WO2022252875A1 - 功率放大器、信号处理方法、发射机和基站设备 - Google Patents

功率放大器、信号处理方法、发射机和基站设备 Download PDF

Info

Publication number
WO2022252875A1
WO2022252875A1 PCT/CN2022/088864 CN2022088864W WO2022252875A1 WO 2022252875 A1 WO2022252875 A1 WO 2022252875A1 CN 2022088864 W CN2022088864 W CN 2022088864W WO 2022252875 A1 WO2022252875 A1 WO 2022252875A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
auxiliary
signal
main
output
Prior art date
Application number
PCT/CN2022/088864
Other languages
English (en)
French (fr)
Inventor
刘地凯
施嵘
李朋军
宋林东
卫东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022252875A1 publication Critical patent/WO2022252875A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers

Definitions

  • the embodiments of the present application relate to but are not limited to the technical field of communications, and in particular, relate to a power amplifier, a signal processing method, a transmitter, and base station equipment.
  • Embodiments of the present application provide a power amplifier, a signal processing method, a transmitter, and base station equipment.
  • the embodiment of the present application provides a power amplifier, including: a main channel power amplification module, configured to amplify the power of the main channel input signal to obtain the main channel power amplification signal; the main channel output matching module, and the main channel output matching module
  • the main road power amplification module is connected, and the main road output matching module is configured to adjust the main road power amplification signal to obtain the main road output signal;
  • the auxiliary road power amplification module is configured to perform power amplification on the auxiliary road input signal , to obtain the auxiliary road power amplification signal;
  • the auxiliary road output matching module is connected to the auxiliary road power amplification module, and the auxiliary road output matching module is set to adjust the auxiliary road power amplification signal to obtain the auxiliary road output signal;
  • the combined output matching module connected to the combination output terminals of the main output matching module and the auxiliary output matching module, the combination output matching module is configured to adjust the output signal of the combination output to obtain a target output signal;
  • the embodiment of the present application also provides a signal processing method, which is applied to a power amplifier, and the power amplifier includes a main channel power amplification module, a main channel output matching module, an auxiliary channel power amplification module, an auxiliary channel output matching module and a combining An output matching module, the input end of the main output matching module is connected to the main power amplification module, the input end of the auxiliary output matching module is connected to the auxiliary power amplification module, and the combined output matching module
  • the input terminal is connected to the combination output end of the main road output matching module and the auxiliary road output matching module;
  • the signal processing method includes: performing power amplification on the main road input signal through the main road power amplification module to obtain the main road power amplifier module.
  • the output signal of the combined output end includes the main output signal or a combined signal including the main output signal and the auxiliary output signal.
  • an embodiment of the present application further provides a transmitter, including the power amplifier described in the first aspect above or executing the signal processing method described in the second aspect above.
  • the embodiment of the present application further provides a base station device, including the transmitter as described in the above third aspect.
  • Fig. 1 is the circuit topological diagram of traditional power amplifier
  • Fig. 2 is a circuit topology diagram of a power amplifier provided by an embodiment of the present application
  • Fig. 3 is a flowchart of a signal processing method provided by an embodiment of the present application.
  • FIG. 4 is a flow chart of distributing input signals to obtain main channel input signals and auxiliary channel input signals provided by an embodiment of the present application;
  • FIG. 5 is a flow chart of phase compensation processing for main channel input signals provided by an embodiment of the present application.
  • Fig. 6 is a flow chart of performing phase compensation processing on an auxiliary channel input signal provided by an embodiment of the present application.
  • FIG. 1 is a circuit topology diagram of a traditional power amplifier.
  • the power amplifier in FIG. 1 includes a power distribution module 110, a main channel quarter-wavelength transmission line 120, a main channel power amplification module 130, a main channel output matching module 140, an auxiliary channel power amplification module 150, an auxiliary channel output matching module 160, and an auxiliary channel output matching module 160.
  • the quarter-wavelength transmission line 170 and the combined quarter-wavelength transmission line 190 specifically, the input end of the power distribution module 110 is used to receive the input signal, and the power distribution module 110 is provided with two output ends, one of which is sequentially passed through
  • the main channel quarter-wavelength transmission line 120, the main channel power amplification module 130 and the main channel output matching module 140 are connected to the junction point 180, and the other output end passes through the auxiliary channel power amplification module 150, the auxiliary channel output matching module 160 and the auxiliary channel four in turn.
  • the quarter-wavelength transmission line 170 is connected to the combining point 180 , and then the combining point 180 is connected to the load through the combining quarter-wavelength transmission line 190 .
  • the output impedance of the output terminal of the combined quarter-wavelength transmission line 190 should also be 50 ⁇ .
  • the input impedance of the input end of the combined quarter-wavelength transmission line 190 needs to be about 25 ⁇ .
  • the main power amplifier module 130 When the power backs off by -6dB, that is, when the input signal of the power distribution module 110 is a small signal, the main power amplifier module 130 is turned on, the auxiliary power amplifier module 150 is turned off, and the output impedance of the main power amplifier module 130 is Zmod ⁇ . After the impedance conversion processing of the main road output matching module 140, the output impedance of the main road output matching module 140 is 25 ⁇ . Since the auxiliary road power amplifier module 150 is closed, the load impedance of the main road is not pulled by the active load of the auxiliary road.
  • the combined road The output impedance of the point 180 is still 25 ⁇ , that is, the input impedance of the input end of the combined quarter-wavelength transmission line 190 can be about 25 ⁇ , thereby ensuring the high efficiency output of the power amplifier. Therefore, when the power backs off by -6dB, the impedance conversion process from the load end of the main road power amplifier to the main road power amplifier module 130 is: from 50 ⁇ to 25 ⁇ after passing through the combined quarter-wavelength transmission line 190, and then through the main road output
  • the matching module 140 is transformed into Zmod ⁇ ; in addition, the auxiliary circuit power amplification module 150 is turned off.
  • both the main power amplification module 130 and the auxiliary power amplification module 150 are turned on, and the output impedance of the main power amplification module 130 is Zmax ⁇ .
  • the output impedance of the main road output matching module 140 is 50 ⁇ , and at the same time, the output impedance of the auxiliary road power amplification module 150 is Zmax ⁇ , after the impedance transformation processing of the auxiliary road output matching module 160, the auxiliary road output matching
  • the output impedance of module 160 is 50 ⁇ , because the impedance of auxiliary road quarter wavelength transmission line 170 is 50 ⁇ , therefore, according to the impedance conversion characteristic of auxiliary road quarter wavelength transmission line 170, the output impedance of auxiliary road quarter wavelength transmission line 170 is 50 ⁇ , since the output impedances of the main circuit and the auxiliary circuit are both 50 ⁇ , the output impedance of the combining point 180 after the parallel connection remains at 25 ⁇ , thereby ensuring the high efficiency output of the power amplifier.
  • the impedance conversion process from the load end of the main road power amplifier to the main road power amplifier module 130 is: from 50 ⁇ to 25 ⁇ after passing through the combined quarter-wavelength transmission line 190, due to the output impedance of the main road It will be pulled by the load of the auxiliary road, then it will be transformed into 50 ⁇ after passing through the junction point 180, and then transformed into Zmax ⁇ through the main road output matching module 140; in addition, the impedance transformation process from the load end of the auxiliary road power amplifier to the auxiliary road power amplifier module 150 is: From 50 ⁇ to 25 ⁇ after passing through the combined quarter-wavelength transmission line 190, since the output impedance of the auxiliary path will be pulled by the load of the main path, it will be converted to 50 ⁇ after passing through the combining point 180, and then through the quarter-wavelength of the auxiliary path
  • the transmission line 170 is transformed into 50 ⁇ , and then transformed into Zmax ⁇ through the auxiliary output matching module 160 .
  • the power amplifier in FIG. 1 has been widely used in wireless communication base stations because of its function of improving power amplifier efficiency.
  • the adoption of Massive MIMO technology puts forward higher requirements for the design of power amplifiers in terms of high efficiency and miniaturization, and the power amplifier in Figure 1 can no longer meet the above requirements.
  • the embodiment of the present application provides a power amplifier, a signal processing method, a transmitter, and a base station device, wherein the power amplifier includes but is not limited to a main channel power amplification module, a main channel output matching module, and an auxiliary channel power amplification module , the auxiliary road output matching module and the combined output matching module, specifically, the input end of the main road output matching module is connected with the main road power amplification module, the input end of the auxiliary road output matching module is connected with the auxiliary road power amplification module, and the combined output matching module The input end is connected to the combination output end of the main road output matching module and the auxiliary road output matching module; wherein, the main road power amplifier module is set to amplify the power of the main road input signal to obtain the main road power amplification signal, and the main road output matching The module is set to adjust the power amplification signal of the main road to obtain the output signal of the main road; the power amplification module of the auxiliary road is set to amplify
  • the power amplifier of the embodiment of the present application compared with the existing power amplifier in Fig.
  • the miniaturization of the amplifier can also reduce the line loss and improve the efficiency of the power amplifier; secondly, the main power amplifier module of the main road and the auxiliary power amplifier module of the auxiliary road can share the combined output matching module of the combined circuit, thus contributing to Miniaturization of power amplifiers.
  • FIG. 2 is a circuit topology diagram of a power amplifier provided by an embodiment of the present application.
  • the power amplifier in the embodiment of the present application includes, but is not limited to, a main channel power amplification module 230 , a main channel output matching module 240 , an auxiliary channel power amplification module 250 , an auxiliary channel output matching module 260 and a combined output matching module 280 .
  • the main road power amplification module 230 is configured to amplify the power of the main road input signal to obtain the main road power amplification signal;
  • the main road output matching module 240 is connected to the main road power amplification module 230, and the main road output matching module 240 is It is set to adjust the power amplification signal of the main road to obtain the output signal of the main road;
  • the power amplification module 250 of the auxiliary road is set to amplify the power of the input signal of the auxiliary road to obtain the power amplification signal of the auxiliary road;
  • the output matching module 260 of the auxiliary road and the power amplification module 250 of the auxiliary road connected, the auxiliary road output matching module 260 is set to adjust the power amplification signal of the auxiliary road to obtain the auxiliary road output signal;
  • the combined output matching module 280 is connected to the combined output end 270 of the main road output matching module 240 and the auxiliary road output matching module 260,
  • the combination output matching module 280 is configured to adjust the
  • the input impedance required by the input terminal of the combined output matching module 280 is denoted as Re(Zmod) ⁇ .
  • the working stages of the power amplifier in FIG. 2 may include but not limited to the following working stages :
  • Small signal stage in some examples, when the power backs off by -6dB, that is, when both the main channel input signal and the auxiliary channel input signal are small signals, since the power of the main channel input signal is greater than the power of the main channel power amplifier module 230, the main channel is turned on Power threshold, the main channel power amplification module 230 is turned on; at the same time, because the power of the auxiliary channel input signal is less than the auxiliary channel start power threshold of the auxiliary channel power amplification module 250, the auxiliary channel power amplification module 250 is turned off.
  • the output impedance of the main road power amplifying module 230 is Zmod ⁇
  • the output impedance of the main road output matching module 240 is Re(Zmod) ⁇ . 250 is closed, so the output impedance of the main circuit is not pulled by the active load of the auxiliary circuit, therefore, the output impedance of the combined output terminal 270 is Re(Zmod) ⁇ , that is, the input impedance of the input terminal of the combined output matching module 280 can be made It is the required Re(Zmod) ⁇ , so that the high efficiency output of the power amplifier can be guaranteed.
  • the impedance conversion process from the load end of the main power amplifier to the main power amplifier module 230 is: from 50 ⁇ to the combined output matching module 280 and then converted to is Re(Zmod) ⁇ , and then transformed into Zmod ⁇ through the main output matching module 240; in addition, the auxiliary power amplification module 250 is turned off.
  • the main channel power amplifying module 230 is turned on; at the same time, because the power of the auxiliary channel input signal is greater than the auxiliary channel enabling power threshold of the auxiliary channel power amplifying module 250, the auxiliary channel power amplifying module 250 is also turned on.
  • the output impedance of the main road power amplifying module 230 is Zmax ⁇
  • the output impedance of the main road output matching module 240 is 2Re(Zmod) ⁇
  • the auxiliary road power amplifying module 250 The output impedance is Zmax ⁇ .
  • the output impedance of the auxiliary output matching module 260 is 2Re(Zmod) ⁇ .
  • the impedance conversion process from the load end of the main power amplifier to the main power amplifier module 230 is: from 50 ⁇ to Re(Zmod) ⁇ , since the output impedance of the main road will be pulled by the load of the auxiliary road, it will be transformed into 2Re(Zmod) ⁇ after passing through the combined output terminal 270, and then transformed into Zmax ⁇ through the main road output matching module 240;
  • the impedance transformation process from the load end of the auxiliary circuit power amplifier to the auxiliary circuit power amplifier module 250 is: from 50 ⁇ to Re(Zmod) ⁇ after passing through the combined output matching module 280, since the output impedance of the auxiliary circuit will be pulled by the load of the main circuit, then after The combiner output 270 will be transformed into 2Re(Zmod) ⁇ , and then transformed into Zmax ⁇ by the auxiliary output matching module 260 .
  • the transition stage from the small signal stage to the large signal stage based on the above analysis of the working process of the small signal stage and the working process of the large signal stage, when the transition from the small signal stage to the large signal stage, the output of the main power amplifier module 230
  • the impedance will gradually transition from Zmod ⁇ to Zmax ⁇ , and the output impedance of the main output matching module 240 will gradually transition from Re(Zmod) ⁇ to 2Re(Zmod) ⁇ ; in addition, the output impedance of the auxiliary output matching module 260 will gradually transition from infinity to 2Re(Zmod) ⁇ .
  • the transition stage from the large-signal stage to the small-signal stage based on the analysis of the working process of the above-mentioned small-signal stage and the working process of the large-signal stage, when the transition from the large-signal stage to the small-signal stage, the output of the main power amplification module 230
  • the impedance will gradually transition from Zmax ⁇ to Zmod ⁇ , and the output impedance of the main output matching module 240 will gradually transition from 2Re(Zmod) ⁇ to Re(Zmod) ⁇ ; in addition, the output impedance of the auxiliary output matching module 260 will change from 2Re(Zmod) ⁇ gradually transitions to infinity.
  • the power amplifier in the embodiment of the present application can improve power amplifier efficiency, and can be suitable for application in wireless communication base stations.
  • the power amplifier of the embodiment of the present application removes the auxiliary quarter wavelength transmission line and the combining quarter wavelength transmission line, and
  • the combination output matching module 280 is added to take into account the matching and impedance transformation of the main path, and the auxiliary path output matching module 260 is used in the auxiliary path to replace the traditional auxiliary path output matching module and the quarter-wavelength transmission line of the auxiliary path, which can not only realize the miniaturization of the power amplifier , and can also reduce the line loss to improve the efficiency of the power amplifier;
  • the main road power amplifier module 230 of the main road and the auxiliary road power amplifier module 250 of the auxiliary road can share the combined output matching module 280 of the combined circuit, thereby contributing to the power Amplifier miniaturization.
  • the main output matching module 240 in the power amplifier of the embodiment of the present application includes but is not limited to a short-circuit stub 241 and a microstrip line 242, specifically, one end of the short-circuit stub 241 and the microstrip line 242 The other end of the short-circuit stub 241 is connected to the ground, and the other end of the microstrip line 242 is connected to the combined output end 270 .
  • the main output matching module 240 in the power amplifier of the embodiment of the present application may further include a capacitor 243, specifically, one end of the capacitor 243 is connected to the combined output end 270, and the other end of the capacitor 243 is connected to the ground.
  • the combiner output terminal 270 can be placed closer to The position of the output of the power amplifier module 230 of the main channel makes the output impedance of the main channel lower, which can further reduce the traction effect caused by the access of the auxiliary channel, and is helpful to improve the broadband performance of the power amplifier.
  • the short-circuit stub 241 at the output root of the main power amplification module 230, the capacitor 243, and the microstrip line 242 between the two jointly provide the current Im(Zmod), and at the same time suppress the second harmonic of the fundamental wave so that Improve power amplifier efficiency.
  • the power amplifier of the embodiment of the present application also includes but is not limited to a power distribution module 210.
  • the power distribution module 210 is provided with a main channel power output terminal and an auxiliary channel power output terminal.
  • the main channel power output terminal terminal is connected to the input end of the main road power amplification module 230
  • the auxiliary road power output end is connected to the input end of the auxiliary road power amplification module 250
  • the power distribution module 210 is set to perform power distribution on the input signal to obtain the main road input signal and the auxiliary road input signal. Signal.
  • the power distribution module 210 is used to combine the main channel power amplification module 230 and the auxiliary channel power amplification module 250, which can perform power distribution on the input signal, obtain the main channel input signal and the auxiliary channel input signal, and pass the main channel input signal through
  • the main channel power output terminal sends to the main channel power amplification module 230
  • the auxiliary channel input signal is sent to the auxiliary channel power amplification module 250 through the auxiliary channel power output terminal.
  • the power amplifier of the embodiment of the present application also includes but is not limited to a main channel phase compensation module 220 or an auxiliary channel phase compensation module.
  • the main channel phase compensation module 220 is connected to the main channel power amplification module 230
  • the main channel phase compensation module 220 is configured to perform phase compensation processing on the main channel input signal.
  • the auxiliary channel phase compensation module is connected to the input end of the auxiliary channel power amplification module 250, and the auxiliary channel phase compensation module is configured to perform phase compensation processing on the auxiliary channel input signal.
  • an embodiment of the present application further provides a signal processing method, as shown in FIG. 3 , which is a flow chart of the signal processing method provided in an embodiment of the present application.
  • the signal processing method of the embodiment of the present application is applied to a power amplifier.
  • the power amplifier includes a main channel power amplification module, a main channel output matching module, an auxiliary channel power amplification module, an auxiliary channel output matching module, and a combined output matching module.
  • the main channel output matching module The input end of the module is connected to the main road power amplifier module, the input end of the auxiliary road output matching module is connected to the auxiliary road power amplifier module, the input end of the combination output matching module is connected to the combination output end of the main road output matching module and the auxiliary road output matching module Connection; the above signal processing method includes but not limited to step S100, step S200, step S300, step S400 and step S500.
  • Step S100 amplify the power of the main channel input signal through the main channel power amplification module to obtain the main channel power amplified signal.
  • Step S200 adjust the power amplified signal of the main channel through the output matching module of the main channel to obtain the output signal of the main channel.
  • step S300 the auxiliary channel input signal is amplified by the auxiliary channel power amplification module to obtain an auxiliary channel power amplified signal.
  • Step S400 adjust the auxiliary channel power amplified signal through the auxiliary channel output matching module to obtain the auxiliary channel output signal.
  • Step S500 adjust the output signal of the combined output terminal through the combined output matching module to obtain the target output signal; wherein, the output signal of the combined output terminal includes the main channel output signal or the combination of the main channel output signal and the auxiliary channel output signal Signal.
  • the power amplifier of the embodiment of the present application removes the auxiliary quarter wavelength transmission line and the combining quarter wavelength transmission line, and
  • the combination output matching module is added to take into account the matching and impedance transformation of the main channel, and the auxiliary channel output matching module is used in the auxiliary channel to replace the traditional auxiliary channel output matching module and the auxiliary channel quarter-wavelength transmission line, which can not only realize the miniaturization of the power amplifier, but also It can also reduce the line loss and improve the efficiency of the power amplifier;
  • the main power amplifier module of the main road and the auxiliary power amplifier module of the auxiliary road can share the combined output matching module of the combined circuit, thereby contributing to the miniaturization of the power amplifier.
  • FIG. 4 is a flow chart of distributing input signals to obtain main channel input signals and auxiliary channel input signals provided by an embodiment of the present application.
  • the power amplifier also includes a power distribution module
  • the power distribution module is provided with a main channel power output terminal and an auxiliary channel power output terminal
  • the main channel power output terminal is connected to the input terminal of the main channel power amplifier module
  • the auxiliary channel power output terminal is connected to the auxiliary channel power amplifier input of the module.
  • the signal processing method in the embodiment of the present application further includes but not limited to step S600.
  • Step S600 performing power distribution on the input signal through the power distribution module to obtain the main channel input signal and the auxiliary channel input signal.
  • FIG. 5 is a flow chart of performing phase compensation processing on the main channel input signal provided by an embodiment of the present application.
  • the power amplifier also includes a main channel phase compensation module
  • the main channel phase compensation module is connected to the input terminal of the main channel power amplification module; then, before the above step S100, the signal processing method of the embodiment of the present application also includes but is not limited to the steps S700.
  • Step S700 perform phase compensation processing on the main channel input signal through the main channel phase compensation module, so that the main channel power amplification module receives the main channel input signal that has undergone phase compensation processing.
  • FIG. 6 is a flow chart of performing phase compensation processing on an auxiliary channel input signal provided by an embodiment of the present application.
  • the power amplifier also includes an auxiliary channel phase compensation module
  • the auxiliary channel phase compensation module is connected to the input end of the auxiliary channel power amplification module; then, before the above step S300, the signal processing method of the embodiment of the present application also includes but is not limited to step S800.
  • Step S800 Perform phase compensation processing on the auxiliary channel input signal through the auxiliary channel phase compensation module, so that the auxiliary channel power amplification module receives the auxiliary channel input signal that has undergone phase compensation processing.
  • the embodiment of the present application also provides a transmitter, including but not limited to the power amplifier in FIG. 6 signal processing methods.
  • the embodiment of the present application also provides a base station device, including but not limited to the above transmitter.
  • the specific implementation and technical effects of the base station equipment in the embodiments of the present application can refer to the specific implementation and technical effects of the above-mentioned power amplifier, or the specific implementation and technical effects of the above-mentioned signal processing method, or the above-mentioned transmission The specific implementation and technical effects of the machine.
  • the embodiment of the present application includes: the power amplifier of the embodiment of the present application includes a main channel power amplification module, a main channel output matching module, an auxiliary channel power amplification module, an auxiliary channel output matching module and a combined output matching module; wherein, the main channel power amplification module is set Perform power amplification on the main channel input signal in pairs to obtain the main channel power amplified signal, the main channel output matching module is set to adjust the above-mentioned main channel power amplified signal to obtain the main channel output signal, and the auxiliary channel power amplification module is set to pair
  • the auxiliary channel input signal is amplified to obtain the auxiliary channel power amplified signal, the auxiliary channel output matching module is configured to adjust the above-mentioned auxiliary channel power amplified signal to obtain the auxiliary channel output signal, and the combined output matching module is configured to match the main channel output matching module and The output signal of the combining output terminal of the auxiliary channel output matching module is adjusted to obtain the target output signal.
  • the power amplifier of the embodiment of the present application removes the quarter-wavelength transmission line of the auxiliary circuit and the quarter-wavelength transmission line of the combined circuit, which can not only realize the The miniaturization of the power amplifier can also reduce the line loss and improve the efficiency of the power amplifier; secondly, the main power amplifier module of the main road and the auxiliary power amplifier module of the auxiliary road can share the combined output matching module of the combined circuit, thus contributing to the power Amplifier miniaturization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种功率放大器、信号处理方法、发射机和基站设备,包括:主路功率放大模块(130、230)被设置成对主路输入信号进行功率放大以得到主路功率放大信号;主路输出匹配模块(140、240)被设置成对主路功率放大信号进行调整以得到主路输出信号;辅路功率放大模块(150、250)被设置成对辅路输入信号进行功率放大以得到辅路功率放大信号;辅路输出匹配模块(160、260)被设置成对辅路功率放大信号进行调整以得到辅路输出信号;合路输出匹配模块(280)被设置成对合路输出端(270)的输出信号进行调整以得到目标输出信号。

Description

功率放大器、信号处理方法、发射机和基站设备
相关申请的交叉引用
本申请基于申请号为202110614650.5、申请日为2021年6月2日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及一种功率放大器、信号处理方法、发射机和基站设备。
背景技术
目前,功率放大器已经广泛应用于无线通信基站中,但是,随着通信技术演变到5G时代,采用了Massive MIMO(Massive Multiple-Input Multiple-Output,大规模多输入多输出)技术,从而对功率放大器在高效率和小型化等方面的设计提出了更高的要求,而传统的功率放大器已经无法满足上述要求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种功率放大器、信号处理方法、发射机和基站设备。
第一方面,本申请实施例提供了一种功率放大器,包括:主路功率放大模块,被设置成对主路输入信号进行功率放大,得到主路功率放大信号;主路输出匹配模块,与所述主路功率放大模块连接,所述主路输出匹配模块被设置成对所述主路功率放大信号进行调整,得到主路输出信号;辅路功率放大模块,被设置成对辅路输入信号进行功率放大,得到辅路功率放大信号;辅路输出匹配模块,与所述辅路功率放大模块连接,所述辅路输出匹配模块被设置成对所述辅路功率放大信号进行调整,得到辅路输出信号;合路输出匹配模块,与所述主路输出匹配模块和所述辅路输出匹配模块的合路输出端连接,所述合路输出匹配模块被设置成对所述合路输出端的输出信号进行调整,得到目标输出信号;其中,所述合路输出端的输出信号包括所述主路输出信号或者包括所述主路输出信号和所述辅路输出信号的合路信号。
第二方面,本申请实施例还提供了一种信号处理方法,应用于功率放大器,所述功率放大器包括主路功率放大模块、主路输出匹配模块、辅路功率放大模块、辅路输出匹配模块和合路输出匹配模块,所述主路输出匹配模块的输入端与所述主路功率放大模块连接,所述辅路输出匹配模块的输入端与所述辅路功率放大模块连接,所述合路输出匹配模块的输入端与所述主路输出匹配模块和所述辅路输出匹配模块的合路输出端连接;所述信号处理方法包括:通过所述主路功率放大模块对主路输入信号进行功率放大,得到主路功率放大信号;通过所述主路输出匹配模块对所述主路功率放大信号进行调整,得到主路输出信号;通过所述辅路功率放大模块对辅路输入信号进行功率放大,得到辅路功率放大信号;通过所述辅路输出匹配模块对所述辅路功率放大信号进行调整,得到辅路输出信号;通过所述合路输出匹配模块 对所述合路输出端的输出信号进行调整,得到目标输出信号;其中,所述合路输出端的输出信号包括所述主路输出信号或者包括所述主路输出信号和所述辅路输出信号的合路信号。
第三方面,本申请实施例还提供了一种发射机,包括如上述第一方面所述的功率放大器或者执行如上述第二方面所述的信号处理方法。
第四方面,本申请实施例还提供了一种基站设备,包括如上述第三方面所述的发射机。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是传统的功率放大器的电路拓扑图;
图2是本申请一个实施例提供的功率放大器的电路拓扑图;
图3是本申请一个实施例提供的信号处理方法的流程图;
图4是本申请一个实施例提供的对输入信号进行分配以得到主路输入信号和辅路输入信号的流程图;
图5是本申请一个实施例提供的对主路输入信号进行相位补偿处理的流程图;
图6是本申请一个实施例提供的对辅路输入信号进行相位补偿处理的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在相关的技术方案中,如图1所示,图1是传统的功率放大器的电路拓扑图。图1中的功率放大器包括有功率分配模块110、主路四分之一波长传输线120、主路功率放大模块130、主路输出匹配模块140、辅路功率放大模块150、辅路输出匹配模块160、辅路四分之一波长传输线170和合路四分之一波长传输线190,具体地,功率分配模块110的输入端用于接收输入信号,功率分配模块110设置有两个输出端,其中一个输出端依次通过主路四分之一波长传输线120、主路功率放大模块130和主路输出匹配模块140连接至合路点180,另一个输出端依次通过辅路功率放大模块150、辅路输出匹配模块160和辅路四分之一波长传输线170连接至合路点180,接着合路点180再通过合路四分之一波长传输线190连接至负载。
在一些示例中,若负载的阻抗为50Ω,那么为了保证功率放大器的高输出效率,需要使得合路四分之一波长传输线190的输出端的输出阻抗也同样为50Ω,当所使用的合路四分之一波长传输线190的阻抗为35Ω时,那么根据合路四分之一波长传输线190的阻抗变换特性, 需要使得合路四分之一波长传输线190的输入端的输入阻抗约为25Ω。
当功率回退-6dB时,即功率分配模块110的输入信号为小信号时,主路功率放大模块130开启,辅路功率放大模块150关闭,主路功率放大模块130的输出阻抗为ZmodΩ,经过主路输出匹配模块140的阻抗变换处理后,主路输出匹配模块140的输出阻抗为25Ω,由于辅路功率放大模块150关闭,所以主路的负载阻抗没有受到辅路的有源负载牵引,因此,合路点180的输出阻抗仍为25Ω,即可以使得合路四分之一波长传输线190的输入端的输入阻抗约为25Ω,从而可以保证功率放大器的高效率输出。因此,当功率回退-6dB时,主路功放负载端到主路功率放大模块130的阻抗变换过程是:由50Ω经过合路四分之一波长传输线190之后变换为25Ω,再经过主路输出匹配模块140变换为ZmodΩ;另外,辅路功率放大模块150关断。
当功率回退0dB时,即功率分配模块110的输入信号为大信号时,主路功率放大模块130和辅路功率放大模块150均开启,主路功率放大模块130的输出阻抗为ZmaxΩ,经过主路输出匹配模块140的阻抗变换处理后,主路输出匹配模块140的输出阻抗为50Ω,同时,辅路功率放大模块150的输出阻抗为ZmaxΩ,经过辅路输出匹配模块160的阻抗变换处理后,辅路输出匹配模块160的输出阻抗为50Ω,由于辅路四分之一波长传输线170的阻抗为50Ω,因此,根据辅路四分之一波长传输线170的阻抗变换特性,辅路四分之一波长传输线170的输出阻抗为50Ω,由于主路和辅路的输出阻抗均为50Ω,因此,并联之后的合路点180的输出阻抗仍保持为25Ω,从而也可以保证功率放大器的高效率输出。因此,当功率回退0dB时,主路功放负载端到主路功率放大模块130的阻抗变换过程是:由50Ω经过合路四分之一波长传输线190之后变换为25Ω,由于主路的输出阻抗会受到辅路的负载牵引,那么经过合路点180之后会变换为50Ω,接着再经过主路输出匹配模块140变换为ZmaxΩ;另外,辅路功放负载端到辅路功率放大模块150的阻抗变换过程是:由50Ω经过合路四分之一波长传输线190之后变换为25Ω,由于辅路的输出阻抗会受到主路的负载牵引,那么经过合路点180之后会变换为50Ω,再经过辅路四分之一波长传输线170变换为50Ω,接着再经过辅路输出匹配模块160变换为ZmaxΩ。
基于上述图1中的功率放大器,由于其具有上述改善功放效率的作用,因此,图1中的功率放大器已经广泛应用于无线通信基站中。但是,随着通信技术演变到5G时代,采用了Massive MIMO技术,从而对功放在高效率和小型化等方面的设计提出了更高的要求,而图1中的功率放大器已经无法满足上述要求。
基于上述情况,本申请实施例提供了一种功率放大器、信号处理方法、发射机和基站设备,其中,功率放大器包括但不限于有主路功率放大模块、主路输出匹配模块、辅路功率放大模块、辅路输出匹配模块和合路输出匹配模块,具体地,主路输出匹配模块的输入端与主路功率放大模块连接,辅路输出匹配模块的输入端与辅路功率放大模块连接,合路输出匹配模块的输入端与主路输出匹配模块和辅路输出匹配模块的合路输出端连接;其中,主路功率放大模块被设置成对主路输入信号进行功率放大以得到主路功率放大信号,主路输出匹配模块被设置成对主路功率放大信号进行调整以得到主路输出信号;辅路功率放大模块被设置成对辅路输入信号进行功率放大以得到辅路功率放大信号;辅路输出匹配模块被设置成对辅路功率放大信号进行调整以得到辅路输出信号;合路输出匹配模块被设置成对合路输出端的输出信号进行调整以得到目标输出信号,其中,合路输出端的输出信号包括主路输出信号或者 包括主路输出信号和辅路输出信号的合路信号。根据本申请实施例的技术方案,本申请实施例的功率放大器相对于图1中现有的功率放大器,去掉了辅路四分之一波长传输线以及合路四分之一波长传输线,不但能够实现功率放大器的小型化,而且还能够降低线损从而提升功率放大器的效率;其次,主路的主路功率放大模块和辅路的辅路功率放大模块能够共用合路的合路输出匹配模块,从而有助于功率放大器的小型化。
下面结合附图,对本申请实施例作进一步阐述。
如图2所示,图2是本申请一个实施例提供的功率放大器的电路拓扑图。本申请实施例的功率放大器包括但不限于有主路功率放大模块230、主路输出匹配模块240、辅路功率放大模块250、辅路输出匹配模块260和合路输出匹配模块280。
具体地,主路功率放大模块230被设置成对主路输入信号进行功率放大,得到主路功率放大信号;主路输出匹配模块240与主路功率放大模块230连接,主路输出匹配模块240被设置成对主路功率放大信号进行调整,得到主路输出信号;辅路功率放大模块250被设置成对辅路输入信号进行功率放大,得到辅路功率放大信号;辅路输出匹配模块260与辅路功率放大模块250连接,辅路输出匹配模块260被设置成对辅路功率放大信号进行调整,得到辅路输出信号;合路输出匹配模块280与主路输出匹配模块240和辅路输出匹配模块260的合路输出端270连接,合路输出匹配模块280被设置成对合路输出端270的输出信号进行调整,得到目标输出信号;其中,合路输出端270的输出信号包括主路输出信号或者包括主路输出信号和辅路输出信号的合路信号。
在一些示例中,若负载的阻抗为50Ω,那么为了保证功率放大器能够输出高功率给负载,需要控制合路输出匹配模块280的输出端的输出阻抗也同样为50Ω,由于合路输出匹配模块280自身带有一定的阻抗,因此,根据合路输出匹配模块280所需要的输出阻抗和合路输出匹配模块280的自身阻抗,可以得到合路输出匹配模块280的输入端所需要的输入阻抗,在一些示例中,将合路输出匹配模块280的输入端所需要的的输入阻抗记为Re(Zmod)Ω,具体地,关于图2中的功率放大器的工作阶段,可以包括但不限于如下几个工作阶段:
小信号阶段:在一些示例中,当功率回退-6dB时,即主路输入信号和辅路输入信号均为小信号时,由于主路输入信号的功率大于主路功率放大模块230的主路开启功率阈值,主路功率放大模块230开启;同时,由于辅路输入信号的功率小于辅路功率放大模块250的辅路开启功率阈值,辅路功率放大模块250关断。若主路功率放大模块230的输出阻抗为ZmodΩ,那么经过主路输出匹配模块240的阻抗变换处理后,主路输出匹配模块240的输出阻抗为Re(Zmod)Ω,同时,由于辅路功率放大模块250关闭,所以主路的输出阻抗没有受到辅路的有源负载牵引,因此,合路输出端270的输出阻抗即为Re(Zmod)Ω,即可以使得合路输出匹配模块280的输入端的输入阻抗为所需要的Re(Zmod)Ω,从而可以保证功率放大器的高效率输出。另外,基于上述小信号阶段的工作过程,可以知道当功率回退-6dB时,主路功放负载端到主路功率放大模块230的阻抗变换过程是:由50Ω经过合路输出匹配模块280之后变换为Re(Zmod)Ω,再经过主路输出匹配模块240变换为ZmodΩ;另外,辅路功率放大模块250关断。
大信号阶段:在一些示例中,当功率回退0dB时,即主路输入信号和辅路输入信号均为大信号时,由于主路输入信号的功率大于主路功率放大模块230的主路开启功率阈值,主路功率放大模块230开启;同时,由于辅路输入信号的功率大于辅路功率放大模块250的辅路 开启功率阈值,辅路功率放大模块250也开启。若主路功率放大模块230的输出阻抗为ZmaxΩ,经过主路输出匹配模块240的阻抗变换处理后,主路输出匹配模块240的输出阻抗为2Re(Zmod)Ω,同时,辅路功率放大模块250的输出阻抗为ZmaxΩ,经过辅路输出匹配模块260的阻抗变换处理后,辅路输出匹配模块260的输出阻抗为2Re(Zmod)Ω,由于主路和辅路的输出阻抗均为2Re(Zmod)Ω,因此,并联之后的合路输出端270的输出阻抗会变为Re(Zmod)Ω,即可以使得合路输出匹配模块280的输入端的输入阻抗为所需要的Re(Zmod)Ω,从而也可以保证功率放大器的高效率输出。另外,基于上述大信号阶段的工作过程,可以知道当功率回退0dB时,主路功放负载端到主路功率放大模块230的阻抗变换过程是:由50Ω经过合路输出匹配模块280之后变换为Re(Zmod)Ω,由于主路的输出阻抗会受到辅路的负载牵引,那么经过合路输出端270之后会变换为2Re(Zmod)Ω,接着再经过主路输出匹配模块240变换为ZmaxΩ;另外,辅路功放负载端到辅路功率放大模块250的阻抗变换过程是:由50Ω经过合路输出匹配模块280之后变换为Re(Zmod)Ω,由于辅路的输出阻抗会受到主路的负载牵引,那么经过合路输出端270之后会变换为2Re(Zmod)Ω,接着再经过辅路输出匹配模块260变换为ZmaxΩ。
由小信号阶段向大信号阶段的过渡阶段,基于上述小信号阶段的工作过程和大信号阶段的工作过程的分析,当由小信号阶段向大信号阶段过渡时,主路功率放大模块230的输出阻抗会由ZmodΩ逐渐过渡为ZmaxΩ,主路输出匹配模块240的输出阻抗会由Re(Zmod)Ω逐渐过渡为2Re(Zmod)Ω;另外,辅路输出匹配模块260的输出阻抗会由无穷大逐渐过渡为2Re(Zmod)Ω。
由大信号阶段向小信号阶段的过渡阶段,基于上述小信号阶段的工作过程和大信号阶段的工作过程的分析,当由大信号阶段向小信号阶段过渡时,主路功率放大模块230的输出阻抗会由ZmaxΩ逐渐过渡为ZmodΩ,主路输出匹配模块240的输出阻抗会由2Re(Zmod)Ω逐渐过渡为Re(Zmod)Ω;另外,辅路输出匹配模块260的输出阻抗会由2Re(Zmod)Ω逐渐过渡为无穷大。
因此,基于上述图2中的功率放大器的多个工作阶段的分析,本申请实施例的功率放大器具有改善功放效率的作用,可以适合应用于无线通信基站中。
根据本申请实施例的技术方案,本申请实施例的功率放大器相对于图1中现有的功率放大器,去掉了辅路四分之一波长传输线以及合路四分之一波长传输线,并且在合路添加了合路输出匹配模块280兼顾主路的匹配和阻抗变换,以及在辅路使用辅路输出匹配模块260替换传统的辅路输出匹配模块和辅路四分之一波长传输线,不但能够实现功率放大器的小型化,而且还能够降低线损从而提升功率放大器的效率;其次,主路的主路功率放大模块230和辅路的辅路功率放大模块250能够共用合路的合路输出匹配模块280,从而有助于功率放大器的小型化。
另外,如图2所示,本申请实施例的功率放大器中的主路输出匹配模块240包括但不限于有短路枝节241和微带线242,具体地,短路枝节241和微带线242的一端连接至主路功率放大模块230的输出端,短路枝节241的另一端连接至地,微带线242的另一端连接至合路输出端270。另外,本申请实施例的功率放大器中的主路输出匹配模块240还可以包括有电容243,具体地,电容243的一端连接至合路输出端270,电容243的另一端连接至地。
由于本申请实施例的主路输出匹配模块240采用了短路枝节241和微带线242,或者采 用了短路枝节241、微带线242和电容243,可以使得合路输出端270能够放置到更靠近主路功率放大模块230输出的位置,从而使得主路的输出阻抗更低,更能降低辅路接入带来的牵引影响,有助于提升功放的宽带性能。其次,主路功率放大模块230输出根部的短路枝节241、电容243、以及两者之间的微带线242共同提供了电流Im(Zmod),同时还对基波的二次谐波进行抑制从而提升功放效率。
另外,如图2所示,本申请实施例的功率放大器还包括但不限于有功率分配模块210,具体地,功率分配模块210设置有主路功率输出端和辅路功率输出端,主路功率输出端连接至主路功率放大模块230的输入端,辅路功率输出端连接至辅路功率放大模块250的输入端,功率分配模块210被设置成对输入信号进行功率分配,得到主路输入信号和辅路输入信号。
本申请实施例采用功率分配模块210将主路功率放大模块230和辅路功率放大模块250组合起来,能够对输入信号进行功率分配,得到主路输入信号和辅路输入信号,并将主路输入信号通过主路功率输出端发送至主路功率放大模块230,以及将辅路输入信号通过辅路功率输出端发送至辅路功率放大模块250。
另外,如图2所示,本申请实施例的功率放大器还包括但不限于有主路相位补偿模块220或者辅路相位补偿模块,具体地,主路相位补偿模块220连接至主路功率放大模块230的输入端,主路相位补偿模块220被设置成对主路输入信号进行相位补偿处理。或者,辅路相位补偿模块连接至辅路功率放大模块250的输入端,辅路相位补偿模块被设置成对辅路输入信号进行相位补偿处理。
基于上述图2的功率放大器,本申请实施例还提供了一种信号处理方法,如图3所示,图3是本申请一个实施例提供的信号处理方法的流程图。
具体地,本申请实施例的信号处理方法应用于功率放大器,功率放大器包括主路功率放大模块、主路输出匹配模块、辅路功率放大模块、辅路输出匹配模块和合路输出匹配模块,主路输出匹配模块的输入端与主路功率放大模块连接,辅路输出匹配模块的输入端与辅路功率放大模块连接,合路输出匹配模块的输入端与主路输出匹配模块和辅路输出匹配模块的合路输出端连接;上述的信号处理方法包括但不限于有步骤S100、步骤S200、步骤S300、步骤S400和步骤S500。
步骤S100、通过主路功率放大模块对主路输入信号进行功率放大,得到主路功率放大信号。
步骤S200、通过主路输出匹配模块对主路功率放大信号进行调整,得到主路输出信号。
步骤S300、通过辅路功率放大模块对辅路输入信号进行功率放大,得到辅路功率放大信号。
步骤S400、通过辅路输出匹配模块对辅路功率放大信号进行调整,得到辅路输出信号。
步骤S500、通过合路输出匹配模块对合路输出端的输出信号进行调整,得到目标输出信号;其中,合路输出端的输出信号包括主路输出信号或者包括主路输出信号和辅路输出信号的合路信号。
根据本申请实施例的技术方案,本申请实施例的功率放大器相对于图1中现有的功率放大器,去掉了辅路四分之一波长传输线以及合路四分之一波长传输线,并且在合路添加了合路输出匹配模块兼顾主路的匹配和阻抗变换,以及在辅路使用辅路输出匹配模块替换传统的辅路输出匹配模块和辅路四分之一波长传输线,不但能够实现功率放大器的小型化,而且还 能够降低线损从而提升功率放大器的效率;其次,主路的主路功率放大模块和辅路的辅路功率放大模块能够共用合路的合路输出匹配模块,从而有助于功率放大器的小型化。
值得注意的是,本申请实施例的信号处理方法的具体实施方式和技术效果,可对应参照上述功率放大器的具体实施方式和技术效果。
另外,如图4所示,图4是本申请一个实施例提供的对输入信号进行分配以得到主路输入信号和辅路输入信号的流程图。当功率放大器还包括功率分配模块,功率分配模块设置有主路功率输出端和辅路功率输出端,主路功率输出端连接至主路功率放大模块的输入端,辅路功率输出端连接至辅路功率放大模块的输入端。那么,在上述步骤S100之前,本申请实施例的信号处理方法还包括但不限于有步骤S600。
步骤S600、通过功率分配模块对输入信号进行功率分配,得到主路输入信号和辅路输入信号。
值得注意的是,本申请实施例的信号处理方法的具体实施方式和技术效果,可对应参照上述功率放大器的具体实施方式和技术效果。
另外,如图5所示,图5是本申请一个实施例提供的对主路输入信号进行相位补偿处理的流程图。当功率放大器还包括主路相位补偿模块,主路相位补偿模块连接至主路功率放大模块的输入端;那么,在上述步骤S100之前,本申请实施例的信号处理方法还包括但不限于有步骤S700。
步骤S700、通过主路相位补偿模块对主路输入信号进行相位补偿处理,以使主路功率放大模块接收到经过相位补偿处理的主路输入信号。
值得注意的是,本申请实施例的信号处理方法的具体实施方式和技术效果,可对应参照上述功率放大器的具体实施方式和技术效果。
另外,如图6所示,图6是本申请一个实施例提供的对辅路输入信号进行相位补偿处理的流程图。当功率放大器还包括辅路相位补偿模块,辅路相位补偿模块连接至辅路功率放大模块的输入端;那么,在上述步骤S300之前,本申请实施例的信号处理方法还包括但不限于有步骤S800。
步骤S800、通过辅路相位补偿模块对辅路输入信号进行相位补偿处理,以使辅路功率放大模块接收到经过相位补偿处理的辅路输入信号。
值得注意的是,本申请实施例的信号处理方法的具体实施方式和技术效果,可对应参照上述功率放大器的具体实施方式和技术效果。
基于上述图2的功率放大器和上述图3至图6的信号处理方法,本申请实施例还提供了一种发射机,包括但不限于有上述图2的功率放大器或者能够执行上述图3至图6的信号处理方法。
值得注意的是,本申请实施例的发射机的具体实施方式和技术效果,可对应参照上述功率放大器的具体实施方式和技术效果或者上述信号处理方法的具体实施方式和技术效果。
另外,基于上述图2的功率放大器、图3至图6的信号处理方法、以及上述的发射机,本申请实施例还提供了一种基站设备,包括但不限于有上述的发射机。
值得注意的是,本申请实施例的基站设备的具体实施方式和技术效果,可对应参照上述功率放大器的具体实施方式和技术效果,或者上述信号处理方法的具体实施方式和技术效果,或者上述发射机的具体实施方式和技术效果。
本申请实施例包括:本申请实施例的功率放大器包括主路功率放大模块、主路输出匹配模块、辅路功率放大模块、辅路输出匹配模块和合路输出匹配模块;其中,主路功率放大模块被设置成对主路输入信号进行功率放大以得到主路功率放大信号,主路输出匹配模块被设置成对上述的主路功率放大信号进行调整以得到主路输出信号,辅路功率放大模块被设置成对辅路输入信号进行功率放大以得到辅路功率放大信号,辅路输出匹配模块被设置成对上述的辅路功率放大信号进行调整以得到辅路输出信号,合路输出匹配模块被设置成对主路输出匹配模块和辅路输出匹配模块的合路输出端的输出信号进行调整,得到目标输出信号。根据本申请实施例的技术方案,本申请实施例的功率放大器相对于现有的功率放大器,去掉了辅路的四分之一波长传输线以及合路的四分之一波长传输线,不但能够实现功率放大器的小型化,而且还能够降低线损从而提升功率放大器的效率;其次,主路的主路功率放大模块和辅路的辅路功率放大模块能够共用合路的合路输出匹配模块,从而有助于功率放大器的小型化。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (12)

  1. 一种功率放大器,包括:
    主路功率放大模块,被设置成对主路输入信号进行功率放大,得到主路功率放大信号;
    主路输出匹配模块,与所述主路功率放大模块连接,所述主路输出匹配模块被设置成对所述主路功率放大信号进行调整,得到主路输出信号;
    辅路功率放大模块,被设置成对辅路输入信号进行功率放大,得到辅路功率放大信号;
    辅路输出匹配模块,与所述辅路功率放大模块连接,所述辅路输出匹配模块被设置成对所述辅路功率放大信号进行调整,得到辅路输出信号;
    合路输出匹配模块,与所述主路输出匹配模块和所述辅路输出匹配模块的合路输出端连接,所述合路输出匹配模块被设置成对所述合路输出端的输出信号进行调整,得到目标输出信号;其中,所述合路输出端的输出信号包括所述主路输出信号或者包括所述主路输出信号和所述辅路输出信号的合路信号。
  2. 根据权利要求1所述的功率放大器,其中,所述主路输出匹配模块包括短路枝节和微带线,所述短路枝节和所述微带线的一端连接至所述主路功率放大模块的输出端,所述短路枝节的另一端连接至地,所述微带线的另一端连接至所述合路输出端。
  3. 根据权利要求2所述的功率放大器,其中,所述主路输出匹配模块还包括电容,所述电容的一端连接至所述合路输出端,所述电容的另一端连接至地。
  4. 根据权利要求1至3中任意一项所述的功率放大器,其中,所述功率放大器还包括功率分配模块,所述功率分配模块设置有主路功率输出端和辅路功率输出端,所述主路功率输出端连接至所述主路功率放大模块的输入端,所述辅路功率输出端连接至所述辅路功率放大模块的输入端,所述功率分配模块被设置成对输入信号进行功率分配,得到所述主路输入信号和所述辅路输入信号。
  5. 根据权利要求1至3中任意一项所述的功率放大器,其中,所述功率放大器还包括主路相位补偿模块,所述主路相位补偿模块连接至所述主路功率放大模块的输入端,所述主路相位补偿模块被设置成对所述主路输入信号进行相位补偿处理。
  6. 根据权利要求1至3中任意一项所述的功率放大器,其中,所述功率放大器还包括辅路相位补偿模块,所述辅路相位补偿模块连接至所述辅路功率放大模块的输入端,所述辅路相位补偿模块被设置成对所述辅路输入信号进行相位补偿处理。
  7. 一种信号处理方法,应用于功率放大器,所述功率放大器包括主路功率放大模块、主路输出匹配模块、辅路功率放大模块、辅路输出匹配模块和合路输出匹配模块,所述主路输出匹配模块的输入端与所述主路功率放大模块连接,所述辅路输出匹配模块的输入端与所述辅路功率放大模块连接,所述合路输出匹配模块的输入端与所述主路输出匹配模块和所述辅路输出匹配模块的合路输出端连接;
    所述信号处理方法包括:
    通过所述主路功率放大模块对主路输入信号进行功率放大,得到主路功率放大信号;
    通过所述主路输出匹配模块对所述主路功率放大信号进行调整,得到主路输出信号;
    通过所述辅路功率放大模块对辅路输入信号进行功率放大,得到辅路功率放大信号;
    通过所述辅路输出匹配模块对所述辅路功率放大信号进行调整,得到辅路输出信号;
    通过所述合路输出匹配模块对所述合路输出端的输出信号进行调整,得到目标输出信号;其中,所述合路输出端的输出信号包括所述主路输出信号或者包括所述主路输出信号和所述辅路输出信号的合路信号。
  8. 根据权利要求7所述的信号处理方法,其中,所述功率放大器还包括功率分配模块,所述功率分配模块设置有主路功率输出端和辅路功率输出端,所述主路功率输出端连接至所述主路功率放大模块的输入端,所述辅路功率输出端连接至所述辅路功率放大模块的输入端;所述信号处理方法还包括:
    通过所述功率分配模块对输入信号进行功率分配,得到所述主路输入信号和所述辅路输入信号。
  9. 根据权利要求7或8所述的信号处理方法,其中,所述功率放大器还包括主路相位补偿模块,所述主路相位补偿模块连接至所述主路功率放大模块的输入端;所述信号处理方法还包括:
    通过所述主路相位补偿模块对所述主路输入信号进行相位补偿处理,以使所述主路功率放大模块接收到经过相位补偿处理的所述主路输入信号。
  10. 根据权利要求7或8所述的信号处理方法,其中,所述功率放大器还包括辅路相位补偿模块,所述辅路相位补偿模块连接至所述辅路功率放大模块的输入端;所述信号处理方法还包括:
    通过所述辅路相位补偿模块对所述辅路输入信号进行相位补偿处理,以使所述辅路功率放大模块接收到经过相位补偿处理的所述辅路输入信号。
  11. 一种发射机,包括如权利要求1至6中任意一项所述的功率放大器或者执行如权利要求7至10中任意一项所述的信号处理方法。
  12. 一种基站设备,包括如权利要求11所述的发射机。
PCT/CN2022/088864 2021-06-02 2022-04-24 功率放大器、信号处理方法、发射机和基站设备 WO2022252875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110614650.5 2021-06-02
CN202110614650.5A CN115441843A (zh) 2021-06-02 2021-06-02 功率放大器、信号处理方法、发射机和基站设备

Publications (1)

Publication Number Publication Date
WO2022252875A1 true WO2022252875A1 (zh) 2022-12-08

Family

ID=84240228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088864 WO2022252875A1 (zh) 2021-06-02 2022-04-24 功率放大器、信号处理方法、发射机和基站设备

Country Status (2)

Country Link
CN (1) CN115441843A (zh)
WO (1) WO2022252875A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140132343A1 (en) * 2011-06-20 2014-05-15 Telefonaktiebolaget L M Ericsson (Publ) Power amplifier based on doherty power amplifier
CN104917468A (zh) * 2014-03-11 2015-09-16 中兴通讯股份有限公司 一种三路反型Doherty功率放大器及实现方法
US20150295539A1 (en) * 2014-04-10 2015-10-15 City University Of Hong Kong Power amplifier circuit for communication systems
US20160276985A1 (en) * 2013-10-16 2016-09-22 Telefonaktiebolaget L M Ericsson (Publ) Amplifier apparatus and method
WO2016180130A1 (zh) * 2015-07-17 2016-11-17 中兴通讯股份有限公司 功放电路及其负载阻抗调制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140132343A1 (en) * 2011-06-20 2014-05-15 Telefonaktiebolaget L M Ericsson (Publ) Power amplifier based on doherty power amplifier
US20160276985A1 (en) * 2013-10-16 2016-09-22 Telefonaktiebolaget L M Ericsson (Publ) Amplifier apparatus and method
CN104917468A (zh) * 2014-03-11 2015-09-16 中兴通讯股份有限公司 一种三路反型Doherty功率放大器及实现方法
US20150295539A1 (en) * 2014-04-10 2015-10-15 City University Of Hong Kong Power amplifier circuit for communication systems
WO2016180130A1 (zh) * 2015-07-17 2016-11-17 中兴通讯股份有限公司 功放电路及其负载阻抗调制方法

Also Published As

Publication number Publication date
CN115441843A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
KR101677555B1 (ko) 도허티 증폭기에서 낮은 전력 영역에서의 효율을 향상시키기 위한 장치
CN112491365B (zh) 一种基于单并联谐振块的宽带Doherty功率放大器
CN109889162B (zh) 一种自输入控制的负载调制类功率放大器及其实现方法
CN104993796B (zh) 一种Doherty功率放大器
CN106411275B (zh) 改善带宽的三路Doherty功率放大器及实现方法
CN111030620A (zh) 一种新型合路的宽带Doherty功率放大器及其设计方法
WO2024139069A1 (zh) 射频发射装置及其实现方法
EP3736977B1 (en) Outphasing power amplifier and method and device for achieving output matching thereof
US20150070094A1 (en) Doherty power amplifier with coupling mechanism independent of device ratios
CN208063142U (zh) 一种高效功率放大器
WO2023045544A1 (zh) 宽带Doherty功率放大器和实现方法
CN112543002A (zh) 宽带差分Doherty功率放大器及其设计方法和应用
CN101834571A (zh) 高效线性功率放大电路
JP2018074320A (ja) ドハティ型増幅器
CN210053382U (zh) 一种连续逆F类和J类混合的宽带Doherty功率放大器
CN111342787A (zh) 一种负载调制差分功率放大器、基站和移动终端
Honda et al. Efficiency enhancement of GaN Doherty power amplifier at large power back-off with virtual short stub technique
CN108763640B (zh) 高效率高回退的Doherty功率放大器及其设计方法
CN104917468A (zh) 一种三路反型Doherty功率放大器及实现方法
WO2022252875A1 (zh) 功率放大器、信号处理方法、发射机和基站设备
CN108599727B (zh) 高效宽带Doherty功率放大器
KR102663823B1 (ko) 차동 구조를 이용하는 2단 도허티 전력 증폭 장치 및 이의 제어 방법
CN116054749A (zh) 一种负载调制平衡式毫米波GaN功放芯片
CN115833758A (zh) 一种基于电抗补偿结构的宽带Doherty功率放大器
CN113271067B (zh) 基于去匹配结构的Doherty功率放大器及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.04.2024)