WO2022253018A1 - 无人机视角的视频显示方法及显示系统 - Google Patents

无人机视角的视频显示方法及显示系统 Download PDF

Info

Publication number
WO2022253018A1
WO2022253018A1 PCT/CN2022/094398 CN2022094398W WO2022253018A1 WO 2022253018 A1 WO2022253018 A1 WO 2022253018A1 CN 2022094398 W CN2022094398 W CN 2022094398W WO 2022253018 A1 WO2022253018 A1 WO 2022253018A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
display
drone
angle
viewing angle
Prior art date
Application number
PCT/CN2022/094398
Other languages
English (en)
French (fr)
Inventor
刘靖康
姜文杰
郭奕滨
贾顺
Original Assignee
影石创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 影石创新科技股份有限公司 filed Critical 影石创新科技股份有限公司
Publication of WO2022253018A1 publication Critical patent/WO2022253018A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms

Definitions

  • the present application relates to the technical field of drones, and in particular to a video display method and display system of a drone's perspective.
  • UAVs are now widely used in monitoring and aerial photography. Operators can watch the images or videos captured by the camera device on the UAV through remote display terminals (such as computers, mobile phones or VR helmets, etc.) to obtain UAV perspective viewing experience.
  • remote display terminals such as computers, mobile phones or VR helmets, etc.
  • Adjusting the video shooting angle needs to be realized by controlling the flight of the aircraft, and the operation is more complicated. For example, when the drone operator needs to continuously observe a certain video object of interest, if the video object is no longer within the viewing angle of the shooting gimbal, he needs to control the drone to turn or turn around to re-observe the video object. Video object of interest.
  • the purpose of the present invention is to provide a video display method and a display system of a UAV perspective.
  • the present invention provides a video display method of the perspective of the drone, including: acquiring the pose information of the drone; acquiring the video around the drone corresponding to the pose; acquiring the display angle of the video; The angle of view displays the corresponding angle of view of the video; wherein, the video includes a spherical panoramic video, a circular panoramic video or a wide-angle video, and the displayed angle of view is independent of the pose of the drone.
  • the present invention provides a video display system from the perspective of a drone, including a drone and a receiving control terminal; the drone includes a camera device and a flight control device, and the camera device is used to photograph unmanned The video around the drone, the flight control device is used to obtain the pose of the drone and control the motion of the drone; the receiving control terminal includes a remote control device and a display device, and the remote control device is used to send flight control instructions To the flight control device of the unmanned aerial vehicle; The display device is used to display the corresponding part of the video according to the display angle; Wherein, the video includes a spherical panoramic video, a ring panoramic video or a wide-angle video, and the display angle is the same as that of the unmanned The machine poses are independent of each other.
  • the flight direction of the drone in the technical solution of the present invention is independent of the display angle of view of the video around the drone, so when the drone changes the flight direction, it does not affect the display angle of view of the video around the drone , and you can watch the video from the drone’s perspective at any angle without manipulating the flight direction of the drone, which improves the viewer’s video viewing experience from the drone’s perspective.
  • FIG. 1 is a flow chart of a method for displaying video from a perspective of a drone in Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of a video display system from a UAV perspective in Embodiment 2 of the present invention.
  • Fig. 3 is a schematic diagram of displaying the corresponding part of the panoramic video on the flat screen according to the present invention.
  • Fig. 4 is a schematic diagram of the display interface when the drone is flying along the direction of the viewer.
  • FIG. 5 is a schematic diagram of the display interface when the UAV in FIG. 4 flies to the left.
  • the method for displaying video from the drone's perspective in this embodiment includes the following steps.
  • the pose in this embodiment includes the flight direction and/or space coordinates of the drone, and the flight direction of the drone can be obtained through the inertial sensor unit (IMU) installed on the drone; the space coordinates of the drone can be Obtained via navigation devices such as the Global Positioning System (GPS).
  • IMU inertial sensor unit
  • GPS Global Positioning System
  • the video in this step includes a spherical panorama video, a circular panorama video, or a wide-angle video.
  • the spherical panoramic video is a three-dimensional spherical video with the UAV as the center of the sphere; the circular panoramic video is a part of the spherical panoramic video, which can be obtained by cutting the spherical panoramic video. For example, cutting a circle in the middle of the spherical video can form a circular panoramic video;
