WO2022254488A1 - Elevator system - Google Patents

Elevator system Download PDF

Info

Publication number
WO2022254488A1
WO2022254488A1 PCT/JP2021/020616 JP2021020616W WO2022254488A1 WO 2022254488 A1 WO2022254488 A1 WO 2022254488A1 JP 2021020616 W JP2021020616 W JP 2021020616W WO 2022254488 A1 WO2022254488 A1 WO 2022254488A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaking
car
operation mode
amount
estimated value
Prior art date
Application number
PCT/JP2021/020616
Other languages
French (fr)
Japanese (ja)
Inventor
大地 山下
然一 伊藤
英一 齊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/020616 priority Critical patent/WO2022254488A1/en
Publication of WO2022254488A1 publication Critical patent/WO2022254488A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • This disclosure relates to an elevator system.
  • a rope damping operation is an operation that moves the car to a damping floor.
  • a damping floor is a floor capable of damping the swing of a rope (see Patent Literature 1, for example).
  • the amount of rope deflection is estimated using two variables, the value detected by the acceleration sensor and the position of the car in real time. For this reason, complicated calculations are required in order to determine whether or not the rope damping operation is necessary.
  • the present disclosure has been made to solve the problems described above, and aims to obtain an elevator system that can simplify the determination of the necessity of controlled operation.
  • An elevator system includes an elevator system main body having an elevator apparatus provided in a building, and a swing amount estimating section, the elevator apparatus being connected to a car and a flexible and an operation control unit that controls the operation of the car in a plurality of operation modes including a normal operation mode and a control operation mode.
  • a first sway amount threshold which is a criterion for determining the magnitude of the sway of the object to be determined, is set in the section, and the operation control unit has a A certain resonance region is set, and the swaying amount estimator obtains an estimated value of the swaying magnitude of the object to be determined when the car is positioned at a specific position based on the acceleration generated in the building.
  • the operation control unit determines whether the estimated value is equal to or greater than the first sway amount threshold and the car is positioned within the resonance region. , the operation mode shall be the control operation mode.
  • FIG. 1 is a schematic configuration diagram showing an elevator system according to Embodiment 1;
  • FIG. 2 is a block diagram showing a shake amount estimator in FIG. 1;
  • FIG. FIG. 2 is a block diagram showing an operation control unit in FIG. 1;
  • FIG. FIG. 5 is an explanatory diagram showing a setting example of a rope resonance region; It is a graph which shows an example of the setting method of a rope resonance area
  • FIG. 3 is a flowchart showing a building shaking monitoring operation by the shaking amount estimator of FIG. 2;
  • FIG. FIG. 4 is a flow chart showing operation mode switching operation by the operation control unit of FIG. 3 ;
  • FIG. FIG. 2 is a schematic configuration diagram showing an elevator system according to Embodiment 2;
  • FIG. 9 is a block diagram showing a control system of the elevator system of FIG. 8;
  • FIG. 14 is a flow chart showing a building shaking monitoring operation by a shaking amount estimating unit of Embodiment 3.
  • FIG. 10 is a flow chart showing an operation mode switching operation by an operation control unit of Embodiment 3.
  • FIG. FIG. 2 is a configuration diagram showing a first example of a processing circuit that realizes functions of an operation control unit and a shake amount estimation unit according to Embodiments 1 to 3;
  • FIG. 7 is a configuration diagram showing a second example of a processing circuit that realizes each function of the operation control section and the shake amount estimation section of Embodiments 1 to 3;
  • FIG. 1 is a schematic configuration diagram showing an elevator system according to Embodiment 1.
  • a building 50 is provided with a hoistway 51 and a machine room 52 .
  • the machine room 52 is provided above the hoistway 51 .
  • An acceleration sensor 53 is provided in the machine room 52 .
  • the acceleration sensor 53 detects acceleration generated in the building 50 when the building 50 shakes due to an earthquake or strong wind, for example.
  • the elevator system of Embodiment 1 includes an elevator system main body 30, a swing amount estimator 25, and an acceleration sensor 53. Elevator system body 30 is provided in building 50 .
  • the elevator system main body 30 of Embodiment 1 has one elevator device 31 . That is, the elevator system main body 30 of Embodiment 1 is composed of only one elevator device 31 .
  • the elevator device 31 includes a hoisting machine 11, a deflector wheel 13, a plurality of main ropes 14, a car 15, a counterweight 16, a plurality of compensating ropes 17, a first balancing wheel 18, a second balancing wheel 19, It has a speed governor 20 , a speed governor rope 22 , a pulley 23 , and an operation control section 24 .
  • the hoist 11 is provided in the machine room 52.
  • the hoisting machine 11 also has a drive sheave 12, a hoisting machine motor (not shown), and a hoisting machine brake (not shown).
  • a hoist motor rotates the drive sheave 12 .
  • the hoist brake keeps the drive sheave 12 stationary.
  • the hoist brake also brakes the rotation of the drive sheave 12 .
  • a plurality of main ropes 14 are wound around the drive sheave 12 and the deflector wheel 13 .
  • the cage 15 is connected to first ends of the main ropes 14 .
  • a counterweight 16 is connected to the second ends of the plurality of main ropes 14 .
  • the car 15 and the counterweight 16 are suspended in the hoistway 51 by a plurality of main ropes 14. Further, the car 15 and the counterweight 16 move up and down in the hoistway 51 by rotating the drive sheave 12 .
  • a pair of car guide rails (not shown) and a pair of counterweight guide rails (not shown) are installed in the hoistway 51 .
  • a pair of car guide rails guides the car 15 to move up and down.
  • a pair of counterweight guide rails guide the lifting and lowering of the counterweight 16 .
  • a plurality of compensating ropes 17 are suspended between the lower part of the cage 15 and the lower part of the counterweight 16. In FIG. 1 only one compen rope 17 is shown. The compensating ropes 17 compensate for the weight imbalance of the main ropes 14 on one side of the drive sheave 12 and the other.
  • the first balance wheel 18 and the second balance wheel 19 are provided at the bottom of the hoistway 51 .
  • a plurality of compensating ropes 17 are wound around the first balance wheel 18 and the second balance wheel 19 .
  • the first balance wheel 18 and the second balance wheel 19 apply tension to the plurality of compen ropes 17 .
  • the speed governor 20 is provided in the machine room 52.
  • the speed governor 20 also monitors whether the speed of the car 15 has reached an excessive speed. Further, the governor 20 has a governor sheave 21 .
  • the governor rope 22 is wound around the governor sheave 21 . Also, the speed governor rope 22 is looped in the hoistway 51 and connected to the car 15 . The tension pulley 23 is provided at the bottom of the hoistway 51 . A governor rope 22 is wound around the pulley 23 .
  • a plurality of main ropes 14, a plurality of compensating ropes 17, and a governor rope 22 are each connected to the car 15. Moreover, each of the plurality of main ropes 14, the plurality of compensating ropes 17, and the governor rope 22 is a long object having flexibility.
  • the operation control unit 24 is provided in the machine room 52.
  • the operation control unit 24 also controls the operation of the car 15 by controlling the hoist 11 . Further, the operation control unit 24 controls operation of the car 15 in a plurality of operation modes.
  • the multiple operating modes include a normal operating mode and a controlled operating mode.
  • the normal operation mode is a mode in which the car 15 is normally operated.
  • Normal operation is an operation method in which the car 15 is automatically moved to a destination floor in response to calls from within the car 15 and calls from a plurality of halls.
  • the control operation mode is an operation mode in which the car 15 is operated under control.
  • Controlled operation is a driving method for suppressing shaking of a determination target.
  • a determination target is a rope connected to the car 15 .
  • Embodiment 1 it is assumed that all the main ropes 14 sway in the same manner, and one of the plurality of main ropes 14 is used as the determination target.
  • the operation control unit 24 stops the car 15 at the nearest floor and moves the car 15 to the evacuation floor after the passengers get off.
  • the evacuation floor is a floor on which the object to be determined is less likely to resonate due to shaking of the building 50 .
  • the operation control unit 24 may, for example, stop the car 15 at the nearest floor and suspend the operation of the car 15 .
  • the shaking amount estimator 25 is provided in the machine room 52 .
  • a detection signal from the acceleration sensor 53 is also input to the shake amount estimation unit 25 .
  • FIG. 2 is a block diagram showing the shake amount estimation unit 25 of FIG.
  • the shake amount estimating unit 25 has an estimated value calculating unit 25a, a comparing unit 25b, and a reporting unit 25c as functional blocks.
  • the estimated value calculation unit 25a calculates an estimated value of the magnitude of the shaking of the determination object when the car 15 is positioned at a specific position.
  • Ask for The magnitude of the shaking of the determination target is the amplitude of the determination target in the horizontal direction.
  • the magnitude of the swing of the determination target changes depending on the position of the car 15 to which the determination target is connected. Also, the determination target resonates when the natural period of the building 50 and the natural period of the determination target are close to each other. Resonance of the determination target increases the magnitude of shaking of the determination target.
  • the estimated value calculation unit 25a does not use the real-time car position as a variable, and obtains the estimated value by assuming that the car 15 is positioned at the position where the shaking of the object to be determined due to the shaking of the building 50 is greatest. That is, the specific position in the first embodiment is the car position where the shaking of the determination object caused by the shaking of the building 50 is the largest.
  • the magnitude of the shaking of the determination target caused by the shaking of the building 50 can be calculated using a functional expression. Since the specific calculation method is publicly known, the description thereof is omitted here.
  • a first shake amount threshold is set in the comparison unit 25b.
  • the first shake amount threshold is a criterion for determining the magnitude of shake of the object to be determined.
  • the comparison unit 25b determines whether the estimated value calculated by the estimated value calculation unit 25a is greater than or equal to the first shake amount threshold.
  • the notification unit 25c notifies the operation control unit 24 of the determination result by the comparison unit 25b when the estimated value is greater than or equal to the first shaking amount threshold.
  • FIG. 3 is a block diagram showing the operation control section 24 of FIG.
  • the operation control unit 24 has, as functional blocks, a reception unit 24a, a car position determination unit 24b, and a mode switching unit 24c.
  • the receiving unit 24a receives a report from the shake amount estimating unit 25.
  • a rope resonance area is set as a resonance area in the car position determination unit 24b.
  • the rope resonance area is a part of the moving area of the car 15 and includes the car position where the object to be determined resonates due to the shaking of the building 50 .
  • the car position determination unit 24b determines whether or not the car 15 is positioned within the rope resonance region.
  • the mode switching unit 24c switches the operation mode from the normal operation mode when the swing amount estimating unit 25 determines that the estimated value is equal to or greater than the first swing amount threshold and the car 15 is positioned within the rope resonance region. Switch to controlled operation mode.
  • the operation control unit 24 receives the notification from the shaking amount estimation unit 25 is received, the operation mode is switched to the control operation mode.
  • the operation control unit 24 receives the report from the sway amount estimation unit 25, the normal operation mode is continued.
  • FIG. 4 is an explanatory diagram showing a setting example of the rope resonance area.
  • Four cages 15 are shown in FIG. 4 for explanation.
  • the rope resonance area in the example of FIG. 4 is set on the middle floor of the building 50 .
