WO2022254526A1 - 四重極型質量分析装置 - Google Patents
四重極型質量分析装置 Download PDFInfo
- Publication number
- WO2022254526A1 WO2022254526A1 PCT/JP2021/020694 JP2021020694W WO2022254526A1 WO 2022254526 A1 WO2022254526 A1 WO 2022254526A1 JP 2021020694 W JP2021020694 W JP 2021020694W WO 2022254526 A1 WO2022254526 A1 WO 2022254526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rod
- rod electrodes
- optical axis
- electrodes
- ion optical
- Prior art date
Links
- 150000002500 ions Chemical class 0.000 claims abstract description 225
- 230000003287 optical effect Effects 0.000 claims abstract description 84
- 239000000523 sample Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 230000005684 electric field Effects 0.000 description 10
- 238000002834 transmittance Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000000132 electrospray ionisation Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 238000004807 desolvation Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 238000001360 collision-induced dissociation Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000010220 ion permeability Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
- H01J49/4205—Device types
- H01J49/421—Mass filters, i.e. deviating unwanted ions without trapping
- H01J49/4215—Quadrupole mass filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/06—Electron- or ion-optical arrangements
- H01J49/062—Ion guides
- H01J49/063—Multipole ion guides, e.g. quadrupoles, hexapoles
Definitions
- the present invention relates to a quadrupole mass spectrometer using a quadrupole mass filter as a mass separator.
- quadrupole mass spectrometer refers not only to a single quadrupole mass spectrometer, but also to a triple quadrupole mass filter with a collision cell in between. It includes a mass spectrometer, a quadrupole-time-of-flight mass spectrometer in which a quadrupole mass filter is placed in the front stage of a collision cell and a time-of-flight mass spectrometer in the rear stage, and the like.
- ions derived from components (compounds) contained in a sample are filtered through a quadrupole mass filter to determine the mass-to-charge ratio (strictly, the italicized “m/z”).
- the ions are separated according to the "mass-to-charge ratio" or "m/z"), and the separated ions are detected by an ion detector.
- mass spectra representing the relationship between m/z and ion intensity can be repeatedly acquired.
- a quadrupole mass filter generally has four rod electrodes, which are cylindrical in shape, arranged parallel to each other and evenly in the circumferential direction so as to touch the outside of an inscribed circle of a given radius centered on a linear axis. It has configurations that are angularly spaced (90°) apart.
- a voltage +(U+Vcos ⁇ t) obtained by superimposing a radio frequency (RF) voltage Vcos ⁇ t on a DC voltage U is applied to the two rod electrodes facing each other across the central axis, which is also the ion optical axis.
- a pre-rod electrode is provided in front of the rod electrode having an ion-selective action (hereinafter referred to as "main rod electrode"), and a post-rod electrode is provided behind the main rod electrode.
- the pre-rod electrode and the post-rod electrode are cylindrical rod electrodes each having the same diameter as the main rod electrode and being short in the ion optical axis direction.
- pre-rod and post-rod electrodes are required to focus ions with a wide range of m/z, generally no DC voltage U is applied to these electrodes, and the RF voltage and frequency applied to the main rod electrode , and a small amplitude RF voltage is applied.
- pre-rod electrodes In a quadrupole mass spectrometer provided with pre-rod electrodes, generally, ions originating from sample components pass through a small aperture placed in front of the pre-rod electrodes and enter a space surrounded by four pre-rod electrodes (hereinafter referred to as "pre-rod electrodes”). space”). Apertures are typically circular in shape and isotropic about a central axis. Therefore, the ions that have passed through the aperture enter the pre-rod space while expanding conically. Then, the ions that have moved within the pre-rod space exit the pre-rod space and are introduced into a space surrounded by four main rod electrodes (hereinafter referred to as "main rod space”).
- the direction of the ion optical axis be the Z-axis
- two axes perpendicular to the Z-axis and perpendicular to each other be the X-axis and the Y-axis.
- the voltage ⁇ (U+Vcos ⁇ t) is applied to the two main rod electrodes located in the Y-axis direction.
- the DC potential is zero in the prerod space, and the DC potential is negative in the main rod space. Provides acceleration and focusing effects on positive ions traveling into the rod space.
- the DC potential is zero in the prerod space, and the DC potential is positive in the main rod space.
- the DC potential is positive in the main rod space.
- the radius of the inscribed circle of the pre-rod electrode or the cross-sectional shape of the curved surface of the pre-rod electrode facing the ion optical axis is defined by the pre-rod electrode positioned in the X-axis direction and the pre-rod electrode positioned in the Y-axis direction. or different amplitudes of RF voltages applied to the pre-rod electrodes positioned in the X-axis direction and the pre-rod electrodes positioned in the Y-axis direction.
- Patent Document 2 describes a mass spectrometer in which each pre-rod electrode is divided into a plurality of segments in the ion optical axis direction and separated from each other, and different RF voltages are applied to the plurality of segments.
- each main rod electrode has a larger radius of inscribed circle than the other end, so that the plane orthogonal to the ion optical axis is A mass spectrometer using a main rod electrode with a slanted end face shape is described.
- the mass spectrometer described in Patent Document 1 can improve the ion transmittance in the boundary region between the pre-rod space and the main rod space.
- the electric field at the ion entrance of the prerod space is anisotropic around the ion optical axis, the efficiency of receiving ions entering the prerod space through the aperture is not always good.
- the present invention was made in order to solve the above problems, and its main purpose is to suppress the increase in cost and the size and weight of the power supply unit while suppressing the overall ion transmission rate in the quadrupole mass filter. It is an object of the present invention to provide a quadrupole mass spectrometer capable of improving analytical sensitivity by improving .
- a heavy pole mass filter is a main rod portion including four main rod electrodes arranged to surround the ion optical axis; a pre-rod section including four pre-rod electrodes respectively arranged in front of the four main-rod electrodes along the ion optical axis, wherein the four pre-rods are arranged at the end opposite to the main rod section;
- the electrodes are in contact with an inscribed circle having the same radius centering on the ion optical axis, and two pre-rod electrodes and two other electrodes facing each other across the ion optical axis are arranged at the end facing the main rod portion.
- a pre-rod portion in which two pre-rod electrodes are arranged so as to be in contact with inscribed circles having different radii centered on the ion optical axis; a first voltage applying unit that applies a voltage obtained by superimposing a DC voltage and an RF voltage according to the mass-to-charge ratio of ions to be passed through to each of the four main rod electrodes; a second voltage applying unit that applies an RF voltage having the same frequency as the RF voltage to each of the four pre-rod electrodes; Prepare.
- a quadrupole mass filter is a main rod portion including four main rod electrodes arranged to surround the ion optical axis; a post-rod section including four post-rod electrodes respectively arranged behind the four main-rod electrodes along the ion optical axis, wherein the four post-rod electrodes are arranged at the end opposite to the main rod section; are in contact with an inscribed circle having the same radius centered on the ion optical axis, and at the end facing the main rod portion, two post rod electrodes facing each other across the ion optical axis and two other post-rod electrodes are arranged so as to be in contact with inscribed circles with different radii centered on the ion optical axis; a first voltage applying unit that applies a voltage obtained by superimposing a DC voltage and an
- the entrance area where ions enter the pre-rod section the boundary area where ions move from the pre-rod section to the main rod section, and the post section from the main rod section.
- the ion transmittance is improved both in the boundary region where ions move to the rod portion and in the exit region where ions exit from the post rod portion.
- the overall ion transmittance of the quadrupole mass filter is improved, and the analysis sensitivity can be improved more than before.
- the power supply section is not complicated, and both the size and weight increase of the power supply unit and the cost increase can be avoided.
- the main rod electrode does not require special processing for manufacturing, it is possible to avoid an increase in cost in this respect as well.
- FIG. 1 is a schematic overall configuration diagram of a triple quadrupole mass spectrometer that is an embodiment of the present invention
- FIG. FIG. 2 is a diagram showing the configuration of the front half of the front quadrupole mass filter in the mass spectrometer of the present embodiment
- (A) is an end view on the XZ plane including the ion optical axis C
- (B) is an ion beam End view in the YZ plane containing axis C.
- FIG. A cross-sectional view taken along the line AA in FIG. 2(A).
- FIG. 2 is a diagram showing the configuration of the latter half of the front quadrupole mass filter in the mass spectrometer of the present embodiment
- (A) is an end view on the XZ plane including the ion optical axis C
- (B) is an ion beam End view in the YZ plane containing axis C.
- FIG. FIG. 5 is a diagram showing an ion intensity increasing effect when the configuration of one embodiment of the present invention is adopted for a pre-rod portion and a post-rod portion;
- the quadrupole mass spectrometer according to the present invention can be applied to general mass spectrometers using quadrupole mass filters as mass separators. Therefore, the quadrupole mass spectrometer according to the present invention includes a single quadrupole mass spectrometer, a triple quadrupole mass spectrometer, and a quadrupole-time-of-flight mass spectrometer.
- FIG. 1 is a schematic overall configuration diagram of a triple quadrupole mass spectrometer according to this embodiment.
- This mass spectrometer is a triple quadrupole mass spectrometer using an atmospheric pressure ion source, and is generally used as a liquid chromatograph-mass spectrometer (LC-MS) in combination with a liquid chromatograph. be.
- LC-MS liquid chromatograph-mass spectrometer
- an ionization device 6 with an ionization chamber 60 provided therein is connected to the front of the vacuum chamber 1 .
- the interior of the vacuum chamber 1 is roughly divided into four chambers: a first intermediate vacuum chamber 2 , a second intermediate vacuum chamber 3 , a third intermediate vacuum chamber 4 , and an analysis chamber 5 .
- the ionization chamber 60 is at substantially atmospheric pressure, and each chamber after the first intermediate vacuum chamber 2 is evacuated by a rotary pump and a turbomolecular pump (not shown).
- the degree of vacuum increases stepwise in order from the ionization chamber 60 to the first intermediate vacuum chamber 2, second intermediate vacuum chamber 3, third intermediate vacuum chamber 4, and analysis chamber 5. It has a configuration of a staged differential exhaust system.
- An electrospray ionization (ESI) probe 61 is arranged in the ionization chamber 60, and the ionization chamber 60 and the first intermediate vacuum chamber 2 are communicated through a desolvation pipe 62 heated to a high temperature.
- An ion guide 20 called a Q-array is arranged in the first intermediate vacuum chamber 2 , and the first intermediate vacuum chamber 2 and the second intermediate vacuum chamber 3 are separated from each other by small holes provided at the top of a skimmer 21 .
- multipole ion guides 30 and 40 each of which is composed of a plurality of rod electrodes arranged so as to surround the ion optical axis C, are arranged.
- a front-stage quadrupole mass filter 50 In the analysis chamber 5, along the ion optical axis C, a front-stage quadrupole mass filter 50, a collision cell 51 internally provided with an ion guide 52 for converging and transporting ions, and a rear-stage quadrupole mass filter 53 and an ion detector 54 that outputs an ion intensity corresponding to the amount of incident ions as a detection signal.
- Predetermined voltages are applied to the ESI probe 61, the desolvation tube 62, the ion guides 20, 30, 40, 52, the quadrupole mass filters 50, 53, etc. from the power supply unit 7 under the control of the control unit 8. be done. Further, although not shown for the sake of complication, a predetermined voltage is also applied to each component such as the ESI probe 61 and the desolvation tube 62 .
- a signal detected by the ion detector 54 is converted into digital data by an analog-digital converter (not shown) and input to a data processing section (not shown).
- a typical MS/MS analysis operation in the mass spectrometer of this embodiment will be schematically described.
- the sample liquid is introduced into the ESI probe 61, charged sample droplets are sprayed into the ionization chamber 60 from the tip of the ESI probe 61.
- Component molecules contained in the sample liquid are ionized in the process of vaporizing the solvent in the droplet.
- the generated ions are sucked into the desolvation pipe 62 together with charged droplets in which the solvent has not sufficiently evaporated, and are sent to the first intermediate vacuum chamber 2 . Evaporation of the solvent in the droplets in the desolvation tube 62 is further promoted, thereby promoting the generation of ions derived from the sample components.
- the ions introduced into the first intermediate vacuum chamber 2 are converged near the small hole of the skimmer 21 by the action of the electric field formed by the ion guide 20 and enter the second intermediate vacuum chamber 3 through the small hole.
- the ions are converged and transported sequentially by the action of the electric field formed by the ion guides 30 and 40, and pass through the aperture 55a formed in the partition wall 55 separating the third intermediate vacuum chamber 4 and the analysis chamber 5 into the analysis chamber 5. come in.
- the ions originating from the sample components first enter the front-stage quadrupole mass filter 50, and only the ions having m/z corresponding to the voltage applied to the electrodes constituting the front-stage quadrupole mass filter 50 are filtered. passes through the pre-stage quadrupole mass filter 50 .
- the ions (precursor ions) that have passed through the front-stage quadrupole mass filter 50 enter the collision cell 51 and collide with the collision gas (usually an inert gas such as argon or nitrogen) introduced into the collision cell 51 . Collision-induced dissociation (CID) occurs.
- the collision gas usually an inert gas such as argon or nitrogen
- Specific product ions derived from specific components in the sample are detected by selectively allowing ions having a predetermined m/z to pass through the front-stage quadrupole mass filter 50 and the rear-stage quadrupole mass filter 53, respectively. be able to.
- the front-stage quadrupole mass filter 50 includes a main rod portion 500, a pre-rod portion 501 arranged in front of the main rod portion 500, and a post-rod portion arranged behind it. 502 and .
- the rear quadrupole mass filter 53 includes a main rod portion 530 and a pre-rod portion 531 arranged in front of the main rod portion 530 .
- the main rod portions 500 and 530 in each quadrupole mass filter 50 and 53 have the function of selecting ions according to m/z, and the pre-rod portions 501 and 531 and the post-rod portion 502 are mainly the main rod portions. It has the function of reducing the disturbance of the edge electric field of 500 and 503 .
- FIGS. 2 and 3 are diagrams showing the configuration of the front half of the front quadrupole mass filter 50, in which (A) is an end view on the XZ plane including the ion optical axis C, and (B) is an ion optical axis C. is an end view in the YZ plane including .
- FIG. 3 is a cross-sectional view taken along line A--AA in FIG.
- the main rod section 500 includes four main rod electrodes 5001, 5002, 5003, and 5004 having a cylindrical outer shape, and the four main rod electrodes 5001 to 5004 are They are arranged parallel to each other at equal angular intervals in the circumferential direction so as to contact an inscribed circle centered on the ion optical axis C and having a radius of r 0 .
- two rod electrodes 5001 and 5003 facing each other across the ion optical axis C in the X-axis direction are applied with a voltage +(U+Vcos ⁇ t) from the power supply unit 7, and the Y A voltage ⁇ (U+V cos ⁇ t) is applied from the power supply unit 7 to two rod electrodes 5002 and 5004 facing each other across the ion optical axis C in the axial direction.
- U is a DC voltage
- V cos ⁇ t is an RF voltage
- U and V have a fixed relationship and vary according to m/z.
- a DC bias voltage may be commonly applied to each main rod electrode, the DC bias voltage does not contribute to the separation of ions, so it is omitted here.
- the pre-rod portion 501 is divided in the direction of the ion optical axis C into two segments, a first segment portion 501A and a second segment portion 501B.
- each of the pre-rod electrodes 5011 to 5014 is cut near the center in the direction of the ion optical axis C and divided into first segments 5011A to 5014A and second segments 5011B to 5014B.
- One pre-rod electrode for example the pre-rod electrode 5011, consists of a first segment 5011A and a second segment 5011B, which maintain electrical contact with the second segment 5011B extending radially (in the XY plane in FIG. 2). inside) and 1 mm inward (toward the ion optical axis C).
- the other two pre-rod electrodes for example the pre-rod electrode 5014, consist of a first segment 5014A and a second segment 5014B which maintain electrical contact with the second segment 5011B extending radially (in FIG. 2 XY plane) and outwardly (away from the ion optical axis C) by 1 mm.
- the pre-rod electrodes 5012 facing each other with the ion optical axis C interposed therebetween.
- the first segment 5011A-5014A of each pre-rod electrode 5011-5014 is arranged to touch an inscribed circle of radius r 0 .
- the second segments 5011B to 5014B of the pre-rod electrodes 5011 to 5014 are second segments 5012B and 5014B (see FIG. 2A ) arranged in the X-axis direction (see FIG. 2A ) arranged in the X-axis direction (see FIG. 2A ) arranged in the X-axis direction are second segments 5012B and 5014B (see FIG.
- the inscribed circle in contact with the first segments 5011A to 5014A of the pre-rod electrodes 5011 to 5014 and the inscribed circle in contact with the main rod electrodes 5001 to 5004 do not necessarily have the same radius.
- r 0 is about 4 mm in this example.
- the 1 mm step between segments is not limited to this.
- SIMION registered trademark
- ion optical design simulation software a well-known ion optical design simulation software.
- Ions enter the pre-rod space surrounded by the pre-rod electrodes 5011 to 5014 configured as described above through the aperture 55a. Since the first segments 5011A-5014A of the pre-rod electrodes 5011-5014 are in contact with the inscribed circle of the same radius, the RF electric field at the entrance of the pre-rod space is substantially unchanged from the conventional one, and the RF electric field in the XY plane is the ion It is isotropic around the optical axis C. Therefore, the ions entering through the circular aperture 55a and spreading in a substantially conical shape, that is, ions existing substantially isotropically around the ion optical axis C are well received in the pre-rod space, that is, with high efficiency.
- the second segments 5012B and 5014B located in the Y-axis direction are relatively long from the ion optical axis C, and the second segments 5011B and 5013B located in the X-axis direction are The distance to the ion optical axis C is relatively short. Therefore, the positive ions trying to pass through the space surrounded by the second segments 5011B to 5014B are more strongly focused in the X-axis direction, and conversely weakened in the Y-axis direction.
- the second segments 5011B and 5013B arranged in the X-axis direction are arranged so as to be in contact with an inscribed circle having a radius of r 0 -1 mm, while the second segments 5012B and 5014B arranged in the Y-axis direction are , may be arranged so as to be tangent to the inscribed circle with radius r 0 .
- the two pre-rod electrodes 5012, 5014 visible in FIG. 2B are not divided into two segments. Even with such a configuration, the effect of deceleration and divergence acting on the positive ions moving from the pre-rod space to the main rod space due to the U voltage is alleviated, so the ion transmission efficiency can be improved.
- the radius of the inscribed circle of the second segments 5012B and 5014B arranged in the Y-axis direction should be larger than r 0 for the following reason.
- the radius of the inscribed circle of the second segments 5011B, 5013B is smaller than r 0 , the acceleration and focusing effects are enhanced, but the space in which ions can be trapped is narrowed, resulting in an enhanced space charge effect.
- the radius of the inscribed circles of the second segments 5012B and 5014B is made larger than r 0 , the space capable of trapping ions in the Y-axis direction expands. Therefore, the increase in the space charge effect caused by the narrowing of the space capable of trapping ions in the X-axis direction is alleviated in the Y-axis direction, and the divergence of ions due to the space charge effect can be suppressed. As a result, overall ion transmission efficiency improves when the radius of the inscribed circle of the second segments 5012B and 5014B arranged in the Y-axis direction is larger than r0 .
- FIG. 4A and 4B are diagrams showing the configuration of the rear half of the front quadrupole mass filter 50.
- FIG. 4A is an end view on the XZ plane including the ion optical axis C
- FIG. is an end view in the YZ plane including .
- the post-rod electrodes 5021-5024 are basically similar in configuration and arrangement to the pre-rod electrodes 5011-5014, and the second segments 5021B-5024B of each post-rod electrode 5021-5024 touch the inscribed circle of radius r0 . are arranged as follows. On the other hand, among the first segments 5021A to 5024A of the post-rod electrodes 5021 to 5024, the first segments 5021A and 5023A (see FIG.
- the first segments 5022A and 5024A (see FIG. 4(B)) arranged in contact with the inscribed circle and arranged in the Y-axis direction are arranged in contact with the inscribed circle having a radius of r 0 +1 mm. .
- the reason why the arrangement of 5021 to 5024 as shown in FIG. 4 improves the ion transmission efficiency is presumed to be as follows.
- the ions pass through the main rod space of the quadrupole mass filter, the ions travel in the Z-axis direction while vibrating in the X-axis direction and the Y-axis direction.
- the present inventors analyzed the trajectory of ions in the main rod space by simulation, the amplitude of ion vibration differs between the X-axis direction and the Y-axis direction, and the X-axis direction is larger than the Y-axis direction. (however, the average ion trajectory is closer to the ion optical axis in the X-axis direction than in the Y-axis direction).
- the first segments 5021A to 5024A of the post rod electrodes 5021 to 5024 by arranging the first segments 5021A to 5024A of the post rod electrodes 5021 to 5024, a stronger ion focusing action can be provided in the X-axis direction. As a result, ions that tend to diverge when emitted from the main rod space can be reliably received in the post rod space, and ion loss can be reduced to improve ion transmission efficiency.
- the second segments 5021B to 5024B on the far side from the main rod portion 500 are in contact with the inscribed circle having the same radius r 0 , so ions are emitted from the post rod portion 502 in the conventional manner. Equally efficient.
- the post-stage quadrupole mass filter 53 has a configuration including only the pre-rod portion 531.
- the voltage ⁇ (U+V cos ⁇ t) is applied to the two main rod electrodes 5001 and 5003 positioned in the X-axis direction, and the two main rod electrodes 5002 positioned in the Y-axis direction are applied.
- 5004 is applied with a voltage +(U+V cos ⁇ t). That is, the polarities of the voltages applied to the pre-rod electrodes 5011-5014 and the main rod electrodes 5001-5004 may be switched between positive and negative. This provides the same effect as described above.
- FIG. 5 shows the result of calculating [ion intensity in the mass spectrometer according to the present invention]/[ion intensity in the conventional mass spectrometer] at a predetermined m/z value corresponding to PEG.
- FIG. 5 shows an example of the degree of improvement in ionic strength and thus sensitivity using the present invention.
- the mass spectrometer using the pre-rod portion according to the present invention has a wider range of m/z than the mass spectrometer using the conventional pre-rod portion, and the range is 1.3 to 1.0.
- the ionic strength is increased by about 7 times.
- the post-rod portion was also evaluated in the same manner, but the mass spectrometer using the post-rod portion according to the present invention has a wider m/z range than the mass spectrometer using the conventional post-rod portion.
- the ionic strength is increased by about 1.3 to 1.7 times. This improvement in ion intensity means that the quadrupole mass filter has an overall improvement in ion permeability, and the effects of the present invention can be confirmed.
- the above embodiment is a triple quadrupole mass spectrometer using a quadrupole mass filter having a pre-rod portion and/or a post-rod portion with a characteristic configuration, but a single-type quadrupole mass spectrometer It is clear that the present invention can also be applied to instruments and quadrupole-time-of-flight mass spectrometers.
- the ion source of the mass spectrometer is not limited to the atmospheric pressure ion source, and ion sources based on various ionization methods generally used in mass spectrometers can be used.
- One aspect of the quadrupole mass spectrometer according to the present invention has a quadrupole mass filter that separates the ions to be measured according to the mass-to-charge ratio, and the quadrupole mass filter is , a main rod portion including four main rod electrodes arranged to surround the ion optical axis; a pre-rod section including four pre-rod electrodes respectively arranged in front of the four main-rod electrodes along the ion optical axis, wherein the four pre-rods are arranged at the end opposite to the main rod section;
- the electrodes are in contact with an inscribed circle having the same radius centering on the ion optical axis, and two pre-rod electrodes and two other electrodes facing each other across the ion optical axis are arranged at the end facing the main rod portion.
- a pre-rod portion in which two pre-rod electrodes are arranged so as to be in contact with inscribed circles having different radii centered on the ion optical axis; a first voltage applying unit that applies a voltage obtained by superimposing a DC voltage and an RF voltage according to the mass-to-charge ratio of ions to be passed through to each of the four main rod electrodes; a second voltage applying unit that applies an RF voltage having the same frequency as the RF voltage to each of the four pre-rod electrodes; Prepare.
- FIG. 6 Another aspect of the quadrupole mass spectrometer according to the present invention has a quadrupole mass filter that separates the ions to be measured according to the mass-to-charge ratio, and the quadrupole mass filter teeth, a main rod portion including four main rod electrodes arranged to surround the ion optical axis; a post-rod section including four post-rod electrodes respectively arranged behind the four main-rod electrodes along the ion optical axis, wherein the four post-rod electrodes are arranged at the end opposite to the main rod section; are in contact with an inscribed circle having the same radius centered on the ion optical axis, and at the end facing the main rod portion, two post rod electrodes facing each other across the ion optical axis and two other post-rod electrodes are arranged so as to be in contact with inscribed circles with different radii centered on the ion optical axis; a first voltage applying unit that applies a voltage obtained by superimposing a DC voltage and an RF voltage
- the entrance area where ions enter the pre-rod section the boundary area where ions move from the pre-rod section to the main rod section, and the post section from the main rod section.
- the ion transmittance is improved both in the boundary region where ions move to the rod portion and in the exit region where ions exit from the post rod portion.
- the overall ion transmittance of the quadrupole mass filter is improved, and the analysis sensitivity can be improved more than before.
- the power supply section is not complicated, and both the size and weight increase of the power supply unit and the cost increase can be avoided.
- the main rod electrode does not require special processing for manufacturing, it is possible to avoid an increase in cost in this respect as well.
- the cross-sectional shape of the main rod electrode and the pre-rod electrode or post-rod electrode can be made the same, which is advantageous in reducing costs. be.
- the pre-rod electrode or post-rod electrode divided into a plurality of segments is arranged so as to ensure electrical connection between the plurality of segments. are arranged with steps in the radial direction. Therefore, even if it is divided into a plurality of parts, it is substantially one pre-rod electrode.
- the radius of the inscribed circle of the pre-rod electrode or post-rod electrode is adjusted according to the size of the step between segments in the pre-rod electrode or post-rod electrode. can be adjusted.
- the pre-rod electrode or the post-rod electrode may be positioned so as to be parallel to the main rod electrode, it is easy to assemble the rod electrodes and to ensure assembly accuracy.
- the second set of pre-rod electrodes is supplied with a DC voltage having the same polarity as the ions to pass along the ion optical axis. It can be an electrode placed in front of the main rod electrode to which it is applied.
- the four post-rod electrodes are arranged in a first inscribed contact with the four main-rod electrodes.
- the first set of two post rod electrodes facing each other with the ion optical axis interposed therebetween The other two second sets of post-rod electrodes are in contact with an inscribed circle with a radius larger than or the same as the second inscribed circle, and the other two post-rod electrodes have an inner radius smaller than the second inscribed circle. It can be tangent to a tangent circle.
- the second set of post-rod electrodes is applied with a DC voltage having the same polarity as the ions to pass along the ion optical axis. It can be an electrode arranged behind the main rod electrode.
- the ion transmission efficiency can be improved with a simple structure, that is, while suppressing costs. .
- Main rod electrode 501 Pre-rod portion 501A First segment portion 501B
- Second segment portion 5011, 5012, 5013, 5014 Pre-rod electrode 5011A, 5012A, 5013A, 5014A First segment 5011B, 5012B, 5013B, 5014B
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Tubes For Measurement (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
特許文献1には、プリロッド電極の内接円の半径、若しくは、プリロッド電極のイオン光軸に向いた湾曲面の断面形状を、X軸方向に位置するプリロッド電極とY軸方向に位置するプリロッド電極とで異なるものとする、又は、X軸方向に位置するプリロッド電極とY軸方向に位置するプリロッド電極とで印加するRF電圧の振幅を異なるものとする質量分析装置が記載されている。
イオン光軸を取り囲むように配置された4本のメインロッド電極を含むメインロッド部と、
前記イオン光軸に沿って前記4本のメインロッド電極の前方にそれぞれ配置された4本のプリロッド電極を含むプリロッド部であって、前記メインロッド部と反対側の端部では前記4本のプリロッド電極が前記イオン光軸を中心とする同一半径の内接円に接し、前記メインロッド部に向いた側の端部では、前記イオン光軸を挟んで対向する2本のプリロッド電極と他の2本のプリロッド電極とが該イオン光軸を中心とする互いに異なる半径の内接円に接するように配置されてなるプリロッド部と、
通過させるイオンの質量電荷比に応じた直流電圧とRF電圧とを重畳した電圧を、前記4本のメインロッド電極にそれぞれ印加する第1電圧印加部と、
前記RF電圧と同じ周波数であるRF電圧を前記4本のプリロッド電極にそれぞれ印加する第2電圧印加部と、
を備える。
イオン光軸を取り囲むように配置された4本のメインロッド電極を含むメインロッド部と、
前記イオン光軸に沿って前記4本のメインロッド電極の後方にそれぞれ配置された4本のポストロッド電極を含むポストロッド部であって、前記メインロッド部と反対側の端部では前記4本のポストロッド電極が前記イオン光軸を中心とする同一半径の内接円に接し、前記メインロッド部に向いた側の端部では、前記イオン光軸を挟んで対向する2本のポストロッド電極と他の2本のポストロッド電極とが該イオン光軸を中心とする互いに異なる半径の内接円に接するように配置されてなるポストロッド部と、
通過させるイオンの質量電荷比に応じた直流電圧とRF電圧とを重畳した電圧を、前記4本のメインロッド電極にそれぞれ印加する第1電圧印加部と、
前記RF電圧と同じ周波数であるRF電圧を前記4本のポストロッド電極にそれぞれ印加する第2電圧印加部と、
を備える。
また、本発明に係る四重極型質量分析装置の上記二つの態様によれば、プリロッド部やポストロッド部に含まれるロッド電極に印加するRF電圧を複数種類用意する必要がないため、電源部が複雑にならず、電源部のサイズや重量の増加、及びコストの増加を共に回避することができる。また、メインロッド電極について製造上の特殊な加工を要しないので、その点においてもコストの増加を回避することができる。
図1は、本実施形態のトリプル四重極型質量分析装置の概略全体構成図である。この質量分析装置は、大気圧イオン源を用いたトリプル四重極型質量分析装置であって、一般的には、液体クロマトグラフと組み合わせて液体クロマトグラフ質量分析装置(LC-MS)として使用される。
ESIプローブ61に試料液が導入されると、ESIプローブ61の先端から帯電した試料液滴がイオン化室60内に噴霧される、帯電液滴が周囲のガスに衝突して微細化されると共に該液滴中の溶媒が気化する過程で、試料液に含まれる成分分子はイオン化される。生成されたイオンは、溶媒が十分に気化していない帯電液滴とともに脱溶媒管62に吸い込まれ、第1中間真空室2へ送られる。脱溶媒管62中で液滴中の溶媒の気化は一層促進され、それによって試料成分由来のイオンの生成は促進される。
なお、r0の値は適宜に決めることができるが、本例ではr0は約4mmである。また、セグメント間の段差である1mmもこれに限らない。ここで示している値は、イオン光学設計シミュレーションソフトウェアとしてよく知られている米国サイエンティフィック・インスツルメント・サービシズ(Scientific Instrument Services)社製のSIMION(登録商標)を用いた最適化を行った結果であるが、その値が条件によって変わり得ることはよく知られている。
四重極マスフィルターのメインロッド空間をイオンが通過する際に、イオンはX軸方向とY軸方向とにそれぞれ振動しながらZ軸方向に進行する。本発明者らがメインロッド空間におけるイオンの軌道をシミュレーションによって解析したところ、イオンの振動の振幅はX軸方向とY軸方向とでは異なり、X軸方向の方がY軸方向の方よりも大きいことが判明した(但し、平均的なイオン軌道はX軸方向の方がY軸方向の方よりもイオン光軸に近い)。これは、X軸方向の方がY軸方向に比べて、メインロッド空間を通過するイオンを収束させることが難しいことを示唆しており、メインロッド空間からポストロッド空間へイオンが移動する際に、X軸方向の方がY軸方向に比べてイオンが発散し易いと考えられる。
本発明者らは、四重極マスフィルターにおけるプリロッド部及びポストロッド部のロッド電極を上述したような構成としたことによる効果を、実験的に確認した。この実験では、LC-MSの感度評価において頻用されるPEG(ポリエチレングリコール)を試料として使用し、従来の一般的なプリロッド部(又はポストロッド部)を用いた質量分析装置と、上述した本発明によるプリロッド部(又はポストロッド部)を用いた質量分析装置とでイオン強度を測定した。
PEGに対応する所定のm/z値における、[本発明による質量分析装置でのイオン強度]/[従来の質量分析装置でのイオン強度]を計算した結果を図5に示す。図5は、本発明を用いることによるイオン強度つまりは感度の改善度合いの一例を示している。
上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
イオン光軸を取り囲むように配置された4本のメインロッド電極を含むメインロッド部と、
前記イオン光軸に沿って前記4本のメインロッド電極の前方にそれぞれ配置された4本のプリロッド電極を含むプリロッド部であって、前記メインロッド部と反対側の端部では前記4本のプリロッド電極が前記イオン光軸を中心とする同一半径の内接円に接し、前記メインロッド部に向いた側の端部では、前記イオン光軸を挟んで対向する2本のプリロッド電極と他の2本のプリロッド電極とが該イオン光軸を中心とする互いに異なる半径の内接円に接するように配置されてなるプリロッド部と、
通過させるイオンの質量電荷比に応じた直流電圧とRF電圧とを重畳した電圧を、前記4本のメインロッド電極にそれぞれ印加する第1電圧印加部と、
前記RF電圧と同じ周波数であるRF電圧を前記4本のプリロッド電極にそれぞれ印加する第2電圧印加部と、
を備える。
イオン光軸を取り囲むように配置された4本のメインロッド電極を含むメインロッド部と、
前記イオン光軸に沿って前記4本のメインロッド電極の後方にそれぞれ配置された4本のポストロッド電極を含むポストロッド部であって、前記メインロッド部と反対側の端部では前記4本のポストロッド電極が前記イオン光軸を中心とする同一半径の内接円に接し、前記メインロッド部に向いた側の端部では、前記イオン光軸を挟んで対向する2本のポストロッド電極と他の2本のポストロッド電極とが該イオン光軸を中心とする互いに異なる半径の内接円に接するように配置されてなるポストロッド部と、
通過させるイオンの質量電荷比に応じた直流電圧とRF電圧とを重畳した電圧を、前記4本のメインロッド電極にそれぞれ印加する第1電圧印加部と、
前記RF電圧と同じ周波数であるRF電圧を前記4本のポストロッド電極にそれぞれ印加する第2電圧印加部と、
を備える。
2…第1中間真空室
3…第2中間真空室
4…第3中間真空室
5…分析室
20、30、40、52…イオンガイド
21…スキマー
50…前段四重極マスフィルター
500…メインロッド部
5001、5002、5003、5004…メインロッド電極
501…プリロッド部
501A…第1セグメント部
501B…第2セグメント部
5011、5012、5013、5014…プリロッド電極
5011A、5012A、5013A、5014A…第1セグメント
5011B、5012B、5013B、5014B…第2セグメント
502…ポストロッド部
502A…第1セグメント部
502B…第2セグメント部
5021、5022、5023、5024…ポストロッド電極
5021A、5022A、5023A、5024A…第1セグメント
5021B、5022B、5023B、5024B…第2セグメント
51…コリジョンセル
53…後段四重極マスフィルター
530…メインロッド部
531…プリロッド部
54…イオン検出器
55…隔壁
55a…アパーチャー
6…イオン化装置
60…イオン化室
61…ESIプローブ
62…脱溶媒管
7…電源部
8…制御部
C…イオン光軸
Claims (10)
- 測定対象のイオンを質量電荷比に応じて分離する四重極マスフィルターを有し、該四重極マスフィルターは、
イオン光軸を取り囲むように配置された4本のメインロッド電極を含むメインロッド部と、
前記イオン光軸に沿って前記4本のメインロッド電極の前方にそれぞれ配置された4本のプリロッド電極を含むプリロッド部であって、前記メインロッド部と反対側の端部では前記4本のプリロッド電極が前記イオン光軸を中心とする同一半径の内接円に接し、前記メインロッド部に向いた側の端部では、前記イオン光軸を挟んで対向する2本のプリロッド電極と他の2本のプリロッド電極とが該イオン光軸を中心とする互いに異なる半径の内接円に接するように配置されてなるプリロッド部と、
通過させるイオンの質量電荷比に応じた直流電圧とRF電圧とを重畳した電圧を、前記4本のメインロッド電極にそれぞれ印加するメイン電圧印加部と、
前記RF電圧と同じ周波数であるRF電圧を前記4本のプリロッド電極にそれぞれ印加するプリ電圧印加部と、
を備える四重極型質量分析装置。 - 前記4本のプリロッド電極の直径は同一である、請求項1に記載の四重極型質量分析装置。
- 前記4本のプリロッド電極のうちの少なくともイオン光軸を挟んで対向する2本のプリロッド電極は、イオン光軸の延伸方向に沿って複数のセグメントに分割され、前記メインロッド部と反対側に位置するセグメントと前記メインロッド部に向いた側のセグメントとが径方向に段差を有して配置される、請求項2に記載の四重極型質量分析装置。
- 前記メインロッド部と反対側の端部では前記4本のプリロッド電極は、前記4本のメインロッド電極が接する第1内接円と同一半径の第2内接円に接し、前記メインロッド部に向いた側の端部では、前記イオン光軸を挟んで対向する2本の第1の組のプリロッド電極は、前記第2内接円よりも大きな又は該第2内接円と同じ半径の内接円に接し、他の2本の第2の組のプリロッド電極は前記第2内接円よりも小さな半径の内接円に接する、請求項3に記載の四重極型質量分析装置。
- 前記第2の組のプリロッド電極は、前記イオン光軸に沿って、通過させるイオンの極性と同じ極性の直流電圧が印加されるメインロッド電極の前方に配置された電極である、請求項4に記載の四重極型質量分析装置。
- 測定対象のイオンを質量電荷比に応じて分離する四重極マスフィルターを有し、該四重極マスフィルターは、
イオン光軸を取り囲むように配置された4本のメインロッド電極を含むメインロッド部と、
前記イオン光軸に沿って前記4本のメインロッド電極の後方にそれぞれ配置された4本のポストロッド電極を含むポストロッド部であって、前記メインロッド部と反対側の端部では前記4本のポストロッド電極が前記イオン光軸を中心とする同一半径の内接円に接し、前記メインロッド部に向いた側の端部では、前記イオン光軸を挟んで対向する2本のポストロッド電極と他の2本のポストロッド電極とが該イオン光軸を中心とする互いに異なる半径の内接円に接するように配置されてなるポストロッド部と、
通過させるイオンの質量電荷比に応じた直流電圧とRF電圧とを重畳した電圧を、前記4本のメインロッド電極にそれぞれ印加するメイン電圧印加部と、
前記RF電圧と同じ周波数であるRF電圧を前記4本のポストロッド電極にそれぞれ印加するポスト電圧印加部と、
を備える四重極型質量分析装置。 - 前記4本のポストロッド電極の直径は同一である、請求項5に記載の四重極型質量分析装置。
- 前記4本のポストロッド電極のうちの少なくともイオン光軸を挟んで対向する2本のポストロッド電極は、イオン光軸の延伸方向に沿って複数のセグメントに分割され、前記メインロッド部と反対側に位置するセグメントと前記メインロッド部に向いた側のセグメントとが径方向に段差を有して配置される、請求項7に記載の四重極型質量分析装置。
- 前記メインロッド部と反対側の端部では前記4本のポストロッド電極は、前記4本のメインロッド電極が接する第1内接円と同一半径の第2内接円に接し、前記メインロッド部に向いた側の端部では、前記イオン光軸を挟んで対向する2本の第1の組のポストロッド電極は、前記第2内接円よりも大きな又は該第2内接円と同じ半径の内接円に接し、他の2本の第2の組のポストロッド電極は前記第2内接円よりも小さな半径の内接円に接する、請求項8に記載の四重極型質量分析装置。
- 前記第2の組のポストロッド電極は、前記イオン光軸に沿って、通過させるイオンの極性と同じ極性の直流電圧が印加されるメインロッド電極の後方に配置された電極である、請求項9に記載の四重極型質量分析装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/020694 WO2022254526A1 (ja) | 2021-05-31 | 2021-05-31 | 四重極型質量分析装置 |
JP2023525171A JP7521700B2 (ja) | 2021-05-31 | 2021-05-31 | 四重極型質量分析装置 |
US18/559,161 US20240087873A1 (en) | 2021-05-31 | 2021-05-31 | Quadrupole mass spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/020694 WO2022254526A1 (ja) | 2021-05-31 | 2021-05-31 | 四重極型質量分析装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022254526A1 true WO2022254526A1 (ja) | 2022-12-08 |
Family
ID=84323959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/020694 WO2022254526A1 (ja) | 2021-05-31 | 2021-05-31 | 四重極型質量分析装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240087873A1 (ja) |
JP (1) | JP7521700B2 (ja) |
WO (1) | WO2022254526A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1021871A (ja) * | 1996-07-02 | 1998-01-23 | Hitachi Ltd | イオントラップ質量分析装置 |
JP2012138270A (ja) * | 2010-12-27 | 2012-07-19 | Jeol Ltd | 質量分析装置 |
JP2014527275A (ja) * | 2011-09-16 | 2014-10-09 | マイクロマス ユーケー リミテッド | 軸方向放出を用いたrfオンリー四重極マスフィルタおよび線形四重極イオントラップの性能向上 |
WO2017094146A1 (ja) * | 2015-12-02 | 2017-06-08 | 株式会社島津製作所 | 四重極マスフィルタ及び四重極型質量分析装置 |
WO2018069982A1 (ja) * | 2016-10-11 | 2018-04-19 | 株式会社島津製作所 | イオンガイド及び質量分析装置 |
US20180286659A1 (en) * | 2015-10-01 | 2018-10-04 | Dh Technologies Development Pte. Ltd. | Mass-Selective Axial Ejection Linear Ion Trap |
WO2020121257A1 (en) * | 2018-12-13 | 2020-06-18 | Dh Technologies Development Pte. Ltd. | Effective potential matching at boundaries of segmented quadrupoles in a mass spectrometer |
-
2021
- 2021-05-31 WO PCT/JP2021/020694 patent/WO2022254526A1/ja active Application Filing
- 2021-05-31 JP JP2023525171A patent/JP7521700B2/ja active Active
- 2021-05-31 US US18/559,161 patent/US20240087873A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1021871A (ja) * | 1996-07-02 | 1998-01-23 | Hitachi Ltd | イオントラップ質量分析装置 |
JP2012138270A (ja) * | 2010-12-27 | 2012-07-19 | Jeol Ltd | 質量分析装置 |
JP2014527275A (ja) * | 2011-09-16 | 2014-10-09 | マイクロマス ユーケー リミテッド | 軸方向放出を用いたrfオンリー四重極マスフィルタおよび線形四重極イオントラップの性能向上 |
US20180286659A1 (en) * | 2015-10-01 | 2018-10-04 | Dh Technologies Development Pte. Ltd. | Mass-Selective Axial Ejection Linear Ion Trap |
WO2017094146A1 (ja) * | 2015-12-02 | 2017-06-08 | 株式会社島津製作所 | 四重極マスフィルタ及び四重極型質量分析装置 |
WO2018069982A1 (ja) * | 2016-10-11 | 2018-04-19 | 株式会社島津製作所 | イオンガイド及び質量分析装置 |
WO2020121257A1 (en) * | 2018-12-13 | 2020-06-18 | Dh Technologies Development Pte. Ltd. | Effective potential matching at boundaries of segmented quadrupoles in a mass spectrometer |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022254526A1 (ja) | 2022-12-08 |
JP7521700B2 (ja) | 2024-07-24 |
US20240087873A1 (en) | 2024-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8324565B2 (en) | Ion funnel for mass spectrometry | |
EP2866247B1 (en) | Ion guiding device and ion guiding method | |
US7985951B2 (en) | Mass spectrometer | |
JP4830450B2 (ja) | 質量分析装置 | |
US9123516B2 (en) | Multipole segments aligned in an offset manner in a mass spectrometer | |
WO2014203305A1 (ja) | イオン輸送装置及び該装置を用いた質量分析装置 | |
US20050151074A1 (en) | Focusing ions using gas dynamics | |
US8525106B2 (en) | Method and apparatus for transmitting ions in a mass spectrometer maintained in a sub-atmospheric pressure regime | |
WO2016135810A1 (ja) | イオンガイド及びそれを用いた質量分析装置 | |
JP5673848B2 (ja) | 質量分析装置 | |
WO2006098230A1 (ja) | 質量分析装置 | |
JP6593451B2 (ja) | 四重極マスフィルタ及び四重極型質量分析装置 | |
WO2022254526A1 (ja) | 四重極型質量分析装置 | |
WO2017081770A1 (ja) | 四重極マスフィルタ及び四重極型質量分析装置 | |
JP4940977B2 (ja) | イオン偏向装置及び質量分析装置 | |
CN110767526B (zh) | 一种倾斜多极杆导引系统 | |
CN116598188A (zh) | 一种渐变多极杆离子导引装置及其质谱分析系统 | |
US9536723B1 (en) | Thin field terminator for linear quadrupole ion guides, and related systems and methods | |
GB2535826A (en) | Mass spectrometers | |
US20240079224A1 (en) | Mass spectrometer | |
CN117612925A (zh) | 一种复合串联质谱仪 | |
JP4816792B2 (ja) | 質量分析装置 | |
WO2021021459A1 (en) | Axially progressive lens for transporting charged particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21944035 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023525171 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18559161 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21944035 Country of ref document: EP Kind code of ref document: A1 |