  • a wide-angle video is a video shot with a wide-angle lens or a fisheye lens that is larger than 180° but smaller than 360°.
  • a wide-angle video can also be formed by splicing videos shot by multiple lenses.
  • the lenses can be distributed anywhere around the drone’s fuselage; the distribution of the lenses must be such that the viewing angle range of N lenses can be Including a 360° viewing angle around the drone, that is, the fields of view of adjacent lenses overlap each other to form a 360° panoramic viewing angle around the drone.
  • the panoramic video after the panoramic video is acquired, the panoramic video can also be processed by the panoramic anti-shake technology to obtain a smooth panoramic video, reduce the shaking of the video up and down or left and right caused by the shaking of the drone, and reduce the dizziness of the video viewer sense.
  • Panoramic anti-shake technology can use any method of anti-shake technology, for example, it can use the physical anti-shake technology of the three-axis gimbal, or it can be realized by electronic anti-shake or algorithmic anti-shake.
  • two fisheye lenses are used, and one fisheye lens is installed on the opposite sides of the fuselage of the drone (the viewing angle range of a single fisheye lens is greater than 180°), and the two fisheye lenses
  • the combined angle of view of the lens reaches 360°
  • the distribution methods of the two fisheye lenses include: back-to-back distribution on the upper and lower sides, front and rear sides, and left and right sides of the fuselage, or back-to-back on the same side above or below the fuselage.
  • the video frames captured by the two fisheye lenses at the same time are synthesized into panoramic video frames, and then the panoramic video is obtained.
  • the splicing of panoramic videos is a prior art, and for details, reference may be made to the relevant description in Chinese Patent Publication No. CN106023070A.
  • a panoramic video can also be taken by a panoramic camera installed on the drone.
  • the display viewing angle in this embodiment includes a display direction, or a display direction and a viewing angle.
  • the display angle of view and the pose of the UAV are independent of each other.
  • the display direction of the video may be the same as the flight direction of the UAV, or may be different from the flight direction of the UAV.
  • the default display direction is the same as the flying direction of the drone.
  • a reference object such as the nose orientation of the aircraft, can also be set in the display device, so that the user can associate the desired display direction with the flight direction of the drone.
  • the display direction can be displayed at multiple preset angles.
  • the display direction options include setting 8 rotations along the X, Y, and Z axes respectively Angle (that is, set one every 45°), then a total of 512 angles of 8*8*8 can be formed, and the viewer can determine the angle to be displayed by selecting the values of the three axes of X, Y, and Z; the display direction can also be
  • the display direction is determined according to the user's operation detected by the sensor device, for example, the display direction is determined by operating the mouse to move, controlling the direction of the joystick, and moving the head to drive the VR glasses and the VR head-mounted display.
  • the size of the viewing angle can display panoramic video according to multiple preset values, such as 90°, 120°, 150°, etc.; the viewing angle can also be enlarged or reduced through the touch screen of the visual terminal.
  • S4 Display a corresponding viewing angle of the video according to the display viewing angle.
  • the corresponding viewing angle of the video can be displayed on the display device.
  • the curved surface can be projected A'B'C'D' is projected into a plane ABCD image, which is then displayed on the plane display, that is, the corresponding part of the panoramic video is displayed on the plane screen.
  • the viewer sees a schematic diagram of the display interface of the display device.
  • the trees, rivers and people in the picture are pictures of the corresponding angles in the panoramic video, and the triangle icon in the upper right corner is the flight direction of the drone (of course, the actual coordinate information of the drone can also be added in the picture, such as the world coordinate system longitude, latitude and altitude, etc.).
  • FIG. 5 it is a schematic diagram of the display interface seen by the viewer after the UAV receives the control command to fly to the left. Because the drone flew forward for a certain distance, the trees, rivers and people in Figure 5 became larger than those in Figure 4, basically maintaining a smooth change. At the same time, the direction of the triangle icon in the upper right corner has changed, which can remind the viewer The current flight direction of the aircraft.
  • the flying direction of the UAV in this embodiment is independent of the display angle of view of the video around the UAV, so when the UAV changes the flying direction, it does not affect the viewing of the video around the UAV
  • the display angle of view of the display device is a smooth picture.
  • this embodiment discloses a video display system from the perspective of an unmanned aerial vehicle, including an unmanned aerial vehicle and a receiving control terminal.
  • the drone includes a camera device, an image processing device and a flight control device. Cameras are used to capture video of the drone's surroundings. Taking spherical panoramic video as an example, the camera device in this embodiment includes two fisheye lenses, which are respectively installed on the upper and lower sides of the fuselage of the drone, and each fisheye lens protrudes from the surface of the fuselage , the fields of view of the two fisheye lenses form a circular overlapping field of view around the fuselage, thus forming a 360° panoramic field of view.
  • Image processing device (such as ISP unit, Image Signal Processing unit) is used to perform anti-shake processing on the video taken by the camera device. In this embodiment, it can also be used to stitch the video frames taken by two fisheye lenses into a panoramic video frame.
  • the device includes an image signal processor (Image Signal Processor), it can also be used for automatic exposure, automatic gain control, gamma correction, white balance and other image processing.
  • the imaging device can be mounted on a drone, a remote control device or a display device.
  • the flight control device includes a global positioning system (GPS), an inertial sensor unit (IMU) and a microprocessor (MCU).
  • GPS global positioning system
  • IMU inertial sensor unit
  • MCU microprocessor
  • the UAV in this embodiment also includes an obstacle detection chapter for detecting obstacles around the UAV, an image transmission device for sending the panoramic video to the display device, and a video transmission device for receiving And the wireless transmission device (such as RC controller) that sends and controls the execution of the necessary components such as hardware.
  • an obstacle detection chapter for detecting obstacles around the UAV
  • an image transmission device for sending the panoramic video to the display device
  • a video transmission device for receiving
  • the wireless transmission device such as RC controller
  • the receiving control terminal includes a remote control device and a display device.
  • the remote control device is used to send the user's flight control instructions to the flight control device of the drone.
  • the remote control device includes but is not limited to a mouse, a joystick or a somatosensory remote control; the flight control command includes but not limited to the flight direction and flight speed.
  • the display device is used for displaying corresponding viewing angles of the panoramic video according to the displaying viewing angles.
  • the display viewing angle includes a display direction, or a display direction and a viewing angle size.
  • the display direction in the display angle of view and the flight direction of the drone are independent of each other, and the display angle of view is generated according to the user's input or the detection of the user's motion. Therefore, the display direction of the video and the flight direction of the drone can be the same, or Can be different.
  • the display angle of view can be generated on the display device according to the user's operation, for example, when the display device is a computer, the display angle of view can be generated by operating a mouse; when the display device is VR glasses, the user's head detected by the VR glasses The display viewing angle is generated by moving the display angle; the display viewing angle can also be generated by the user operating the remote control device, for example, when the remote control device is a joystick, the display viewing angle is generated by detecting the movement direction of the joystick.
  • the remote control device and the display device at the receiving control end can be designed in one piece, such as a VR helmet, which can set the flight control mode and viewing mode.
  • the flight direction of the aircraft, when in viewing mode, can generate viewing angle display information by swinging the head and display it on the VR helmet synchronously.
  • the flight direction of the drone in the solution of the present invention is independent of the display angle of view of the video around the drone, so when the drone changes the flight direction, it does not affect the display angle of view of the video around the drone.
  • the microprocessor MCU receives the feedback from the obstacle detection module.
  • Obstacle information in front and to the right of the man-machine if there is no obstacle, control the flight module to make the drone fly to the right, and at the same time the inertial sensing unit (IMU) obtains the rotation angle of the drone relative to the front, and then according to the rotation
  • the viewing angle display information is obtained from the angle and the pose of the UAV, and then the corresponding part of the panoramic video acquired by the UAV at this pose is displayed according to the viewing angle display information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Studio Devices (AREA)

Abstract

本发明揭示了一种无人机视角的视频显示方法,包括:第一方面,本发明提供了一种无人机视角的视频显示方法,包括:获取无人机的位姿信息;获取对应位姿的无人机周围的视频;获取视频的显示视角;根据显示视角显示视频的对应视角;其中,所述视频包括球形全景视频、环形全景视频或广角视频,所述显示视角与无人机的位姿相互独立。与现有技术相比,本发明技术方案中的无人机飞行方向与无人机周围视频的显示视角相互独立,因此当无人机改变飞行方向时不影响观看无人机周围视频的显示视角,且无需操控无人机的飞行方向即可在任意角度观看无人机视角的视频,提高观看者的无人机视角的视频观看体验。此外,本发明还揭示了一种无人机视角的视频显示系统。

Description

无人机视角的视频显示方法及显示系统 技术领域
本申请涉及无人机技术领域,尤其涉及一种无人机视角的视频显示方法及显示系统。
背景技术
无人机现已广泛运用于监控及航拍,操作者可通过远程显示终端(如电脑、手机或VR头盔等)来观看无人机上的摄像装置所拍摄到的图像或视频,以获得无人机视角的观看体验。
现有的无人机的监控或航拍方案大多是在无人机上搭载飞行方向的前方搭载一拍摄云台,然后将拍摄云台拍摄到视频发送至远程显示终端供无人机操作者观看,从而实现无人机飞行方向的视角飞行体验。
技术问题
但上述无人机的监控或航拍方案存在以下缺陷:
1、只能观看特定方向的图像或视频。由于拍摄云台朝向无人机飞行方向,因此只能观看到无人机前方一定视角范围内的图像或视频。
2、调整视频拍摄角度需控制飞机的飞行来实现,操作较为复杂。例如,在无人机操作者需要对某个感兴趣的视频对象持续进行观察时候,如果该视频对象已不在拍摄云台的视角范围内,则需要操控无人机转向或掉头才能重新观察到该感兴趣的视频对象。
因此,有必要对现有的无人机监控及航拍方案进行改进。
技术解决方案
本发明的目的在于提供一种无人机视角的视频显示方法及显示系统。
第一方面,本发明提供了一种无人机视角的视频显示方法,包括:获取无人机的位姿信息;获取对应位姿的无人机周围的视频;获取视频的显示视角;根据显示视角显示视频的对应视角;其中,所述视频包括球形全景视频、环形全景视频或广角视频,所述显示视角与无人机的位姿相互独立。
第二方面,本发明提供了一种无人机视角的视频显示系统,包括无人机和接收控制端;所述无人机包括摄像装置和飞控装置,所述摄像装置用于拍摄无人机周围的视频,所述飞控装置用于获取无人机的位姿以及控制无人机的运动;所述接收控制端包括遥控装置和显示器装置,所述遥控装置用于将飞行控制指令发送至无人机的飞控装置;所述显示器装置用于根据显示视角显示视频的对应部分;其中,所述视频包括球形全景视频、环形全景视频或广角视频,所述显示视角与所述无人机的位姿相互独立。
有益效果
与现有技术相比,本发明技术方案中的无人机飞行方向与无人机周围视频的显示视角相互独立,因此当无人机改变飞行方向时不影响观看无人机周围视频的显示视角,且无需操控无人机的飞行方向即可在任意角度观看无人机视角的视频,提高了观看者的无人机视角的视频观看体验。
附图说明
图1为本发明实施例1中的无人机视角的视频显示方法的流程图。
图2为本发明实施例2中的无人机视角的视频显示系统的构成框图。
图3为本发明在平面显示屏上显示全景视频的对应部分的示意图。
图4是无人机在沿观看者方向飞行时的显示界面的示意图。
图5是图4中的无人机向左飞行时的显示界面的示意图。
本发明的实施方式
为了使本发明的目的、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
实施例 1
如图1所示,本实施例中的无人机视角的视频显示方法包括以下步骤。
S1:获取无人机的位姿。
本实施例中的位姿包括无人机的飞行方向和/或空间坐标,无人机的飞行方向可以通过无人机上安装的惯性传感单元(IMU)获得;无人机的空间坐标则可以通过导航装置(如全球定位系统(GPS))获得。
S2:获取无人机周围的视频。
本步骤中的视频包括球形全景视频、环形全景视频或广角视频。球形全景视频是以无人机为球心的形成立体球面视频;环形全景视频为球形全景视频的一部分,可以通过剪裁球形全景视频获得,例如,剪裁球形视频中间一圈即可形成环形全景视频;广角视频为广角镜头或鱼眼镜头拍摄的大于180°但小于360度的视频,广角视频也可以由多个镜头拍摄的视频拼接形成。
以球形全景视频为例,无人机的周围的全景视频的获取方式不限。例如,通过在无人机周围设置N个镜头(N>=2)组成,镜头可以分布在无人机的机身周围的任意位置;镜头的分布方式需满足使得N个镜头组成的视角范围可以包括无人机周围360°视角,即相邻镜头的视场相互重叠,以在无人机周围形成360°全景视角。
本实施例在获取全景视频后,还可通过全景防抖技术对全景视频进行处理,以得到平滑的全景视频,减少因无人机的抖动而导致视频上下或左右晃动,降低视频观看者的眩晕感。全景防抖技术可采用任一方式防抖技术,例如可采用三轴云台的物理防抖技术,也可以通过电子防抖或算法防抖等方式来实现。
在本实施例的具体方案中,采用两个鱼眼镜头,在无人机的机身相对两侧分别安装了一个鱼眼镜头(单个鱼眼镜头的视角范围大于180°),两个鱼眼镜头的组合视角达到360°,两个鱼眼镜头的分布方式包括:背靠背的分布于机身的上下两侧、前后两侧以及左右两侧,或者在机身同一侧的上方或下方以背靠背的方式分布,然后将两个鱼眼镜头在同一时刻拍摄的视频帧合成全景视频帧,进而得到全景视频。全景视频的拼接为现有技术,具体可以参考中国专利公开号为CN106023070A中的相关描述。
在一些其他的可实现方案中,还可以通过安装在无人机上的全景相机来拍摄全景视频。
S3:获取视频的显示视角。
本实施例中的显示视角包括显示方向,或显示方向及视角大小。其中,显示视角和无人机的位姿相互独立,具体地,视频的显示方向可以无人机的飞行方向相同,也可以和无人机的飞行方向不同。在本实施例中的优化方案中,默认显示方向和无人机的飞行方向相同。在其他一些实施例中,也可以在显示器装置中设置参考物,如飞机的机头朝向,便于用户将需要的显示方向与无人机的飞行方向关联起来。
显示方向可以按预先设定的多个角度进行显示,例如,在无人机的飞行坐标系下(世界坐标系),显示方向的选项包括沿X、Y、Z三个轴分别设置8个旋转角度(即每隔45°设置一个),则可以形成8*8*8合计512个角度,观看者可以通过选择X、Y、Z三个轴的值来确定要显示的角度;显示方向也可以根据传感装置检测到的用户的操作来确定显示方向,例如通过操作鼠标移动、控制操作杆的方向、移动头部带动VR眼镜及VR头显的操作来确定显示方向。
视角大小可以按预先设定的多个数值来显示全景视频,如90°、120°、150°等;也可以通过可视终端的触摸屏幕放大或缩小视角。
S4:根据显示视角显示视频的对应视角。
在确定显示视角后,即可在显示器装置上显示视频的对应视角。如图2所示,用平面显示器来显示全景视频为例,在获取视角显示信息后,需要显示全景视频中的球面中的曲面A’B’C’D’时,可以通过投影的方式将曲面A’B’C’D’投影为平面ABCD图像,再在平面显示器上予以显示,即将全景视频的对应部分显示在平面显示屏上。由上可知,本实施例中,仅需根据视角显示信息对全景视频的对应部分进行渲染,而不需对整个全景视频进行渲染,有利于提高图像处理速度,提升观看视角的视频显示实时性。
如图4所示,无人机在沿观看者方向飞行时,观看者看到的显示器装置的显示界面的示意图。图中的树木、河流及人物为全景视频中的对应角度的画面,右上角的三角形图标为无人机的飞行方向(当然,图中也可以增加无人机的实际坐标信息,如世界坐标系下的经纬度及高度等)。
如图5所示,为无人机接收到向左飞行的控制命令后,观看者看到的显示界面的示意图。因无人机向前飞行了一段距离,图5中的树木、河流及人物相对图4中变大了一些,基本保持平滑的变化,同时右上角的三角形图标方向发生了变化,可以提示观看者当前飞机的飞行方向。
通过图4、图5的对比可以得知,本实施例的无人机飞行方向与无人机周围视频的显示视角相互独立,因此当无人机改变飞行方向时不影响观看无人机周围视频的显示视角,显示器装置的显示画面为平滑的画面。
实施例 2
如图3所示,本实施例中揭示了一种无人机视角的视频显示系统,包括无人机和接收控制端。
无人机包括摄像装置、图像处理装置和飞控装置。摄像装置用于拍摄无人机周围的视频。以拍摄球状全景视频为例,本实施例中的摄像装置包括两个鱼眼镜头,两个鱼眼镜头分别安装在无人机的机身的上下两面,每个鱼眼镜头突出于机身表面,两个鱼眼镜头的视场在机身周围形成一环形的重叠视场,从而形成360°全景视场。图像处理装置(如ISP单元,Image Signal Processing unit)用于将摄像装置拍摄的视频进行防抖处理,在本实施例中,还可以用于将两个鱼眼镜头拍摄的视频帧拼接成全景视频帧,在本实施例中,图像处理装置包括图像信号处理器(Image Signal Processor),还可用于自动曝光、自动增益控制、伽马校正、白平衡等图像处理。图像装置可以安装在无人机、遥控装置或显示器装置上。飞控装置包括全球定位系统(GPS)、惯性传感单元(IMU)和微处理器(MCU),全球定位系统(GPS)用于获取无人机的空间位置(即世界坐标系下的坐标位置),惯性传感单元(IMU)用于获取无人机的飞行方向,微处理器(MCU)用于根据接收到控制指令控制无人机运动。此外,本领域一般技术人员可以得知本实施例中的无人机还包括用于检测无人机周围障碍的障碍检测章子、用于将全景视频发送至显示器装置的图传装置、用于接收及发送控制执行的无线传输装置(如RC控制器)等必要构成硬件。
接收控制端包括遥控装置和显示器装置。遥控装置用于将用户的飞行控制指令发送至无人机的飞控装置。遥控装置包括但不限于遥控装置为鼠标、操作杆或体感遥控器;飞行控制指令包括但不限于飞行方向和飞行速度。显示器装置用于根据显示视角显示全景视频的对应视角。显示视角包括显示方向,或显示方向及视角大小。
需要说明的是,显示视角中的显示方向与无人机的飞行方向相互独立,显示视角根据用户的输入或检测用户的运动产生,因此视频的显示方向和无人机的飞行方向可以相同,也可以不同。具体地,显示视角可以在显示器装置上根据用户的操作生成,例如当显示器装置为电脑时,可以通过操作鼠标生成显示视角;当显示器装置为VR眼镜时,通过VR眼镜检测到的用户的头部运动来生成显示视角;显示视角也可以通过用户操作遥控装置来生成,例如,当遥控装置为摇杆时,通过检测摇杆的运动方向来生成显示视角。
在本实施例的一些具体方案中,接收控制端的遥控装置和显示器装置可以一体设计,例如VR头盔,可以设置飞控模式和观看模式,当处于飞控模式时,可以通过摆动头部控制无人机的飞行方向,当处于观看模式时,可以通过摆动头部生成视角显示信息并同步显示到VR头盔上。
本发明方案的无人机飞行方向与无人机周围视频的显示视角相互独立,因此当无人机改变飞行方向时不影响观看无人机周围视频的显示视角。具体地,以无人机朝正前方飞行、观看视角朝正前方为例进行说明,当无人机接收到遥控装置向右飞行的命令时,微处理器(MCU)接收障碍检测模块反馈的无人机前方和右方的障碍信息,如果不存在障碍,则控制飞行模块使无人机向右飞行,同时惯性传感单元(IMU)获取无人机相对正前方的旋转角度,然后根据该旋转角度及无人机的位姿得到视角显示信息,再根据该视角显示信息显示无人机在该位姿获取的全景视频的对应部分。通过上述方式可知,即使无人机的运动方向发生改变,用户的观看视角也不会发生变化,因而提升了用户的无人机视角的视频观看体验。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种无人机视角的视频显示方法,其特征在于,包括:
    获取无人机的位姿;
    获取对应位姿的无人机周围的视频;
    获取视频的显示视角;
    根据显示视角显示视频的对应视角;
    其中,所述视频包括球形全景视频、环形全景视频或广角视频,所述显示视角与无人机的位姿相互独立。
  2. 根据权利要求1所述的无人机视角的视频显示方法,其特征在于,所述视频为经防抖技术处理后的视频。
  3. 根据权利要求1所述的无人机视角的视频显示方法,其特征在于,所述无人机的位姿包括无人机的飞行方向和/或空间坐标。
  4. 根据权利要求1所述的无人机视角的视频显示方法,其特征在于,所述显示视角包括显示方向,或显示方向及视角大小。
  5. 一种无人机视角的视频显示系统,其特征在于,包括无人机和接收控制端;
    所述无人机包括摄像装置和飞控装置,所述摄像装置用于拍摄无人机周围的视频,所述飞控装置用于获取无人机的位姿以及控制无人机的运动;
    所述接收控制端包括遥控装置和显示器装置,所述遥控装置用于将飞行控制指令发送至无人机的飞控装置;所述显示器装置用于获取视频的显示视角并根据显示视角显示视频的对应视角;
    其中,所述视频包括球形全景视频、环形全景视频或广角视频,所述显示视角与所述无人机的位姿相互独立。
  6. 根据权利要求5所述的无人机视角的视频显示系统,其特征在于,所述无人机还包括图像处理装置,所述图像处理装置用于对摄像装置拍摄的视频进行防抖处理。
  7. 根据权利要求5所述的无人机视角的视频显示系统,其特征在于,所述摄像装置包括至少两个镜头,所述至少两个镜头的相邻镜头的视场相互重叠以在所述无人机的周围形成360°全景视角。
  8. 根据权利要求7所述的无人机视角的视频显示系统,其特征在于,所述摄像装置为设置在所述无人机的相对两侧的两个鱼眼镜头。
  9. 根据权利要求5所述的无人机视角的视频显示系统,其特征在于, 所述摄像装置为全景相机。
  10. 根据权利要求5所述的无人机视角的视频显示系统,其特征在于,所述遥控装置为鼠标、操作杆或体感遥控器。
  11. 根据权利要求5所述的无人机视角的视频显示系统,其特征在于,所述显示器装置为VR头盔。
PCT/CN2022/094398 2021-06-02 2022-05-23 无人机视角的视频显示方法及显示系统 WO2022253018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110614383.1 2021-06-02
CN202110614383.1A CN115442510A (zh) 2021-06-02 2021-06-02 无人机视角的视频显示方法及显示系统

Publications (1)

Publication Number Publication Date
WO2022253018A1 true WO2022253018A1 (zh) 2022-12-08

Family

ID=84271685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094398 WO2022253018A1 (zh) 2021-06-02 2022-05-23 无人机视角的视频显示方法及显示系统

Country Status (2)

Country Link
CN (1) CN115442510A (zh)
WO (1) WO2022253018A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117097017A (zh) * 2023-08-09 2023-11-21 盐城工学院 一种具备远程监控功能的新能源双向充电站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249797A1 (en) * 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
CN105872467A (zh) * 2016-04-14 2016-08-17 普宙飞行器科技(深圳)有限公司 一种基于无人机的实时全景影音无线分享方法及平台
CN106303448A (zh) * 2016-08-29 2017-01-04 零度智控(北京)智能科技有限公司 航拍图像处理方法、无人机、头戴显示设备及系统
CN106550182A (zh) * 2017-01-10 2017-03-29 哈尔滨市舍科技有限公司 共享式无人机观景系统
CN108646776A (zh) * 2018-06-20 2018-10-12 珠海金山网络游戏科技有限公司 一种基于无人机的成像系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249797A1 (en) * 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
CN105872467A (zh) * 2016-04-14 2016-08-17 普宙飞行器科技(深圳)有限公司 一种基于无人机的实时全景影音无线分享方法及平台
CN106303448A (zh) * 2016-08-29 2017-01-04 零度智控(北京)智能科技有限公司 航拍图像处理方法、无人机、头戴显示设备及系统
CN106550182A (zh) * 2017-01-10 2017-03-29 哈尔滨市舍科技有限公司 共享式无人机观景系统
CN108646776A (zh) * 2018-06-20 2018-10-12 珠海金山网络游戏科技有限公司 一种基于无人机的成像系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117097017A (zh) * 2023-08-09 2023-11-21 盐城工学院 一种具备远程监控功能的新能源双向充电站
CN117097017B (zh) * 2023-08-09 2024-04-05 盐城工学院 一种具备远程监控功能的新能源双向充电站

Also Published As

Publication number Publication date
CN115442510A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
US11513511B2 (en) Techniques for image recognition-based aerial vehicle navigation
US9479732B1 (en) Immersive video teleconferencing robot
US11184597B2 (en) Information processing device, image generation method, and head-mounted display
WO2019242553A1 (zh) 控制拍摄装置的拍摄角度的方法、控制装置及可穿戴设备
JP6576536B2 (ja) 情報処理装置
WO2019227441A1 (zh) 可移动平台的拍摄控制方法和设备
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
US20210004005A1 (en) Image capture method and device, and machine-readable storage medium
US11151804B2 (en) Information processing device, information processing method, and program
KR20170044451A (ko) 헤드 마운트 디스플레이를 이용한 원격지 카메라 제어 시스템 및 방법
US10719995B2 (en) Distorted view augmented reality
CN111650967A (zh) 一种用于影视拍摄的无人机及云台操控系统
WO2022253018A1 (zh) 无人机视角的视频显示方法及显示系统
CN108646776B (zh) 一种基于无人机的成像系统和方法
WO2022036500A1 (zh) 无人飞行器的飞行辅助方法、设备、芯片、系统及介质
JP7435599B2 (ja) 情報処理装置、情報処理方法、及びプログラム
WO2020168519A1 (zh) 拍摄参数的调整方法、拍摄设备以及可移动平台
WO2022253017A1 (zh) 无人机的控制方法及控制系统
WO2022061934A1 (zh) 图像处理方法、装置、系统、平台及计算机可读存储介质
WO2022109860A1 (zh) 跟踪目标对象的方法和云台
US20230353861A1 (en) Computer-assisted camera and control system
WO2021212499A1 (zh) 目标标定方法、装置和系统及可移动平台的遥控终端
WO2021232424A1 (zh) 飞行辅助方法及装置、无人飞行器、遥控器、显示器、无人飞行器系统和存储介质
WO2022141122A1 (zh) 无人机的控制方法、无人机及存储介质
WO2024000189A1 (zh) 控制方法、头戴式显示设备、控制系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE