WO2022254480A1 - 電力分配合成器 - Google Patents

電力分配合成器 Download PDF

Info

Publication number
WO2022254480A1
WO2022254480A1 PCT/JP2021/020596 JP2021020596W WO2022254480A1 WO 2022254480 A1 WO2022254480 A1 WO 2022254480A1 JP 2021020596 W JP2021020596 W JP 2021020596W WO 2022254480 A1 WO2022254480 A1 WO 2022254480A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
power divider
combiner
terminal
distribution
Prior art date
Application number
PCT/JP2021/020596
Other languages
English (en)
French (fr)
Inventor
雄介 上道
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN202180004613.0A priority Critical patent/CN115699447A/zh
Priority to US17/628,001 priority patent/US20240030574A1/en
Priority to PCT/JP2021/020596 priority patent/WO2022254480A1/ja
Priority to EP21830902.9A priority patent/EP4120471B1/en
Priority to JP2022502200A priority patent/JP7282252B2/ja
Publication of WO2022254480A1 publication Critical patent/WO2022254480A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines

Definitions

  • the present invention relates to a power divider/combiner.
  • Such a wireless communication module uses a power divider/combiner that performs power distribution and power combining of high-frequency signals.
  • a Wilkinson type power divider/combiner is known as a typical power divider/combiner among such power divider/combiners.
  • a Wilkinson type power divider/combiner has one combining terminal, two distribution terminals, an absorption resistor connected between the distribution terminals, and a quarter-wave line connected between the combining terminal and one of the distribution terminals. (90° line) and a quarter-wave line connected between the combining terminal and the other distribution terminal.
  • Patent Document 1 discloses an example of a multi-stage Wilkinson type power divider/combiner in which Wilkinson type power divider/combiners are connected by connection wires so as to form an N-stage (N is an integer equal to or greater than 2) tournament structure. is disclosed.
  • Such a multi-stage Wilkinson power divider/combiner is provided with one combining terminal, 2 N dividing terminals, and (2 N ⁇ 1) Wilkinson power divider/combiners.
  • each of the Wilkinson type power divider/combiners constituting the multi-stage Wilkinson type power divider/combiner disclosed in the above-mentioned Patent Document 1 is 1/ It has a structure in which four-wavelength lines are arranged symmetrically. A plurality of Wilkinson-type power divider/combiners are also coupled to form a tournament structure using connecting wires. Therefore, the multi-stage Wilkinson type power divider/combiner has a problem of a large footprint (large size).
  • the Wilkinson type power divider/combiner since the Wilkinson type power divider/combiner is connected by the connection wiring, the loss due to the installation of the connection wiring increases.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power divider/combiner that is smaller than conventional ones and capable of reducing loss.
  • a power divider/combiner (1-3) includes one combining terminal (11), two distribution terminals (12a, 12b), and an absorption resistor connected between the two distribution terminals. (13), a first transmission line (14a) connected between the composite terminal and one of the two distribution terminals, and the other of the composite terminal and the two distribution terminals. and a second transmission line (14b) shorter in length than the first transmission line, and at least one first open stub (15) connected to the second transmission line. , provided.
  • the absorption resistor is connected between the two distribution terminals, and the first transmission line is connected between the combining terminal and one distribution terminal of the two distribution terminals.
  • a second transmission line is connected between the combining terminal and the other of the two distribution terminals. The second transmission line is shorter in length than the first transmission line, while at least one first open stub is connected to the second transmission line.
  • the length of the second transmission line can be made shorter than the length of the first transmission line, so the degree of freedom in layout can be increased.
  • the position of the combining terminal of the power divider/combiner located in the first stage arbitrarily selected from among the plurality of stages can be changed to the first stage can be arranged at a position corresponding to the distribution terminal of the power divider/combiner located on the second stage next to the .
  • the characteristics of the power divider/combiner are ideal (the first transmission line and the second transmission line characteristics when the lengths of are the same).
  • the first stage arbitrarily selected from a plurality of stages does not limit the initial first stage in the multi-stage connection structure of the power divider/combiner.
  • the second or third stage in the multi-stage connection structure may correspond to the "first stage”.
  • the second transmission line may have a higher characteristic impedance than the first transmission line.
  • the first open stub may be connected to the central portion of the second transmission line.
  • a plurality of the first open stubs may be connected to the second transmission line so as to equally divide the second transmission line.
  • the electrical length of the first transmission line may be a length corresponding to a quarter wavelength of a predetermined center frequency.
  • the power divider/combiner according to the above aspect may include at least one second open stub (16) connected to the first transmission line.
  • the length of the second open stub may be shorter than the length of the first open stub.
  • the electrical length of the first transmission line may be shorter than a length corresponding to a quarter wavelength of a predetermined center frequency.
  • the first transmission line and the second transmission line may extend parallel to each other and be bent in the same direction.
  • FIG. 2 is a plan view showing a main configuration of a power divider/combiner according to one embodiment; 2 is a diagram showing an equivalent circuit of the power divider/combiner shown in FIG. 1; FIG. 3 is a graph showing simulation results when the power divider/combiner shown in FIG. 2 is designed so that the center frequency is 28 [GHz].
  • FIG. 4 is a diagram showing an equivalent circuit of a power divider/combiner to be compared;
  • FIG. 4 is a diagram showing an equivalent circuit of a power divider/combiner to be compared;
  • 4B is a graph showing simulation results of the power divider/combiner shown in FIG. 4A;
  • 5 is a graph showing simulation results of the power divider/combiner shown in FIG.
  • FIG. 11 is a plan view showing a main configuration of a power divider/combiner according to another modification of the embodiment
  • a power divider/combiner according to an embodiment of the present invention will be described in detail below with reference to the drawings. To facilitate understanding, the positional relationship of each member will be described below with reference to an XY orthogonal coordinate system set in the drawings as necessary. In addition, in the drawings referred to below, the dimensions of each member are appropriately changed as necessary to facilitate understanding.
  • FIG. 1 is a plan view showing the main configuration of a power divider/combiner according to one embodiment.
  • the power divider/combiner 1 of this embodiment includes a combining terminal 11, distribution terminals 12a and 12b, an absorption resistor 13, a transmission line 14a (first transmission line), and a transmission line 14b (second transmission line). , and an open stub 15 (first open stub).
  • the power divider/combiner 1 is formed on a substrate (plate-shaped dielectric substrate).
  • a power divider/synthesizer 1 power-divides a high-frequency signal input from a combining terminal 11, outputs the divided high-frequency signals from distribution terminals 12a and 12b, and power-synthesizes the high-frequency signals input from the distribution terminals 12a and 12b. and outputs the synthesized high-frequency signal from the synthesis terminal 11 .
  • the power divider/combiner 1 has a structure capable of functioning as a power divider for high-frequency signals and as a power combiner for high-frequency signals.
  • the power divider/combiner 1 has the same structure as the Wilkinson type power divider/combiner.
  • the high-frequency signal input/output to/from the power divider/combiner 1 may be, for example, a signal in the microwave band (frequency of about 300 [MHz] to 30 [GHz]), or a signal in the millimeter wave band (frequency of about 30 to 300 [GHz]). [GHz]) may be used.
  • the combining terminal 11 is a terminal to which a high-frequency signal power-divided by the power divider/combiner 1 is input, or a high-frequency signal power-combined by the power divider/combiner 1 is output.
  • the distribution terminals 12a and 12b are terminals to which the high-frequency signal power-divided by the power divider/combiner 1 is output, or to which the high-frequency signal power-combined by the power divider/combiner 1 is input.
  • the composite terminal 11 and the distribution terminals 12a and 12b are formed, for example, on the substrate surface. If the substrate has a multi-layer wiring structure, the layer on which the composite terminal 11 and the distribution terminals 12a and 12b are formed can be selected arbitrarily.
  • the absorption resistor 13 is a resistor for obtaining isolation between the distribution terminals 12a and 12b, and is provided on the substrate surface between the distribution terminals 12a and 12b. It is desirable that the electrical length of the absorption resistor 13 (the electrical length between the distribution terminals 12a and 12b) is infinitely zero. This is because if the electrical length of the absorption resistor 13 is long, the amount of phase rotation of the wraparound signal through the absorption resistor 13 will not be 180°, degrading the isolation characteristics between the distribution terminals 12a and 12b.
  • the above-mentioned wraparound signal is a high-frequency signal that goes around from the distribution terminal 12a to the distribution terminal 12b through the absorption resistor 13, or a high-frequency signal that goes around from the distribution terminal 12b to the distribution terminal 12a through the absorption resistor 13.
  • the transmission line 14a is a line through which the high-frequency signal input to the power divider/combiner 1 is transmitted, and is connected between the combining terminal 11 and the distribution terminal 12a.
  • the transmission line 14a includes a first straight portion P11 extending in the -X direction and a second straight portion P12 extending in the +Y direction continuously from the first straight portion P11.
  • the electrical length of the transmission line 14a is set to a length corresponding to a quarter wavelength of a predetermined center frequency. That is, the transmission line 14a is a quarter-wave line (90° line).
  • Such a transmission line 14a is realized by, for example, a microstrip line or a coplanar line.
  • the transmission line 14b is a line through which the high-frequency signal input to the power divider/combiner 1 is transmitted, and is connected between the combining terminal 11 and the distribution terminal 12b.
  • the transmission line 14b includes a first straight portion P21 extending in the +Y direction, a second straight portion P22 continuously extending in the -X direction from the first straight portion P21, and a continuous +Y direction extending from the second straight portion P22. and a third linear portion P23.
  • the electrical length of the transmission line 14b is set to be shorter than the length corresponding to a quarter wavelength of the predetermined center frequency.
  • the transmission line 14b has a higher characteristic impedance than the transmission line 14a.
  • a transmission line 14b is realized by, for example, a microstrip line or a coplanar line.
  • the transmission lines 14a and 14b extend parallel to each other and are bent in the same direction. Specifically, the transmission lines 14a and 14b extend from the distribution terminals 12a and 12b so as to be parallel to each other in the ⁇ Y direction, and are bent in the +X direction from the middle and extend so as to be parallel to each other in the +X direction. ing. In other words, the transmission lines 14a and 14b are made asymmetric with respect to the straight line passing through the center of the absorption resistor 13 and extending in the Y direction.
  • the combining terminal 11 can be arranged at a position deviated from the straight line extending in the Y direction through the center of the absorption resistor 13, and the degree of freedom in the layout of the power divider/combiner 1 can be increased. can.
  • the position of the combining terminal 11 of the power divider/combiner 1 located in the first stage arbitrarily selected from among the plurality of stages can be changed to It can be arranged at the position of the distribution terminal (not shown) of the power divider/combiner located in the second stage next to the first stage.
  • first tier and second tier refer to the relative relationship between the two tiers that constitute the multi-tiered connection structure, and the first tier in the multi-tiered connection structure, It is not a word that limits the second line following the first line.
  • the second stage of the three stages may correspond to the "first stage”
  • the third stage of the three stages may correspond to the " 2nd stage”. Even if the power divider/combiner has a multi-stage connection structure of four or more stages, the above relationship is similarly applied.
  • the 3rd stage of the 4 stages corresponds to the "1st stage”
  • the 4th stage corresponds to the "2nd stage”
  • the 2nd stage of the 4 stages corresponds to the "1st stage”. If it corresponds to the "first stage”, the third stage corresponds to the "second stage".
  • the open stub 15 compensates for the electrical length of the transmission line 14b whose electrical length is set shorter than the electrical length of the 1/4 wavelength line (90° line).
  • the open stub 15 is desirably connected to a position that bisects the length of the transmission line 14b. It's okay to be there.
  • the open stub 15 may be connected to the central portion of the transmission line 14b. The electrical length and characteristic impedance of the open stub 15 are appropriately set.
  • FIG. 2 is a diagram showing an equivalent circuit of the power divider/combiner shown in FIG.
  • the same reference numerals are given to the configurations corresponding to the configurations shown in FIG.
  • the absorption resistor 13 is connected between the distribution terminals 12a and 12b
  • the transmission line 14a is connected between the combining terminal 11 and the distribution terminal 12a
  • the combining terminal 11 and It is represented by a circuit in which a transmission line 14b is connected between the distribution terminal 12b and an open stub 15 is connected to the transmission line 14b.
  • the transmission line 14b is represented by two lines L1 and L2 connected in series
  • the open stub 15 is represented by a line having one end connected to the connection point of the lines L1 and L2.
  • FIG. 3 is a graph showing simulation results when the power divider/combiner shown in FIG. 2 is designed so that the center frequency is 28 [GHz]. This simulation result is obtained when the circuit parameters of the power divider/combiner 1 shown in FIG. 2 are set as follows.
  • ⁇ Center frequency 28 [GHz]
  • ⁇ Reference impedance of composite terminal 11 32 [ ⁇ ]
  • ⁇ Reference impedance of distribution terminals 12a and 12b 25 [ ⁇ ]
  • ⁇ Resistance value of absorption resistor 13 50 [ ⁇ ]
  • ⁇ Electrical length of transmission line 14a Electrical length of 1/4 wavelength line (90° line)
  • ⁇ Characteristic impedance of transmission line 14a 40 [ ⁇ ]
  • ⁇ Electrical length of transmission line 14b Electrical length of 70° line (Electrical length of lines L1 and L2 is electrical length of 35° line)
  • ⁇ Characteristic impedance of transmission line 14b 56 [ ⁇ ]
  • ⁇ Electrical length of open stub 15 26.4° Electrical length of line
  • ⁇ Characteristic impedance of open stub 15 40 [ ⁇ ]
  • FIGS. 4A and 4B are diagram showing an equivalent circuit of a power divider/combiner to be compared. 4A and 4B, the same components as those shown in FIG. 2 are given the same reference numerals.
  • a power divider/combiner 100 shown in FIG. 4A has a configuration in which a transmission line 110 is provided instead of the transmission line 14b and the open stub 15 of the power divider/combiner 1 shown in FIG.
  • Circuit parameters of the transmission line 110 are as follows.
  • ⁇ Electrical length of transmission line 110 Electrical length of 1/4 wavelength line (90° line)
  • ⁇ Characteristic impedance of transmission line 110 40 [ ⁇ ]
  • the power divider/combiner 100 shown in FIG. 4A has a structure in which the transmission line 110 having the same electrical characteristics as the transmission line 14a is provided between the combining terminal 11 and the distribution terminal 12b.
  • Other circuit parameters of the transmission line 110 are the same as those of the power divider/combiner 1 shown in FIG.
  • a power divider/combiner 200 shown in FIG. 4B has a configuration in which the open stub 15 is removed from the power divider/combiner 1 shown in FIG.
  • the transmission line 210 in FIG. 4B is the same as the transmission line 14b in FIG.
  • the power divider/combiner 200 shown in FIG. 4B has a structure in which the electrical length of the transmission line 110 of the power divider/combiner 100 shown in FIG. 4A is simply shortened.
  • FIG. 5A is a graph showing simulation results of the power divider/combiner shown in FIG. 4A
  • FIG. 5B is a graph showing simulation results of the power divider/combiner shown in FIG. 4B.
  • reference S11 indicates the reflection characteristics of the combining terminal 11
  • reference S22 indicates the reflection characteristics of the distribution terminal 12a
  • reference S33 indicates the distribution terminal. 12b
  • S23 indicates the isolation characteristic between distribution terminals 12a, 12b.
  • the reflection characteristics of the combining terminal 11, the reflection characteristics of the distribution terminal 12a, the reflection characteristics of the distribution terminal 12b, and the isolation characteristics between the distribution terminals 12a and 12b all have a center frequency (28 [GHz]).
  • a center frequency 28 [GHz]
  • the high frequency signal with the center frequency input to the combining terminal 11 or the high frequency signal with the center frequency input to the distribution terminals 12a and 12b is not reflected (or little reflection).
  • the power divider/combiner 100 shown in FIG. 4A it means that the high-frequency signal of the center frequency does not (or hardly does) flow from the distribution terminal 12a to the distribution terminal 12b via the absorption resistor 13. do.
  • the reflection characteristics of combining terminal 11, the reflection characteristics of distribution terminal 12a, the reflection characteristics of distribution terminal 12b, and the isolation characteristics between distribution terminals 12a and 12b are all shown in FIG. 5A. It can be seen that the result is significantly different from the shown result, and that it does not become minimum at the center frequency (28 [GHz]). This is because, in the power divider/combiner 200 shown in FIG. 4B, most of the high frequency signal of the center frequency input to the combining terminal 11 or the high frequency signal of the center frequency input to the distribution terminals 12a and 12b is reflected. means Moreover, in the power divider/combiner 200 shown in FIG. 4B, most of the high-frequency signal of the center frequency is passed through the absorption resistor 13 from the distribution terminal 12a to the distribution terminal 12b.
  • FIG. 3 similar to the result shown in FIG. It can be seen that all of the characteristics are generally minimized at the center frequency (28 [GHz]). For this reason, in the power divider/combiner 1 shown in FIG. 2, similarly to the power divider/combiner 100 shown in FIG. A high frequency signal of the center frequency is not reflected (or hardly reflected). Moreover, in the power divider/combiner 1 shown in FIG. 2, similarly to the power divider/combiner 100 shown in FIG. None (or almost never wraps around).
  • the power divider/combiner 1 of this embodiment includes the absorption resistor 13 connected between the distribution terminals 12a and 12b, the transmission line 14a connected between the combining terminal 11 and the distribution terminal 12a, A transmission line 14b is connected between the combining terminal 11 and the distribution terminal 12b.
  • the transmission line 14b is shorter than the transmission line 14a and has a higher characteristic impedance than the transmission line 14a, while the transmission line 14b is connected to an open stub 15 for adjusting the electrical length of the transmission line 14b. It is Thereby, even if the transmission line 14b is made shorter than the transmission line 14a, the characteristics of the power divider/combiner 1 can be brought closer to the characteristics of the ideal power divider/combiner 100 shown in FIG. 5A.
  • the length of the transmission line 14b is set shorter than the length of the transmission line 14a.
  • the transmission line 14b can be prevented from protruding to the +X side of the position of the combining terminal 11 in the X direction, thereby miniaturizing the power divider/combiner 1. be able to.
  • the transmission lines 14a and 14b extend parallel to each other and are bent in the same direction as shown in FIG.
  • the transmission lines 14a and 14b are made asymmetric with respect to the straight line passing through the center of the absorption resistor 13 and extending in the Y direction.
  • the combining terminal 11 can be arranged at a position deviated from the straight line extending in the Y direction through the center of the absorbing resistor 13, and the layout flexibility of the power divider/combiner 1 can be increased.
  • the combining terminal 11 of the power divider/combiner 1 can be connected to the next-stage power divider/combiner. (or, the combining terminal 11 of the power divider/combiner 1 can be placed at a position close to the distribution terminal of the next-stage power divider/combiner). This eliminates the need for the connection wiring that has been required in the conventional art, so that it is possible to realize a multi-stage power divider/combiner that is smaller in size and has less loss than the conventional one.
  • one open stub 15 is connected to the transmission line 14b.
  • multiple open stubs 15 may be connected to the transmission line 14b.
  • FIG. 6 is a plan view showing a main configuration of a power divider/combiner according to a modification of one embodiment.
  • two open stubs 15 are connected to the transmission line 14b.
  • the open stubs 15 are preferably connected to the transmission line 14b so as to equally divide the transmission line 14b.
  • two open stubs 15 are connected to the transmission line 14b so as to divide the transmission line 14b into three equal parts.
  • the number of open stubs 15 is not limited to two, and may be three or more. In other words, when the number of the plurality of first open stubs is M (M is an integer of 2 or more), the connection between the M first open stubs and the second transmission line causes the region of the second transmission line to be The number is (M+1).
  • FIG. 7 is a plan view showing a main configuration of a power divider/combiner according to another modification of the embodiment.
  • one open stub 15 is connected to the transmission line 14b, and one open stub 16 is connected to the transmission line 14a. Note that the length of the open stub 16 in the Y direction is shorter than the length of the open stub 15 .
  • the open stubs 15 and 16 are formed when the electrical lengths of the transmission lines 14a and 14b are both shorter than a length corresponding to a quarter wavelength of the predetermined center frequency. , are connected to the transmission lines 14b and 14a, respectively.
  • the open stubs 15, 16 are preferably connected to the central portions of the transmission lines 14b, 14a, respectively.
  • the number of open stubs 15 and 16 may be one or more.
  • the open stubs 16 are preferably connected to the transmission line 14a so as to equally divide the transmission line 14a.
  • the case where the reference impedance of the combining terminal 11 and the reference impedance of the distribution terminals 12a and 12b are different has been described as an example.
  • the reference impedance of the combining terminal 11 and the reference impedance of the distribution terminals 12a and 12b may be the same.

Landscapes

  • Waveguides (AREA)

Abstract

電力分配合成器(1)は、1つの合成端子(11)と、2つの分配端子(12a、12b)と、2つの分配端子の間に接続された吸収抵抗(13)と、合成端子と2つの分配端子のうちの一方の分配端子との間に接続された第1伝送線路(14a)と、合成端子と2つの分配端子のうちの他方の分配端子との間に接続され、第1伝送線路よりも長さが短い第2伝送線路(14b)と、第2伝送線路に接続された少なくとも1つの第1開放スタブ(15)と、を備える。

Description

電力分配合成器
 本発明は、電力分配合成器に関する。
 近年、マイクロ波、ミリ波等の高周波信号を用いて無線通信を行う無線通信モジュールの開発が盛んに行われている。このような無線通信モジュールでは、高周波信号の電力分配や電力合成を行う電力分配合成器が用いられる。このような電力分配合成器のうち、代表的な電力分配合成器として、ウィルキンソン形電力分配合成器が知られている。ウィルキンソン形電力分配合成器は、1つの合成端子と、2つの分配端子と、分配端子間に接続された吸収抵抗と、合成端子と一方の分配端子との間に接続された1/4波長線路(90°線路)と、合成端子と他方の分配端子との間に接続された1/4波長線路とを備える。
 以下の特許文献1には、ウィルキンソン形電力分配合成器が、接続配線によって、N段(Nは2以上の整数)のトーナメント構造を形成するように連結された多段ウィルキンソン形電力分配合成器の一例が開示されている。このような多段ウィルキンソン形電力分配合成器には、1つの合成端子と、2個の分配端子と、(2-1)個のウィルキンソン形電力分配合成器とが設けられている。
日本国特許第3209086号公報
 ところで、上述した特許文献1に開示された多段ウィルキンソン形電力分配合成器を構成するウィルキンソン形電力分配合成器の各々は、1つの合成端子と2つの分配端子の中点とを通る直線に関して1/4波長線路が対称に配置された構造を有する。また、複数のウィルキンソン形電力分配合成器は、接続配線を用いてトーナメント構造を形成するように連結されている。このため、多段ウィルキンソン形電力分配合成器においては、専有面積(フットプリント)が大きい(サイズが大きい)という問題がある。また、上述した特許文献1に開示された多段ウィルキンソン形電力分配合成器において、ウィルキンソン形電力分配合成器は、接続配線によって接続されていることから、接続配線の設置に起因して損失(ロス)が増加するという問題がある。
 本発明は、上記事情に鑑みてなされたものであり、従来よりも小型で損失を低減することが可能な電力分配合成器を提供することを目的とする。
 本発明の一態様による電力分配合成器(1~3)は、1つの合成端子(11)と、2つの分配端子(12a、12b)と、前記2つの分配端子の間に接続された吸収抵抗(13)と、前記合成端子と前記2つの分配端子のうちの一方の分配端子との間に接続された第1伝送線路(14a)と、前記合成端子と前記2つの分配端子のうちの他方の分配端子との間に接続され、前記第1伝送線路よりも長さが短い第2伝送線路(14b)と、前記第2伝送線路に接続された少なくとも1つの第1開放スタブ(15)と、を備える。
 上記態様による電力分配合成器では、2つの分配端子の間に吸収抵抗が接続されており、合成端子と2つの分配端子のうちの一方の分配端子との間に第1伝送線路が接続されており、合成端子と2つの分配端子のうちの他方の分配端子との間に第2伝送線路が接続されている。第2伝送線路は、第1伝送線路よりも長さが短くされる一方で、第2伝送線路には、少なくとも1つの第1開放スタブが接続されている。
 このように、本態様による電力分配合成器では、第2伝送線路の長さを第1伝送線路の長さよりも短くすることができるため、レイアウトの自由度を高めることができる。これにより、例えば、電力分配合成器が多段接続構造を有する場合に、複数の段のうち任意に選択される第1段目に位置する電力分配合成器の合成端子の位置を、第1段目の次の第2段目に位置する電力分配合成器の分配端子に応じた位置に配置することができる。すると、従来のような接続配線による接続が不要になり、従来よりも小型の電力分配合成器を実現して、損失を低減することが可能である。しかも、第2伝送線路に接続された第1開放スタブによって、第2伝送線路の長さが補われるため、電力分配合成器の特性を理想的な特性(第1伝送線路と第2伝送線路との長さが同じ場合の特性)に近づけることができる。ここで、「複数の段のうち任意に選択される第1段目」とは、電力分配合成器の多段接続構造における最初の第1段目を限定しない。多段接続構造における2番目や3番目の段が「第1段目」に対応してもよい。
 上記態様による電力分配合成器において、前記第2伝送線路が、前記第1伝送線路よりも特性インピーダンスが高くともよい。
 上記態様による電力分配合成器において、前記第1開放スタブが、前記第2伝送線路の中央部に接続されても良い。
 上記態様による電力分配合成器において、前記第1開放スタブが、前記第2伝送線路に、前記第2伝送線路を等分するように複数接続されていても良い。
 上記態様による電力分配合成器において、前記第1伝送線路の電気長が、予め規定された中心周波数の1/4波長に相当する長さであっても良い。
 上記態様による電力分配合成器において、前記第1伝送線路に接続された少なくとも1つの第2開放スタブ(16)を備えていても良い。
 上記態様による電力分配合成器において、前記第2開放スタブの長さが、前記第1開放スタブの長さよりも短くても良い。
 上記態様による電力分配合成器において、前記第1伝送線路の電気長が、予め規定された中心周波数の1/4波長に相当する長さよりも短くても良い。
 上記態様による電力分配合成器において、前記第1伝送線路及び前記第2伝送線路が、互いに平行になるように延び、且つ、互いに同じ方向に折り曲げられていても良い。
 本発明の一態様によれば、従来よりも小型で損失を低減することが可能な電力分配合成器を提供することができる。
一実施形態による電力分配合成器の要部構成を示す平面図である。 図1に示す電力分配合成器の等価回路を示す図である。 中心周波数が28[GHz]となるように図2に示す電力分配合成器を設計した場合のシミュレーション結果を示すグラフである。 比較対象となる電力分配合成器の等価回路を示す図である。 比較対象となる電力分配合成器の等価回路を示す図である。 図4Aに示す電力分配合成器のシミュレーション結果を示すグラフである。 図4Bに示す電力分配合成器のシミュレーション結果を示すグラフである。 一実施形態の変形例に係る電力分配合成器の要部構成を示す平面図である。 一実施形態の他の変形例に係る電力分配合成器の要部構成を示す平面図である。
 以下、図面を参照して、本発明の一実施形態による電力分配合成器について詳細に説明する。尚、以下では理解を容易にするために、図中に設定したXY直交座標系を必要に応じて参照しつつ各部材の位置関係について説明する。また、以下で参照する図面では、理解を容易にするために、必要に応じて各部材の寸法を適宜変えて図示している。
 図1は、一実施形態による電力分配合成器の要部構成を示す平面図である。図1に示す通り、本実施形態の電力分配合成器1は、合成端子11、分配端子12a,12b、吸収抵抗13、伝送線路14a(第1伝送線路)、伝送線路14b(第2伝送線路)、及び開放スタブ15(第1開放スタブ)を備える。尚、電力分配合成器1は、基板(板状誘電体基板)に形成される。
 電力分配合成器1は、合成端子11から入力される高周波信号を電力分配し、分配された高周波信号を分配端子12a,12bから出力し、分配端子12a,12bから入力される高周波信号を電力合成し、合成された高周波信号を合成端子11から出力する。つまり、電力分配合成器1は、高周波信号の電力分配器として機能することも、高周波信号の電力合成器として機能することも可能な構造を有する。尚、電力分配合成器1は、ウィルキンソン形電力分配合成器と同様の構造を有する。電力分配合成器1で入出力される高周波信号は、例えば、マイクロ波帯域(周波数が300[MHz]~30[GHz]程度)の信号であってもよく、ミリ波帯域(周波数が30~300[GHz]程度)の信号であってもよい。
 合成端子11は、電力分配合成器1で電力分配される高周波信号が入力され、又は、電力分配合成器1で電力合成された高周波信号が出力される端子である。分配端子12a,12bは、電力分配合成器1で電力分配された高周波信号が出力され、又は、電力分配合成器1で電力合成される高周波信号が入力される端子である。合成端子11及び分配端子12a,12bは、例えば、基板表面に形成される。尚、基板が多層配線構造である場合には、合成端子11及び分配端子12a,12bが形成される層は、任意に選択することができる。
 吸収抵抗13は、分配端子12a,12bの間のアイソレーションを得るための抵抗であり、基板表面であって分配端子12aと分配端子12bとの間に設けられている。この吸収抵抗13の電気長(分配端子12a,12bの間の電気長)は、限りなく零であることが望ましい。これは、吸収抵抗13の電気長が長いと、吸収抵抗13を介した回り込み信号の位相回転量が180°にならず、分配端子12a,12bの間のアイソレーション特性が劣化するためである。尚、上記の回り込み信号は、分配端子12aから吸収抵抗13を介して分配端子12bに回り込む高周波信号、或いは、分配端子12bから吸収抵抗13を介して分配端子12aに回り込む高周波信号である。
 伝送線路14aは、電力分配合成器1に入力された高周波信号が伝送される線路であり、合成端子11と分配端子12aとの間に接続されている。伝送線路14aは、-X方向に延びる第1直線部P11と、第1直線部P11から連続して+Y方向に延びる第2直線部P12とを備える。伝送線路14aの電気長は、予め規定された中心周波数の1/4波長に相当する長さに設定されている。つまり、伝送線路14aは、1/4波長線路(90°線路)である。このような伝送線路14aは、例えば、マイクロストリップ線路やコプレナ線路で実現される。
 伝送線路14bは、伝送線路14aと同様に、電力分配合成器1に入力された高周波信号が伝送される線路であり、合成端子11と分配端子12bとの間に接続されている。伝送線路14bは、+Y方向に延びる第1直線部P21と、第1直線部P21から連続して-X方向に延びる第2直線部P22と、第2直線部P22から連続して+Y方向に延びる第3直線部P23とを備える。伝送線路14bの電気長は、予め規定された中心周波数の1/4波長に相当する長さよりも短く設定されている。これは、伝送線路14bが、合成端子11のX方向の位置よりも+X側にはみ出さないようにすることで、電力分配合成器1の小型化を図るためである。また、伝送線路14bは、伝送線路14aよりも、特性インピーダンスが高くされている。このような伝送線路14bは、伝送線路14aと同様に、例えば、マイクロストリップ線路やコプレナ線路で実現される。
 伝送線路14a,14bは、図1に示す通り、互いに平行になるように延び、且つ、互いに同じ方向に折り曲げられている。具体的に、伝送線路14a,14bは、分配端子12a,12bから-Y方向に互いに平行となるようにそれぞれ延びており、途中から+X方向に折り曲げられて+X方向に互いに平行となるように延びている。つまり、伝送線路14a,14bは、吸収抵抗13の中心を通ってY方向に延びる直線に関して非対称となるようにされている。
 このようにすることで、吸収抵抗13の中心を通ってY方向に延びる直線上からずれた位置に合成端子11を配置することができ、電力分配合成器1のレイアウトの自由度を高めることができる。これにより、例えば、電力分配合成器1が多段接続構造を有する場合に、複数の段のうち任意に選択される第1段目に位置する電力分配合成器1の合成端子11の位置を、第1段目の次の第2段目に位置する電力分配合成器の分配端子(図示省略)の位置に配置することができる。すると、従来のような接続配線による接続が不要になり、従来よりも小型化が図れるとともに損失を低減することができる。
 ここで、文言「第1段目」及び文言「第2段目」は、多段接続構造を構成する2つの段の相対関係を意味しており、多段接続構造における最初の第1段目と、第1段目の次の第2段目を限定する文言ではない。
 例えば、3段の多段接続構造において、3段のうちの2番目の段が「第1段目」に相当してもよいし、この場合には、3段のうちの3番目の段が「第2段目」に相当する。
 電力分配合成器が4段以上の多段接続構造を有する場合であっても、上記の関係は同様に適用される。例えば、4段のうちの3番目の段が「第1段目」に相当する場合には4番目の段が「第2段目」に相当し、4段のうちの2番目の段が「第1段目」に相当する場合には3番目の段が「第2段目」に相当する。
 開放スタブ15は、電気長が1/4波長線路(90°線路)の電気長よりも短く設定された伝送線路14bの電気長を補う。開放スタブ15は、伝送線路14bの長さを2等分する位置に接続されているのが望ましいが、所望の特性が得られるのであれば、その位置からずれた位置に開放スタブ15が接続されていても良い。開放スタブ15は、伝送線路14bの中央部に接続されていれば良い。開放スタブ15の電気長及び特性インピーダンスは、適宜設定される。
 図2は、図1に示す電力分配合成器の等価回路を示す図である。尚、図2において、図1に示す構成に対応する構成については同一の符号を付してある。図2に示す通り、電力分配合成器1は、分配端子12a,12bの間に吸収抵抗13が接続され、合成端子11と分配端子12aとの間に伝送線路14aが接続され、合成端子11と分配端子12bとの間に伝送線路14bが接続され、伝送線路14bに開放スタブ15が接続された回路で表される。尚、伝送線路14bは、直列接続された2つの線路L1,L2で表され、開放スタブ15は、線路L1,L2の接続点に一端が接続された線路として表される。
 図3は、中心周波数が28[GHz]となるように図2に示す電力分配合成器を設計した場合のシミュレーション結果を示すグラフである。尚、本シミュレーション結果は、図2に示す電力分配合成器1の回路パラメータを以下の通りに設定した場合に得られている。
  ・中心周波数:28[GHz]
  ・合成端子11の基準インピーダンス:32[Ω]
  ・分配端子12a,12bの基準インピーダンス:25[Ω]
  ・吸収抵抗13の抵抗値:50[Ω]
  ・伝送線路14aの電気長:1/4波長線路(90°線路)の電気長
  ・伝送線路14aの特性インピーダンス:40[Ω]
  ・伝送線路14bの電気長:70°線路の電気長
    (線路L1,L2の電気長は、35°線路の電気長)
  ・伝送線路14bの特性インピーダンス:56[Ω]
  ・開放スタブ15の電気長:26.4°線路の電気長
  ・開放スタブ15の特性インピーダンス:40[Ω]
 ここで、図3に示すシミュレーション結果を、他の電力分配合成器のシミュレーション結果と比較しつつ検討する。図4A,図4Bの各々は、比較対象となる電力分配合成器の等価回路を示す図である。尚、図4A,図4Bにおいては、図2に示す構成と同じ構成には同一の符号を付してある。
 図4Aに示す電力分配合成器100は、図2に示す電力分配合成器1の伝送線路14b及び開放スタブ15に代えて伝送線路110を設けた構成である。伝送線路110の回路パラメータは、以下の通りである。
  ・伝送線路110の電気長:1/4波長線路(90°線路)の電気長
  ・伝送線路110の特性インピーダンス:40[Ω]
 つまり、図4Aに示す電力分配合成器100は、合成端子11と分配端子12bとの間に、伝送線路14aと同じ電気特性を有する伝送線路110を設けた構造を有する。尚、伝送線路110のその他の回路パラメータは、図2に示す電力分配合成器1の回路パラメータと同じである。
 図4Bに示す電力分配合成器200は、図2に示す電力分配合成器1から開放スタブ15を削除した構成である。尚、図4B中の伝送線路210は、図2中の伝送線路14bと同じである。
 尚、換言すると、図4Bに示す電力分配合成器200は、図4Aに示す電力分配合成器100の伝送線路110の電気長を単純に短くした構造を有する。
 図5Aは、図4Aに示す電力分配合成器のシミュレーション結果を示すグラフであり、図5Bは、図4Bに示す電力分配合成器のシミュレーション結果を示すグラフである。尚、図3及び図5A,図5Bに示されたシミュレーション結果において、符号S11は、合成端子11の反射特性を示し、符号S22は、分配端子12aの反射特性を示し、符号S33は、分配端子12bの反射特性を示し、及び符号S23は、分配端子12a,12bの間のアイソレーション特性を示す。
 まず、図5Aを参照すると、合成端子11の反射特性、分配端子12aの反射特性、分配端子12bの反射特性、及び分配端子12a,12bの間のアイソレーション特性は、何れも、中心周波数(28[GHz])で極小となることが分かる。これは、図4Aに示す電力分配合成器100において、合成端子11に入力された中心周波数の高周波信号、或いは、分配端子12a,12bに入力された中心周波数の高周波信号は、反射されない(或いは、殆ど反射されない)ことを意味する。また、図4Aに示す電力分配合成器100において、中心周波数の高周波信号が、分配端子12aから吸収抵抗13を介して分配端子12bに回り込むことはない(或いは、殆ど回り込むことはない)ことを意味する。
 次に、図5Bを参照すると、合成端子11の反射特性、分配端子12aの反射特性、分配端子12bの反射特性、及び分配端子12a,12bの間のアイソレーション特性の何れもが、図5Aに示す結果とは大きく異なっており、また、中心周波数(28[GHz])で極小とならないことが分かる。これは、図4Bに示す電力分配合成器200において、合成端子11に入力された中心周波数の高周波信号、或いは、分配端子12a,12bに入力された中心周波数の高周波信号の多くが反射されることを意味する。また、図4Bに示す電力分配合成器200において、中心周波数の高周波信号の多くが、分配端子12aから吸収抵抗13を介して分配端子12bに回り込むことを意味する。
 続いて、図3を参照すると、図5Aに示す結果と同様に、合成端子11の反射特性、分配端子12aの反射特性、分配端子12bの反射特性、及び分配端子12a,12bの間のアイソレーション特性は、何れも、中心周波数(28[GHz])で概ね極小となることが分かる。このため、図2に示す電力分配合成器1では、図4Aに示す電力分配合成器100と同様に、合成端子11に入力された中心周波数の高周波信号、或いは、分配端子12a,12bに入力された中心周波数の高周波信号は、反射されない(或いは、殆ど反射されない)。また、図2に示す電力分配合成器1では、図4Aに示す電力分配合成器100と同様に、中心周波数の高周波信号が、分配端子12aから吸収抵抗13を介して分配端子12bに回り込むことはない(或いは、殆ど回り込むことはない)。
 以上の通り、本実施形態の電力分配合成器1は、分配端子12a,12bの間に接続された吸収抵抗13と、合成端子11と分配端子12aとの間に接続された伝送線路14aと、合成端子11と分配端子12bとの間に接続された伝送線路14bとを備える。伝送線路14bは、伝送線路14aよりも長さが短く、且つ、伝送線路14aよりも特性インピーダンスが高くされる一方で、伝送線路14bには、伝送線路14bの電気長を調整する開放スタブ15が接続されている。これにより、伝送線路14bを伝送線路14aよりも短くしたとしても、電力分配合成器1の特性を、図5Aに示す理想的な電力分配合成器100の特性に近づけることができる。
 また、本実施形態の電力分配合成器1では、伝送線路14bの長さが伝送線路14aの長さより短く設定されている。これにより、例えば、図1に示す通り、伝送線路14bが、合成端子11のX方向の位置よりも+X側にはみ出さないようにすることができるため、電力分配合成器1の小型化を図ることができる。
 また、本実施形態の電力分配合成器1において、伝送線路14a,14bは、図1に示す通り、互いに平行になるように延び、且つ、互いに同じ方向に折り曲げられている。つまり、伝送線路14a,14bは、吸収抵抗13の中心を通ってY方向に延びる直線に関して非対称となるようにされている。これにより、吸収抵抗13の中心を通ってY方向に延びる直線上からずれた位置に合成端子11を配置することができ、電力分配合成器1のレイアウトの自由度を高めることができる。
 電力分配合成器1のレイアウトの自由度が高まることで、例えば、電力分配合成器1が多段接続構造を有する場合には、電力分配合成器1の合成端子11を、次段の電力分配合成器の分配端子(図示省略)の位置に配置する(或いは、電力分配合成器1の合成端子11を次段の電力分配合成器の分配端子に近接する位置に配置する)ことが可能である。これにより、従来必要であった接続配線が不要になることから、従来よりも小型で損失が低減された多段の電力分配合成器を実現することができる。
 以上、実施形態について説明したが、本発明は、上記実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、上述した実施形態で説明した電力分配合成器1は、1つの開放スタブ15が伝送線路14bに接続されている。しかしながら、図6に示す通り、複数の開放スタブ15が伝送線路14bに接続されていても良い。
 図6は、一実施形態の変形例に係る電力分配合成器の要部構成を示す平面図である。図6に示す電力分配合成器2では、2つの開放スタブ15が伝送線路14bに接続されている。ここで、複数の開放スタブ15が伝送線路14bに接続される場合には、開放スタブ15は、伝送線路14bに、伝送線路14bを等分するように接続されるのが望ましい。例えば、図6に示す例では、2つの開放スタブ15が、伝送線路14bを3等分するように伝送線路14bに接続されている。
 なお、開放スタブ15の個数は、2に限定されず、3以上であってもよい。換言すると、複数の第1開放スタブの数がM個(Mは2以上の整数)である場合、M個の第1開放スタブと第2伝送線路との接続により、第2伝送線路の領域の数は、(M+1)個となる。
 また、上述した実施形態で説明した電力分配合成器1は、伝送線路14bに開放スタブ15が接続されている。しかしながら、図7に示す通り、伝送線路14aにも開放スタブ16(第2開放スタブ)が接続されていても良い。図7は、一実施形態の他の変形例に係る電力分配合成器の要部構成を示す平面図である。図7に示す電力分配合成器3では、1つの開放スタブ15が伝送線路14bに接続されており、1つの開放スタブ16が伝送線路14aに接続されている。尚、Y方向における開放スタブ16の長さは、開放スタブ15の長さよりも短い。
 図7に示す電力分配合成器3において、開放スタブ15,16は、例えば、伝送線路14a,14bの電気長が共に、予め規定された中心周波数の1/4波長に相当する長さよりも短い場合に、伝送線路14b,14aにそれぞれ接続される。開放スタブ15,16は、伝送線路14b,14aの中央部にそれぞれ接続されているのが望ましい。尚、開放スタブ15,16の数は、1つ以上であっても良い。複数の開放スタブ16が伝送線路14aに接続される場合には、開放スタブ16は、伝送線路14aに、伝送線路14aを等分するように接続されるのが望ましい。
 また、上述した実施形態では、合成端子11の基準インピーダンスと、分配端子12a,12bの基準インピーダンスとが異なる場合を例に挙げて説明した。しかしながら、合成端子11の基準インピーダンスと、分配端子12a,12bの基準インピーダンスとは同じであっても良い。
 1~3…電力分配合成器、11…合成端子、12a,12b…分配端子、13…吸収抵抗、14a,14b…伝送線路、15,16…開放スタブ

Claims (9)

  1.  1つの合成端子と、
     2つの分配端子と、
     前記2つの分配端子の間に接続された吸収抵抗と、
     前記合成端子と前記2つの分配端子のうちの一方の分配端子との間に接続された第1伝送線路と、
     前記合成端子と前記2つの分配端子のうちの他方の分配端子との間に接続され、前記第1伝送線路よりも長さが短い第2伝送線路と、
     前記第2伝送線路に接続された少なくとも1つの第1開放スタブと、
     を備える電力分配合成器。
  2.  前記第2伝送線路は、前記第1伝送線路よりも特性インピーダンスが高い、請求項1記載の電力分配合成器。
  3.  前記第1開放スタブは、前記第2伝送線路の中央部に接続されている、請求項1又は請求項2記載の電力分配合成器。
  4.  前記第1開放スタブは、前記第2伝送線路に、前記第2伝送線路を等分するように複数接続されている、請求項1又は請求項2記載の電力分配合成器。
  5.  前記第1伝送線路の電気長は、予め規定された中心周波数の1/4波長に相当する長さである、請求項1から請求項4の何れか一項に記載電力分配合成器。
  6.  前記第1伝送線路に接続された少なくとも1つの第2開放スタブを備える、請求項1から請求項4の何れか一項に記載の電力分配合成器。
  7.  前記第2開放スタブの長さは、前記第1開放スタブの長さよりも短い、請求項6記載の電力分配合成器。
  8.  前記第1伝送線路の電気長は、予め規定された中心周波数の1/4波長に相当する長さよりも短い、請求項6又は請求項7記載の電力分配合成器。
  9.  前記第1伝送線路及び前記第2伝送線路は、互いに平行になるように延び、且つ、互いに同じ方向に折り曲げられている、請求項1から請求項8の何れか一項に記載の電力分配合成器。
PCT/JP2021/020596 2021-05-31 2021-05-31 電力分配合成器 WO2022254480A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180004613.0A CN115699447A (zh) 2021-05-31 2021-05-31 功率分配合成器
US17/628,001 US20240030574A1 (en) 2021-05-31 2021-05-31 Power splitter-combiner
PCT/JP2021/020596 WO2022254480A1 (ja) 2021-05-31 2021-05-31 電力分配合成器
EP21830902.9A EP4120471B1 (en) 2021-05-31 2021-05-31 Power distributor/combiner
JP2022502200A JP7282252B2 (ja) 2021-05-31 2021-05-31 電力分配合成器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020596 WO2022254480A1 (ja) 2021-05-31 2021-05-31 電力分配合成器

Publications (1)

Publication Number Publication Date
WO2022254480A1 true WO2022254480A1 (ja) 2022-12-08

Family

ID=84323021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020596 WO2022254480A1 (ja) 2021-05-31 2021-05-31 電力分配合成器

Country Status (5)

Country Link
US (1) US20240030574A1 (ja)
EP (1) EP4120471B1 (ja)
JP (1) JP7282252B2 (ja)
CN (1) CN115699447A (ja)
WO (1) WO2022254480A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024510056A (ja) * 2022-02-09 2024-03-06 株式会社フジクラ 電力分配合成器及びカスケード接続回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725792A (en) * 1986-03-28 1988-02-16 Rca Corporation Wideband balun realized by equal-power divider and short circuit stubs
JP3209086B2 (ja) 1996-04-24 2001-09-17 松下電器産業株式会社 電力合成器及び電力分配器
JP2002271131A (ja) * 2001-03-12 2002-09-20 Hitachi Ltd 平面アンテナ
KR20080027054A (ko) * 2006-09-22 2008-03-26 민상보 90도 위상차를 갖는 윌킨슨 전력분배기를 이용한큐에이치에이 피더

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537212A (ja) * 1991-08-01 1993-02-12 Mitsubishi Electric Corp 電力分配合成器
US5467063A (en) * 1993-09-21 1995-11-14 Hughes Aircraft Company Adjustable microwave power divider
JP2007123972A (ja) * 2005-10-25 2007-05-17 Nagano Japan Radio Co 方向性結合器
KR101870385B1 (ko) * 2016-05-13 2018-06-22 금오공과대학교 산학협력단 비대칭 전력 분배기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725792A (en) * 1986-03-28 1988-02-16 Rca Corporation Wideband balun realized by equal-power divider and short circuit stubs
JP3209086B2 (ja) 1996-04-24 2001-09-17 松下電器産業株式会社 電力合成器及び電力分配器
JP2002271131A (ja) * 2001-03-12 2002-09-20 Hitachi Ltd 平面アンテナ
KR20080027054A (ko) * 2006-09-22 2008-03-26 민상보 90도 위상차를 갖는 윌킨슨 전력분배기를 이용한큐에이치에이 피더

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG XIAOLONG; MA ZHEWANG; SAKAGAMI IWATA: "A Compact and harmonic suppression Wilkinson power divider with General IT type structure", 2015 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, IEEE, 17 May 2015 (2015-05-17), pages 1 - 4, XP033181250, DOI: 10.1109/MWSYM.2015.7166845 *
XIAOLONG WANG ET AL: "A planar three-way dual-band power divider using two generalized open stub Wilkinson dividers", MICROWAVE CONFERENCE PROCEEDINGS (APMC), 2010 ASIA-PACIFIC, IEEE, 7 December 2010 (2010-12-07), pages 714 - 717, XP031928836, ISBN: 978-1-4244-7590-2 *

Also Published As

Publication number Publication date
JP7282252B2 (ja) 2023-05-26
CN115699447A (zh) 2023-02-03
EP4120471B1 (en) 2023-10-18
EP4120471A1 (en) 2023-01-18
US20240030574A1 (en) 2024-01-25
EP4120471A4 (en) 2023-01-18
JPWO2022254480A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
US4129839A (en) Radio frequency energy combiner or divider
US7400215B2 (en) Method and apparatus for increasing performance in a waveguide-based spatial power combiner
CN109314300B (zh) 功率分配/合成器
US10535912B2 (en) Wideband gysel power divider
US5025225A (en) Amplifier having substantially constant D.C. to r.f. conversion efficiency
EP3691025B1 (en) Coupling device and antenna
CN111048877B (zh) 具有不对称接地的微型慢波传输线和相关移相器系统
US5373299A (en) Low-profile wideband mode forming network
CN110832696B (zh) 功率分配合成器
WO2022254480A1 (ja) 電力分配合成器
JP2000295003A (ja) 移相器
US5796317A (en) Variable impedance transmission line and high-power broadband reduced-size power divider/combiner employing same
WO1996009660A1 (en) High power radio frequency divider/combiner
CN112701435A (zh) 基于角向周期匹配的同轴te01模功率合成/分配器
JP2001085902A (ja) 移相器
US6750736B1 (en) System and method for planar transmission line transition
WO2020179476A1 (ja) 回路基板およびアンテナモジュール
KR100287007B1 (ko) 광대역 고주파 분배기
WO2022264765A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US5959509A (en) Printed 180 degree differential phase shifter including a non-uniform non-regular line
Malyutin et al. Small-size reflectionless band-pass filter
CN113540738A (zh) 一种威尔金森功分器及pcb板
CN118156760A (zh) 功分器、移相器及基站天线
JPS5930327B2 (ja) 電力分割装置
CN116995392A (zh) 功分器和射频微波系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022502200

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17628001

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021830902

Country of ref document: EP

Effective date: 20220204

NENP Non-entry into the national phase

Ref country code: DE