WO2022110087A1 - 一种通信方法、装置及计算机可读存储介质 - Google Patents

一种通信方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2022110087A1
WO2022110087A1 PCT/CN2020/132543 CN2020132543W WO2022110087A1 WO 2022110087 A1 WO2022110087 A1 WO 2022110087A1 CN 2020132543 W CN2020132543 W CN 2020132543W WO 2022110087 A1 WO2022110087 A1 WO 2022110087A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
network device
sequence
interference
Prior art date
Application number
PCT/CN2020/132543
Other languages
English (en)
French (fr)
Inventor
苏立焱
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080107340.8A priority Critical patent/CN116636292A/zh
Priority to PCT/CN2020/132543 priority patent/WO2022110087A1/zh
Publication of WO2022110087A1 publication Critical patent/WO2022110087A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method, an apparatus, and a computer-readable storage medium.
  • the first network device In the case where the first network device is within the coverage of the second network device, when the first network device receives information from the first terminal device within its coverage, and the second network device sends information to the second terminal within its coverage When the terminal device sends information, the first network device can not only receive information from the first terminal device, but also receive information from the second network device, so that the first network device cannot determine the information sent by the first terminal device. Therefore, it is very necessary to eliminate the interference of one network device to another network device within its coverage, but there is currently no signal for measuring the interference, so that the interference cannot be eliminated.
  • the embodiments of the present application disclose a communication method, an apparatus, and a computer-readable storage medium, which are used to eliminate interference.
  • a first aspect discloses a communication method.
  • the communication method can be applied to a first device or a module (eg, a chip) in the first device.
  • the first device is used as an example for description below.
  • the first device is within the coverage of the network device.
  • the first device may be a network device or a terminal device.
  • the communication method may include: receiving first information; determining a first sequence according to the first information; and receiving a first signal, where the first sequence and the first signal are used to estimate the interference of the network device to the first device.
  • the first device may receive the first information and the first signal from the network device, and then may determine the first sequence according to the first information, and may estimate, according to the first sequence and the first signal, the network device's response to the first signal. Spatial statistical information of interference of a device, so that when the first device receives information from a terminal device and the network device sends information to a terminal device, the first device can eliminate the network device's influence on the first device according to the above-mentioned spatial statistical information of interference interference with a device, so that the interference can be eliminated.
  • the above-mentioned first information and first signal can solve the technical problem that there is no signal for measuring the spatial statistical information of interference in the prior art.
  • the first signal is a signal sent by the network device to the second device
  • the second device is any terminal device within the coverage of the network device
  • the first signal is used for channel estimation by the second device.
  • the first information may include scrambling code information
  • the first device determining the first sequence according to the first information includes: determining the first sequence according to the scrambling code information.
  • the first device can use the known information of the first signal, that is, the first sequence, to estimate the spatial statistics of the interference of the network device to the first device, compared to using the non-first signal in the first signal.
  • a sequence of other unknown signals is used to measure the spatial statistical information of the interference, and the measurement result of the known first sequence is more accurate, so that the accuracy of the interference estimation can be improved.
  • the first information may further include an identifier of an antenna port that sends the first signal
  • the first device receiving the first signal includes: determining, according to the identifier of the antenna port, a code division multiplexing (code division multiplexing) to which the first signal belongs. multiple, CDM) group and an orthogonal cover code (OCC) sequence used by the first signal; the first signal is received according to the CDM group and the OCC sequence.
  • code division multiplexing code division multiplexing
  • CDM code division multiplexing
  • OCC orthogonal cover code
  • the first device may determine the transmission position of the first signal according to the identifier, so that the first device receives the first signal at the transmission position, The first device can be prevented from receiving the first signal through blind detection, so that the power consumption of the first device can be reduced.
  • the first information may be configured by high-level signaling, or may be indicated by downlink control information (DCI), and the DCI uses the first radio network temporary identity (RNTI) to add scrambling, the first RNTI is configured by higher layer signaling.
  • DCI downlink control information
  • RNTI radio network temporary identity
  • the first device can find the DCI it needs from several DCIs sent by the network device through the first RNTI, so as to realize accurate point-to-point information transmission, so that the security of DCI transmission can be improved.
  • the communication method may further include: estimating the interference of the network device to the first device according to the first sequence and the first signal.
  • the first device can accurately estimate the spatial statistical characteristics of the interference of the network device to the first device according to the first sequence and the first signal, so that the mixed signal of the interference and the useful signal can be accurately determined.
  • a useful signal can be generated, so as to ensure the accuracy of information reception.
  • the first device estimating the interference of the network device to the first device according to the first sequence and the first signal includes: performing channel estimation according to the first sequence and the first signal; determining the first signal according to the estimation result The interference corresponding to the subband to which the first signal belongs; the spatial statistical information of the interference of the network device to the first device is determined according to the interference of the subband to which the first signal belongs.
  • the use of the first sequence and the first signal for estimating the interference of the network device to the first device includes: the first sequence and the first signal are used for channel estimation, and it is determined according to the estimation result to which the first signal belongs For the interference corresponding to the subband, the spatial statistical information of the interference of the network device to the first device is determined according to the interference.
  • a second aspect discloses a communication method.
  • the communication method can be applied to a network device or a module (eg, a chip) in the network device.
  • the following describes the network device as an example.
  • the communication method may include: sending first information to a first device, where the first information is used to determine a first sequence, the first device is within the coverage of a network device, and the first device may be a network device or a terminal device; Send a first signal to the second device, where the first signal is used for channel estimation by the second device, and the first signal is also used by the first device to estimate the interference of the network device to the first device according to the first sequence, and the second device is in the network Any terminal device within the coverage area of the device.
  • the network device may send the first information and the first signal to the first device, so that the first device may determine the first sequence according to the first information, and may estimate the pairing of the network device according to the first sequence and the first signal.
  • the spatial statistical information of the interference of the first device When the first device receives information from one terminal device and the network device sends information to another terminal device, the first device can eliminate the network device's influence on the first device according to the spatial statistical information of the interference. interference with a device, so that the interference can be eliminated.
  • the above-mentioned first information and first signal can solve the technical problem that there is no signal for measuring the spatial statistical information of interference in the prior art.
  • the first information may include scrambling code information
  • the first information used to determine the first sequence includes: the scrambling code information is used to determine the first sequence.
  • the first information sent by the network device to the first device includes scrambling code information, so that the first information can determine the first sequence according to the scrambling code information, and then can use the known information of the first signal, That is, the first sequence is used to estimate the spatial statistics of the interference of the network device to the first device.
  • the known first sequence is used to measure the spatial statistics of the interference. The results of the sequence measurements are more accurate, which can improve the accuracy of the interference estimation.
  • the first information may further include an identifier of an antenna port that sends the first signal, and the identifier of the antenna port is used by the first device to receive the first signal.
  • the network device may send the identification of the antenna port of the first signal to the first device, so that the first device can determine the transmission position of the first signal according to the identification, and receive the first signal at the transmission position, which can avoid The first device receives the first signal through blind detection, so that power consumption of the first device can be reduced.
  • sending the first information by the network device to the first device includes: configuring the first information to the first device through high-layer signaling; or sending the first information to the first device through DCI, where the DCI uses the first RNTI Scrambling, the first RNTI is configured by higher layer signaling.
  • the first device can find the DCI it needs from several DCIs sent by the above network device through the first RNTI, so as to realize accurate point-to-point information transmission , so that the security of DCI transmission can be improved.
  • a third aspect discloses a communication method.
  • the communication method can be applied to a first device, and can also be applied to a module (eg, a chip) in the first device.
  • the first device is used as an example for description below.
  • the first device is within the coverage of the network device.
  • the first device may be a network device or a terminal device.
  • the communication method may include: receiving a precoding matrix indication (PMI); and receiving a first signal, where the PMI and the first signal are used to estimate the interference of the network device to the first device.
  • PMI precoding matrix indication
  • the first device may receive the PMI and the first signal from the network device, and then may estimate the spatial statistical information of the interference of the network device to the first device according to the PMI and the first signal, so that when the first device receives
  • the first device can eliminate the interference of the network device to the first device according to the above-mentioned spatial statistical information of interference, so that the interference can be eliminated.
  • the above-mentioned PMI and the first signal can solve the technical problem in the prior art that there is no signal for measuring spatial statistical information of interference.
  • the first signal is a signal sent by the network device to the second device
  • the second device is any terminal device within the coverage of the network device
  • the first signal is used for channel estimation by the second device.
  • the PMI may be configured by high-layer signaling, or may be indicated by DCI, and the DCI is scrambled by using the first RNTI, and the first RNTI is configured by high-layer signaling.
  • the first device can find the DCI it needs from several DCIs sent by the network device through the first RNTI, so as to realize accurate point-to-point information transmission, so that the security of DCI transmission can be improved.
  • the communication method may further include: estimating the interference of the network device to the first device according to the PMI and the first signal.
  • the first device can accurately estimate the spatial statistical characteristics of the interference of the network device to the first device according to the PMI and the first signal, so that the useful signal can be accurately determined from the mixed signal of the interference and the useful signal. signal, so as to ensure the accuracy of information reception.
  • the first device estimating the interference of the network device to the first device according to the PMI and the first signal includes: determining the first sequence according to the scrambling code information; performing channel estimation according to the first sequence and the first signal, Obtain the subband channel of the subband to which the first signal belongs; determine the spatial statistical information of the interference of the network device to the first device according to the PMI corresponding to the subband to which the first signal belongs and the subband channel of the subband to which the first signal belongs.
  • the communication method may further include: determining the first sequence according to the information of the scrambling code, and the information of the scrambling code is configured by high-layer signaling;
  • the interference includes: performing channel estimation through the first signal and the first sequence to obtain the subband channel of the subband to which the first signal belongs, and determining the subband channel of the subband to which the first signal belongs and the PMI corresponding to the subband to which the first signal belongs. Spatial statistical information of the network device's interference with the first device.
  • the above-mentioned spatial statistical information is a covariance matrix of interference.
  • a fourth aspect discloses a communication method.
  • the communication method can be applied to a network device or a module (eg, a chip) in the network device.
  • the following takes the network device as an example for description.
  • the communication method may include: sending a PMI to a first device, where the first device is within the coverage of a network device, and the first device may be a network device or a terminal device; sending a first signal to a second device, the first signal
  • the second device is used for channel estimation, and the first signal is also used for the first device to estimate the interference of the network device to the first device according to the PMI, and the second device is any terminal device within the coverage of the network device.
  • the network device may send the PMI and the first signal to the first device, so that the first device can estimate the spatial statistical information of the interference of the network device to the first device according to the PMI and the first signal.
  • the first device receives
  • the network device sends information from one terminal device while the network device sends information to another terminal device
  • the first device can eliminate the interference of the network device to the first device according to the above-mentioned spatial statistical information of interference, so that the interference can be eliminated.
  • the above-mentioned PMI and the first signal can solve the technical problem that there is no signal for measuring the spatial statistical information of interference in the prior art.
  • sending the PMI to the first device by the network device includes: configuring the PMI to the first device through high-layer signaling; or sending the PMI to the first device through DCI, where the DCI uses the first RNTI to scramble, and the first RNTI Configured by higher layer signaling.
  • the first device can find the DCI it needs from several DCIs sent by the above network device through the first RNTI, so as to realize accurate point-to-point information transmission , so that the security of DCI transmission can be improved.
  • a fifth aspect discloses a communication apparatus, where the communication apparatus may be a first device or a module (eg, a chip) within the first device.
  • the communication device may include:
  • a receiving unit for receiving the first information
  • a determining unit configured to determine a first sequence according to the first information
  • the receiving unit is further configured to receive a first signal, where the first sequence and the first signal are used to estimate the interference of the network device to the first device.
  • the first signal is a signal sent by the network device to a second device, and the second device is any terminal device within the coverage of the network device, and the first signal is The signal is used for channel estimation by the second device.
  • the first information includes scrambling code information
  • the determining unit is specifically configured to determine the first sequence according to the scrambling code information.
  • the first information further includes an identifier of an antenna port that sends the first signal
  • the receiving unit receiving the first signal includes:
  • the first signal is received according to the CDM group and the OCC sequence.
  • the first information is configured by high-layer signaling
  • the first information is indicated by DCI, and the DCI is scrambled with a first RNTI, and the first RNTI is configured by higher layer signaling.
  • the communication device may further include:
  • an estimation unit configured to estimate the interference of the network device to the first device according to the first sequence and the first signal.
  • the estimation unit is specifically used for:
  • Spatial statistical information of the interference of the network device to the first device is determined according to the interference.
  • the first sequence and the first signal are used for estimating the interference of the network device to the first device including:
  • the first sequence and the first signal are used for channel estimation, the interference corresponding to the subband to which the first signal belongs is determined according to the estimation result, and the spatial statistical information of the interference of the network device to the first device is determined according to the interference .
  • a sixth aspect discloses a communication apparatus, which may be a network device or a module (eg, a chip) within the network device.
  • the communication device may include:
  • a sending unit configured to send first information to the first device, where the first information is used to determine the first sequence
  • the sending unit is further configured to send a first signal to a second device, where the first signal is used by the second device to perform channel estimation, and the first signal is also used by the first device to perform channel estimation according to the first signal.
  • a sequence estimates the interference of the network device to the first device, and the second device is any terminal device within the coverage of the network device.
  • the first information includes scrambling code information
  • the first information used to determine the first sequence includes:
  • the information of the scrambling code is used to determine the first sequence.
  • the first information further includes an identifier of an antenna port that sends the first signal, where the identifier is used by the first device to receive the first signal.
  • the sending unit sending the first information to the first device includes:
  • the first information is sent to the first device through DCI, where the DCI is scrambled with a first RNTI, and the first RNTI is configured by higher layer signaling.
  • a seventh aspect discloses a communication apparatus, which may be a first device or a module (eg, a chip) within the first device.
  • the communication device may include:
  • the receiving unit is further configured to receive a first signal, where the PMI and the first signal are used to estimate the interference of the network device to the first device.
  • the first signal is a signal sent by the network device to a second device, and the second device is any terminal device within the coverage of the network device, and the first signal is The signal is used for channel estimation by the second device.
  • the PMI is configured by high-layer signaling
  • the PMI is indicated by the DCI, and the DCI is scrambled by using the first RNTI, and the first RNTI is configured by higher layer signaling.
  • the communication device may further include:
  • an estimation unit configured to estimate the interference of the network device to the first device according to the PMI and the first signal.
  • the estimation unit is specifically used for:
  • the spatial statistical information of the interference of the network device to the first device is determined.
  • the communication device may further include:
  • a determining unit configured to determine the first sequence according to the information of the scrambling code, and the information of the scrambling code is configured by high-level signaling;
  • the PMI and the first signal are used to estimate the interference of the network device to the first device including:
  • the PMI and the first signal are used to perform channel estimation by using the first signal and the first sequence to obtain a subband channel of the subband to which the first signal belongs, according to the subband channel and the The PMI corresponding to the subband to which the first signal belongs determines the spatial statistical information of the interference of the network device to the first device.
  • An eighth aspect discloses a communication apparatus, where the communication apparatus may be a network device or a module (eg, a chip) within the network device.
  • the communication device may include:
  • a sending unit configured to send the PMI to the first device
  • the sending unit is further configured to send a first signal to a second device, where the first signal is used for the second device to perform channel estimation, and the first signal is also used for the first device to perform channel estimation according to the PMI
  • the interference of the network device to the first device is estimated, and the second device is any terminal device within the coverage of the network device.
  • the sending unit sending the PMI to the first device includes:
  • the PMI is sent to the first device through the DCI, and the DCI is scrambled with the first RNTI, and the first RNTI is configured by higher layer signaling.
  • a ninth aspect discloses a communication apparatus, where the communication apparatus may be a first device or a module (eg, a chip) in the first device.
  • the communication device may include a processor, a memory, an input interface for receiving information from other communication devices other than the communication device, and an output interface for sending information outside the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor causes the processor to execute the communication method disclosed in the first aspect or any embodiment of the first aspect.
  • a tenth aspect discloses a communication apparatus, which may be a network device or a module (eg, a chip) within the network device.
  • the communication device may include a processor, a memory, an input interface for receiving information from other communication devices other than the communication device, and an output interface for sending information outside the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor causes the processor to execute the communication method disclosed in the second aspect or any embodiment of the second aspect.
  • An eleventh aspect discloses a communication apparatus, which may be a first device or a module (eg, a chip) within the first device.
  • the communication device may include a processor, a memory, an input interface for receiving information from other communication devices other than the communication device, and an output interface for sending information outside the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor causes the processor to execute the communication method disclosed in the third aspect or any embodiment of the third aspect.
  • a twelfth aspect discloses a communication apparatus, which may be a network device or a module (eg, a chip) within the network device.
  • the communication device may include a processor, a memory, an input interface for receiving information from other communication devices other than the communication device, and an output interface for sending information outside the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor causes the processor to execute the communication method disclosed in the fourth aspect or any embodiment of the fourth aspect.
  • a thirteenth aspect discloses a communication system including the communication device of the ninth aspect and the communication device of the tenth aspect.
  • a fourteenth aspect discloses a communication system including the communication device of the eleventh aspect and the communication device of the twelfth aspect.
  • a fifteenth aspect discloses a computer-readable storage medium, where a computer program or computer instruction is stored thereon, and when the computer program or computer instruction is executed, the communication method disclosed in the above aspects is implemented.
  • a sixteenth aspect discloses a chip including a processor for executing a program stored in a memory, and when the program is executed, the chip executes the above method.
  • the memory is located off-chip.
  • a seventeenth aspect discloses a computer program product comprising computer program code which, when executed, causes the above communication method to be performed.
  • FIG. 1 is a schematic diagram of a kind of above-the-line business-based disclosed in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another network architecture disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method disclosed by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • the embodiments of the present application disclose a communication method, an apparatus, and a computer-readable storage medium, which are used to eliminate interference. Each of them will be described in detail below.
  • communication can be classified into different types according to different types of transmitting nodes and receiving nodes.
  • the communication in which the network device sends information to the terminal device may be referred to as downlink (DL) communication
  • the communication in which the terminal device sends information to the network device may be referred to as uplink (uplink, UL) communication.
  • the time domain can be divided into multiple radio frames, each radio frame can include multiple time slots (slots), and each time slot can Including multiple symbols (symbols), such as orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • the length of the radio frame may be 10ms, and one slot may include 14 symbols.
  • the time domain length of one time slot can be 1 ms; when the SCS is 30 kHz, the time domain length of one time slot can be 0.5 ms.
  • the transmission direction of symbols in one slot can be DL, UL or flexible.
  • the combination of transmission directions of symbols in a slot can be understood as the format of the slot. For example, in the current NR TS38.211 standard, several time slot formats are specified, and the time slot formats can be shown in Table 1:
  • Time slots with format 0 may be referred to as downlink time slots
  • time slots with format 1 may be referred to as uplink time slots.
  • format 27 indicates that the first 3 symbols of a time slot are used for DL (or DL transmission), the last 3 symbols are used for UL (or UL transmission), and the middle 8 symbols are used for flexible (or UL transmission). or flexible transfer).
  • Time division duplexing (time duplexing division, TDD) is supported in NR.
  • Network equipment can implement TDD by alternately configuring uplink time slots and downlink time slots in the same carrier.
  • the ratio between the uplink time slot and the downlink time slot can be called the TDD uplink and downlink ratio.
  • 8:2 is a very common ratio scheme in the existing network, that is, every 10 time slots includes 8 consecutive downlink time slots, followed by 2 consecutive uplink time slots.
  • the reason why the number of downlink time slots is much larger than that of uplink time slots is because in general cells, downlink services are the main ones, but it is not excluded that there are individual cells that are mainly uplink services. For example, factory microcells.
  • each machine has a high-definition camera to monitor it and judge whether it is running normally.
  • This makes the main direction of business in the factory micro-cell is upstream, that is, the camera transmits real-time recorded video to the network device.
  • the uplink and downlink allocation ratio of the micro cell is mainly the uplink time slot.
  • FIG. 1 is a schematic diagram of a kind of above-the-line services disclosed in an embodiment of the present application.
  • two cells a macro cell and a micro cell, are included.
  • a base station of a macro cell may be referred to as a macro cell
  • a base station of a micro cell may be referred to as a micro cell.
  • the macro station uses a conventional uplink and downlink ratio of more down and up and less, such as the outdoor DSUDD in Figure 1, where S is a special (special) frame, which can be understood as a DL frame.
  • the micro-station uses the up-down ratio with more up and down, as shown in the indoor USUUU in Figure 1.
  • the macro station sends downlink data to the macro user equipment (UE) served by the macro station in the time slot of the different allocation ratio, and this downlink data is also received by the micro station that is about to receive the uplink data sent by the micro UE.
  • UE macro user equipment
  • CLI cross link interference
  • a macro station can implement beamforming by assigning different weights to signals on different transmit antennas.
  • a vector or matrix composed of weights on all antennas is called precoding.
  • Precoding can make the transmitted signal have a certain directivity. For example, if all the antennas of the base station use "1" as the weighting for the signal, that is, the transmitted signals of all the antennas are the same, then the distance from the receiving end located in the "normal direction of the antenna array" to all the antennas is the same. Therefore, the phase of the transmitted signals of all antennas to the receiving end is the same, which achieves the effect of superposition and enhanced signal energy.
  • this characteristic can be called that the transmitted signal points in this direction, that is, the transmitted signal points to the normal of the antenna array. direction.
  • a macro station is usually equipped with as many as 192 antennas, the beam directivity of the macro station is extremely strong, that is, the signal sent by the macro station will have one or more directions, and the transmitted energy is concentrated in these directions. If the micro-stations can estimate these directions, then better reception demodulation performance can be obtained using advanced receivers than without these direction information.
  • the direction can be estimated by estimating the covariance matrix of the interfering channel. Therefore, how to eliminate the interference of one access network device to another access network device within its coverage has become an urgent technical problem to be solved.
  • the network architecture used in the embodiments of the present application is first described below.
  • FIG. 2 is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • the network architecture may include at least a network device 101 , a network device 102 , a terminal device 103 and a terminal device 104 .
  • the coverage area of the network device 101 that is, the service area, is the area where the largest oval in Fig. 2 is located.
  • the network device 102 , the terminal device 103 and the terminal device 104 are all within the coverage of the network device 101 .
  • the network device 101 may send information to the terminal device 103 through a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH).
  • the terminal device 103 may send information to the network device 101 through a physical uplink control channel (PUCCH) and a physical uplink share channel (PUSCH).
  • the coverage area of the network device 102 that is, the service area, is the area where the smallest ellipse is located in FIG. 2 .
  • the terminal device 104 is within the coverage of the network device 102 .
  • the network device 102 may send information to the terminal device 104 via the PDCCH and PDSCH.
  • Terminal device 104 may send information to network device 102 via PUCCH and PUSCH.
  • the network device 101 may send information to the network device 102 through the PDCCH. For example, when the network device 101 sends a signal to the terminal device 103 and the terminal device 104 sends a signal to the network device 102, since the network device 102 is within the coverage of the network device 101, the network device 102 can not only receive signals from the terminal device 104 , and can also receive the signal sent by the network device 101 to the terminal device 103 .
  • FIG. 3 is a schematic diagram of another network architecture disclosed in an embodiment of the present application.
  • the network architecture may at least include a network device 101 and terminal devices 102-104.
  • the coverage area of the network device 101 that is, the service area, is the area where the ellipse in FIG. 2 is located.
  • the terminal devices 102 - 104 are all within the coverage of the network device 101 .
  • the network device 101 may send information to the terminal devices 102-104 via the PDCCH and PDSCH.
  • Terminal devices 102-104 may send information to network device 101 via PUCCH and PUSCH. Communication between end devices 102-104 may be via sidelinks.
  • the terminal device 103 can not only receive signals from the terminal device 104 , and can also receive the signal sent by the network device 101 to the terminal device 102 .
  • Terminal equipment also known as UE, mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • the terminal device can be a handheld terminal, a notebook computer, a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer , wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone) or wireless local loop (wireless local loop, WLL) station, machine type communication (machine type communication, MTC) terminals, wearable devices (such as smart watches, smart bracelets, pedometers, etc.), in-vehicle devices (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), smart home equipment (for example, refrigerators, TVs, air
  • the terminal device in FIG. 1 is shown as a UE, which is only an example and does not limit the terminal device.
  • the UE can access the DN by establishing a session between the UE-(R)AN device-UPF-DN, that is, a protocol data unit (PDU) session.
  • PDU protocol data unit
  • a network device is a device that provides wireless access for terminal devices, and is mainly responsible for functions such as radio resource management, quality of service (QoS) flow management, data compression, and encryption on the air interface side.
  • the network equipment may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, and the like.
  • the network device may also include a wireless fidelity (WiFi) access point (AP).
  • WiMax worldwide interoperability for microwave access
  • network devices or terminal devices in the network architecture shown in FIG. 2 and FIG. 3 are only for schematic illustration, and do not limit the network architecture.
  • a communication system may include more or less network devices or terminal devices.
  • network device or terminal device shown in FIG. 2 and FIG. 3 may be hardware, software divided by functions, or a combination of the above two.
  • the network device and the terminal device can communicate directly or through other devices or network elements.
  • the network device may use the RNTI to scramble the PDCCH.
  • the network device can configure different RNTIs for different devices through high-layer signaling, and can also configure different RNTIs for different services of the same device through high-layer signaling. Therefore, the PDCCH sent by the network device can only be successfully received by the device configured with the correct RNTI, thereby ensuring that the network device sends some information to the fixed device.
  • the PDSCH sent by the network device may include downlink data and a reference signal required for channel measurement, such as a demodulation reference signal (demodulation reference signal, DMRS).
  • DMRS demodulation reference signal
  • PDSCH supports very flexible DMRS location configuration.
  • the DMRS can be divided into types (Type) A and B, which can also be referred to as the resource mapping TypeA/B adopted by the DMRS. It is assumed that the position of the symbol occupied by the first DMRS in the PDSCH is l 0 .
  • Type A l 0 can be configured by the higher layer parameter dmrs-TypeA-Position.
  • l 0 0, that is, the first DMRS symbol is located in the first OFDM symbol of the scheduled PDSCH.
  • Types A and B can be as shown in Table 2:
  • the DMRS can be divided into single-symbol and double-symbol.
  • Single-symbol DMRS means that the DMRS symbols in the time domain are discontinuous. For example, there are DMRS on the 3rd, 5th, 8th and 11th symbols. Two-symbol DMRS appear in pairs in the time domain. For example, there are DMRSs on four symbols occupying 3, 4, 9, and 10.
  • DMRS can be divided into configuration types 1 and 2 .
  • configuration type 1 a single symbol supports a maximum of 4 ports, and a dual symbol supports a maximum of 8 ports.
  • configuration type 2 a single symbol supports a maximum of 6 ports, and a dual symbol supports a maximum of 12 ports.
  • FIG. 4 is a schematic diagram of configuration types 1 and 2 disclosed in an embodiment of the present application. As shown in Figure 4, different filled squares represent different CDMgroups.
  • Configuration type 1 includes two sets of CDMgroups.
  • Configuration type 2 includes three groups of CDMgroups. Each CDMgroup includes 4 antenna ports. Therefore, configuration type 1 supports 8 antenna ports and configuration type 2 supports 12 antenna ports.
  • FIG. 5 is a schematic flowchart of a communication method disclosed in an embodiment of the present application. As shown in FIG. 5 , the communication method may include the following steps.
  • a network device sends first information to a first device.
  • the network device may send the first information to the first device.
  • the network device may configure the first information to the first device through higher layer signaling.
  • the network device may send the first information to the first device through DCI. Sending the first information by the network device to the first device through the DCI may be understood as indicating the first information to the first device through the DCI.
  • the above-mentioned indication may be an explicit indication or an implicit indication, which is not limited herein.
  • the first device receives the first information from the network device.
  • the first information may include scrambling code information.
  • the network device may configure the first RNTI for the first device, that is, configure the first device with a dedicated RNTI between the network device and the first device.
  • the network device may configure the first RNTI to the first device through high-layer signaling, may also configure the first RNTI for the first device in a predefined manner, and may also configure the first RNTI to the first device in other manners, which are not limited here. .
  • the network device may use the first RNTI to scramble the DCI.
  • DCI can be carried on PDCCH for transmission.
  • the first device may determine the aggregation level of the PDCCH through high-layer signaling or a predefined manner. Since the height of network equipment is generally high, the channel between network equipment and network equipment generally has a direct path (that is, there is no obstruction in the middle), which makes the channel between network equipment generally have strong channel quality, and with time The passage of time did not change much. Therefore, a smaller aggregation level can be specified for the PDCCH transmitted on this channel, which can not only reduce transmission resources (corresponding to good channel quality), but also reduce the number of blind detections at the receiving end (corresponding to little change in channel quality), so that Reduce the complexity of the receiver.
  • the network device sends the first signal to the second device.
  • the network device may send the first signal to the second device. Accordingly, the second device may receive the first signal from the network device. In addition, since the first device is within the coverage of the network device, the first device can also receive the first signal from the network device.
  • the first information may further include the identifier of the antenna port that sends the first signal, that is, the identifier of the antenna port used by the network device to send the first signal.
  • the network device When the network device configures the first information with the first device through high-layer signaling, the network device also needs to send the above-mentioned identifier of the antenna port to the first device through DCI.
  • the network device may configure the parameters of the first signal to the first device through higher layer signaling.
  • the parameters of the first signal may include resource mapping type (type A/B), symbol position of DMRS, continuous symbol position of DMRS (single/dual symbol), configuration type (type 1/ 2) etc.
  • the network device may send the parameters of the first signal to the first device through the DCI, that is, the network device sends the DCI to the first device, and the DCI may include the parameters of the first signal.
  • the first device After the first device receives the identifier of the antenna port that sends the first signal from the network device, it can first determine the CDM group to which the first signal belongs and the OCC sequence used by the first signal according to the identifier of the antenna port that sends the first signal, and then The first signal is received according to the CDM group and the OCC sequence.
  • the first device may first determine the transmission position of the first signal according to the parameters of the first signal, and then may receive the first signal at the transmission position.
  • the first device can first determine whether it is the upper picture or the lower picture in FIG. 4 according to the parameters of the first signal Afterwards, the specific position in the above-determined figure can be determined according to the identifier of the antenna port sending the first signal, that is, the CDM group to which the first signal belongs and the OCC sequence used by the first signal. 1000 and the like in FIG. 4 are the identifiers of the antenna ports.
  • the first device determines the first sequence according to the first information.
  • the first device After the first device receives the first information from the network device, it may determine the first sequence according to the first information. In the case where the first information includes the information of the scrambling code, the first device may determine the first sequence according to the information of the scrambling code.
  • the scrambling code information may include one scrambling code information, or may include multiple scrambling code information. When the scrambled information includes one piece of scrambled information, there is one first sequence; when the scrambled information includes multiple scrambled pieces of information, there are multiple first sequences.
  • the first device may first use the first RNTI to descramble the DCI to obtain scramble code information.
  • the information of the scrambling code may be an identity (identity, ID) of the scrambling code, or may be other information that can be used to uniquely identify the scrambling code.
  • the first sequence may be a pseudo-random sequence, may also be a ZC (Zadoff Chu) sequence, or may be other sequences, which are not limited herein.
  • the information of the scrambling code may be the information of the scrambling code of the DMRS, or the information of the scrambling code of other reference signals, which is not limited herein.
  • the network device may configure the first device with a set of scrambled information.
  • the standard specifies that the ID of the DMRS scrambling code of the terminal device is a number from 0 to 65535, that is, 16-bit information. Therefore, the information of the scrambling code of each terminal equipment in the DCI needs to be notified through 16 bits. If there are 10 terminal equipment scrambling code information, the DCI includes at least 160 bits of scrambling code information, and the amount of information is too large. It is not conducive to the correct transmission of DCI.
  • the network device may configure, for the first device, a set of DMRS scrambling code information of the terminal devices within the coverage of the network device according to the access situation of the terminal device in the cell. For example, at a certain moment, a total of 64 terminal devices are connected to the network device and are waiting to be served by the network device. The IDs of their scrambling codes are ⁇ ID1, ID2, ..., ID64 ⁇ . The network device can configure this set to first device. When the network device needs to use DCI to notify the scrambling code information, the serial number of the elements in the set (64 in total, 6-bit information) can be used to replace the 16-bit scrambling code information.
  • the information of the scrambling codes in the DCI is reduced from 160 bits to 60 bits. It can be seen that the DCI load can be reduced, thereby improving the DCI transmission reliability.
  • the first device estimates the interference of the network device to the first device according to the first sequence and the first signal.
  • the first device determines the first sequence, and after receiving the first signal, can estimate the interference of the network device to the first device according to the first sequence and the first signal.
  • the first device may first perform channel estimation according to the first sequence and the first signal. For example, the first device may pass the first signal through discrete Fourier transform (discrete fourier transform, DFT) to obtain a frequency domain signal, and divide the frequency domain signal of each frequency point by the corresponding element of the first sequence to obtain a preliminary estimated channel , and finally through the Wiener filter to filter out the fast-changing components of the channel change, and the obtained result is the result obtained by the channel estimation. Under such filtering, the first device can distinguish whether the energy in the first signal comes from the first sequence of the network device or other signals.
  • DFT discrete Fourier transform
  • the first device may determine the subband to which the first signal belongs according to the estimation result. Specifically, the first device may determine the subband to which the first signal belongs according to a channel fading threshold predefined by the first device and the network device. If the estimated channel fading value is higher than the threshold value in a certain subband, the first device considers that the first signal is sent in this subband; on the contrary, if it is lower than the threshold value, the first device considers that the first signal has not been transmitted sent in this subband. Finally, the first device may determine the spatial statistical information of the interference of the network device to the first device according to the interference corresponding to the subband to which the first signal belongs.
  • the channel fading value here is generally negative.
  • the channel fading threshold is -100dB, and the channel fading value is -90dB. It can be seen that the channel fading value is greater than the channel fading threshold.
  • the channel fading value is defined as the absolute value of the above-mentioned channel fading value, the above-mentioned "above” becomes “below”, and the above-mentioned “below” becomes “above”.
  • the channel fading threshold is 100dB
  • the channel fading value is 90dB
  • the spatial statistical information of the interference may be the covariance matrix of the interference (ie, the second-order moment), the third-order moment of the interference, or other higher-order moments above the third-order.
  • the first device Since network equipment generally only schedules terminal equipment and transmits downlink data in certain subbands, for a certain reference signal, it is generally only sent in subbands. Therefore, when the first device uses the reference signal for channel estimation in the full frequency band, it can obviously detect two kinds of signals with different energies, and through a predefined threshold or other solutions, the first device can use the energy of these two kinds of signals. be differentiated. One with higher energy indicates that the network device has sent a reference signal in this subband. At this time, the first device can perform channel estimation through the reference signal and calculate the spatial statistics corresponding to the matrix; the other with lower energy indicates that The network device does not send the reference signal in the subband, and at this time, the first device does not consider that there is interference to the first device in the subband.
  • the network device may calculate the subband to which the reference signal belongs and the spatial statistical information of the corresponding interference according to the above scheme through each reference signal corresponding to the DCI. Afterwards, the network device may sum the spatial statistical information to obtain spatial statistical information of the interference of the network device to the first device.
  • the second device performs channel estimation according to the first signal.
  • the second device After receiving the first signal from the network device, the second device may perform channel estimation according to the first signal.
  • FIG. 6 is a schematic flowchart of another communication method disclosed in an embodiment of the present application. As shown in FIG. 6, the communication method may include the following steps.
  • the network device sends the PMI to the first device.
  • the network device may send the PMI to the first device.
  • the network device may configure the PMI to the first device through higher layer signaling.
  • the network device may send the PMI to the first device through DCI.
  • the first device receives the PMI from the network device.
  • the network device may configure the scrambling code information to the first device through high-layer signaling.
  • step 501 may refer to any description.
  • the network device sends the first signal to the second device.
  • step 602 may refer to step 502 .
  • the first signal may also be a channel state information reference signal (channel state information reference signal, CSI-RS).
  • CSI-RS channel state information reference signal
  • the first device estimates the interference of the network device to the first device according to the PMI and the first signal.
  • the first device After the first device receives the PMI from the network device and receives the first signal from the network device, it can estimate the interference of the network device to the first device according to the PMI and the first signal.
  • the first device may first determine the first sequence according to the scrambling code information, and then may perform channel estimation according to the first sequence and the first signal to obtain a subband channel of the subband to which the first signal belongs. Afterwards, the first device may determine the spatial statistical information of the interference of the network device to the first device according to the subband channel of the subband to which the first signal belongs and the PMI corresponding to the subband to which the first signal belongs.
  • the first device may first determine the beam direction corresponding to the first signal according to the subband channel of the subband to which the first signal belongs and the PMI corresponding to the subband to which the first signal belongs. The PMIs corresponding to the subbands to which the first signal belongs are multiplied. Afterwards, the first device may determine the spatial statistical information of the interference of the network device to the first device according to the beam direction corresponding to the first signal.
  • the detailed description can refer to step 504 .
  • the second device performs channel estimation according to the first signal.
  • steps 601 to 604 may refer to the related descriptions of steps 501 to 505 .
  • the functions performed by the network device in the above communication method may also be performed by a module (eg, a chip) in the network device
  • the function performed by the first device may also be performed by a module (eg, a chip) in the first device.
  • the functions performed by the second device may also be performed by a module (eg, a chip) in the second device.
  • FIG. 7 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • the communication device may include:
  • a receiving unit 701 configured to receive first information
  • a determining unit 702 configured to determine the first sequence according to the first information
  • the receiving unit 701 is further configured to receive a first signal, where the first sequence and the first signal are used to estimate the interference of the network device to the first device.
  • the first signal is a signal sent by the network device to the second device
  • the second device is any terminal device within the coverage of the network device
  • the first signal is used for channel estimation by the second device.
  • the first information may include scrambling code information
  • the determining unit 702 is specifically configured to determine the first sequence according to the scrambling code information.
  • the first information may further include an identifier of an antenna port that sends the first signal, and the receiving unit receiving the first signal includes:
  • the first signal is received according to the CDM group and the OCC sequence.
  • the first information is configured by high layer signaling; or the first information is indicated by DCI, the DCI is scrambled by using the first RNTI, and the first RNTI is configured by high layer signaling.
  • the communication device may further include:
  • the estimation unit 703 is configured to estimate the interference of the network device to the first device according to the first sequence and the first signal.
  • the estimation unit 703 is specifically used for:
  • the spatial statistical information of the interference of the network device to the first device is determined according to the interference of the subband to which the first signal belongs.
  • receiving unit 701 determining unit 702 , and estimating unit 703 can be obtained directly by referring to the relevant description of the first device in the method embodiment shown in FIG. 5 , which will not be repeated here.
  • FIG. 8 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • the communication device may include:
  • a sending unit 801 configured to send first information to a first device, where the first information is used to determine a first sequence
  • the sending unit 801 is further configured to send a first signal to the second device, where the first signal is used by the second device to perform channel estimation, and the first signal is also used by the first device to estimate the interference of the network device to the first device according to the first sequence , the second device is any terminal device within the coverage of the network device.
  • the first information may include scrambling code information, and the first information used to determine the first sequence includes:
  • the information of the scrambling code is used to determine the first sequence.
  • the first information may further include an identifier of an antenna port that sends the first signal, where the identifier of the antenna port is used by the first device to receive the first signal.
  • the sending unit 801 sending the first information to the first device includes:
  • the first information is sent to the first device through DCI, and the DCI is scrambled by using the first RNTI, and the first RNTI is configured by high-layer signaling.
  • FIG. 9 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • the communication device may include:
  • the receiving unit 901 is further configured to receive a first signal, where the PMI and the first signal are used to estimate the interference of the network device to the first device.
  • the first signal is a signal sent by the network device to the second device
  • the second device is any terminal device within the coverage of the network device
  • the first signal is used for channel estimation by the second device.
  • the PMI is configured by high layer signaling; or the PMI is indicated by DCI, and the DCI is scrambled by using the first RNTI, and the first RNTI is configured by high layer signaling.
  • the communication device may further include:
  • the estimation unit 902 is configured to estimate the interference of the network device to the first device according to the PMI and the first signal.
  • the estimation unit 902 is specifically used for:
  • the spatial statistical information of the interference of the network device to the first device is determined.
  • FIG. 10 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • the communication device may include:
  • a sending unit 1001, configured to send the PMI to the first device
  • the sending unit 1001 is further configured to send a first signal to the second device, where the first signal is used for channel estimation by the second device, and the first signal is also used for the first device to estimate the interference of the network device to the first device according to the PMI,
  • the second device is any terminal device within the coverage of the network device.
  • the sending unit 1001 sending the PMI to the first device includes:
  • the PMI is sent to the first device through the DCI, and the DCI is scrambled by using the first RNTI, and the first RNTI is configured by high-layer signaling.
  • FIG. 11 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • the communication device may include a processor 1101 , a memory 1102 , an input interface 1103 , an output interface 1104 and a bus 1105 .
  • the memory 1102 may exist independently, and may be connected to the processor 1101 through the bus 1105 .
  • the memory 1102 may also be integrated with the processor 1101 .
  • the bus 1105 is used to realize the connection between these components.
  • the communication apparatus may be a first device or a module (eg, a chip) in the first device, and when the computer program instructions stored in the memory 1102 are executed, the processor 1101 is configured to control the receiving unit 701 to execute For the operations performed in the above-mentioned embodiments, the processor 1101 is further configured to perform the operations performed by the determining unit 702 and the estimation unit 703 in the above-mentioned embodiments, the input interface 1103 is used to perform the operations performed by the receiving unit 701 in the above-mentioned embodiments, and the output interface 1104 is used to send information to other communication devices other than the communication device.
  • the foregoing first device or a module in the first device may also be used to execute various methods performed by the first device in the foregoing method embodiment of FIG. 5 , and details are not described herein again.
  • the communication device may be a network device or a module (eg, a chip) within the network device, and when the computer program instructions stored in the memory 1102 are executed, the processor 1101 is configured to control the sending unit 801 to perform the above implementation
  • the input interface 1103 is used to receive information from other communication devices other than the communication device
  • the output interface 1104 is used to perform the operations performed by the sending unit 801 in the above embodiments.
  • the foregoing network device or modules in the network device may also be used to execute various methods performed by the network device in the foregoing method embodiment of FIG. 5 , which will not be described again.
  • the communication apparatus may be a first device or a module (eg, a chip) in the first device, and when the computer program instructions stored in the memory 1102 are executed, the processor 1101 is configured to control the receiving unit 901 to execute For the operations performed in the above-mentioned embodiments, the processor 1101 is further configured to perform the operations performed by the estimation unit 902 in the above-mentioned embodiments, the input interface 1103 is used to perform the operations performed by the receiving unit 901 in the above-mentioned embodiments, and the output interface 1104 is used for sending Communication devices other than the communication device transmit information.
  • the foregoing first device or a module in the first device may also be used to execute various methods performed by the first device in the foregoing method embodiment of FIG. 6 , and details are not described again.
  • the communication device may be a network device or a module (eg, a chip) within the network device, and when the computer program instructions stored in the memory 1102 are executed, the processor 1101 is configured to control the sending unit 1001 to perform the above implementation
  • the input interface 1103 is used to receive information from other communication devices other than the communication device
  • the output interface 1104 is used to perform the operations performed by the sending unit 1001 in the above embodiments.
  • the foregoing network device or modules in the network device may also be used to execute various methods performed by the network device in the foregoing method embodiment of FIG. 6 , which will not be described again.
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • the communication device may include an input interface 1201 , a logic circuit 1202 and an output interface 1203 .
  • the input interface 1201 and the output interface 1203 are connected through the logic circuit 1202 .
  • the input interface 1201 is used for receiving information from other communication devices, and the output interface 1203 is used for outputting, scheduling or sending information to other communication devices.
  • the logic circuit 1202 is configured to perform operations other than the operations of the input interface 1201 and the output interface 1203, for example, to implement the functions implemented by the processor 1101 in the above-mentioned embodiment.
  • the communication device may be a network device or a module of the network device, or may be the first device or a module of the first device.
  • the more detailed description about the input interface 1201 , the logic circuit 1202 and the output interface 1203 can be obtained directly by referring to the relevant descriptions of the network device and the first device in the above method embodiments, which will not be repeated here.
  • the embodiments of the present application further disclose a computer-readable storage medium, on which instructions are stored, and when the instructions are executed, the methods in the foregoing method embodiments are executed.
  • the embodiment of the present application further discloses a computer program product including an instruction, when the instruction is executed, the method in the foregoing method embodiment is executed.
  • An embodiment of the present application further discloses a communication system, where the communication system includes a network device, a first device, and a second device.
  • the communication system includes a network device, a first device, and a second device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种通信方法、装置及计算机可读存储介质,包括:接收第一信息;根据所述第一信息确定第一序列;接收第一信号,所述第一序列和所述第一信号用于估计网络设备对第一设备的干扰。本申请实施例,可以消除干扰。

Description

一种通信方法、装置及计算机可读存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法、装置及计算机可读存储介质。
背景技术
在第一网络设备处于第二网络设备的覆盖范围内的情况下,当第一网络设备接收来自其覆盖范围内的第一终端设备的信息,而第二网络设备向其覆盖范围内的第二终端设备发送信息时,第一网络设备不仅可以接收到来自第一终端设备的信息,而且还可以接收到来自第二网络设备的信息,以致第一网络设备无法确定第一终端设备发送的信息。因此,消除一个网络设备对处于其覆盖范围内的另一个网络设备的干扰非常必要,但目前没有用于测量上述干扰的信号,以致无法消除干扰。
发明内容
本申请实施例公开了一种通信方法、装置及计算机可读存储介质,用于消除干扰。
第一方面公开一种通信方法,该通信方法可以应用于第一设备,也可以应用于第一设备中的模块(例如,芯片),下面以第一设备为例进行说明。第一设备处于网络设备的覆盖范围内。第一设备可以为网络设备,也可以为终端设备。该通信方法可以包括:接收第一信息;根据第一信息确定第一序列;接收第一信号,第一序列和第一信号用于估计网络设备对第一设备的干扰。
本申请实施例中,第一设备可以接收到来自网络设备的第一信息和第一信号,之后可以根据第一信息确定第一序列,以及可以根据第一序列和第一信号估计网络设备对第一设备的干扰的空间统计信息,以便当第一设备接收来自一个终端设备的信息,同时网络设备向一个终端设备发送信息时,第一设备可以根据上述干扰的空间统计信息,消除网络设备对第一设备的干扰,从而可以消除干扰。而上述第一信息和第一信号,可以解决现有技术中没有用于测量干扰的空间统计信息的信号的技术问题。
作为一种可能的实施方式,第一信号为网络设备向第二设备发送的信号,第二设备为处于网络设备覆盖范围内的任一终端设备,第一信号用于第二设备进行信道估计。
作为一种可能的实施方式,第一信息可以包括扰码的信息,第一设备根据第一信息确定第一序列包括:根据扰码的信息确定第一序列。
本申请实施例中,第一设备可以利用已知的第一信号的信息,即第一序列,来估计网络设备对第一设备的干扰的空间统计信息,相比于利用第一信号中非第一序列的其他未知信号来测量干扰的空间统计信息,利用已知的第一序列测量的结果更准确,从而可以提高干扰估计的准确性。
作为一种可能的实施方式,第一信息还可以包括发送第一信号的天线端口的标识,第一设备接收第一信号包括:根据天线端口的标识确定第一信号所属码分复用(code division multiple,CDM)组和第一信号使用的正交码(orthogonal cover code,OCC)序列;根据 CDM组和OCC序列接收第一信号。
本申请实施例中,第一设备接收到来自网络设备的第一信号的天线端口的标识之后,可以根据该标识确定第一信号的传输位置,以便第一设备在该传输位置接收第一信号,可以避免第一设备通过盲检来接收第一信号,从而可以降低第一设备的功耗。
作为一种可能的实施方式,第一信息可以由高层信令配置,也可以通过下行控制信息(downlink control information,DCI)指示,DCI使用第一无线网络临时标识(radio network tempory identity,RNTI)加扰,第一RNTI由高层信令配置。
本申请实施例中,由于网络设备为不同设备配置的RNTI不同,因此,第一设备可以通过第一RNTI从上述网络设备发送的若干DCI中找到自己所需的DCI,实现精确的点到点信息传输,从而可以提高DCI传输的安全性。
作为一种可能的实施方式,该通信方法还可以包括:根据第一序列和第一信号估计网络设备对第一设备的干扰。
本申请实施例中,第一设备可以根据第一序列和第一信号准确地估计出网络设备对第一设备的干扰的空间统计特性,以便可以从干扰和有用信号的混合信号中,准确地确定出有用信号,从而可以保证信息接收的准确性。
作为一种可能的实施方式,第一设备根据第一序列和第一信号估计网络设备对第一设备的干扰包括:根据第一序列和第一信号进行信道估计;根据估计的结果确定第一信号所属子带对应的干扰;根据第一信号所属子带的干扰确定网络设备对第一设备干扰的空间统计信息。
作为一种可能的实施方式,第一序列和第一信号用于估计网络设备对第一设备的干扰包括:第一序列和第一信号用于进行信道估计,根据估计的结果确定第一信号所属子带对应的干扰,根据干扰确定网络设备对第一设备干扰的空间统计信息。
第二方面公开一种通信方法,该通信方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片),下面以网络设备为例进行说明。该通信方法可以包括:向第一设备发送第一信息,第一信息用于确定第一序列,第一设备处于网络设备的覆盖范围内,第一设备可以为网络设备,也可以为终端设备;向第二设备发送第一信号,第一信号用于第二设备进行信道估计,第一信号还用于第一设备根据第一序列估计网络设备对第一设备的干扰,第二设备为处于网络设备覆盖范围内的任一终端设备。
本申请实施例中,网络设备可以向第一设备发送第一信息和第一信号,以便第一设备可以根据第一信息确定第一序列,以及可以根据第一序列和第一信号估计网络设备对第一设备的干扰的空间统计信息,当第一设备接收来自一个终端设备的信息,同时网络设备向另一个终端设备发送信息时,第一设备可以根据上述干扰的空间统计信息消除网络设备对第一设备的干扰,从而可以消除干扰。而上述第一信息和第一信号,可以解决现有技术中没有用于测量干扰的空间统计信息的信号的技术问题。
作为一种可能的实施方式,第一信息可以包括扰码的信息,第一信息用于确定第一序列包括:扰码的信息用于确定第一序列。
本申请实施例中,网络设备向第一设备发送的第一信息包括扰码的信息,以便第一信 息可以根据扰码的信息确定第一序列,进而可以利用已知的第一信号的信息,即第一序列,来估计网络设备对第一设备的干扰的空间统计信息,相比于利用第一信号中非第一序列的其他未知信号来测量干扰的空间统计信息,利用已知的第一序列测量的结果更准确,从而可以提高干扰估计的准确性。
作为一种可能的实施方式,第一信息还可以包括发送第一信号的天线端口的标识,天线端口的标识用于第一设备接收第一信号。
本申请实施例中,网络设备可以向第一设备发送第一信号的天线端口的标识,以便第一设备可以根据该标识确定第一信号的传输位置,在该传输位置接收第一信号,可以避免第一设备通过盲检来接收第一信号,从而可以降低第一设备的功耗。
作为一种可能的实施方式,网络设备向第一设备发送第一信息包括:通过高层信令向第一设备配置第一信息;或通过DCI向第一设备发送第一信息,DCI使用第一RNTI加扰,第一RNTI由高层信令配置。
本申请实施例中,由于网络设备为不同设备配置的RNTI不同,以便第一设备可以通过第一RNTI从上述网络设备发送的若干DCI中找到自己所需的DCI,实现精确的点到点信息传输,从而可以提高DCI传输的安全性。
第三方面公开一种通信方法,该通信方法可以应用于第一设备,也可以应用于第一设备中的模块(例如,芯片),下面以第一设备为例进行说明。第一设备处于网络设备的覆盖范围内。第一设备可以为网络设备,也可以为终端设备。该通信方法可以包括:接收预编码矩阵指示(precoding matrix indication,PMI);接收第一信号,PMI和第一信号用于估计网络设备对第一设备的干扰。
本申请实施例中,第一设备可以接收到来自网络设备的PMI和第一信号,之后可以根据PMI和第一信号估计网络设备对第一设备的干扰的空间统计信息,以便当第一设备接收来自一个终端设备的信息,同时网络设备向另一个终端设备发送信息时,第一设备可以根据上述干扰的空间统计信息消除网络设备对第一设备的干扰,从而可以消除干扰。而上述PMI和第一信号可以解决现有技术中没有用于测量干扰的空间统计信息的信号的技术问题。
作为一种可能的实施方式,第一信号为网络设备向第二设备发送的信号,第二设备为处于网络设备覆盖范围内的任一终端设备,第一信号用于第二设备进行信道估计。
作为一种可能的实施方式,PMI可以由高层信令配置,也可以通过DCI指示,DCI使用第一RNTI加扰,第一RNTI由高层信令配置。
本申请实施例中,由于网络设备为不同设备配置的RNTI不同,因此,第一设备可以通过第一RNTI从上述网络设备发送的若干DCI中找到自己所需的DCI,实现精确的点到点信息传输,从而可以提高DCI传输的安全性。
作为一种可能的实施方式,该通信方法还可以包括:根据PMI和第一信号估计网络设备对第一设备的干扰。
本申请实施例中,第一设备可以根据PMI和第一信号准确地估计出网络设备对第一设备的干扰的空间统计特性,以便可以从干扰和有用信号的混合信号中,准确地确定出有用信号,从而可以保证信息接收的准确性。
作为一种可能的实施方式,第一设备根据PMI和第一信号估计网络设备对第一设备的干扰包括:根据扰码的信息确定第一序列;根据第一序列和第一信号进行信道估计,得到第一信号所属子带的子带信道;根据第一信号所属子带对应的PMI以及第一信号所属子带的子带信道,确定网络设备对第一设备干扰的空间统计信息。
作为一种可能的实施方式,该通信方法还可以包括:根据扰码的信息确定第一序列,扰码的信息通过高层信令配置;PMI和第一信号用于估计网络设备对第一设备的干扰包括:通过第一信号和第一序列进行信道估计,得到第一信号所属子带的子带信道,根据第一信号所属子带的子带信道和第一信号所属子带对应的PMI,确定网络设备对第一设备干扰的空间统计信息。
在一种可能的实施方式中,上述空间统计信息为干扰的协方差矩阵。
第四方面公开一种通信方法,该通信方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片),下面以网络设备为例进行说明。该通信方法可以包括:向第一设备发送PMI,第一设备处于网络设备的覆盖范围内,第一设备可以为网络设备,也可以为终端设备;向第二设备发送第一信号,第一信号用于第二设备进行信道估计,第一信号还用于第一设备根据PMI估计网络设备对第一设备的干扰,第二设备为处于网络设备覆盖范围内的任一终端设备。
本申请实施例中,网络设备可以向第一设备发送PMI和第一信号,以便第一设备可以根据PMI和第一信号估计网络设备对第一设备的干扰的空间统计信息,当第一设备接收来自一个终端设备的信息,同时网络设备向另一个终端设备发送信息时,第一设备可以根据上述干扰的空间统计信息消除网络设备对第一设备的干扰,从而可以消除干扰。而上述PMI和第一信号,可以解决现有技术中没有用于测量干扰的空间统计信息的信号的技术问题。
作为一种可能的实施方式,网络设备向第一设备发送PMI包括:通过高层信令向第一设备配置PMI;或通过DCI向第一设备发送PMI,DCI使用第一RNTI加扰,第一RNTI由高层信令配置。
本申请实施例中,由于网络设备为不同设备配置的RNTI不同,以便第一设备可以通过第一RNTI从上述网络设备发送的若干DCI中找到自己所需的DCI,实现精确的点到点信息传输,从而可以提高DCI传输的安全性。
第五方面公开一种通信装置,该通信装置可以为第一设备或者第一设备内的模块(例如,芯片)。该通信装置可以包括:
接收单元,用于接收第一信息;
确定单元,用于根据所述第一信息确定第一序列;
所述接收单元,还用于接收第一信号,所述第一序列和所述第一信号用于估计网络设备对第一设备的干扰。
作为一种可能的实施方式,所述第一信号为所述网络设备向第二设备发送的信号,所述第二设备为处于所述网络设备覆盖范围内的任一终端设备,所述第一信号用于所述第二设备进行信道估计。
作为一种可能的实施方式,所述第一信息包括扰码的信息,所述确定单元,具体用于根据所述扰码的信息确定第一序列。
作为一种可能的实施方式,所述第一信息还包括发送所述第一信号的天线端口的标识,所述接收单元接收第一信号包括:
根据所述标识确定所述第一信号所属CDM组和所述第一信号使用的OCC序列;
根据所述CDM组和所述OCC序列接收所述第一信号。
作为一种可能的实施方式,所述第一信息由高层信令配置;
或所述第一信息通过DCI指示,所述DCI使用第一RNTI加扰,所述第一RNTI由高层信令配置。
作为一种可能的实施方式,该通信装置还可以包括:
估计单元,用于根据所述第一序列和所述第一信号估计所述网络设备对第一设备的干扰。
作为一种可能的实施方式,所述估计单元具体用于:
根据所述第一序列和所述第一信号进行信道估计;
根据估计的结果确定所述第一信号所属子带对应的干扰;
根据所述干扰确定所述网络设备对第一设备干扰的空间统计信息。
作为一种可能的实施方式,所述第一序列和所述第一信号用于估计网络设备对第一设备的干扰包括:
所述第一序列和所述第一信号用于进行信道估计,根据估计的结果确定所述第一信号所属子带对应的干扰,根据所述干扰确定网络设备对第一设备干扰的空间统计信息。
第六方面公开一种通信装置,该通信装置可以为网络设备或者网络设备内的模块(例如,芯片)。该通信装置可以包括:
发送单元,用于向第一设备发送第一信息,所述第一信息用于确定第一序列;
所述发送单元,还用于向第二设备发送第一信号,所述第一信号用于所述第二设备进行信道估计,所述第一信号还用于所述第一设备根据所述第一序列估计网络设备对所述第一设备的干扰,所述第二设备为处于所述网络设备覆盖范围内的任一终端设备。
作为一种可能的实施方式,所述第一信息包括扰码的信息,所述第一信息用于确定第一序列包括:
所述扰码的信息用于确定第一序列。
作为一种可能的实施方式,所述第一信息还包括发送所述第一信号的天线端口的标识,所述标识用于所述第一设备接收所述第一信号。
作为一种可能的实施方式,所述发送单元向第一设备发送第一信息包括:
通过高层信令向第一设备配置第一信息;或
通过DCI向第一设备发送第一信息,所述DCI使用第一RNTI加扰,所述第一RNTI由高层信令配置。
第七方面公开一种通信装置,该通信装置可以为第一设备或者第一设备内的模块(例 如,芯片)。该通信装置可以包括:
接收单元,用于接收PMI;
所述接收单元,还用于接收第一信号,所述PMI和所述第一信号用于估计网络设备对第一设备的干扰。
作为一种可能的实施方式,所述第一信号为所述网络设备向第二设备发送的信号,所述第二设备为处于所述网络设备覆盖范围内的任一终端设备,所述第一信号用于所述第二设备进行信道估计。
作为一种可能的实施方式,所述PMI由高层信令配置;
或所述PMI通过DCI指示,所述DCI使用第一RNTI加扰,所述第一RNTI由高层信令配置。
作为一种可能的实施方式,该通信装置还可以包括:
估计单元,用于根据所述PMI和所述第一信号估计所述网络设备对第一设备的干扰。
作为一种可能的实施方式,所述估计单元具体用于:
根据扰码的信息确定第一序列;
根据所述第一序列和所述第一信号进行信道估计,得到所述第一信号所属子带的子带信道;
根据所述子带信道以及所述第一信号所属子带对应的PMI,确定所述网络设备对第一设备干扰的空间统计信息。
作为一种可能的实施方式,该通信装置还可以包括:
确定单元,用于根据扰码的信息确定第一序列,扰码的信息通过高层信令配置;
所述PMI和所述第一信号用于估计网络设备对第一设备的干扰包括:
所述PMI和所述第一信号用于通过所述第一信号和所述第一序列进行信道估计,得到所述第一信号所属子带的子带信道,根据所述子带信道和所述第一信号所属子带对应的PMI,确定网络设备对第一设备干扰的空间统计信息。
第八方面公开一种通信装置,该通信装置可以为网络设备或者网络设备内的模块(例如,芯片)。该通信装置可以包括:
发送单元,用于向第一设备发送PMI;
所述发送单元,还用于向第二设备发送第一信号,所述第一信号用于所述第二设备进行信道估计,所述第一信号还用于所述第一设备根据所述PMI估计网络设备对所述第一设备的干扰,所述第二设备为处于所述网络设备覆盖范围内的任一终端设备。
作为一种可能的实施方式,所述发送单元向第一设备发送PMI包括:
通过高层信令向第一设备配置PMI;或
通过DCI向第一设备发送PMI,所述DCI使用第一RNTI加扰,所述第一RNTI由高层信令配置。
第九方面公开一种通信装置,该通信装置可以为第一设备或者第一设备内的模块(例如,芯片)。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口 用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第一方面或第一方面的任一实施方式公开的通信方法。
第十方面公开一种通信装置,该通信装置可以为网络设备或者网络设备内的模块(例如,芯片)。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第二方面或第二方面的任一实施方式公开的通信方法。
第十一方面公开一种通信装置,该通信装置可以为第一设备或者第一设备内的模块(例如,芯片)。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第三方面或第三方面的任一实施方式公开的通信方法。
第十二方面公开一种通信装置,该通信装置可以为网络设备或者网络设备内的模块(例如,芯片)。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第四方面或第四方面的任一实施方式公开的通信方法。
第十三方面公开一种通信系统,该通信系统包括第九方面的通信装置和第十方面的通信装置。
第十四方面公开一种通信系统,该通信系统包括第十一方面的通信装置和第十二方面的通信装置。
第十五方面公开一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令运行时,实现如上述各方面公开的通信方法。
第十六方面公开一种芯片,包括处理器,用于执行存储器中存储的程序,当程序被执行时,使得芯片执行上面的方法。
作为一种可能的实施方式,存储器位于芯片之外。
第十七方面公开一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被运行时,使得上述通信方法被执行。
附图说明
图1是本申请实施例公开的一种以上行业务为主的示意图;
图2是本申请实施例公开的一种网络架构示意图;
图3是本申请实施例公开的另一种网络架构示意图;
图4是本申请实施例公开的一种配置类型1和2的示意图;
图5是本申请实施例公开的一种通信方法的流程示意图;
图6是本申请实施例公开的另一种通信方法的流程示意图;
图7是本申请实施例公开的一种通信装置的结构示意图;
图8是本申请实施例公开的另一种通信装置的结构示意图;
图9是本申请实施例公开的又一种通信装置的结构示意图;
图10是本申请实施例公开的又一种通信装置的结构示意图;
图11是本申请实施例公开的又一种通信装置的结构示意图;
图12是本申请实施例公开的又一种通信装置的结构示意图。
具体实施方式
本申请实施例公开了一种通信方法、装置及计算机可读存储介质,用于消除干扰。以下分别进行详细说明。
为了更好地理解本申请实施例,下面先对本申请实施例的应用场景进行描述。在无线通信系统中,按照发送节点和接收节点种类的不同,可以将通信分为不同的类型。通常,可以将网络设备向终端设备发送信息的通信称为下行(downlink,DL)通信,可以将终端设备向网络设备发送信息的通信称为上行(uplink,UL)通信。在第五代无线通信系统,即新无线(new radio,NR)系统中,可以将时域划分为多个无线帧,每个无线帧可以包括多个时隙(slot),每个时隙可以包括多个符号(symbol),如正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。无线帧的长度可以为10ms,一个时隙可以包括14个符号。在子载波间隔(subcarrier space,SCS)为15kHz的情况下,一个时隙的时域长度可以为1ms;在SCS为30kHz的情况下,一个时隙的时域长度可以为0.5ms。一个时隙中符号的传输方向可以为DL、UL或者灵活(flexible)。一个时隙中符号的传输方向的组合可以理解为这个时隙的格式(format)。例如,目前NR的TS38.211标准中,规定了若干时隙格式,时隙格式可以如表1所示:
Figure PCTCN2020132543-appb-000001
表1时隙格式
表1中的D表示DL,U表示UL,X表示灵活。具有格式0的时隙可以被称为下行时隙,具有格式1的时隙可以被称为上行时隙。以格式27为例进行说明,格式27表示一个时隙的前3个符号用于DL(或DL传输),最后3个符号用于UL(或UL传输),中间的8个符号用于灵活(或灵活传输)。
NR中支持时分双工(time duplexing division,TDD)。网络设备可以通过将上行时隙和下行时隙交替配置在同一载波中来实现TDD。在时域上,上行时隙与下行时隙之间的比例,可以称为TDD上下行配比。例如,8:2是现网中一个非常常见的配比方案,即每10个时隙中包括8个连续的下行时隙,后面接着2个连续的上行时隙。之所以下行时隙数量远大于上行时隙,是因为一般蜂窝小区中主要以下行业务为主,但也不排除个别以上行业务为主的小区存在。例如,工厂微小区。
在工厂微小区中,每一台机器都有一个高清摄像头对其进行录像监控,判断其是否正常运转。这使得工厂微小区中,业务的主要方向是上行,即摄像头向网络设备传输实时录制的视频。为满足上行业务需求,微小区的上下行配比以上行时隙为主。
请参阅图1,图1是本申请实施例公开的一种以上行业务为主的示意图。如图1所示,包括宏小区和微小区两个小区。宏小区的基站可以称为宏站,微小区的基站可以称为微站。宏站使用常规的下多上少的上下行配比,如图1中室外的DSUDD,S为特殊(special)帧,可以理解为DL帧。微站使用上多下少的上下行配比,如图1中室内的USUUU。这就导致了同一时隙中,对于宏站来说是下行,但对于微站来说是上行,可以称这样的时隙为宏微异配比时隙,简称异配比时隙。宏站在异配比时隙向自己服务的宏用户设备(user equipment,UE)发送下行数据,而这一下行数据也恰好会被正要接收微UE发送的上行数据的微站所接收到,造成邻区干扰,即跨链路干扰(cross link interference,CLI)。
宏站可以通过令不同发射天线上的信号拥有不同的加权,来实现波束赋形(beamforming),此时所有天线上的权值组成的向量或矩阵,称为预编码。预编码可以使得发射信号具有一定的指向性。例如,基站所有天线均使用“1”作为对信号的加权,即所有天线的发送信号均相同,则位于“天线阵列的法线方向”的接收端到所有天线的距离均相同。因此,所有天线的发送信号到该接收端的相位均相同,达到通向叠加,信号能量增强的效果,此时,可以称这一特质为发射信号指向该方向,即发射信号指向天线阵列的法线方向。由于在NR中,宏站通常装备有多达192根天线,导致宏站的波束指向性极强,即宏站发出的信号会有一个或多个方向,发射能量都集中在这些方向上。如果微站可以估计这些方向,则可以使用先进接收机得到相比没有这些方向信息时更好的接收解调性能。可以通过估计干扰信道的协方差矩阵来估计方向。因此,如何消除一个接入网设备对处于其覆盖范围内的另一个接入网设备的干扰已成为一个亟待解决的技术问题。
为了更好地理解本申请实施例公开的一种通信方法、装置及计算机可读存储介质,下面先对本申请实施例使用的网络架构进行描述。请参阅图2,图2是本申请实施例公开的一种网络架构示意图。如图2所示,该网络架构至少可以包括网络设备101、网络设备102、终端设备103和终端设备104。网络设备101的覆盖范围,即服务范围为图2中最大的椭圆形所 在区域。网络设备102、终端设备103和终端设备104均处于网络设备101的覆盖范围内。网络设备101可以通过物理下行控制信道(physical downlink control channel,PDCCH)和物理下行共享信道(physical downlink share channel,PDSCH)向终端设备103发送信息。终端设备103可以通过物理上行控制信道(physical uplink control channel,PUCCH)和物理上行共享信道(physical uplink share channel,PUSCH)向网络设备101发送信息。网络设备102的覆盖范围,即服务范围为图2中最小的椭圆形所在区域。终端设备104处于网络设备102的覆盖范围内。网络设备102可以通过PDCCH和PDSCH向终端设备104发送信息。终端设备104可以通过PUCCH和PUSCH向网络设备102发送信息。网络设备101可以通过PDCCH向网络设备102发送信息。例如,当网络设备101向终端设备103发送信号,同时终端设备104向网络设备102发送信号时,由于网络设备102处于网络设备101的覆盖范围内,因此,网络设备102不仅可以接收到来自终端设备104的信号,而且还可以接收到网络设备101向终端设备103发送的信号。
请参阅图3,图3是本申请实施例公开的另一种网络架构示意图。如图3所示,该网络架构至少可以包括网络设备101、终端设备102-104。网络设备101的覆盖范围,即服务范围为图2中的椭圆形所在区域。终端设备102-104均处于网络设备101的覆盖范围内。网络设备101可以通过PDCCH和PDSCH向终端设备102-104发送信息。终端设备102-104可以通过PUCCH和PUSCH向网络设备101发送信息。终端设备102-104之间可以通过侧行链路(sidelink)进行通信。例如,当网络设备101向终端设备102发送信号,同时终端设备104向终端设备103发送信号时,由于终端设备103处于网络设备101的覆盖范围内,因此,终端设备103不仅可以接收到来自终端设备104的信号,而且还可以接收到网络设备101向终端设备102发送的信号。
终端设备,又可以称之为UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。终端设备可以为手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端,可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)或其他可以接入网络的设备。图1中终端设备以UE示出,仅作为示例,并不对终端设备进行限定。UE可以通过建立UE-(R)AN设备-UPF-DN之间的会话,即协议数据单元(protocol data unit,PDU)会话,来访问DN。
网络设备是为终端设备提供无线接入的设备,主要负责空口侧的无线资源管理、服务 质量(quality of service,QoS)流管理、数据压缩和加密等功能。网络设备可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。网络设备还可以包括无线上网(wireless fidelity,WiFi)接入节点(access point,AP)。网络设备还可以包括全球微波互联接入(worldwide interoperability for microwave access,WiMax)基站(base station,BS)。
需要说明的是,图2和图3所示网络架构中的网络设备或终端设备只是进行示意性说明,并不对网络架构进行限定。例如,通信系统可以包括更多或更少的网络设备或终端设备。
需要说明的是,图2和图3所示的网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。网络设备与终端设备之间可以直接进行通信,也可以通过其他设备或网元进行通信。
为了更好地理解本申请实施例公开的一种通信方法和装置,下面对先对一些概念、用户进行介绍。
为了保证PDCCH上承载信息的安全性,网络设备可以对PDCCH使用RNTI进行加扰。而网络设备可以通过高层信令向不同设备配置不同的RNTI,也可以通过高层信令向同一设备的不同业务配置不同的RNTI。因此,网络设备发送的PDCCH只能被配置了正确RNTI的设备成功接收,从而可以保证网络设备将某些信息发送给固定的设备。
网络设备发送的PDSCH可以包括下行数据以及测量信道所需的参考信号,如解调参考信号(demodulation reference signal,DMRS)。PDSCH支持非常灵活的DMRS位置配置。根据第一个DMRS在PDSCH中所占符号的位置可以将DMRS分为类型(Type)A和B,也可以称为DMRS采用的资源映射TypeA/B。假设第一个DMRS在PDSCH中所占符号的位置为l 0。对于类型A,l 0可以由高层参数dmrs-TypeA-Position配置。对于类型B,l 0=0,即第一个DMRS符号位于调度的PDSCH的第一个OFDM符号。类型A和B可以如表2所示:
Figure PCTCN2020132543-appb-000002
Figure PCTCN2020132543-appb-000003
表2 DMRS的时域位置表
按DMRS的时域粒度可以将DMRS分为单符号和双符号。单符号DMRS是指时域上的DMRS符号是不连续的。例如,第3、5、8和11四个符号上有DMRS。双符号DMRS在时域上成对出现。例如,占用3、4、9、10四个符号上有DMRS。
按DMRS使用的正交码(orthogonal cover code,OCC)类型(或称为码分复用(code division multiple,CDM)组(group)类型),可以将DMRS分为配置(configuration)类型1和2。在配置类型1中,单符号最大支持4端口,双符号最大支持8端口。在配置类型2中,单符号最大支持6端口,双符号最大支持12端口。请参阅图4,图4是本申请实施例公开的一种配置类型1和2的示意图。如图4所示,不同填充方格代表不同CDMgroup。配置类型1包括两组CDMgroup。配置类型2包括三组CDMgroup。每个CDMgroup均包括4个天线端口。因此,配置类型1支持8个天线端口,配置类型2支持12个天线端口。
基于上述网络架构,请参阅图5,图5是本申请实施例公开的一种通信方法的流程示意图。如图5所示,该通信方法可以包括以下步骤。
501、网络设备向第一设备发送第一信息。
网络设备可以向第一设备发送第一信息。在一种情况下,网络设备可以通过高层信令向第一设备配置第一信息。在另一种情况下,网络设备可以通过DCI向第一设备发送第一信息。网络设备通过DCI向第一设备发送第一信息,可以理解为通过DCI向第一设备指示第一信息。上述指示可以为显式地指示,也可以为隐式地指示,在此不作限定。
相应地,第一设备接收来自网络设备的第一信息。
第一信息可以包括扰码的信息。
网络设备可以为第一设备配置第一RNTI,即为第一设备配置网络设备与第一设备之间专用的RNTI。网络设备可以通过高层信令向第一设备配置第一RNTI,也可以通过预定义的方式为第一设备配置第一RNTI,还可以通过其它方式向第一设备配置第一RNTI,在此不作限定。
当网络设备需要向第一设备发送DCI时,网络设备可以使用第一RNTI对DCI进行加扰。DCI可以承载在PDCCH上进行传输。
当第一设备为网络设备时,第一设备可以通过高层信令或预定义的方式确定PDCCH的聚合等级。由于网络设备架设高度一般较高,网络设备与网络设备之间的信道一般存在直射路径(即中间无遮挡物),这使得网络设备之间的信道一般具有较强的信道质量,且随着时间的推移变化不大。因此,可以为在该信道上传输的PDCCH规定较小的聚合等级,不仅可以降低传输资源(对应信道质量好),而且还可以降低接收端的盲检测次数(对应信道质量变化不大),从而可以降低接收端的复杂度。
502、网络设备向第二设备发送第一信号。
当有业务需求时,网络设备可以向第二设备发送第一信号。相应地,第二设备可以接 收来自网络设备的第一信号。此外,由于第一设备处于网络设备的覆盖范围内,因此,第一设备也可以接收来自网络设备的第一信号。
在网络设备通过DCI向第一设备发送第一信息的情况下,第一信息还可以包括发送第一信号的天线端口的标识,即包括网络设备用于发送第一信号的天线端口的标识。
在网络设备通过高层信令向第一设备配置第一信息的情况下,网络设备还需要通过DCI向第一设备发送上述天线端口的标识。
在一种情况下,网络设备可以通过高层信令向第一设备配置第一信号的参数。例如,当第一信号为DMRS时,第一信号的参数可以包括资源映射类型(类型A/B)、DMRS的符号位置、DMRS的连续符号位置(单/双符号)、配置类型(类型1/2)等。
在另一种情况下,网络设备可以通过DCI向第一设备发送第一信号的参数,即网络设备向第一设备发送DCI,DCI可以包括第一信号的参数。
第一设备接收到来自网络设备的发送第一信号的天线端口的标识之后,可以先根据发送第一信号的天线端口的标识确定第一信号所属CDM组和第一信号使用的OCC序列,之后可以根据CDM组和OCC序列接收第一信号。
第一设备接收到来自网络设备的第一信号的参数之后,可以根据第一信号的参数先确定第一信号的传输位置,之后可以在传输位置接收第一信号。
举例说明,第一设备接收到来自网络设备的第一信号的参数和发送第一信号的天线端口的标识之后,第一设备可以先根据第一信号的参数确定是图4中上面的图还是下面的图,之后可以根据发送第一信号的天线端口的标识确定在上述确定的图中的具体的位置,即第一信号所属CDM组和第一信号使用的OCC序列。图4中的1000等即天线端口的标识。
503、第一设备根据第一信息确定第一序列。
第一设备接收到来自网络设备的第一信息之后,可以根据第一信息确定第一序列。在第一信息包括扰码的信息的情况下,第一设备可以根据扰码的信息确定第一序列。扰码的信息可以包括一个扰码的信息,也可以包括多个扰码的信息。在扰码的信息包括一个扰码的信息的情况下,第一序列为一个;在扰码的信息为多个扰码的信息的情况下,第一序列为多个。
当网络设备通过DCI向第一设备发送第一信息时,第一设备可以先使用第一RNTI对DCI进行解扰,得到扰码的信息。扰码的信息可以为扰码的身份标识(identity,ID),也可以为其它可以用于唯一标识扰码的信息。第一序列可以为伪随机序列,也可以为ZC(Zadoff Chu)序列,还可以为其它序列,在此不加限定。
扰码的信息可以为DMRS的扰码的信息,也可以为其它参考信号的扰码的信息,在此不加限定。
为了降低扰码的信息的指示比特,网络设备可以向第一设备配置有扰码的信息的集合。例如,标准中规定终端设备的DMRS扰码的ID为0~65535中的一个数字,即16bit信息。因此,DCI中的每一个终端设备的扰码的信息需要通过16个bit进行通知,如果有10个终端设备的扰码的信息,则DCI至少包括160bit的扰码的信息,过大的信息量不利于DCI的正确传输。因此,网络设备可以根据本小区终端设备的接入情况,为第一设备配置网络设备覆盖范围内终端设备的DMRS扰码的信息的集合。例如,在某一时刻,共64个终端设备接入了网络 设备,等待被网络设备服务,它们的扰码的ID分别为{ID1,ID2,…,ID64},网络设备可以将这个集合配置给第一设备。当网络设备需要用DCI通知扰码的信息时,可以用集合内元素的序号(共64个,6bit信息),代替16bit的扰码的信息。以DCI中包含10个终端设备的扰码的信息为例进行说明,DCI中的扰码的信息从160bit降至60bit。可见,可以降低DCI负载,从而可以提高DCI传输可靠性。
504、第一设备根据第一序列和第一信号估计网络设备对第一设备的干扰。
第一设备确定出第一序列,以及接收到第一信号之后,可以根据第一序列和第一信号估计网络设备对第一设备的干扰。第一设备可以先根据第一序列和第一信号进行信道估计。例如,第一设备可以将第一信号通过离散傅里叶变换(discrete fourier transform,DFT),得到频域信号,将各频点的频域信号除以第一序列的对应元素,得到初步估计信道,最后再通过维纳滤波,滤除信道变化的快变化分量,得到的结果即为信道估计得到的结果。在这样的滤波下,第一设备可以区分第一信号中的能量是来自于网络设备的第一序列还是其他信号。之后第一设备可以根据估计的结果确定第一信号所属子带,具体来说,第一设备可以根据其与网络设备预定义的信道衰落门限,判断第一信号的所属子带。若估计的信道衰落值在某个子带内高于门限值,则第一设备认为第一信号在此子带中发送;相反,若低于门限值,则第一设备认为第一信号未在此子带中发送。最后第一设备可以根据第一信号所属子带对应的干扰确定网络设备对第一设备干扰的空间统计信息。此处的信道衰落值一般是负值。例如,信道衰落门限是-100dB,信道衰落值是-90dB,可见,信道衰落值大于信道衰落门限。在信道衰落值定义为上述信道衰落值的绝对值的情况下,上述“高于”变成“低于”,上述“低于”变成“高于”。例如,信道衰落门限是100dB,信道衰落值是90dB,可见,信道衰落值小于信道衰落门限。干扰的空间统计信息,可以为干扰的协方差矩阵(即二阶矩),也可以为干扰的三阶矩或其它三阶以上的高阶矩。
由于网络设备一般仅在某些子带中调度终端设备并传输下行数据,因此,对于某个参考信号来说,一般也只是在子带发送。因此,当第一设备在全频带利用该参考信号进行信道估计时,可以明显检测到能量不同的两种信号,通过一个预定义的门限或其他方案,第一设备可以根据能量将这两种信号加以区分。一种能量较高,表示网络设备在该子带发送了参考信号,此时,第一设备可以通过参考信号进行信道估计,计算出该矩阵对应的空间统计信息;另一种能量较低,表示网络设备未在该子带发送参考信号,此时,第一设备不认为该子带上有对第一设备的干扰。
网络设备可以通过DCI对应的每一个参考信号,依照上述方案计算出参考信号所属的子带,以及对应干扰的空间统计信息。之后网络设备可以将这些空间统计信息求和,得到网络设备对第一设备干扰的空间统计信息。
505、第二设备根据第一信号进行信道估计。
第二设备接收到来自网络设备的第一信号之后,可以根据第一信号进行信道估计。
基于上述网络架构,请参阅图6,图6是本申请实施例公开的另一种通信方法的流程示意图。如图6所示,该通信方法可以包括以下步骤。
601、网络设备向第一设备发送PMI。
网络设备可以向第一设备发送PMI。在一种情况下,网络设备可以通过高层信令向第一设备配置PMI。在另一种情况下,网络设备可以通过DCI向第一设备发送PMI。详细描述可以参考步骤501中的相关描述。
相应地,第一设备接收来自网络设备的PMI。
网络设备可以通过高层信令向第一设备配置扰码的信息。
其中,其它描述可以参考步骤501。
602、网络设备向第二设备发送第一信号。
其中,步骤602的详细描述可以参考步骤502。此外,第一信号还可以为信道状态信息参考信号(channel state information reference signal,CSI-RS)。
603、第一设备根据PMI和第一信号估计网络设备对第一设备的干扰。
第一设备接收到来自网络设备的PMI,以及接收到来自网络设备的第一信号之后,可以根据PMI和第一信号估计网络设备对第一设备的干扰。第一设备可以先根据扰码的信息确定第一序列,之后可以根据第一序列和第一信号进行信道估计,得到第一信号所属子带的子带信道。之后第一设备可以根据第一信号所属子带的子带信道以及第一信号所属子带对应的PMI确定网络设备对第一设备干扰的空间统计信息。第一设备可以先根据第一信号所属子带的子带信道以及第一信号所属子带对应的PMI确定第一信号对应的波束方向,例如,可以将第一信号所属子带的子带信道与第一信号所属子带对应的PMI相乘。之后第一设备可以根据第一信号对应的波束方向确定网络设备对第一设备干扰的空间统计信息。详细描述可以参考步骤504。
604、第二设备根据第一信号进行信道估计。
其中,步骤601-步骤604详细的描述可以参考步骤501-步骤505中相关的描述。
应理解,上述通信方法中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行,由第一设备执行的功能也可以由第一设备中的模块(例如,芯片)来执行,由第二设备执行的功能也可以由第二设备中的模块(例如,芯片)来执行。
基于上述网络架构,请参阅图7,图7是本申请实施例公开的一种通信装置的结构示意图。如图7所示,该通信装置可以包括:
接收单元701,用于接收第一信息;
确定单元702,用于根据第一信息确定第一序列;
接收单元701,还用于接收第一信号,第一序列和第一信号用于估计网络设备对第一设备的干扰。
在一个实施例中,第一信号为网络设备向第二设备发送的信号,第二设备为处于网络设备覆盖范围内的任一终端设备,第一信号用于第二设备进行信道估计。
在一个实施例中,第一信息可以包括扰码的信息,确定单元702,具体用于根据扰码的信息确定第一序列。
在一个实施例中,第一信息还可以包括发送第一信号的天线端口的标识,接收单元接收第一信号包括:
根据天线端口的标识确定第一信号所属CDM组和第一信号使用的OCC序列;
根据CDM组和OCC序列接收第一信号。
在一个实施例中,第一信息由高层信令配置;或第一信息通过DCI指示,DCI使用第一RNTI加扰,第一RNTI由高层信令配置。
在一个实施例中,该通信装置还可以包括:
估计单元703,用于根据第一序列和第一信号估计网络设备对第一设备的干扰。
在一个实施例中,估计单元703具体用于:
根据第一序列和第一信号进行信道估计;
根据估计的结果确定第一信号所属子带对应的干扰;
根据第一信号所属子带的干扰确定网络设备对第一设备干扰的空间统计信息。
有关上述接收单元701、确定单元702和估计单元703更详细的描述可以直接参考上述图5所示的方法实施例中第一设备的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图8,图8是本申请实施例公开的另一种通信装置的结构示意图。如图8所示,该通信装置可以包括:
发送单元801,用于向第一设备发送第一信息,第一信息用于确定第一序列;
发送单元801,还用于向第二设备发送第一信号,第一信号用于第二设备进行信道估计,第一信号还用于第一设备根据第一序列估计网络设备对第一设备的干扰,第二设备为处于网络设备覆盖范围内的任一终端设备。
在一个实施例中,第一信息可以包括扰码的信息,第一信息用于确定第一序列包括:
扰码的信息用于确定第一序列。
在一个实施例中,第一信息还可以包括发送第一信号的天线端口的标识,天线端口的标识用于第一设备接收第一信号。
在一个实施例中,发送单元801向第一设备发送第一信息包括:
通过高层信令向第一设备配置第一信息;或
通过DCI向第一设备发送第一信息,DCI使用第一RNTI加扰,第一RNTI由高层信令配置。
有关上述发送单元801更详细的描述可以直接参考上述图5所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图9,图9是本申请实施例公开的又一种通信装置的结构示意图。如图9所示,该通信装置可以包括:
接收单元901,用于接收PMI;
接收单元901,还用于接收第一信号,PMI和第一信号用于估计网络设备对第一设备的干扰。
在一个实施例中,第一信号为网络设备向第二设备发送的信号,第二设备为处于网络设备覆盖范围内的任一终端设备,第一信号用于第二设备进行信道估计。
在一个实施例中,PMI由高层信令配置;或PMI通过DCI指示,DCI使用第一RNTI加扰, 第一RNTI由高层信令配置。
在一个实施例中,该通信装置还可以包括:
估计单元902,用于根据PMI和第一信号估计网络设备对第一设备的干扰。
在一个实施例中,估计单元902具体用于:
根据扰码的信息确定第一序列;
根据第一序列和第一信号进行信道估计,得到第一信号所属子带的子带信道;
根据第一信号所属子带对应的PMI以及第一信号所属子带的子带信道,确定网络设备对第一设备干扰的空间统计信息。
有关上述接收单元901和估计单元902更详细的描述可以直接参考上述图6所示的方法实施例中第一设备的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图10,图10是本申请实施例公开的又一种通信装置的结构示意图。如图10所示,该通信装置可以包括:
发送单元1001,用于向第一设备发送PMI;
发送单元1001,还用于向第二设备发送第一信号,第一信号用于第二设备进行信道估计,第一信号还用于第一设备根据PMI估计网络设备对第一设备的干扰,第二设备为处于网络设备覆盖范围内的任一终端设备。
在一个实施例中,发送单元1001向第一设备发送PMI包括:
通过高层信令向第一设备配置PMI;或
通过DCI向第一设备发送PMI,DCI使用第一RNTI加扰,第一RNTI由高层信令配置。
有关上述发送单元1001更详细的描述可以直接参考上述图6所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图11,图11是本申请实施例公开的又一种通信装置的结构示意图。如图11所示,该通信装置可以包括处理器1101、存储器1102、输入接口1103、输出接口1104和总线1105。存储器1102可以是独立存在的,可以通过总线1105与处理器1101相连接。存储器1102也可以和处理器1101集成在一起。其中,总线1105用于实现这些组件之间的连接。
在一个实施例中,该通信装置可以为第一设备或者第一设备内的模块(例如,芯片),存储器1102中存储的计算机程序指令被执行时,该处理器1101用于控制接收单元701执行上述实施例中执行的操作,该处理器1101还用于执行确定单元702和估计单元703上述实施例中执行的操作,输入接口1103用于执行上述实施例中接收单元701执行的操作,输出接口1104用于向除该通信装置之外的其它通信装置发送信息。上述第一设备或者第一设备内的模块还可以用于执行上述图5方法实施例中第一设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置可以为网络设备或者网络设备内的模块(例如,芯片),存储器1102中存储的计算机程序指令被执行时,该处理器1101用于控制发送单元801执行上述实施例中执行的操作,输入接口1103用于接收来自除该通信装置之外的其它通信装置的信息,输出接口1104用于执行上述实施例中发送单元801执行的操作。上述网络设备或者网 络设备内的模块还可以用于执行上述图5方法实施例中网络设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置可以为第一设备或者第一设备内的模块(例如,芯片),存储器1102中存储的计算机程序指令被执行时,该处理器1101用于控制接收单元901执行上述实施例中执行的操作,该处理器1101还用于执行估计单元902上述实施例中执行的操作,输入接口1103用于执行上述实施例中接收单元901执行的操作,输出接口1104用于向除该通信装置之外的其它通信装置发送信息。上述第一设备或者第一设备内的模块还可以用于执行上述图6方法实施例中第一设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置可以为网络设备或者网络设备内的模块(例如,芯片),存储器1102中存储的计算机程序指令被执行时,该处理器1101用于控制发送单元1001执行上述实施例中执行的操作,输入接口1103用于接收来自除该通信装置之外的其它通信装置的信息,输出接口1104用于执行上述实施例中发送单元1001执行的操作。上述网络设备或者网络设备内的模块还可以用于执行上述图6方法实施例中网络设备执行的各种方法,不再赘述。
基于上述网络架构,请参阅图12,图12是本申请实施例公开的又一种通信装置的结构示意图。如图12所示,该通信装置可以包括输入接口1201、逻辑电路1202和输出接口1203。输入接口1201与输出接口1203通过逻辑电路1202相连接。其中,输入接口1201用于接收来自其它通信装置的信息,输出接口1203用于向其它通信装置输出、调度或者发送信息。逻辑电路1202用于执行除输入接口1201与输出接口1203的操作之外的操作,例如实现上述实施例中处理器1101实现的功能。其中,该通信装置可以为网络设备或者网络设备的模块,也可以为第一设备或者第一设备的模块。其中,有关输入接口1201、逻辑电路1202和输出接口1203更详细的描述可以直接参考上述方法实施例中网络设备和第一设备的相关描述直接得到,这里不加赘述。
本申请实施例还公开一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
本申请实施例还公开一种包括指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
本申请实施例还公开一种通信系统,该通信系统包括网络设备、第一设备和第二设备,具体描述可以参考图5-图6所示的通信方法。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    接收第一信息;
    根据所述第一信息确定第一序列;
    接收第一信号,所述第一序列和所述第一信号用于估计网络设备对第一设备的干扰。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号为所述网络设备向第二设备发送的信号,所述第二设备为处于所述网络设备覆盖范围内的任一终端设备,所述第一信号用于所述第二设备进行信道估计。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括扰码的信息,所述根据所述第一信息确定第一序列包括:
    根据所述扰码的信息确定第一序列。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信息还包括发送所述第一信号的天线端口的标识,所述接收第一信号包括:
    根据所述标识确定所述第一信号所属码分复用CDM组和所述第一信号使用的正交码OCC序列;
    根据所述CDM组和所述OCC序列接收所述第一信号。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一信息由高层信令配置;或
    所述第一信息通过下行控制信息DCI指示,所述DCI使用第一无线网络临时标识RNTI加扰,所述第一RNTI由高层信令配置。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一序列和所述第一信号用于估计网络设备对第一设备的干扰包括:
    所述第一序列和所述第一信号用于进行信道估计,根据估计的结果确定所述第一信号所属子带对应的干扰,根据所述干扰确定网络设备对第一设备干扰的空间统计信息。
  7. 一种通信方法,其特征在于,包括:
    向第一设备发送第一信息,所述第一信息用于确定第一序列;
    向第二设备发送第一信号,所述第一信号用于所述第二设备进行信道估计,所述第一信号还用于所述第一设备根据所述第一序列估计网络设备对所述第一设备的干扰,所述第二设备为处于所述网络设备覆盖范围内的任一终端设备。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信息包括扰码的信息,所述第一信息用于确定第一序列包括:
    所述扰码的信息用于确定第一序列。
  9. 根据权利要求8所述的方法,其特征在于,所述第一信息还包括发送所述第一信号的天线端口的标识,所述标识用于所述第一设备接收所述第一信号。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述向第一设备发送第一信息包括:
    通过高层信令向第一设备配置第一信息;或
    通过下行控制信息DCI向第一设备发送第一信息,所述DCI使用第一无线网络临时标识RNTI加扰,所述第一RNTI由高层信令配置。
  11. 一种通信方法,其特征在于,包括:
    接收预编码矩阵指示PMI;
    接收第一信号,所述PMI和所述第一信号用于估计网络设备对第一设备的干扰。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    根据扰码的信息确定第一序列;
    所述PMI和所述第一信号用于估计网络设备对第一设备的干扰包括:
    所述PMI和所述第一信号用于通过所述第一序列和所述第一信号进行信道估计,得到所述第一信号所属子带的子带信道,根据所述子带信道以及所述第一信号所属子带对应的PMI确定网络设备对第一设备干扰的空间统计信息。
  13. 一种通信方法,其特征在于,包括:
    向第一设备发送预编码矩阵指示PMI;
    向第二设备发送第一信号,所述第一信号用于所述第二设备进行信道估计,所述第一信号还用于所述第一设备根据所述PMI估计网络设备对所述第一设备的干扰,所述第二设备为处于所述网络设备覆盖范围内的任一终端设备。
  14. 一种通信装置,其特征在于,包括:
    接收单元,用于接收第一信息;
    确定单元,用于根据所述第一信息确定第一序列;
    所述接收单元,还用于接收第一信号,所述第一序列和所述第一信号用于估计网络设备对第一设备的干扰。
  15. 根据权利要求14所述的装置,其特征在于,所述第一信号为所述网络设备向第二设备发送的信号,所述第二设备为处于所述网络设备覆盖范围内的任一终端设备,所述第一信号用于所述第二设备进行信道估计。
  16. 根据权利要求14或15所述的装置,其特征在于,所述第一信息包括扰码的信息,所述确定单元,具体用于根据所述扰码的信息确定第一序列。
  17. 根据权利要求16所述的装置,其特征在于,所述第一信息还包括发送所述第一信号的天线端口的标识,所述接收单元接收第一信号包括:
    根据所述标识确定所述第一信号所属码分复用CDM组和所述第一信号使用的正交码OCC序列;
    根据所述CDM组和所述OCC序列接收所述第一信号。
  18. 根据权利要求14-17任一项所述的装置,其特征在于,所述第一信息由高层信令配置;或
    所述第一信息通过下行控制信息DCI指示,所述DCI使用第一无线网络临时标识RNTI 加扰,所述第一RNTI由高层信令配置。
  19. 根据权利要求14-18任一项所述的装置,其特征在于,所述第一序列和所述第一信号用于估计网络设备对第一设备的干扰包括:
    所述第一序列和所述第一信号用于进行信道估计,根据估计的结果确定所述第一信号所属子带对应的干扰,根据所述干扰确定网络设备对第一设备干扰的空间统计信息。
  20. 一种通信装置,其特征在于,包括:
    发送单元,用于向第一设备发送第一信息,所述第一信息用于确定第一序列;
    所述发送单元,还用于向第二设备发送第一信号,所述第一信号用于所述第二设备进行信道估计,所述第一信号还用于所述第一设备根据所述第一序列估计网络设备对所述第一设备的干扰,所述第二设备为处于所述网络设备覆盖范围内的任一终端设备。
  21. 根据权利要求20所述的装置,其特征在于,所述第一信息包括扰码的信息,所述第一信息用于确定第一序列包括:
    所述扰码的信息用于确定第一序列。
  22. 根据权利要求21所述的装置,其特征在于,所述第一信息还包括发送所述第一信号的天线端口的标识,所述标识用于所述第一设备接收所述第一信号。
  23. 根据权利要求20-22任一项所述的装置,其特征在于,所述发送单元向第一设备发送第一信息包括:
    通过高层信令向第一设备配置第一信息;或
    通过下行控制信息DCI向第一设备发送第一信息,所述DCI使用第一无线网络临时标识RNTI加扰,所述第一RNTI由高层信令配置。
  24. 一种通信装置,其特征在于,包括:
    接收单元,用于接收预编码矩阵指示PMI;
    所述接收单元,还用于接收第一信号,所述PMI和所述第一信号用于估计网络设备对第一设备的干扰。
  25. 根据权利要求24所述的装置,其特征在于,所述装置还包括:
    确定单元,用于根据扰码的信息确定第一序列;
    所述PMI和所述第一信号用于估计网络设备对第一设备的干扰包括:
    所述PMI和所述第一信号用于通过所述第一序列和所述第一信号进行信道估计,得到所述第一信号所属子带的子带信道,根据所述子带信道以及所述第一信号所属子带对应的PMI确定网络设备对第一设备干扰的空间统计信息。
  26. 一种通信装置,其特征在于,包括:
    发送单元,用于向第一设备发送预编码矩阵指示PMI;
    所述发送单元,还用于向第二设备发送第一信号,所述第一信号用于所述第二设备进行信道估计,所述第一信号还用于所述第一设备根据所述PMI估计网络设备对所述第一设备的干扰,所述第二设备为处于所述网络设备覆盖范围内的任一终端设备。
  27. 一种通信装置,其特征在于,包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序实现如权利要求1-13任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1-13任一项所述的方法。
  29. 一种芯片,其特征在于,包括处理器,用于执行存储器中存储的程序,当所述程序被执行时,使得所述芯片执行如权利要求1-13任一项所述的方法。
PCT/CN2020/132543 2020-11-28 2020-11-28 一种通信方法、装置及计算机可读存储介质 WO2022110087A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080107340.8A CN116636292A (zh) 2020-11-28 2020-11-28 一种通信方法、装置及计算机可读存储介质
PCT/CN2020/132543 WO2022110087A1 (zh) 2020-11-28 2020-11-28 一种通信方法、装置及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132543 WO2022110087A1 (zh) 2020-11-28 2020-11-28 一种通信方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022110087A1 true WO2022110087A1 (zh) 2022-06-02

Family

ID=81753851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132543 WO2022110087A1 (zh) 2020-11-28 2020-11-28 一种通信方法、装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116636292A (zh)
WO (1) WO2022110087A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122714A (zh) * 2013-02-21 2015-12-02 黑莓有限公司 用于lte/lte-a中的高级接收机的干扰测量方法
CN110768762A (zh) * 2018-07-27 2020-02-07 华为技术有限公司 接收和发送数据的方法以及通信装置
CN110945793A (zh) * 2017-06-16 2020-03-31 瑞典爱立信有限公司 用于无线通信系统中的参考信号的信道状态信息
WO2020065370A1 (en) * 2018-09-24 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Uplink and downlink reciprocity management of interference
CN111641571A (zh) * 2020-05-13 2020-09-08 Oppo广东移动通信有限公司 噪声估计方法及装置、终端、计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122714A (zh) * 2013-02-21 2015-12-02 黑莓有限公司 用于lte/lte-a中的高级接收机的干扰测量方法
CN110945793A (zh) * 2017-06-16 2020-03-31 瑞典爱立信有限公司 用于无线通信系统中的参考信号的信道状态信息
CN110768762A (zh) * 2018-07-27 2020-02-07 华为技术有限公司 接收和发送数据的方法以及通信装置
WO2020065370A1 (en) * 2018-09-24 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Uplink and downlink reciprocity management of interference
CN111641571A (zh) * 2020-05-13 2020-09-08 Oppo广东移动通信有限公司 噪声估计方法及装置、终端、计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Conclusion on the need for CSI-RS and DMRS PAPR reduction", 3GPP DRAFT; R1-1811184 CONCLUSION ON THE NEED FOR DMRS AND CSI-RS PAPR REDUCTION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051518585 *

Also Published As

Publication number Publication date
CN116636292A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US10313073B2 (en) Transmission of reference signals
WO2018141272A1 (zh) 终端、网络设备和通信方法
CN108366375B (zh) 一种共享下行频谱的方法和装置
US20150327247A1 (en) Channel quality indication for fallback transmission mode over new carrier type
US10756861B2 (en) Communication method, and related device and system
WO2018202188A1 (zh) 一种通信方法、系统及相关设备
US20230239111A1 (en) Method for sending demodulation reference signal, method for receiving demodulation reference signal, and communication apparatus
CN107302421B (zh) 一种功率配置方法及设备
CN114828252A (zh) 多传输点数据传输的方法及装置
WO2020057375A1 (zh) 一种资源配置方法及通信装置
WO2020024891A1 (zh) 参考信号的处理方法和装置
WO2022033273A1 (zh) 一种通信方法及装置
CN110635882B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021129229A1 (zh) 一种通信方法和装置
US20210075578A1 (en) Communication Method, Terminal Device, and Network Device
US20210067261A1 (en) Method and apparatus for network assisted interference cancellation and suppression in wireless cellular communication system
EP3937410A1 (en) Method and device for communication processing
WO2023030032A1 (zh) 信道状态信息的获取方法和装置
US20180146436A1 (en) Signal sending method, signal demodulation method, device, and system
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
WO2022110087A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2022099611A1 (zh) 一种通信方法及装置
WO2023024967A1 (zh) 资源配置方法及装置
WO2022262620A1 (zh) 一种指示解调参考信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107340.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962977

Country of ref document: EP

Kind code of ref document: A1