WO2022252914A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2022252914A1
WO2022252914A1 PCT/CN2022/091279 CN2022091279W WO2022252914A1 WO 2022252914 A1 WO2022252914 A1 WO 2022252914A1 CN 2022091279 W CN2022091279 W CN 2022091279W WO 2022252914 A1 WO2022252914 A1 WO 2022252914A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
information
domain units
indication information
matrices
Prior art date
Application number
PCT/CN2022/091279
Other languages
English (en)
French (fr)
Inventor
李婷
王潇涵
金黄平
杭海存
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022252914A1 publication Critical patent/WO2022252914A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method, device, and system.
  • a multi-station cooperation manner may be used to serve one or more terminal devices.
  • multi-station cooperation there are many ways of multi-station cooperation, such as coherent joint transmission (CJT).
  • CJT coherent joint transmission
  • multiple network devices can serve one or more terminal devices at the same time, that is, multiple network devices send the same information to one or more terminal devices at the same time.
  • the network device can calculate the modulation and coding scheme (MCS), but the calculation of the MCS requires interference noise outside the cooperation set, that is, interference plus noise. Therefore, how to obtain interference noise by network equipment has become an urgent technical problem to be solved.
  • MCS modulation and coding scheme
  • the technical problem of the present application is not limited to multi-station cooperation.
  • a single station that is, a network device serving a terminal device
  • the embodiment of the present application discloses a communication method, device and system, which are used for network equipment to obtain interference noise.
  • the first aspect discloses a communication method, and the communication method can be applied to a terminal device, and can also be applied to a module (for example, a chip) in the terminal device.
  • the following uses an application to a terminal device as an example for description.
  • the communication method may include: receiving a reference signal from a network device; determining first information according to the reference signal, the first information includes a channel quality indicator (channel quality indicator, CQI), and the CQI is N frequency domain
  • CQI channel quality indicator
  • the CQI corresponding to the unit the N frequency domain units are N frequency domain units in the M frequency domain units, the M frequency domain units are frequency domain units that need to be reported, M is an integer greater than 1, and N is An integer greater than or equal to 1 and less than M; sending the first information to the network device.
  • the terminal device can determine the CQI according to the reference signal, and can report the CQI to the network device, so that the network device can determine the interference noise according to the CQI.
  • the terminal device reports the CQI to the network device, it does not need to report the CQI corresponding to all the frequency domain units that need to be reported to the network device, but only needs to report the CQI corresponding to some of the frequency domain units that need to be reported to the network device.
  • CQI requires less transmission information, so transmission resources can be saved.
  • the determining the first information according to the reference signal includes: determining N interference noises and N channel matrices according to the reference signal; matrix and N precoding matrices, determine N signal to interference plus noise ratios (signal to interference plus noise ratio, SINR), and the N channel matrices are channel matrices corresponding to the N frequency domain units; according to the N The SINR determines the CQI; the first information further includes first indication information, and the first indication information is used to indicate the N channel matrices.
  • SINR signal to interference plus noise ratio
  • the N precoding matrices are identity matrices.
  • the precoding matrix is an identity matrix. Therefore, the terminal device does not need to decompose the channel matrix obtained by channel measurement to obtain the precoding matrix, which can reduce the processing process of the terminal device, thereby reducing the power consumption of the terminal device. At the same time, since the terminal device does not need to report the precoding matrix to the network device, the required transmission information can be reduced, thereby further saving transmission resources.
  • the N precoding matrices are conjugate transposes of the N channel matrices.
  • the precoding matrix is the conjugate transposition of the channel matrix. Therefore, the terminal device does not need to report the precoding matrix to the network device, and the network device can determine the precoding matrix according to the reported channel matrix, which can reduce the required Transmission information, so that transmission resources can be further saved.
  • the terminal equipment needs to decompose the channel matrix obtained by channel measurement to obtain the precoding matrix, and the calculation process is relatively complicated, while the complexity of calculating the conjugate transpose of the channel matrix is relatively small, so the terminal equipment can reduce the The power consumption of the device.
  • the communication method may further include: determining the N precoding matrices according to large-scale information, the first information further includes second indication information, and the second indication information is used to indicate the large-scale information.
  • N precoding matrices can be determined according to the large-scale information, and the large-scale information is information that needs to be reported. Therefore, there is no need to report additional information for determining the precoding matrix, and the transmission information can be reduced, thereby Transmission resources can be further saved.
  • the N frequency domain units are determined according to a preset rule.
  • the N frequency domain units can be determined according to preset rules, no specific information is required for indication, and required transmission information can be reduced, thereby further saving transmission resources.
  • the communication method may further include: receiving third indication information from the network device, where the third indication information is used to indicate the N frequency domain units; according to the third The indication information determines the N frequency domain units.
  • the N frequency domain units may be indicated by the network device to the terminal device, without determination by the terminal device, which may reduce power consumption of the terminal device.
  • the communication method may further include: sending fourth indication information to the network device, where the fourth indication information is used to indicate the N frequency domain units.
  • the N frequency domain units may be indicated by the terminal device to the network device, which does not need to be determined by the network device, and power consumption of the network device may be reduced.
  • the N interference noises are interference noises corresponding to the N frequency domain units, or the N interference noises are interference noises corresponding to the same broadband.
  • the second aspect discloses a communication method, and the communication method can be applied to a network device, and can also be applied to a module (for example, a chip) in the network device.
  • the following describes the application to network devices as an example.
  • the communication method may include: sending a reference signal to a terminal device; receiving first information from the terminal device, where the first information includes a CQI, and the CQI is a CQI corresponding to N frequency domain units, and the N frequency domain units
  • the unit is N frequency domain units in the M frequency domain units, the M frequency domain units are the frequency domain units that the terminal device needs to report, M is an integer greater than 1, and N is greater than or equal to 1 and less than M is an integer; determine N SINRs according to the CQI; determine N interference noises according to the N SINRs.
  • the network device can receive the CQI reported by the terminal device, and can determine the interference noise according to the CQI. It can be seen that the network device can determine the interference noise according to the CQI reported by the terminal device.
  • the CQI reported by the terminal device is the CQI corresponding to some of the frequency domain units that need to be reported. It can be seen that the terminal device does not need to report the CQI corresponding to all the frequency domain units that need to be reported to the network device, and the required transmission information Less, therefore, can save transmission resources.
  • the first information further includes first indication information
  • the first indication information is used to indicate N channel matrices
  • the N channel matrices are corresponding to the N frequency domain units.
  • the communication method may further include: determining the N channel matrices according to the first indication information; the determining N interference noises according to the N SINRs includes: according to the N SINRs, the N channel matrices and N precoding matrices determine N interference noises.
  • the N precoding matrices are identity matrices.
  • the precoding matrix is an identity matrix. Therefore, the terminal device does not need to report the precoding matrix to the network device, which can reduce required transmission information, thereby further saving transmission resources. In addition, the terminal device does not need to decompose the channel matrix obtained by channel measurement to obtain the precoding matrix, which can reduce the processing process of the terminal device, thereby reducing the power consumption of the terminal device.
  • the N precoding matrices are conjugate transposes of the N channel matrices.
  • the precoding matrix is the conjugate transposition of the channel matrix. Therefore, the terminal device does not need to report the precoding matrix to the network device, and the network device can determine the precoding matrix according to the reported channel matrix, which can reduce The required transmission information can further save transmission resources.
  • the terminal equipment needs to decompose the channel matrix obtained by channel measurement to obtain the precoding matrix, and the calculation process is relatively complicated, while the complexity of calculating the conjugate transpose of the channel matrix is relatively small, so the terminal equipment can reduce the The power consumption of the device.
  • the first information further includes second indication information
  • the second indication information is used to indicate large-size information
  • the communication method may further include: determining the The large-scale information; determine the N precoding matrices according to the large-scale information.
  • N precoding matrices can be determined according to the large-scale information, and the large-scale information is information that needs to be reported. Therefore, there is no need to report additional information for determining the precoding matrix, and the transmission information can be reduced, thereby Transmission resources can be further saved.
  • the N frequency domain units are determined according to a preset rule.
  • the N frequency domain units can be determined according to a preset rule. Therefore, there is no need to use special information for indication, and the required transmission information can be reduced, thereby further saving transmission resources.
  • the communication method may further include: sending third indication information to the terminal device, where the third indication information is used to indicate the N frequency domain units.
  • the N frequency domain units may be indicated by the network device to the terminal device, without determination by the terminal device, which may reduce power consumption of the terminal device.
  • the communication method may further include: receiving fourth indication information from the terminal device, where the fourth indication information is used to indicate the N frequency domain units; according to the fourth The indication information determines the N frequency domain units.
  • the N frequency domain units may be indicated by the terminal device to the network device, which does not need to be determined by the network device, and power consumption of the network device may be reduced.
  • the N interference noises are interference noises corresponding to the N frequency domain units, or the N interference noises are interference noises corresponding to the same broadband.
  • the third aspect discloses a communication method, and the communication method may be applied to a terminal device or to a module (for example, a chip) in the terminal device.
  • the following uses an application to a terminal device as an example for description.
  • the communication method may include: receiving a reference signal from a network device; determining first information according to the reference signal, where the first information includes first indication information, and the first indication information is used to indicate SINR; The network device sends the first information.
  • the terminal device can report the SINR to the network device, so that the network device can determine the interference noise according to the SINR. It can be seen that the network device can determine the interference noise according to the SINR reported by the terminal device.
  • the terminal device reports the channel measurement result to the network device, it reports the SINR, which replaces the definition of the CQI.
  • the CQI table is changed from the corresponding relationship between the code rate, MCS and CQI index to the index of SINR and CQI. Correspondence between.
  • the determining the first information according to the reference signal includes: determining interference noise according to the reference signal; determining the SINR according to the interference noise and signal energy.
  • the terminal device since the SINR is determined according to interference noise and signal energy, the terminal device does not need to determine the precoding matrix and report the precoding matrix, so the processing process of the terminal device and the information reported by the terminal device can be reduced, thereby The power consumption of the terminal equipment can be reduced and transmission resources can be saved.
  • the communication method may further include: receiving second indication information from the network device, where the second indication information is used to indicate the signal energy; determining according to the second indication information the signal energy.
  • the signal energy is indicated by the network device to the terminal device. Therefore, the terminal device does not need to determine the signal energy, which can further reduce the power consumption of the terminal device.
  • the communication method may further include: determining the signal energy; and sending third indication information to the network device, where the third indication information is used to indicate the signal energy.
  • the signal energy is indicated by the terminal device to the network device. Therefore, the network device does not need to determine the signal energy, which can further reduce the power consumption of the network device.
  • the communication method may further include: determining the signal energy according to large-scale information; the first information further includes fourth indication information, and the fourth indication information is used to indicate the large-scale scale information.
  • the signal energy can be determined according to the large-scale information, and the large-scale information is information that needs to be reported. Therefore, there is no need to report additional information for determining the precoding matrix, and the transmission information can be reduced, thereby saving transmission resource.
  • the fourth aspect discloses a communication method, which can be applied to a network device or to a module (for example, a chip) in the network device.
  • the following describes the application to network devices as an example.
  • the communication method may include: sending a reference signal to a terminal device; receiving first information from the terminal device, where the first information includes first indication information, and the first indication information is used to indicate SINR; according to the first The indication information determines the SINR; and the interference noise is determined according to the SINR.
  • the network device can receive the SINR reported by the terminal device, and can determine the interference noise according to the SINR. It can be seen that the network device can determine the interference noise according to the SINR reported by the terminal device.
  • the network device receives the SINR reported from the terminal device. It can be seen that the terminal device reports the SINR, and at the same time, the CQI table is changed from the corresponding relationship between the code rate, MCS and CQI index (index) to the relationship between the SINR and the CQI index. Correspondence.
  • the determining the interference noise according to the SINR includes: determining the interference noise according to the SINR and signal energy.
  • the terminal device since the SINR is determined according to interference noise and signal energy, the terminal device does not need to determine the precoding matrix and report the precoding matrix, so the processing process of the terminal device and the information reported by the terminal device can be reduced, thereby The power consumption of the terminal equipment can be reduced and transmission resources can be saved.
  • the communication method may further include: sending second indication information to the terminal device, where the second indication information is used to indicate the signal energy.
  • the signal energy is indicated by the network device to the terminal device. Therefore, the terminal device does not need to determine the signal energy, which can further reduce the power consumption of the terminal device.
  • the communication method may further include: receiving third indication information from a terminal device, where the third indication information is used to indicate the signal energy; determining the signal energy.
  • the signal energy is indicated by the terminal device to the network device. Therefore, the network device does not need to determine the signal energy, which can further reduce the power consumption of the network device.
  • the first information further includes fourth indication information
  • the fourth indication information is used to indicate large-scale information
  • the communication method may further include: determining the large-scale information according to the fourth indication information.
  • Scale information determining the signal energy according to the large-scale information.
  • the signal energy can be determined according to the large-scale information, and the large-scale information is information that needs to be reported. Therefore, there is no need to report additional information for determining the precoding matrix, and the transmission information can be reduced, thereby saving transmission resource.
  • a fifth aspect discloses a communication device, and the communication device may be a terminal device, or may be a module (for example, a chip) in the terminal device.
  • the communication apparatus may include: a receiving unit, configured to receive a reference signal from a network device; a processing unit, configured to determine first information according to the reference signal, where the first information includes a CQI, and the CQI is N frequency
  • the CQI corresponding to the domain unit, the N frequency domain units are N frequency domain units in the M frequency domain units, the M frequency domain units are frequency domain units that need to be reported, M is an integer greater than 1, and N is an integer greater than or equal to 1 and less than M
  • a sending unit configured to send the first information to the network device.
  • the processing unit is specifically configured to: determine N interference noises and N channel matrices according to the reference signal; A coding matrix, determining N SINRs, where the N channel matrices are channel matrices corresponding to the N frequency domain units; determining the CQI according to the N SINRs; the first information also includes first indication information, The first indication information is used to indicate the N channel matrices.
  • the N precoding matrices are identity matrices.
  • the N precoding matrices are conjugate transposes of the N channel matrices.
  • the processing unit is further configured to determine the N precoding matrices according to large-scale information, the first information further includes second indication information, and the second indication information is used to indicate the large-scale information.
  • the N frequency domain units are determined according to a preset rule.
  • the receiving unit is further configured to receive third indication information from the network device, where the third indication information is used to indicate the N frequency domain units; the processing unit, It is also used to determine the N frequency domain units according to the third indication information.
  • the sending unit is further configured to send fourth indication information to the network device, where the fourth indication information is used to indicate the N frequency domain units.
  • the N interference noises are interference noises corresponding to the N frequency domain units, or the N interference noises are interference noises corresponding to the same broadband.
  • the receiving unit and the sending unit may be collectively referred to as a transceiver unit, and when the communication device is a terminal device, the receiving unit may be a receiver, and the sending unit may be a transmitter, and may also be collectively referred to as a transceiver ;
  • the processing unit may be a processor.
  • the communication device is a module (such as a chip) in a terminal device, the receiving unit may be an input interface, an input circuit or an input pin, etc., and the sending unit may be an output interface, an output circuit or an output pin etc., may also be collectively referred to as an interface, a communication interface, or an interface circuit; the processing unit may be a processor, a processing circuit, or a logic circuit.
  • the sixth aspect discloses a communication device, and the communication device may be a network device, or may be a module (for example, a chip) in the network device.
  • the communication apparatus may include: a sending unit, configured to send a reference signal to a terminal device; a receiving unit, configured to receive first information from the terminal device, where the first information includes a CQI, and the CQI is N frequency domain units
  • the N frequency domain units are N frequency domain units in the M frequency domain units
  • the M frequency domain units are the frequency domain units that the terminal device needs to report, and M is an integer greater than 1
  • N is an integer greater than or equal to 1 and less than M
  • the processing unit is configured to determine N SINRs according to the CQI
  • the processing unit is also configured to determine N interference noises according to the N SINRs.
  • the first information further includes first indication information, and the first indication information is used to indicate N channel matrices, and the N channel matrices are corresponding to the N frequency domain units.
  • a channel matrix; the processing unit is further configured to determine the N channel matrices according to the first indication information; the processing unit determines N interference noises according to the N SINRs including: according to the N SINRs, The N channel matrices and the N precoding matrices determine N interference noises.
  • the N precoding matrices are identity matrices.
  • the N precoding matrices are conjugate transposes of the N channel matrices.
  • the first information further includes second indication information
  • the second indication information is used to indicate large-size information
  • the processing unit is further configured to: determine the The large-scale information; determine the N precoding matrices according to the large-scale information.
  • the N frequency domain units are determined according to a preset rule.
  • the sending unit is further configured to send third indication information to the terminal device, where the third indication information is used to indicate the N frequency domain units.
  • the receiving unit is further configured to receive fourth indication information from the terminal device, where the fourth indication information is used to indicate the N frequency domain units; the processing unit, It is also used to determine the N frequency domain units according to the fourth indication information.
  • the N interference noises are interference noises corresponding to the N frequency domain units, or the N interference noises are interference noises corresponding to the same broadband.
  • the receiving unit and the sending unit may be collectively referred to as a transceiver unit, and when the communication device is a network device, the receiving unit may be a receiver, and the sending unit may be a transmitter, and may also be collectively referred to as a transceiver ;
  • the processing unit may be a processor.
  • the communication device is a module (such as a chip) in a network device, the receiving unit may be an input interface, an input circuit or an input pin, etc., and the sending unit may be an output interface, an output circuit or an output pin etc., may also be collectively referred to as an interface, a communication interface, or an interface circuit; the processing unit may be a processor, a processing circuit, or a logic circuit.
  • a seventh aspect discloses a communication device, and the communication device may be a terminal device, or may be a module (for example, a chip) in the terminal device.
  • the communication apparatus may include: a receiving unit, configured to receive a reference signal from a network device; a processing unit, configured to determine first information according to the reference signal, where the first information includes first indication information, and the first The indication information is used to indicate the SINR; a sending unit, configured to send the first information to the network device.
  • the processing unit is specifically configured to: determine interference noise according to the reference signal; and determine the SINR according to the interference noise and signal energy.
  • the receiving unit is further configured to receive second indication information from the network device, where the second indication information is used to indicate the signal energy; the processing unit is further configured to Determine the signal energy according to the second indication information.
  • the processing unit is further configured to determine the signal energy; the sending unit is further configured to send third indication information to the network device, where the third indication information is used to indicate the signal energy.
  • the processing unit is further configured to determine the signal energy according to large-scale information; the first information further includes fourth indication information, and the fourth indication information is used to indicate the large-scale scale information.
  • the receiving unit and the sending unit may be collectively referred to as a transceiver unit, and when the communication device is a terminal device, the receiving unit may be a receiver, and the sending unit may be a transmitter, and may also be collectively referred to as a transceiver ;
  • the processing unit may be a processor.
  • the communication device is a module (such as a chip) in a terminal device, the receiving unit may be an input interface, an input circuit or an input pin, etc., and the sending unit may be an output interface, an output circuit or an output pin etc., may also be collectively referred to as an interface, a communication interface, or an interface circuit; the processing unit may be a processor, a processing circuit, or a logic circuit.
  • the eighth aspect discloses a communication device, and the communication device may be a network device, or may be a module (for example, a chip) in the network device.
  • the communication apparatus may include: a sending unit, configured to send a reference signal to a terminal device; a receiving unit, configured to receive first information from the terminal device, where the first information includes first indication information, and the first indication information used to indicate the SINR; a processing unit configured to determine the SINR according to the first indication information; the processing unit is further configured to determine interference noise according to the SINR.
  • the determining the interference noise by the processing unit according to the SINR includes: determining the interference noise according to the SINR and signal energy.
  • the sending unit is further configured to send second indication information to the terminal device, where the second indication information is used to indicate the signal energy.
  • the receiving unit is further configured to receive third indication information from the terminal device, where the third indication information is used to indicate the signal energy; the processing unit is further configured to The third indication information determines the signal energy.
  • the first information further includes fourth indication information
  • the fourth indication information is used to indicate large-scale information
  • the processing unit is further configured to determine the large-scale information according to the fourth indication information.
  • Scale information the processing unit is further configured to determine the signal energy according to the large-scale information.
  • the receiving unit and the sending unit may be collectively referred to as a transceiver unit, and when the communication device is a network device, the receiving unit may be a receiver, and the sending unit may be a transmitter, and may also be collectively referred to as a transceiver ;
  • the processing unit may be a processor.
  • the communication device is a module (such as a chip) in a network device, the receiving unit may be an input interface, an input circuit or an input pin, etc., and the sending unit may be an output interface, an output circuit or an output pin etc., may also be collectively referred to as an interface, a communication interface, or an interface circuit; the processing unit may be a processor, a processing circuit, or a logic circuit.
  • the ninth aspect discloses a communication device.
  • the communication device may include a processor, configured to enable the communication device to implement the first aspect or the communication method disclosed in any implementation manner of the first aspect.
  • the communication device may further include a memory, and/or an input interface and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to Other communication devices other than the communication device output information, and when the processor executes the computer program stored in the memory, the processor executes the communication method disclosed in the first aspect or any implementation manner of the first aspect .
  • the tenth aspect discloses a communication device.
  • the communication device may include a processor, configured to enable the communication device to implement the first aspect or the communication method disclosed in any implementation manner of the first aspect.
  • the communication device may further include a memory, and/or an input interface and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to Other communication devices other than the communication device output information, and when the processor executes the computer program stored in the memory, the processor executes the communication method disclosed in the second aspect or any implementation manner of the second aspect .
  • the eleventh aspect discloses a communication device.
  • the communication device may include a processor, configured to enable the communication device to implement the first aspect or the communication method disclosed in any implementation manner of the first aspect.
  • the communication device may further include a memory, and/or an input interface and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to Other communication devices other than the communication device output information, and when the processor executes the computer program stored in the memory, the processor executes the communication method disclosed in the third aspect or any implementation manner of the third aspect .
  • a twelfth aspect discloses a communication device.
  • the communication device may include a processor, configured to enable the communication device to implement the first aspect or the communication method disclosed in any implementation manner of the first aspect.
  • the communication device may further include a memory, and/or an input interface and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to Other communication devices other than the communication device output information, and when the processor executes the computer program stored in the memory, the processor executes the fourth aspect or the communication method disclosed in any implementation manner of the fourth aspect .
  • a thirteenth aspect discloses a communication system, the communication system includes the communication device of the ninth aspect and the communication device of the tenth aspect, or the communication system includes the communication device of the eleventh aspect and the communication device of the twelfth aspect.
  • the fourteenth aspect discloses a computer-readable storage medium, on which a computer program or computer instruction is stored, and when the computer program or computer instruction is run, the communication method as disclosed in the above aspects is implemented.
  • a fifteenth aspect discloses a chip, including a processor for executing a program stored in a memory, and when the program is executed, causes the chip to execute the above method.
  • the memory is located outside the chip.
  • a sixteenth aspect discloses a computer program product, the computer program product includes computer program code, and when the computer program code is executed, the above-mentioned communication method is executed.
  • FIG. 1 is a schematic diagram of a UE feeding back CSI to a network device disclosed in an embodiment of the present application;
  • Figure 2 is a schematic diagram of a CJT and NCJT disclosed in the embodiments of the present application.
  • FIG. 3 is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another network architecture disclosed in the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method disclosed in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another communication device disclosed in the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • the embodiment of the present application discloses a communication method, device and system for saving transmission resources. Each will be described in detail below.
  • the fifth generation mobile communication technology (5th generation, 5G) communication system has higher requirements on system capacity, spectrum efficiency, etc., and restricts frequency division duplex (frequency division duplex, FDD) large-scale (massive)
  • FDD frequency division duplex
  • MIMO massive input multiple output
  • CSI downlink channel state information
  • the uplink and downlink channels have a large frequency point interval, the uplink channel and the downlink channel do not satisfy the direct reciprocity relationship, and the uplink channel information cannot be used for accurate downlink precoding.
  • a user equipment user equipment, UE
  • FIG. 1 Please refer to FIG. 1 .
  • the network device may first send configuration information for channel measurement to the UE through signaling.
  • the UE can receive configuration information from the network device, and can determine the time and behavior of channel measurement according to the configuration information.
  • the network device may then send pilots for channel measurement to the UE.
  • the UE can receive the pilot from the network device, can perform channel measurement according to the pilot, can calculate the CSI according to the measurement result, and then can send the CSI to the network device.
  • the network device can receive the CSI from the UE, and then can send data to the UE according to the CSI.
  • the CSI may include a channel rank indicator (rank indicator, RI), a channel quality indicator (channel quality indicator, CQI), a precoding matrix indicator (precoding matrix indicator, PMI), and the like.
  • the network device can determine the number of streams to transmit data to the UE according to the RI, and can determine the modulation and coding scheme (modulation and coding scheme, MCS) for transmitting data to the UE according to the CQI, that is, the modulation order and the code rate of the channel coding, and can be determined according to the PMI
  • MCS modulation and coding scheme
  • FIG. 2 is a schematic diagram of a CJT and NCJT disclosed in an embodiment of the present application.
  • CJT coherent joint transmission
  • NCJT non-coherent joint transmission
  • FIG. 2 is a schematic diagram of a CJT and NCJT disclosed in an embodiment of the present application.
  • TRP transmission and receiving points
  • TRP can serve one or more UEs at the same time (only one UE is shown in Figure 2), that is, multiple TRPs can serve Send the same information to one or more UEs at the same time.
  • multiple TRPs in the coordination set can be equivalently regarded as a large network device.
  • different TRPs may or may not send information to one or more UEs at the same time, and the information to be sent may be the same or different.
  • the network device can calculate the modulation and coding scheme (MCS), but the calculation of the MCS requires interference noise outside the cooperation set, that is, interference plus noise. Therefore, how the network equipment obtains the interference noise outside the cooperative set has become an urgent technical problem to be solved.
  • MCS modulation and coding scheme
  • the UE needs to feed back the interference noise brought by each TRP channel in the cooperative set and other TRPs outside the cooperative set, so as to enable coherent transmission.
  • CQI can be measured by SINR
  • calculation method of SINR can be expressed as follows:
  • H eff is the equivalent channel matrix corresponding to each frequency domain unit
  • H is the channel matrix corresponding to each frequency domain unit
  • P is the channel corresponding to each frequency domain unit of the UE.
  • I+N is the interference noise measured by the UE based on the interference pilots except the pilot used for measurement, that is, interference plus noise.
  • I+N and H in the above formula can be obtained through channel estimation
  • P can be obtained by decomposing H. It should be understood that channel estimation in this application is channel measurement.
  • the UE can calculate the SINR through the above formula, and then determine the CQI according to the SINR, and then report the CQI to the network device, and the network device can determine the MCS according to the reported CQI and the CQI table. If the above method is used to make the UE report the interference noise outside the cooperating set, the UE needs to feed back the CQI corresponding to each frequency domain unit.
  • This application proposes a solution for how to ensure that network equipment can obtain interference noise while reducing communication overhead and resource waste.
  • FIG. 3 is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • the network architecture may include network devices and multiple terminal devices.
  • the network device and terminal device 1 to terminal device 6 form a communication system.
  • the terminal device 1 to the terminal device 6 can send uplink data to the network device, and the network device can receive the uplink data sent from the terminal device 1 to the terminal device 6.
  • terminal equipment 4 to terminal equipment 6 may also form a communication system.
  • the network device can send downlink information to terminal device 1, terminal device 2, terminal device 3, terminal device 5, etc., and terminal device 5 can also send downlink information to terminal device 4, terminal device 6.
  • FIG. 4 is a schematic diagram of another network architecture disclosed in an embodiment of the present application.
  • the network device architecture may include multiple network devices and multiple terminal devices. Multiple network devices can serve one terminal device at the same time, and can also serve multiple terminal devices at the same time.
  • a terminal device also called UE, mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • the terminal device can be a handheld terminal, a notebook computer, a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (personal digital assistant, PDA) computer, a tablet computer , wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone) or wireless local loop (wireless local loop, WLL) station, machine type communication (machine type communication, MTC) terminals, wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR ) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control
  • VR virtual reality
  • AR augmented reality
  • Network equipment is a device deployed in a wireless access network to provide a wireless communication function for terminal equipment.
  • Network equipment may include various forms of base stations. For example, a macro base station, a micro base station (also called a small cell), a relay station, an access point, and the like.
  • base transceiver station in global system for mobile communication (GSM) or code division multiple access (CDMA) network
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • NodeB wideband code division multiple access
  • WCDMA code division multiple access
  • eNB code division multiple access
  • eNodeB evolutional NodeB
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a base station device in a future network (such as 6G, etc.) or a network device in a future evolved public land mobile network (public land mobile network, PLMN) network.
  • a network device can also be a wearable device or an in-vehicle device.
  • a network device can also be a transmission and reception point (TRP).
  • TRP transmission and reception point
  • FIG. 5 is a schematic flowchart of a communication method disclosed in an embodiment of the present application. As shown in Fig. 5, the communication method may include the following steps.
  • the network device sends a reference signal to the terminal device.
  • the network device Before sending downlink data to the terminal device, the network device may first send a reference signal to the terminal device.
  • the reference signal may be a channel state information reference signal (channel-state information reference signal, CSI-RS), or other reference signals.
  • the terminal device receives the reference signal from the network device.
  • the terminal device determines first information including the CQI according to the reference signal.
  • the terminal device may determine the first information according to the reference signal.
  • the first information may include CQI.
  • the CQI may be the CQI corresponding to N frequency domain units.
  • the N frequency domain units may be N frequency domain units in the M frequency domain units, and the M frequency domain units may be frequency domain units that need to be reported by the terminal device.
  • M is an integer greater than 1
  • N is an integer greater than or equal to 1 and less than M.
  • the terminal device can determine N interference noises and N channel matrices according to the reference signal.
  • the N channel matrices may be channel matrices corresponding to the above N frequency domain units, that is, the N channel matrices are in one-to-one correspondence with the above N frequency domain units.
  • the N interference noises may be interference noises corresponding to the N frequency domain units, that is, the N interference noises are in one-to-one correspondence with the N frequency domain units.
  • the N interference noises may also be interference noises corresponding to the same broadband, and it may be understood that the N interference noises are the same and are interference noises corresponding to the broadband.
  • the broadband may be a broadband composed of the N frequency domain units, and correspondingly, the interference noise corresponding to the broadband may be interference noise determined based on the N interference noises corresponding to the N frequency domain units.
  • the broadband may also be a broadband composed of the above M frequency domain units.
  • the interference noise corresponding to the broadband may be the interference noise determined based on the M interference noises corresponding to the M frequency domain units.
  • the broadband may also be a broadband composed of K frequency domain units.
  • the interference noise corresponding to the broadband may be the interference noise determined based on the K interference noises corresponding to the above K frequency domain units.
  • the K frequency domain units may be any K frequency domain units in the above M frequency domain units, and K may be an integer greater than 1 but less than M and not equal to N.
  • the terminal device can first perform channel estimation on M frequency domain units according to the reference signal to obtain M interference noises and M channel matrices, and then select N channel matrices from the M channel matrices, and determine N interference noises.
  • the M interference noises are in one-to-one correspondence with the above M frequency domain units.
  • the M channel matrices are in one-to-one correspondence with the above M frequency domain units.
  • the terminal device can determine N SINRs according to N interference noises, N channel matrices and N precoding matrices.
  • the calculation method of SINR can be expressed as follows:
  • H is a channel matrix
  • P is a precoding matrix
  • I+N is interference noise.
  • the terminal device can respectively substitute N interference noises, N channel matrices, and N precoding matrices into the above formulas, and can calculate N SINRs.
  • the interference noise, channel matrix and precoding matrix corresponding to each frequency domain unit in the above N frequency domain units can be determined first, and then can be calculated according to the above formula The SINR corresponding to each frequency domain unit in the above N frequency domain units is obtained.
  • the channel matrix and precoding matrix corresponding to each frequency domain unit in the above N frequency domain units can be determined first, and then the above N frequency domain units can be calculated according to the above formula The SINR corresponding to each frequency domain unit in the unit.
  • the N precoding matrices may be N identical precoding matrices, or may be N different precoding matrices.
  • the N precoding matrices may be unit matrices, and in this case, the N precoding matrices are the same.
  • the N precoding matrices can also be the conjugate transposition of the N channel matrices corresponding to the N frequency domain units. At this time, when the N channel matrices are the same, the N precoding matrices are the same, and when the N channel matrices are different , the N precoding matrices are different.
  • the terminal device may determine N precoding matrices according to the large-scale information, and at this time, the N precoding matrices are the same.
  • Large-scale information may include one or more of path loss, shadow fading, and the like. It should be understood that the large-scale information should not be limited to path loss and shadow fading, and may also include other large-scale information.
  • the terminal device may determine N precoding matrices according to the path loss.
  • the terminal device may determine N precoding matrices according to shadow fading.
  • the terminal device may determine N precoding matrices according to path loss and shadow fading, for example, the terminal device may determine N precoding matrices according to the sum, weighted sum, absolute value of difference, ratio, etc. of path loss and shadow fading.
  • the terminal device can determine the CQI according to the N SINRs.
  • the terminal device can determine the CQI according to the N SINRs and the existing CQI table (it can be understood that this application is not limited to this method), that is, the CQI index.
  • This CQI may include N CQI indices.
  • the first information may further include first indication information, and the first indication information may be used to indicate the foregoing N channel matrices.
  • the first information may further include second indication information, and the second indication information may be used to indicate the above-mentioned large-scale information.
  • the CQI included in the first information, the first indication information, and the second indication information may be sent through one signaling, or may be sent through multiple signalings, which is not limited in this application.
  • the above N frequency domain units may be determined according to a preset rule. For example, when N is 1, this frequency domain unit may be the Lth frequency domain unit among the above M frequency domain units, and L may be 1, or M, or It can also be other values, which are not limited here. is rounded down. For another example, when N is greater than 1, the N frequency domain units may be the first N frequency domain units among the above M frequency domain units, or may be the last N frequency domain units among the above M frequency domain units, or It may be the middle N frequency domain units among the above M frequency domain units. It should be understood that the above descriptions are illustrative and not limiting.
  • the above M may be the number corresponding to an indication value of 1 in a reporting subband (reportingband).
  • the network device may indicate to the terminal device the frequency domain unit that needs to be reported through the reportingband, and may determine the frequency domain unit corresponding to the non-zero position in the reportingband as the frequency domain unit that needs to be reported.
  • the network device may determine the N frequency domain units as the first N frequency domain units among the above M frequency domain units, or determine the N frequency domain units as the last N frequency domain units among the above M frequency domain units , the N frequency domain units may also be determined as middle N frequency domain units among the above M frequency domain units. It should be understood that the above descriptions are illustrative and not limiting.
  • the network device may send third indication information to the terminal device, and accordingly, the terminal device receives the third indication information from the network device, and determines N frequency domain units according to the third indication information.
  • the third indication information is used to indicate the above N frequency domain units.
  • the third indication information may be the index of the N frequency domain units, or may be the position or position information of the N frequency domain units in the M frequency domain units.
  • the terminal device may select N frequency domain units from the above M frequency domain units, and then may send fourth indication information to the network device, and accordingly, the network device may receive the fourth indication from the terminal device information, N frequency domain units may be determined according to the fourth indication information.
  • the fourth indication information may be used to indicate N frequency domain units.
  • the frequency domain unit may be a subband, may also be a subcarrier, and may also be other frequency domain granularities that can represent frequency domain resources.
  • the first information may further include fifth indication information, and the fifth indication information may indicate the correspondence between the CQIs corresponding to the N frequency domain units and the N frequency domain units.
  • the fifth indication information may indicate explicitly or implicitly.
  • the first information includes 3 CQIs, the first CQI in the 3 CQIs corresponds to the first frequency domain unit in the 3 frequency domain units, and the second CQI in the 3 CQIs corresponds to the first frequency domain unit in the 3 frequency domain units. There are two frequency domain units, and the third CQI among the three CQIs corresponds to the third frequency domain unit among the three frequency domain units.
  • the first information includes 3 CQIs
  • the first CQI in the 3 CQIs corresponds to the third frequency domain unit in the 3 frequency domain units
  • the second CQI in the 3 CQIs corresponds to the frequency domain unit in the 3 frequency domain units
  • the third CQI in the 3 CQIs corresponds to the first frequency domain unit in the 3 frequency domain units.
  • the terminal device sends first information to the network device.
  • the terminal device may send the first information to the network device.
  • the network device receives the first information from the terminal device.
  • the network device determines N SINRs according to the CQI.
  • the network device may determine N SINRs according to the CQI.
  • the network device can determine N SINRs according to the CQI and the existing CQI table.
  • the network device determines N interference noises according to the N SINRs.
  • N interference noises may be determined according to the N SINRs.
  • the network device may first determine N channel matrices according to the first indication information included in the first information, and then determine N interference noises according to N SINRs, N channel matrices, and N precoding matrices.
  • N SINRs N SINRs
  • N channel matrices N channel matrices
  • N precoding matrices For a detailed description of the N precoding matrices, refer to the description of the N precoding matrices in step 502 .
  • step 502 For a manner of determining N frequency domain units, reference may be made to related descriptions in step 502 .
  • N SINRs N channel matrices
  • N precoding matrices N precoding matrices
  • the first SINR may be determined according to the N interference noises, the first precoding matrix, and the scheduling resource, and then the MCS may be determined according to the first SINR determined by the network device.
  • the first precoding matrix is a precoding matrix determined by the network device, which is different from the foregoing precoding matrix.
  • the first SINR is different from the SINR reported by the terminal device.
  • FIG. 6 is a schematic flowchart of another communication method disclosed in an embodiment of the present application. As shown in Fig. 6, the communication method may include the following steps.
  • the network device sends a reference signal to the terminal device.
  • the network device Before sending data to the terminal device, the network device may first send a reference signal to the terminal device.
  • the reference signal may be a channel state information reference signal (channel-state information reference signal, CSI-RS), or other reference signals.
  • the terminal device receives the reference signal from the network device.
  • the terminal device determines, according to the reference signal, first information including the first indication information used to indicate the SINR.
  • the terminal device may determine the first information according to the reference signal.
  • the first information may include first indication information, and the first indication information may be used to indicate the SINR.
  • the first indication information may indicate N SINRs, where N may be an integer greater than or equal to 1 and less than M, where M is the number of frequency domain units that the terminal device needs to report. It can be seen that there is no need to report M SINRs, and the information to be reported can be reduced, thereby saving transmission resources.
  • the terminal device can determine the interference noise from the reference signal.
  • the terminal device can perform channel estimation according to the reference signal to obtain interference noise.
  • the interference noises here may be N interference noises.
  • the N interference noises may be interference noises corresponding to N frequency domain units, or may be interference noises corresponding to the same broadband.
  • This broadband can be a broadband composed of N frequency domain units.
  • the interference noise corresponding to the broadband can be the interference noise determined based on N interference noises corresponding to N frequency domain units.
  • the terminal device can base on the reference signal Perform channel estimation on N frequency domain units.
  • This broadband can also be a broadband composed of M frequency domain units.
  • the interference noise corresponding to the broadband can be the interference noise determined based on M interference noises corresponding to M frequency domain units.
  • the terminal device can refer to The signal performs channel estimation on M frequency domain units.
  • This broadband can also be a broadband composed of K frequency domain units.
  • the interference noise corresponding to the broadband can be the interference noise determined based on the K interference noises corresponding to the above K frequency domain units.
  • the terminal device can be based on The reference signal performs channel estimation on K frequency domain units.
  • the K frequency domain units may be any K frequency domain units in the above M frequency domain units, and K may be an integer greater than 1 but less than M and not equal to N.
  • End devices can determine the SINR based on interfering noise and signal energy.
  • the calculation method of SINR can be expressed as follows:
  • SINR the SINR
  • signal energy may be determined by a network device. After the network device determines the signal energy, it may send second indication information to the terminal device, the second indication information is used to indicate the signal energy, and the terminal device receives the second indication information from the network device, and may determine the signal energy according to the second indication information.
  • the signal energy may be determined by the terminal device.
  • the terminal device may determine the signal energy, and then may send third indication information to the network device, where the third indication information is used to indicate the signal energy.
  • the network device may determine signal energy according to the third indication information.
  • the terminal device may determine the energy signal according to large-scale information.
  • Large-scale information may include path loss, shadow fading, etc. It should be understood that the large-scale information should not be limited to path loss and shadow fading, and may also include other large-scale information.
  • an end device may determine an energy signal based on path loss.
  • the terminal device may determine the energy signal according to shadow fading.
  • the terminal device can determine the energy signal according to the path loss and shadow fading.
  • the terminal device can determine the sum, weighted sum, absolute value and ratio of the difference of the path loss and shadow fading as the signal energy.
  • the first information may further include fourth indication information, where the fourth indication information is used to indicate the above-mentioned large-scale information. Determination rules may be pre-defined.
  • the terminal device sends first information to the network device.
  • the terminal device may send the first information to the network device.
  • the network device receives the first information from the terminal device.
  • the network device determines the SINR according to the first indication information.
  • the network device may determine the SINR according to the first indication information.
  • the network device determines interference noise based on the SINR.
  • the interference noise may be determined according to the SINR.
  • Network devices can determine interfering noise based on SINR and signal energy.
  • the network device may determine signal energy, and for a detailed description, refer to step 602 .
  • the first SINR may be determined according to the N interference noises, the first precoding matrix, and the scheduling resource, and then the MCS may be determined according to the first SINR determined by the network device.
  • the first precoding matrix is a precoding matrix determined by the network device, which is different from the foregoing precoding matrix.
  • the first SINR is different from the SINR reported by the terminal device.
  • the functions performed by the network device in the above communication method may also be performed by a module (for example, a chip) in the network device, and the functions performed by the terminal device may also be performed by a module (for example, a chip) in the terminal device .
  • the terminal device can report the MCS to the network device through the CQI, and the network device will use the MCS reported by the terminal device as a reference, and then adjust the MCS according to the actual situation, so as to determine the final MCS to be used.
  • the terminal device reports the interference noise to the network device through the CQI, and the MCS is determined by the network device according to the interference noise reported by the terminal device.
  • FIG. 7 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • the communication device may include a receiving unit 701 , a determining unit 702 and a sending unit 703 .
  • the communication device may be a terminal device, or a module in the terminal device. in:
  • a receiving unit 701 configured to receive a reference signal from a network device
  • the determining unit 702 is configured to determine the first information according to the reference signal, the first information includes CQI, the CQI is the CQI corresponding to N frequency domain units, and the N frequency domain units are N frequency domain units in the M frequency domain units , M frequency domain units are frequency domain units that need to be reported, M is an integer greater than 1, and N is an integer greater than or equal to 1 and less than M;
  • the determining unit 702 is specifically configured to:
  • N channel matrices and N precoding matrices determine N SINRs, and the N channel matrices are channel matrices corresponding to N frequency domain units;
  • the first information further includes first indication information, where the first indication information is used to indicate the N channel matrices.
  • the N precoding matrices are identity matrices.
  • the N precoding matrices are the conjugate transposes of the N channel matrices.
  • the determining unit 702 is further configured to determine N precoding matrices according to the large-scale information, the first information further includes second indication information, and the second indication information is used to indicate the large-scale information.
  • the N frequency domain units are determined according to a preset rule.
  • the receiving unit 701 is further configured to receive third indication information from the network device, where the third indication information is used to indicate N frequency domain units;
  • the determining unit 702 is further configured to determine N frequency domain units according to the third indication information.
  • the sending unit 703 is further configured to send fourth indication information to the network device, where the fourth indication information is used to indicate the N frequency domain units.
  • the N interference noises are interference noises corresponding to N frequency domain units, or the N interference noises are interference noises corresponding to the same broadband.
  • receiving unit 701, determining unit 702, and sending unit 703 can be directly obtained by referring to the relevant description of the terminal device in the method embodiment shown in FIG. 5 above, and will not be repeated here.
  • the receiving unit and the sending unit may be collectively referred to as a transceiver unit, and the determining unit may be a processing unit.
  • the receiving unit may be a receiver
  • the sending unit may be a transmitter
  • the processing unit may be a processor.
  • the receiving unit may be an input interface, an input circuit or an input pin, etc.
  • the sending unit may be an output interface, an output circuit or an output pin etc., may also be collectively referred to as an interface, a communication interface, or an interface circuit
  • the processing unit may be a processor, a processing circuit, or a logic circuit.
  • the communication device may be a network device, or a module in the network device. in:
  • a sending unit 703, configured to send a reference signal to a terminal device
  • the receiving unit 701 is configured to receive first information from the terminal device, the first information includes CQI, the CQI is the CQI corresponding to N frequency domain units, and the N frequency domain units are N frequency domain units in the M frequency domain units , M frequency domain units are the frequency domain units that the terminal device needs to report, M is an integer greater than 1, and N is an integer greater than or equal to 1 and less than M;
  • a determining unit 702 configured to determine N SINRs according to the CQI
  • the determining unit 702 is further configured to determine N interference noises according to the N SINRs.
  • the first information further includes first indication information, the first indication information is used to indicate N channel matrices, and the N channel matrices are channel matrices corresponding to N frequency domain units;
  • the determining unit 702 is further configured to determine N channel matrices according to the first indication information
  • the determination unit 702 determines the N interference noises according to the N SINRs including:
  • N SINRs N channel matrices and N precoding matrices, N interference noises are determined.
  • the N precoding matrices are identity matrices.
  • the N precoding matrices are conjugate transposes of the N channel matrices.
  • the first information further includes second indication information
  • the second indication information is used to indicate large-size information
  • the determining unit 702 is further configured to:
  • N precoding matrices are determined according to large-scale information.
  • the N frequency domain units are determined according to a preset rule.
  • the sending unit 703 is further configured to send third indication information to the terminal device, where the third indication information is used to indicate the N frequency domain units.
  • the receiving unit 701 is further configured to receive fourth indication information from the terminal device, where the fourth indication information is used to indicate N frequency domain units;
  • the determining unit 702 is further configured to determine N frequency domain units according to the fourth indication information.
  • the N interference noises are interference noises corresponding to N frequency domain units, or the N interference noises are interference noises corresponding to the same broadband.
  • receiving unit 701, determining unit 702, and sending unit 703 can be directly obtained by referring to the relevant description of the network device in the method embodiment shown in FIG. 5 above, and will not be repeated here.
  • the receiving unit and the sending unit may be collectively referred to as a transceiver unit, and the determining unit may be a processing unit.
  • the receiving unit may be a receiver
  • the sending unit may be a transmitter
  • the processing unit may be a processor.
  • the receiving unit may be an input interface, an input circuit or an input pin, etc.
  • the sending unit may be an output interface, an output circuit or an output pin etc., may also be collectively referred to as an interface, a communication interface, or an interface circuit
  • the processing unit may be a processor, a processing circuit, or a logic circuit.
  • the communication device may be a terminal device, or a module in the terminal device. in:
  • a receiving unit 701 configured to receive a reference signal from a network device
  • the determining unit 702 is configured to determine first information according to the reference signal, where the first information includes first indication information, and the first indication information is used to indicate SINR;
  • the sending unit 703 is configured to send the first information to the network device.
  • the determining unit 702 is specifically configured to:
  • the receiving unit 701 is further configured to receive second indication information from the network device, where the second indication information is used to indicate signal energy;
  • the determining unit 702 is further configured to determine signal energy according to the second indication information.
  • the determining unit 702 is also used to determine signal energy
  • the sending unit 703 is further configured to send third indication information to the network device, where the third indication information is used to indicate signal energy.
  • the determining unit 702 is further configured to determine signal energy according to large-scale information
  • the first information further includes fourth indication information, where the fourth indication information is used to indicate large-scale information.
  • receiving unit 701, determining unit 702, and sending unit 703 can be directly obtained by referring to the relevant description of the terminal device in the method embodiment shown in FIG. 6 above, and will not be repeated here.
  • the receiving unit and the sending unit may be collectively referred to as a transceiver unit, and the determining unit may be a processing unit.
  • the receiving unit may be a receiver
  • the sending unit may be a transmitter
  • the processing unit may be a processor.
  • the receiving unit may be an input interface, an input circuit or an input pin, etc.
  • the sending unit may be an output interface, an output circuit or an output pin etc., may also be collectively referred to as an interface, a communication interface, or an interface circuit
  • the processing unit may be a processor, a processing circuit, or a logic circuit.
  • the communication device may be a network device, or a module in the network device. in:
  • a sending unit 703, configured to send a reference signal to a terminal device
  • the receiving unit 701 is configured to receive first information from the terminal device, where the first information includes first indication information, and the first indication information is used to indicate SINR;
  • a determining unit 702 configured to determine the SINR according to the first indication information
  • the determining unit 702 is further configured to determine interference noise according to the SINR.
  • the determining unit 702 determining the interference noise according to the SINR includes:
  • Interfering noise is determined from SINR and signal energy.
  • the sending unit 703 is further configured to send second indication information to the terminal device, where the second indication information is used to indicate signal energy.
  • the receiving unit 701 is further configured to receive third indication information from the terminal device, where the third indication information is used to indicate signal energy;
  • the determining unit 702 is further configured to determine signal energy according to the third indication information.
  • the first information further includes fourth indication information, the fourth indication information is used to indicate large-scale information, and the determining unit 702 is further configured to determine large-scale information according to the fourth indication information;
  • the determining unit 702 is further configured to determine signal energy according to large-scale information.
  • receiving unit 701, the determining unit 702, and the sending unit 703 can be directly obtained by referring to the relevant description of the network device in the method embodiment shown in FIG. 6 above, and will not be repeated here.
  • the receiving unit and the sending unit may be collectively referred to as a transceiver unit, and the determining unit may be a processing unit.
  • the receiving unit may be a receiver
  • the sending unit may be a transmitter
  • the processing unit may be a processor.
  • the receiving unit may be an input interface, an input circuit or an input pin, etc.
  • the sending unit may be an output interface, an output circuit or an output pin etc., may also be collectively referred to as an interface, a communication interface, or an interface circuit
  • the processing unit may be a processor, a processing circuit, or a logic circuit.
  • FIG. 8 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • the communication device may include a processor 801 , a memory 802 , an input interface 803 , an output interface 804 and a bus 805 .
  • the memory 802 may exist independently, and may be connected to the processor 801 through the bus 805 .
  • the memory 802 can also be integrated with the processor 801. Among them, the bus 805 is used to realize the connection between these components.
  • the communication device may be a terminal device, or a module in the terminal device.
  • the processor 801 is used to control the receiving unit 701 and the sending unit 703 to execute
  • the processor 801 is also used for the determination unit 702 to perform the operations performed in the above embodiments
  • the input interface 803 is used for performing the operations performed by the receiving unit 701 in the above embodiments
  • the output interface 804 is used for performing Operations performed by the sending unit 703 in the foregoing embodiments.
  • the above-mentioned communication device may also be used to execute various methods performed by the terminal device in the method embodiment in FIG. 5 or FIG. 6 , which will not be repeated here.
  • the communication device may be a network device, or a module in the network device.
  • the processor 801 is used to control the receiving unit 701 and the sending unit 703 to execute
  • the processor 801 is also used for the determination unit 702 to perform the operations performed in the above embodiments
  • the input interface 803 is used for performing the operations performed by the receiving unit 701 in the above embodiments
  • the output interface 804 is used for performing Operations performed by the sending unit 703 in the foregoing embodiments.
  • the above-mentioned communication apparatus may also be used to execute various methods executed by the network device in the above-mentioned method embodiment in FIG. 5 or FIG. 6 , which will not be repeated here.
  • FIG. 9 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • the communication device may include an input interface 901 , a logic circuit 902 and an output interface 903 .
  • the input interface 901 is connected to the output interface 903 through a logic circuit 902 .
  • the input interface 901 is used for receiving information from other communication devices, and the output interface 903 is used for outputting, scheduling or sending information to other communication devices.
  • the logic circuit 902 is configured to perform operations other than the operations of the input interface 901 and the output interface 903 , such as implementing the functions implemented by the processor 801 in the above-mentioned embodiments.
  • the communication device may be a terminal device (or a module in the terminal device), or may be a network device (or a module in the network device).
  • the input interface 901, the logic circuit 902, and the output interface 903 can be directly obtained by referring to the related descriptions of the terminal device or the network device in the foregoing method embodiments, and details are not repeated here.
  • the embodiment of the present application also discloses a computer-readable storage medium, on which instructions are stored, and when the instructions are executed, the methods in the foregoing method embodiments are executed.
  • the embodiment of the present application also discloses a computer program product including an instruction, and when the instruction is executed, the method in the above method embodiment is executed.
  • the embodiment of the present application also discloses a communication system, which may include a terminal device and a network device.
  • a communication system which may include a terminal device and a network device.
  • FIGS. 5-6 For a specific description, reference may be made to the communication method shown in FIGS. 5-6 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种通信方法、装置及系统,该方法包括:接收来自网络设备的参考信号;根据所述参考信号确定第一信息,所述第一信息包括信道质量指示CQI,所述CQI为N个频域单元对应的CQI,所述N个频域单元为M个频域单元中的N个频域单元,所述M个频域单元为需要上报的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;向所述网络设备发送所述第一信息。本申请实施例,网络设备获取干扰噪声。

Description

一种通信方法、装置及系统
本申请要求于2021年05月31日提交中国专利局、申请号为202110600919.4、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
为了提高系统的吞吐性能以及用户的体验,可以采用多站协作的方式来为一个或多个终端设备服务。多站协作的方式有很多,如相干协作传输(coherent joint transmission,CJT)。在CJT方式下,多个网络设备可以同时为一个或多个终端设备服务,即多个网络设备同时向一个或多个终端设备发送相同的信息。在多站协作的情况下,网络设备可以计算得到调制和编码方案(modulation and coding scheme,MCS),但计算MCS需要协作集外的干扰噪声,即干扰加噪声。因此,网络设备如何获取到干扰噪声已成为一个亟待解决的技术问题。
应理解,本申请此技术问题不限于多站协作,在单站的情况下,即一个网络设备为一个终端设备服务的情况下,也存在如何获取到干扰噪声的问题。
发明内容
本申请实施例公开了一种通信方法、装置及系统,用于网络设备获取干扰噪声。
第一方面公开一种通信方法,所述通信方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片)。下面以应用于终端设备为例进行描述。所述通信方法可以包括:接收来自网络设备的参考信号;根据所述参考信号确定第一信息,所述第一信息包括信道质量指示(channel quality indicator,CQI),所述CQI为N个频域单元对应的CQI,所述N个频域单元为M个频域单元中的N个频域单元,所述M个频域单元为需要上报的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;向所述网络设备发送所述第一信息。
本申请实施例中,终端设备可以根据参考信号确定CQI,可以将CQI上报给网络设备,以便网络设备可以根据CQI确定干扰噪声。此外,终端设备向网络设备上报CQI时,并不需要向网络设备上报需要上报的所有频域单元对应的CQI,只需要向网络设备上报需要上报的所有频域单元中的部分频域单元对应的CQI,所需传输信息较少,因此,可以节约传输资源。
作为一种可能的实施方式,所述根据所述参考信号确定第一信息包括:根据所述参考信号确定N个干扰噪声和N个信道矩阵;根据所述N个干扰噪声、所述N个信道矩阵和N个预编码矩阵,确定N个信号干扰噪声比(signal to interference plus noise ratio,SINR),所述N个信道矩阵为所述N个频域单元对应的信道矩阵;根据所述N个SINR确定所述CQI;所述第一信息还包括第一指示信息,所述第一指示信息用于指示所述N个信道矩阵。
作为一种可能的实施方式,所述N个预编码矩阵为单位矩阵。
本申请实施例中,预编码矩阵为单位矩阵,因此,不需要终端设备对信道测量得到的信道矩阵进行分解得到预编码矩阵,可以减少终端设备的处理过程,从而可以降低终端设备的 功耗。同时,由于不需要终端设备向网络设备上报预编码矩阵,可以减少所需传输信息,从而可以进一步节约传输资源。
作为一种可能的实施方式,所述N个预编码矩阵为所述N个信道矩阵的共轭转置。
本申请中,预编码矩阵为信道矩阵的共轭转置,因此,不需要终端设备向网络设备上报预编码矩阵,网络设备可以根据上报的信道矩阵就可以确定出预编码矩阵,可以减少所需传输信息,从而可以进一步节约传输资源。此外,现有技术中,终端设备需要对信道测量得到的信道矩阵进行分解才能得到预编码矩阵,计算过程比较复杂,而计算信道矩阵的共轭转置的复杂度较小,因此,可以降低终端设备的功耗。
作为一种可能的实施方式,所述通信方法还可以包括:根据大尺度信息确定所述N个预编码矩阵,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述大尺度信息。
本申请实施例中,可以根据大尺度信息确定N个预编码矩阵,而大尺度信息是需要上报的信息,因此,不需要额外专门上报用于确定预编码矩阵的信息,可以减少传输信息,从而可以进一步节约传输资源。
作为一种可能的实施方式,所述N个频域单元根据预设规则确定。
本申请实施例中,N个频域单元可以根据预设规则确定,不需要通过专门信息进行指示,可以减少所需传输信息,从而可以进一步节约传输资源。
作为一种可能的实施方式,所述通信方法还可以包括:接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述N个频域单元;根据所述第三指示信息确定所述N个频域单元。
本申请实施例中,N个频域单元可以由网络设备指示给终端设备,不需要终端设备确定,可以降低终端设备的功耗。
作为一种可能的实施方式,所述通信方法还可以包括:向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述N个频域单元。
本申请实施例中,N个频域单元可以由终端设备指示给网络设备,不需要网络设备确定,可以降低网络设备的功耗。
作为一种可能的实施方式,所述N个干扰噪声为所述N个频域单元对应的干扰噪声,或者所述N个干扰噪声为同一宽带对应的干扰噪声。
第二方面公开一种通信方法,所述通信方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片)。下面以应用于网络设备为例进行描述。所述通信方法可以包括:向终端设备发送参考信号;接收来自终端设备的第一信息,所述第一信息包括CQI,所述CQI为N个频域单元对应的CQI,所述N个频域单元为M个频域单元中的N个频域单元,所述M个频域单元为所述终端设备需要上报的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;根据所述CQI确定N个SINR;根据所述N个SINR确定N个干扰噪声。
本申请实施例中,网络设备可以接收到终端设备上报的CQI,可以根据CQI确定干扰噪声,可见,网络设备能够根据终端设备上报的CQI确定干扰噪声。此外,终端设备上报的CQI为需要上报的所有频域单元中部分频域单元对应的CQI,可见,终端设备并不需要向网络设备上报需要上报的所有频域单元对应的CQI,所需传输信息较少,因此,可以节约传输资源。
作为一种可能的实施方式,所述第一信息还包括第一指示信息,所述第一指示信息用于指示N个信道矩阵,所述N个信道矩阵为所述N个频域单元对应的信道矩阵,所述通信方法还可以包括:根据所述第一指示信息确定所述N个信道矩阵;所述根据所述N个SINR确定N个干 扰噪声包括:根据所述N个SINR、所述N个信道矩阵和N个预编码矩阵,确定N个干扰噪声。
作为一种可能的实施方式,所述N个预编码矩阵为单位矩阵。
本申请实施例中,预编码矩阵为单位矩阵,因此,不需要终端设备向网络设备上报预编码矩阵,可以减少所需传输信息,从而可以进一步节约传输资源。此外,不需要终端设备对信道测量得到的信道矩阵进行分解得到预编码矩阵,可以减少终端设备的处理过程,从而可以降低终端设备的功耗。
作为一种可能的实施方式,所述N个预编码矩阵为所述N个信道矩阵的共轭转置。
本申请实施例中,预编码矩阵为信道矩阵的共轭转置,因此,不需要终端设备向网络设备上报预编码矩阵,网络设备可以根据上报的信道矩阵就可以确定出预编码矩阵,可以减少所需传输信息,从而可以进一步节约传输资源。此外,现有技术中,终端设备需要对信道测量得到的信道矩阵进行分解才能得到预编码矩阵,计算过程比较复杂,而计算信道矩阵的共轭转置的复杂度较小,因此,可以降低终端设备的功耗。
作为一种可能的实施方式,所述第一信息还包括第二指示信息,所述第二指示信息用于指示大尺寸信息,所述通信方法还可以包括:根据所述第二指示信息确定所述大尺度信息;根据所述大尺度信息确定所述N个预编码矩阵。
本申请实施例中,可以根据大尺度信息确定N个预编码矩阵,而大尺度信息是需要上报的信息,因此,不需要额外专门上报用于确定预编码矩阵的信息,可以减少传输信息,从而可以进一步节约传输资源。
作为一种可能的实施方式,所述N个频域单元根据预设规则确定。
本申请实施例中,N个频域单元可以根据预设规则确定,因此,不需要通过专门信息进行指示,可以减少所需传输信息,从而可以进一步节约传输资源。
作为一种可能的实施方式,所述通信方法还可以包括:向终端设备发送第三指示信息,所述第三指示信息用于指示所述N个频域单元。
本申请实施例中,N个频域单元可以由网络设备指示给终端设备,不需要终端设备确定,可以降低终端设备的功耗。
作为一种可能的实施方式,所述通信方法还可以包括:接收来自所述终端设备的第四指示信息,所述第四指示信息用于指示所述N个频域单元;根据所述第四指示信息确定所述N个频域单元。
本申请实施例中,N个频域单元可以由终端设备指示给网络设备,不需要网络设备确定,可以降低网络设备的功耗。
作为一种可能的实施方式,所述N个干扰噪声为所述N个频域单元对应的干扰噪声,或者所述N个干扰噪声为同一宽带对应的干扰噪声。
第三方面公开一种通信方法,所述通信方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片)。下面以应用于终端设备为例进行描述。所述通信方法可以包括:接收来自网络设备的参考信号;根据所述参考信号,确定第一信息,所述第一信息包括第一指示信息,所述第一指示信息用于指示SINR;向所述网络设备发送所述第一信息。
本申请实施例中,终端设备可以向网络设备上报SINR,以便网络设备可以根据SINR确定干扰噪声,可见,网络设备能够根据终端设备上报的SINR确定干扰噪声。终端设备向网络设备上报信道测量结果时,上报SINR,即替换了CQI的定义,同时将CQI表格从码率、MCS与CQI的索引(index)之间的对应关系,修改为SINR与CQI的索引之间的对应关系。
作为一种可能的实施方式,所述根据所述参考信号,确定第一信息包括:根据所述参考 信号确定干扰噪声;根据所述干扰噪声和信号能量确定所述SINR。
本申请实施例中,由于SINR根据干扰噪声和信号能量确定,因此,终端设备不需要确定预编码矩阵和上报预编码矩阵,因此,可以减少终端设备的处理过程和减少终端设备上报的信息,从而可以降低终端设备的功耗和节约传输资源。
作为一种可能的实施方式,所述通信方法还可以包括:接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述信号能量;根据所述第二指示信息确定所述信号能量。
本申请实施例中,信号能量是由网络设备指示给终端设备的,因此,终端设备不需要确定信号能量,可以进一步降低终端设备的功耗。
作为一种可能的实施方式,所述通信方法还可以包括:确定所述信号能量;向所述网络设备发送第三指示信息,所述第三指示信息用于指示所述信号能量。
本申请实施例中,信号能量由终端设备指示给网络设备,因此,网络设备不需要确定信号能量,可以进一步降低网络设备的功耗。
作为一种可能的实施方式,所述通信方法还可以包括:根据大尺度信息确定所述信号能量;所述第一信息还包括第四指示信息,所述第四指示信息用于指示所述大尺度信息。
本申请实施例中,可以根据大尺度信息确定信号能量,而大尺度信息是需要上报的信息,因此,不需要额外专门上报用于确定预编码矩阵的信息,可以减少传输信息,从而可以节约传输资源。
第四方面公开一种通信方法,所述通信方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片)。下面以应用于网络设备为例进行描述。所述通信方法可以包括:向终端设备发送参考信号;接收来自终端设备的第一信息,所述第一信息包括第一指示信息,所述第一指示信息用于指示SINR;根据所述第一指示信息确定所述SINR;根据所述SINR确定干扰噪声。
本申请实施例中,网络设备可以接收到终端设备上报的SINR,可以根据SINR确定干扰噪声,可见,网络设备能够根据终端设备上报的SINR确定干扰噪声。网络设备接收到来自终端设备上报的SINR,可见,终端设备上报SINR,同时将CQI表格从码率、MCS与CQI的索引(index)之间的对应关系,修改为SINR与CQI的索引之间的对应关系。
作为一种可能的实施方式,所述根据所述SINR确定干扰噪声包括:根据所述SINR和信号能量确定干扰噪声。
本申请实施例中,由于SINR根据干扰噪声和信号能量确定,因此,终端设备不需要确定预编码矩阵和上报预编码矩阵,因此,可以减少终端设备的处理过程和减少终端设备上报的信息,从而可以降低终端设备的功耗和节约传输资源。
作为一种可能的实施方式,所述通信方法还可以包括:向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述信号能量。
本申请实施例中,信号能量是由网络设备指示给终端设备的,因此,终端设备不需要确定信号能量,可以进一步降低终端设备的功耗。
作为一种可能的实施方式,所述通信方法还可以包括:接收来自终端设备的第三指示信息,所述第三指示信息用于指示所述信号能量;根据所述第三指示信息确定所述信号能量。
本申请实施例中,信号能量由终端设备设备指示给网络设备,因此,网络设备不需要确定信号能量,可以进一步降低网络设备的功耗。
作为一种可能的实施方式,所述第一信息还包括第四指示信息,所述第四指示信息用于指示大尺度信息,所述通信方法还可以包括:根据所述第四指示信息确定大尺度信息;根据所述大尺度信息确定所述信号能量。
本申请实施例中,可以根据大尺度信息确定信号能量,而大尺度信息是需要上报的信息,因此,不需要额外专门上报用于确定预编码矩阵的信息,可以减少传输信息,从而可以节约传输资源。
第五方面公开一种通信装置,所述通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。所述通信装置可以包括:接收单元,用于接收来自网络设备的参考信号;处理单元,用于根据所述参考信号确定第一信息,所述第一信息包括CQI,所述CQI为N个频域单元对应的CQI,所述N个频域单元为M个频域单元中的N个频域单元,所述M个频域单元为需要上报的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;发送单元,用于向所述网络设备发送所述第一信息。
作为一种可能的实施方式,所述处理单元具体用于:根据所述参考信号确定N个干扰噪声和N个信道矩阵;根据所述N个干扰噪声、所述N个信道矩阵和N个预编码矩阵,确定N个SINR,所述N个信道矩阵为所述N个频域单元对应的信道矩阵;根据所述N个SINR确定所述CQI;所述第一信息还包括第一指示信息,所述第一指示信息用于指示所述N个信道矩阵。
作为一种可能的实施方式,所述N个预编码矩阵为单位矩阵。
作为一种可能的实施方式,所述N个预编码矩阵为所述N个信道矩阵的共轭转置。
作为一种可能的实施方式,所述处理单元,还用于根据大尺度信息确定所述N个预编码矩阵,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述大尺度信息。
作为一种可能的实施方式,所述N个频域单元根据预设规则确定。
作为一种可能的实施方式,所述接收单元,还用于接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述N个频域单元;所述处理单元,还用于根据所述第三指示信息确定所述N个频域单元。
作为一种可能的实施方式,所述发送单元,还用于向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述N个频域单元。
作为一种可能的实施方式,所述N个干扰噪声为所述N个频域单元对应的干扰噪声,或者所述N个干扰噪声为同一宽带对应的干扰噪声。
应理解,所述接收单元和发送单元可以统称为收发单元,当所述通信装置是终端设备时,所述接收单元可以是接收器,所述发送单元可以是发送器,也可以统称为收发器;所述处理单元可以是处理器。当所述通信装置是终端设备中的模块(如,芯片)时,所述接收单元可以是输入接口、输入电路或输入管脚等,所述发送单元可以是输出接口、输出电路或输出管脚等,也可以统称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
第六方面公开一种通信装置,所述通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。所述通信装置可以包括:发送单元,用于向终端设备发送参考信号;接收单元,用于接收来自终端设备的第一信息,所述第一信息包括CQI,所述CQI为N个频域单元对应的CQI,所述N个频域单元为M个频域单元中的N个频域单元,所述M个频域单元为所述终端设备需要上报的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;处理 单元,用于根据所述CQI确定N个SINR;所述处理单元,还用于根据所述N个SINR确定N个干扰噪声。
作为一种可能的实施方式,所述第一信息还包括第一指示信息,所述第一指示信息用于指示N个信道矩阵,所述N个信道矩阵为所述N个频域单元对应的信道矩阵;所述处理单元,还用于根据所述第一指示信息确定所述N个信道矩阵;所述处理单元根据所述N个SINR确定N个干扰噪声包括:根据所述N个SINR、所述N个信道矩阵和N个预编码矩阵,确定N个干扰噪声。
作为一种可能的实施方式,所述N个预编码矩阵为单位矩阵。
作为一种可能的实施方式,所述N个预编码矩阵为所述N个信道矩阵的共轭转置。
作为一种可能的实施方式,所述第一信息还包括第二指示信息,所述第二指示信息用于指示大尺寸信息,所述处理单元还用于:根据所述第二指示信息确定所述大尺度信息;根据所述大尺度信息确定所述N个预编码矩阵。
作为一种可能的实施方式,所述N个频域单元根据预设规则确定。
作为一种可能的实施方式,所述发送单元,还用于向终端设备发送第三指示信息,所述第三指示信息用于指示所述N个频域单元。
作为一种可能的实施方式,所述接收单元,还用于接收来自所述终端设备的第四指示信息,所述第四指示信息用于指示所述N个频域单元;所述处理单元,还用于根据所述第四指示信息确定所述N个频域单元。
作为一种可能的实施方式,所述N个干扰噪声为所述N个频域单元对应的干扰噪声,或者所述N个干扰噪声为同一宽带对应的干扰噪声。
应理解,所述接收单元和发送单元可以统称为收发单元,当所述通信装置是网络设备时,所述接收单元可以是接收器,所述发送单元可以是发送器,也可以统称为收发器;所述处理单元可以是处理器。当所述通信装置是网络设备中的模块(如,芯片)时,所述接收单元可以是输入接口、输入电路或输入管脚等,所述发送单元可以是输出接口、输出电路或输出管脚等,也可以统称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
第七方面公开一种通信装置,所述通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。所述通信装置可以包括:接收单元,用于接收来自网络设备的参考信号;处理单元,用于根据所述参考信号,确定第一信息,所述第一信息包括第一指示信息,所述第一指示信息用于指示SINR;发送单元,用于向所述网络设备发送所述第一信息。
作为一种可能的实施方式,所述处理单元具体用于:根据所述参考信号确定干扰噪声;根据所述干扰噪声和信号能量确定所述SINR。
作为一种可能的实施方式,所述接收单元,还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述信号能量;所述处理单元,还用于根据所述第二指示信息确定所述信号能量。
作为一种可能的实施方式,所述处理单元,还用于确定所述信号能量;所述发送单元,还用于向所述网络设备发送第三指示信息,所述第三指示信息用于指示所述信号能量。
作为一种可能的实施方式,所述处理单元,还用于根据大尺度信息确定所述信号能量;所述第一信息还包括第四指示信息,所述第四指示信息用于指示所述大尺度信息。
应理解,所述接收单元和发送单元可以统称为收发单元,当所述通信装置是终端设备时, 所述接收单元可以是接收器,所述发送单元可以是发送器,也可以统称为收发器;所述处理单元可以是处理器。当所述通信装置是终端设备中的模块(如,芯片)时,所述接收单元可以是输入接口、输入电路或输入管脚等,所述发送单元可以是输出接口、输出电路或输出管脚等,也可以统称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
第八方面公开一种通信装置,所述通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。所述通信装置可以包括:发送单元,用于向终端设备发送参考信号;接收单元,用于接收来自终端设备的第一信息,所述第一信息包括第一指示信息,所述第一指示信息用于指示SINR;处理单元,用于根据所述第一指示信息确定所述SINR;所述处理单元,还用于根据所述SINR确定干扰噪声。
作为一种可能的实施方式,所述处理单元根据所述SINR确定干扰噪声包括:根据所述SINR和信号能量确定干扰噪声。
作为一种可能的实施方式,所述发送单元,还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述信号能量。
作为一种可能的实施方式,所述接收单元,还用于接收来自终端设备的第三指示信息,所述第三指示信息用于指示所述信号能量;所述处理单元,还用于根据所述第三指示信息确定所述信号能量。
作为一种可能的实施方式,所述第一信息还包括第四指示信息,所述第四指示信息用于指示大尺度信息,所述处理单元,还用于根据所述第四指示信息确定大尺度信息;所述处理单元,还用于根据所述大尺度信息确定所述信号能量。
应理解,所述接收单元和发送单元可以统称为收发单元,当所述通信装置是网络设备时,所述接收单元可以是接收器,所述发送单元可以是发送器,也可以统称为收发器;所述处理单元可以是处理器。当所述通信装置是网络设备中的模块(如,芯片)时,所述接收单元可以是输入接口、输入电路或输入管脚等,所述发送单元可以是输出接口、输出电路或输出管脚等,也可以统称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
第九方面公开一种通信装置。该通信装置可以包括处理器,用于使得所述通信装置实现第一方面或第一方面的任一实施方式公开的通信方法。可选的,所述通信装置还可以包括存储器、和/或输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第一方面或第一方面的任一实施方式公开的通信方法。
第十方面公开一种通信装置。该通信装置可以包括处理器,用于使得所述通信装置实现第一方面或第一方面的任一实施方式公开的通信方法。可选的,所述通信装置还可以包括存储器、和/或输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第二方面或第二方面的任一实施方式公开的通信方法。
第十一方面公开一种通信装置。该通信装置可以包括处理器,用于使得所述通信装置实 现第一方面或第一方面的任一实施方式公开的通信方法。可选的,所述通信装置还可以包括存储器、和/或输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第三方面或第三方面的任一实施方式公开的通信方法。
第十二方面公开一种通信装置。该通信装置可以包括处理器,用于使得所述通信装置实现第一方面或第一方面的任一实施方式公开的通信方法。可选的,所述通信装置还可以包括存储器、和/或输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第四方面或第四方面的任一实施方式公开的通信方法。
第十三方面公开一种通信系统,该通信系统包括第九方面的通信装置和第十方面的通信装置,或者该通信系统包括第十一方面的通信装置和第十二方面的通信装置。
第十四方面公开一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令运行时,实现如上述各方面公开的通信方法。
第十五方面公开一种芯片,包括处理器,用于执行存储器中存储的程序,当程序被执行时,使得芯片执行上面的方法。
作为一种可能的实施方式,存储器位于芯片之外。
第十六方面公开一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被运行时,使得上述通信方法被执行。
附图说明
图1是本申请实施例公开的一种UE向网络设备反馈CSI的示意图;
图2是本申请实施例公开的一种CJT和NCJT的示意图;
图3是本申请实施例公开的一种网络架构示意图;
图4是本申请实施例公开的另一种网络架构示意图;
图5是本申请实施例公开的一种通信方法的流程示意图;
图6是本申请实施例公开的另一种通信方法的流程示意图;
图7是本申请实施例公开的一种通信装置的结构示意图;
图8是本申请实施例公开的另一种通信装置的结构示意图;
图9是本申请实施例公开的又一种通信装置的结构示意图。
具体实施方式
本申请实施例公开了一种通信方法、装置及系统,用于节约传输资源。以下分别进行详细说明。
为了更好地理解本申请实施例,下面先对本申请实施例的相关技术进行描述。
第五代移动通信技术(5th generation,5G)通信系统对系统容量、频谱效率等方面有了更高的要求,而制约频分双工(frequency division duplex,FDD)大规模(massive)多输入多输出(multiple input multiple output,MIMO)系统性能的一大瓶颈是下行信道状态信息(channel state information,CSI)获取。在FDD系统中,由于上下行信道存在较大的频点间隔, 上行信道与下行信道不满足直接互易关系,无法用上行信道信息来做准确的下行预编码。在传统的FDD系统中,需要用户设备(user equipment,UE)向网络设备反馈下行信道的CSI。请参阅图1,图1是本申请实施例公开的一种UE向网络设备反馈CSI的示意图。如图1所示,网络设备可以先通过信令向UE发送用于信道测量的配置信息。相应地,UE可以接收来自网络设备的配置信息,可以根据配置信息确定信道测量的时间及行为。之后网络设备可以向UE发送用于信道测量的导频。相应地,UE可以接收来自网络设备的导频,可以根据导频进行信道测量,可以根据测量的结果计算得到CSI,之后可以向网络设备发送CSI。相应地,网络设备可以接收来自UE的CSI,之后可以根据CSI向UE发送数据。CSI可以包括信道秩指示(rank indicator,RI)、信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)等。网络设备可以根据RI确定向UE传输数据的流数,可以根据CQI确定向UE传输数据的调制和编码方案(modulation and coding scheme,MCS),即调制阶数及信道编码的码率,可以根据PMI确定向UE传输数据的预编码矩阵。
为了提高系统的吞吐性能以及用户的体验,可以采用多站协作的方式来为一个UE服务。多站协作的方式有很多,例如相干协作传输(coherent joint transmission,CJT)、非相干协作传输(non coherent joint transmission,NCJT)等。请参阅图2,图2是本申请实施例公开的一种CJT和NCJT的示意图。如图2所示,在CJT方式下,多个传输接收点(transmitting and receiving point,TRP)可以同时为一个或多个UE服务(图2中只示意出了一个UE),即多个TRP可以同时向一个或多个UE发送相同的信息。从UE的角度来看,协作集中的多个TRP可以等效看作一个大的网络设备。在NCJT方式下,不同TRP可以同时向一个或多个UE发送信息,也可以不同时向一个或多个UE发送信息,发送的信息可以相同,也可以不同。
在多站协作的情况下,网络设备可以计算得到调制和编码方案(modulation and coding scheme,MCS),但计算MCS需要协作集外的干扰噪声,即干扰加噪声。因此,网络设备如何获取到协作集外的干扰噪声已成为一个亟待解决的技术问题。
为了解决上述问题,多站协作场景中,UE需要反馈协作集中各TRP信道以及协作集外其他TRP带来的干扰噪声,以便可以使能相干传输。
在实际实现中,CQI可以通过SINR进行衡量,SINR的计算方式可以表示如下:
Figure PCTCN2022091279-appb-000001
其中,当测量的为频域单元时,H eff为每个频域单元对应的等效信道矩阵,H为每个频域单元对应的信道矩阵,P为UE根据每个频域单元对应的信道矩阵确定的预编码矩阵,I+N为UE根据除用于测量的导频之外的干扰导频测得的干扰噪声,即干扰加噪声。上述公式中的I+N和H可以通过信道估计得到,P可以通过对H进行分解得到。应理解,本申请中的信道估计即信道测量。
目前,UE可以通过上述公式计算得到SINR,进而可以根据SINR确定CQI,之后可以向网络设备上报CQI,网络设备可以根据上报的CQI以及CQI表格确定MCS。如果使用上述方式使UE上报协作集外的干扰噪声,则需要UE反馈每个频域单元对应的CQI。本申请针对如何保证网络设备能够获取到干扰噪声的同时降低通信开销和资源浪费,提出了解决方案。
为了更好地理解本申请实施例,下面先对本申请实施例使用的网络架构进行描述。请参阅图3,图3是本申请实施例公开的一种网络架构示意图。如图3所示,该网络架构可以包括网络设备和多个终端设备。网络设备和终端设备1~终端设备6组成一个通信系统。在该通信系统 中,终端设备1~终端设备6可以发送上行数据给网络设备,网络设备可以接收来自终端设备1~终端设备6发送的上行数据。此外,终端设备4~终端设备6也可以组成一个通信系统。在该通信系统中,网络设备可以发送下行信息给终端设备1、终端设备2、终端设备3、终端设备5等,终端设备5也可以发送下行信息给终端设备4、终端设备6。
请参阅图4,图4是本申请实施例公开的另一种网络架构示意图。如图4所示,该网络设备架构可以包括多个网络设备和多个终端设备。多个网络设备可以同时为一个终端设备进行服务,也可以同时为多个终端设备进行服务。
终端设备,又可以称之为UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。终端设备可以为手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端,可穿戴设备(如智能手表、智能手环、计步器等),车载设备(如汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(如冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(如智能机器人、热气球、无人机、飞机等)或其他可以接入网络的设备。
网络设备是部署在无线接入网中为终端设备提供个无线通信功能的装置。网络设备可以包括各种形式的基站。例如,宏基站、微基站(也称为小站)、中继站、接入点等。在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同。例如,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是未来网络(如6G等)中的基站设备或者未来演进的公共陆地移动网(public land mobile network,PLMN)网络中的网络设备。网络设备还可以是可穿戴设备或车载设备。网络设备还可以是传输接收节点(transmission and reception point,TRP)。
基于上述网络架构,请参阅图5,图5是本申请实施例公开的一种通信方法的流程示意图。如图5所示,该通信方法可以包括以下步骤。
501.网络设备向终端设备发送参考信号。
网络设备向终端设备发送下行数据之前,可以先向终端设备发送参考信号。参考信号可以为信道状态信息参考信号(channel-state information reference signal,CSI-RS),也可以为其它参考信号。
相应地,终端设备接收来自网络设备的参考信号。
502.终端设备根据参考信号确定包括CQI的第一信息。
终端设备接收到来自网络设备的参考信号之后,可以根据参考信号确定第一信息。第一信息可以包括CQI。该CQI可以为N个频域单元对应的CQI。N个频域单元可以为M个频域单元中的N个频域单元,M个频域单元可以为终端设备需要上报的频域单元。M为大于1的整数,N为大于或等于1且小于M的整数。
终端设备可以根据参考信号确定N个干扰噪声和N个信道矩阵。N个信道矩阵可以为上述N个频域单元对应的信道矩阵,即N个信道矩阵与上述N个频域单元一一对应。N个干扰噪声可以为上述N个频域单元对应的干扰噪声,即N个干扰噪声与上述N个频域单元一一对应。N个干扰噪声也可以为同一宽带对应的干扰噪声,可以理解为N个干扰噪声相同,且为宽带对应的干扰噪声。这个宽带可以为由上述N个频域单元组成的宽带,相应地,宽带对应的干扰噪声可以为基于上述N个频域单元对应的N个干扰噪声确定的干扰噪声。这个宽带也可以为由上述M个频域单元组成的宽带,相应地,宽带对应的干扰噪声可以为基于上述M个频域单元对应的M个干扰噪声确定的干扰噪声。这个宽带还可以为由K个频域单元组成的宽带,相应地,宽带对应的干扰噪声可以为基于上述K个频域单元对应的K个干扰噪声确定的干扰噪声。K个频域单元可以为上述M个频域单元中的任意K个频域单元,K可以为大于1且小于M,且不等于N的整数。
终端设备可以先根据参考信号对M个频域单元进行信道估计,得到M个干扰噪声和M个信道矩阵,之后可以从M个信道矩阵中选取N个信道矩阵,以及可以根据M个干扰噪声确定N个干扰噪声。M个干扰噪声与上述M个频域单元一一对应。M个信道矩阵与上述M个频域单元一一对应。
终端设备可以根据N个干扰噪声、N个信道矩阵和N个预编码矩阵,确定N个SINR。SINR的计算方式可以表示如下:
Figure PCTCN2022091279-appb-000002
其中,H为信道矩阵,P为预编码矩阵,I+N为干扰噪声。终端设备可以将N个干扰噪声、N个信道矩阵和N个预编码矩阵分别代入上述公式,可以计算得到N个SINR。
当N个干扰噪声为N个频域单元对应的干扰噪声时,可以先确定上述N个频域单元中每个频域单元对应的干扰噪声、信道矩阵和预编码矩阵,之后可以根据上述公式计算得到上述N个频域单元中每个频域单元对应的SINR。
当N个干扰噪声为同一宽带对应的干扰噪声时,可以先确定上述N个频域单元中每个频域单元对应的信道矩阵和预编码矩阵,之后可以根据上述公式计算得到上述N个频域单元中每个频域单元对应的SINR。
N个预编码矩阵可以为N个相同的预编码矩阵,也可以为N个不同的预编码矩阵。N个预编码矩阵可以为单位矩阵,此时,N个预编码矩阵相同。N个预编码矩阵也可以为N个频域单元对应的N个信道矩阵的共轭转置,此时,当N个信道矩阵相同时,N个预编码矩阵相同,当N个信道矩阵不同时,N个预编码矩阵不同。终端设备可以根据大尺度信息确定N个预编码矩阵,此时,N个预编码矩阵相同。大尺度信息可以包括路径损耗、阴影衰落等中的一个或多个。应理解,大尺度信息应该不限于路径损耗和阴影衰落,还可以包括其它大尺度信息。例如,终端设备可以根据路径损耗确定N个预编码矩阵。再例如,终端设备可以根据阴影衰落确定N个预编码矩阵。再例如,终端设备可以根据路径损耗和阴影衰落确定N个预编码矩阵,如终端设备可以根据路径损耗和阴影衰落的和、加权和、差值的绝对值、比值等确定N个预编码矩阵。
终端设备可以根据N个SINR确定CQI。终端设备可以根据N个SINR以及现有的CQI表格确定CQI(可以理解,本申请不限于此方式),即CQI索引。这个CQI可以包括N个CQI索引。
第一信息还可以包括第一指示信息,第一指示信息可以用于指示上述N个信道矩阵。
当终端设备根据大尺度信息确定N个预编码矩阵时,第一信息还可以包括第二指示信息,第二指示信息可以用于指示上述大尺度信息。
可以理解,第一信息包括的CQI、第一指示信息和第二指示信息可以通过一条信令发送,也可以通过多条信令发送,本申请对此不做限制。
在一种情况下,上述N个频域单元可以根据预设规则确定。例如,当N为1时,这个频域单元可以为上述M个频域单元中的第L个频域单元,L可以为1,也可以为M,还可以为
Figure PCTCN2022091279-appb-000003
还可以为其它值,在此不加限定。
Figure PCTCN2022091279-appb-000004
为向下取整。再例如,当N大于1时,N个频域单元可以为上述M个频域单元中的前N个频域单元,也可以为上述M个频域单元中的后N个频域单元,还可以为上述M个频域单元中的中间N个频域单元。应理解,上述为示例性说明,并不对其构成限定。可选地,上述M可以为上报子带(reportingband)中对应指示值为1的个数。网络设备可以通过reportingband向终端设备指示需要上报的频域单元,可以将reportingband中非零位置对应的频域单元确定为需要上报的频域单元。
在另一种情况下,N个频域单元为上述M个频域单元中的哪N个频域单元是由网络设备确定的。例如,网络设备可以确定N个频域单元为上述M个频域单元中的前N个频域单元,也可以确定N个频域单元为上述M个频域单元中的后N个频域单元,还可以确定N个频域单元为上述M个频域单元中的中间N个频域单元。应理解,上述为示例性说明,并不对其构成限定。之后网络设备可以向终端设备发送第三指示信息,相应地,终端设备接收来自网络设备的第三指示信息,根据第三指示信息确定N个频域单元。第三指示信息用于指示上述N个频域单元。第三指示信息可以为N个频域单元的索引,也可以为N个频域单元在M个频域单元中的位置或位置的信息。
在又一种情况下,终端设备可以从上述M个频域单元中选取N个频域单元,之后可以向网络设备发送第四指示信息,相应地,网络设备可以接收来自终端设备的第四指示信息,可以根据第四指示信息确定N个频域单元。第四指示信息可以用于指示N个频域单元。选取规则与上述类似。
应理解,频域单元可以为子带,也可以为子载波,还可以为其它可以表示频域资源的频域粒度。
应理解,当N为大于1的整数时,第一信息还可以包括第五指示信息,第五指示信息可以指示N个频域单元对应的CQI与N个频域单元的对应关系。第五指示信息可以显式地指示,也可以隐式地指示。例如,第一信息包括3个CQI,3个CQI中第一个CQI对应3个频域单元中的第一个频域单元,3个CQI中第二个CQI对应3个频域单元中的第二个频域单元,3个CQI中第三个CQI对应3个频域单元中的第三个频域单元。再例如,第一信息包括3个CQI,3个CQI中第一个CQI对应3个频域单元中的第三个频域单元,3个CQI中第二个CQI对应3个频域单元中的第二个频域单元,3个CQI中第三个CQI对应3个频域单元中的第一个频域单元。
503.终端设备向网络设备发送第一信息。
终端设备根据参考信号确定出包括CQI的第一信息之后,可以向网络设备发送第一信息。相应地,网络设备接收来自终端设备的第一信息。
504.网络设备根据CQI确定N个SINR。
网络设备接收到来自终端设备的第一信息之后,可以根据CQI确定N个SINR。网络设备 可以根据CQI和现有的CQI表格确定N个SINR。
505.网络设备根据N个SINR确定N个干扰噪声。
网络设备根据CQI确定出N个SINR之后,可以根据N个SINR确定N个干扰噪声。
网络设备可以先根据第一信息包括的第一指示信息确定N个信道矩阵,之后可以根据N个SINR、N个信道矩阵和N个预编码矩阵,确定N个干扰噪声。N个预编码矩阵的详细描述可以参考步骤502中N个预编码矩阵的描述。
其中,确定N个频域单元的方式可以参考步骤502中的相关描述。
网络设备确定出N个SINR、N个信道矩阵和N个预编码矩阵之后,可以代入上述公式,计算得到N个干扰噪声。
网络设备确定出N个干扰噪声之后,可以根据N个干扰噪声、第一预编码矩阵、调度资源确定第一SINR,之后可以根据网络设备确定的第一SINR确定MCS。第一预编码矩阵为网络设备确定的预编码矩阵,与上述的预编码矩阵不同。第一SINR与终端设备上报的SINR不同。
基于上述网络架构,请参阅图6,图6是本申请实施例公开的另一种通信方法的流程示意图。如图6所示,该通信方法可以包括以下步骤。
601.网络设备向终端设备发送参考信号。
网络设备向终端设备发送数据之前,可以先向终端设备发送参考信号。参考信号可以为信道状态信息参考信号(channel-state information reference signal,CSI-RS),也可以为其它参考信号。
相应地,终端设备接收来自网络设备的参考信号。
602.终端设备根据参考信号确定包括用于指示SINR的第一指示信息的第一信息。
终端设备接收到来自网络设备的参考信号之后,可以根据参考信号确定第一信息。第一信息可以包括第一指示信息,第一指示信息可以用于指示SINR。第一指示信息可以指示N个SINR,N可以为大于或等于1且小于M的整数,M为终端设备需要上报的频域单元的数量。可见,并不需要上报M个SINR,可以减少所需上报的信息,从而可以节约传输资源。
终端设备可以根据参考信号确定干扰噪声。终端设备可以根据参考信号进行信道估计,得到干扰噪声。此处的干扰噪声可以为N个干扰噪声。N个干扰噪声可以为N个频域单元对应的干扰噪声,也可以为同一宽带对应的干扰噪声。这个宽带可以为由N个频域单元组成的宽带,相应地,宽带对应的干扰噪声可以为基于N个频域单元对应的N个干扰噪声确定的干扰噪声,此时,终端设备可以根据参考信号对N个频域单元进行信道估计。这个宽带也可以为由M个频域单元组成的宽带,相应地,宽带对应的干扰噪声可以为基于M个频域单元对应的M个干扰噪声确定的干扰噪声,此时,终端设备可以根据参考信号对M个频域单元进行信道估计。这个宽带还可以为由K个频域单元组成的宽带,相应地,宽带对应的干扰噪声可以为基于上述K个频域单元对应的K个干扰噪声确定的干扰噪声,此时,终端设备可以根据参考信号对K个频域单元进行信道估计。K个频域单元可以为上述M个频域单元中的任意K个频域单元,K可以为大于1且小于M,且不等于N的整数。
终端设备可以根据干扰噪声和信号能量确定SINR。SINR的计算方式可以表示如下:
Figure PCTCN2022091279-appb-000005
其中,S为信号能量,I+N为干扰噪声。可见,确定出干扰噪声和信号能量之后,可以根据上述公式计算得到SINR。
在一种情况下,信号能量可以是网络设备确定的。网络设备确定出信号能量之后,可以向终端设备发送第二指示信息,第二指示信息用于指示信号能量,终端设备接收来自网络设备的第二指示信息,可以根据第二指示信息确定信号能量。
在另一种情况下,信号能量可以是终端设备确定的。终端设备可以确定信号能量,之后可以向网络设备发送第三指示信息,第三指示信息用于指示信号能量。网络设备接收到来自终端设备的第三指示信息之后,可以根据第三指示信息确定信号能量。
在又一种情况下,终端设备可以根据大尺度信息确定能量信号。大尺度信息可以包括路径损耗、阴影衰落等。应理解,大尺度信息应该不限于路径损耗和阴影衰落,还可以包括其它大尺度信息。例如,终端设备可以根据路径损耗确定能量信号。再例如,终端设备可以根据阴影衰落确定能量信号。再例如,终端设备可以根据路径损耗和阴影衰落确定能量信号,如终端设备可以将路径损耗和阴影衰落的和、加权和、差值的绝对值、比值等确定为信号能量。此时,第一信息还可以包括第四指示信息,第四指示信息用于指示上述大尺度信息。确定规则可以是预先定义的。
603.终端设备向网络设备发送第一信息。
终端设备确定出第一信息之后,可以向网络设备发送第一信息。相应地,网络设备接收来自终端设备的第一信息。
604.网络设备根据第一指示信息确定SINR。
网络设备接收到来自终端设备的第一信息之后,可以根据第一指示信息确定SINR。
605.网络设备根据SINR确定干扰噪声。
网络设备根据第一指示信息确定出SINR之后,可以根据SINR确定干扰噪声。网络设备可以根据SINR和信号能量确定干扰噪声。网络设备可以确定信号能量,详细描述可以参考步骤602。
网络设备确定出N个干扰噪声之后,可以根据N个干扰噪声、第一预编码矩阵、调度资源确定第一SINR,之后可以根据网络设备确定的第一SINR确定MCS。第一预编码矩阵为网络设备确定的预编码矩阵,与上述的预编码矩阵不同。第一SINR与终端设备上报的SINR不同。
应理解,上述通信方法中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行,由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行。
应理解,上述不同实施例中相关信息(即相同信息或相似信息)可以相互参考。
应理解,目前,终端设备可以通过CQI向网络设备上报MCS,网络设备会以终端设备上报的这个MCS为参考,再根据实际情况对这个MCS进行调整,从而确定出最终使用的MCS。而本申请中,终端设备通过CQI向网络设备上报干扰噪声,MCS由网络设备根据终端设备上报的干扰噪声确定。
基于上述网络架构,请参阅图7,图7是本申请实施例公开的一种通信装置的结构示意图。如图7所示,该通信装置可以包括接收单元701、确定单元702和发送单元703。
在一种情况下,该通信装置可以为终端设备,也可以为终端设备中的模块。其中:
接收单元701,用于接收来自网络设备的参考信号;
确定单元702,用于根据参考信号确定第一信息,第一信息包括CQI,该CQI为N个频域单元对应的CQI,N个频域单元为M个频域单元中的N个频域单元,M个频域单元为需要上报 的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;
发送单元703,用于向网络设备发送所述第一信息。
在一个实施例中,确定单元702具体用于:
根据参考信号确定N个干扰噪声和N个信道矩阵;
根据N个干扰噪声、N个信道矩阵和N个预编码矩阵,确定N个SINR,N个信道矩阵为N个频域单元对应的信道矩阵;
根据N个SINR确定CQI;
第一信息还包括第一指示信息,第一指示信息用于指示N个信道矩阵。
在一个实施例中,N个预编码矩阵为单位矩阵。
在一个实施例中,N个预编码矩阵为N个信道矩阵的共轭转置。
在一个实施例中,确定单元702,还用于根据大尺度信息确定N个预编码矩阵,第一信息还包括第二指示信息,第二指示信息用于指示大尺度信息。
在一个实施例中,N个频域单元根据预设规则确定。
在一个实施例中,接收单元701,还用于接收来自网络设备的第三指示信息,第三指示信息用于指示N个频域单元;
确定单元702,还用于根据第三指示信息确定N个频域单元。
在一个实施例中,发送单元703,还用于向网络设备发送第四指示信息,第四指示信息用于指示N个频域单元。
在一个实施例中,N个干扰噪声为N个频域单元对应的干扰噪声,或者N个干扰噪声为同一宽带对应的干扰噪声。
有关上述接收单元701、确定单元702和发送单元703更详细的描述可以直接参考上述图5所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
应理解,所述接收单元和发送单元可以统称为收发单元,所述确定单元可以是处理单元。当所述通信装置是终端设备时,所述接收单元可以是接收器,所述发送单元可以是发送器,也可以统称为收发器;所述处理单元可以是处理器。当所述通信装置是终端设备中的模块(如,芯片)时,所述接收单元可以是输入接口、输入电路或输入管脚等,所述发送单元可以是输出接口、输出电路或输出管脚等,也可以统称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
在另一种情况下,该通信装置可以为网络设备,也可以为网络设备中的模块。其中:
发送单元703,用于向终端设备发送参考信号;
接收单元701,用于接收来自终端设备的第一信息,第一信息包括CQI,CQI为N个频域单元对应的CQI,N个频域单元为M个频域单元中的N个频域单元,M个频域单元为终端设备需要上报的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;
确定单元702,用于根据CQI确定N个SINR;
确定单元702,还用于根据N个SINR确定N个干扰噪声。
在一个实施例中,第一信息还包括第一指示信息,第一指示信息用于指示N个信道矩阵,N个信道矩阵为N个频域单元对应的信道矩阵;
确定单元702,还用于根据第一指示信息确定N个信道矩阵;
确定单元702根据N个SINR确定N个干扰噪声包括:
根据N个SINR、N个信道矩阵和N个预编码矩阵,确定N个干扰噪声。
在一个实施例中,N个预编码矩阵为单位矩阵。
在一个实施例中,N个预编码矩阵为所述N个信道矩阵的共轭转置。
在一个实施例中,第一信息还包括第二指示信息,第二指示信息用于指示大尺寸信息,确定单元702还用于:
根据第二指示信息确定大尺度信息;
根据大尺度信息确定N个预编码矩阵。
在一个实施例中,N个频域单元根据预设规则确定。
在一个实施例中,发送单元703,还用于向终端设备发送第三指示信息,第三指示信息用于指示N个频域单元。
在一个实施例中,接收单元701,还用于接收来自终端设备的第四指示信息,第四指示信息用于指示N个频域单元;
确定单元702,还用于根据第四指示信息确定N个频域单元。
在一个实施例中,N个干扰噪声为N个频域单元对应的干扰噪声,或者N个干扰噪声为同一宽带对应的干扰噪声。
有关上述接收单元701、确定单元702和发送单元703更详细的描述可以直接参考上述图5所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
应理解,所述接收单元和发送单元可以统称为收发单元,所述确定单元可以是处理单元。当所述通信装置是网络设备时,所述接收单元可以是接收器,所述发送单元可以是发送器,也可以统称为收发器;所述处理单元可以是处理器。当所述通信装置是网络设备中的模块(如,芯片)时,所述接收单元可以是输入接口、输入电路或输入管脚等,所述发送单元可以是输出接口、输出电路或输出管脚等,也可以统称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
在又一种情况下,该通信装置可以为终端设备,也可以为终端设备中的模块。其中:
接收单元701,用于接收来自网络设备的参考信号;
确定单元702,用于根据参考信号,确定第一信息,第一信息包括第一指示信息,第一指示信息用于指示SINR;
发送单元703,用于向网络设备发送第一信息。
在一个实施例中,确定单元702具体用于:
根据参考信号确定干扰噪声;
根据干扰噪声和信号能量确定SINR。
在一个实施例中,接收单元701,还用于接收来自网络设备的第二指示信息,第二指示信息用于指示信号能量;
确定单元702,还用于根据第二指示信息确定信号能量。
在一个实施例中,确定单元702,还用于确定信号能量;
发送单元703,还用于向网络设备发送第三指示信息,第三指示信息用于指示信号能量。
在一个实施例中,确定单元702,还用于根据大尺度信息确定信号能量;
第一信息还包括第四指示信息,第四指示信息用于指示大尺度信息。
有关上述接收单元701、确定单元702和发送单元703更详细的描述可以直接参考上述图6所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
应理解,所述接收单元和发送单元可以统称为收发单元,所述确定单元可以是处理单元。 当所述通信装置是终端设备时,所述接收单元可以是接收器,所述发送单元可以是发送器,也可以统称为收发器;所述处理单元可以是处理器。当所述通信装置是终端设备中的模块(如,芯片)时,所述接收单元可以是输入接口、输入电路或输入管脚等,所述发送单元可以是输出接口、输出电路或输出管脚等,也可以统称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
在又一种情况下,该通信装置可以为网络设备,也可以为网络设备中的模块。其中:
发送单元703,用于向终端设备发送参考信号;
接收单元701,用于接收来自终端设备的第一信息,第一信息包括第一指示信息,第一指示信息用于指示SINR;
确定单元702,用于根据第一指示信息确定SINR;
确定单元702,还用于根据SINR确定干扰噪声。
在一个实施例中,确定单元702根据SINR确定干扰噪声包括:
根据SINR和信号能量确定干扰噪声。
在一个实施例中,发送单元703,还用于向终端设备发送第二指示信息,第二指示信息用于指示信号能量。
在一个实施例中,接收单元701,还用于接收来自终端设备的第三指示信息,第三指示信息用于指示信号能量;
确定单元702,还用于根据第三指示信息确定信号能量。
在一个实施例中,第一信息还包括第四指示信息,第四指示信息用于指示大尺度信息,确定单元702,还用于根据第四指示信息确定大尺度信息;
确定单元702,还用于根据大尺度信息确定信号能量。
有关上述接收单元701、确定单元702和发送单元703更详细的描述可以直接参考上述图6所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
应理解,所述接收单元和发送单元可以统称为收发单元,所述确定单元可以是处理单元。当所述通信装置是网络设备时,所述接收单元可以是接收器,所述发送单元可以是发送器,也可以统称为收发器;所述处理单元可以是处理器。当所述通信装置是网络设备中的模块(如,芯片)时,所述接收单元可以是输入接口、输入电路或输入管脚等,所述发送单元可以是输出接口、输出电路或输出管脚等,也可以统称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
基于上述网络架构,请参阅图8,图8是本申请实施例公开的另一种通信装置的结构示意图。如图8所示,该通信装置可以包括处理器801、存储器802、输入接口803、输出接口804和总线805。存储器802可以是独立存在的,可以通过总线805与处理器801相连接。存储器802也可以和处理器801集成在一起。其中,总线805用于实现这些组件之间的连接。
在一个实施例中,该通信装置可以为终端设备,也可以为终端设备中的模块,存储器802中存储的计算机程序指令被执行时,该处理器801用于控制接收单元701和发送单元703执行上述实施例中执行的操作,该处理器801还用于确定单元702执行上述实施例中执行的操作,输入接口803用于执行上述实施例中接收单元701执行的操作,输出接口804用于执行上述实施例中发送单元703执行的操作。上述通信装置还可以用于执行上述图5或者图6方法实施例中终端设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置可以为网络设备,也可以为网络设备中的模块,存储器802中存储的计算机程序指令被执行时,该处理器801用于控制接收单元701和发送单元703执行上述实施例中执行的操作,该处理器801还用于确定单元702执行上述实施例中执行的操作,输入接口803用于执行上述实施例中接收单元701执行的操作,输出接口804用于执行上述实施例中发送单元703执行的操作。上述通信装置还可以用于执行上述图5或者图6方法实施例中网络设备执行的各种方法,不再赘述。
基于上述网络架构,请参阅图9,图9是本申请实施例公开的又一种通信装置的结构示意图。如图9所示,该通信装置可以包括输入接口901、逻辑电路902和输出接口903。输入接口901与输出接口903通过逻辑电路902相连接。其中,输入接口901用于接收来自其它通信装置的信息,输出接口903用于向其它通信装置输出、调度或者发送信息。逻辑电路902用于执行除输入接口901与输出接口903的操作之外的操作,例如实现上述实施例中处理器801实现的功能。其中,该通信装置可以为终端设备(或终端设备内的模块),也可以为网络设备(或网络设备中的模块)。其中,有关输入接口901、逻辑电路902和输出接口903更详细的描述可以直接参考上述方法实施例中终端设备或网络设备的相关描述直接得到,这里不加赘述。
本申请实施例还公开一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
本申请实施例还公开一种包括指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
本申请实施例还公开一种通信系统,该通信系统可以包括终端设备和网络设备,具体描述可以参考图5-图6所示的通信方法。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (40)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的参考信号;
    根据所述参考信号确定第一信息,所述第一信息包括信道质量指示CQI,所述CQI为N个频域单元对应的CQI,所述N个频域单元为M个频域单元中的N个频域单元,所述M个频域单元为需要上报的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;
    向所述网络设备发送所述第一信息。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述参考信号确定第一信息包括:
    根据所述参考信号确定N个干扰噪声和N个信道矩阵;
    根据所述N个干扰噪声、所述N个信道矩阵和N个预编码矩阵,确定N个信号干扰噪声比SINR,所述N个信道矩阵为所述N个频域单元对应的信道矩阵;
    根据所述N个SINR确定所述CQI;
    所述第一信息还包括第一指示信息,所述第一指示信息用于指示所述N个信道矩阵。
  3. 根据权利要求2所述的方法,其特征在于,所述N个预编码矩阵为单位矩阵。
  4. 根据权利要求2所述的方法,其特征在于,所述N个预编码矩阵为所述N个信道矩阵的共轭转置。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据大尺度信息确定所述N个预编码矩阵,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述大尺度信息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述N个频域单元根据预设规则确定。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述N个频域单元;
    根据所述第三指示信息确定所述N个频域单元。
  8. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述N个频域单元。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,所述N个干扰噪声为所述N个频域单元对应的干扰噪声,或者所述N个干扰噪声为同一宽带对应的干扰噪声。
  10. 一种通信方法,其特征在于,包括:
    向终端设备发送参考信号;
    接收来自终端设备的第一信息,所述第一信息包括信道质量指示CQI,所述CQI为N个频域单元对应的CQI,所述N个频域单元为M个频域单元中的N个频域单元,所述M个频域单元为所述终端设备需要上报的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;
    根据所述CQI确定N个信号干扰噪声比SINR;
    根据所述N个SINR确定N个干扰噪声。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信息还包括第一指示信息,所述第一指示信息用于指示N个信道矩阵,所述N个信道矩阵为所述N个频域单元对应的信道矩阵,所述方法还包括:
    根据所述第一指示信息确定所述N个信道矩阵;
    所述根据所述N个SINR确定N个干扰噪声包括:
    根据所述N个SINR、所述N个信道矩阵和N个预编码矩阵,确定N个干扰噪声。
  12. 根据权利要求11所述的方法,其特征在于,所述N个预编码矩阵为单位矩阵。
  13. 根据权利要求11所述的方法,其特征在于,所述N个预编码矩阵为所述N个信道矩阵的共轭转置。
  14. 根据权利要求11所述的方法,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示大尺寸信息,所述方法还包括:
    根据所述第二指示信息确定所述大尺度信息;
    根据所述大尺度信息确定所述N个预编码矩阵。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述N个频域单元根据预设规则确定。
  16. 根据权利要求10-14任一项所述的方法,其特征在于,所述方法还包括:
    向终端设备发送第三指示信息,所述第三指示信息用于指示所述N个频域单元。
  17. 根据权利要求10-14任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第四指示信息,所述第四指示信息用于指示所述N个频域单元;
    根据所述第四指示信息确定所述N个频域单元。
  18. 根据权利要求10-17任一项所述的方法,其特征在于,所述N个干扰噪声为所述N个频域单元对应的干扰噪声,或者所述N个干扰噪声为同一宽带对应的干扰噪声。
  19. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的参考信号;
    处理单元,用于根据所述参考信号确定第一信息,所述第一信息包括信道质量指示CQI,所述CQI为N个频域单元对应的CQI,所述N个频域单元为M个频域单元中的N个频域单元,所述M个频域单元为需要上报的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;
    发送单元,用于向所述网络设备发送所述第一信息。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元用于:
    根据所述参考信号确定N个干扰噪声和N个信道矩阵;
    根据所述N个干扰噪声、所述N个信道矩阵和N个预编码矩阵,确定N个信号干扰噪声比SINR,所述N个信道矩阵为所述N个频域单元对应的信道矩阵;
    根据所述N个SINR确定所述CQI;
    所述第一信息还包括第一指示信息,所述第一指示信息用于指示所述N个信道矩阵。
  21. 根据权利要求20所述的装置,其特征在于,所述N个预编码矩阵为单位矩阵。
  22. 根据权利要求20所述的装置,其特征在于,所述N个预编码矩阵为所述N个信道矩阵的共轭转置。
  23. 根据权利要求20所述的装置,其特征在于,所述处理单元,还用于根据大尺度信息确定所述N个预编码矩阵,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述大尺度信息。
  24. 根据权利要求19-23任一项所述的装置,其特征在于,所述N个频域单元根据预设规则确定。
  25. 根据权利要求19-23任一项所述的装置,其特征在于,所述接收单元,还用于接收来 自所述网络设备的第三指示信息,所述第三指示信息用于指示所述N个频域单元;
    所述处理单元,还用于根据所述第三指示信息确定所述N个频域单元。
  26. 根据权利要求19-23任一项所述的装置,其特征在于,所述发送单元,还用于向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述N个频域单元。
  27. 根据权利要求20-26任一项所述的装置,其特征在于,所述N个干扰噪声为所述N个频域单元对应的干扰噪声,或者所述N个干扰噪声为同一宽带对应的干扰噪声。
  28. 一种通信装置,其特征在于,包括:
    发送单元,用于向终端设备发送参考信号;
    接收单元,用于接收来自终端设备的第一信息,所述第一信息包括信道质量指示CQI,所述CQI为N个频域单元对应的CQI,所述N个频域单元为M个频域单元中的N个频域单元,所述M个频域单元为所述终端设备需要上报的频域单元,M为大于1的整数,N为大于或等于1且小于M的整数;
    处理单元,用于根据所述CQI确定N个信号干扰噪声比SINR;
    所述处理单元,还用于根据所述N个SINR确定N个干扰噪声。
  29. 根据权利要求28所述的装置,其特征在于,所述第一信息还包括第一指示信息,所述第一指示信息用于指示N个信道矩阵,所述N个信道矩阵为所述N个频域单元对应的信道矩阵;
    所述处理单元,还用于根据所述第一指示信息确定所述N个信道矩阵;
    所述处理单元根据所述N个SINR确定N个干扰噪声包括:
    根据所述N个SINR、所述N个信道矩阵和N个预编码矩阵,确定N个干扰噪声。
  30. 根据权利要求29所述的装置,其特征在于,所述N个预编码矩阵为单位矩阵。
  31. 根据权利要求29所述的装置,其特征在于,所述N个预编码矩阵为所述N个信道矩阵的共轭转置。
  32. 根据权利要求29所述的装置,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示大尺寸信息,所述处理单元还用于:
    根据所述第二指示信息确定所述大尺度信息;
    根据所述大尺度信息确定所述N个预编码矩阵。
  33. 根据权利要求28-32任一项所述的装置,其特征在于,所述N个频域单元根据预设规则确定。
  34. 根据权利要求28-32任一项所述的装置,其特征在于,所述发送单元,还用于向终端设备发送第三指示信息,所述第三指示信息用于指示所述N个频域单元。
  35. 根据权利要求28-32任一项所述的装置,其特征在于,所述接收单元,还用于接收来自所述终端设备的第四指示信息,所述第四指示信息用于指示所述N个频域单元;
    所述处理单元,还用于根据所述第四指示信息确定所述N个频域单元。
  36. 根据权利要求28-35任一项所述的装置,其特征在于,所述N个干扰噪声为所述N个频域单元对应的干扰噪声,或者所述N个干扰噪声为同一宽带对应的干扰噪声。
  37. 一种通信装置,其特征在于,包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序实现 如权利要求1-9或10-18任一项所述的方法。
  38. 一种通信装置,其特征在于,包括处理器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器用于执行计算机程序实现如权利要求1-9或10-18任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,包括计算程序,当所述计算机程序被运行时,实现如权利要求1-18任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1-18任一项所述的方法。
PCT/CN2022/091279 2021-05-31 2022-05-06 一种通信方法、装置及系统 WO2022252914A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110600919.4A CN115484619A (zh) 2021-05-31 2021-05-31 一种通信方法、装置及系统
CN202110600919.4 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022252914A1 true WO2022252914A1 (zh) 2022-12-08

Family

ID=84322765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091279 WO2022252914A1 (zh) 2021-05-31 2022-05-06 一种通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN115484619A (zh)
WO (1) WO2022252914A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105417A1 (zh) * 2009-03-17 2010-09-23 华为技术有限公司 一种估计下行信道质量的方法和装置
JP2013207355A (ja) * 2012-03-27 2013-10-07 Softbank Mobile Corp Ofdm伝送システムにおける受信装置及び無線通信制御方法
CN109661850A (zh) * 2017-09-08 2019-04-19 Oppo广东移动通信有限公司 干扰测量的方法、终端设备和网络设备
CN111050349A (zh) * 2018-10-12 2020-04-21 华为技术有限公司 确定信道质量信息的方法、装置及系统
CN111385042A (zh) * 2018-12-28 2020-07-07 成都华为技术有限公司 干扰测量的方法和通信装置
US20200245166A1 (en) * 2017-10-17 2020-07-30 Samsung Electronics Co., Ltd. Method and device for supporting beam-based cooperative communication in wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105417A1 (zh) * 2009-03-17 2010-09-23 华为技术有限公司 一种估计下行信道质量的方法和装置
JP2013207355A (ja) * 2012-03-27 2013-10-07 Softbank Mobile Corp Ofdm伝送システムにおける受信装置及び無線通信制御方法
CN109661850A (zh) * 2017-09-08 2019-04-19 Oppo广东移动通信有限公司 干扰测量的方法、终端设备和网络设备
US20200245166A1 (en) * 2017-10-17 2020-07-30 Samsung Electronics Co., Ltd. Method and device for supporting beam-based cooperative communication in wireless communication system
CN111050349A (zh) * 2018-10-12 2020-04-21 华为技术有限公司 确定信道质量信息的方法、装置及系统
CN111385042A (zh) * 2018-12-28 2020-07-07 成都华为技术有限公司 干扰测量的方法和通信装置

Also Published As

Publication number Publication date
CN115484619A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US11750250B2 (en) Communications method and device
WO2021254305A1 (zh) 通信方法和通信装置
CN102255689B (zh) 一种信道状态信息的处理方法、装置及系统
EP3986059A1 (en) Communication method and communication device
CN103326764A (zh) 一种下行信道质量信息获取方法和装置
US20220408288A1 (en) Channel state information measurement method and apparatus
WO2020155604A1 (zh) 测量上报的方法与装置
CN111435864B (zh) 发送信道状态信息的方法和装置
US20240031845A1 (en) Communication method and apparatus
EP3796569A1 (en) Communication method, terminal device, and network device
WO2022252914A1 (zh) 一种通信方法、装置及系统
CN102647247B (zh) 一种发射信号预处理发送方法及装置
WO2023160692A1 (zh) 一种通信方法及通信装置
CN112054831A (zh) 信道状态信息的反馈方法及装置
WO2023273969A1 (zh) 资源测量方法和通信装置
EP4207649A1 (en) Interference reporting method and apparatus
WO2022110087A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2023138507A1 (zh) 一种通信方法、装置及系统
WO2022206652A1 (zh) 信息指示的方法与装置
WO2023222021A1 (zh) 一种信道测量方法及装置
WO2023024958A1 (zh) 一种csi报告获取方法及通信装置
EP4277149A1 (en) Precoding method and apparatus
WO2020143748A1 (zh) 发送信道状态信息的方法和装置
WO2023011436A1 (zh) 通信处理方法和通信处理装置
WO2022151447A1 (zh) 信道状态信息上报方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22814961

Country of ref document: EP

Kind code of ref document: A1