  • the second cage 15 from the right out of the four cages 15 is located within the rope resonance area, so the corresponding object to be determined, that is, the main rope 14 resonates. It is thought that there are
  • FIG. 5 is a graph showing an example of how to set the rope resonance region.
  • L is the length of the object to be judged from the drive sheave 12 to the car 15 .
  • ⁇ b is the natural frequency of the building 50;
  • ⁇ n is the natural frequency of the determination object.
  • the horizontal axis of FIG. 5 is the ratio between the natural frequency of the building 50 and the natural frequency of the object to be determined, that is, the frequency ratio.
  • the frequency ratio is a function of car position. When the natural frequency of the building 50 and the natural frequency of the object to be determined match, the frequency ratio is 1 and the object to be determined resonates.
  • the rope resonance region is set so as to include the cage position where the frequency ratio is 1.
  • a car movement region in which the resonance magnification is equal to or greater than the set value X is set as the rope resonance region.
  • the number of rope resonance regions set in one elevator device 31 is not limited to one, and two or more may be set.
  • the object to be determined is not limited to one of the plurality of main ropes 14.
  • one of the compensating ropes 17 may be used as the determination target.
  • the speed governor rope 22 may be used as the determination object. Two or more rope resonance regions may be set for each type of determination object.
  • FIG. 6 is a flow chart showing the building shaking monitoring operation by the shaking amount estimation unit 25 of FIG.
  • the shake amount estimator 25 periodically executes the process of FIG.
  • step S101 the shaking amount estimation unit 25 confirms whether or not the shaking of the building 50 is detected by the acceleration sensor 53. If the shaking of the building 50 is not detected, the shaking amount estimator 25 terminates the processing for that round.
  • the shaking amount estimation unit 25 calculates an estimated value of the shaking magnitude occurring in the determination target in step S102.
  • step S103 the shake amount estimation unit 25 determines whether the calculated estimated value is greater than or equal to the first shake amount threshold. If the estimated value is less than the first shake amount threshold, the shake amount estimator 25 terminates the processing for that round.
  • the shaking amount estimation unit 25 notifies the operation control unit 24 of the determination result in step S104, and then terminates the processing for that round.
  • FIG. 7 is a flow chart showing the operation mode switching operation by the operation control unit 24 of FIG.
  • the operation control unit 24 periodically executes the process of FIG. 7 .
  • step S201 the operation control unit 24 confirms whether or not a report from the shaking amount estimation unit 25 has been received. If the notification has not been received, the operation control unit 24 maintains the normal operation mode in step S202 and terminates the processing for that round.
  • the operation control unit 24 determines in step S203 whether the car 15 is positioned within the rope resonance region. If the car 15 is not located within the rope resonance region, the operation control unit 24 maintains the normal operation mode in step S202 and terminates the processing for that round.
  • the operation control unit 24 switches the operation mode to the control operation mode in step S204, and ends the processing for that round.
  • the sway amount estimator 25 obtains an estimated value of the sway magnitude of the determination object when the car 15 is positioned at a specific position based on the acceleration generated in the building 50, It is determined whether the estimated value is greater than or equal to the first shake amount threshold. Further, when the swing amount estimator 25 determines that the estimated value is equal to or greater than the first swing amount threshold and the car 15 is positioned within the rope resonance region, the operation control unit 24 changes the operation mode to control operation. mode.
  • the specific position is the car position at which the shaking of the determination target due to the shaking of the building 50 is the largest. Therefore, it is possible to more accurately determine the necessity of controlled operation.
  • FIG. 8 is a schematic configuration diagram showing an elevator system according to Embodiment 2.
  • two or more elevator apparatuses 31 are provided in building 50 .
  • two elevator installations 31 are provided in the building 50 . That is, the elevator system main body 30 of FIG. 8 has two elevator devices 31 .
  • the configuration of each elevator device 31 is the same as that of the first embodiment.
  • the number of shake amount estimation units 25 is only one. Also, the number of acceleration sensors 53 is only one.
  • FIG. 9 is a block diagram showing the control system of the elevator system of FIG.
  • the operation control unit 24 of each elevator device 31 is connected to the shaking amount estimation unit 25 .
  • the function of each operation control unit 24 and the function of the shaking amount estimation unit 25 are the same as in the first embodiment.
  • the operation control unit 24 in each elevator device 31 shall be the control operation mode. Whether switching to the controlled operation mode is necessary or not is determined for each operation control unit 24 .
  • the operation mode of the second car 15 from the right is switched to the control operation mode, and the operation modes of the other three cars 15 remain in the normal operation mode.
  • the configuration and operation of the elevator system are the same as in the first embodiment, except that two or more elevator devices 31 are provided in the building 50.
  • each operation control unit 24 determines that the estimated value is greater than or equal to the first threshold value for the amount of swaying by the swaying amount estimating unit 25, and the corresponding car 15 is positioned within the rope resonance region.
  • the operation mode shall be the control operation mode. Therefore, even when two or more elevator apparatuses 31 are installed in the building 50, it is possible to simplify the determination of necessity of controlled operation without increasing the calculation model.
  • Embodiment 3 Next, an elevator system according to Embodiment 3 will be described.
  • a second shake amount threshold larger than the first shake amount threshold is set as a criterion for determining the magnitude of shake of the determination target.
  • the shake amount estimator 25 determines whether or not the estimated value is greater than or equal to the second shake amount threshold.
  • the operation control unit 24 sets the operation mode to the controlled operation mode regardless of the position of the car 15 .
  • FIG. 10 is a flow chart showing the building shaking monitoring operation by the shaking amount estimation unit 25 of the third embodiment.
  • the processing up to step S102 is the same as in the first embodiment.
  • the shake amount estimation unit 25 determines in step S105 whether the calculated estimated value is greater than or equal to the second shake amount threshold. If the estimated value is equal to or greater than the second threshold value for shaking amount, the amount estimating unit 25 notifies the operation control unit 24 of the determination result that the estimated value is equal to or larger than the second threshold value for shaking amount in step S104. exit.
  • the shake amount estimator 25 determines in step S103 whether the calculated estimated value is greater than or equal to the first shake amount threshold. If the estimated value is less than the first shake amount threshold, the shake amount estimator 25 terminates the processing for that round.
  • the amount estimating unit 25 notifies the operation control unit 24 of the determination result that the estimated value is equal to or greater than the first threshold value for the amount of shaking in step S104. exit.
  • FIG. 11 is a flow chart showing operation mode switching operation by the operation control unit 24 of the third embodiment.
  • the processing of step S201 is the same as that of the first embodiment.
  • the operation control unit 24 determines in step S205 whether the estimated value is equal to or greater than the second shaking amount threshold. If the estimated value is greater than or equal to the second swing amount threshold, the swing amount estimator 25 switches the operation mode to the control operation mode in step S204, and terminates the current process.
  • the swing amount estimator 25 determines in step S203 whether the car 15 is positioned within the rope resonance region. If the car 15 is not located within the rope resonance region, the operation control unit 24 maintains the normal operation mode in step S202 and terminates the processing for that round.
  • the operation control unit 24 switches the operation mode to the control operation mode in step S204, and ends the processing for that round.
  • the second shaking amount threshold is set in the shaking amount estimating section 25 . Then, when it is determined that the estimated value is equal to or greater than the second shaking amount threshold, the operation control unit 24 sets the operation mode to the control operation mode regardless of the position of the car 15 .
  • the second shake amount threshold may be set in the shake amount estimation unit 25 of the second embodiment. In this case, when the estimated value becomes equal to or greater than the second shaking amount threshold, the operation mode is switched to the controlled operation mode in all the elevator apparatuses 31 .
  • the shake amount estimation unit 25 may be set with a third shake amount threshold that is larger than the second shake amount threshold. In this case, different control operations may be performed depending on whether the estimated value is less than the third shaking amount threshold or when the estimated value is equal to or greater than the third shaking amount threshold.
  • the installation location of the acceleration sensor 53 is not limited to the machine room 52, and may be the hoistway 51, for example.
  • the installation location of the swing amount estimation unit 25 is not limited to the machine room 52, and may be the hoistway 51, for example.
  • the determination target is not limited to the main rope 14, and may be one of the plurality of compensating ropes 17 or the governor rope 22. Further, when a plurality of belts are used instead of the plurality of main ropes 14, one of the plurality of belts may be used as the determination target. That is, the object to be determined is a rope or a belt.
  • the specific position is not necessarily limited to the position of the car where the shaking of the determination target due to the shaking of the building 50 is the largest.
  • the first shake amount threshold may be changed accordingly.
  • the layout of the elevator apparatus 31 is not limited to the layout of FIG.
  • the roping scheme may be a 2:1 roping scheme.
  • the elevator device 31 may be a machine room-less elevator, a double-deck elevator, or a one-shaft multi-car elevator.
  • the one-shaft multi-car system is a system in which an upper car and a lower car placed directly below the upper car independently ascend and descend a common hoistway.
  • FIG. 12 is a configuration diagram showing a first example of a processing circuit that realizes each function of the operation control section 24 and the shaking amount estimation section 25 of Embodiments 1 to 3. As shown in FIG.
  • the processing circuit 100 of the first example is dedicated hardware.
  • the processing circuit 100 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Applicable. Also, each function of the operation control unit 24 and the shake amount estimation unit 25 may be implemented by individual processing circuits 100 , or each function may be collectively implemented by the processing circuit 100 .
  • FIG. 13 is a configuration diagram showing a second example of a processing circuit that implements the functions of the operation control section 24 and the shaking amount estimation section 25 of Embodiments 1-3.
  • the processing circuit 200 of the second example comprises a processor 201 and a memory 202 .
  • each function of the operation control unit 24 and the shaking amount estimation unit 25 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory 202 .
  • the processor 201 implements each function by reading and executing a program stored in the memory 202 .
  • the program stored in the memory 202 causes the computer to execute the procedure or method of each unit described above.
  • the memory 202 is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable and volatile or volatile semiconductor memory.
  • the memory 202 also includes magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like.
  • the processing circuit can implement the functions of each unit described above by means of hardware, software, firmware, or a combination thereof.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

In this elevator system, a swing amount estimation unit derives, on the basis of the acceleration produced in a building, an estimated value of the magnitude of swinging of an object to be assessed when a cage is positioned at a specific position. A driving control unit sets a driving mode to a controlled operation mode when it is assessed that the estimated value of the magnitude of swinging produced in the object to be assessed is equal to or greater than a first swing amount threshold value and the cage is positioned within a resonance region.

Description

エレベータシステムelevator system
 本開示は、エレベータシステムに関するものである。 This disclosure relates to an elevator system.
 従来のエレベータの制御装置では、加速度センサによって検出された建物の揺れ量と、かごの位置とに基づいて、ロープの振れ量が推測される。そして、推測されたロープの振れ量が設定値以上であった場合に、ロープ減衰運転が行われる。ロープ減衰運転は、かごを減衰階へ移動させる運転である。減衰階は、ロープの振れを減衰させることが可能な階である(例えば、特許文献1参照)。  Conventional elevator control devices estimate the amount of rope swing based on the amount of shaking of the building detected by the acceleration sensor and the position of the car. Then, when the estimated swing amount of the rope is equal to or greater than the set value, the rope damping operation is performed. A rope damping operation is an operation that moves the car to a damping floor. A damping floor is a floor capable of damping the swing of a rope (see Patent Literature 1, for example).
特開2013-209209号公報JP 2013-209209 A
 上記のような従来のエレベータの制御装置では、加速度センサによる検出値と、リアルタイムにおけるかごの位置との2つの変数を用いて、ロープの振れ量が推測される。このため、ロープ減衰運転の要否を判定するために、複雑な演算が必要となる。 In the conventional elevator control device as described above, the amount of rope deflection is estimated using two variables, the value detected by the acceleration sensor and the position of the car in real time. For this reason, complicated calculations are required in order to determine whether or not the rope damping operation is necessary.
 本開示は、上記のような課題を解決するためになされたものであり、管制運転の要否判定を簡単にすることができるエレベータシステムを得ることを目的とする。 The present disclosure has been made to solve the problems described above, and aims to obtain an elevator system that can simplify the determination of the necessity of controlled operation.
 本開示に係るエレベータシステムは、建物に設けられているエレベータ装置を有しているエレベータシステム本体、及び揺れ量推定部を備え、エレベータ装置は、かごと、かごに接続されており、かつ可撓性を有している長尺物である判定対象物と、通常運転モード及び管制運転モードを含む複数の運転モードにより、かごの運転を制御する運転制御部とを有しており、揺れ量推定部には、判定対象物の揺れの大きさの判定基準である第1揺れ量閾値が設定されており、運転制御部には、建物の揺れにより判定対象物が共振するかご位置を含む領域である共振領域が設定されており、揺れ量推定部は、建物に生じた加速度に基づいて、かごが特定位置に位置しているときにおける判定対象物の揺れの大きさの推定値を求め、推定値が第1揺れ量閾値以上であるかどうかを判定し、運転制御部は、揺れ量推定部により推定値が第1揺れ量閾値以上であると判定され、かつ、かごが共振領域内に位置しているとき、運転モードを管制運転モードとする。 An elevator system according to the present disclosure includes an elevator system main body having an elevator apparatus provided in a building, and a swing amount estimating section, the elevator apparatus being connected to a car and a flexible and an operation control unit that controls the operation of the car in a plurality of operation modes including a normal operation mode and a control operation mode. A first sway amount threshold, which is a criterion for determining the magnitude of the sway of the object to be determined, is set in the section, and the operation control unit has a A certain resonance region is set, and the swaying amount estimator obtains an estimated value of the swaying magnitude of the object to be determined when the car is positioned at a specific position based on the acceleration generated in the building. The operation control unit determines whether the estimated value is equal to or greater than the first sway amount threshold and the car is positioned within the resonance region. , the operation mode shall be the control operation mode.
 本開示のエレベータシステムによれば、管制運転の要否判定を簡単にすることができる。 According to the elevator system of the present disclosure, it is possible to easily determine the necessity of controlled operation.
実施の形態1によるエレベータシステムを示す概略の構成図である。1 is a schematic configuration diagram showing an elevator system according to Embodiment 1; FIG. 図1の揺れ量推定部を示すブロック図である。2 is a block diagram showing a shake amount estimator in FIG. 1; FIG. 図1の運転制御部を示すブロック図である。FIG. 2 is a block diagram showing an operation control unit in FIG. 1; FIG. ロープ共振領域の設定例を示す説明図である。FIG. 5 is an explanatory diagram showing a setting example of a rope resonance region; ロープ共振領域の設定方法の一例を示すグラフである。It is a graph which shows an example of the setting method of a rope resonance area|region. 図2の揺れ量推定部による建物揺れ監視動作を示すフローチャートである。FIG. 3 is a flowchart showing a building shaking monitoring operation by the shaking amount estimator of FIG. 2; FIG. 図3の運転制御部による運転モード切替動作を示すフローチャートである。FIG. 4 is a flow chart showing operation mode switching operation by the operation control unit of FIG. 3 ; FIG. 実施の形態2によるエレベータシステムを示す概略の構成図である。FIG. 2 is a schematic configuration diagram showing an elevator system according to Embodiment 2; FIG. 図8のエレベータシステムの制御系を示すブロック図である。9 is a block diagram showing a control system of the elevator system of FIG. 8; FIG. 実施の形態3の揺れ量推定部による建物揺れ監視動作を示すフローチャートである。14 is a flow chart showing a building shaking monitoring operation by a shaking amount estimating unit of Embodiment 3. FIG. 実施の形態3の運転制御部による運転モード切替動作を示すフローチャートである。10 is a flow chart showing an operation mode switching operation by an operation control unit of Embodiment 3. FIG. 実施の形態1~3の運転制御部及び揺れ量推定部の各機能を実現する処理回路の第1例を示す構成図である。FIG. 2 is a configuration diagram showing a first example of a processing circuit that realizes functions of an operation control unit and a shake amount estimation unit according to Embodiments 1 to 3; 実施の形態1~3の運転制御部及び揺れ量推定部の各機能を実現する処理回路の第2例を示す構成図である。FIG. 7 is a configuration diagram showing a second example of a processing circuit that realizes each function of the operation control section and the shake amount estimation section of Embodiments 1 to 3;
 以下、実施の形態について、図面を参照して説明する。
 実施の形態1.
 図1は、実施の形態1によるエレベータシステムを示す概略の構成図である。図1において、建物50には、昇降路51及び機械室52が設けられている。機械室52は、昇降路51の上に設けられている。
Embodiments will be described below with reference to the drawings.
Embodiment 1.
FIG. 1 is a schematic configuration diagram showing an elevator system according to Embodiment 1. FIG. In FIG. 1, a building 50 is provided with a hoistway 51 and a machine room 52 . The machine room 52 is provided above the hoistway 51 .
 機械室52には、加速度センサ53が設けられている。加速度センサ53は、例えば地震又は強風によって建物50が揺れたとき、建物50に生じた加速度を検出する。 An acceleration sensor 53 is provided in the machine room 52 . The acceleration sensor 53 detects acceleration generated in the building 50 when the building 50 shakes due to an earthquake or strong wind, for example.
 実施の形態1のエレベータシステムは、エレベータシステム本体30と、揺れ量推定部25と、加速度センサ53とを備えている。エレベータシステム本体30は、建物50に設けられている。実施の形態1のエレベータシステム本体30は、1つのエレベータ装置31を有している。即ち、実施の形態1のエレベータシステム本体30は、1つのエレベータ装置31のみにより構成されている。 The elevator system of Embodiment 1 includes an elevator system main body 30, a swing amount estimator 25, and an acceleration sensor 53. Elevator system body 30 is provided in building 50 . The elevator system main body 30 of Embodiment 1 has one elevator device 31 . That is, the elevator system main body 30 of Embodiment 1 is composed of only one elevator device 31 .
 エレベータ装置31は、巻上機11、そらせ車13、複数本の主ロープ14、かご15、釣合おもり16、複数本のコンペンロープ17、第1釣合車18、第2釣合車19、調速機20、調速機ロープ22、張り車23、及び運転制御部24を有している。 The elevator device 31 includes a hoisting machine 11, a deflector wheel 13, a plurality of main ropes 14, a car 15, a counterweight 16, a plurality of compensating ropes 17, a first balancing wheel 18, a second balancing wheel 19, It has a speed governor 20 , a speed governor rope 22 , a pulley 23 , and an operation control section 24 .
 巻上機11は、機械室52に設けられている。また、巻上機11は、駆動シーブ12、図示しない巻上機モータ、及び図示しない巻上機ブレーキを有している。巻上機モータは、駆動シーブ12を回転させる。巻上機ブレーキは、駆動シーブ12の静止状態を保持する。また、巻上機ブレーキは、駆動シーブ12の回転を制動する。 The hoist 11 is provided in the machine room 52. The hoisting machine 11 also has a drive sheave 12, a hoisting machine motor (not shown), and a hoisting machine brake (not shown). A hoist motor rotates the drive sheave 12 . The hoist brake keeps the drive sheave 12 stationary. The hoist brake also brakes the rotation of the drive sheave 12 .
 複数本の主ロープ14は、駆動シーブ12及びそらせ車13に巻き掛けられている。図1では、1本の主ロープ14のみが示されている。かご15は、複数本の主ロープ14の第1端部に接続されている。釣合おもり16は、複数本の主ロープ14の第2端部に接続されている。 A plurality of main ropes 14 are wound around the drive sheave 12 and the deflector wheel 13 . In FIG. 1 only one main rope 14 is shown. The cage 15 is connected to first ends of the main ropes 14 . A counterweight 16 is connected to the second ends of the plurality of main ropes 14 .
 かご15及び釣合おもり16は、複数本の主ロープ14により、昇降路51内に吊り下げられている。また、かご15及び釣合おもり16は、駆動シーブ12を回転させることにより、昇降路51内を昇降する。 The car 15 and the counterweight 16 are suspended in the hoistway 51 by a plurality of main ropes 14. Further, the car 15 and the counterweight 16 move up and down in the hoistway 51 by rotating the drive sheave 12 .
 昇降路51内には、図示しない一対のかごガイドレールと、図示しない一対の釣合おもりガイドレールとが設置されている。一対のかごガイドレールは、かご15の昇降を案内する。一対の釣合おもりガイドレールは、釣合おもり16の昇降を案内する。 A pair of car guide rails (not shown) and a pair of counterweight guide rails (not shown) are installed in the hoistway 51 . A pair of car guide rails guides the car 15 to move up and down. A pair of counterweight guide rails guide the lifting and lowering of the counterweight 16 .
 複数本のコンペンロープ17は、かご15の下部と釣合おもり16の下部との間に吊り下げられている。図1では、1本のコンペンロープ17のみが示されている。複数本のコンペンロープ17は、駆動シーブ12の一側と他側とにおける複数本の主ロープ14の重量不均衡を補償する。 A plurality of compensating ropes 17 are suspended between the lower part of the cage 15 and the lower part of the counterweight 16. In FIG. 1 only one compen rope 17 is shown. The compensating ropes 17 compensate for the weight imbalance of the main ropes 14 on one side of the drive sheave 12 and the other.
 第1釣合車18及び第2釣合車19は、昇降路51の底部に設けられている。第1釣合車18及び第2釣合車19には、複数本のコンペンロープ17が巻き掛けられている。第1釣合車18及び第2釣合車19は、複数本のコンペンロープ17に張力を与えている。 The first balance wheel 18 and the second balance wheel 19 are provided at the bottom of the hoistway 51 . A plurality of compensating ropes 17 are wound around the first balance wheel 18 and the second balance wheel 19 . The first balance wheel 18 and the second balance wheel 19 apply tension to the plurality of compen ropes 17 .
 調速機20は、機械室52に設けられている。また、調速機20は、かご15の速度が過大速度に達しているかどうかを監視する。また、調速機20は、調速機シーブ21を有している。 The speed governor 20 is provided in the machine room 52. The speed governor 20 also monitors whether the speed of the car 15 has reached an excessive speed. Further, the governor 20 has a governor sheave 21 .
 調速機ロープ22は、調速機シーブ21に巻き掛けられている。また、調速機ロープ22は、昇降路51内に環状に敷設され、かご15に接続されている。張り車23は、昇降路51の底部に設けられている。張り車23には、調速機ロープ22が巻き掛けられている。 The governor rope 22 is wound around the governor sheave 21 . Also, the speed governor rope 22 is looped in the hoistway 51 and connected to the car 15 . The tension pulley 23 is provided at the bottom of the hoistway 51 . A governor rope 22 is wound around the pulley 23 .
 かご15が昇降すると、調速機ロープ22が循環し、かご15の走行速度に応じた回転速度で調速機シーブ21が回転する。 When the car 15 ascends and descends, the governor rope 22 circulates and the governor sheave 21 rotates at a rotational speed corresponding to the running speed of the car 15 .
 複数本の主ロープ14、複数本のコンペンロープ17、及び調速機ロープ22は、それぞれかご15に接続されている。また、複数本の主ロープ14、複数本のコンペンロープ17、及び調速機ロープ22は、それぞれ可撓性を有している長尺物である。 A plurality of main ropes 14, a plurality of compensating ropes 17, and a governor rope 22 are each connected to the car 15. Moreover, each of the plurality of main ropes 14, the plurality of compensating ropes 17, and the governor rope 22 is a long object having flexibility.
 運転制御部24は、機械室52に設けられている。また、運転制御部24は、巻上機11を制御することにより、かご15の運転を制御する。また、運転制御部24は、複数の運転モードにより、かご15の運転を制御する。複数の運転モードには、通常運転モードと、管制運転モードとが含まれている。 The operation control unit 24 is provided in the machine room 52. The operation control unit 24 also controls the operation of the car 15 by controlling the hoist 11 . Further, the operation control unit 24 controls operation of the car 15 in a plurality of operation modes. The multiple operating modes include a normal operating mode and a controlled operating mode.
 通常運転モードは、かご15の通常運転を行うモードである。通常運転は、かご15内からの呼び、及び複数の乗場からの呼びに応じて、かご15を行先階に自動的に移動させる運転方法である。 The normal operation mode is a mode in which the car 15 is normally operated. Normal operation is an operation method in which the car 15 is automatically moved to a destination floor in response to calls from within the car 15 and calls from a plurality of halls.
 管制運転モードは、かご15の管制運転を行う運転モードである。管制運転は、判定対象物の揺れを抑制する運転方法である。判定対象物は、かご15に接続されているロープである。実施の形態1では、全ての主ロープ14が同様に揺れると仮定し、複数本の主ロープ14のうちの1本を判定対象物とする。 The control operation mode is an operation mode in which the car 15 is operated under control. Controlled operation is a driving method for suppressing shaking of a determination target. A determination target is a rope connected to the car 15 . In Embodiment 1, it is assumed that all the main ropes 14 sway in the same manner, and one of the plurality of main ropes 14 is used as the determination target.
 運転制御部24は、管制運転モードでは、例えば、かご15を最寄階に停止させ、乗客を降車させた後に、かご15を退避階に移動させる。退避階は、建物50の揺れにより判定対象物が共振しにくい階である。又は、運転制御部24は、管制運転モードでは、例えば、かご15を最寄階に停止させ、かご15の運転を休止させてもよい。 In the controlled operation mode, the operation control unit 24, for example, stops the car 15 at the nearest floor and moves the car 15 to the evacuation floor after the passengers get off. The evacuation floor is a floor on which the object to be determined is less likely to resonate due to shaking of the building 50 . Alternatively, in the controlled operation mode, the operation control unit 24 may, for example, stop the car 15 at the nearest floor and suspend the operation of the car 15 .
 揺れ量推定部25は、機械室52に設けられている。また、揺れ量推定部25には、加速度センサ53からの検出信号が入力される。 The shaking amount estimator 25 is provided in the machine room 52 . A detection signal from the acceleration sensor 53 is also input to the shake amount estimation unit 25 .
 図2は、図1の揺れ量推定部25を示すブロック図である。揺れ量推定部25は、機能ブロックとして、推定値算出部25a、比較部25b、及び通報部25cを有している。 FIG. 2 is a block diagram showing the shake amount estimation unit 25 of FIG. The shake amount estimating unit 25 has an estimated value calculating unit 25a, a comparing unit 25b, and a reporting unit 25c as functional blocks.
 推定値算出部25aは、建物50に生じた加速度、即ち加速度センサ53によって検出された加速度に基づいて、かご15が特定位置に位置しているときにおける判定対象物の揺れの大きさの推定値を求める。判定対象物の揺れの大きさは、判定対象物の水平方向の振幅である。 Based on the acceleration generated in the building 50, that is, the acceleration detected by the acceleration sensor 53, the estimated value calculation unit 25a calculates an estimated value of the magnitude of the shaking of the determination object when the car 15 is positioned at a specific position. Ask for The magnitude of the shaking of the determination target is the amplitude of the determination target in the horizontal direction.
 判定対象物の揺れの大きさは、判定対象物が接続されているかご15の位置によって変わる。また、判定対象物は、建物50の固有周期と判定対象物の固有周期とが近いとき、共振する。判定対象物が共振することにより、判定対象物の揺れの大きさは増大する。 The magnitude of the swing of the determination target changes depending on the position of the car 15 to which the determination target is connected. Also, the determination target resonates when the natural period of the building 50 and the natural period of the determination target are close to each other. Resonance of the determination target increases the magnitude of shaking of the determination target.
 推定値算出部25aは、リアルタイムにおけるかご位置を変数として用いず、建物50の揺れによる判定対象物の揺れが最も大きくなる位置にかご15が位置していると仮定して、推定値を求める。即ち、実施の形態1における特定位置は、建物50の揺れによる判定対象物の揺れが最も大きくなるかご位置である。 The estimated value calculation unit 25a does not use the real-time car position as a variable, and obtains the estimated value by assuming that the car 15 is positioned at the position where the shaking of the object to be determined due to the shaking of the building 50 is greatest. That is, the specific position in the first embodiment is the car position where the shaking of the determination object caused by the shaking of the building 50 is the largest.
 建物50の揺れによる判定対象物の揺れの大きさは、関数式を用いて算出することができる。具体的な計算方法については公知であるため、ここではその説明を省略する。 The magnitude of the shaking of the determination target caused by the shaking of the building 50 can be calculated using a functional expression. Since the specific calculation method is publicly known, the description thereof is omitted here.
 比較部25bには、第1揺れ量閾値が設定されている。第1揺れ量閾値は、判定対象物の揺れの大きさの判定基準である。比較部25bは、推定値算出部25aによって算出された推定値が、第1揺れ量閾値以上であるかどうかを判定する。 A first shake amount threshold is set in the comparison unit 25b. The first shake amount threshold is a criterion for determining the magnitude of shake of the object to be determined. The comparison unit 25b determines whether the estimated value calculated by the estimated value calculation unit 25a is greater than or equal to the first shake amount threshold.
 通報部25cは、推定値が第1揺れ量閾値以上となった場合に、比較部25bによる判定結果を運転制御部24に通報する。 The notification unit 25c notifies the operation control unit 24 of the determination result by the comparison unit 25b when the estimated value is greater than or equal to the first shaking amount threshold.
 図3は、図1の運転制御部24を示すブロック図である。運転制御部24は、機能ブロックとして、受信部24a、かご位置判定部24b、及びモード切替部24cを有している。受信部24aは、揺れ量推定部25からの通報を受信する。 FIG. 3 is a block diagram showing the operation control section 24 of FIG. The operation control unit 24 has, as functional blocks, a reception unit 24a, a car position determination unit 24b, and a mode switching unit 24c. The receiving unit 24a receives a report from the shake amount estimating unit 25. FIG.
 かご位置判定部24bには、共振領域としてロープ共振領域が設定されている。ロープ共振領域は、かご15の移動領域の一部であって、建物50の揺れにより判定対象物が共振するかご位置を含む領域である。かご位置判定部24bは、かご15がロープ共振領域内に位置しているかどうかを判定する。 A rope resonance area is set as a resonance area in the car position determination unit 24b. The rope resonance area is a part of the moving area of the car 15 and includes the car position where the object to be determined resonates due to the shaking of the building 50 . The car position determination unit 24b determines whether or not the car 15 is positioned within the rope resonance region.
 モード切替部24cは、揺れ量推定部25により推定値が第1揺れ量閾値以上であると判定され、かつ、かご15がロープ共振領域内に位置しているとき、運転モードを通常運転モードから管制運転モードに切り替える。 The mode switching unit 24c switches the operation mode from the normal operation mode when the swing amount estimating unit 25 determines that the estimated value is equal to or greater than the first swing amount threshold and the car 15 is positioned within the rope resonance region. Switch to controlled operation mode.
 例えば、ロープ共振領域が建物50の3階から7階までの領域に設定されている場合、かご15が5階に位置しているときに、運転制御部24が揺れ量推定部25からの通報を受信すると、運転モードが管制運転モードに切り替えられる。一方、かご15が10階に位置しているときに、運転制御部24が揺れ量推定部25からの通報を受信すると、通常運転モードが継続される。 For example, when the rope resonance area is set to the area from the 3rd floor to the 7th floor of the building 50, when the car 15 is located on the 5th floor, the operation control unit 24 receives the notification from the shaking amount estimation unit 25 is received, the operation mode is switched to the control operation mode. On the other hand, when the car 15 is located on the 10th floor and the operation control unit 24 receives the report from the sway amount estimation unit 25, the normal operation mode is continued.
 図4は、ロープ共振領域の設定例を示す説明図である。図4には、説明のため、4つのかご15が示されている。図4の例におけるロープ共振領域は、建物50の中間階に設定されている。建物50に揺れが生じたとき、4つのかご15のうち、右から2番目のかご15は、ロープ共振領域内に位置しているため、対応する判定対象物、即ち主ロープ14が共振していると考えられる。 FIG. 4 is an explanatory diagram showing a setting example of the rope resonance area. Four cages 15 are shown in FIG. 4 for explanation. The rope resonance area in the example of FIG. 4 is set on the middle floor of the building 50 . When the building 50 shakes, the second cage 15 from the right out of the four cages 15 is located within the rope resonance area, so the corresponding object to be determined, that is, the main rope 14 resonates. It is thought that there are
 図5は、ロープ共振領域の設定方法の一例を示すグラフである。図5において、Lは、駆動シーブ12からかご15までの判定対象物の長さである。ωbは、建物50の固有振動数である。ωnは、判定対象物の固有振動数である。 FIG. 5 is a graph showing an example of how to set the rope resonance region. In FIG. 5, L is the length of the object to be judged from the drive sheave 12 to the car 15 . ωb is the natural frequency of the building 50; ωn is the natural frequency of the determination object.
 図5の横軸は、建物50の固有振動数と判定対象物の固有振動数との比、即ち振動数比である。振動数比は、かご位置の関数である。建物50の固有振動数と判定対象物の固有振動数とが一致するとき、振動数比は1となり、判定対象物は共振する。 The horizontal axis of FIG. 5 is the ratio between the natural frequency of the building 50 and the natural frequency of the object to be determined, that is, the frequency ratio. The frequency ratio is a function of car position. When the natural frequency of the building 50 and the natural frequency of the object to be determined match, the frequency ratio is 1 and the object to be determined resonates.
 このため、ロープ共振領域は、振動数比が1となるかご位置を含むように、設定される。図5に示すように、共振倍率が設定値X以上となるようなかご移動領域が、ロープ共振領域に設定される。 Therefore, the rope resonance region is set so as to include the cage position where the frequency ratio is 1. As shown in FIG. 5, a car movement region in which the resonance magnification is equal to or greater than the set value X is set as the rope resonance region.
 なお、1つのエレベータ装置31に設定されるロープ共振領域の数は、1つに限らず、2つ以上設定されてもよい。 It should be noted that the number of rope resonance regions set in one elevator device 31 is not limited to one, and two or more may be set.
 また、判定対象物は、複数本の主ロープ14のうちの1本に限らない。例えば、複数本のコンペンロープ17の揺れも考慮する場合、複数本のコンペンロープ17のうちの1本を、判定対象物としてもよい。また、調速機ロープ22を判定対象物としてもよい。そして、2つ以上のロープ共振領域が、判定対象物の種類毎に設定されてもよい。 Also, the object to be determined is not limited to one of the plurality of main ropes 14. For example, when the swaying of a plurality of compensating ropes 17 is also taken into consideration, one of the compensating ropes 17 may be used as the determination target. Also, the speed governor rope 22 may be used as the determination object. Two or more rope resonance regions may be set for each type of determination object.
 図6は、図2の揺れ量推定部25による建物揺れ監視動作を示すフローチャートである。揺れ量推定部25は、図6の処理を周期的に実行する。 FIG. 6 is a flow chart showing the building shaking monitoring operation by the shaking amount estimation unit 25 of FIG. The shake amount estimator 25 periodically executes the process of FIG.
 まず、揺れ量推定部25は、ステップS101において、加速度センサ53によって建物50の揺れが検出されているかどうかを確認する。建物50の揺れが検出されていなければ、揺れ量推定部25は、その回の処理を終了する。 First, in step S101, the shaking amount estimation unit 25 confirms whether or not the shaking of the building 50 is detected by the acceleration sensor 53. If the shaking of the building 50 is not detected, the shaking amount estimator 25 terminates the processing for that round.
 建物50の揺れが検出されている場合、揺れ量推定部25は、ステップS102において、判定対象物に生じる揺れの大きさの推定値を算出する。 When the shaking of the building 50 is detected, the shaking amount estimation unit 25 calculates an estimated value of the shaking magnitude occurring in the determination target in step S102.
 続いて、揺れ量推定部25は、ステップS103において、算出された推定値が第1揺れ量閾値以上であるかどうかを判定する。推定値が第1揺れ量閾値未満であれば、揺れ量推定部25は、その回の処理を終了する。 Subsequently, in step S103, the shake amount estimation unit 25 determines whether the calculated estimated value is greater than or equal to the first shake amount threshold. If the estimated value is less than the first shake amount threshold, the shake amount estimator 25 terminates the processing for that round.
 推定値が第1揺れ量閾値以上である場合、揺れ量推定部25は、ステップS104において、判定結果を運転制御部24に通報してから、その回の処理を終了する。 If the estimated value is greater than or equal to the first shaking amount threshold, the shaking amount estimation unit 25 notifies the operation control unit 24 of the determination result in step S104, and then terminates the processing for that round.
 図7は、図3の運転制御部24による運転モード切替動作を示すフローチャートである。運転制御部24は、図7の処理を周期的に実行する。 FIG. 7 is a flow chart showing the operation mode switching operation by the operation control unit 24 of FIG. The operation control unit 24 periodically executes the process of FIG. 7 .
 まず、運転制御部24は、ステップS201において、揺れ量推定部25からの通報を受信したかどうかを確認する。通報を受信していなければ、運転制御部24は、ステップS202において、通常運転モードを維持し、その回の処理を終了する。 First, in step S201, the operation control unit 24 confirms whether or not a report from the shaking amount estimation unit 25 has been received. If the notification has not been received, the operation control unit 24 maintains the normal operation mode in step S202 and terminates the processing for that round.
 揺れ量推定部25からの通報を受信している場合、運転制御部24は、ステップS203において、かご15がロープ共振領域内に位置しているかどうかを判定する。かご15がロープ共振領域内に位置していなければ、運転制御部24は、ステップS202において、通常運転モードを維持し、その回の処理を終了する。 When receiving a report from the swing amount estimation unit 25, the operation control unit 24 determines in step S203 whether the car 15 is positioned within the rope resonance region. If the car 15 is not located within the rope resonance region, the operation control unit 24 maintains the normal operation mode in step S202 and terminates the processing for that round.
 かご15がロープ共振領域内に位置している場合、運転制御部24は、ステップS204において、運転モードを管制運転モードに切り替え、その回の処理を終了する。 When the car 15 is located within the rope resonance region, the operation control unit 24 switches the operation mode to the control operation mode in step S204, and ends the processing for that round.
 このようなエレベータシステムでは、揺れ量推定部25は、建物50に生じた加速度に基づいて、かご15が特定位置に位置しているときにおける判定対象物の揺れの大きさの推定値を求め、推定値が第1揺れ量閾値以上であるかどうかを判定する。また、運転制御部24は、揺れ量推定部25により推定値が第1揺れ量閾値以上であると判定され、かつ、かご15がロープ共振領域内に位置しているとき、運転モードを管制運転モードとする。 In such an elevator system, the sway amount estimator 25 obtains an estimated value of the sway magnitude of the determination object when the car 15 is positioned at a specific position based on the acceleration generated in the building 50, It is determined whether the estimated value is greater than or equal to the first shake amount threshold. Further, when the swing amount estimator 25 determines that the estimated value is equal to or greater than the first swing amount threshold and the car 15 is positioned within the rope resonance region, the operation control unit 24 changes the operation mode to control operation. mode.
 このため、リアルタイムにおけるかご15の位置を変数として用いずに、簡単な演算により、判定対象物の揺れの大きさの推定値を求めることができる。また、かご15がロープ共振領域内に位置しているかどうかの判定だけで、管制運転モードへの切替の要否を判定することができる。従って、管制運転の要否判定を簡単にすることができる。 Therefore, it is possible to obtain an estimated value of the magnitude of the swing of the judgment object by a simple calculation without using the position of the car 15 in real time as a variable. Further, it is possible to determine whether or not to switch to the controlled operation mode only by determining whether the car 15 is positioned within the rope resonance region. Therefore, it is possible to simplify the determination of whether or not control operation is necessary.
 また、特定位置は、建物50の揺れによる判定対象物の揺れが最も大きくなるかご位置である。このため、管制運転の要否判定をより正確に行うことができる。 Also, the specific position is the car position at which the shaking of the determination target due to the shaking of the building 50 is the largest. Therefore, it is possible to more accurately determine the necessity of controlled operation.
 実施の形態2.
 次に、図8は、実施の形態2によるエレベータシステムを示す概略の構成図である。実施の形態2では、2つ以上のエレベータ装置31が建物50に設けられている。図8では、2つのエレベータ装置31が建物50に設けられている。即ち、図8のエレベータシステム本体30は、2つのエレベータ装置31を有している。各エレベータ装置31の構成は、実施の形態1と同様である。
Embodiment 2.
Next, FIG. 8 is a schematic configuration diagram showing an elevator system according to Embodiment 2. As shown in FIG. In Embodiment 2, two or more elevator apparatuses 31 are provided in building 50 . In FIG. 8 two elevator installations 31 are provided in the building 50 . That is, the elevator system main body 30 of FIG. 8 has two elevator devices 31 . The configuration of each elevator device 31 is the same as that of the first embodiment.
 揺れ量推定部25の数は、1つのみである。また、加速度センサ53の数も1つのみである。 The number of shake amount estimation units 25 is only one. Also, the number of acceleration sensors 53 is only one.
 図9は、図8のエレベータシステムの制御系を示すブロック図である。各エレベータ装置31の運転制御部24は、揺れ量推定部25に接続されている。各運転制御部24の機能、及び揺れ量推定部25の機能は、実施の形態1と同様である。 FIG. 9 is a block diagram showing the control system of the elevator system of FIG. The operation control unit 24 of each elevator device 31 is connected to the shaking amount estimation unit 25 . The function of each operation control unit 24 and the function of the shaking amount estimation unit 25 are the same as in the first embodiment.
 各エレベータ装置31における運転制御部24は、揺れ量推定部25により推定値が第1揺れ量閾値以上であると判定され、かつ、対応するかご15がロープ共振領域内に位置しているとき、運転モードを管制運転モードとする。管制運転モードへの切替の要否は、運転制御部24毎に判定される。 When the swing amount estimator 25 determines that the estimated value is equal to or greater than the first swing amount threshold and the corresponding car 15 is positioned within the rope resonance region, the operation control unit 24 in each elevator device 31 The operation mode shall be the control operation mode. Whether switching to the controlled operation mode is necessary or not is determined for each operation control unit 24 .
 例えば、図4の例では、右から2番目のかご15の運転モードが管制運転モードに切り替えられ、他の3つのかご15の運転モードは、通常運転モードのままである。 For example, in the example of FIG. 4, the operation mode of the second car 15 from the right is switched to the control operation mode, and the operation modes of the other three cars 15 remain in the normal operation mode.
 2つ以上のエレベータ装置31が建物50に設けられていることを除いて、エレベータシステムの構成及び動作は、実施の形態1と同様である。 The configuration and operation of the elevator system are the same as in the first embodiment, except that two or more elevator devices 31 are provided in the building 50.
 このようなエレベータシステムでは、各運転制御部24は、揺れ量推定部25により推定値が第1揺れ量閾値以上であると判定され、かつ、対応するかご15がロープ共振領域内に位置しているとき、運転モードを管制運転モードとする。このため、2つ以上のエレベータ装置31が建物50に設けられている場合でも、計算モデルを増大させずに、管制運転の要否判定を簡単にすることができる。 In such an elevator system, each operation control unit 24 determines that the estimated value is greater than or equal to the first threshold value for the amount of swaying by the swaying amount estimating unit 25, and the corresponding car 15 is positioned within the rope resonance region. the operation mode shall be the control operation mode. Therefore, even when two or more elevator apparatuses 31 are installed in the building 50, it is possible to simplify the determination of necessity of controlled operation without increasing the calculation model.
 実施の形態3.
 次に、実施の形態3のエレベータシステムについて説明する。実施の形態3の揺れ量推定部25には、判定対象物の揺れの大きさの判定基準として、第1揺れ量閾値よりも大きい第2揺れ量閾値が設定されている。揺れ量推定部25は、推定値が第2揺れ量閾値以上であるかどうかを判定する。
Embodiment 3.
Next, an elevator system according to Embodiment 3 will be described. In the shake amount estimator 25 of Embodiment 3, a second shake amount threshold larger than the first shake amount threshold is set as a criterion for determining the magnitude of shake of the determination target. The shake amount estimator 25 determines whether or not the estimated value is greater than or equal to the second shake amount threshold.
 運転制御部24は、揺れ量推定部25により推定値が第2揺れ量閾値以上であると判定された場合、かご15の位置によらず、運転モードを管制運転モードとする。 When the sway amount estimator 25 determines that the estimated value is equal to or greater than the second sway amount threshold, the operation control unit 24 sets the operation mode to the controlled operation mode regardless of the position of the car 15 .
 図10は、実施の形態3の揺れ量推定部25による建物揺れ監視動作を示すフローチャートである。ステップS102の処理までは、実施の形態1と同様である。 FIG. 10 is a flow chart showing the building shaking monitoring operation by the shaking amount estimation unit 25 of the third embodiment. The processing up to step S102 is the same as in the first embodiment.
 揺れ量推定部25は、推定値を算出した後、ステップS105において、算出された推定値が第2揺れ量閾値以上であるかどうかを判定する。推定値が第2揺れ量閾値以上である場合、揺れ量推定部25は、ステップS104において、第2揺れ量閾値以上であるという判定結果を運転制御部24に通報してから、その回の処理を終了する。 After calculating the estimated value, the shake amount estimation unit 25 determines in step S105 whether the calculated estimated value is greater than or equal to the second shake amount threshold. If the estimated value is equal to or greater than the second threshold value for shaking amount, the amount estimating unit 25 notifies the operation control unit 24 of the determination result that the estimated value is equal to or larger than the second threshold value for shaking amount in step S104. exit.
 推定値が第2揺れ量閾値未満である場合、揺れ量推定部25は、ステップS103において、算出された推定値が第1揺れ量閾値以上であるかどうかを判定する。推定値が第1揺れ量閾値未満であれば、揺れ量推定部25は、その回の処理を終了する。 If the estimated value is less than the second shake amount threshold, the shake amount estimator 25 determines in step S103 whether the calculated estimated value is greater than or equal to the first shake amount threshold. If the estimated value is less than the first shake amount threshold, the shake amount estimator 25 terminates the processing for that round.
 推定値が第1揺れ量閾値以上である場合、揺れ量推定部25は、ステップS104において、第1揺れ量閾値以上であるという判定結果を運転制御部24に通報してから、その回の処理を終了する。 If the estimated value is equal to or greater than the first threshold value for the amount of shaking, the amount estimating unit 25 notifies the operation control unit 24 of the determination result that the estimated value is equal to or greater than the first threshold value for the amount of shaking in step S104. exit.
 図11は、実施の形態3の運転制御部24による運転モード切替動作を示すフローチャートである。ステップS201の処理は、実施の形態1と同様である。 FIG. 11 is a flow chart showing operation mode switching operation by the operation control unit 24 of the third embodiment. The processing of step S201 is the same as that of the first embodiment.
 揺れ量推定部25からの通報を受信している場合、運転制御部24は、ステップS205において、推定値が第2揺れ量閾値以上であるかどうかを判定する。推定値が第2揺れ量閾値以上である場合、揺れ量推定部25は、ステップS204において、運転モードを管制運転モードに切り替え、その回の処理を終了する。 When receiving a report from the shaking amount estimation unit 25, the operation control unit 24 determines in step S205 whether the estimated value is equal to or greater than the second shaking amount threshold. If the estimated value is greater than or equal to the second swing amount threshold, the swing amount estimator 25 switches the operation mode to the control operation mode in step S204, and terminates the current process.
 推定値が第2揺れ量閾値未満である場合、揺れ量推定部25は、ステップS203において、かご15がロープ共振領域内に位置しているかどうかを判定する。かご15がロープ共振領域内に位置していなければ、運転制御部24は、ステップS202において、通常運転モードを維持し、その回の処理を終了する。 If the estimated value is less than the second swing amount threshold, the swing amount estimator 25 determines in step S203 whether the car 15 is positioned within the rope resonance region. If the car 15 is not located within the rope resonance region, the operation control unit 24 maintains the normal operation mode in step S202 and terminates the processing for that round.
 かご15がロープ共振領域内に位置している場合、運転制御部24は、ステップS204において、運転モードを管制運転モードに切り替え、その回の処理を終了する。 When the car 15 is located within the rope resonance region, the operation control unit 24 switches the operation mode to the control operation mode in step S204, and ends the processing for that round.
 図10及び図11に示した動作を除いて、エレベータシステムの構成及び動作は、実施の形態1と同様である。 The configuration and operation of the elevator system are the same as those of the first embodiment, except for the operations shown in FIGS.
 このようなエレベータシステムでは、揺れ量推定部25に第2揺れ量閾値が設定されている。そして、運転制御部24は、推定値が第2揺れ量閾値以上であると判定された場合、かご15の位置によらず、運転モードを管制運転モードとする。 In such an elevator system, the second shaking amount threshold is set in the shaking amount estimating section 25 . Then, when it is determined that the estimated value is equal to or greater than the second shaking amount threshold, the operation control unit 24 sets the operation mode to the control operation mode regardless of the position of the car 15 .
 このため、建物50の揺れが大きい場合に、判定対象物が昇降路51内の機器に接触したり引っ掛かったりすることを未然に防ぐことができる。 For this reason, when the building 50 shakes significantly, it is possible to prevent the object to be determined from coming into contact with or getting caught in equipment in the hoistway 51 .
 なお、実施の形態2の揺れ量推定部25に第2揺れ量閾値が設定されてもよい。この場合、推定値が第2揺れ量閾値以上になると、全てのエレベータ装置31において、運転モードが管制運転モードに切り替えられる。 Note that the second shake amount threshold may be set in the shake amount estimation unit 25 of the second embodiment. In this case, when the estimated value becomes equal to or greater than the second shaking amount threshold, the operation mode is switched to the controlled operation mode in all the elevator apparatuses 31 .
 また、揺れ量推定部25には、第2揺れ量閾値よりも大きい第3揺れ量閾値が設定されてもよい。この場合、推定値が第3揺れ量閾値未満の場合と、推定値が第3揺れ量閾値以上の場合とで、異なる管制運転が行われてもよい。 Also, the shake amount estimation unit 25 may be set with a third shake amount threshold that is larger than the second shake amount threshold. In this case, different control operations may be performed depending on whether the estimated value is less than the third shaking amount threshold or when the estimated value is equal to or greater than the third shaking amount threshold.
 なお、実施の形態1~3において、加速度センサ53の設置場所は、機械室52に限定されず、例えば昇降路51であってもよい。 Note that in Embodiments 1 to 3, the installation location of the acceleration sensor 53 is not limited to the machine room 52, and may be the hoistway 51, for example.
 また、実施の形態1~3において、揺れ量推定部25の設置場所は、機械室52に限定されず、例えば昇降路51であってもよい。 Further, in Embodiments 1 to 3, the installation location of the swing amount estimation unit 25 is not limited to the machine room 52, and may be the hoistway 51, for example.
 また、判定対象物は、主ロープ14に限定されず、複数本のコンペンロープ17のうちの1本、又は調速機ロープ22であってもよい。また、複数本の主ロープ14の代わりに、複数本のベルトが用いられている場合、複数本のベルトのうちの1本を判定対象物としてもよい。即ち、判定対象物は、ロープ又はベルトである。 Also, the determination target is not limited to the main rope 14, and may be one of the plurality of compensating ropes 17 or the governor rope 22. Further, when a plurality of belts are used instead of the plurality of main ropes 14, one of the plurality of belts may be used as the determination target. That is, the object to be determined is a rope or a belt.
 また、特定位置は、必ずしも建物50の揺れによる判定対象物の揺れが最も大きくなるかご位置に限らない。特定位置を変更する場合、それに合わせて第1揺れ量閾値を変更してもよい。 Also, the specific position is not necessarily limited to the position of the car where the shaking of the determination target due to the shaking of the building 50 is the largest. When changing the specific position, the first shake amount threshold may be changed accordingly.
 また、実施の形態1~3において、エレベータ装置31のレイアウトは、図1のレイアウトに限定されるものではない。例えば、ローピング方式は、2:1ローピング方式であってもよい。 Also, in Embodiments 1 to 3, the layout of the elevator apparatus 31 is not limited to the layout of FIG. For example, the roping scheme may be a 2:1 roping scheme.
 また、エレベータ装置31は、機械室レスエレベータ、ダブルデッキエレベータ、ワンシャフトマルチカー方式のエレベータであってもよい。ワンシャフトマルチカー方式は、上かごと、上かごの真下に配置された下かごとが、それぞれ独立して共通の昇降路を昇降する方式である。 Also, the elevator device 31 may be a machine room-less elevator, a double-deck elevator, or a one-shaft multi-car elevator. The one-shaft multi-car system is a system in which an upper car and a lower car placed directly below the upper car independently ascend and descend a common hoistway.
 また、実施の形態1~3の運転制御部24及び揺れ量推定部25の各機能は、処理回路によって実現される。図12は、実施の形態1~3の運転制御部24及び揺れ量推定部25の各機能を実現する処理回路の第1例を示す構成図である。第1例の処理回路100は、専用のハードウェアである。 Also, each function of the operation control unit 24 and the shaking amount estimation unit 25 of Embodiments 1 to 3 is implemented by a processing circuit. FIG. 12 is a configuration diagram showing a first example of a processing circuit that realizes each function of the operation control section 24 and the shaking amount estimation section 25 of Embodiments 1 to 3. As shown in FIG. The processing circuit 100 of the first example is dedicated hardware.
 また、処理回路100は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。また、運転制御部24及び揺れ量推定部25の各機能それぞれを個別の処理回路100で実現してもよいし、各機能をまとめて処理回路100で実現してもよい。 Further, the processing circuit 100 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Applicable. Also, each function of the operation control unit 24 and the shake amount estimation unit 25 may be implemented by individual processing circuits 100 , or each function may be collectively implemented by the processing circuit 100 .
 また、図13は、実施の形態1~3の運転制御部24及び揺れ量推定部25の各機能を実現する処理回路の第2例を示す構成図である。第2例の処理回路200は、プロセッサ201及びメモリ202を備えている。 FIG. 13 is a configuration diagram showing a second example of a processing circuit that implements the functions of the operation control section 24 and the shaking amount estimation section 25 of Embodiments 1-3. The processing circuit 200 of the second example comprises a processor 201 and a memory 202 .
 処理回路200では、運転制御部24及び揺れ量推定部25の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、メモリ202に格納される。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することにより、各機能を実現する。 In the processing circuit 200, each function of the operation control unit 24 and the shaking amount estimation unit 25 is realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory 202 . The processor 201 implements each function by reading and executing a program stored in the memory 202 .
 メモリ202に格納されたプログラムは、上述した各部の手順又は方法をコンピュータに実行させるものであるとも言える。ここで、メモリ202とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性又は揮発性の半導体メモリである。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリ202に該当する。 It can also be said that the program stored in the memory 202 causes the computer to execute the procedure or method of each unit described above. Here, the memory 202 is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable and volatile or volatile semiconductor memory. The memory 202 also includes magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like.
 なお、上述した各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 It should be noted that the functions of each unit described above may be partly realized by dedicated hardware and partly by software or firmware.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述した各部の機能を実現することができる。 In this way, the processing circuit can implement the functions of each unit described above by means of hardware, software, firmware, or a combination thereof.
 14 主ロープ(判定対象物)、15 かご、24 運転制御部、25 揺れ量推定部、30 エレベータシステム本体、31 エレベータ装置、50 建物。 14 main rope (determined object), 15 car, 24 operation control unit, 25 swing amount estimation unit, 30 elevator system main body, 31 elevator device, 50 building.

Claims (4)

  1.  建物に設けられているエレベータ装置を有しているエレベータシステム本体、及び
     揺れ量推定部
     を備え、
     前記エレベータ装置は、
     かごと、
     前記かごに接続されており、かつ可撓性を有している長尺物である判定対象物と、
     通常運転モード及び管制運転モードを含む複数の運転モードにより、前記かごの運転を制御する運転制御部と
     を有しており、
     前記揺れ量推定部には、前記判定対象物の揺れの大きさの判定基準である第1揺れ量閾値が設定されており、
     前記運転制御部には、前記建物の揺れにより前記判定対象物が共振するかご位置を含む領域である共振領域が設定されており、
     前記揺れ量推定部は、前記建物に生じた加速度に基づいて、前記かごが特定位置に位置しているときにおける前記判定対象物の揺れの大きさの推定値を求め、前記推定値が前記第1揺れ量閾値以上であるかどうかを判定し、
     前記運転制御部は、前記揺れ量推定部により前記推定値が前記第1揺れ量閾値以上であると判定され、かつ、前記かごが前記共振領域内に位置しているとき、前記運転モードを前記管制運転モードとするエレベータシステム。
    An elevator system body having an elevator device installed in a building, and a shaking amount estimator,
    The elevator device includes:
    basket,
    a determination target that is a long object that is connected to the car and has flexibility;
    an operation control unit that controls the operation of the car in a plurality of operation modes including a normal operation mode and a control operation mode,
    A first shake amount threshold, which is a criterion for determining the magnitude of shake of the object to be determined, is set in the shake amount estimator,
    A resonance region is set in the operation control unit, which is a region including a car position where the object to be determined resonates due to shaking of the building,
    The sway amount estimating unit obtains an estimated value of the swaying magnitude of the determination object when the car is positioned at a specific position based on the acceleration generated in the building, and the estimated value is the first value. 1 Determine whether or not it is greater than or equal to the swing amount threshold,
    The operation control unit changes the operation mode to the Elevator system in controlled operation mode.
  2.  前記特定位置は、前記建物の揺れによる前記判定対象物の揺れが最も大きくなるかご位置である請求項1記載のエレベータシステム。  The elevator system according to claim 1, wherein the specific position is a car position at which the shaking of the determination target due to the shaking of the building is the largest.
  3.  前記エレベータシステム本体は、2つ以上のエレベータ装置を有しており、
     各前記エレベータ装置における前記運転制御部は、前記揺れ量推定部により前記推定値が前記第1揺れ量閾値以上であると判定され、かつ、対応する前記かごが前記共振領域内に位置しているとき、前記運転モードを前記管制運転モードとする請求項1又は請求項2に記載のエレベータシステム。
    The elevator system main body has two or more elevator devices,
    The operation control unit in each elevator apparatus determines that the estimated value is equal to or greater than the first threshold value for the amount of shaking by the amount-of-sway estimating unit, and the corresponding car is located within the resonance area. 3. The elevator system according to claim 1 or 2, wherein the operation mode is set to the controlled operation mode at times.
  4.  前記揺れ量推定部には、前記判定対象物の揺れの大きさの判定基準として、前記第1揺れ量閾値よりも大きい第2揺れ量閾値が設定されており、
     前記揺れ量推定部は、前記推定値が前記第2揺れ量閾値以上であるかどうかを判定し、
     前記運転制御部は、前記揺れ量推定部により前記推定値が前記第2揺れ量閾値以上であると判定された場合、前記かごの位置によらず、前記運転モードを前記管制運転モードとする請求項1から請求項3までのいずれか1項に記載のエレベータシステム。
    A second shaking amount threshold larger than the first shaking amount threshold is set in the shaking amount estimating unit as a criterion for determining the magnitude of shaking of the determination object,
    The shake amount estimator determines whether the estimated value is equal to or greater than the second shake amount threshold,
    The operation control unit sets the operation mode to the control operation mode regardless of the position of the car when it is determined by the sway amount estimating unit that the estimated value is equal to or greater than the second sway amount threshold. Elevator system according to any one of claims 1 to 3.
PCT/JP2021/020616 2021-05-31 2021-05-31 Elevator system WO2022254488A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020616 WO2022254488A1 (en) 2021-05-31 2021-05-31 Elevator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020616 WO2022254488A1 (en) 2021-05-31 2021-05-31 Elevator system

Publications (1)

Publication Number Publication Date
WO2022254488A1 true WO2022254488A1 (en) 2022-12-08

Family

ID=84323073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020616 WO2022254488A1 (en) 2021-05-31 2021-05-31 Elevator system

Country Status (1)

Country Link
WO (1) WO2022254488A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081290A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Rope rolling detector for elevator
WO2009028070A1 (en) * 2007-08-30 2009-03-05 Mitsubishi Electric Corporation Control operation system of elevator
JP2011116519A (en) * 2009-12-04 2011-06-16 Toshiba Elevator Co Ltd Long-size object vibration sensor control device and elevator system
JP2014172715A (en) * 2013-03-08 2014-09-22 Toshiba Elevator Co Ltd Elevator control device
WO2020157822A1 (en) * 2019-01-29 2020-08-06 三菱電機株式会社 Elevator apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081290A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Rope rolling detector for elevator
WO2009028070A1 (en) * 2007-08-30 2009-03-05 Mitsubishi Electric Corporation Control operation system of elevator
JP2011116519A (en) * 2009-12-04 2011-06-16 Toshiba Elevator Co Ltd Long-size object vibration sensor control device and elevator system
JP2014172715A (en) * 2013-03-08 2014-09-22 Toshiba Elevator Co Ltd Elevator control device
WO2020157822A1 (en) * 2019-01-29 2020-08-06 三菱電機株式会社 Elevator apparatus

Similar Documents

Publication Publication Date Title
JP5244965B2 (en) Elevator operation control for vibration reduction
JP5992035B2 (en) Multi-car elevator
WO2020157822A1 (en) Elevator apparatus
JP2013166652A (en) Elevator control method and elevator
WO2018150786A1 (en) Elevator device
CN101098822A (en) Elevator apparatus
JP5489303B2 (en) Elevator control device
JP6494864B2 (en) Elevator system and control method thereof
JP6480840B2 (en) Elevator and control method of elevator
JP6180591B2 (en) Multi-car elevator
WO2022254488A1 (en) Elevator system
JP6494793B2 (en) Elevator and elevator operation method
JP5456836B2 (en) Elevator control device
JP2003118949A (en) Elevator device
WO2013038558A1 (en) Elevator device
WO2019077645A1 (en) Device and method for controlling elevator
JP7147900B1 (en) elevator
WO2022254619A1 (en) Elevator system
JP2007331902A (en) Control device of elevator
JP7080326B2 (en) Elevator equipment
JP2012184053A (en) Elevator system
JP2006513957A (en) Elevator with variable drag of car and counterweight
JP7184219B1 (en) elevator equipment
JP2015168565A (en) elevator
JP6223799B2 (en) Elevator speed control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP