WO2022255374A1 - エネルギー消費量予測装置、エネルギー消費量予測方法およびエネルギー消費量予測プログラム - Google Patents

エネルギー消費量予測装置、エネルギー消費量予測方法およびエネルギー消費量予測プログラム Download PDF

Info

Publication number
WO2022255374A1
WO2022255374A1 PCT/JP2022/022167 JP2022022167W WO2022255374A1 WO 2022255374 A1 WO2022255374 A1 WO 2022255374A1 JP 2022022167 W JP2022022167 W JP 2022022167W WO 2022255374 A1 WO2022255374 A1 WO 2022255374A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
energy consumption
prediction
user
unit
Prior art date
Application number
PCT/JP2022/022167
Other languages
English (en)
French (fr)
Inventor
祐司 小熊
謙一 ▲濱▼口
彰信 稲村
翔 梶倉
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2023525868A priority Critical patent/JP7574923B2/ja
Priority to AU2022284507A priority patent/AU2022284507A1/en
Priority to US18/276,726 priority patent/US20240113520A1/en
Publication of WO2022255374A1 publication Critical patent/WO2022255374A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present disclosure relates to an energy consumption prediction device, an energy consumption prediction method, and an energy consumption prediction program.
  • Patent Literature 1 describes that when past record information on energy use is displayed on a display means, a planned value for future energy use is set for each time zone by a planned value setting means.
  • Patent Document 1 when using past performance information, the date is specified and the information is acquired.
  • the conditions suitable for the target day for predicting the consumption amount cannot be extracted only by using the date, and there is room for improvement from the viewpoint of the prediction accuracy of the energy consumption amount.
  • the present disclosure has been made in view of the above, and aims to provide a technology capable of more accurately predicting energy consumption.
  • An energy consumption prediction device includes past energy consumption performance data of a target facility, information specifying the date and time when the data was acquired, and operation of the target facility when the data was acquired.
  • a storage unit that stores information associated with incidental information that is information related to a situation, and from the actual energy consumption data held in the storage unit, data whose incidental information matches an extraction condition specified by a user is extracted. and an extraction unit for generating prediction data to be used for prediction of energy consumption; and a prediction data generation unit for generating prediction data for energy consumption based on the prediction data and based on instructions from the user.
  • a technology is provided that enables more accurate prediction of energy consumption.
  • FIG. 2 is a schematic diagram of an energy consumption prediction device according to one embodiment.
  • 3(a) and 3(b) are examples of screens for inputting additional information.
  • FIG. 4 is an example of a screen for setting extraction conditions.
  • FIG. 5 is an example of a screen for outputting extraction results and predicted values.
  • FIG. 6 shows an example of a screen regarding the output of extraction results and predicted values, and is an example when a specific cluster is selected.
  • FIG. 7 is a diagram showing an example of a procedure for inputting incidental information to the energy consumption prediction device.
  • FIG. 8 is a diagram showing an example of a procedure for creating energy consumption prediction data.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of an energy consumption prediction device;
  • An energy consumption prediction device includes past energy consumption performance data of a target facility, information specifying the date and time when the data was acquired, and operation of the target facility when the data was acquired.
  • a storage unit that stores information associated with incidental information that is information related to a situation, and from the actual energy consumption data held in the storage unit, data whose incidental information matches an extraction condition specified by a user is extracted. and an extraction unit for generating prediction data to be used for prediction of energy consumption; and a prediction data generation unit for generating prediction data for energy consumption based on the prediction data and based on instructions from the user.
  • An energy consumption prediction method includes past energy consumption performance data of a target facility, information specifying the date and time when the data was acquired, and operation of the target facility when the data was acquired.
  • Data that is stored in a storage unit in association with supplementary information that is information related to the situation, and that the supplementary information matches extraction conditions specified by a user from the actual energy consumption data held in the storage unit. is extracted to generate prediction data used to predict energy consumption; and based on the prediction data, energy consumption prediction data is generated based on an instruction from the user.
  • An energy consumption prediction program includes past energy consumption performance data of a target facility, information specifying the date and time when the data was acquired, and operation of the target facility when the data was acquired.
  • Data that is stored in a storage unit in association with supplementary information that is information related to the situation, and that the supplementary information matches extraction conditions specified by a user from the actual energy consumption data held in the storage unit. is extracted to generate prediction data used to predict energy consumption; and based on the prediction data, energy consumption prediction data is generated based on an instruction from the user. let the computer do it.
  • the past energy consumption performance data includes information specifying the date and time when the data was acquired, and when the data was acquired. is stored in the storage unit in association with the incidental information, which is information relating to the operation status of the target facility. Then, from the data held in the storage unit, data whose incidental information matches the extraction condition specified by the user is extracted, prediction data used for prediction of energy consumption is generated, and this prediction data is used. , energy consumption prediction data is generated based on an instruction from a user. With such a configuration, for example, by designating a condition highly related to the target date for generation of energy consumption forecast data from the incidental information as an extraction condition, the more highly related data can be extracted as the forecast data. can be extracted as Therefore, it is possible to predict the energy consumption more accurately.
  • a clustering unit that prepares data classified into a plurality of clusters by performing clustering processing on the data extracted by the extraction unit; It may be used as the prediction data.
  • the extracted data may contain many variations.
  • by classifying the data extracted by the extraction unit into a plurality of clusters by the clustering processing by the clustering unit it is possible to collect data having similar tendencies from the extracted data. Therefore, by using this data, it is possible to predict energy consumption more accurately.
  • the prediction data generation unit may generate the energy consumption prediction data based on the data classified into one of the plurality of clusters based on the instruction from the user.
  • Energy consumption prediction data is generated from data classified into one cluster compiled as data. In this case, energy consumption prediction data reflecting the cluster tendency is created using data classified into one cluster and having more similar tendencies.
  • the prediction data generation unit creates data obtained by subjecting the prediction data to statistical processing, and generates the energy consumption prediction data based on the user's designation from the statistically processed data. good too.
  • the prediction data generation unit may further include an input interface for the user to specify the details of statistical processing to be used for the energy consumption prediction data.
  • the user can flexibly specify the details of the statistical processing in consideration of the usage conditions of the predicted energy consumption data. can be specified. Therefore, it is possible to accurately create energy consumption prediction data suitable for the application.
  • a display unit is further provided, and the display unit displays data obtained by performing statistical processing on the prediction data as candidates for the energy consumption prediction data, and the user uses the input interface to , data to be used for the energy consumption prediction data may be selected from the candidates.
  • the user can confirm the data displayed on the display unit, which is obtained by performing statistical processing on the prediction data, as a candidate for the energy consumption prediction data. Also, the user can select data to be used as energy consumption prediction data while confirming the candidates. Therefore, convenience for the user can be enhanced.
  • a display unit may be further provided, and the display unit may present the incidental information corresponding to the past energy consumption performance data to the user in a time-series manner.
  • the user can grasp the chronological changes in the incidental information.
  • the user can also confirm whether or not additional information has been input, input of additional information by the user can be encouraged.
  • the energy consumption prediction device 1 has a function of predicting the energy consumption in target equipment or the like based on a user's instruction.
  • Facilities and the like (equipment/facilities) to be predicted include, for example, factories and plants.
  • the energy consumption prediction device 1 predicts the energy consumption for a future target day and target time period based on the actual information on energy consumption from the energy demand measuring instrument 9.
  • the energy demand measuring instrument 9 measures, for example, the total amount of energy demand such as electric power and steam in the entire target facility, and continuously transmits the result to the energy consumption prediction device 1 .
  • the timing of information transmission from the energy demand measuring device 9 to the energy consumption prediction device 1 is arbitrary, and may be transmitted each time the measured value is updated, or may be transmitted periodically by providing a separate data accumulation means. A method of collectively transmitting (for example, every hour) may be adopted.
  • the means of transmission may be via an intranet in the facility such as TCP/IP, or may be a system in which the information is once uploaded to a server on the Internet and then downloaded by the energy consumption prediction device.
  • the information accumulated in the energy demand measuring instrument 9 may be manually transmitted to the energy consumption prediction device 1 via a storage medium such as a USB memory.
  • each part of the energy consumption prediction device 1 will be described with reference to FIG.
  • the following embodiment demonstrates the structure which paid its attention to the consumption of electric power as energy consumption.
  • the energy consumption prediction device 1 includes, for example, a consumption record acquisition unit 11, an energy consumption record database 12, an extraction unit 13, a clustering unit 14, a statistical processing unit 15, an incidental information input unit 21, an extraction condition designation unit 22, a display switching It includes a unit 23 , a predicted value output designation unit 24 , a display unit 31 and a predicted value output unit 32 .
  • the incidental information input unit 21, the extraction condition specifying unit 22, the display switching unit 23, and the predicted value output specifying unit 24 are the input interface 20 that acquires the information specified by the user by acquiring the information entered by the user.
  • the display unit 31 and the predicted value output unit 32 may constitute an output interface 30 that outputs part of the information handled by the energy consumption prediction device 1 to the user.
  • the actual consumption acquisition unit 11 has a function of acquiring information related to energy consumption transmitted from the energy demand measuring instrument 9 to the energy consumption prediction device 1 . Further, the consumption record acquisition unit 11 has a function of storing the acquired energy consumption record in the energy consumption record database 12, which will be described later. It also has a role of acquiring information input by the incidental information input unit 21 described later, and assigning it to the energy consumption actual database 12 in association with information related to energy consumption. Additional information will be described later.
  • the actual energy consumption database 12 stores information on energy consumption (for example, actual power consumption information) for the entire target facility for each day and time zone. Additional information arbitrarily given by the user is also stored. The information held in the energy consumption record database 12 is used when predicting the energy consumption related to the future target date and target time period.
  • the supplementary information input unit 21 has a function of acquiring arbitrary supplementary information that is given to the information related to the energy consumption record. It is, for example, the user of the energy consumption prediction device 1 who inputs the incidental information. Supplementary information is information that may affect the actual energy consumption.
  • the additional information includes, for example, information related to the operational status of facilities, weather information, and the like.
  • the extraction condition specifying unit 22 is used for extracting specific data from the information stored in the actual energy consumption database 12 when performing the process of predicting the energy consumption related to the future target day and target time period. Get the conditions (extraction conditions).
  • the specification of extraction conditions is performed by, for example, the user.
  • the extraction conditions may include information included in the incidental information in addition to specifying the date and time.
  • the user designates, as extraction conditions, conditions similar to the target day and target time period for prediction, so that the information more suitable for the prediction target conditions is extracted from the information stored in the energy consumption performance database 12. information can be extracted.
  • the extraction unit 13 has a function of extracting data related to past hourly energy consumption from the energy consumption record database 12 based on the extraction conditions acquired by the user's designation in the extraction condition specifying unit 22 .
  • the extracted data can be used as prediction data on which energy consumption prediction data is based.
  • the clustering unit 14 has a function of clustering the data extracted by the extraction unit 13. Clustering will be described later, but when there is a plurality of data extracted based on extraction conditions, it has a function of classifying them into clusters. Each piece of data classified into clusters by the clustering unit 14 can serve as a base for energy consumption prediction data. Note that the clustering by the clustering unit 14 is not essential, and may be configured to be performed according to a user's designation, for example.
  • the statistical processing unit 15 calculates the past energy consumption by time period extracted by the extraction unit 13 and/or the past energy consumption by time period classified into clusters by the clustering unit 14. On the other hand, it has a function to calculate various statistics for each time zone. That is, the statistical processing unit 15 has a function of performing statistical processing on the prediction data prepared by the extraction unit 13 or the clustering unit 14 .
  • the statistics include, for example, the average, maximum value, minimum value, ⁇ n ⁇ (standard deviation), etc. of actual energy consumption for each time period, but are not limited to these.
  • the calculated statistics can be used as predictors of energy consumption.
  • the display unit 31 displays the past energy consumption by time period extracted by the extraction unit 13, the past energy consumption by time period further classified by the clustering unit 14, and the time period calculated by the statistical processing unit 15. Other various statistics are displayed on the screen in a combination of graphs, tables, characters, and the like.
  • the display content on the display unit 31 may be controlled by an instruction from the user acquired by the display switching unit 23 .
  • the display switching unit 23 has a function of acquiring an instruction to switch/change the contents and appearance displayed on the display unit.
  • An instruction regarding switching of the display content is given by, for example, the user.
  • the display switching unit 23 instructs to change the content displayed by the display unit 31 based on the content instructed by the user.
  • the predicted value output designation unit 24 presents the user with candidates for data to be used as predicted values, such as energy consumption by time period and various statistics displayed on the display unit 31, so that the user can make predictions. It has a function of acquiring information specifying data to be adopted as a value.
  • the predicted value output designation unit 24 may be configured to present to the user buttons corresponding to sequences that the user can employ as predicted values, such as "average”, “maximum”, “minimum”, and "+1 ⁇ ". .
  • the predicted value output unit 32 (predicted data generation unit) has a function of outputting data related to the predicted value of energy consumption based on the user's specification acquired by the predicted value output designation unit 24 .
  • Examples of the output method include display on a screen, output to an external device/storage medium as a data file, and the like.
  • An example of an output destination of the data related to the predicted value of energy consumption by the predicted value output unit 32 is a management device that manages the prediction target equipment/facilities.
  • the management device serving as the output destination can adjust the amount of energy to be procured for the target equipment/facilities using the data related to the predicted energy consumption amount.
  • equipment and facilities such as factories and plants where it is difficult to stop the operation, it is sometimes important to procure energy to realize stable operation. In such a case, it is possible to procure energy more appropriately by utilizing the data related to the predicted energy consumption value.
  • the supplementary information input unit 21 is information that can be related to the actual energy consumption as described above.
  • the incidental information includes the production volume of products manufactured in the facility on each day, the number of operations of major energy demanding equipment (equipment that consumes energy), the operating hours, and the like.
  • FIG. 3A shows an example of an input screen for incidental information.
  • the screen example X1 shown in FIG. 3A shows a situation in which the date "2021/1/13" is selected from the calendar and the incidental information is input for the date.
  • items of supplementary information D1 to be input for the date the production volume, the number of times heat treatment furnaces 1 and 2 are operated, and the number of times steam presses 1 and 2 are operated are shown.
  • the items of this incidental information may be common to each day. Also, it may be possible to set new incidental information via the new item addition button B1 as needed.
  • a setting may be added for the purpose of preventing forgetting to input data for each input date.
  • the user may be alerted by highlighting the dates for which no incidental information is input in color.
  • FIG. 3(b) shows, as a bar graph, input values relating to the production volume for each day of January, including January 13th, selected by the user.
  • a graph is displayed as shown in the example screen X2 shown in FIG. can be effectively presented to the user.
  • January 17th shown in FIG. 3(b) it is also shown that the production volume is zero for non-input days. Therefore, by referring to this graph, the user can also recognize dates that may have been forgotten to be entered.
  • the incidental information may be individually input by the user by presenting a screen as shown in FIG. 3(a) to the user.
  • the configuration of the apparatus may become complicated, but in addition to preventing forgetting to input incidental information, etc., improvement in work efficiency can be expected.
  • supplementary information in addition to information related to production, it may be possible to input external factors such as weather. Although it depends on the target facility, temperature is considered to have a significant correlation with energy consumption related to air conditioning. Therefore, by using information such as the weather, it is expected that the prediction accuracy of energy consumption will be improved.
  • the weather information for example, since past results are disclosed on the Internet, this information may be automatically downloaded. In this way, the method of acquiring supplementary information is not limited to user input, and can be changed as appropriate.
  • the extraction condition designation unit 22 includes date, day of the week, factory holiday information, and incidental information in order to extract hourly energy consumption data for days that are close to the date to be predicted. Then, data to be extracted is specified from the past energy consumption by time period stored in the energy consumption actual database 12 .
  • a screen example X3 shown in FIG. 4 is an example of a screen for designating an extraction condition. As shown in FIG. 4, the screen for specifying the extraction conditions has items for specifying extraction conditions for each of the "date/day of the week input condition" and the "incidental information condition".
  • a check box labeled "Specify” is provided in the input field so that the user can switch whether or not to use the conditions described in each line for extraction. good too. This makes it possible to easily switch the validity/invalidity of the extraction condition regardless of whether or not the item of each line is input.
  • the screen example X3 shown in FIG. 4 the number of operations of the steam press 1 and the steam press 2 among the additional information is excluded from the extraction conditions. In this way, if you uncheck "Specify” (exclude from the extraction condition), you can intuitively know that the condition is not used by changing the background color of each row (for example, the "Value” column). can be expressed.
  • the lower and upper limits of each incidental information in the specified period, and the number of days that match the extraction conditions specified by the user may be displayed. These numerical values can be used as reference information when the user specifies extraction conditions. In other words, the user can adjust (relax or strengthen) the extraction conditions by relying on these pieces of information.
  • the screen for specifying the extraction conditions may be configured to assist the user in specifying the extraction conditions by also displaying information that the user can refer to.
  • the extraction section 13 extracts data that matches the extraction conditions from the information held in the energy consumption actual database 12 . This result is displayed by the display unit 31 .
  • the past energy consumption by time period extracted under the conditions specified by the user is displayed in a graph A1 with the horizontal axis representing time.
  • the extracted past energy consumption by time period is drawn in a form that can specify the date.
  • the hourly energy consumption from April 1st to 6th is extracted and displayed.
  • "average”, "average +1 ⁇ ", and "average -1 ⁇ ” are written together.
  • the statistics such as the average are obtained by the statistical processing unit 15 and are calculated from the extracted six-day data.
  • Fig. 5 shows an example in which when one point in the data of "2021/4/6" is selected or moused over, supplementary information such as production volume corresponding to the date is displayed as a pop-up display A2.
  • supplementary information such as production volume corresponding to the date
  • the date and time, incidental information, etc. may be displayed.
  • the user can individually check the relationship between each data item and the incidental information of the data item while grasping the chronological fluctuation of the actual consumption amount as the graph A1.
  • the graph A1 also shows the average of the energy consumption for the time period and the series of the average ⁇ n ⁇ .
  • n is a coefficient related to standard deviation.
  • the screen example X4 as an example of a component of the display switching unit 23, a coefficient n frame A3 for the standard deviation is provided, and a slider capable of changing n is provided in this frame.
  • the statistic displayed in the graph A1 may be configured to display "average value ⁇ n ⁇ " calculated using n according to the position of the slider. In this manner, the display content displayed on the graph A ⁇ b>1 by the display unit 31 may be changed based on the calculation result by the statistical processing unit 15 according to the position of the slider functioning as the display switching unit 23 .
  • the display switching unit 23 may be configured to automatically update the graph A1 by reflecting the operation of the slider in the n-frame A3, which is the coefficient for the standard deviation.
  • the screen example X4 shows an automatic clustering result frame A4 as another element of the display switching unit 23.
  • the number of constituent data of the clusters (clusters 1 and 2) generated by the clustering unit 14, the average standard for all time in each cluster Deviation values are indicated.
  • the clustering process is a process of classifying the actual consumption data extracted according to the extraction conditions into a plurality of clusters.
  • the actual consumption amount data used for predicting the consumption amount is extracted by setting various extraction conditions by the user.
  • the conditions set by the user are not appropriate, such as a wide range of conditions, if the user does not set specific extraction setting conditions, or if the conditions are not assumed by the energy consumption prediction device 1 in the first place, If the data changes greatly depending on the data, all the extracted data may not show the same tendency, and there is a possibility that bias may occur.
  • the existence of bias in the multiple extracted actual consumption data and the existence of each classified cluster can be presented to the user.
  • the algorithm used for clustering processing there are no particular restrictions on the algorithm used for clustering processing, but for example, the k-means method, which is an unsupervised machine learning method, can be used.
  • the k-means method which is an unsupervised machine learning method
  • a vector that summarizes the daily energy consumption by time period and each incidental information is considered and clustered.
  • 24 points are set for each hour of the day, and additional information includes production volume, number of heat treatment furnace 1 operations, number of heat treatment furnace 2 operations, number of steam press 1 operations, and number of steam press 2 operations.
  • Cluster classification is performed by repeatedly calculating the classification using the center of gravity of the cluster and the movement of the center of gravity from the vector of each data thus obtained.
  • preprocessing (such as normalization of the range of values) may be performed as necessary. Also, it is necessary to specify the number of clusters when executing the k-means method.
  • the number of clusters may be a program parameter, or may be determined by the user each time. Alternatively, the number of clusters may be determined in consideration of the degree of distribution of the extracted data. Considering the interpretability of the results, the number of clusters may be about 2 to 3.
  • Two clusters 1 and 2 are shown in the automatic clustering result frame A4 shown in FIG.
  • the graph A1 may be redrawn so that only the hourly energy consumption data of the selected cluster is displayed.
  • Screen example X5 shown in FIG. 6 shows a state in which cluster 1 is selected in automatic clustering result frame A4 for screen example X4.
  • graph A1 shows three data (April 1 to 3) classified into cluster 1 and the results related to the average and average ⁇ 1 ⁇ . there is In this way, when the user instructs to display the clusters obtained as a result of the clustering process, the display content displayed on the graph A1 by the display unit 31 is based on the calculation result by the statistical processing unit 15 in accordance with the user's instruction. may be changed.
  • the results of clustering by the clustering unit 14 are particularly effective when the data varies due to elements not included in the extraction conditions specified by the user.
  • the user can, for example, use only the data included in a specific cluster after confirming that the incidental information of the data forming the cluster matches the situation of the target date. can be used to determine the hourly energy consumption forecast value for the target day.
  • clustering can eliminate the variation in the data to some extent, making it possible to create data to be used for prediction. .
  • the example of the display switching unit 23 is not limited to that shown in the screen example X4 in FIG.
  • the display switching unit 23 may be provided with various functions for increasing the visibility of the graph, for example, a function capable of expanding/reducing/changing the scale of the graph and switching between display/non-display of a specific series.
  • the display example X4 in FIG. 5 includes a display value output frame A5 corresponding to the predicted value output designation section 24.
  • a group of buttons is provided for outputting, with one click, the energy consumption forecast value for each time period for the target day from the statistics of the displayed series.
  • “average”, “minimum”, “maximum”, “average+n ⁇ ”, and “average ⁇ n ⁇ ” are provided.
  • the predicted value output unit 32 outputs the corresponding hourly energy consumption as a predicted value.
  • the output destination may be on the screen or a file. Alternatively, it may be configured to be recorded in the main memory of the computer on the premise that it will be linked with other programs.
  • buttons or the like different from the above buttons shown in FIG. 5 may be set in the display value output frame A5.
  • the data of a specific date, among the extracted actual energy consumption data, is used as it is as the predicted energy consumption amount, the data can be output as the predicted value.
  • the configuration or the like of the predicted value output designation unit 24 may be changed so that it becomes possible. That is, the type of data to be output as energy consumption prediction data is not limited to the data after statistical processing illustrated in the display value output frame A5, and any of the prediction data can be used as energy consumption prediction data. good too.
  • FIG. 7 shows a procedure for inputting incidental information to the energy consumption prediction device 1
  • FIG. 8 shows a procedure for creating energy consumption prediction data.
  • a procedure for inputting incidental information to the energy consumption prediction device 1 will be described with reference to FIG. First, as a premise, it is assumed that performance data related to energy consumption is transmitted from the energy demand measuring device 9 to the energy consumption prediction apparatus 1 and stored in the energy consumption performance database 12 . This is the procedure when additional information is added by the user or the like.
  • the user activates the energy consumption prediction device 1 (step S01).
  • the user inputs additional conditions corresponding to the actual energy consumption data through the additional information input unit 21 of the input interface 20 (step S02). After that, the user terminates the energy consumption prediction device 1 (step S03).
  • a procedure for generating energy consumption prediction data for an estimation target day using the energy consumption prediction device 1 will be described with reference to FIG. First, as a premise, it is assumed that the actual energy consumption database 12 of the energy consumption prediction device 1 stores data in a state in which the above-mentioned actual energy consumption data is associated with incidental information.
  • the user activates the energy consumption prediction device 1 (step S11).
  • the user sets extraction conditions for generating energy consumption prediction data for the target day using the extraction condition designating section 22 of the input interface 20 (step S12).
  • step S13 the extraction unit 13 of the energy consumption prediction device 1 extracts actual consumption data necessary for creating prediction value data.
  • the clustering unit 14 clusters the actual consumption data extracted as necessary based on preset conditions.
  • the statistical processing unit 15 performs statistical processing on the extracted actual consumption data and data classified by clustering, and calculates statistical data such as average, average ⁇ n ⁇ , maximum, and minimum. These data are displayed by the display unit 31 .
  • the user can confirm the extracted data, the statistical processing results thereof, and the like.
  • the user may operate the display switching unit 23 to perform an operation such as changing the display content on the display unit 31 .
  • the generation of prediction data in the extraction unit 13 and the clustering unit 14 and the statistical processing of the prediction data in the statistical processing unit 15 are performed simultaneously.
  • generation of prediction data and statistical processing may be performed at the same time.
  • the statistical processing by the statistical processing unit 15 may be repeatedly performed according to the user's instruction until the user finally determines the data to be output as the energy consumption prediction data (step S14).
  • the user instructs the generation of predicted value data to be output using the predicted value output designation unit 24 of the input interface 20 (step S14).
  • the designation by the predicted value output designation unit 24 is performed, for example, by the user operating the display value output frame A5 of the screen example X4.
  • the predicted value output unit 32 of the energy consumption prediction device 1 creates and outputs predicted value data.
  • the user terminates the energy consumption prediction device 1 (step S15).
  • FIG. 9 is a diagram showing an example of the hardware configuration of the energy consumption prediction device 1.
  • Energy consumption prediction device 1 includes one or more computers 100 .
  • the computer 100 has a CPU (Central Processing Unit) 101 , a main memory section 102 , an auxiliary memory section 103 , a communication control section 104 , an input device 105 and an output device 106 .
  • the energy consumption prediction device 1 is configured by one or more computers 100 configured by these hardware and software such as programs.
  • the energy consumption prediction device 1 When the energy consumption prediction device 1 is composed of a plurality of computers 100, these computers 100 may be connected locally or via a communication network such as the Internet or an intranet. This connection logically constructs one energy consumption prediction device 1 .
  • the CPU 101 executes an operating system, application programs, and the like.
  • the main storage unit 102 is composed of ROM (Read Only Memory) and RAM (Random Access Memory).
  • the auxiliary storage unit 103 is a storage medium configured by a hard disk, flash memory, or the like. Auxiliary storage unit 103 generally stores a larger amount of data than main storage unit 102 . At least a part of each unit constituting energy consumption prediction device 1 is implemented by auxiliary storage unit 103 .
  • the communication control unit 104 is composed of a network card or a wireless communication module. At least a part of each unit constituting energy consumption prediction device 1 may be realized by communication control unit 104 .
  • the input device 105 includes a keyboard, mouse, touch panel, voice input microphone, and the like.
  • the output device 106 is composed of a display, a printer, and the like. At least part of the output unit 19 is realized by the output device 106 .
  • the output device 106 may display the predicted value data and the like output by the output interface 30 on a display or the like.
  • the auxiliary storage unit 103 stores the program 110 and data necessary for processing in advance.
  • the program 110 causes the computer 100 to execute each functional element of the energy consumption prediction device 1 .
  • the program 110 causes the computer 100 to perform, for example, the processes from step S01 to step S04 described above.
  • the program 110 is read by the CPU 101 or the main storage unit 102 and causes at least one of the CPU 101, the main storage unit 102, the auxiliary storage unit 103, the communication control unit 104, the input device 105, and the output device 106 to operate.
  • the program 110 reads and writes data in the main storage unit 102 and auxiliary storage unit 103 .
  • the program 110 may be provided after being recorded on a tangible recording medium such as a CD-ROM, DVD-ROM, or semiconductor memory. Program 110 may be provided as a data signal over a communications network.
  • the past energy consumption actual data includes information specifying the date and time when the data was acquired, and The data is stored in the storage unit in association with additional information, which is information related to the operating status of the target facility at the time. Then, from the data held in the storage unit, data whose incidental information matches the extraction condition specified by the user is extracted, prediction data used for prediction of energy consumption is generated, and this prediction data is used. , energy consumption prediction data is generated based on an instruction from a user.
  • the clustering unit 14 may further include a clustering unit 14 that prepares data classified into a plurality of clusters by clustering the data extracted by the extraction unit 13 .
  • the statistical processing unit 15 and the prediction value output unit 32 as the prediction data generation unit may also use data classified into a plurality of clusters as prediction data. Data having similar tendencies can be grouped together from data extracted by clustering processing by the clustering unit 14 . Therefore, by using this data, it is possible to predict energy consumption more accurately.
  • the predicted data generation unit may generate predicted energy consumption data based on data classified into one of a plurality of clusters based on instructions from the user.
  • the energy consumption prediction data is generated from the extracted data classified into one cluster as data having a similar tendency.
  • energy consumption forecast data that reflects the tendency of the cluster is created using data that has been classified into one cluster and has more similar tendencies.
  • the statistical processing unit 15 and the prediction value output unit 32 functioning as a prediction data generation unit create data obtained by subjecting the prediction data to statistical processing, and from the statistically processed data, energy is calculated based on the user's designation. Consumption forecast data may be generated. By creating data obtained by subjecting the prediction data to statistical processing, data reflecting the characteristics of the data included in this prediction data is generated as energy consumption prediction data.
  • it may have an input interface 20 for the user to specify the content of the statistical processing to be used for the energy consumption prediction data.
  • the user may flexibly specify the details of the statistical processing in consideration of the usage conditions of the predicted energy consumption data. can be specified. Therefore, it is possible to accurately create energy consumption prediction data suitable for the application.
  • a display unit 31 may be provided, and the display unit 31 may display data obtained by performing statistical processing on the prediction data as candidates for energy consumption prediction data. Also, the user may use the input interface 20 to select data to be used for the energy consumption prediction data from among the candidates. With this configuration, the user can confirm the data obtained by statistically processing the prediction data displayed on the display unit 31 as candidates for the energy consumption prediction data. Also, the user can select data to be used as energy consumption prediction data while confirming the candidates. Therefore, convenience for the user can be enhanced.
  • a display unit 31 may be further provided, and the display unit 31 may present supplementary information corresponding to the past energy consumption performance data to the user in a time-series correspondence, as in the screen example X2. .
  • the user can grasp the chronological change of the incidental information.
  • the user can also confirm whether or not additional information has been input, input of additional information by the user can be encouraged.
  • the graph A1 or the like displayed in the screen example X4 may also be configured to simultaneously display information on a plurality of types of energy. Further, for example, when prediction is made for two energies of electric power and steam, these graphs may be displayed side by side, or the two graphs may be switched by a button or the like.
  • the screen example shown in the above embodiment is merely an example, and can be flexibly changed according to the prediction target, actual consumption data, additional information, and the like.
  • energy to which the present disclosure can be applied may be energy that can be directly used as motive power, such as the above-mentioned electric power or steam, or substances that can be converted into or converted from these.
  • energy include water and hydrogen.
  • fuels synthesized from hydrogen such as methane and ammonia are also included in energy in the present disclosure.
  • equipment/facilities that are targets of energy consumption prediction by the energy consumption prediction apparatus 1 described in the above embodiments consume and generate a lot of energy, such as factories and plants described in the above embodiments. It is optional as long as it is handled.
  • Such equipment/facilities may be, for example, equipment/facilities that manufacture hydrogen, methane, ammonia, or the like according to demand.
  • the energy devices (devices that handle energy) in such target equipment/facility do not necessarily have to be physically close to each other. For example, when a facility that produces hydrogen based on photovoltaic power is the target of energy consumption prediction, the hydrogen production facility and the photovoltaic power generation facility may be located separately.
  • the time period corresponding to energy consumption is not limited to one hour. For example, 30 minutes, which is the reference for simultaneous power supply and demand equalization control, may be set as one time period. Alternatively, the forecast may be made for one week (seven days) with one day as one time period.
  • the configuration described in the above embodiment may be incorporated as one function of the energy management system.
  • the operation plan of the energy equipment may be optimized based on the predicted energy consumption obtained by the method described in the above embodiment.
  • the predicted value of energy consumption is input to the energy management system, and based on this predicted value of energy consumption, a power generation plan for power generation equipment managed by the energy management system, a charge/discharge plan for storage equipment, etc. It is good also as a structure which changes. As a result, it is possible to realize control using a highly accurate energy consumption amount prediction value in the energy management system.
  • the energy consumption prediction value obtained in the energy consumption prediction device 1, or the operation plan of the energy management system calculated based on the energy consumption prediction value can be transmitted from this device to other energy devices (storage batteries, gas turbogenerator, boiler, etc.).
  • the destination energy device may change the control content based on the predicted energy consumption value or the operation plan.
  • Fossil fuels such as gas turbine generators, are often used to adjust forecast errors in operation plans for energy equipment. There is a need. This is not a desirable operation from the viewpoint of power generation efficiency, and may lead to an increase in the unit cost of power generation and an increase in CO2 emissions. Therefore, this disclosure is not only related to the economic efficiency and business profits of microgrids, but also to the economic energy supply and environmental load reduction of society as a whole. ), Goal 7 “Ensure access to affordable, reliable, sustainable and modern energy for all” and Goal 13 “Take urgent action to combat climate change and its impacts”. is.
  • the present disclosure includes the following configurations.
  • [1] Correlation of past energy consumption performance data of the target facility with information specifying the date and time when the data was acquired and supplementary information that is information related to the operation status of the target facility when the data was acquired a storage unit that holds Extraction for generating prediction data used for prediction of energy consumption by extracting data whose incidental information matches extraction conditions specified by a user from the actual energy consumption data held in the storage unit.
  • Department and a predicted data generation unit that generates predicted energy consumption data based on the prediction data and based on an instruction from the user;
  • An energy consumption prediction device An energy consumption prediction device.
  • [2] further comprising a clustering unit that prepares data classified into a plurality of clusters by clustering the data extracted by the extraction unit;
  • the energy consumption prediction device according to [1], wherein the prediction data generator also uses the data classified into the plurality of clusters as the prediction data.
  • the prediction data generation unit generates the energy consumption prediction data based on the data classified into one of the plurality of clusters based on an instruction from the user; Energy consumption prediction device as described.
  • the prediction data generation unit creates data obtained by subjecting the prediction data to statistical processing, and generates the energy consumption prediction data based on the user's designation from the statistically processed data.
  • the energy consumption prediction device according to any one of [1] to [3].
  • the energy consumption prediction device according to [4], further comprising an input interface for a user to specify details of statistical processing to be used for the energy consumption prediction data in the prediction data generation unit.
  • [6] further having a display unit;
  • the display unit displays data obtained by performing statistical processing on the prediction data as candidates for the energy consumption prediction data,
  • the energy consumption prediction device according to [5], wherein the user selects data to be used for the energy consumption prediction data from among the candidates using the input interface.
  • [7] further having a display unit;
  • Quantity predictor is
  • a method for predicting energy consumption comprising: [9] Correlation of past energy consumption performance data of the target facility with information specifying the date and time when the data was acquired and supplementary information that is information related to the operation status of the target facility when the data was acquired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

エネルギー消費量予測装置は、対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて保持する記憶部と、記憶部において保持されるエネルギー消費量実績データから、付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成する抽出部と、予測用データに基づいて、ユーザからの指示に基づいてエネルギー消費量予測データを生成する、予測データ生成部と、を有する。

Description

エネルギー消費量予測装置、エネルギー消費量予測方法およびエネルギー消費量予測プログラム
 本開示は、エネルギー消費量予測装置、エネルギー消費量予測方法およびエネルギー消費量予測プログラムに関する。
 従来から、エネルギーの消費量を予測する際に、過去の使用エネルギーの実績情報を利用することが検討されている。例えば、特許文献1では、過去の使用エネルギーの実績情報を表示手段に表示したときに、計画値設定手段により将来の使用エネルギーの計画値を時間帯別に設定することが記載されている。
特開2011-10470号公報
 特許文献1に記載の手法では、過去の実績情報を利用する際に日付を指定して情報を取得する。しかしながら、実際には、日付を用いただけでは、消費量を予測する対象日に適した条件が抽出できていない可能性があり、エネルギー消費量の予測精度という観点において改善の余地があった。
 本開示は上記を鑑みてなされたものであり、エネルギー消費量の予測をより精度よく行うことが可能な技術を提供することを目的とする。
 本開示の一形態に係るエネルギー消費量予測装置は、対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて保持する記憶部と、前記記憶部において保持される前記エネルギー消費量実績データから、前記付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成する抽出部と、前記予測用データに基づいて、前記ユーザからの指示に基づいてエネルギー消費量予測データを生成する、予測データ生成部と、を有する。
 本開示によれば、エネルギー消費量の予測をより精度よく行うことが可能な技術が提供される。
図1は、一実施形態に係るエネルギー消費量予測装置の使用状態を説明する図である。 図2は、一実施形態に係るエネルギー消費量予測装置の概略図である。 図3(a)および図3(b)は、付帯情報の入力等に関する画面例である。 図4は、抽出条件の設定に係る画面例である。 図5は、抽出結果および予測値の出力に関する画面例である。 図6は、抽出結果および予測値の出力に関する画面例であり、特定のクラスタを選択した場合の例である。 図7は、エネルギー消費量予測装置に対して付帯情報を入力する際の手順の一例を示す図である。 図8は、エネルギー消費量予測データを作成する手順の一例を示す図である。 図9は、エネルギー消費量予測装置のハードウェア構成の一例を示す図である。
 本開示の一形態に係るエネルギー消費量予測装置は、対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて保持する記憶部と、前記記憶部において保持される前記エネルギー消費量実績データから、前記付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成する抽出部と、前記予測用データに基づいて、前記ユーザからの指示に基づいてエネルギー消費量予測データを生成する、予測データ生成部と、を有する。
 本開示の一形態に係るエネルギー消費量予測方法は、対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて記憶部に保持することと、前記記憶部において保持される前記エネルギー消費量実績データから、前記付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成することと、前記予測用データに基づいて、前記ユーザからの指示に基づいてエネルギー消費量予測データを生成することと、を含む。
 本開示の一形態に係るエネルギー消費量予測プログラムは、対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて記憶部に保持することと、前記記憶部において保持される前記エネルギー消費量実績データから、前記付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成することと、前記予測用データに基づいて、前記ユーザからの指示に基づいてエネルギー消費量予測データを生成することと、をコンピュータに実行させる。
 上記のエネルギー消費量予測装置、エネルギー消費量予測方法およびエネルギー消費量予測プログラムによれば、過去のエネルギー消費量実績データが、当該データを取得した日時を特定する情報と、当該データを取得した際の対象施設の運転状況に係る情報である付帯情報と対応付けて記憶部において保持される。そして、記憶部において保持されるデータから、付帯情報がユーザの指定する抽出条件に合致するデータが抽出され、エネルギー消費量の予測に使用する予測用データが生成され、この予測用データを用いて、ユーザからの指示に基づいてエネルギー消費量予測データが生成される。このような構成とすることで、例えば、付帯情報の中から、エネルギー消費量予測データの生成の対象日と関連の高い条件を抽出条件として指定することで、より関連の高いデータが予測用データとして抽出され得る。したがって、エネルギー消費量の予測をより精度よく行うことが可能となる。
 前記抽出部が抽出したデータに対してクラスタリング処理を行うことによって、複数のクラスタに分類したデータを準備するクラスタリング部をさらに有し、前記予測データ生成部は、前記複数のクラスタに分類したデータも前記予測用データとして利用する態様としてもよい。
 ユーザが指定する抽出条件のみでは、抽出されたデータにばらつきが多く含まれることも考えられる。これに対して、クラスタリング部によるクラスタリング処理によって、抽出部が抽出したデータを複数のクラスタに分類することで、抽出したデータの中から類似した傾向をもつデータを取りまとめることが可能となる。したがって、このデータを利用して、エネルギー消費量の予測をより精度よく行うことが可能となる。
 前記予測データ生成部は、前記ユーザからの指示に基づいて、前記複数のクラスタのうちの1つに分類したデータに基づいて、前記エネルギー消費量予測データを生成する態様としてもよい。
 上記のように、ユーザからの指示に基づいて、複数のクラスタのうちの1つに分類したデータに基づいて、エネルギー消費量予測データを生成する場合、抽出したデータの中から類似した傾向をもつデータとして取りまとめられた1つのクラスタに分類されたデータからエネルギー消費量予測データが生成される。この場合、1つのクラスタに分類された、より類似した傾向を有するデータを利用した、クラスタの傾向を反映したエネルギー消費量予測データが作成される。
 前記予測データ生成部は、前記予測用データに対して統計処理を施したデータを作成し、統計処理を施したデータから、前記ユーザの指定に基づいて前記エネルギー消費量予測データを生成する態様としてもよい。
 上記のように、予測用データに対して統計処理を施したデータを作成することで、この予測用データに含まれるデータの特徴を反映したデータがエネルギー消費量予測データとして生成される。
 前記予測データ生成部において前記エネルギー消費量予測データに使用する統計処理の内容をユーザが指定するための入力インタフェースをさらに有する態様としてもよい。
 エネルギー消費量予測データを生成する際に、ユーザが統計処理の内容を指定する態様とすることで、例えば、エネルギー消費量予測データの使用条件等を考慮してユーザが柔軟に統計処理の内容を指定することが可能となる。そのため、その用途に適したエネルギー消費量予測データを精度よく作成することが可能となる。
 表示部をさらに有し、前記表示部は、前記予測用データに対して統計処理を施したデータを、前記エネルギー消費量予測データの候補として表示し、前記ユーザは、前記入力インタフェースを利用して、前記候補の中から前記エネルギー消費量予測データに使用するデータを選択する態様としてもよい。
 上記の構成とした場合、ユーザは、表示部に表示された、予測用データに対して統計処理を施したデータを、エネルギー消費量予測データの候補として確認することができる。また、ユーザはこの候補を確認しながら、エネルギー消費量予測データとして使用するデータを選択することができる。したがって、ユーザにとっての利便性を高めることができる。
 表示部をさらに有し、前記表示部は、前記過去のエネルギー消費量実績データに対応する付帯情報を、時系列に対応させた状態でユーザに対して提示する態様としてもよい。
 上記の構成とした場合、付帯情報の時系列変化をユーザが把握することができる。また、ユーザは、付帯情報の入力有無も確認することができるため、ユーザによる付帯情報の入力が促進され得る。
 以下、添付図面を参照して、本開示を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
[エネルギー消費量予測装置]
 まず、図1および図2を参照して、一実施形態に係るエネルギー消費量予測装置1の概略構成について説明する。一実施形態に係るエネルギー消費量予測装置1は、ユーザ(使用者)の指示に基づいて、対象となる設備等におけるエネルギーの使用量を予測する機能を有する。予測の対象となる設備等(設備・施設)とは、例えば、工場、プラント等が挙げられる。
 エネルギー消費量予測装置1は、図1に示すように、エネルギー需要計測器9からのエネルギー消費に係る実績情報に基づいて、将来の対象日・対象時間帯に係るエネルギー消費量を予測する。エネルギー需要計測器9は、例えば、対象となる設備全体での電力・蒸気などのエネルギー需要総量の値を計測し、その結果をエネルギー消費量予測装置1に対して継続的に伝送する。エネルギー需要計測器9からエネルギー消費量予測装置1への情報伝送のタイミングは任意であり、計測値が更新されたタイミングで都度伝送してもよいし、別途データ蓄積手段を備えておき、定期的に(例えば、1時間毎など)まとめて伝送する方法を採用してもよい。伝送の手段としてはTCP/IPなど設備内のイントラネットを介するものでもよいし、いったんインターネット上のサーバに情報をアップロードし、エネルギー消費量予測装置がこれをダウンロードする方式でもよい。また、エネルギー需要計測器9に蓄積された情報をUSBメモリなどの記憶媒体を介して、人手によりエネルギー消費量予測装置1に伝送する構成であってもよい。
 次に、図2を参照しながらエネルギー消費量予測装置1の各部について説明する。なお、以下の実施形態では、エネルギー消費量として、特に電力の消費量に着目した構成について説明する。
 エネルギー消費量予測装置1は、例えば、消費実績取得部11、エネルギー消費量実績データベース12、抽出部13、クラスタリング部14、統計処理部15、付帯情報入力部21、抽出条件指定部22、表示切替部23、予測値出力指定部24、表示部31、および、予測値出力部32を含んで構成される。このうち、付帯情報入力部21、抽出条件指定部22、表示切替部23、および予測値出力指定部24は、ユーザが入力する情報を取得することによってユーザが指定する情報を取得する入力インタフェース20として構成される場合がある。また、表示部31および予測値出力部32は、エネルギー消費量予測装置1で取り扱う情報の一部をユーザに対して出力する出力インタフェース30を構成される場合がある。
 消費実績取得部11は、エネルギー需要計測器9からエネルギー消費量予測装置1へ伝送されたエネルギー消費量に係る情報を取得する機能を有する。また、消費実績取得部11は、取得したエネルギー消費実績を、後述のエネルギー消費量実績データベース12に保存する機能を有する。また、後述の付帯情報入力部21で入力した情報を取得し、エネルギー消費量に係る情報と対応付けてエネルギー消費量実績データベース12に付与する役割も有する。付帯情報については後述する。
 エネルギー消費量実績データベース12(記憶部)は、対象となる施設全体でのエネルギー消費量に関する情報(例えば、電力消費実績情報)を、日・時間帯別に格納する。ユーザが任意に付与した付帯情報もあわせて格納する。エネルギー消費量実績データベース12で保持される情報は、将来の対象日・対象時間帯に係るエネルギー消費量を予測する際に使用される。
 付帯情報入力部21は、エネルギー消費実績に係る情報に対して付与される、任意の付帯情報を取得する機能を有する。付帯情報を入力するのは、例えば、エネルギー消費量予測装置1のユーザ(使用者)である。付帯情報とは、エネルギー消費実績に影響を与える可能性のある情報であり、例えば、エネルギー消費実績を取得した日・時間帯毎に設定できる情報である。付帯情報としては、例えば、施設の稼働状態に係る情報、天候情報等が挙げられる。
 抽出条件指定部22は、将来の対象日・対象時間帯に係るエネルギー消費量を予測する処理を行う際に、エネルギー消費量実績データベース12に保存されている情報から特定のデータを抽出するための条件(抽出条件)を取得する。抽出条件の指定は、例えば、ユーザによって行われる。抽出条件には、日時の指定のほか、付帯情報に含まれる情報が含まれ得る。ユーザが、予測の対象となる対象日・対象時間帯と類似する条件を抽出条件として指定することで、エネルギー消費量実績データベース12に保存されている情報の中から、より予測対象の条件に適した情報が抽出され得る。
 抽出部13は、抽出条件指定部22において、ユーザの指定によって取得された抽出条件に基づいて、エネルギー消費量実績データベース12から過去の時間帯別エネルギー消費量に係るデータを抽出する機能を有する。抽出されたデータは、エネルギー消費量予測データのベースとなる予測用データとして使用され得る。
 クラスタリング部14は、抽出部13によって抽出されたデータについて、クラスタリングを行う機能を有する。クラスタリングについては後述するが、抽出条件に基づいて抽出したデータが複数ある場合に、それらをクラスタに分類する機能を有する。クラスタリング部14によってクラスタに分類されたデータは、それぞれエネルギー消費量予測データのベースとなり得る。なお、クラスタリング部14によるクラスタリングは必須ではなく、例えば、ユーザの指定によって行われる構成であってもよい。
 統計処理部15(予測データ生成部)は、抽出部13で抽出された過去の時間帯別エネルギー消費量、および/または、クラスタリング部14でクラスタに分類された過去の時間帯別エネルギー消費量に対して、時間帯別に各種統計量を計算する機能を有する。つまり、統計処理部15は、抽出部13またはクラスタリング部14において準備された予測用データに対して統計処理を施す機能を有する。統計量とは、例えば、時間帯毎のエネルギー消費量実績の平均、最大値、最小値、±nσ(標準偏差)等が挙げられるが、これらに限定されるものではない。計算された統計量は、エネルギー消費量の予測値として使用され得る。
 表示部31は、抽出部13で抽出された過去の時間帯別エネルギー消費量、クラスタリング部14でさらに分類された過去の時間帯別エネルギー消費量、および、統計処理部15で計算された時間帯別の各種統計量等を、画面上にグラフ、表、文字等の組み合わせで表示する。表示部31における表示内容は、表示切替部23が取得するユーザからの指示によって制御されてもよい。
 表示切替部23は、表示部に表示されている内容や体裁の切替・変更の指示を取得する機能を有する。表示内容の切替えに関する指示は、例えば、ユーザによって行われる。表示切替部23は、ユーザによって指示された内容に基づいて表示部31による表示内容の変更を指示する。
 予測値出力指定部24は、表示部31において表示された時間帯別エネルギー消費量、各種統計量等、ユーザが予測値として採用するデータの候補をユーザに対して提示することで、ユーザから予測値として採用するデータを特定する情報を取得する機能を有する。予測値出力指定部24は、一例として、「平均」「最大」「最小」「+1σ」など、ユーザが予測値として採用しうる系列に対応するボタンとして、ユーザに対して提示する構成としてもよい。
 予測値出力部32(予測データ生成部)は、予測値出力指定部24が取得したユーザからの指定内容に基づいて、エネルギー消費量の予測値に係るデータを出力する機能を有する。出力方法としては、例えば、画面への表示、データファイルとしての外部装置・記憶媒体への出力等が挙げられる。
 予測値出力部32によるエネルギー消費量の予測値に係るデータの出力先として、例えば、予測対象の設備・施設を管理する管理装置が挙げられる。この場合、出力先となる管理装置では、エネルギー消費量予測値に係るデータを用いて、対象となる設備・施設へのエネルギー調達量の調整等を行うことができる。工場またはプラントなどのように稼働を停止することが困難な設備・施設においては、安定した稼働を実現するためのエネルギー調達を重要となる場合がる。このような場合、上記のエネルギー消費量予測値に係るデータを活用することで、より適切なエネルギー調達を行うことが可能となる。
[入力・出力インタフェースについて]
 入力インタフェース20に含まれる付帯情報入力部21、抽出条件指定部22、表示切替部23、予測値出力指定部24と、出力インタフェース30に含まれる表示部31、予測値出力部32に関して、具体的な画面例を参照しながらさらに説明する。
(1)付帯情報入力部
 付帯情報入力部21は、上述のように、エネルギー消費量の実績と関連し得る情報である。具体的には、付帯情報としては、各日における施設で製造する製造物の生産量や、主要なエネルギー需要機器(エネルギーを消費する設備)の稼働回数、稼働時間等が挙げられる。図3(a)では、付帯情報の入力画面の一例を示している。図3(a)に示す画面例X1では、カレンダーから「2021/1/13」の日付を選択し、当該日付に対して付帯情報を入力している状況を示している。また、当該日付に対して入力する付帯情報D1の項目として、生産量、熱処理炉1,2の稼働回数および蒸気プレス1,2の稼働回数が示されている。この付帯情報の項目は各日に対して共通であってもよい。また、必要に応じて新規項目追加ボタンB1を介してあらたな付帯情報を設定する可能な構成としてもよい。
 なお、付帯情報入力部21に関して、入力日毎の入力忘れを防止することを目的とした設定を追加してもよい。例えば、図3(a)に示すカレンダーにおいて、付帯情報が入力されていない日付を着色して強調することによって、ユーザに対して注意喚起を行う構成としてもよい。
 また、付帯情報D1の各項目を選択した際に、入力済みの付帯情報の時系列に係る情報を併せて表示する構成としてもよい。図3(b)では、ユーザが選択した1月13日を含む、1月の各日の生産量に関する入力値を棒グラフとして示したものである。ユーザが付帯情報D1から「生産量」の項目を選択した場合、図3(b)に示す画面例X2のように、グラフを表示する構成とすることで、各日の生産量の変化を視覚的にユーザに提示できる。また、図3(b)に示す1月17日のように、未入力の日については、生産量がゼロであることも併せて示される。そのため、ユーザはこのグラフを参照することで、入力忘れの可能性がある日付を認識することもできる。
 なお、付帯情報は、図3(a)に示すような画面をユーザに提示することによって、ユーザによって個別に入力される構成であってもよいが、外部装置等から自動的に取得される構成であってもよい。例えば、エネルギー消費量予測装置1を外部装置(例えば、施設の運転管理を管轄する装置等)と接続し、外部装置から自動的に付帯情報に対応する情報をダウンロードすることで、付帯情報入力部21が当該情報を取得する構成としてもよい。この場合、装置構成としては複雑になり得るが、付帯情報の入力忘れ等を防ぐことができることに加えて、業務効率化も期待できる。
 なお、付帯情報としては、生産に関連する情報のほか、天候などの外的要因を入力できるようにしてもよい。対象となる施設にもよるが、気温は空調に係るエネルギー消費量との有意な相関が考えられる。したがって、天候等の情報を用いることで、エネルギー消費量の予測精度の向上が期待できる。天候情報については、例えば、インターネットで過去の実績が開示されているため、この情報を自動的にダウンロードする構成としてもよい。このように、付帯情報を取得する方法はユーザの入力に限定されず、適宜変更され得る。
(2)抽出条件指定部
 抽出条件指定部22では、予測対象となる日付と状況が近い日の時間帯別エネルギー消費量データを抽出するため、日付・曜日・工場休業日情報や付帯情報をもとに、エネルギー消費量実績データベース12に記憶された過去の時間帯別エネルギー消費量から、抽出対象となるデータを特定する。図4に示す画面例X3は、抽出条件を指定する画面の一例である。図4に示すように、抽出条件を指定する画面では、「日付・曜日入力条件」と「付帯情報条件」のそれぞれについて、抽出の条件を指定する項目を設けている。
 ユーザが抽出に使用する条件自体を指定する方法として、例えば、入力欄に「指定」などと表記したチェックボックスを設け、各行に記載された条件を抽出に使用するか否か切り替えられるようにしてもよい。これにより、各行の項目の入力の有無に関係なく、抽出条件の有効・無効を容易に切り替えることが可能となる。また、図4に示す画面例X3では、付帯情報のうち、蒸気プレス1および蒸気プレス2の稼働回数を抽出条件から除外している。このように、「指定」のチェックを外した場合(抽出条件から除外する場合)は、各行(例えば、「値」欄)の背景色を変更することで当該条件が使用されないことを直観的に表現してもよい。また、図4の画面例に示すように、指定した期間における各付帯情報の下限値・上限値や、ユーザが指定した抽出条件に合致する日の数(図4では「該当日数」として表示している)を表示してもよい。これらの数値は、ユーザが抽出条件を指定する際の参考情報として使用することができる。つまり、ユーザは、これらの情報を頼りとして抽出条件を調整(緩和あるいは強化)することが可能となる。このように、抽出条件を指定する画面において、ユーザが参考とし得る情報を併せて表示することで、ユーザによる抽出条件の指定を補助する構成としてもよい。
(3)表示切替部および予測値出力指定部
 抽出条件の設定が行われると、エネルギー消費量実績データベース12において保持される情報から、抽出部13によって抽出条件に合致するデータが抽出される。この結果は、表示部31によって表示される。図5に示す画面例X4は、表示部31によって表示される画面の一例を示している。なお、画面例X4では、クラスタリング部14によるクラスタリングおよび統計処理部15による統計処理の結果も併せて表示している。
 図5に示す画面例X4の上部では、ユーザが指定した条件のもとで抽出された過去の時間帯別エネルギー消費量が、横軸を時刻としたグラフA1に表示されている。このグラフA1には、抽出された過去の時間帯別エネルギー消費量が、日付を特定できるかたちで描画されている。画面例X4に示す例では、4月1日~6日の時間帯別エネルギー消費量が抽出されて表示されている。また、同じグラフA1には、「平均」「平均+1σ」「平均-1σ」が併記されている。この平均等の統計量は、統計処理部15によって求められたものであり、抽出された6日分のデータから算出されたものである。
 図5では、「2021/4/6」のデータの一点を選択またはマウスオーバした際に、ポップアップ表示A2として日付に対応する生産量等の付帯情報が示されている例を示している。このように、グラフA1中の各系列を選択ないしはマウスオーバした際に、日時・付帯情報等を表示可能な構成としてもよい。この場合、ユーザは、グラフA1として、消費量の実績の時系列に沿った変動を把握しながら、各データと当該データの付帯情報との関係についても個別に確認することが可能となる。
 上述のように、グラフA1中には時間帯のエネルギー消費量の平均および平均±nσの系列をあわせて描画している。nは、標準偏差に係る係数である。なお、グラフA1では、n=1の状態を示しているが、nの数値を変更可能としてもよい。画面例X4では、表示切替部23の構成要素の一例として、標準偏差に対する係数nフレームA3が設けられていて、このフレーム内にはnを変更可能なスライダーが設けられている。このスライダーをユーザが操作すると、グラフA1に表示する統計量として、スライダーの位置に応じたnを用いて算出した「平均値±nσ」を表示する構成としてもよい。このように、表示切替部23として機能するスライダーの位置に応じて、統計処理部15による計算結果に基づいて、表示部31がグラフA1に表示する表示内容を変更する構成としてもよい。
 なお、表示切替部23は、標準偏差に対する係数nフレームA3におけるスライダーの操作を検知した段階で反映してグラフA1を自動的に更新する構成としてもよい。
 なお、画面例X4には、表示切替部23の他の要素として、自動クラスタリング結果フレームA4が示されている。この自動クラスタリング結果フレームA4の内部には、ユーザが指定した条件(全データ)のほか、クラスタリング部14により生成されたクラスタ(クラスタ1,2)の構成データ数や、各クラスタにおける全時刻平均標準偏差の値が示される。
 ここで、クラスタリング部14によるクラスタリング処理について説明する。クラスタリング処理は、抽出条件によって抽出された消費量実績データを複数のクラスタに分類する処理である。上述のように、ユーザが種々の抽出条件を設定することによって消費量の予測に使用する消費量実績データが抽出される。しかしながら、ユーザが設定した条件の幅が広い等の条件が適切ではない場合、ユーザが特定の抽出設定条件を設定していない場合、または、そもそもエネルギー消費量予測装置1で想定されていない条件に応じてデータが大きく変化する場合等は、抽出したデータがすべて同じ傾向を示さずに、偏りが生じる可能性がある。このような場合に、クラスタリング処理を行うことで、抽出された消費量実績データを複数のクラスタに分類することで、抽出された複数の消費量実績データの偏りの存在や、分類された各クラスタをユーザに対して提示することができる。
 クラスタリング処理に使用するアルゴリズムについてとくに制限はないが、例えば教師なし機械学習手法であるk-means法を採用できる。k-means法を採用する場合、日ごとの時間帯別エネルギー消費量と各付帯情報とをまとめたベクトルを考え、これをクラスタリングする。具体的には、例えば、1日の時間帯を1時間ずつ24点とし、付帯情報として生産量、熱処理炉1稼働回数、熱処理炉2稼働回数、蒸気プレス1稼働回数、蒸気プレス2稼働回数の5項目を考えるとする。この場合、各データのベクトルの次元(要素数)は24+5=29次元となる。このようにして得られた各データのベクトルから、クラスタの重心を利用した分類と重心の移動とを繰り返し計算して分類することによって、クラスタ分類を行う。なお、k-mean法の実行に際しては、結果がデータのレンジの影響を受けることから、必要に応じて前処理(値のレンジの正規化など)を行ってもよい。また、k-means法の実行に際してはクラスタの数を指定する必要がある。クラスタの数はプログラムパラメータとしてもよいし、ユーザが都度定めるかたちでもよい。また、抽出されたデータの分散度合いを考慮してクラスタの数を決めるように設定してもよい。なお、結果の解釈性を考慮すると、クラスタ数は2~3程度としてもよい。
 図5に示す自動クラスタリング結果フレームA4では、2つのクラスタ1、2が示されている。ユーザが、このフレームにおいて、特定のクラスタを選択すると、選択したクラスタの時間帯別エネルギー消費量データのみが表示されるように、グラフA1が再描画されてもよい。
 図6に示す画面例X5は、画面例X4に対して、自動クラスタリング結果フレームA4においてクラスタ1を選択した状態を示している。画面例X5では、クラスタ1を選択した結果、グラフA1には、クラスタ1に分類された3つのデータ(4月1日~3日)と、その平均、平均±1σに係る結果が示されている。このように、クラスタリング処理の結果得られたクラスタの表示をユーザが指示した場合、ユーザの指示に沿って、統計処理部15による計算結果に基づいて、表示部31がグラフA1に表示する表示内容を変更する構成としてもよい。
 クラスタリング部14によるクラスタリングの結果は、ユーザが指定した抽出条件には含まれていない要素によってデータがばらついている場合に特に有効である。このような構成を有している場合、ユーザは、クラスタを形成するデータの付帯情報と対象日の状況が合致することを確認した上で、例えば、特定のクラスタに含まれるデータのみを利用して対象日の時間帯別エネルギー消費量予測値を決定することができる。つまり、ユーザが想定していなかった要素によって、抽出したデータにばらつきが生じている場合に、データのばらつきをクラスタリングによってある程度排除することができ、予測に使用するデータを作成することが可能となる。
 なお、表示切替部23の例は、図5の画面例X4に示されたものに限定されるものではない。例えば、表示切替部23として、グラフの視認性をあげるための種々の機能、例えば、グラフの拡大・縮小・スケール変更、特定系列の表示・非表示の切り替えが可能な機能を設けてもよい。
 図5の表示例X4には、予測値出力指定部24に対応する表示値出力フレームA5がある。このフレーム内には、表示されている系列の統計量から対象日の時間帯別エネルギー消費量予測値をワンクリックで出力するためのボタン群が設けられている。一例として、表示例X4では、「平均」「最小」「最大」「平均+nσ」「平均-nσ」が設けられている。これらのボタン群のいずれかをユーザがクリックすると、予測値出力部32によって、対応する時間別エネルギー消費量が予測値として出力される。出力先は画面上でもよいし、ファイルでもよい。また、他のプログラムと連携させることを前提に、計算機中の主記憶に記録する構成としてもよい。
 なお、表示値出力フレームA5内には、図5に示す上記のボタンとは異なるボタン等を設定してもよい。例えば、エネルギー消費量予測値として、抽出されたエネルギー消費量実績データのうち、例えば、特定の日付のデータをそのまま使用することも想定される場合には、当該データを予測値として出力することが可能となるように、予測値出力指定部24の構成等を変更してもよい。つまり、エネルギー消費量予測データとして出力するデータの種類は、表示値出力フレームA5内に例示されている統計処理後のデータに限定されず、予測用データのいずれをエネルギー消費量予測データとして用いてもよい。
[エネルギー消費量予測方法]
 次に、図7および図8を参照しながら、エネルギー消費量予測装置1によるエネルギー消費量予測方法について説明する。図7は、エネルギー消費量予測装置1に対して付帯情報を入力する際の手順であり、図8は、エネルギー消費量予測データを作成する際の手順である。
 図7を参照しながら、エネルギー消費量予測装置1に対して付帯情報を入力する際の手順を説明する。まず、前提として、エネルギー消費量予測装置1には、エネルギー需要計測器9から、エネルギー消費量に係る実績データが伝送されていて、エネルギー消費量実績データベース12において保存されているとする。その上で、ユーザ等によって付帯情報を追加する場合の手順である。
 まず、ユーザは、エネルギー消費量予測装置1を起動させる(ステップS01)。次に、ユーザは、入力インタフェース20の付帯情報入力部21によって、エネルギー消費量実績データに対応する付帯条件を入力する(ステップS02)。その後、ユーザは、エネルギー消費量予測装置1を終了させる(ステップS03)。
 図8を参照しながら、エネルギー消費量予測装置1を用いて推定対象日のエネルギー消費量予測データを生成する際の手順を説明する。まず、前提として、エネルギー消費量予測装置1のエネルギー消費量実績データベース12には、上記のエネルギー消費量実績データに付帯情報が対応付けられた状態で、データが保存されているとする。
 まず、ユーザは、エネルギー消費量予測装置1を起動させる(ステップS11)。次に、ユーザは、入力インタフェース20の抽出条件指定部22によって、対象日のエネルギー消費量予測データを生成するための抽出条件を設定する(ステップS12)。
 次に、エネルギー消費量予測装置1では、抽出条件指定部22で指定された抽出条件に基づいて、抽出部13によって消費量実績データを抽出した後に、クラスタリングを行い、その結果、および統計処理の結果を表示する(ステップS13)。この段階では、エネルギー消費量予測装置1の抽出部13は、予測値データの作成に必要な消費量実績データを抽出する。また、クラスタリング部14は、必要に応じて抽出した消費量実績データについて、予め設定した条件に基づいてクラスタリングを行う。さらに、統計処理部15は、抽出された消費量実績データ、および、クラスタリングによって分類されたデータに関して、統計処理を行い、平均、平均±nσ、最大、最小等の統計データを算出する。これらのデータは、表示部31によって表示される。その結果、ユーザが抽出されたデータおよびその統計処理結果等を確認することができる。このとき、ユーザは、表示切替部23を操作することで、表示部31における表示内容を変更する等の操作を行ってもよい。
 このように、エネルギー消費量予測装置1では、抽出部13およびクラスタリング部14における予測用データの生成と、統計処理部15における予測用データに関する統計処理と、が同時に行われる。このように、ユーザが表示部31において表示されたデータを見ながら、エネルギー消費量予測データを生成する装置構成の場合、予測用データの生成と統計処理とは同時に行われてもよい。最終的にユーザがエネルギー消費量予測データとして出力するデータを決定する(ステップS14)まで、統計処理部15による統計処理はユーザの指示によって繰り返し行われてもよい。
 次に、ユーザは、入力インタフェース20の予測値出力指定部24によって、出力する予測値データの生成を指示する(ステップS14)。予測値出力指定部24による指定とは、例えば、画面例X4の表示値出力フレームA5をユーザが操作することによって行われる。このユーザからの指示に基づいて、エネルギー消費量予測装置1の予測値出力部32は、予測値データを作成し、出力する。その後、ユーザは、エネルギー消費量予測装置1を終了させる(ステップS15)。
[ハードウェア構成]
 図9を参照して、エネルギー消費量予測装置1のハードウェア構成について説明する。図9は、エネルギー消費量予測装置1のハードウェア構成の一例を示す図である。エネルギー消費量予測装置1は、1または複数のコンピュータ100を含む。コンピュータ100は、CPU(Central Processing Unit)101と、主記憶部102と、補助記憶部103と、通信制御部104と、入力装置105と、出力装置106とを有する。エネルギー消費量予測装置1は、これらのハードウェアと、プログラム等のソフトウェアとにより構成された1または複数のコンピュータ100によって構成される。
 エネルギー消費量予測装置1が複数のコンピュータ100によって構成される場合には、これらのコンピュータ100はローカルで接続されてもよいし、インターネット又はイントラネットなどの通信ネットワークを介して接続されてもよい。この接続によって、論理的に1つのエネルギー消費量予測装置1が構築される。
 CPU101は、オペレーティングシステムやアプリケーション・プログラムなどを実行する。主記憶部102は、ROM(Read Only Memory)及びRAM(Random Access Memory)により構成される。補助記憶部103は、ハードディスク及びフラッシュメモリなどにより構成される記憶媒体である。補助記憶部103は、一般的に主記憶部102よりも大量のデータを記憶する。エネルギー消費量予測装置1を構成する各部の少なくとも一部は、補助記憶部103によって実現される。通信制御部104は、ネットワークカード又は無線通信モジュールにより構成される。エネルギー消費量予測装置1を構成する各部の少なくとも一部は、通信制御部104によって実現されてもよい。入力装置105は、キーボード、マウス、タッチパネル、及び、音声入力用マイクなどにより構成される。例えば、入力インタフェース20の少なくとも一部は、入力装置105によって実現される。出力装置106は、ディスプレイ及びプリンタなどにより構成される。出力部19の少なくとも一部は、出力装置106によって実現される。例えば、出力装置106は、出力インタフェース30によって出力される予測値データ等をディスプレイ等に表示してもよい。
 補助記憶部103は、予め、プログラム110及び処理に必要なデータを格納している。プログラム110は、エネルギー消費量予測装置1の各機能要素をコンピュータ100に実行させる。プログラム110によって、例えば、上述したステップS01からステップS04に係る処理がコンピュータ100において実行される。例えば、プログラム110は、CPU101又は主記憶部102によって読み込まれ、CPU101、主記憶部102、補助記憶部103、通信制御部104、入力装置105、及び出力装置106の少なくとも1つを動作させる。例えば、プログラム110は、主記憶部102及び補助記憶部103におけるデータの読み出し及び書き込みを行う。
 プログラム110は、例えば、CD-ROM、DVD-ROM、半導体メモリなどの有形の記録媒体に記録された上で提供されてもよい。プログラム110は、データ信号として通信ネットワークを介して提供されてもよい。
[作用]
 上記のエネルギー消費量予測装置1、エネルギー消費量予測方法およびエネルギー消費量予測プログラムによれば、過去のエネルギー消費量実績データが、当該データを取得した日時を特定する情報と、当該データを取得した際の対象施設の運転状況に係る情報である付帯情報と対応付けて記憶部において保持される。そして、記憶部において保持されるデータから、付帯情報がユーザの指定する抽出条件に合致するデータが抽出され、エネルギー消費量の予測に使用する予測用データが生成され、この予測用データを用いて、ユーザからの指示に基づいてエネルギー消費量予測データが生成される。このような構成とすることで、付帯情報の中から、例えば、エネルギー消費量予測データの生成の対象日と関連の高い条件を抽出条件として指定することで、より関連の高いデータが予測用データとして抽出され得る。したがって、エネルギー消費量の予測をより精度よく行うことが可能となる。
 従来から、日時を指定してエネルギー消費量実績データを抽出する構成は知られていたものの、日時情報だけでは、エネルギー消費量予測データを作成する対象となる状況と一致した実績データを適切に抽出することが難しい場合がある。この点について、上記のように、付帯情報を組み合わせる構成とすることで、予測用データとして抽出するデータの精度を高めることができるため、より精度のよいエネルギー消費量予測データを作成することが可能となる。
 また、ユーザが指定する抽出条件のみでは、抽出されたデータにばらつきが多く含まれることも考えられる。これに対して、抽出部13が抽出したデータに対してクラスタリング処理を行うことによって、複数のクラスタに分類したデータを準備するクラスタリング部14をさらに有していてもよい。また、予測データ生成部としての統計処理部15および予測値出力部32は、複数のクラスタに分類したデータも予測用データとして利用する態様としてもよい。クラスタリング部14によるクラスタリング処理抽出したデータの中から類似した傾向をもつデータを取りまとめることが可能となる。したがって、このデータを利用して、エネルギー消費量の予測をより精度よく行うことが可能となる。
 予測データ生成部は、ユーザからの指示に基づいて、複数のクラスタのうちの1つに分類したデータに基づいて、エネルギー消費量予測データを生成してもよい。この場合、抽出したデータの中から類似した傾向をもつデータとして取りまとめられた1つのクラスタに分類されたデータからエネルギー消費量予測データが生成される。このような構成とすることで、1つのクラスタに分類された、より類似した傾向を有するデータを利用した、クラスタの傾向を反映したエネルギー消費量予測データが作成される。
 予測データ生成部として機能する統計処理部15および予測値出力部32は、予測用データに対して統計処理を施したデータを作成し、統計処理を施したデータから、ユーザの指定に基づいてエネルギー消費量予測データを生成してもよい。予測用データに対して統計処理を施したデータを作成することで、この予測用データに含まれるデータの特徴を反映したデータがエネルギー消費量予測データとして生成される。
 また、エネルギー消費量予測データに使用する統計処理の内容をユーザが指定するための入力インタフェース20を有していてもよい。エネルギー消費量予測データを生成する際に、ユーザが統計処理の内容を指定する態様とすることで、例えば、エネルギー消費量予測データの使用条件等を考慮してユーザが柔軟に統計処理の内容を指定することが可能となる。そのため、その用途に適したエネルギー消費量予測データを精度よく作成することが可能となる。
 また、表示部31をさらに有し、表示部31は、予測用データに対して統計処理を施したデータを、エネルギー消費量予測データの候補として表示してもよい。また、ユーザは、入力インタフェース20を利用して、候補の中からエネルギー消費量予測データに使用するデータを選択してもよい。この構成とした場合、ユーザは、表示部31に表示された、予測用データに対して統計処理を施したデータを、エネルギー消費量予測データの候補として確認することができる。また、ユーザはこの候補を確認しながら、エネルギー消費量予測データとして使用するデータを選択することができる。したがって、ユーザにとっての利便性を高めることができる。
 表示部31をさらに有し、表示部31では、画面例X2のように過去のエネルギー消費量実績データに対応する付帯情報を、時系列に対応させた状態でユーザに対して提示してもよい。この構成とした場合、付帯情報の時系列変化をユーザが把握することができる。また、ユーザは、付帯情報の入力有無も確認することができるため、ユーザによる付帯情報の入力が促進され得る。
[変形例]
 以上、本開示は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
 例えば、上記実施形態では、エネルギーとして電力を取り扱う場合について説明したが、例えば、複数種類のエネルギーを同時に取り扱ってもよい。一例として、電力と蒸気とを取り扱うことが考えられる。この場合、例えば、画面例X4で表示するグラフA1等においても、複数種類のエネルギーに関する情報を同時に表示する構成としてもよい。また、例えば、電力と蒸気の2つのエネルギーに対して予測をおこなう場合、これらのグラフを並べて示してもよいし、ボタン等により2つのグラフを切り替える構成とすることができる。このように、上記実施形態で示した画面例は一例であって、予測対象、消費量実績データ、付帯情報等に応じて柔軟に変更され得る。
 また、本開示を適用可能なエネルギーとしては、上述の電力または蒸気などのように、動力として直接活用可能なもののほか、これらに変換可能、あるいはこれらから変換可能な物質であってもよい。具体的なエネルギーの例としては、水、水素が挙げられる。さらに、メタン、アンモニアなど水素から合成された燃料も本開示におけるエネルギーに含まれる。
 また、上記実施形態で説明したエネルギー消費量予測装置1によるエネルギーの消費量予測の対象となる設備・施設は、上記実施形態で説明した工場・プラント等のように、エネルギーの消費・生成を多く扱うものであれば任意である。このような設備・施設としては、例えば、水素、メタン、アンモニアなどの需要に応じてこれらを製造する設備・施設であってもよい。また、このような対象となる設備・施設内のエネルギー機器(エネルギーを取り扱う機器)同士は、必ずしも物理的に近接していなくてもよい。例えば、太陽光発電電力をもとに水素製造をおこなう施設がエネルギー消費量予測の対象となる場合、水素製造設備と太陽光発電設備が離れた箇所にあってもよい。
 エネルギー消費量に対応する時間帯は1時間単位に限定されない。例えば、電力需給同時同量制御の基準となる30分を1つの時間帯として設定してもよい。また、1日を1つの時間帯として、1週間分(7日)の予測を行う形式でもよい。
 上記実施形態では、ユーザが抽出条件や予測値出力の指定等を都度行う場合について説明したが、ユーザの操作内容(抽出条件や抽出結果)を記憶・呼び出しできるようにしてもよい。
 上記実施形態で説明した構成は、エネルギーマネジメントシステムの一機能として組み込んでもよい。具体的には、上記実施形態で説明した手法で得られたエネルギー消費量予測値に基づいて、エネルギー機器の運転計画の最適化をおこなってもよい。この場合、エネルギー消費量予測値をエネルギーマネジメントシステムに対して入力し、このエネルギー消費量予測値に基づいて、エネルギーマネジメントシステムが管理する発電設備における発電計画、蓄電設備における充放電計画等を立案・変更する構成としてもよい。これにより、エネルギーマネジメントシステムにおいて精度の高いエネルギー消費量予測値を用いた制御を実現することができる。また、エネルギー消費量予測装置1において得られたエネルギー消費量予測値、または、エネルギー消費量予測値に基づいて算出されたエネルギーマネジメントシステムの運転計画を、本装置から他のエネルギー機器(蓄電池やガスタービン発電機、ボイラなど)に直接伝送できるようにしてもよい。この場合、伝送先のエネルギー機器では、エネルギー消費量予測値または運転計画に基づいて、制御内容を変更してもよい。
[その他]
 エネルギー機器の運転計画の予測誤差に対しては、ガスタービン発電機などの化石燃料を調整しろとして用いる場合が多い、ただしその際には上げ・下げ両方に余裕を持たせた部分出力運転とする必要がある。これは発電効率の観点からは望ましい運転ではなく、発電単価の上昇、CO排出量増加などを招きうる.よって本開示はマイクログリッドの経済性や事業収益のみに係るものではなく、社会全体としての経済的なエネルギー供給や環境負荷低減にも関わるものであり、国連が主導する持続可能な開発目標(SDGs)の目標7「すべての人々の、安価かつ信頼できる持続可能な近代的エネルギーへのアクセスを確保する」及び目標13「気候変動及びその影響を軽減するための緊急対策を講じる」に貢献するものである。
[付記]
 本開示は、以下の構成を含む。
[1]対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて保持する記憶部と、
 前記記憶部において保持される前記エネルギー消費量実績データから、前記付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成する抽出部と、
 前記予測用データに基づいて、前記ユーザからの指示に基づいてエネルギー消費量予測データを生成する、予測データ生成部と、
 を有する、エネルギー消費量予測装置。
[2]前記抽出部が抽出したデータに対してクラスタリング処理を行うことによって、複数のクラスタに分類したデータを準備するクラスタリング部をさらに有し、
 前記予測データ生成部は、前記複数のクラスタに分類したデータも前記予測用データとして利用する、[1]に記載のエネルギー消費量予測装置。
[3]前記予測データ生成部は、前記ユーザからの指示に基づいて、前記複数のクラスタのうちの1つに分類したデータに基づいて、前記エネルギー消費量予測データを生成する、[2]に記載のエネルギー消費量予測装置。
[4]前記予測データ生成部は、前記予測用データに対して統計処理を施したデータを作成し、統計処理を施したデータから、前記ユーザの指定に基づいて前記エネルギー消費量予測データを生成する、[1]~[3]のいずれかに記載のエネルギー消費量予測装置。
[5]前記予測データ生成部において前記エネルギー消費量予測データに使用する統計処理の内容をユーザが指定するための入力インタフェースをさらに有する、[4]に記載のエネルギー消費量予測装置。
[6]表示部をさらに有し、
 前記表示部は、前記予測用データに対して統計処理を施したデータを、前記エネルギー消費量予測データの候補として表示し、
 前記ユーザは、前記入力インタフェースを利用して、前記候補の中から前記エネルギー消費量予測データに使用するデータを選択する、[5]に記載のエネルギー消費量予測装置。
[7]表示部をさらに有し、
 前記表示部は、前記過去のエネルギー消費量実績データに対応する付帯情報を、時系列に対応させた状態でユーザに対して提示する、[1]~[6]のいずれかに記載のエネルギー消費量予測装置。
[8]対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて記憶部に保持することと、
 前記記憶部において保持される前記エネルギー消費量実績データから、前記付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成することと、
 前記予測用データに基づいて、前記ユーザからの指示に基づいてエネルギー消費量予測データを生成することと、
 を含む、エネルギー消費量予測方法。
[9]対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて記憶部に保持することと、
 前記記憶部において保持される前記エネルギー消費量実績データから、前記付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成することと、
 前記予測用データに基づいて、前記ユーザからの指示に基づいてエネルギー消費量予測データを生成することと、
 をコンピュータに実行させる、エネルギー消費量予測プログラム。
1 エネルギー消費量予測装置
11 消費実績取得部
12 エネルギー消費量実績データベース(記憶部)
13 抽出部
14 クラスタリング部
15 統計処理部(予測データ生成部)
20 入力インタフェース
21 付帯情報入力部
22 抽出条件指定部
23 表示切替部
24 予測値出力指定部
30 出力インタフェース
31 表示部
32 予測値出力部

 

Claims (9)

  1.  対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて保持する記憶部と、
     前記記憶部において保持される前記エネルギー消費量実績データから、前記付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成する抽出部と、
     前記予測用データに基づいて、前記ユーザからの指示に基づいてエネルギー消費量予測データを生成する、予測データ生成部と、
     を有する、エネルギー消費量予測装置。
  2.  前記抽出部が抽出したデータに対してクラスタリング処理を行うことによって、複数のクラスタに分類したデータを準備するクラスタリング部をさらに有し、
     前記予測データ生成部は、前記複数のクラスタに分類したデータも前記予測用データとして利用する、請求項1に記載のエネルギー消費量予測装置。
  3.  前記予測データ生成部は、前記ユーザからの指示に基づいて、前記複数のクラスタのうちの1つに分類したデータに基づいて、前記エネルギー消費量予測データを生成する、請求項2に記載のエネルギー消費量予測装置。
  4.  前記予測データ生成部は、前記予測用データに対して統計処理を施したデータを作成し、統計処理を施したデータから、前記ユーザの指定に基づいて前記エネルギー消費量予測データを生成する、請求項1~3のいずれか一項に記載のエネルギー消費量予測装置。
  5.  前記予測データ生成部において前記エネルギー消費量予測データに使用する統計処理の内容をユーザが指定するための入力インタフェースをさらに有する、請求項4に記載のエネルギー消費量予測装置。
  6.  表示部をさらに有し、
     前記表示部は、前記予測用データに対して統計処理を施したデータを、前記エネルギー消費量予測データの候補として表示し、
     前記ユーザは、前記入力インタフェースを利用して、前記候補の中から前記エネルギー消費量予測データに使用するデータを選択する、請求項5に記載のエネルギー消費量予測装置。
  7.  表示部をさらに有し、
     前記表示部は、前記過去のエネルギー消費量実績データに対応する付帯情報を、時系列に対応させた状態でユーザに対して提示する、請求項1~3のいずれか一項に記載のエネルギー消費量予測装置。
  8.  対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて記憶部に保持することと、
     前記記憶部において保持される前記エネルギー消費量実績データから、前記付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成することと、
     前記予測用データに基づいて、前記ユーザからの指示に基づいてエネルギー消費量予測データを生成することと、
     を含む、エネルギー消費量予測方法。
  9.  対象施設の過去のエネルギー消費量実績データを、当該データを取得した日時を特定する情報と、当該データを取得した際の前記対象施設の運転状況に係る情報である付帯情報と対応付けて記憶部に保持することと、
     前記記憶部において保持される前記エネルギー消費量実績データから、前記付帯情報が、ユーザの指定する抽出条件に合致するデータを抽出して、エネルギー消費量の予測に使用する予測用データを生成することと、
     前記予測用データに基づいて、前記ユーザからの指示に基づいてエネルギー消費量予測データを生成することと、
     をコンピュータに実行させる、エネルギー消費量予測プログラム。

     
PCT/JP2022/022167 2021-06-02 2022-05-31 エネルギー消費量予測装置、エネルギー消費量予測方法およびエネルギー消費量予測プログラム WO2022255374A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023525868A JP7574923B2 (ja) 2021-06-02 2022-05-31 エネルギー消費量予測装置、エネルギー消費量予測方法およびエネルギー消費量予測プログラム
AU2022284507A AU2022284507A1 (en) 2021-06-02 2022-05-31 Energy consumption prediction device, energy consumption prediction method, and energy consumption prediction program
US18/276,726 US20240113520A1 (en) 2021-06-02 2022-05-31 Energy consumption prediction device, energy consumption prediction method, and energy consumption prediction program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-092915 2021-06-02
JP2021092915 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022255374A1 true WO2022255374A1 (ja) 2022-12-08

Family

ID=84323441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022167 WO2022255374A1 (ja) 2021-06-02 2022-05-31 エネルギー消費量予測装置、エネルギー消費量予測方法およびエネルギー消費量予測プログラム

Country Status (4)

Country Link
US (1) US20240113520A1 (ja)
JP (1) JP7574923B2 (ja)
AU (1) AU2022284507A1 (ja)
WO (1) WO2022255374A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118534830B (zh) * 2024-07-26 2024-10-18 富邦能源(山东)集团有限公司 一种能源管理系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199249A (ja) * 2001-12-25 2003-07-11 Hitachi Ltd 電力供給網の運用方法とそのシステム
JP2007072844A (ja) * 2005-09-08 2007-03-22 Osaka Gas Co Ltd 予測情報の表示システム
JP2013246702A (ja) * 2012-05-28 2013-12-09 Ntt Facilities Inc ワークプレイス管理システム、ワークプレイス管理装置、ワークプレイス管理方法、及びプログラム
JP2015153349A (ja) * 2014-02-19 2015-08-24 三菱電機株式会社 電力料金最適化システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199249A (ja) * 2001-12-25 2003-07-11 Hitachi Ltd 電力供給網の運用方法とそのシステム
JP2007072844A (ja) * 2005-09-08 2007-03-22 Osaka Gas Co Ltd 予測情報の表示システム
JP2013246702A (ja) * 2012-05-28 2013-12-09 Ntt Facilities Inc ワークプレイス管理システム、ワークプレイス管理装置、ワークプレイス管理方法、及びプログラム
JP2015153349A (ja) * 2014-02-19 2015-08-24 三菱電機株式会社 電力料金最適化システム

Also Published As

Publication number Publication date
US20240113520A1 (en) 2024-04-04
JPWO2022255374A1 (ja) 2022-12-08
JP7574923B2 (ja) 2024-10-29
AU2022284507A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
Zheng et al. Stochastic optimization for unit commitment—A review
AU2017368470B2 (en) System and method for dynamic energy storage system control
Wang et al. Stochastic optimization for flow-shop scheduling with on-site renewable energy generation using a case in the United States
CN107003664B (zh) 信息系统构建辅助工具以及信息系统构建辅助程序
WO2022255374A1 (ja) エネルギー消費量予測装置、エネルギー消費量予測方法およびエネルギー消費量予測プログラム
US11710104B2 (en) Predictive data objects
CN104615669A (zh) 一种数据订正方法、装置及系统
CN110009229A (zh) 基于区块链的供应链管理方法、装置、存储介质与设备
CN103140763A (zh) 使用负荷持续时间曲线分析公用事业用量的系统、方法和装置
Hohl et al. Intraday markets, wind integration and uplift payments in a regional US power system
Osório et al. A fast method for the unit scheduling problem with significant renewable power generation
JP5957725B2 (ja) 予測装置、予測方法、および、予測プログラム
CN117114335A (zh) 一种建筑能耗智能管理系统及方法
Sun et al. Machine learning derived dynamic operating reserve requirements in high-renewable power systems
JP2018156231A (ja) エネルギー管理システムおよびエネルギー管理方法
KR20230121449A (ko) Re100 달성을 위한 신재생 에너지원 자동 매칭 인공지능 시스템 및 이의 동작 방법
JP2017102583A (ja) 全要素生産性計測装置、全要素生産性計測方法及び全要素生産性計測プログラム
JP7184099B2 (ja) 運用支援装置、システム、方法及びプログラム
CN106651056B (zh) 一种基于设备工况组合的能源预测系统
Siddiqui et al. Addressing an uncertain future using scenario analysis
Jawad et al. Power spectrum: A detailed dataset on electric demand and environmental interplays
Rastkar et al. A Comparison Between Seasonal and Non-Seasonal Forecasting Techniques for Energy Demand Time Series in Smart Grids.
CN118761551A (zh) 基于特征数据的碳排放计算方法、装置、系统、设备及介质
CN116976706A (zh) 建筑能效监测方法、设备和可读存储介质
Carter Industrial energy efficiency: Using data analytics to monitor excess pump use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023525868

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022284507

Country of ref document: AU

Date of ref document: 20220531

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18276726

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816120

Country of ref document: EP

Kind code of ref document: A1