤、粒剤、顆粒剤、微細粒剤、打錠剤、ブロック剤、ベイト剤、ペースト剤、ゲル剤、水和剤、発泡製剤、フォーム剤、エアゾール剤、スプレー剤、燻煙剤、塗布剤、等の製剤に調製して、または、担体に担持させて使用することができる。これらの製品形態は、作用濃度に合わせた形態であってもよいし、高濃度の形態にしておき、使用場面において希釈して使用してもよい。
2. Form and Application The form of the cleaning agent of the present disclosure is not particularly limited, and is a form that enables cleaning indoor water use places. It is not particularly limited as long as it can be brought into contact with the surface. Examples of the form of the detergent of the present disclosure include liquids (oils, emulsions, aqueous solutions, etc.), powders, granules, granules, fine granules, tablets, block agents, baits, pastes, gels, and water. It can be used by preparing formulations such as blends, foam formulations, foam formulations, aerosol formulations, spray formulations, smoking formulations, coating formulations, etc., or carrying them on carriers. These product forms may be in a form adjusted to the working concentration, or may be in a form of high concentration and diluted for use.
 屋内水使用場所は、各種建物の屋内における、水(好ましくは水道水)を使用する場所、すなわち水が接触し得る表面(本明細書において「水使用表面」と示すこともある。)を有する場所であり、この限りにおいて特に制限されない。このような場所ではぬめりが生じ得るので、本開示の洗浄剤の使用に適している。建物としては、例えば住宅、工場、事務所、宿泊施設、病院、店舗、学校、飲食店、空港内施設、駅、バスターミナル、サービスエリア、運動施設等が挙げられる。工場としては、印刷工場、製紙・パルプ工場、化学工場、石油化学工場、機械工場、金属工場、鉄鋼工場、建築工場、住宅工場、食品工場、飲料工場、自動車工場、自動車部品工場、バイク工場、 製薬工場、化粧品工場、半導
体工場、電子工場、家電工場、パソコン工場、物流工場等とくに制限されないが、製紙・パルプ工場が好ましい。
The indoor water use place has a place where water (preferably tap water) is used indoors of various buildings, i.e., a surface that can come into contact with water (herein, sometimes referred to as a "water use surface"). It is a place, and it is not particularly limited as long as it is. Such locations may be slimy and are suitable for use with the cleaners of the present disclosure. Examples of buildings include residences, factories, offices, accommodation facilities, hospitals, shops, schools, restaurants, airport facilities, stations, bus terminals, service areas, exercise facilities, and the like. Factories include printing factories, paper and pulp factories, chemical factories, petrochemical factories, machinery factories, metal factories, steel factories, construction factories, housing factories, food factories, beverage factories, automobile factories, auto parts factories, motorcycle factories, Pharmaceutical factories, cosmetics factories, semiconductor factories, electronics factories, home appliance factories, personal computer factories, distribution factories, etc. are not particularly limited, but paper and pulp factories are preferred.
 屋内
水使用場所の具体例としては、例えば台所、厨房、浴室、トイレ、キッチン、洗面所、水循環設備等が挙げられる。ぬめりが発生し易い水循環設備として、例えば製紙・パルプ工場の抄紙工程における白水循環設備が挙げられる。本開示の洗浄剤は、上記具体例に代表される「水回り」の洗浄に特に適している。
Specific examples of indoor water use locations include kitchens, kitchens, bathrooms, toilets, kitchens, washrooms, and water circulation facilities. As a water circulation facility in which sliminess is likely to occur, for example, a white water circulation facility in the papermaking process of a paper/pulp factory can be mentioned. The cleaning agent of the present disclosure is particularly suitable for cleaning "around the water" represented by the above specific examples.
 洗浄とは、水使用表面から異物の全部又は一部を除去することであってもよく、水使用表面における異物の付着又は増加を抑制することであってもよい。水使用表面としては、異物が付着する対象であれば特に制限されず、例えば、台所、浴室、トイレ、洗面台等の排水口、排水溝、排水管、パイプ、壁、床、器具、機器等に設けられる表面が挙げられ、具体的には、プラスチック、セラミックス、金属、ガラス等が挙げられる。プラスチックとしては、繊維強化プラスチック(FRP)、ポリ塩化ビニル、ポリプロピレン、ポリエチ
レン、ABS、ポリアミド、アクリル、ポリスチレン等が挙げられる。セラミックスとして
は各種窒化物、炭窒化物、酸化物等が挙げられる。金属としては、鉄、ステンレス、アルミニウム、亜鉛、銀、銅等が挙げられる。
Cleaning may be to remove all or part of foreign matter from the water-using surface, or may be to suppress adhesion or increase of foreign matter on the water-using surface. The surface on which water is used is not particularly limited as long as it is a target to which foreign matter adheres. Examples include surfaces provided on the substrate, and specific examples include plastics, ceramics, metals, glass, and the like. Examples of plastic include fiber reinforced plastic (FRP), polyvinyl chloride, polypropylene, polyethylene, ABS, polyamide, acrylic, polystyrene, and the like. Examples of ceramics include various nitrides, carbonitrides, oxides, and the like. Examples of metals include iron, stainless steel, aluminum, zinc, silver, and copper.
 異物とは、本来存在すべきでないものをいい、屋内水使用場所における異物とは、屋内水使用場所に本来入ってはいけないものをいう。屋内水使用場所における異物としては、例えば、微生物由来の異物、動物由来の異物、鉱物由来の異物等が挙げられる。微生物由来の異物として、例えば、微生物由来のぬめり(以下、バイオフィルムと記すこともある)が挙げられる。「微生物由来のぬめり」とは、微生物が固体表面に付着し増殖する過程において、微生物細胞内から多糖やタンパク質、核酸などの生体物質を産生して構造体を形成したもの、つまり、微生物および微生物の生体物質を含む構造体をいう。本開示の洗浄剤が付着を除去又は付着を抑制する異物としては、微生物由来の異物が好ましく、微生物由来のぬめりが好ましい。本開示の洗浄剤は、特に微生物由来のぬめりを抑制する効果に優れているため、ぬめり抑制用として、或いはぬめりに接触させて使用することができる。 A foreign object is something that should not exist, and a foreign object in an indoor water usage area is an object that should not enter an indoor water usage area. Examples of foreign matter in a place where indoor water is used include foreign matter derived from microorganisms, foreign matter derived from animals, and foreign matter derived from minerals. Examples of foreign substances derived from microorganisms include slime derived from microorganisms (hereinafter sometimes referred to as biofilm). "Microorganism-derived slime" refers to substances that have formed a structure by producing biological substances such as polysaccharides, proteins, and nucleic acids from within the microbial cells during the process of microorganisms adhering to and multiplying on a solid surface. A structure containing biological material. Foreign matter to which the cleaning agent of the present disclosure removes or suppresses adhesion is preferably foreign matter derived from microorganisms, and slime derived from microorganisms is preferable. Since the cleaning agent of the present disclosure is particularly effective in suppressing slime derived from microorganisms, it can be used for suppressing slime or in contact with slime.
 微生物としては、細菌、真菌(カビ・酵母)等とくに制限されないが、効率よくぬめりを抑制するという観点で細菌であることが好ましく、細胞壁の外側に外膜様の膜を有する細菌であることがより好ましく、グラム陰性菌がより好ましく、Methylobacterium属がさらに好ましい。外膜様の膜としては、グラム陰性細菌の有する外膜、Rhodococcus属細菌
の有するミコール酸膜等が挙げられる。
Microorganisms are not particularly limited, such as bacteria and fungi (molds and yeasts), but from the viewpoint of efficiently suppressing sliminess, bacteria are preferred, and bacteria having an outer membrane-like membrane on the outside of the cell wall are preferred. More preferred, Gram-negative bacteria, more preferred Methylobacterium genus. Examples of the outer membrane-like membrane include the outer membrane of Gram-negative bacteria, the mycolic acid membrane of bacteria of the genus Rhodococcus, and the like.
 細菌としては、例えば、Methylobacterium adhaesivum、Methylobacterium aerolatum
、Methylobacterium aminovorans、Methylobacterium aquaticum、Methylobacterium brachiatum、Methylobacterium brachythecii、Methylobacterium bullatum、Methylobacterium cerastii、Methylobacterium chloromethanicum、Methylobacterium crusticola、Methylobacterium currus、Methylobacterium dankookense、Methylobacterium dichloromethanicum、Methylobacterium durans、Methylobacterium extorquens、Methylobacterium
frigidaeris、Methylobacterium fujisawaense、Methylobacterium funariae、Methylobacterium gnaphalii、Methylobacterium goesingense、Methylobacterium gossipiicola
、Methylobacterium gregans、Methylobacterium haplocladii、Methylobacterium hispanicum、Methylobacterium indicum、Methylobacterium iners、Methylobacterium isbiliense、Methylobacterium jeotgali、Methylobacterium komagatae、Methylobacterium longum、Methylobacterium lusitanum、Methylobacterium marchantiae、Methylobacterium
mesophilicum、Methylobacterium nodulans、Methylobacterium nonmethylotrophicum、Methylobacterium organophilum、Methylobacterium oryzae、Methylobacterium oryzihabitans、Methylobacterium oxalidis、Methylobacterium persicinum、Methylobacterium
phyllosphaerae、Methylobacterium phyllostachyos、Methylobacterium planium、Methylobacterium platani、Methylobacterium podarium、Methylobacterium populi、Methylobacterium pseudosasae、Methylobacterium pseudosasicola、Methylobacterium radiora、Methylobacterium radiotolerans、Methylobacterium rhodesianum、Methylobacterium rhodinum、Methylobacterium rhodos、Methylobacterium salsuginis、Methylobacterium segetis、Methylobacterium soli、Methylobacterium suomiense、Methylobacterium symbioticum、Methylobacterium tardum、Methylobacterium tarhaniae、Methylobacterium terrae、Methylobacterium terricola、Methylobacterium thiocyanatum、Methylobacterium thuringiense、Methylobacterium trifolii、Methylobacterium variabile、Methylobacterium zatmanii等のMethylobacterium属、Pseudomonas aeruginosa、Pseudomonas
putida等のシュードモナス(Pseudomonas)属、Escherichia coliなどのエシェリヒア(Escherichia)属、Serratia marcescens等のセラチア(Serratia)属、Brevundimonas dimuta等のブレバンディモナス(Brevundimonas)属、Xanthomonas campestris等のキサン
トモナス(Xanthomonas)属、Sphingomonas paucimobilis等のスフィンゴモナス(Sphingomonas)属などのグラム陰性細菌;Bacillus subtilis、Bacillus cereus、Bacillus lentus 等のバチルス(Bacillus)属、Staphylococcus aureus、Staphylococcus epidermidisのスタフィロコッカス(Staphylococcus)属、Rhodococcus rhodochrous等のロドコッカス(Rhodococcus)属などのグラム陽性細菌等が挙げられる。
As bacteria, for example, Methylobacterium adhaesivum, Methylobacterium aerolatum
, Methylobacterium aminovorans, Methylobacterium aquaticum, Methylobacterium brachiatum, Methylobacterium brachythecii, Methylobacterium bullatum, Methylobacterium cerastii, Methylobacterium chloromethanicum, Methylobacterium crusticola, Methylobacterium currus, Methylobacterium dankookense, Methylobacterium dichloromethanicum, Methylobacterium duchloromethanicum, Methylobacterium extorans, Methylobacterium
frigidaeris, Methylobacterium fujisawaense, Methylobacterium funariae, Methylobacterium gnaphalii, Methylobacterium goesingense, Methylobacterium gossipiicola
, Methylobacterium gregans, Methylobacterium haplocladii, Methylobacterium hispanicum, Methylobacterium indicum, Methylobacterium iners, Methylobacterium isbiliense, Methylobacterium jeotgali, Methylobacterium komagatae, Methylobacterium longum, Methylobacterium lusitanum, Methylobacterium marchantiae, Methylobacterium
mesophilicum, Methylobacterium nodulans, Methylobacterium nonmethylotrophicum, Methylobacterium organophilum, Methylobacterium oryzae, Methylobacterium oryzihabitans, Methylobacterium oxalidis, Methylobacterium persicinum, Methylobacterium
phyllosphaerae、Methylobacterium phyllostachyos、Methylobacterium planium、Methylobacterium platani、Methylobacterium podarium、Methylobacterium populi、Methylobacterium pseudosasae、Methylobacterium pseudosasicola、Methylobacterium radiora、Methylobacterium radiotolerans、Methylobacterium rhodesianum、Methylobacterium rhodinum、Methylobacterium rhodos、Methylobacterium salsuginis、Methylobacterium segetis、Methylobacterium soli、Methylobacterium suomiense、 Methylobacterium genus such as Methylobacterium symbioticum, Methylobacterium tardum, Methylobacterium tarhaniae, Methylobacterium terrae, Methylobacterium terricola, Methylobacterium thiocyanatum, Methylobacterium thuringiense, Methylobacterium trifolii, Methylobacterium variabile, Methylobacterium zatmanii, Pseudomonas aeruginosa, Pseudomonas aeruginosa
Pseudomonas genus such as putida, Escherichia genus such as Escherichia coli, Serratia genus such as Serratia marcescens, Brevundimonas genus such as Brevundimonas dimuta, Xanthomonas genus such as Xanthomonas campestris , Gram-negative bacteria such as Sphingomonas genus such as Sphingomonas paucimobilis; Bacillus genus such as Bacillus subtilis, Bacillus cereus, and Bacillus lentus; and Gram-positive bacteria such as the genus Rhodococcus.
 真菌としては、例えば、クロカワカビ(Cladosporium cladosporioides)等のクラドスポリウム(Cladosporium)属、アオカビ(Penicillium citrinum)等のペニシリウム(Penicillium)属、コウジカビ(Aspergillus brasiliensis)等のアスペルギルス(Aspergillus)属、ススカビ(Alternaria alternata)等のアルテルナリア(Alternaria)属、アカカビ(Fusariumsolani)等のフザリウム(Fusarium)属、Eurotium herbariorum等のユーロチウム(Eurotium)属、ロドトルラ属(Rhodotorula mucilaginosa)等の赤色酵母類、アウレオバシジウム(A ureobasidium)属、エキソフィアラ(Exophiala)属等の黒色
酵母類、フォーマ(Phoma)属、カンジダ(Candida)属、サッカロマイセス(Saccharomyces)属等が例示される。
Examples of fungi include Cladosporium genus such as Cladosporium cladosporioides, Penicillium genus such as Penicillium citrinum, Aspergillus genus such as Aspergillus brasiliensis, Alternaria alternata) and other genus Alternaria, Fusarium genus such as Fusariumsolani, Eurotium genus such as Eurotium herbariorum, red yeast such as Rhodotorula mucilaginosa, Aureobasidium (A ureobasidium genus, black yeasts such as Exophiala genus, Phoma genus, Candida genus, Saccharomyces genus, and the like.
 本開示の洗浄剤は、好ましくはMethylobacterium属細菌、Brevundimonas属細菌、Pseudomonas属細菌、Xanthomonas属細菌、Sphingomonas属細菌、Rhodococcus属細菌等の微生物由来のぬめり抑制用として、或いはそれらの微生物のぬめりに接触させて使用することができる。本開示の洗浄剤は、ぬめりの原因菌の中でも、特に発生頻度が高いMethylobacterium属細菌に対して好適であり、Methylobacterium属細菌の中で もぬめりを形成しやすいMethylobacterium fujisawaenseに対してより好適である。 The cleaning agent of the present disclosure is preferably used for suppressing slime derived from microorganisms such as bacteria belonging to the genus Methylobacterium, bacteria belonging to the genus Brevundimonas, bacteria belonging to the genus Pseudomonas, bacteria belonging to the genus Xanthomonas, bacteria belonging to the genus Sphingomonas, bacteria belonging to the genus Rhodococcus, etc. can be used by The cleaning agent of the present disclosure is suitable for bacteria of the genus Methylobacterium, which have a particularly high frequency of occurrence among slime-causing bacteria, and is more suitable for bacteria of the genus Methylobacterium, Methylobacterium fujisawaense, which easily forms slime. .
 細菌の中でもMethylobacterium属細菌はピンク色又は赤色のぬめりの原因菌として知られている。このため、本開示の洗浄剤は、ぬめりの中でも、ピンク色又は赤色のぬめりの抑制に好適である。 Among bacteria, the genus Methylobacterium is known to cause pink or red slime. Therefore, the cleaning agent of the present disclosure is suitable for suppressing pink or red slime among slimes.
 「微生物の生体物質」とは、生物の体内に存在する化学物質の総称であり、核酸、タンパク質、多糖などの生体高分子、ヌクレオチド、ヌクレオシド、アミノ酸、糖、脂質等の生体高分子の構成要素、アルコール、アミノ酸、核酸、抗酸化物質、有機酸、ポリオール、ビタミン、ホルモン等の代謝物などが挙げられる。 "Biological substances of microorganisms" is a general term for chemical substances existing in the body of living organisms, including biopolymers such as nucleic acids, proteins, and polysaccharides, and biopolymer components such as nucleotides, nucleosides, amino acids, sugars, and lipids. , alcohols, amino acids, nucleic acids, antioxidants, organic acids, polyols, vitamins, metabolites of hormones, and the like.
 本開示の洗浄剤は、Methylobacterium属細菌に対して、実質的に増殖抑制作用を示さない濃度で使用されることが好ましい。実質的に増殖抑制作用を示さない濃度とは、例えば、本開示の洗浄剤を未使用時のMethylobacterium属細菌の菌数と、本開示の洗浄剤を使用時のMethylobacterium属細菌の菌数が実質的に等しい範囲の濃度をいう。実質的に等しい範囲の濃度であるかは、洗浄剤未使用時のMethylobacterium属細菌の菌数と、洗浄剤使用時のMethylobacterium属細菌の菌数を比較すればよい。このような比較する方法としては、後述の実施例の実験2の方法を採用する。洗浄剤未使用時のMethylobacterium属細菌に
対する洗浄剤使用時のMethylobacterium属細菌の割合が、50%以上、60%以上、70%以上、80%以上、又は90%以上を示す濃度であれば、実質的に増殖抑制を示さない濃度ということができる。本開示の洗浄剤の使用時の濃度(すなわち、本開示の洗浄剤を希釈せずにそのまま使用する場合は、本開示の洗浄剤中の有効成分の濃度であり、本開示の洗浄剤を希釈して、或いは流水で希釈させて使用する場合は、得られた希釈液中の有効成分の濃度である)が、例えば、300μg/mL以下、200μg/mL以下、100μg/mL以下、50μg/mL以下、20μg/mL以下、10μg/mL以下の濃度であれば、実質的に増殖抑制を示さない濃度というこ
とができる。
The cleaning agent of the present disclosure is preferably used at a concentration that does not substantially inhibit the growth of Methylobacterium bacteria. The concentration that does not substantially exhibit a growth-inhibiting effect is, for example, the number of bacteria of the genus Methylobacterium when the cleaning agent of the present disclosure is not used, and the number of bacteria of the genus Methylobacterium when the cleaning agent of the present disclosure is used. means a range of concentrations that are essentially equivalent to each other. Whether the concentrations are in substantially the same range can be determined by comparing the number of bacteria of the genus Methylobacterium when the detergent is not used and the number of bacteria of the genus Methylobacterium when the detergent is used. As a method for such comparison, the method of Experiment 2 in Examples described later is employed. If the ratio of Methylobacterium genus bacteria when detergent is used to Methylobacterium genus bacteria when detergent is not used is 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more It can be said that the concentration does not actually show growth inhibition. The concentration at the time of use of the cleaning agent of the present disclosure (that is, when the cleaning agent of the present disclosure is used as it is without dilution, the concentration of the active ingredient in the cleaning agent of the present disclosure, and the cleaning agent of the present disclosure is diluted or diluted with running water, the concentration of the active ingredient in the resulting diluted solution) is, for example, 300 μg/mL or less, 200 μg/mL or less, 100 μg/mL or less, 50 μg/mL Hereinafter, concentrations of 20 μg/mL or less and 10 μg/mL or less can be said to be concentrations that do not substantially inhibit proliferation.
 本開示の洗浄剤の種類は、特に制限されず、対象とする屋内水使用場所、用途、形態、使用方法に応じて、多岐にわたる。本開示の洗浄剤としては、例えば、住居用洗浄剤、キッチン・厨房用洗浄剤、工業用の洗浄剤、ぬめり取り剤、ぬめり防止剤、台所排水口用洗浄剤、浴室用洗浄剤、トイレ用洗浄剤、インタンク剤、オンタンク剤、水洗トイレ自動洗浄剤、排水パイプ洗浄剤、食器洗い機用洗浄剤、風呂用洗浄剤、風呂釜洗浄剤等が挙げられる。 The type of cleaning agent disclosed in the present disclosure is not particularly limited, and can vary widely depending on the target indoor water use location, application, form, and method of use. The cleaning agents of the present disclosure include, for example, household cleaning agents, kitchen/kitchen cleaning agents, industrial cleaning agents, slime removers, anti-sliming agents, kitchen drain cleaning agents, bathroom cleaning agents, and toilet cleaning agents. Examples include detergents, in-tank agents, on-tank agents, automatic flush toilet cleaners, drain pipe cleaners, dishwasher cleaners, bath cleaners, bath kettle cleaners, and the like.
 本開示の洗浄剤の製造方法としては、特に制限されず、例えば有効成分、必要に応じて配合される他の成分を混合する方法が挙げられる。洗浄剤の形態、種類等に応じて、適切な方法を採用することができる。 The method for producing the cleaning agent of the present disclosure is not particularly limited, and includes, for example, a method of mixing active ingredients and other ingredients that are blended as necessary. A suitable method can be adopted depending on the form, type, etc. of the detergent.
 屋内水使用場所の洗浄処理を行う際に、本開示の洗浄剤を使用する方法は特に限定されない。一例を挙げると、本開示の洗浄剤は、水使用表面に直接塗布されてもよく、また、塗布は、本開示の洗浄剤を水使用表面に滴下することにより行われてもよく、ウェットティッシュやスポンジ等に本開示の洗浄剤を吐出してから、水使用表面に塗り拡げることにより行われてもよい。また、本開示の洗浄剤をポンプ容器やエアゾール容器に充填してから水使用表面に吐出されてもよい。さらに、屋内水使用場所における水放出部分(水道蛇口等)又はその周辺に本開示の洗浄剤を配置し、当該水放出部分から放出される水により本開示の洗浄剤を希釈させて、得られた希釈液(これもまた、本開示の洗浄剤の一態様である。)を水使用表面に接触させることにより、洗浄することもできる。 The method of using the cleaning agent of the present disclosure is not particularly limited when performing cleaning treatment for indoor water use locations. By way of example, the cleaning agents of the present disclosure may be applied directly to the water-used surface, or the application may be performed by dripping the cleaning agents of the present disclosure onto the water-used surface, using wet wipes. It may be carried out by discharging the cleaning agent of the present disclosure onto a sponge or the like, and then spreading it over the wetted surface. Alternatively, the cleaner of the present disclosure may be filled into a pump container or aerosol container and then dispensed onto a wetted surface. Furthermore, the cleaning agent of the present disclosure is placed at or around a water discharge portion (faucet, etc.) in an indoor water usage location, and the cleaning agent of the present disclosure is diluted with the water discharged from the water discharge portion to obtain The water-using surface can also be cleaned by contacting the water-using surface with a diluent (which is also one aspect of the cleaning agent of the present disclosure).
 本開示の洗浄剤によれば、屋内水使用場所におけるぬめりを抑制することができる。このため、本開示は、その一態様において、本開示の洗浄剤と屋内水使用場所の水使用表面とを接触させることを含む、ぬめり抑制方法(以下、「本開示のぬめり抑制方法」と示す。)、に関する。 According to the cleaning agent of the present disclosure, it is possible to suppress sliminess in places where water is used indoors. Therefore, in one aspect, the present disclosure provides a method for suppressing sliminess (hereinafter referred to as "method for suppressing sliminess of the present disclosure") comprising contacting a cleaning agent of the present disclosure with a water-using surface in an indoor water-using location. ), regarding.
 対象とする水使用表面は、ぬめりがすでに存在する表面であってもよいし、まだぬめりが形成されていない表面であってもよい。前者の場合は、本開示の洗浄剤を微生物由来のぬめりと接触させることにより、ぬめりの増加を抑制、或いはぬめり自体を低減させることができる。後者の場合は、本開示の洗浄剤を水使用表面に接触させることにより、ぬめりの形成を抑制することができる。 The target water-using surface may be a surface on which sliminess already exists, or a surface on which sliminess has not yet been formed. In the former case, by bringing the cleaning agent of the present disclosure into contact with slime derived from microorganisms, it is possible to suppress an increase in sliminess or reduce the sliminess itself. In the latter case, the formation of slime can be inhibited by contacting the wetted surface with the cleaner of the present disclosure.
 水使用表面にぬめりが存在する場合、本開示のぬめり抑制方法は、水使用表面と本発明の一態様に係る洗浄剤とを接触させる工程の前に、ぬめりを除去する工程を含んでもよい。ぬめりを除去する工程は、特に限定されず、物理的な方法によりぬめりを除去してもよく、化学的な手法によりぬめりを除去しても良い。ぬめりを予め除去してから、本開示の洗浄剤を使用することにより、さらに効率よくぬめり形成を抑制することができる。 When slime is present on the water-use surface, the slime suppression method of the present disclosure may include a step of removing the slime before the step of contacting the water-use surface with the cleaning agent according to one aspect of the present invention. The step of removing the sliminess is not particularly limited, and the sliminess may be removed by a physical method or a chemical method. By removing the slime in advance and then using the cleaning agent of the present disclosure, slime formation can be suppressed more efficiently.
 本開示のぬめり抑制方法によれば、安全に環境にやさしくぬめりを抑制することができる。 According to the sliminess suppression method of the present disclosure, sliminess can be suppressed safely and environmentally friendly.
 上記接触工程の条件は、特に制限されるものではない。当該工程は、例えば温度が20~35℃の条件下であってもよく、25~30℃の条件下であってもよい。使用時のpHは2.0~3.0の酸性であってもよく、3.0~6.0の弱酸性であってもよく、6.0~8.0の中性であってもよく、8.0~10.0の弱アルカリ性であってもよく、10.0~12.0のアルカリ性であってもよい
。例えば、酸性条件下においても塩素ガス等を発生させることなく、体や環境にも優しくぬめりを抑制することができる。
Conditions for the contact step are not particularly limited. The step may be performed, for example, at a temperature of 20 to 35°C or 25 to 30°C. The pH at the time of use may be acidic from 2.0 to 3.0, weakly acidic from 3.0 to 6.0, neutral from 6.0 to 8.0, or weakly alkaline from 8.0 to 10.0. well, it may be 10.0 to 12.0 alkaline. For example, it does not generate chlorine gas or the like even under acidic conditions, and it is gentle on the body and the environment and can suppress sliminess.
 本開示のぬめり抑制方法において用いられる洗浄剤の量は、ぬめりの種類および濃度、反応系の容積、反応温度等を考慮し、適宜設定することができる。具体的にいえば、排水口等に発生するMethylobacterium由来のぬめりの場合、ぬめりと接触するときの有効成分の濃度が、2μg/mL以上300μg/mL以下であってもよく、5μg/mL以上250μg/mL以下であってもよく、10μg/mL以上200μg/mL以下であってもよく、20μg/mL以上100μg以下であっ
てもよい。洗浄剤が殺菌作用を示す場合、殺菌された死菌が足場となり次のぬめりが形成される。従って、このような濃度範囲であれば、殺菌作用を示さずぬめり形成を抑えることができるため、効率よくぬめりを抑制することができる。
The amount of detergent used in the method for suppressing sliminess of the present disclosure can be appropriately set in consideration of the type and concentration of sliminess, the volume of the reaction system, the reaction temperature, and the like. Specifically, in the case of slime derived from Methylobacterium that occurs in drains, etc., the concentration of the active ingredient at the time of contact with the slime may be 2 μg/mL or more and 300 μg/mL or less, or 5 μg/mL or more and 250 μg. /mL or less, 10 μg/mL or more and 200 μg/mL or less, or 20 μg/mL or more and 100 μg or less. When the cleaning agent exhibits a bactericidal action, the sterilized dead bacteria serve as a scaffold to form the next slime. Therefore, within such a concentration range, slimy formation can be suppressed without exhibiting a bactericidal action, so that slimy can be efficiently suppressed.
 本開示のぬめり抑制方法によりぬめりが抑制されるかは、例えば、以下の方法により判断することができる。まず、本開示の洗浄剤存在下または非存在下で細菌を一定期間培養する。培養終了後、培養液を除去し、形成したぬめりをCrystal Violet等の染色液で染色する。染色したぬめりにSDSを添加し、ぬめりを溶解させた後の溶解液の吸光度を測定す
る。洗浄剤存在下と洗浄剤非存在下との吸光度を比較し、洗浄剤存在下の吸光度が洗浄剤非存在下の吸光度より低下すれば、ぬめりが抑制されたと判断することができる。用いる細菌としては、水回りの主要なぬめり原因菌と考えられるMethylobacteriumが好ましい。
Whether sliminess is suppressed by the sliminess suppression method of the present disclosure can be determined, for example, by the following method. First, bacteria are cultured for a period of time in the presence or absence of detergents of the present disclosure. After the culture is completed, the culture medium is removed, and the formed slime is stained with a staining solution such as Crystal Violet. SDS is added to the stained slime, and the absorbance of the solution after dissolving the slime is measured. By comparing the absorbance in the presence of the detergent and in the absence of the detergent, if the absorbance in the presence of the detergent is lower than the absorbance in the absence of the detergent, it can be determined that the sliminess is suppressed. As the bacteria to be used, Methylobacterium, which is considered to be a major cause of sliminess around water, is preferable.
 ぬめり形成率は、小さい方が望ましく、後述する実施例で算出されるバイオフィルム形成率は、80%以下、70%以下、60%以下、50%以下、40%以下、30%以下、20%以下が挙げられる。 The slime formation rate is preferably small, and the biofilm formation rate calculated in the examples described later is 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, 20%. These include:
 3. 追加効果:脱臭作用
 本開示の洗浄剤によれば、屋内水使用場所で問題となる異臭物質を脱臭することもできる。このため、本開示は、その一態様において、本開示の洗浄剤と異臭物質とを接触させることを含む、脱臭方法(以下、「本開示の脱臭方法」と示す。)、に関する。
3. Additional Effect: Deodorizing Action According to the cleaning agent of the present disclosure, it is also possible to deodorize offensive odor substances that pose a problem in places where water is used indoors. Therefore, in one aspect, the present disclosure relates to a deodorizing method (hereinafter referred to as "deodorizing method of the present disclosure") comprising contacting the cleaning agent of the present disclosure with an off-flavor substance.
 屋内水使用場所で問題となる異臭物質としては、例えばアンモニア、トリメチルアミン、ピリジンなどのN系物質、硫化水素、メチルメルカプタン、硫化メチル、二硫化メチル
、プロパンチオールなどのS系物質、酢酸、プロピオン酸、n-酪酸、イソクエン酸、カプ
ロン酸など低級脂肪酸系物質が挙げられる。本開示の洗浄剤を異臭物質と接触させることにより、異臭物質を低減・除去することができる。
Offensive odor substances that cause problems in indoor water use include N-based substances such as ammonia, trimethylamine and pyridine, S-based substances such as hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide and propanethiol, acetic acid, and propionic acid. , n-butyric acid, isocitric acid, and caproic acid. By bringing the cleaning agent of the present disclosure into contact with offensive odor substances, offensive odor substances can be reduced or removed.
 上記接触工程の条件は、特に制限されるものではなく、前記ぬめりとの接触工程に記載の条件を挙げられる。加水分解性タンニンの安定性の観点から、使用時のpHは2.0~6.0が好ましく、2.0~4.0がより好ましい。 The conditions of the contact step are not particularly limited, and include the conditions described in the step of contacting the slime. From the viewpoint of the stability of hydrolyzable tannin, the pH at the time of use is preferably 2.0 to 6.0, more preferably 2.0 to 4.0.
 本開示の脱臭方法により異臭物質が脱臭されるかは、例えば、以下の方法により判断することができる。まず、本開示の洗浄剤存在下または非存在下で異臭物質を水溶液中で一定時間接触後、水溶液中の異臭物質を定量する。洗浄剤存在下と洗浄剤非存在下との異臭物質の定量値を比較し、洗浄剤存在下の定量値が洗浄剤非存在下の定量値より低下すれば、異臭物質が脱臭されたと判断することができる。 Whether or not the offensive odor substance is deodorized by the deodorizing method of the present disclosure can be determined, for example, by the following method. First, after contacting an off-flavor substance in an aqueous solution for a certain period of time in the presence or absence of the cleaning agent of the present disclosure, the off-flavor substance in the aqueous solution is quantified. Comparing the quantified values of off-flavor substances in the presence of detergent and in the absence of detergent, and if the quantified value in the presence of detergent is lower than the quantified value in the absence of detergent, it is determined that the off-flavor substances have been deodorized. be able to.
 4. 追加効果:脂肪酸カルシウム可溶化作用
 屋内水使用場所では、石けん成分である脂肪酸と水道水中のカルシウムとが反応して、水に不要な脂肪酸カルシウムとして沈着することがある。本開示の洗浄剤によれば、かかる脂肪酸カルシウムを可溶化することもできる。このため、本開示は、その一態様において、本開示の洗浄剤と脂肪酸カルシウムとを接触させることを含む、脂肪酸カルシウム可溶化方法(以下、「本開示の脂肪酸カルシウム可溶化方法」と示す。)、に関する。
4. Additional effect: Fatty acid calcium solubilization action In places where indoor water is used, fatty acids, which are components of soap, may react with calcium in tap water, depositing unnecessary fatty acid calcium in the water. The detergent of the present disclosure can also solubilize such fatty acid calcium. Therefore, in one aspect, the present disclosure provides a method for solubilizing fatty acid calcium (hereinafter referred to as "method for solubilizing fatty acid calcium of the present disclosure"), which comprises contacting the detergent of the present disclosure with fatty acid calcium. , concerning.
 屋内水使用場所で問題となる脂肪酸カルシウムとしては、例えば石けん成分中の脂肪酸のカルシウム塩を挙げることができる。このような脂肪酸カルシウムは、石けん成分中に含まれる脂肪酸のカルシウム塩であれば特に制限されず、飽和脂肪酸カルシウムでもよく、不飽和脂肪酸カルシウムでもよい。かかる脂肪酸カルシウムとしては、炭素数10~20の直鎖状の脂肪酸カルシウムであることが好ましく、炭素数12~18の直鎖状の脂肪酸カルシウムであることがより好ましい。このような脂肪酸カルシウムとしてラウリン酸カルシウム、ミスチリン酸カルシウム、パルミチン酸カルシウム、ステアリン酸カルシウム、オレイン酸カルシウムなどが挙げられる。本開示の洗浄剤を脂肪酸カルシウムと接触させることにより、脂肪酸カルシウムを可溶化することができる。  As fatty acid calcium, which is a problem in places where indoor water is used, for example, calcium salts of fatty acids in soap ingredients can be mentioned. Such fatty acid calcium is not particularly limited as long as it is a calcium salt of fatty acid contained in the soap component, and may be saturated fatty acid calcium or unsaturated fatty acid calcium. Such fatty acid calcium is preferably straight-chain fatty acid calcium having 10 to 20 carbon atoms, more preferably straight-chain fatty acid calcium having 12 to 18 carbon atoms. Examples of such fatty acid calcium include calcium laurate, calcium mystate, calcium palmitate, calcium stearate, and calcium oleate. The fatty acid calcium can be solubilized by contacting the detergent of the present disclosure with the fatty acid calcium.
 上記接触工程の条件は、特に制限されるものではなく、前記ぬめりとの接触工程に記載の条件を挙げられる。加水分解性タンニンの安定性の観点から、使用時のpHは2.0~6.0が好ましく、2.0~4.0がより好ましい。 The conditions of the contact step are not particularly limited, and include the conditions described in the step of contacting the slime. From the viewpoint of the stability of hydrolyzable tannin, the pH at the time of use is preferably 2.0 to 6.0, more preferably 2.0 to 4.0.
 本開示の可溶化方法により脂肪酸カルシウムが可溶化されているかは、例えば、本開示の洗浄剤存在下または非存在下で脂肪酸カルシウムを水溶液中で一定時間接触後、不溶性の脂肪酸カルシウム量を目視観察で確認する方法、画像解析により定量する方法により判断することができる。洗浄剤存在下と洗浄剤非存在下との脂肪酸カルシウム量を比較し、洗浄剤存在下の脂肪酸カルシウム量が洗浄剤非存在下の脂肪酸カルシウム量より低下すれば、可溶化したと判断することができる。 Whether the fatty acid calcium is solubilized by the solubilization method of the present disclosure can be determined, for example, by visually observing the amount of insoluble fatty acid calcium after contacting the fatty acid calcium in an aqueous solution for a certain period of time in the presence or absence of the detergent of the present disclosure. can be determined by a method of confirming with , or a method of quantifying by image analysis. The amounts of fatty acid calcium in the presence of detergent and in the absence of detergent are compared, and if the amount of fatty acid calcium in the presence of detergent is lower than the amount of fatty acid calcium in the absence of detergent, it can be determined that the fatty acid has been solubilized. can.
 また、本開示の可溶化方法により脂肪酸カルシウムが可溶化されているかは、例えば、可溶化した脂肪酸カルシウムに由来する脂肪酸またはカルシウムを定量する方法により判断することもできる。このような方法として、例えばLC分析、GC分析、元素分析、カルシウム定量キットを用いた方法などが挙げられる。例えば、カルシウム定量キットにより、洗浄剤存在下と洗浄剤非存在下との遊離カルシウム濃度を比較し、洗浄剤存在下の遊離カルシウム濃度が洗浄剤非存在下の遊離カルシウム量より増加すれば、可溶化したと判断することができる。 Whether or not fatty acid calcium is solubilized by the solubilization method of the present disclosure can also be determined, for example, by a method of quantifying fatty acid or calcium derived from solubilized fatty acid calcium. Examples of such methods include LC analysis, GC analysis, elemental analysis, and a method using a calcium quantification kit. For example, using a calcium quantification kit, the concentration of free calcium in the presence of detergent is compared with that in the absence of detergent. It can be determined that it has dissolved.
 以下に、実施例に基づいて本発明の一態様を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 One aspect of the present invention will be described in detail below based on examples, but the present invention is not limited to these examples.
 実験1.タンニン酸によるMethylobacterium属細菌のバイオフィルム(BF)形成抑制効

 (材料)
・Methylobacterium fujisawaense NBRC15843;(以下、NBRC15843株)・R2A培地
・タンニン酸(富士フイルム和光純薬社製)。
Experiment 1. Inhibition of biofilm (BF) formation by Methylobacterium by tannic acid
fruits (ingredients)
- Methylobacterium fujisawaense NBRC15843; (hereafter, NBRC15843 strain) - R2A medium - Tannic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
 なお、実施例で使用される「タンニン酸」は、富士フィルム和光純薬社製のものであり、以下の構造式を有するものである。
Figure JPOXMLDOC01-appb-I000005
"Tannic acid" used in the examples is manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. and has the following structural formula.
Figure JPOXMLDOC01-appb-I000005
 (方法)
 NBRC15843株のグリセロールストック溶液を100μL / 50mL-R2A培地の割合で添加し、30℃、150rpmで3日間培養したものを前培養液とした。前培養液の濁度(OD600)は、濁度計(CO80000 cell density meter; WPA biowave)で測定した。












































(Method)
A glycerol stock solution of NBRC15843 strain was added at a ratio of 100 μL/50 mL-R2A medium, and cultured at 30° C. and 150 rpm for 3 days to prepare a pre-culture solution. The turbidity (OD600) of the preculture solution was measured with a turbidity meter (CO80000 cell density meter; WPA biowave).












































 前培養液をR2A培地で希釈した菌体希釈液(OD600=0.2)と、検体を所定の濃度に段階希釈した検体段階希釈液とを作製した。菌体希釈液と検体段階希釈液とをそれぞれ96well PS plate (Thermo Fisher Scientific社製)に100μL/wellずつ添加し(合計200 μL/well)、30℃で10日間静置培養を行った。途中72時間及び144時間経過後に培地交換を行った。培養終了後、培養液を除去し、0.2%Crystal Violet溶液を200μL/well添加し、約60分間室温にて染色した。染色終了後、200μL/wellのdH2Oで2回洗浄し、200μL/wellの2% SDS溶液を加えて、約30分間静置することにより菌体を溶解させた。菌体溶解液を150 μL/wellを別の測定用プレートに移してプレートリーダー(SpectraMax 340PC; Molecular Devices社)で575nmの吸光度を測定し、得られた吸光度から以下の式1によりBF形成率を
算出し、算出したBF形成率に基づき以下の基準でA~Cに判定した。
式1:BF形成率(%)=(検体-BG)/(陰性対照-BG)×100
検体:検体を添加した場合の測定値。
陰性対照:検体無添加の測定値。
BG:培地のみの測定値。
A:0%以上30%未満。
B:30%以上70%未満。
C:70%以上。
Cell dilutions (OD600=0.2) were prepared by diluting the pre-culture solution with R2A medium, and sample serial dilutions were prepared by serially diluting the sample to a predetermined concentration. 100 μL/well of the bacterial cell dilution and the sample serial dilution were each added to a 96-well PS plate (manufactured by Thermo Fisher Scientific) (200 μL/well in total), and static culture was performed at 30° C. for 10 days. The medium was replaced after 72 hours and 144 hours on the way. After the culture was completed, the culture medium was removed, 200 μL/well of 0.2% Crystal Violet solution was added, and the cells were stained at room temperature for about 60 minutes. After completion of staining, the cells were washed twice with 200 μL/well of dH 2 O, added with 200 μL/well of 2% SDS solution, and allowed to stand for about 30 minutes to dissolve the cells. Transfer 150 μL/well of the cell lysate to another measurement plate and measure the absorbance at 575 nm using a plate reader (SpectraMax 340PC; Molecular Devices). Based on the calculated BF formation rate, it was judged as A to C according to the following criteria.
Formula 1: BF formation rate (%) = (specimen - BG) / (negative control - BG) x 100
Sample: Measured value when sample is added.
Negative control: measured value without addition of sample.
BG: measurements of medium only.
A: 0% or more and less than 30%.
B: 30% or more and less than 70%.
C: 70% or more.
 (結果)
 結果を表1に示す。タンニン酸添加により、NBRC15843株由来のバイオフィルム形成が濃度依存的に抑制された。50%阻害濃度(以下、IC50)は2.8μg/mLであった。
(result)
Table 1 shows the results. The addition of tannic acid inhibited biofilm formation derived from the NBRC15843 strain in a concentration-dependent manner. The 50% inhibitory concentration (hereinafter referred to as IC50) was 2.8 μg/mL.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実験2.タンニン酸によるMethylobacterium属細菌の増殖抑制効果
 (材料)
・NBRC15843株
・R2A培地
・タンニン酸(富士フイルム和光純薬社製)。
Experiment 2. Inhibitory effect of tannic acid on growth of Methylobacterium genus bacteria (material)
- NBRC15843 strain - R2A medium - Tannic acid (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
 (方法)
 実験1と同様の方法で、培養した前培養液を用いた。前培養液をOD600=0.2となるよう
にR2A培地で希釈した菌体希釈液と、検体を所定の濃度に段階希釈した検体段階希釈液と
を作製した。菌体希釈液と検体段階希釈液とをそれぞれ48well deep well(Thermo Fisher Scientific社製)に1mL/wellずつ添加し(合計2mL / well)、24時間培養後の濁度(OD600)を測定し、得られた濁度から以下の式2により増殖率を算出し、以下の基準でA~Cに判定した。
式2:増殖率(%)=(検体-BG)/(陰性対照-BG)×100
検体:検体を添加した場合の濁度。
陰性対照:検体無添加の測定値。
BG:培地のみの場合の濁度。
A:90%以上。
B:50%以上、90%未満。
C:0%以上、50%未満。
(Method)
A cultured preculture medium was used in the same manner as in Experiment 1. Cell dilutions were prepared by diluting the preculture solution with R2A medium so that OD600 = 0.2, and sample serial dilutions were prepared by serially diluting the sample to a predetermined concentration. Add 1 mL/well each of the cell dilution and sample serial dilution to 48-well deep wells (manufactured by Thermo Fisher Scientific) (total 2 mL/well), and measure the turbidity (OD600) after culturing for 24 hours. From the obtained turbidity, the growth rate was calculated by the following formula 2, and judged as A to C according to the following criteria.
Formula 2: Proliferation rate (%) = (specimen - BG) / (negative control - BG) x 100
Sample: Turbidity when sample is added.
Negative control: measured value without addition of sample.
BG: Turbidity for medium only.
A: More than 90%.
B: 50% or more and less than 90%.
C: 0% or more and less than 50%.
 (結果)
 結果を表2に示す。タンニン酸200μg/mLの濃度においてもNBRC15843株の増殖は抑制さ
れなかった。実験1との結果と併せて、2.5~200μg/mLの範囲においては、タンニン酸はMethylobacterium属細菌に対して増殖抑制を示さず、BF形成を抑制すると考えられた。
(result)
Table 2 shows the results. The growth of NBRC15843 strain was not inhibited even at a concentration of 200 μg/mL of tannic acid. Combined with the results of Experiment 1, tannic acid did not inhibit the growth of bacteria of the genus Methylobacterium in the range of 2.5-200 μg/mL, and was thought to inhibit BF formation.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実験3.次亜塩素酸ナトリウムによるMethylobacterium属細菌のバイオフィルム形成抑
制効果
 (材料)
・NBRC15843株
・R2A培地
・次亜塩素酸ナトリウム(ナカライテスク社製)。
Experiment 3. Inhibition of Biofilm Formation of Methylobacterium by Sodium Hypochlorite
control effect (material)
・NBRC15843 strain ・R2A medium ・Sodium hypochlorite (manufactured by Nacalai Tesque).
 (方法)
 評価する検体として次亜塩素酸ナトリウムを用いた以外は、実験1と同様の方法で、BF
形成率を算出した。
(Method)
BF
The formation rate was calculated.
 (結果)
 結果を表3に示す。次亜塩素酸ナトリウム添加により、NBRC15843株由来のバイオフィルム形成が若干抑制されたが、IC50はタンニン酸より高かったことから(IC50>20μg/mL)、BF形成抑制活性はタンニン酸より低かった。
(result)
Table 3 shows the results. The addition of sodium hypochlorite slightly suppressed biofilm formation derived from the NBRC15843 strain, but the IC50 was higher than that of tannic acid (IC50 > 20 μg/mL), so the BF formation inhibitory activity was lower than that of tannic acid.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実験4.種々の検体によるMethylobacterium属細菌のバイオフィルム形成抑制活性
 (材料)
・NBRC15843株
・R2A培地
・表4記載の化合物。
Experiment 4. Biofilm formation inhibitory activity of Methylobacterium genus bacteria by various samples (materials)
- NBRC15843 strain - R2A medium - Compounds listed in Table 4.
 (方法)
 評価する検体として表4記載の化合物を用いた以外は、実験1と同様の方法で、BF形成率からIC50を算出し、以下の基準でA~Cに分類した。
A:5μg/mL未満。
B:5μg/mL以上、10μg/mL未満。
C:10μg/mL以上。
(Method)
IC50 was calculated from the BF formation rate in the same manner as in Experiment 1, except that the compounds listed in Table 4 were used as specimens to be evaluated, and classified into A to C according to the following criteria.
A: less than 5 μg/mL.
B: ≥5 μg/mL and <10 μg/mL.
C: 10 μg/mL or more.
 (結果)
 結果を表4に示す。これらの検体のなかでも、タンニン酸及び1,2,3,4,6-ペンタガロイ
ルグルコースは特にMethylobacterium属細菌のバイオフィルム形成を効果的に抑制した。1,2,3,4,6-ペンタガロイルグルコースの構造式は以下のとおりである。
Figure JPOXMLDOC01-appb-I000009
(result)
Table 4 shows the results. Among these samples, tannic acid and 1,2,3,4,6-pentagaloylglucose particularly effectively inhibited biofilm formation of Methylobacterium. The structural formula of 1,2,3,4,6-pentagaloylglucose is shown below.
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実験5.タンニン酸による種々の細菌に対するバイオフィルム形成抑制効果
 (材料)
・表5記載の細菌
・R2A培地
・タンニン酸(富士フイルム和光純薬社製)。
Experiment 5. Inhibitory effect of tannic acid on biofilm formation against various bacteria (material)
· Bacteria listed in Table 5 · R2A medium · Tannic acid (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
 (方法)
 BFを形成させる菌体及びBF形成時間として表5記載の条件を用いた以外は実験1と同様の方法で、BF形成率からIC50を算出し、以下の基準でA~Dに分類した。
A:3μg/mL未満。
B:3μg/mL以上、10μg/mL未満。
C:10μg/mL以上、20μg/mL未満。
D:20μg/mL以上。
(Method)
The IC50 was calculated from the BF formation rate in the same manner as in Experiment 1, except that the cells for forming BF and the conditions shown in Table 5 were used as the BF formation time, and classified into A to D according to the following criteria.
A: <3 μg/mL.
B: ≥3 μg/mL and less than 10 μg/mL.
C: 10 μg/mL or more and less than 20 μg/mL.
D: 20 μg/mL or more.
 (結果)
 結果を表5に示す。タンニン酸は、表5記載のいずれの細菌のバイオフィルム形成も抑制した。特に外膜様の膜(外膜又はミコール酸膜)を有する細菌のバイオフィルム形成を効果的に抑制し、その中でもNBRC15843のバイオフィルム形成をさらに効果的に抑制した。
(result)
Table 5 shows the results. Tannic acid inhibited biofilm formation of any of the bacteria listed in Table 5. In particular, it effectively inhibited biofilm formation of bacteria with an outer membrane-like membrane (outer membrane or mycolic acid membrane), and more effectively inhibited biofilm formation of NBRC15843.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実験6.タンニン酸溶液(pH2~12)によるバイオフィルム形成抑制効果
 (材料)
・NBRC15843株
・R2A培地
・タンニン酸(富士フイルム和光純薬社製)。
Experiment 6. Biofilm formation inhibitory effect by tannic acid solution (pH 2-12) (material)
- NBRC15843 strain - R2A medium - Tannic acid (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
 (方法)
 タンニン酸を、1M水酸化ナトリウム又は1M塩酸で、pH2~12に調製した溶液(タンニン
酸溶液)に溶解させたタンニン酸溶液を調製した。調製したタンニン酸溶液を室温で24時間振盪した後、実験1と同様の方法でBF形成率からIC50を算出し、以下の基準でA~Dに分
類した。
A:3μg/mL未満。
B:3μg/mL以上、10μg/mL未満。
C:10μg/mL以上、20μg/mL未満。
D:20μg/mL以上。
(Method)
A tannic acid solution was prepared by dissolving tannic acid in a solution adjusted to pH 2 to 12 with 1M sodium hydroxide or 1M hydrochloric acid (tannic acid solution). After shaking the prepared tannic acid solution at room temperature for 24 hours, IC50 was calculated from the BF formation rate in the same manner as in Experiment 1, and classified into A to D according to the following criteria.
A: <3 μg/mL.
B: ≥3 μg/mL and less than 10 μg/mL.
C: 10 μg/mL or more and less than 20 μg/mL.
D: 20 μg/mL or more.
 (結果)
 結果を表6に示す。いずれpHの溶液を用いてタンニン酸を溶解させても、タンニン酸溶
液はバイオフィルム形成を抑制した。
(result)
Table 6 shows the results. The tannic acid solution inhibited biofilm formation no matter what pH solution was used to dissolve the tannic acid.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実験7.タンニン酸溶液(pH2~12)中のタンニン酸の安定性
 (材料)
・タンニン酸(富士フイルム和光純薬社製)。
Experiment 7. Stability of tannic acid in tannic acid solutions (pH 2-12) (materials)
- Tannic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
 (方法)
 タンニン酸を、1M水酸化ナトリウム又は1M塩酸で、pH2~12に調製した溶液に溶解させ
てタンニン酸溶液を調製した。調製したタンニン酸溶液を室温、遮光で3カ月保存した後
にHPLC分析に供した。
(Method)
A tannic acid solution was prepared by dissolving tannic acid in a solution adjusted to pH 2-12 with 1M sodium hydroxide or 1M hydrochloric acid. The prepared tannic acid solution was stored at room temperature in the dark for 3 months and then subjected to HPLC analysis.
HPLC分析条件:
カラム:SUMIPAX ODS A-211 (4.6 mmφ×25 cm,5 μm) (住化分析センター社製)
移動相:A液 0.1w/v%リン酸水溶液,B液 0.1w/v%リン酸含有メタノール
溶出方法:グラジエント
Figure JPOXMLDOC01-appb-T000013
流量:1.0ml/分
カラム温度:40℃
検出:280 nm
HPLC analysis conditions:
Column: SUMIPAX ODS A-211 (4.6 mmφ×25 cm, 5 μm) (manufactured by Sumika Analysis Center)
Mobile phase: A solution 0.1w/v% phosphoric acid aqueous solution, B solution 0.1w/v% phosphoric acid-containing methanol Elution method: Gradient
Figure JPOXMLDOC01-appb-T000013
Flow rate: 1.0ml/min Column temperature: 40°C
Detection: 280 nm
 タンニン酸残存率は以下の式3により算出し、以下の基準でA~Dに判定した。
式3:タンニン酸残存率(%)= 3カ月経過時の検体中のタンニン酸のエリア値/溶液調製直後の検体中のタンニン酸のエリア値 × 100
タンニン酸の保持時間:10分~25分
A:80 %以上
B:60%以上、80%未満
C:40%以上、60%未満
D:40%未満
The residual tannic acid ratio was calculated by the following formula 3, and judged as A to D according to the following criteria.
Formula 3: Tannic acid residual rate (%) = Area value of tannic acid in sample after 3 months/Area value of tannic acid in sample immediately after solution preparation × 100
Retention time of tannic acid: 10 to 25 minutes
A: 80% or more
B: 60% or more, less than 80%
C: 40% or more, less than 60%
D: Less than 40%
 没食子酸生成率は以下の式4により算出し、以下の基準でA~Dに判定した。
式4:没食子酸生成率 (%) = 検体中の没食子酸のエリア値/タンナーゼで完全加水分解
時に生成する没食子酸のエリア値 × 100
没食子酸保持時間:4.3分
A:20 %未満
B:20%以上、40%未満
C:40%以上、60%未満
D:60%未満
The gallic acid production rate was calculated by the following formula 4, and judged as A to D according to the following criteria.
Formula 4: Gallic acid production rate (%) = Area value of gallic acid in sample / Area value of gallic acid produced during complete hydrolysis with tannase × 100
Gallic acid retention time: 4.3 minutes
A: Less than 20%
B: 20% or more, less than 40%
C: 40% or more, less than 60%
D: less than 60%
 (結果) 結果を表8に示す。いずれのpHの水溶液中でもタンニン酸は残存していた。
特にpH2~6の領域では,タンニン酸残存率:80%以上、かつ、没食子酸生成率:20%未満であり、pH2~4の領域では、タンニン酸残存率:90%以上、かつ、没食子酸生成率:5%
未満であったことから、タンニン酸は特に安定して存在していると考えられた。
(Results) Table 8 shows the results. Tannic acid remained in the aqueous solution at any pH.
Especially in the pH range of 2-6, the tannic acid residual rate is 80% or more and the gallic acid production rate is less than 20%, and in the pH range of 2-4, the tannic acid residual rate is 90% or more and the gallic acid is Generation rate: 5%
It was thought that tannic acid existed particularly stably because it was less than.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実験9.pH調整剤混合時のタンニン酸の安定性
 (材料)
・タンニン酸(富士フイルム和光純薬社製)
・表9記載の化合物
Experiment 9. Stability of tannic acid when mixed with pH adjuster (material)
・Tannic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
- Compounds listed in Table 9
 (方法)
 タンニン酸を、表9に記載の通り混合したタンニン酸溶液を調製した。調製したタンニ
ン酸溶液を室温で24時間保存した後、HPLC分析に供した。
没食子酸生成初速度は以下の式5により算出し、以下の基準でA~Eに判定した。式5:没食子酸生成初速度 (μg/mL/日) = ([没食子酸 (1日目)]ー[没食子酸 (0日目)]) / (1 ー 0)
[没食子酸 (1日目)]:1日目の没食子酸濃度(μg/mL)
[没食子酸 (0日目)]:0日目の没食子酸濃度(μg/mL)
A : 1.0(μg/mL/日)未満
B : 1.0(μg/mL/日)以上、10(μg/mL/日)未満
C : 10(μg/mL/日)以上、100(μg/mL/日)未満
D : 100(μg/mL/日)以上、500(μg/mL/日)未満
E : 500(μg/mL/日)以上
(Method)
A tannic acid solution was prepared by mixing tannic acid as described in Table 9. The prepared tannic acid solution was stored at room temperature for 24 hours and then subjected to HPLC analysis.
The initial rate of gallic acid formation was calculated by the following formula 5, and judged as A to E according to the following criteria. Formula 5: Initial rate of gallic acid production (μg/mL/day) = ([Gallic acid (Day 1)] - [Gallic acid (Day 0)]) / (1 - 0)
[Gallic acid (Day 1)]: Gallic acid concentration on day 1 (μg/mL)
[Gallic acid (day 0)]: Gallic acid concentration on day 0 (μg/mL)
A: Less than 1.0 (μg/mL/day)
B: 1.0 (μg/mL/day) or more and less than 10 (μg/mL/day)
C: 10 (μg/mL/day) or more and less than 100 (μg/mL/day)
D: 100 (μg/mL/day) or more and less than 500 (μg/mL/day)
E: 500 (μg/mL/day) or more
 (結果)
 結果を表9に示す。いずれのpH調整剤を混合した検体でも、没食子酸生成初
速度が減少したことから、pH調整剤を混合することにより、タンニン酸の安定性が向上すると考えられた。
Figure JPOXMLDOC01-appb-T000015
(result)
Table 9 shows the results. The initial rate of gallic acid production decreased in samples mixed with any pH adjuster, suggesting that the addition of pH adjusters improves the stability of tannic acid.
Figure JPOXMLDOC01-appb-T000015
 実験10.アルコール混合時のタンニン酸の安定性
 (材料)
・タンニン酸(富士フイルム和光純薬社製)。
・表10記載のアルコール
Experiment 10. Stability of tannic acid when mixed with alcohol (material)
- Tannic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
・Alcohol listed in Table 10
 (方法)
 タンニン酸を、表10に記載の通り混合したタンニン酸溶液を調製した。調製したタンニン酸溶液を室温で24時間保存した後、実験9と同様の方法で没食子酸量を定量して、以下
の基準でS~Eに分類した。S:0.1(μg/mL/日)未満
A:0.1(μg/mL/日)以上、1.0(μg/mL/日)未満
B:1.0(μg/mL/日)以上、10(μg/mL/日)未満
D:100(μg/mL/日)以上、500(μg/mL/日)未満
E:500(μg/mL/日)以上
(Method)
A tannic acid solution was prepared by mixing tannic acid as described in Table 10. After storing the prepared tannic acid solution at room temperature for 24 hours, the amount of gallic acid was quantified in the same manner as in Experiment 9, and classified into S to E according to the following criteria. S: less than 0.1 (μg/mL/day)
A: 0.1 (μg/mL/day) or more and less than 1.0 (μg/mL/day)
B: 1.0 (μg/mL/day) or more and less than 10 (μg/mL/day)
D: 100 (μg/mL/day) or more and less than 500 (μg/mL/day)
E: 500 (μg/mL/day) or more
 (結果)
 結果を表10に示す。いずれのアルコールを混合した検体でも、没食子酸生成初速度が減少したことから、アルコールを混合することにより、タンニン酸の安定性が向上すると考えられた。








Figure JPOXMLDOC01-appb-T000016
(result)
Table 10 shows the results. Since the initial rate of gallic acid production decreased in samples mixed with any alcohol, it was considered that the stability of tannic acid was improved by mixing alcohol.








Figure JPOXMLDOC01-appb-T000016
 実験11.抗菌抗カビ、防腐防黴剤混合時のタンニン酸の安定性
 (材料)
・タンニン酸(富士フイルム和光純薬社製)
・表11記載の化合物
Experiment 11. Stability of tannic acid when mixed with antibacterial, antifungal, antiseptic and antifungal agents (material)
・Tannic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
・Compounds listed in Table 11
 (方法)
 タンニン酸を、表11に記載の通り混合したタンニン酸溶液を調製した。調製したタンニン酸溶液を室温で24時間保存した後、実験9と同様の方法で没食子酸量を定量して、以下
の基準でA~Eに分類した。
A:1.0(μg/mL/日)未満
B:1.0(μg/mL/日)以上、10(μg/mL/日)未満
C:10(μg/mL/日)以上100(μg/mL/日)未満
D:100(μg/mL/日)以上、500(μg/mL/日)未満
E:500(μg/mL/日)以上
(Method)
A tannic acid solution was prepared by mixing tannic acid as described in Table 11. After storing the prepared tannic acid solution at room temperature for 24 hours, the amount of gallic acid was quantified in the same manner as in Experiment 9, and classified into A to E according to the following criteria.
A: Less than 1.0 (μg/mL/day)
B: 1.0 (μg/mL/day) or more and less than 10 (μg/mL/day)
C: 10 (μg/mL/day) or more and less than 100 (μg/mL/day)
D: 100 (μg/mL/day) or more and less than 500 (μg/mL/day)
E: 500 (μg/mL/day) or more
 (結果) 結果を表11に示す。酢酸又はフェノキシエタノールを混合した検体では、没食子酸生成初速度が減少したことから、タンニン酸の安定性が向上すると考えられた。また、デヒドロ酢酸Na、安息香酸Na又はギ酸Naを混合した検体では、没食子酸生成初速度が増加したものの、許容範囲内であったため、タンニン酸と混合可能と考えられた。
Figure JPOXMLDOC01-appb-T000017
(Results) Table 11 shows the results. Samples mixed with acetic acid or phenoxyethanol decreased the initial rate of gallic acid formation, suggesting that the stability of tannic acid is improved. In addition, in samples mixed with sodium dehydroacetate, sodium benzoate, or sodium formate, the initial rate of gallic acid formation increased, but it was within the allowable range, so it was considered possible to mix with tannic acid.
Figure JPOXMLDOC01-appb-T000017
 実験12.界面活性剤(ポリオキシエチレンアルキルエーテル)混合時のタンニン酸の安定性
 (材料)
・タンニン酸(富士フイルム和光純薬社製)。
・表12に記載の化合物
Experiment 12. Stability of tannic acid when mixed with surfactant (polyoxyethylene alkyl ether) (material)
- Tannic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
・Compounds listed in Table 12
 (方法)
 タンニン酸を、表12に記載の通り混合したタンニン酸溶液を調製した。調製したタンニン酸溶液を室温で24時間保存した後、実験9と同様の方法で没食子酸量を定量して、以下
の基準でA~Eに分類した。
A:1.0(μg/mL/日)未満
B:1.0(μg/mL/日)以上、10(μg/mL/日)未満
C:10(μg/mL/日)以上100(μg/mL/日)未満
D:100(μg/mL/日)以上、500(μg/mL/日)未満
E:500(μg/mL/日)以上
(Method)
A tannic acid solution was prepared by mixing tannic acid as described in Table 12. After storing the prepared tannic acid solution at room temperature for 24 hours, the amount of gallic acid was quantified in the same manner as in Experiment 9, and classified into A to E according to the following criteria.
A: Less than 1.0 (μg/mL/day)
B: 1.0 (μg/mL/day) or more and less than 10 (μg/mL/day)
C: 10 (μg/mL/day) or more and less than 100 (μg/mL/day)
D: 100 (μg/mL/day) or more and less than 500 (μg/mL/day)
E: 500 (μg/mL/day) or more
 (結果)
 結果を表12に示す。ポリオキシエチレンアルキルエーテル系の界面活性剤を混合した検体では、没食子酸生成初速度が減少したことから、タンニン酸の安定性が向上すると考えられた。
Figure JPOXMLDOC01-appb-T000018
(result)
Table 12 shows the results. In samples mixed with polyoxyethylene alkyl ether-based surfactants, the initial rate of gallic acid formation decreased, suggesting that the stability of tannic acid is improved.
Figure JPOXMLDOC01-appb-T000018
 実験13.界面活性剤(アルキルグルコシド)混合時のタンニン酸の安定性
 (材料)
・タンニン酸(富士フイルム和光純薬社製)。
・表13記載の化合物
Experiment 13. Stability of tannic acid when mixed with surfactant (alkyl glucoside) (material)
- Tannic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
・Compounds listed in Table 13
 (方法)
 タンニン酸を、表13に記載の通り混合したタンニン酸溶液を調製した。調製したタンニン酸溶液を室温で24時間保存した後、実験9と同様の方法で没食子酸量を定量して、以下
の基準でA~Eに分類した。
A:1.0(μg/mL/日)未満
B:1.0(μg/mL/日)以上、10(μg/mL/日)未満
C:10(μg/mL/日)以上100(μg/mL/日)未満
D:100(μg/mL/日)以上、500(μg/mL/日)未満
E:500(μg/mL/日)以上
(Method)
A tannic acid solution was prepared by mixing tannic acid as described in Table 13. After storing the prepared tannic acid solution at room temperature for 24 hours, the amount of gallic acid was quantified in the same manner as in Experiment 9, and classified into A to E according to the following criteria.
A: Less than 1.0 (μg/mL/day)
B: 1.0 (μg/mL/day) or more and less than 10 (μg/mL/day)
C: 10 (μg/mL/day) or more and less than 100 (μg/mL/day)
D: 100 (μg/mL/day) or more and less than 500 (μg/mL/day)
E: 500 (μg/mL/day) or more
 (結果)
 結果を表13に示す。アルキルグルコシド系の界面活性剤を混合した検体では、没食子酸生成初速度が減少したことから、タンニン酸の安定性が向上すると考えられた。n-ヘプチル-β-D-チオグルコシド、又は、n-オクチル-β-D-チオグルコシドを混合した検体では、没食子酸生成初速度が減少したことから、タンニン酸の安定性が向上すると考えられた。また、n-オクチル-β-D-グルコピラノシドを混合した検体においては、没食子酸生成初速度が増加したものの、許容範囲内であったため、タンニン酸と混合可能と考えられた。
Figure JPOXMLDOC01-appb-T000019
(result)
Table 13 shows the results. The initial rate of gallic acid production was decreased in samples mixed with alkylglucoside surfactants, suggesting that the stability of tannic acid was improved. Samples mixed with n-heptyl-β-D-thioglucoside or n-octyl-β-D-thioglucoside decreased the initial rate of gallic acid formation, suggesting that the stability of tannic acid is improved. rice field. In addition, in the sample mixed with n-octyl-β-D-glucopyranoside, although the initial rate of gallic acid formation increased, it was within the allowable range, so it was considered possible to mix with tannic acid.
Figure JPOXMLDOC01-appb-T000019
 実験14.タンニン酸含有洗浄剤の作製及び使用
 (材料)
・タンニン酸(富士フイルム和光純薬社製)
・NBRC15843株
・R2A培地
Experiment 14. Preparation and use of tannic acid-containing detergents (materials)
・Tannic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
・NBRC15843 strain ・R2A medium
 (方法)
 0.25% タンニン酸、0.5% フェノキシエタノール、0.5% 酢酸、50% エタノール、残部 純水を混合し、タンニン酸含有洗浄剤を作製した。作製した洗浄剤を用いて、実験1と同様の手法でBF形成抑制を評価した。
 (結果)
 作製したタンニン酸含有洗浄剤は、低濃度でバイオフィルム形成を抑制した。50%阻害濃度(IC50)は、タンニン酸換算で0.78 μg/mLであった。
(Method)
A tannic acid-containing detergent was prepared by mixing 0.25% tannic acid, 0.5% phenoxyethanol, 0.5% acetic acid, 50% ethanol, and the balance pure water. BF formation inhibition was evaluated in the same manner as in Experiment 1 using the prepared detergent.
(result)
The prepared tannic acid-containing detergent inhibited biofilm formation at low concentrations. The 50% inhibitory concentration (IC50) was 0.78 µg/mL in terms of tannic acid.
 実験15.タンニン酸水溶液の追加効果(1):脱臭作用
 (材料)
・タンニン酸(富士フイルム和光純薬社製)。
・メチルメルカプタンNa(東京化成工業社製)
・5,5'-Dithiobis (2-nitrobenzoic acid) (DTNB ; 東京化成工業)
Experiment 15. Additional effect of tannic acid aqueous solution (1): Deodorizing action (material)
- Tannic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
・Methyl mercaptan Na (manufactured by Tokyo Chemical Industry Co., Ltd.)
・5,5'-Dithiobis (2-nitrobenzoic acid) (DTNB ; Tokyo Chemical Industry)
 (方法)
 ねじ口試験管に、0.1Mリン酸緩衝液(pH 6.3)、タンニン酸及びメチルメルカプタンナトリウム(終濃度0.01%)を添加し、200rpm、25℃で6時間振盪した。6時間経過後、振盪液50μL、100mMリン酸緩衝液 (pH8.0) 200μL、純水750μL及び10mM DTNB 20μLを混合し1
時間静置した。1時間静置後の溶液を1mLキュベットに移し,分光光度計で412nmの吸光度
を測定した。メチルメルカプタン残存率は以下の式6により算出し、以下の基準でA~Eに
分類した。
式6:メチルメルカプタン残存率(%)=(検体の吸光度-BGの吸光度)/(陰性対照の
吸光度-BGの吸光度)×100
検体:タンニン酸添加
陰性対照:タンニン酸無添加。
A:20%未満
B:20%以上、40%未満
C:40%以上、60%未満
D:60%以上、80%未満
E:80%以上
(Method)
0.1 M phosphate buffer (pH 6.3), tannic acid and sodium methyl mercaptan (0.01% final concentration) were added to a screw cap test tube and shaken at 200 rpm and 25° C. for 6 hours. After 6 hours, mix 50 μL of shaking liquid, 200 μL of 100 mM phosphate buffer (pH 8.0), 750 μL of pure water and 20 μL of 10 mM DTNB.
Let it stand for a while. After standing for 1 hour, the solution was transferred to a 1 mL cuvette and the absorbance at 412 nm was measured with a spectrophotometer. The methyl mercaptan residual rate was calculated by the following formula 6 and classified into A to E according to the following criteria.
Formula 6: Methyl mercaptan residual rate (%) = (absorbance of specimen - absorbance of BG) / (absorbance of negative control - absorbance of BG) x 100
Specimen: tannic acid added negative control: no tannic acid added.
A: less than 20%
B: 20% or more, less than 40%
C: 40% or more, less than 60%
D: 60% or more, less than 80%
E: 80% or more
 (結果)
 結果を表14に示す。タンニン酸水溶液を添加することにより、異臭物質であるメチルメルカプタンの濃度が減少した。このことから、タンニン酸水溶液は、ぬめり抑制効果とは異質な効果である脱臭効果も有すると考えられた。
Figure JPOXMLDOC01-appb-T000020
(result)
The results are shown in Table 14. Addition of the aqueous tannic acid solution reduced the concentration of methyl mercaptan, which is an off-flavour substance. From this, it was considered that the tannic acid aqueous solution also has a deodorizing effect that is different from the sliminess suppressing effect.
Figure JPOXMLDOC01-appb-T000020
 実験16.タンニン酸水溶液の追加効果(2):脂肪酸カルシウム可溶化作用(1)
 (材料)
・タンニン酸(富士フイルム和光純薬社製)
・カルシウム定量キット (Calcium Assay Kit、QuantiChrom ; フナコシ社製)
・表15記載の脂肪酸カルシウム
Experiment 16. Additional effect of tannic acid aqueous solution (2): Fatty acid calcium solubilization effect (1)
(material)
・Tannic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
・Calcium assay kit (Calcium Assay Kit, QuantiChrom; manufactured by Funakoshi Co., Ltd.)
・ Fatty acid calcium described in Table 15
 (方法)
 脂肪酸カルシウムを6wellプレートに分注後,タンニン酸水溶液を添加した(終濃度:脂肪酸カルシウム: 0.2%, タンニン酸:2%)。プレート振盪機 (BioShaker M-BR-024, TAITEC社製) を用いて室温で一晩振盪培養を行い、目視で脂肪酸カルシウムの可溶化の程度
を観察して、以下の基準でA~Dに分類した。
A:全部可溶化
B:大半が可溶化
C:一部可溶化
D:不溶
(Method)
After the fatty acid calcium was dispensed into a 6-well plate, an aqueous tannic acid solution was added (final concentration: fatty acid calcium: 0.2%, tannic acid: 2%). Perform overnight shaking culture at room temperature using a plate shaker (BioShaker M-BR-024, manufactured by TAITEC), visually observe the degree of solubilization of fatty acid calcium, and classify into A to D according to the following criteria. did.
A: Totally solubilized
B: mostly solubilized
C: Partially solubilized
D: Insoluble
 (結果)
 結果を表15に示す。タンニン酸水溶液を添加することにより、脂肪酸カルシウムの可溶化が促進された。このことから、タンニン酸水溶液は、ぬめり抑制効果とは異質な効果である脂肪酸カルシウム可溶化効果を有すると考えられた。
Figure JPOXMLDOC01-appb-T000021
(result)
Table 15 shows the results. Addition of the aqueous tannic acid solution promoted the solubilization of fatty acid calcium. From this, it was considered that the tannic acid aqueous solution has an effect of solubilizing fatty acid calcium, which is different from the effect of suppressing sliminess.
Figure JPOXMLDOC01-appb-T000021
 実験17.タンニン酸水溶液の追加効果(2):脂肪酸カルシウム可溶化作用(2)
 (材料)
・実験16に記載の脂肪酸カルシウムとタンニン酸との混合液
・カルシウム定量キット (Calcium Assay Kit、QuantiChrom ; フナコシ社製)
Experiment 17. Additional effect of tannic acid aqueous solution (2): Fatty acid calcium solubilization effect (2)
(material)
・Mixture of fatty acid calcium and tannic acid described in Experiment 16 ・Calcium assay kit (Calcium Assay Kit, QuantiChrom; manufactured by Funakoshi Co., Ltd.)
(方法)
 実験16に記載の脂肪酸カルシウムとタンニン酸との混合液を1.0mL分取し,遠心分離(2,0000 g×10分)により不溶性成分を除去し、カルシウム定量キットを用いて上清中の遊離
カルシウムを定量した。遊離カルシウムの割合は以下の式7により算出し、以下の基準でA~Eに分類した。
式7:遊離カルシウム(%)=(遊離カルシウムの定量値)/(添加した脂肪酸カルシウ
ム量から算出したカルシウムの理論値)×100
A:40%以上
B:30%以上、40%未満
C:20%以上、30%未満
D:10%以上、20%未満
E:10%未満
(Method)
Take 1.0 mL of the mixture of fatty acid calcium and tannic acid described in Experiment 16, remove insoluble components by centrifugation (2,0000 g × 10 minutes), and use a calcium quantification kit to measure free Calcium was quantified. The ratio of free calcium was calculated by the following formula 7 and classified into A to E according to the following criteria.
Formula 7: Free calcium (%) = (Quantitative value of free calcium) / (Theoretical value of calcium calculated from the amount of fatty acid calcium added) x 100
A: 40% or more
B: 30% or more, less than 40%
C: 20% or more, less than 30%
D: 10% or more, less than 20%
E: less than 10%
 (結果)
 結果を表16に示す。タンニン酸水溶液を添加することにより、上清中の遊離カルシウム濃度が上昇したことから、タンニン酸水溶液は、ぬめり抑制効果とは異質な効果である脂肪酸カルシウム可溶化効果を有すると考えられた。
Figure JPOXMLDOC01-appb-T000022
(result)
The results are shown in Table 16. Addition of the aqueous tannic acid solution increased the concentration of free calcium in the supernatant, suggesting that the aqueous tannic acid solution has an effect of solubilizing fatty acid calcium, which is different from the sliminess suppressing effect.
Figure JPOXMLDOC01-appb-T000022

Claims (21)

  1. グルコースと複数の没食子酸とがエステル結合してなる加水分解性タンニン、及びその塩からなる群より選択される少なくとも1種を含有する、屋内水使用場所用洗浄剤。 A cleaning agent for a place where water is used indoors, containing at least one selected from the group consisting of hydrolyzable tannins formed by ester-bonding glucose and a plurality of gallic acids, and salts thereof.
  2. 前記屋内水使用場所が、住宅、工場、事務所、宿泊施設、病院、店舗、学校、飲食店、空港内施設、駅、バスターミナル、サービスエリア、運動施設及び集会所からなる群より選択される少なくとも1種の屋内の水使用場所である、請求項1に記載の洗浄剤。 The place of indoor water use is selected from the group consisting of residences, factories, offices, lodging facilities, hospitals, stores, schools, restaurants, airport facilities, stations, bus terminals, service areas, exercise facilities, and meeting places. 2. The cleaning agent of claim 1, which is at least one indoor water use location.
  3. 前記屋内水使用場所が水回りである、請求項1に記載の洗浄剤。 2. The cleaning agent according to claim 1, wherein said indoor water usage location is a plumbing area.
  4. 前記屋内水使用場所が台所、厨房、浴室、トイレ、キッチン、洗面所及び水循環設備からなる群より選択される少なくとも1種である、請求項1に記載の洗浄剤。 2. The cleaning agent according to claim 1, wherein said indoor water use place is at least one selected from the group consisting of kitchen, kitchen, bathroom, toilet, kitchen, washroom and water circulation equipment.
  5. 前記加水分解性タンニンがタンニン酸である、請求項1に記載の洗浄剤。 A cleaning agent according to claim 1, wherein said hydrolyzable tannin is tannic acid.
  6. 溶媒を含有する、請求項1に記載の洗浄剤。 2. A cleaning agent according to claim 1, containing a solvent.
  7. 前記溶媒1mLに対する前記加水分解性タンニン及びその塩の含有量が5000μg以下である、請求項6に記載の洗浄剤。 The cleaning agent according to claim 6, wherein the content of said hydrolyzable tannin and its salt per 1 mL of said solvent is 5000 µg or less.
  8. 前記溶媒のpHが2.0~12.0である、請求項6に記載の洗浄剤。 The cleaning agent according to claim 6, wherein the solvent has a pH of 2.0 to 12.0.
  9. 前記溶媒がアルコール及び水であり、
    弱酸のpH調整剤を含有し、且つ溶媒のpHが2.0~4.0である、請求項6に記載の洗浄剤。
    the solvent is alcohol and water,
    7. The cleaning agent according to claim 6, which contains a weak acid pH adjuster and the solvent has a pH of 2.0 to 4.0.
  10. 防腐防黴剤及び界面活性剤を含有する、請求項9に記載の洗浄剤。 10. The cleaning agent according to claim 9, which contains an antiseptic antifungal agent and a surfactant.
  11. 前記界面活性剤がノニオン系界面活性剤である、請求項10に記載の洗浄剤。 The cleaning agent according to claim 10, wherein the surfactant is a nonionic surfactant.
  12. 前記界面活性剤がポリオキシエチレンアルキルエーテルである、請求項11に記載の洗浄剤。 12. A cleaning agent according to claim 11, wherein said surfactant is a polyoxyethylene alkyl ether.
  13. 前記加水分解性タンニンがMethylobacterium属細菌に対して実質的に増殖抑制作用を示さない濃度で使用される、請求項1~12のいずれかに記載の洗浄剤。 The cleaning agent according to any one of claims 1 to 12, wherein the hydrolyzable tannin is used at a concentration that does not substantially exhibit growth-inhibiting action on bacteria belonging to the genus Methylobacterium.
  14. 屋内水使用場所の微生物由来のぬめりに接触させて用いるための、請求項1~12のいずれかに記載の洗浄剤。 The cleaning agent according to any one of claims 1 to 12, which is used in contact with slime derived from microorganisms in a place where indoor water is used.
  15. 微生物由来のぬめり抑制用である、請求項1~12のいずれかに記載の洗浄剤。 The cleaning agent according to any one of claims 1 to 12, which is for suppressing sliminess derived from microorganisms.
  16. 前記微生物がMethylobacterium属細菌、Brevundimonas属細菌、Pseudomonas属細菌、Xanthomonas属細菌、Sphingomonas属細菌、及びRhodococcus属細菌からなる群より選択される少なくも1種である、請求項14に記載の洗浄剤。 The cleaning agent according to claim 14, wherein the microorganism is at least one selected from the group consisting of Methylobacterium, Brevundimonas, Pseudomonas, Xanthomonas, Sphingomonas, and Rhodococcus.
  17. 前記微生物がMethylobacterium属細菌である、請求項14に記載の洗浄剤。 The cleaning agent according to claim 14, wherein the microorganism is Methylobacterium.
  18. 請求項1~12のいずれかに記載の洗浄剤と屋内水使用場所の水使用表面とを接触させることを含む、ぬめり抑制方法。 A method for suppressing sliminess, comprising contacting the cleaning agent according to any one of claims 1 to 12 with a water-using surface in an indoor water-using location.
  19. 請求項1~12のいずれかに記載の洗浄剤と屋内水使用場所の微生物由来のぬめりとを接触させることを含む、請求項18に記載の方法。 19. The method of claim 18, comprising contacting the cleansing agent of any one of claims 1-12 with microbial slime from an indoor water use site.
  20. 請求項1~12のいずれかに記載の洗浄剤と異臭物質とを接触させることを含む、脱臭方法。 A deodorizing method comprising contacting the cleaning agent according to any one of claims 1 to 12 with an off-flavor substance.
  21. 請求項1~12のいずれかに記載の洗浄剤と脂肪酸カルシウムとを接触させることを含む、脂肪酸カルシウム可溶化方法。 A method for solubilizing fatty acid calcium, comprising contacting the detergent according to any one of claims 1 to 12 with fatty acid calcium.
PCT/JP2022/022271 2021-06-04 2022-06-01 Cleaner for indoor water use sites WO2022255400A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-094170 2021-06-04
JP2021094170 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022255400A1 true WO2022255400A1 (en) 2022-12-08

Family

ID=84323450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022271 WO2022255400A1 (en) 2021-06-04 2022-06-01 Cleaner for indoor water use sites

Country Status (3)

Country Link
JP (1) JP2022186650A (en)
TW (1) TW202336221A (en)
WO (1) WO2022255400A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196693A (en) * 1987-02-10 1988-08-15 花王株式会社 Liquid detergent composition for hard surface
JP2002293704A (en) * 2001-03-30 2002-10-09 Nicca Chemical Co Ltd Sterilizing disinfection composition, hair shampooing composition and dish washing composition
JP2006206558A (en) * 2005-01-25 2006-08-10 Arutan Kk Antimicrobial composition for preventing food poisoning
JP2015198591A (en) * 2014-04-07 2015-11-12 信越化学工業株式会社 Food cleaning method
JP2017505324A (en) * 2014-02-07 2017-02-16 ゴジョ・インダストリーズ・インコーポレイテッド Compositions and methods having efficacy against spores and other organisms
JP2018505944A (en) * 2015-02-09 2018-03-01 ザ プロクター アンド ギャンブル カンパニー Cleaning composition and / or treatment composition
JP2020186374A (en) * 2019-05-10 2020-11-19 花王株式会社 Biofilm removal composition for water system
CN112931528A (en) * 2021-01-28 2021-06-11 清远海贝生物技术有限公司 Safe disinfectant special for raw fish overwintering culture water body and application thereof
CN113174294A (en) * 2021-04-19 2021-07-27 无锡市怡禾格瑞环保设备有限公司 Special cleaning agent for ceramic filter plate and composite filter plate
CN113717797A (en) * 2021-09-09 2021-11-30 上海翱鹤矿业有限公司 Ceramic filter plate cleaning agent and application thereof in cleaning ceramic plate filter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196693A (en) * 1987-02-10 1988-08-15 花王株式会社 Liquid detergent composition for hard surface
JP2002293704A (en) * 2001-03-30 2002-10-09 Nicca Chemical Co Ltd Sterilizing disinfection composition, hair shampooing composition and dish washing composition
JP2006206558A (en) * 2005-01-25 2006-08-10 Arutan Kk Antimicrobial composition for preventing food poisoning
JP2017505324A (en) * 2014-02-07 2017-02-16 ゴジョ・インダストリーズ・インコーポレイテッド Compositions and methods having efficacy against spores and other organisms
JP2015198591A (en) * 2014-04-07 2015-11-12 信越化学工業株式会社 Food cleaning method
JP2018505944A (en) * 2015-02-09 2018-03-01 ザ プロクター アンド ギャンブル カンパニー Cleaning composition and / or treatment composition
JP2020186374A (en) * 2019-05-10 2020-11-19 花王株式会社 Biofilm removal composition for water system
CN112931528A (en) * 2021-01-28 2021-06-11 清远海贝生物技术有限公司 Safe disinfectant special for raw fish overwintering culture water body and application thereof
CN113174294A (en) * 2021-04-19 2021-07-27 无锡市怡禾格瑞环保设备有限公司 Special cleaning agent for ceramic filter plate and composite filter plate
CN113717797A (en) * 2021-09-09 2021-11-30 上海翱鹤矿业有限公司 Ceramic filter plate cleaning agent and application thereof in cleaning ceramic plate filter

Also Published As

Publication number Publication date
JP2022186650A (en) 2022-12-15
TW202336221A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
US20220125045A1 (en) High Osmolarity Antimicrobial Composition Containing One or More Organic Solvents
CN104135858B (en) Antimicrobial compositions
EP2236594B1 (en) Method for removing biofilms
MXPA03004359A (en) Antimicrobial compositions containing quaternary ammonium compounds, silanes and other disinfectants with furanones.
JP2009513650A (en) Antibacterial compositions and methods
CN109561694A (en) Antimicrobial compositions
KR20160058875A (en) Microbicidal composition comprising a benzoate or sorbate salt
JP5926482B2 (en) Biofilm removing agent and biofilm removing composition
WO2022255400A1 (en) Cleaner for indoor water use sites
JP2008156389A (en) Treating agent for bio-film
TW201925444A (en) Surface cleaner and disinfectant composition
JP5769570B2 (en) Biofilm remover, biofilm removal composition, and biofilm removal method
JP7188558B2 (en) Biofilm treatment agent and biofilm treatment method
TWI768187B (en) Mildewicidal cleaning compositions for hard surfaces
JP7017951B2 (en) Mold-killing detergent composition for hard surfaces
JP4781663B2 (en) Antibacterial agent
JP7017950B2 (en) Mold-killing detergent composition for hard surfaces
JP5982088B2 (en) Biofilm removing agent and biofilm removing composition
JP2019137791A (en) Composition for inhibiting biofilm formation
JP7036624B2 (en) Mold-killing detergent composition for hard surfaces
JP7036625B2 (en) Mold-killing detergent composition for hard surfaces
WO2021066182A1 (en) Disinfectant composition, cleaning composition, antifouling composition, virus-inactivating composition and non-bactericidal composition, and composition for removing biofilm and inhibiting biofilm formation
JP6976817B2 (en) Moldicide composition
JP2009007306A (en) Industrial antiseptic agent composition
JP4972375B2 (en) Biofilm formation inhibitor composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE