WO2022252873A1 - 相机内参的标定验证方法、装置、设备及介质 - Google Patents

相机内参的标定验证方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022252873A1
WO2022252873A1 PCT/CN2022/088716 CN2022088716W WO2022252873A1 WO 2022252873 A1 WO2022252873 A1 WO 2022252873A1 CN 2022088716 W CN2022088716 W CN 2022088716W WO 2022252873 A1 WO2022252873 A1 WO 2022252873A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate change
calibration
coordinate
camera
preset
Prior art date
Application number
PCT/CN2022/088716
Other languages
English (en)
French (fr)
Inventor
孙曦
郭亨凯
Original Assignee
北京字跳网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京字跳网络技术有限公司 filed Critical 北京字跳网络技术有限公司
Priority to US18/560,030 priority Critical patent/US20240259549A1/en
Priority to EP22814920.9A priority patent/EP4318398A4/en
Publication of WO2022252873A1 publication Critical patent/WO2022252873A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker
    • G06T2207/30208Marker matrix

Definitions

  • the internal parameters of the camera include the focal length fx, fy, the coordinates of the optical center of the camera cx, cy, and the time delay between the camera and the inertial navigation, etc. Since the internal parameters of the camera determine the conversion relationship of the object from the camera coordinates to the pixel coordinates, the calibration of the internal camera parameters Accuracy determines image quality.
  • a method for calibrating and verifying camera intrinsic parameters comprising: acquiring multiple reference images captured by a target camera under preset shooting conditions and multiple reference world coordinates, wherein, The internal camera parameters of the target camera have been calibrated; the first coordinate change parameters corresponding to the multiple reference world coordinates are determined according to the preset shooting conditions, and the second coordinate change parameters of the multiple reference images are determined according to a preset algorithm ; Judging whether the second coordinate change parameter is consistent with the first coordinate change parameter; if the second coordinate change parameter is consistent with the first coordinate change parameter, feeding back a verification message that the camera internal parameter calibration is successful.
  • a device for calibration and verification of camera internal parameters includes: an acquisition module, used to acquire the target camera under preset shooting conditions under the condition of a plurality of reference world coordinates A plurality of reference images, wherein the target camera has been calibrated with internal camera parameters; a determination module, configured to determine the first coordinate change parameters corresponding to the plurality of reference world coordinates according to the preset shooting conditions, and determine according to a preset algorithm The second coordinate change parameters of the plurality of reference images; a judging module, configured to determine whether the second coordinate change parameters are consistent with the first coordinate change parameters; a verification feedback module, configured to determine whether the second coordinate change parameters are consistent When the parameter is consistent with the first coordinate change parameter, a verification message that the calibration of the camera internal parameters is successful is fed back.
  • the calibration verification system includes an upload unit, a processing unit, and a result feedback unit.
  • a plurality of reference images uploaded by the system, and/or, a video containing the plurality of reference images, wherein the plurality of reference images are target cameras whose internal parameters have been calibrated, and the plurality of reference images under preset shooting conditions photographed under conditions of world coordinates;
  • the processing unit is configured to determine the first coordinate change parameters corresponding to the multiple reference world coordinates according to the preset shooting conditions, and determine the multiple reference images according to a preset algorithm
  • the second coordinate change parameter and when it is judged that the second coordinate change parameter is consistent with the first coordinate change parameter, generate a verification message that the camera internal parameters are calibrated successfully; the result feedback unit is used to feed back the verification information.
  • an electronic device includes: a processor; a memory for storing instructions executable by the processor; The executable instructions are read and executed to implement the method for calibration and verification of camera internal parameters as provided by the embodiments of the present disclosure.
  • a computer-readable storage medium stores a computer program, and the computer program is used to execute the method for calibrating and verifying camera intrinsic parameters as provided in the embodiment of the present disclosure.
  • a computer program including: instructions, which, when executed by a processor, cause the processor to execute the method for calibrating and verifying camera intrinsic parameters as provided in the embodiments of the present disclosure.
  • a computer program product including instructions, which, when executed by a processor, cause the processor to execute the method for calibrating and verifying camera intrinsic parameters as provided in the embodiments of the present disclosure.
  • FIG. 1 is a schematic flowchart of a method for calibrating and verifying camera internal parameters provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of another method for calibration and verification of internal camera parameters provided by an embodiment of the present disclosure
  • Fig. 3(a) is a schematic diagram of the positions of multiple reference world coordinates provided by an embodiment of the present disclosure
  • FIG. 3(b) is a schematic diagram of another position of multiple reference world coordinates provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of another method for calibration and verification of internal camera parameters provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of another method for calibration and verification of internal camera parameters provided by an embodiment of the present disclosure
  • FIG. 6(a) is a schematic diagram of a plurality of reference images provided by an embodiment of the present disclosure.
  • FIG. 6(b) is a schematic diagram of another multiple reference images provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a camera internal reference calibration and verification system provided by an embodiment of the present disclosure.
  • Fig. 8(a) is a schematic diagram of a scene where a camera internal reference is applied on a server side according to an embodiment of the present disclosure
  • FIG. 8(b) is a schematic diagram of a scene where another camera internal reference is applied on the server side according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a camera internal reference calibration and verification device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • the term “comprise” and its variations are open-ended, ie “including but not limited to”.
  • the term “based on” is “based at least in part on”.
  • the term “one embodiment” means “at least one embodiment”; the term “another embodiment” means “at least one further embodiment”; the term “some embodiments” means “at least some embodiments.” Relevant definitions of other terms will be given in the description below.
  • the inventors of the present disclosure found that, in related technologies, the calibration and verification process of camera internal parameters are not independent, and the algorithm during calibration is the same as the algorithm during verification.
  • the checkerboard calibration method to verify the calibrated camera internal parameters may lead to the inability to accurately verify the calibration error.
  • an embodiment of the present disclosure provides a method for calibration and verification of camera internal parameters, so as to improve the accuracy of calibration and verification of camera internal parameters.
  • the method will be introduced in conjunction with specific embodiments below.
  • Fig. 1 is a schematic flowchart of a method for calibrating and verifying camera internal references provided by an embodiment of the present disclosure.
  • the method can be executed by a device for calibrating and verifying camera internal references, wherein the device can be implemented by software and/or hardware, and generally can be integrated in a
  • the electronic equipment of the camera includes but is not limited to smart phones, wearable devices, notebook computers, etc.
  • the target camera in this embodiment has already calibrated the internal camera parameters before taking the reference image.
  • the method for calibrating the camera internal parameters can be any algorithm that can realize the determination of camera internal parameters such as the Zhang Dingyou calibration method.
  • a target camera is used to capture a calibration image of a preset calibration object, wherein the preset calibration object includes a calibration point, wherein the preset calibration object can be an object such as a chessboard that facilitates positioning of the calibration point, and further, Obtain the standard world coordinates of the calibration points, which can be pre-marked on the preset calibration object, and then extract the image coordinates of the calibration points in the calibration image, because the image coordinates reflect the mapping of the calibration points to the two-dimensional image As a result, therefore, a transformation matrix between standard world coordinates and image coordinates can be calculated, and this transformation matrix can be used as a camera intrinsic.
  • shooting conditions are set in advance, and multiple reference world coordinates under the shooting conditions meet certain coordinate change conditions, so as to facilitate subsequent coordinate comparison. That is, any number of reference world coordinates under preset shooting conditions are known, so as to facilitate subsequent determination of calibration errors based on the reference world coordinates.
  • the reference object can be any object, and each reference world coordinate has a corresponding reference image, which is convenient for determining the conversion relationship between the target camera from 3D to 2D.
  • Step 102 Determine first coordinate change parameters corresponding to a plurality of reference world coordinates according to preset shooting conditions, and determine second coordinate change parameters of multiple reference images according to a preset algorithm.
  • first coordinate change parameter and the second coordinate change parameter in this embodiment may include any parameters that directly or indirectly reflect the coordinate change, for example, it may be a change parameter of the coordinate value itself, and for example, it may be the same as Coordinate values related to area change parameters of reference objects, etc., will be specifically described in subsequent embodiments, and will not be repeated here.
  • Step 103 judging whether the second coordinate change parameter is consistent with the first coordinate change parameter.
  • Step 104 if the second coordinate change parameter is consistent with the first coordinate change parameter, feedback a verification message indicating that the calibration of the camera internal parameters is successful.
  • the second coordinate change parameter is consistent with the first coordinate change parameter. If they are consistent, it indicates that the conversion relationship from the world coordinates to the pixel coordinates of the reference object is stable under the action of the camera internal parameters. Therefore, The internal reference error of the camera is in a lower range, and a verification message of successful calibration of the internal reference of the camera is fed back.
  • the verification and calibration of camera internal parameters in this embodiment are two independent processes.
  • the verification is performed from another angle, that is, the coordinate change parameters, which realizes the decoupling of calibration and verification, and improves the The accuracy of the verification error and the automatic execution of the verification process can be applied on a large scale to the camera production line for calibration verification.
  • the calibration and verification of the camera's internal parameters are decoupled to improve the accuracy of the calibration and verification of the camera's internal parameters, and the calibration and verification of the camera's internal parameters are automatically performed, providing technical support for the efficiency of the camera's internal reference calibration.
  • the error degree can also be directly calculated according to the second coordinate change parameter and the first coordinate change parameter. Quantitative, to provide a reference for correcting the internal parameters of the camera.
  • the method further includes:
  • Step 201 if the second coordinate change parameter is not consistent with the first coordinate change parameter, calculate the coordinate change parameter difference between the second coordinate change parameter and the first coordinate change parameter.
  • the second coordinate change parameter in this embodiment is inconsistent with the first coordinate change parameter, it may be that the difference between the second coordinate change parameter and the first coordinate change parameter is greater than a preset threshold, etc., in order to quantify the second coordinate change parameter
  • the degree of inconsistency between the first coordinate change parameter and the coordinate change parameter difference between the second coordinate change parameter and the first coordinate change parameter is calculated.
  • the second coordinate change parameter and the first coordinate change parameter are the coordinate drift of the Z axis
  • the coordinate drift of the Z axis corresponding to the first coordinate change parameter is basically 0, the Z corresponding to the second coordinate change parameter If the coordinate drift of the axis is large, it is considered that the second coordinate change parameter is inconsistent with the first coordinate change parameter, so the difference between the second coordinate change parameter and the Z-axis coordinate drift corresponding to the first coordinate change parameter is used as the coordinate Variation parameter difference.
  • the method of correcting the camera internal parameters according to the coordinate change parameter difference is different.
  • the coordinate change parameter difference and the camera internal parameter correction value can be constructed in advance according to the delay data.
  • the corresponding relationship between, query the corresponding relationship to obtain the correction value corresponding to the coordinate change parameter difference, the correction value can be positive or negative, and then add the corresponding correction value in the original camera to obtain the corrected camera internal reference.
  • the coordinate change parameter difference is provided as a loss value to the camera intrinsic parameter calibration algorithm, and the camera intrinsic parameter calibration algorithm corrects the camera internal parameter again according to the coordinate change parameter difference until the verification is passed.
  • the method for calibration and verification of camera internal parameters in the embodiment of the present disclosure can quantify the degree of calibration error of camera internal parameters when it is known that the verification of camera internal parameters fails, so as to improve the efficiency of camera internal reference calibration.
  • the preset shooting conditions are related to the coordinate change relationship of multiple reference world coordinates. Therefore, it can also be understood that the preset shooting conditions can be any conditions that specify the camera position when shooting the reference image.
  • the following example illustrate:
  • the preset shooting condition may be to limit the shooting position of the camera according to a preset random distribution function.
  • the camera is randomly controlled to shoot under the corresponding random reference world coordinates according to the random distribution function
  • the reference image therefore, can subsequently calibrate the internal parameters of the camera according to whether the shooting coordinate changes deduced from the reference image conform to the distribution law of the random distribution function.
  • multiple first coordinate values of the preset dimension are the first coordinate change parameters.
  • the preset dimension is the dimension corresponding to the Z axis
  • the coordinate values of multiple Z axes are used as the first coordinate change Parameter.
  • the method further includes step 403 to step 405 .
  • Step 403 Determine a first coordinate change function according to a plurality of first coordinate values in a preset dimension.
  • Step 405 judging whether the first coordinate change function is consistent with the second coordinate change function.
  • Step 501 Determine a plurality of standard imaging areas corresponding to a plurality of reference world coordinates of a shooting reference object under preset shooting conditions, and determine the multiple standard imaging areas as a first coordinate change parameter.
  • Step 502 determine multiple actual imaging areas of the shooting reference object in multiple reference images, and determine the multiple actual imaging areas as the second coordinate change parameter.
  • Step 503 Determine a first area change function according to a plurality of standard imaging areas.
  • the first area change function M1 S2+(t-1) , where t is the serial number in the queue after multiple standard imaging areas are arranged according to the coordinate order of the corresponding reference world coordinates, and S2 is an arbitrary fixed value.
  • the second area change function is determined according to multiple actual imaging areas. For example, the functional relationship of area values between multiple actual imaging areas corresponding to multiple standard imaging areas is calculated.
  • Step 505 judging whether the first area change function is consistent with the second area change function.
  • SLAM Simultaneous Localization and Mapping
  • the calibration verification method of camera internal parameters in the embodiment of the present disclosure uses any coordinate change parameter that indirectly or directly reflects the conversion relationship of the reference object from world coordinates to pixel coordinates to verify whether the calibration of camera internal parameters is successful.
  • the decoupling of internal reference calibration improves the accuracy of camera internal reference verification.
  • the calibration and verification method of the camera's internal parameters can also be deployed to the server (preset calibration and verification system), and the user can interact with the front end of the server. To achieve the calibration of the camera's internal parameters, there is no need to master the specific calibration method.
  • a plurality of reference images uploaded by a user through a preset calibration verification system, and/or a video containing a plurality of reference images is obtained. That is, in this embodiment, the multiple reference images may be multiple discrete images, or may be derived from a piece of video, and the continuous image frames in the video are determined as the corresponding multiple reference images.
  • the calibration verification process in the background does not need to be mastered by the user, only the calibration verification result file package of the camera internal parameters corresponding to multiple reference images is displayed through the calibration verification system, wherein the verification result file package includes the second coordinate change The comparison result of the parameter and the first coordinate change parameter, and then, in response to the download request of the user for the verification result file package, download the verification result file package.
  • the calibration and verification method of camera internal parameters in the embodiment of the present disclosure deploys the calibration and verification method of camera internal parameters to the preset calibration verification system, and the user can realize the calibration of camera internal parameters based on the interaction with the front end of the server without mastering specific
  • the calibration method reduces the user's learning cost and improves the calibration efficiency of the camera's internal parameters.
  • FIG. 7 is a schematic structural diagram of a system for calibration and verification of camera internal parameters proposed according to the present disclosure. As shown in FIG.
  • the uploading unit 710 is configured to receive a plurality of reference images uploaded by the user in the calibration verification system, and/or a video containing a plurality of reference images, wherein the plurality of reference images are target cameras whose intrinsic camera parameters have been calibrated, in a preset Shooting under conditions of multiple reference world coordinates.
  • the upload unit 710 also provides a visualized front-end upload operation interface for users to upload images or videos.
  • the upload operation interface includes a plurality of reference images, and/or, video upload controls. When the upload control is triggered, multiple reference images of reference objects captured under multiple reference world coordinates under preset shooting conditions can be uploaded.
  • the processing unit 720 executes the calibration and verification process of the internal camera parameters in this embodiment in the background, determines the first coordinate change parameters corresponding to multiple reference world coordinates according to preset shooting conditions, and determines the first coordinate change parameters corresponding to multiple reference world coordinates according to a preset algorithm.
  • the second coordinate change parameter and when it is judged that the second coordinate change parameter is consistent with the first coordinate change parameter, a verification message that the calibration of the camera internal parameters is successful is generated.
  • the result feedback unit 730 can directly display the verification result visually on the verification result display interface in a front-end visualization manner. For example, as shown in FIG. 8( b ), when it is verified that the second coordinate change parameter is consistent with the first coordinate change parameter, a verification message of “calibration successful” is displayed. Users can perform calibration and verification of camera parameters without mastering specific verification methods, which reduces the learning cost of calibration and verification of camera internal parameters, improves the efficiency of calibration and verification of camera internal parameters, and provides technology for large-scale calibration and verification of camera internal parameters support.
  • the result feedback unit 730 may also directly display the verification result to the user directly in the form of a file package on the relevant interface.
  • the large-scale operation of calibration and verification of camera internal parameters can be realized, so that the verification results can be intuitively displayed to users in the form of file packages.
  • each verification result file package can contain a character mark whether the verification is successful, and after each verification result file package Both contain a download control, and the verification result file package can be downloaded through the download control.
  • the verification result file package may include the second coordinate change parameter, the first coordinate change parameter, and the coordinate change parameter difference of the corresponding target camera.
  • the verification result file package may be downloaded in response to the user's download request for the verification result file package.
  • the calibration and verification system of camera internal parameters in the embodiment of the present disclosure interacts with users in the way of front-end visualization for calibration of camera internal parameters, and deploys the calibration and verification algorithm of camera internal parameters to the system end, which can realize the calibration and verification of camera internal parameters. Operation at scale.
  • FIG. 9 is a schematic structural diagram of an apparatus for calibrating and verifying camera internal parameters provided by an embodiment of the present disclosure.
  • the apparatus can be implemented by software and/or hardware, and can generally be integrated into electronic equipment for calibration and verification of camera internal parameters.
  • the device includes: an acquisition module 910 , a determination module 920 , a judgment module 930 and a verification feedback module 940 .
  • the acquisition module 910 is configured to acquire multiple reference images captured by the target camera under preset shooting conditions and multiple reference world coordinates, wherein the target camera has been calibrated with internal camera parameters.
  • the determination module 920 is configured to determine first coordinate change parameters corresponding to multiple reference world coordinates according to preset shooting conditions, and determine second coordinate change parameters of multiple reference images according to a preset algorithm.
  • a judging module 930 configured to judge whether the second coordinate change parameter is consistent with the first coordinate change parameter.
  • the verification feedback module 940 is configured to feed back a verification message that the calibration of the camera internal parameters is successful when the second coordinate change parameter is consistent with the first coordinate change parameter.
  • the camera internal reference calibration and verification device provided in the embodiments of the present disclosure can execute the camera internal reference calibration and verification method provided in any embodiment of the present disclosure, and has corresponding functional modules and beneficial effects for executing the method.
  • the present disclosure further proposes a computer program product, including computer programs/instructions, and when the computer programs/instructions are executed by a processor, the method for calibrating and verifying camera intrinsic parameters in the above embodiments is implemented.
  • the present disclosure further proposes a computer program, including: instructions, which, when executed by a processor, cause the processor to execute the method for calibrating and verifying camera intrinsic parameters in the above embodiments.
  • FIG. 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • FIG. 10 it shows a schematic structural diagram of an electronic device 1000 suitable for implementing an embodiment of the present disclosure.
  • the electronic device 1000 in the embodiment of the present disclosure may include, but not limited to, mobile phones, notebook computers, digital broadcast receivers, PDAs (Personal Digital Assistants), PADs (Tablet Computers), PMPs (Portable Multimedia Players), vehicle-mounted terminals ( Mobile terminals such as car navigation terminals) and stationary terminals such as digital TVs, desktop computers and the like.
  • the electronic device shown in FIG. 10 is only an example, and should not limit the functions and application scope of the embodiments of the present disclosure.
  • an electronic device 1000 may include a processing device (such as a central processing unit, a graphics processing unit, etc.) 1001, which may be randomly accessed according to a program stored in a read-only memory (ROM) 1002 or loaded from a storage device 1008.
  • a processing device such as a central processing unit, a graphics processing unit, etc.
  • RAM memory
  • various appropriate actions and processes are executed by programs in the memory (RAM) 1003 .
  • RAM 1003 In the RAM 1003, various programs and data necessary for the operation of the electronic device 1000 are also stored.
  • the processing device 1001, ROM 1002, and RAM 1003 are connected to each other through a bus 1004.
  • An input/output (I/O) interface 1005 is also connected to the bus 1004 .
  • the following devices can be connected to the I/O interface 1005: input devices 1006 including, for example, a touch screen, touchpad, keyboard, mouse, camera, microphone, accelerometer, gyroscope, etc.; including, for example, a liquid crystal display (LCD), speaker, vibration an output device 1007 such as a computer; a storage device 1008 including, for example, a magnetic tape, a hard disk, etc.; and a communication device 1009.
  • the communication means 1009 may allow the electronic device 1000 to perform wireless or wired communication with other devices to exchange data. While FIG. 10 shows electronic device 1000 having various means, it is to be understood that implementing or having all of the means shown is not a requirement. More or fewer means may alternatively be implemented or provided.
  • embodiments of the present disclosure include a computer program product, which includes a computer program carried on a non-transitory computer readable medium, where the computer program includes program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from a network via the communication means 1009, or from the storage means 1008, or from the ROM 1002.
  • the processing device 1001 the above-mentioned functions defined in the method for calibration and verification of camera intrinsic parameters in the embodiment of the present disclosure are executed.
  • the above-mentioned computer-readable medium in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples of computer-readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can transmit, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted by any appropriate medium, including but not limited to wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the client and the server can communicate using any currently known or future network protocols such as HTTP (HyperText Transfer Protocol, Hypertext Transfer Protocol), and can communicate with digital data in any form or medium
  • HTTP HyperText Transfer Protocol
  • the communication eg, communication network
  • Examples of communication networks include local area networks (“LANs”), wide area networks (“WANs”), internetworks (e.g., the Internet), and peer-to-peer networks (e.g., ad hoc peer-to-peer networks), as well as any currently known or future developed network of.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device, or may exist independently without being incorporated into the electronic device.
  • the above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by the electronic device, the electronic device: acquires multiple reference world coordinates of the target camera under preset shooting conditions Multiple reference images taken, in which the target camera has been calibrated with camera internal parameters; the first coordinate change parameters corresponding to multiple reference world coordinates are determined according to preset shooting conditions, and the second coordinate changes of multiple reference images are determined according to a preset algorithm parameter; determine whether the second coordinate change parameter is consistent with the first coordinate change parameter; if the second coordinate change parameter is consistent with the first coordinate change parameter, feedback a verification message that the camera internal parameter calibration is successful.
  • the calibration and verification of the camera's internal parameters are decoupled to improve the accuracy of the calibration and verification of the camera's internal parameters, and the calibration and verification of the camera's internal parameters are automatically performed, providing technical support for the efficiency of the camera's internal reference calibration.
  • Computer program code for carrying out operations of the present disclosure may be written in one or more programming languages, or combinations thereof, including but not limited to object-oriented programming languages such as Java, Smalltalk, C++, and Included are conventional procedural programming languages, such as the "C" language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g. via the Internet using an Internet Service Provider). .
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider e.g. via the Internet using an Internet Service Provider.
  • each block in a flowchart or block diagram may represent a module, program segment, or portion of code that contains one or more logical functions for implementing specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified functions or operations , or may be implemented by a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in the present disclosure may be implemented by software or by hardware. Wherein, the name of a unit does not constitute a limitation of the unit itself under certain circumstances.
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs System on Chips
  • CPLD Complex Programmable Logical device
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM compact disk read only memory
  • magnetic storage or any suitable combination of the foregoing.
  • the present disclosure provides a method for calibration and verification of camera internal parameters, including: Acquiring multiple reference images captured by the target camera under preset shooting conditions and multiple reference world coordinates , wherein, the target camera has been calibrated with internal camera parameters; the first coordinate change parameters corresponding to the plurality of reference world coordinates are determined according to the preset shooting conditions, and the second coordinate change parameters of the plurality of reference images are determined according to a preset algorithm Coordinate change parameter; judging whether the second coordinate change parameter is consistent with the first coordinate change parameter; and if the second coordinate change parameter is consistent with the first coordinate change parameter, feedback that the calibration of the internal camera parameters is successful verification message.
  • the method further includes: before acquiring the multiple reference images taken by the target camera under preset shooting conditions and multiple reference world coordinates, passing the target The camera shoots a calibration image of a preset calibration object, wherein the preset calibration object includes a calibration point; obtains the standard world coordinates of the calibration point, and the image coordinates of the calibration point in the calibration image; and according to the The camera internal parameters are calculated based on the standard world coordinates and the image coordinates.
  • the preset shooting condition includes: a coordinate change condition of at least one preset dimension of the plurality of reference world coordinates.
  • the coordinate change condition includes: a condition that the coordinate value of the preset dimension is fixed; or a condition that the coordinate value of the preset dimension increases according to the same incremental value.
  • the first coordinate change parameters corresponding to the plurality of reference world coordinates are determined according to preset shooting conditions
  • the second coordinates of the plurality of reference images are determined according to a preset algorithm changing the parameters, including: calculating a plurality of first coordinate values of the plurality of preset world coordinates in preset dimensions according to the preset shooting conditions, and determining the plurality of first coordinate values of the preset dimensions in the The first coordinate change parameter; and calculating a plurality of second coordinate values of the plurality of reference images in the preset dimension according to a preset algorithm, and determining the second coordinates of the plurality of second coordinate values of the preset dimension Variation parameters.
  • the judging whether the second coordinate change parameter is consistent with the first coordinate change parameter includes: determining according to a plurality of first coordinate values in the preset dimension a first coordinate change function; determining a second coordinate change function according to a plurality of second coordinate values in the preset dimension; and judging whether the first coordinate change function is consistent with the second coordinate change function.
  • the first coordinate change parameters corresponding to the plurality of reference world coordinates are determined according to preset shooting conditions
  • the second coordinates of the plurality of reference images are determined according to a preset algorithm
  • the change parameter includes: determining a plurality of standard imaging areas corresponding to the plurality of reference world coordinates of the shooting reference object under the preset shooting conditions, and determining the plurality of standard imaging areas as the first coordinate change parameter and determining a plurality of actual imaging areas of the shooting reference object in the plurality of reference images, and determining the plurality of actual imaging areas as the second coordinate change parameter.
  • the judging whether the second coordinate change parameter is consistent with the first coordinate change parameter includes: determining a first area change function according to the plurality of standard imaging areas; determining a second area change function according to the plurality of actual imaging areas; and judging whether the first area change function is consistent with the second area change function.
  • the method further includes: after determining whether the second coordinate change parameter is consistent with the first coordinate change parameter, if the second coordinate change parameter is consistent with the first coordinate change parameter If the first coordinate change parameter is inconsistent, calculate the coordinate change parameter difference between the second coordinate change parameter and the first coordinate change parameter; and correct the internal camera parameters according to the coordinate change parameter difference.
  • the acquiring multiple reference images captured by the target camera under preset shooting conditions at multiple reference world coordinates includes: acquiring all the images uploaded by the user through a preset calibration verification system The plurality of reference images, and/or, a video containing the plurality of reference images.
  • the method further includes: using the calibration verification system to display a calibration verification result file package of camera intrinsic parameters corresponding to the multiple reference images, wherein the verification result file package including the comparison result between the second coordinate change parameter and the first coordinate change parameter; and downloading the verification result file package in response to a download request of the user for the verification result file package.
  • the present disclosure provides a device for calibration and verification of camera internal parameters, including: an acquisition module, used to acquire the shooting conditions of the target camera under the preset shooting conditions of multiple reference world coordinates multiple reference images, wherein the target camera has been calibrated with camera internal parameters; the determination module is configured to determine the first coordinate change parameters corresponding to the multiple reference world coordinates according to the preset shooting conditions, and to Determining the second coordinate change parameters of the multiple reference images; a judging module, configured to determine whether the second coordinate change parameters are consistent with the first coordinate change parameters; When the coordinate change parameter is consistent with the first coordinate change parameter, a verification message is fed back that the camera intrinsic parameters are calibrated successfully.
  • an acquisition module used to acquire the shooting conditions of the target camera under the preset shooting conditions of multiple reference world coordinates multiple reference images, wherein the target camera has been calibrated with camera internal parameters
  • the determination module is configured to determine the first coordinate change parameters corresponding to the multiple reference world coordinates according to the preset shooting conditions, and to Determining the second coordinate change parameters of the multiple reference images
  • the camera internal reference calibration and verification device further includes: a calibration module, configured to: take a calibration image of a preset calibration object through the target camera, wherein the The preset calibration object includes a calibration point; obtain the standard world coordinates of the calibration point, and the image coordinates of the calibration point in the calibration image; and calculate the camera internal parameters according to the standard world coordinates and the image coordinates .
  • a calibration module configured to: take a calibration image of a preset calibration object through the target camera, wherein the The preset calibration object includes a calibration point; obtain the standard world coordinates of the calibration point, and the image coordinates of the calibration point in the calibration image; and calculate the camera internal parameters according to the standard world coordinates and the image coordinates .
  • the preset shooting conditions include: coordinate change conditions of at least one preset dimension of the plurality of reference world coordinates.
  • the coordinate change conditions include: the condition that the coordinate values of the preset dimensions are fixed; or, the preset dimensions The coordinate values of are incremented according to the condition of the same increment value.
  • the determination module is specifically configured to: calculate the plurality of preset world coordinates according to the preset shooting conditions Set a plurality of first coordinate values of the dimension, and determine the plurality of first coordinate values of the preset dimension as the first coordinate change parameter; and calculate the plurality of reference images according to a preset algorithm in the preset a plurality of second coordinate values of the dimension, and determine a second coordinate change parameter of the plurality of second coordinate values of the preset dimension.
  • the judging module is specifically configured to: determine the first A coordinate change function; determining a second coordinate change function according to a plurality of second coordinate values in the preset dimension; and judging whether the first coordinate change function is consistent with the second coordinate change function.
  • the determination module is specifically used to: A plurality of standard imaging areas corresponding to world coordinates, and determining the plurality of standard imaging areas as the first coordinate change parameter; and determining a plurality of actual imaging areas of the shooting reference object in the plurality of reference images, And determining the plurality of actual imaging areas as the second coordinate change parameter.
  • the judging module is specifically configured to: determine the first area change function according to the multiple standard imaging areas; the plurality of actual imaging areas, determine a second area change function; and judge whether the first area change function is consistent with the second area change function.
  • the device for calibration and verification of camera intrinsic parameters further includes: a calculation module, configured to, when the second coordinate change parameter is inconsistent with the first coordinate change parameter, calculating a coordinate change parameter difference between the second coordinate change parameter and the first coordinate change parameter; and a correction module, configured to correct the camera internal parameters according to the coordinate change parameter difference.
  • the device for calibration and verification of internal camera parameters provided in the present disclosure further includes: an upload module, configured to acquire the multiple reference images uploaded by the user through a preset calibration verification system, and /or, a video containing the multiple reference images.
  • the device for calibration and verification of camera internal parameters further includes: a download module, configured to display the camera internal parameters corresponding to the multiple reference images through the calibration verification system Calibrate the verification result file package, wherein the verification result file package includes the comparison result between the second coordinate change parameter and the first coordinate change parameter, and download the verification result file package in response to the user’s download request The verification result file package.
  • a download module configured to display the camera internal parameters corresponding to the multiple reference images through the calibration verification system Calibrate the verification result file package, wherein the verification result file package includes the comparison result between the second coordinate change parameter and the first coordinate change parameter, and download the verification result file package in response to the user’s download request The verification result file package.
  • the present disclosure provides an electronic device, including: a processor; a memory for storing instructions executable by the processor; The executable instructions are read and executed to implement any method for calibrating and verifying camera internal parameters as provided in the present disclosure.
  • the present disclosure provides a computer-readable storage medium, the storage medium stores a computer program, and the computer program is used to execute any camera described in the present disclosure. Calibration verification method for internal reference.
  • the present disclosure provides a computer program, including: instructions, which when executed by a processor cause the processor to execute any one of the camera programs provided in the present disclosure. Calibration verification method for internal reference.
  • the present disclosure is a computer program product, including instructions, which, when executed by a processor, cause the processor to perform any one of the camera internal parameters as provided in the present disclosure. Calibration verification method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本公开实施例涉及一种相机内参的标定验证方法、装置、设备及介质,其中该方法包括:获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像,其中,目标相机已标定相机内参;根据预设拍摄条件确定多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定多张参考图像的第二坐标变化参量;判断第二坐标变化参量与第一坐标变化参量是否一致;若第二坐标变化参量与第一坐标变化参量一致,则反馈相机内参标定成功的验证消息。由此,将相机内参的标定和验证解耦,提高了相机内参标定验证的准确性,并且相机内参的标定验证自动化执行,为实现相机内参标定的效率提供技术支撑。

Description

相机内参的标定验证方法、装置、设备及介质
相关申请的交叉引用
本申请是以申请号为202110600932.X,申请日为2021年5月31日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及设备生产技术领域,尤其涉及一种相机内参的标定验证方法、装置、设备及介质。
背景技术
相机内参包括焦距fx、fy和相机光心坐标cx、cy,以及相机和惯导之间的时延等,由于相机内参决定了物体从相机坐标到像素坐标的转换关系,因此,相机内参标定的精确性决定了成像质量。
相关技术中,采用棋盘标定法进行相机内参的标定,并且,采用棋盘标定法进行相机内参的验证,即在通过棋盘格角点在图像中的重投影误差完成相机内参标定后,通过棋盘格角点在图像中的重投影误差作为内参验证的度量。
发明内容
根据本公开的一个方面,提供了一种相机内参的标定验证方法,所述方法包括:获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像,其中,所述目标相机已标定相机内参;根据所述预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量;判断所述第二坐标变化参量与所述第一坐标变化参量是否一致;若所述第二坐标变化参量与所述第一坐标变化参量一致,则反馈所述相机内参标定成功的验证消息。
根据本公开的另一个方面,还提供了一种相机内参的标定验证装置,所述装置包括:获取模块,用于获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像,其中,所述目标相机已标定相机内参;确定模块,用于根据所述预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法 确定所述多张参考图像的第二坐标变化参量;判断模块,用于判断所述第二坐标变化参量与所述第一坐标变化参量是否一致;验证反馈模块,用于在所述第二坐标变化参量与所述第一坐标变化参量一致时,反馈所述相机内参标定成功的验证消息。
根据本公开的另一个方面,还提出了一种相机内参的标定验证系统,所述标定验证系统包括上传单元、处理单元和结果反馈单元,所述上传单元,用于接收用户在所述标定验证系统上传的多张参考图像,和/或,包含所述多张参考图像的视频,其中,所述多张参考图像是已标定相机内参的目标相机,在预设的拍摄条件下的多个参考世界坐标的条件下拍摄的;所述处理单元,用于根据所述预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量,并在判断所述第二坐标变化参量与所述第一坐标变化参量一致时生成所述相机内参标定成功的验证消息;所述结果反馈单元,用于反馈所述验证消息。
根据本公开的另一个方面,还提供了一种电子设备,所述电子设备包括:处理器;用于存储所述处理器可执行指令的存储器;所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现如本公开实施例提供的相机内参的标定验证方法。
根据本公开的另一个方面,还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行如本公开实施例提供的相机内参的标定验证方法。
根据本公开的另一个方面,还提供了一种计算机程序,包括:指令,所述指令当由处理器执行时使所述处理器执行如本公开实施例提供的相机内参的标定验证方法。
根据本公开的另一个方面,还提供了一种计算机程序产品,包括指令,所述指令当由处理器执行时使所述处理器执行如本公开实施例提供的相机内参的标定验证方法。
附图说明
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,原件和元素不一定按照比例绘制。
图1为本公开实施例提供的一种相机内参的标定验证方法的流程示意图;
图2为本公开实施例提供的另一种相机内参的标定验证方法的流程示意图;
图3(a)为本公开实施例提供的一种多个参考世界坐标的位置示意图;
图3(b)为本公开实施例提供的另一种多个参考世界坐标的位置示意图;
图4为本公开实施例提供的另一种相机内参的标定验证方法的流程示意图;
图5为本公开实施例提供的另一种相机内参的标定验证方法的流程示意图;
图6(a)为本公开实施例提供的一种多个参考图像的示意图;
图6(b)为本公开实施例提供的另一种多个参考图像的示意图;
图7为本公开实施例所提供的一种相机内参的标定验证系统的结构示意图;
图8(a)为本公开实施例提供的一种相机内参在服务端应用的场景示意图;
图8(b)为本公开实施例提供的另一种相机内参在服务端应用的场景示意图;
图8(c)为本公开实施例提供的另一种相机内参在服务端应用的场景示意图;
图9为本公开实施例提供的一种相机内参的标定验证装置的结构示意图;
图10为本公开实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
应当理解,本公开的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本公开的范围在此方面不受限制。
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目 的,而并不是用于对这些消息或信息的范围进行限制。
本公开的发明人发现,在相关技术中,相机内参的标定和验证过程不独立,标定时的算法和验证时的算法是相同的,当通过棋盘标定法标定的误差较大时,通过同样的棋盘标定法去验证标定的相机内参,可能会导致无法准确验证标定误差。
鉴于此,本公开实施例提供了一种相机内参的标定验证方法,以提高相机内参标定验证的准确性,下面结合具体的实施例对该方法进行介绍。
图1为本公开实施例提供的一种相机内参的标定验证方法的流程示意图,该方法可以由相机内参的标定验证装置执行,其中该装置可以采用软件和/或硬件实现,一般可集成在包含相机的电子设备中,该电子设备包括但不限于智能手机、可穿戴式设备、笔记本电脑等。
如图1所示,该方法包括步骤101至步骤104。
步骤101,获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像,其中,目标相机已标定相机内参。
应当理解的是,本实施例中的目标相机在拍摄参考图像之前,已经标定相机内参,在本实施例中,标定相机内参的方法可以是张定友标定法等任意可实现相机内参确定的算法。
在本公开的一个实施例中,通过目标相机拍摄预设标定物的标定图像,其中,预设标定物包括标定点,其中,预设标定物可以是棋盘等便于定位标定点的物体,进而,获取标定点的标准世界坐标,该标准世界坐标可以是预先在预设标定物上标注好的,进而,提取标定图像中标定点的图像坐标,由于图像坐标体现了标定点映射到二维图像上的结果,因此,可计算标准世界坐标和图像坐标的转换矩阵,将该转换矩阵作为相机内参。
在本实施例中,为了对目标相机的相机内参进行标定结果的验证,预先设置拍摄条件,该拍摄条件下的多个参考世界坐标满足一定的坐标变化条件,从而便于后续进行坐标的比对。即在预设的拍摄条件下的任意多个参考世界坐标是已知的,从而便于后续基于参考世界坐标确定标定误差。进而,为了获取参考世界坐标在二维图像上的转换关系,通过目标相机在多个参考世界坐标下拍摄的参考物的多张参考图像,其中,多个参考世界坐标可以是满足对应的拍摄条件下的任意多个参考世界坐标,参考物可以为任意物体,每个参考世界坐标下都有对应的参考图像,便于确定目标相机由三维到二维之间的转换关系。
需要说明的是,在不同的应用场景中,上述预设的拍摄条件不同,从而,对应的设置的多个参考世界坐标之间的坐标关系不同,具体将在后续实施例中说明,在此不再赘述。
步骤102,根据预设拍摄条件确定多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定多张参考图像的第二坐标变化参量。
可以理解的是,世界坐标下的参考物呈现在参考图像上的坐标变化,反映了相机内参作用下的转换关系,因此,在本实施例中,根据拍摄条件确定多个参考世界坐标对应的第一坐标变化参量,根据预设算法确定多张参考图像的第二坐标变化参量。
需要说明的是,本实施例中的第一坐标变化参量和第二坐标变化参量可以包括任意直接或间接反应坐标变化的参数,比如,可以是坐标值本身的变化参数,又比如,可以是与坐标值有关参考物的面积变化参数等,具体将会在后续实施例中描述,在此不再赘述。
步骤103,判断第二坐标变化参量与第一坐标变化参量是否一致。
步骤104,若第二坐标变化参量与第一坐标变化参量一致,则反馈相机内参标定成功的验证消息。
在本实施例中,判断第二坐标变化参量与第一坐标变化参量是否一致,若是一致,则表明参考物在相机内参的作用下,由世界坐标到像素坐标的转换关系是稳定的,从而,相机内参误差处于一个较低的范围内,反馈相机内参标定成功的验证消息。
由此,本实施例中的相机内参的验证和标定是独立的两个过程,验证相机参数的标定时,从另一个角度即坐标变化参量进行验证,实现了标定和验证的解耦,提高了验证误差的准确性,且验证过程自动化执行,可以规模化应用在相机的生产线上进行标定验证。
综上,本公开实施例的相机内参的标定验证方法,获取目标相机在预设的拍摄条件下的多个参考世界坐标的条件下拍摄的参考物的多张参考图像,其中,目标相机已标定相机内参,进而,确定多个参考世界坐标对应的第一坐标变化参量,以及多张参考图像的第二坐标变化参量,最后,判断第二坐标变化参量与第一坐标变化参量是否一致,若第二坐标变化参量与第一坐标变化参量一致,则反馈相机内参标定成功的验证消息。由此,将相机内参的标定和验证解耦,提高了相机内参标定验证的准确性,并且相机内参的标定验证自动化执行,为实现相机内参标定的效率提供技术支撑。
在本公开的实施例中,由于基于坐标变化参量这一量化参数进行验证,因此,在相机内参的标定验证不通过时,还可以直接根据第二坐标变化参量与第一坐标变化参量进行误差程度的定量,为修正相机内参提供参考。
在本公开的一个实施例中,如图2所示,在判断第二坐标变化参量与第一坐标变化参 量是否一致之后,该方法还包括:
步骤201,若第二坐标变化参量与第一坐标变化参量不一致,则计算第二坐标变化参量与第一坐标变化参量的坐标变化参量差值。
可以理解,本实施例中的第二坐标变化参量与第一坐标变化参量不一致,可以是第二坐标变化参量与第一坐标变化参量的差值大于预设阈值等,为了定量第二坐标变化参量与第一坐标变化参量不一致的程度,计算第二坐标变化参量与第一坐标变化参量的坐标变化参量差值。
比如,当第二坐标变化参量与第一坐标变化参量为Z轴的坐标漂移量时,则若是第一坐标变化参量对应的Z轴的坐标漂移量基本为0,第二坐标变化参量对应的Z轴的坐标漂移量较大,则认为第二坐标变化参量与第一坐标变化参量不一致,从而,将第二坐标变化参量与第一坐标变化参量对应的Z轴的坐标漂移量的差值作为坐标变化参量差值。
步骤202,根据坐标变化参量差值修正相机内参。
需要说明的是,在不同的应用场景中,根据坐标变化参量差值修正相机内参的方式不同,在一些可能的实施例中,可以预先根据时延数据构建坐标变化参量差值与相机内参修正值之间的对应关系,查询该对应关系获取坐标变化参量差值对应的修正值,该修正值可以为正也可以为负,进而,将原始的相机内参与该对应的修正值相加获取修正后的相机内参。
在另一些可能的实施例中,将坐标变化参量差值作为损失值提供给相机内参标定算法,相机内参标定算法重新根据该坐标变化参量差值修正相机内参,直至验证通过。
综上,本公开实施例的相机内参的标定验证方法,当获知相机内参验证失败时,可对相机内参标定误差程度定量,便于提高相机内参标定的效率。
正如以上实施例所描述的,预设的拍摄条件与多个参考世界坐标的坐标变化关系相关,因此也可以理解,预设的拍摄条件可以为任意规定拍摄参考图像时相机位置的条件,下面示例说明:
示例一:
在本示例中,预设拍摄条件为限制多个参考世界坐标的至少一个预设维度的坐标变化条件,该坐标变化条件可以为预设维度的坐标值固定的条件,其中,预设维度可以为X、Y、Z中的任意一个或多个维度。在一些实施例中,为了便于准确验证相机内参,预设维度可以是多个参考世界坐标的坐标值变化关系容易总结的维度。
即比如,图3(a)所示,拍摄条件是拍摄时相机重力方向不变的方向拍摄,则显然对应的多个参考世界坐标的坐标关系为沿着重力方向不变。
该坐标变化条件还可以为预设维度的坐标值根据相同递增值递增的条件,比如,如图3(b)所示,拍摄条件是拍摄时相机重力方向按照固定的递增值递增,则显然对应的多个参考世界坐标的坐标关系为多个参考世界坐标沿着重力方向按照一定的递增值上升。
示例二:
在本示例中,预设拍摄条件可以为根据预设的随机分布函数对相机的拍摄位置进行限定,在本实施例中,按照随机分布函数随机控制相机在对应的随机参考世界坐标的条件下拍摄参考图像,从而,可以后续根据参考图像倒推出的拍摄坐标变化是否符合随机分布函数的分布规律进行相机内参的标定。
综上,本公开实施例的相机内参的标定验证方法,可以通过灵活设置拍摄条件,限定多个参考世界坐标的坐标关系,便于后续进行相机内参的标定验证。
为了使得本领域的技术人员更加清楚的了解,根据第一坐标变化参量以及多张参考图像的第二坐标变化参量进行相机内参误差验证的流程,下面分别以第一坐标变化参量和第二坐标变化参量为坐标和面积进行说明。
示例一:
在本示例中,坐标变化参量是参考物的有关坐标值。
如图4所示,确定多个参考世界坐标对应的第一坐标变化参量,以及多张参考图像的第二坐标变化参量,包括步骤401至步骤402。
步骤401,根据预设拍摄条件计算多个预设世界坐标在预设维度的多个第一坐标值,并确定预设维度的多个第一坐标值为第一坐标变化参量。
其中,预设维度可以是预设拍摄条件对应的X、Y、Z中的任意一个或多个维度。
比如,如图3(a)所示,若是预设拍摄条件下的多个参考世界坐标沿着重力方向不变的方向变化,则由于多个参考世界坐标的Z轴的坐标值几乎不变,则预设维度是Z轴对应的维度;比如,如图3(b)所示,若是预设拍摄条件下的多个参考世界坐标沿着重力方向按照一定的比值上升,则由于多个参考世界坐标的Z轴的坐标值按照固定比值递增变化,则预设维度是Z轴对应的维度等。
在本实施例中,预设维度的多个第一坐标值为第一坐标变化参量,比如,当预设维度为Z轴对应的维度,则将多个Z轴的坐标值作为第一坐标变化参量。
步骤402,根据预设算法计算多张参考图像在预设维度的多个第二坐标值,并确定预 设维度的多个第二坐标值的第二坐标变化参量。
容易理解的是,若是相机内参误差较小,则多张参考图像在预设维度的第二坐标值之间的坐标变化关系,也必然和多个第一坐标值之间的坐标变化关系一致,因此,为了确定相机内参的误差,计算多张参考图像在预设维度的多个第二坐标值,并确定预设维度的多个第二坐标值为第二坐标变化参量。
进一步的,判断第二坐标变化参量与第一坐标变化参量是否一致,对应的是总结多个第一坐标值对应的坐标关系与对应的多个第二坐标值的对应关系是否一致。比如,当多个第一坐标值基本相同,则若是标定的相机内参精确,则对应的多个第二坐标值也基本应当相同。
从而,在本实施例中,继续参照图4,所述方法还包括步骤403至步骤405。
步骤403,根据预设维度下的多个第一坐标值,确定第一坐标变化函数。
应当理解的是,第一坐标变化函数直接总结了多个第一坐标值的坐标变化关系,比如,当多个第二坐标值对应于如图3(a)的示例时,第一坐标变化函数为Z1=a,其中,a为第一坐标值的固定值。
又比如,当多个第二坐标值对应于如图3(b)的示例时,第一坐标变化函数为Z1=c+(t-1),其中,t为多个参考世界坐标按照坐标关系顺序排列后,在队列中的序号,其中,c为任意固定值。
步骤404,根据预设维度下的多个第二坐标值,确定第二坐标变化函数。
在本实施例中,根据预设维度下的多个第二坐标值,确定第二坐标变化函数。比如,计算与多个第一坐标值对应的多个第二坐标值之间的线性或者非线性函数关系。
步骤405,判断第一坐标变化函数和第二坐标变化函数是否一致。
在本实施例中,判断第一坐标变化函数和第二坐标变化函数是否一致。比如,当第一变化函数为Z1=a,则判断第二变化函数是否是Z2=b,其中,b为任意常数值,若否,则显然第一坐标变化函数和第二坐标变化函数不一致,认为相机内参误差较大,若是Z2=b,则认为相机内参误差较小,相机内参标定成功。
又比如,当第一坐标变化函数为Z1=c+(t-1),则判断第二坐标变化函数是否是Z2=d+(t-1),其中,t为多个第二坐标按照对应的第一坐标的顺序排列后,在队列中的序号,d为任意固定值,若否,则显然第一坐标变化函数和第二坐标变化函数不一致,认为相机内参误差较大,若是Z2=d+(t-1),则认为相机内参误差较小,相机内参标定成功。
示例二:
在本示例中,坐标变化参量是参考物的有关面积值。
如图5所示,确定多个参考世界坐标对应的第一坐标变化参量,以及多张参考图像的第二坐标变化参量,包括步骤501至步骤502。
步骤501,确定拍摄参考物在预设拍摄条件下与多个参考世界坐标对应的多个标准成像面积,并确定多个标准成像面积为第一坐标变化参量。
在本实施例中,确定参考物在预设拍摄条件下的多个参考世界坐标下的多个标准成像面积,其中,这里的标准成像面积间接反映了预设拍摄条件下多个参考世界坐标的坐标值变化时参考物的成像面积变化,因此,标准成像面积的确定可以是任意对应出坐标值变化关系的值,而并非是拍摄参考物在相机参数无误差时的真实理想成像面积。
比如,如图3(a)所示,若是多个参考世界坐标(图中示出的是四个参考世界坐标1-4)沿着重力方向不变的方向变化,则由于多个参考世界坐标的Z轴的坐标值几乎不变,参考物垂直于Z轴时,若是相机内参误差较小,则对应的多个标准成像面积是不变的,因此,可以将多个标准成像面积确定为任意一个固定值S1。
又比如,如图3(b)所示,若是多个参考世界坐标(图中示出的是四个参考世界坐标1-4)沿着重力方向按照一定的比值上升,则由于多个参考世界坐标的Z轴的坐标值按照固定比值递增变化,参考物垂直于Z轴时,若是相机内参误差较小,则对应的多个标准成像面积按照一定比值缩小,则确定任意满足该缩小比值的多个值为对应的多个标准成像面积。
步骤502,确定拍摄参考物在多张参考图像中的多个实际成像面积,并确定多个实际成像面积为第二坐标变化参量。
容易理解的是,若是相机内参误差较小,则多张参考图像多个实际成像面积之间的面积值变化关系,也必然和多个标准成像面积之间的面积值变化关系一致,因此,为了确定相机内参的误差,计算多张参考图像在预设维度的多个实际成像面积,并确定实际成像面积为第二坐标变化参量。
进一步的,判断第二坐标变化参量与第一坐标变化参量是否一致,对应的是总结多个实际成像面积对应的面积值变化关系,与对应的多个标准成像面积对应的面积值变化关系是否一致。比如,当多个标准成像面积相同,则若是标定的相机内参精确,则对应的多个实际成像面积也基本应当相同。
从而,在本实施例中,继续参照图5,所述方法还包括步骤503至步骤505。
步骤503,根据多个标准成像面积,确定第一面积变化函数。
应当理解的是,第一坐标变化函数间接总结了预设拍摄条件下多个参考世界坐标的坐标变化关系。比如,当多个参考世界坐标对应于如图3(a)的示例时,且参考物位于垂直于Z轴的方向,比如位于地面,则第一面积变化函数M1=S1,其中,S1为任意常数。
又比如,当多个参考世界坐标对应于如图3(b)的示例时,且参考物位于垂直于Z轴的方向,比如位于地面,则第一面积变化函数M1=S2+(t-1),其中,t为多个标准成像面积按照对应的参考世界坐标的坐标顺序排列后,在队列中的序号,S2为任意固定值。
步骤504,根据多个实际成像面积,确定第二面积变化函数。
在本实施例中,根据多个实际成像面积,确定第二面积变化函数。比如,计算与多个标准成像面积对应的多个实际成像面积之间的面积值的函数关系。
步骤505,判断第一面积变化函数和第二面积变化函数是否一致。
在本实施例中,判断第一面积变化函数和第二面积变化函数是否一致。比如,当第一面积变化函数为M=S1,则判断第二面积变化函数是否是M2=S2,其中,S2为任意常数值,若否,则显然第一面积变化函数和第二面积变化函数不一致,认为相机内参误差较大,若是M2=S2,则认为相机内参误差较小,相机内参标定成功。
在本实施例中,由于同步定位和地图构建算法(Simultaneous Localization and Mapping,SLAM)等算法可以累积上一个图像的漂移,因此,呈现在图像中的参考物的面积漂移从第一个参考图像到最后一个参考图像会越来越大。比如,相机内存会导致参考物成像越来越大,则直观上参考物的实际成像面积会越来越大。比如,相机内存会导致参考物成像越来越小,则直观上参考物的实际成像面积会越来越小。
因此,在本实施例中,当第一面积变化函数为M=S1,还可以直观根据参考图像中,是实际成像面积是否相同来确定相机内参的标定是否成功。
举例而言,当预设拍摄条件下多个参考世界坐标的坐标关系如图3(a)所示时,参考物为圆形物体,则获取对应的多个参考图像中,可以直观的根据圆形图像是否一致来确定相机内参的标定是否成功。若是多个参考图像如图6(a)所示,多张对应的参考图像中的圆形物体的实际成像面积几乎不变,则认为相机内参的标定成功;若是多个参考图像如图6(b)所示,多张对应的参考图像中的圆形物体的实际成像面积明显越来越小,则认为相机内参的标定失败。
综上,本公开实施例的相机内参的标定验证方法,通过任意间接或者直接体现参考物从世界坐标到像素坐标转换关系的坐标变化参量,进行相机内参标定是否成功的验证,该验证方式和相机内参的标定解耦,提高了相机内参验证的准确性。
基于上述实施例,为了降低用户的学习成本,提高相机内参的标定效率,还可以将相机内参的标定验证方法部署到服务端(预设的标定验证系统),用户基于和服务端的前端交互即可实现相机内参的标定,无需掌握具体的标定方式。
在本公开的一个实施例中,获取用户通过预设的标定验证系统上传的多张参考图像,和/或,包含多张参考图像的视频。即在本实施例中,多张参考图像可以是多个离散的图像,也可以来源于一段视频,确定视频中的连续图像帧为对应的多张参考图像。
在本实施例中,后台的标定验证过程无需用户掌握,仅仅通过该标定验证系统显示与多张参考图像对应的相机内参的标定验证结果文件包,其中,验证结果文件包中包括第二坐标变化参量与第一坐标变化参量的比较结果,进而,响应于用户对验证结果文件包的下载请求,下载验证结果文件包。
综上,本公开实施例的相机内参的标定验证方法,将相机内参的标定验证方法部署到预设的标定验证系统,用户基于和服务端的前端交互即可实现相机内参的标定,无需掌握具体的标定方式,降低了用户的学习成本,提高了相机内参的标定效率。
下面具体说明本公开实施例提出的一种相机内参的标定验证系统。如图7是根据本公开提出的一种相机内参的标定验证系统的结构示意图,如图7所示,该相机内参的标定验证系统包括:上传单元710、处理单元720和结果反馈单元730。
上传单元710,用于接收用户在标定验证系统上传的多张参考图像,和/或,包含多张参考图像的视频,其中,多张参考图像是已标定相机内参的目标相机,在预设的拍摄条件下的多个参考世界坐标的条件下拍摄的。
其中,在本公开的一个实施例中,为了便于用户操作,上传单元710还提供了可视化的前端上传操作界面,供用户上传图像或者视频。比如,如图8(a)所示。该上传操作界面上包含多张参考图像,和/或,视频的上传控件。当触发该上传控件时,可以上传在预设拍摄条件下的多个参考世界坐标下拍摄的参考物的多张参考图像。
进而,处理单元720在后台执行本实施例中的相机内参的标定验证过程,根据预设拍摄条件确定多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定多张参考图像的第二坐标变化参量,并在判断第二坐标变化参量与第一坐标变化参量一致时生成相机内参标定成功的验证消息。
在验证完成后,结果反馈单元730可以通过前端可视化方式在验证结果展示界面直接将验证结果进行可视化的展示。比如,如图8(b)所示,在验证第二坐标变化参量与第一坐标变化参量一致时,展示“标定成功”的验证消息。用户无需掌握具体的验证方式,即可进行相机参数的标定验证,降低了相机内参的标定验证的学习成本,提高了相机内参的标定验证的效率,为规模化的相机内参的标定验证提供了技术支撑。
在本实施例中,也可以由结果反馈单元730直接将验证结果以文件包的形式在有关界面直观的展示给用户。当相机内参的标定验证算法布局到系统端,可实现相机内参的标定验证的规模化操作,从而,可以将验证结果以文件包的形式直观的展示给用户。
如图8(c)所示,在验证结果界面上,提供了多个验证结果文件包,每个验证结果文件包的名称中可以包含验证是否成功的字符标志,且每个验证结果文件包后均包含下载控件,可以通过下载控件下载验证结果文件包。该验证结果文件包中可以包括对应目标相机的第二坐标变化参量、第一坐标变化参量、以及坐标变化参量差值等。在本实施例中,可以响应于用户对验证结果文件包的下载请求,下载验证结果文件包。
综上,本公开实施例的相机内参的标定验证系统,以前端可视化的方式与用户进行相机内参的标定的交互,将相机内参的标定验证算法布局到系统端,可实现相机内参的标定验证的规模化操作。
图9为本公开实施例提供的一种相机内参的标定验证装置的结构示意图,该装置可由软件和/或硬件实现,一般可集成在电子设备中相机内参的标定验证。如图9所示,该装置包括:获取模块910、确定模块920、判断模块930和验证反馈模块940。
获取模块910,用于获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像,其中,目标相机已标定相机内参。
确定模块920,用于根据预设拍摄条件确定多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定多张参考图像的第二坐标变化参量。
判断模块930,用于判断第二坐标变化参量与第一坐标变化参量是否一致。
验证反馈模块940,用于在第二坐标变化参量与第一坐标变化参量一致时,反馈相机内参标定成功的验证消息。
本公开实施例所提供的相机内参的标定验证装置可执行本公开任意实施例所提供的相机内参的标定验证方法,具备执行方法相应的功能模块和有益效果。
为了实现上述实施例,本公开还提出一种计算机程序产品,包括计算机程序/指令, 该计算机程序/指令被处理器执行时实现上述实施例中的相机内参的标定验证方法。
为了实现上述实施例,本公开还提出一种计算机程序,包括:指令,所述指令当由处理器执行时使所述处理器执行上述实施例中的相机内参的标定验证方法。
图10为本公开实施例提供的一种电子设备的结构示意图。
下面具体参考图10,其示出了适于用来实现本公开实施例中的电子设备1000的结构示意图。本公开实施例中的电子设备1000可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图10示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图10所示,电子设备1000可以包括处理装置(例如中央处理器、图形处理器等)1001,其可以根据存储在只读存储器(ROM)1002中的程序或者从存储装置1008加载到随机访问存储器(RAM)1003中的程序而执行各种适当的动作和处理。在RAM 1003中,还存储有电子设备1000操作所需的各种程序和数据。处理装置1001、ROM 1002以及RAM 1003通过总线1004彼此相连。输入/输出(I/O)接口1005也连接至总线1004。
通常,以下装置可以连接至I/O接口1005:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置1006;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置1007;包括例如磁带、硬盘等的存储装置1008;以及通信装置1009。通信装置1009可以允许电子设备1000与其他设备进行无线或有线通信以交换数据。虽然图10示出了具有各种装置的电子设备1000,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置1009从网络上被下载和安装,或者从存储装置1008被安装,或者从ROM 1002被安装。在该计算机程序被处理装置1001执行时,执行本公开实施例的相机内参的标定验证方法中限定的上述功能。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可 读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText Transfer Protocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像,其中,目标相机已标定相机内参;根据预设拍摄条件确定多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定多张参考图像的第二坐标变化参量;判断第二坐标变化参量与第一坐标变化参量是否一致;若第二坐标变化参量与第一坐标变化参量一致,则反馈相机内参标定成功的验证消息。由此,将相机内参的标定和验证解耦,提高了相机内参标定验证的准确性,并且相机内参的标定验证自动化执行,为实现相机内参标定的效率提供技术支撑。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言,诸如Java、 Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络包括局域网(LAN)或广域网(WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
根据本公开的一个或多个实施例,本公开提供了一种相机内参的标定验证方法,包括: 获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像,其中,所述目标相机已标定相机内参;根据所述预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量;判断所述第二坐标变化参量与所述第一坐标变化参量是否一致;和若所述第二坐标变化参量与所述第一坐标变化参量一致,则反馈所述相机内参标定成功的验证消息。
根据本公开的一个或多个实施例,所述方法还包括:在所述获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像之前,通过所述目标相机拍摄预设标定物的标定图像,其中,所述预设标定物包括标定点;获取所述标定点的标准世界坐标,以及所述标定点在所述标定图像中的图像坐标;和根据所述标准世界坐标和所述图像坐标计算所述相机内参。
根据本公开的一个或多个实施例,所述预设拍摄条件包括:所述多个参考世界坐标的至少一个预设维度的坐标变化条件。
根据本公开的一个或多个实施例,所述坐标变化条件,包括:所述预设维度的坐标值固定的条件;或,所述预设维度的坐标值根据相同递增值递增的条件。
根据本公开的一个或多个实施例,所述根据预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量,包括:根据所述预设拍摄条件计算所述多个预设世界坐标在预设维度的多个第一坐标值,并确定所述预设维度的多个第一坐标值为所述第一坐标变化参量;和根据预设算法计算所述多张参考图像在所述预设维度的多个第二坐标值,并确定所述预设维度的多个第二坐标值的第二坐标变化参量。
根据本公开的一个或多个实施例,所述判断所述第二坐标变化参量与所述第一坐标变化参量是否一致,包括:根据所述预设维度下的多个第一坐标值,确定第一坐标变化函数;根据所述预设维度下的多个第二坐标值,确定第二坐标变化函数;和判断所述第一坐标变化函数和所述第二坐标变化函数是否一致。
根据本公开的一个或多个实施例,所述根据预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量,包括:确定拍摄参考物在所述预设拍摄条件下与所述多个参考世界坐标对应的多个标准成像面积,并确定所述多个标准成像面积为所述第一坐标变化参量;和确定所述拍摄参考物在所述多张参考图像中的多个实际成像面积,并确定所述多个实际 成像面积为所述第二坐标变化参量。
根据本公开的一个或多个实施例,所述判断所述第二坐标变化参量与所述第一坐标变化参量是否一致,包括:根据所述多个标准成像面积,确定第一面积变化函数;根据所述多个实际成像面积,确定第二面积变化函数;和判断所述第一面积变化函数和所述第二面积变化函数是否一致。
根据本公开的一个或多个实施例,所述方法还包括:在所述判断所述第二坐标变化参量与所述第一坐标变化参量是否一致之后,若所述第二坐标变化参量与所述第一坐标变化参量不一致,则计算所述第二坐标变化参量与所述第一坐标变化参量的坐标变化参量差值;和根据所述坐标变化参量差值修正所述相机内参。
根据本公开的一个或多个实施例,所述获取目标相机在预设拍摄条件下的多个参考世界坐标下拍摄的多张参考图像,包括:获取用户通过预设的标定验证系统上传的所述多张参考图像,和/或,包含所述多张参考图像的视频。
根据本公开的一个或多个实施例,所述方法还包括:通过所述标定验证系统显示与所述多张参考图像对应的相机内参的标定验证结果文件包,其中,所述验证结果文件包中包括所述第二坐标变化参量与所述第一坐标变化参量的比较结果;和响应于用户对所述验证结果文件包的下载请求,下载所述验证结果文件包。
根据本公开的一个或多个实施例,本公开提供了一种相机内参的标定验证装置,包括:获取模块,用于获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像,其中,所述目标相机已标定相机内参;确定模块,用于根据所述预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量;判断模块,用于判断所述第二坐标变化参量与所述第一坐标变化参量是否一致;和验证反馈模块,用于在所述第二坐标变化参量与所述第一坐标变化参量一致时,反馈所述相机内参标定成功的验证消息。
根据本公开的一个或多个实施例,本公开提供的相机内参的标定验证装置中,还包括:标定模块,用于:通过所述目标相机拍摄预设标定物的标定图像,其中,所述预设标定物包括标定点;获取所述标定点的标准世界坐标,以及所述标定点在所述标定图像中的图像坐标;和根据所述标准世界坐标和所述图像坐标计算所述相机内参。
根据本公开的一个或多个实施例,本公开提供的相机内参的标定验证装置中,所述预设拍摄条件包括:所述多个参考世界坐标的至少一个预设维度的坐标变化条件。
根据本公开的一个或多个实施例,本公开提供的相机内参的标定验证装置中,所述坐 标变化条件,包括:所述预设维度的坐标值固定的条件;或,所述预设维度的坐标值根据相同递增值递增的条件。
根据本公开的一个或多个实施例,本公开提供的相机内参的标定验证装置中,所述确定模块,具体用于:根据所述预设拍摄条件计算所述多个预设世界坐标在预设维度的多个第一坐标值,并确定所述预设维度的多个第一坐标值为所述第一坐标变化参量;和根据预设算法计算所述多张参考图像在所述预设维度的多个第二坐标值,并确定所述预设维度的多个第二坐标值的第二坐标变化参量。
根据本公开的一个或多个实施例,本公开提供的相机内参的标定验证装置中,所述判断模块,具体用于:根据所述预设维度下的多个第一坐标值,确定第一坐标变化函数;根据所述预设维度下的多个第二坐标值,确定第二坐标变化函数;和判断所述第一坐标变化函数和所述第二坐标变化函数是否一致。
根据本公开的一个或多个实施例,本公开提供的相机内参的标定验证装置中,所述确定模块,具体用于:确定拍摄参考物在所述预设拍摄条件下与所述多个参考世界坐标对应的多个标准成像面积,并确定所述多个标准成像面积为所述第一坐标变化参量;和确定所述拍摄参考物在所述多张参考图像中的多个实际成像面积,并确定所述多个实际成像面积为所述第二坐标变化参量。
根据本公开的一个或多个实施例,本公开提供的相机内参的标定验证装置中,所述判断模块,具体用于:根据所述多个标准成像面积,确定第一面积变化函数;根据所述多个实际成像面积,确定第二面积变化函数;和判断所述第一面积变化函数和所述第二面积变化函数是否一致。
根据本公开的一个或多个实施例,本公开提供的相机内参的标定验证装置中,还包括:计算模块,用于在所述第二坐标变化参量与所述第一坐标变化参量不一致时,计算所述第二坐标变化参量与所述第一坐标变化参量的坐标变化参量差值;和修正模块,用于根据所述坐标变化参量差值修正所述相机内参。
根据本公开的一个或多个实施例,本公开提供的相机内参的标定验证装置中,还包括:上传模块,用于获取用户通过预设的标定验证系统上传的所述多张参考图像,和/或,包含所述多张参考图像的视频。
根据本公开的一个或多个实施例,本公开提供的相机内参的标定验证装置中,还包括:下载模块,用于通过所述标定验证系统显示与所述多张参考图像对应的相机内参的标定验证结果文件包,其中,所述验证结果文件包中包括所述第二坐标变化参量 与所述第一坐标变化参量的比较结果,响应于用户对所述验证结果文件包的下载请求,下载所述验证结果文件包。
根据本公开的一个或多个实施例,本公开提供了一种电子设备,包括:处理器;用于存储所述处理器可执行指令的存储器;所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现如本公开提供的任一所述的相机内参的标定验证方法。
根据本公开的一个或多个实施例,本公开提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行如本公开提供的任一所述的相机内参的标定验证方法。
根据本公开的一个或多个实施例,本公开提供了一种计算机程序,包括:指令,所述指令当由处理器执行时使所述处理器执行如本公开提供的任一所述的相机内参的标定验证方法。
根据本公开的一个或多个实施例,本公开一种计算机程序产品,包括指令,所述指令当由处理器执行时使所述处理器执行如本公开提供的任一所述的相机内参的标定验证方法。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (18)

  1. 一种相机内参的标定验证方法,包括:
    获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像,其中,所述目标相机已标定相机内参;
    根据所述预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量;
    判断所述第二坐标变化参量与所述第一坐标变化参量是否一致;和
    若所述第二坐标变化参量与所述第一坐标变化参量一致,则反馈所述相机内参标定成功的验证消息。
  2. 如权利要求1所述的方法,还包括:
    在所述获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像之前,通过所述目标相机拍摄预设标定物的标定图像,其中,所述预设标定物包括标定点;
    获取所述标定点的标准世界坐标,以及所述标定点在所述标定图像中的图像坐标;和
    根据所述标准世界坐标和所述图像坐标计算所述相机内参。
  3. 如权利要求1所述的方法,其中,所述预设拍摄条件包括:
    所述多个参考世界坐标的至少一个预设维度的坐标变化条件。
  4. 如权利要求3所述的方法,其中,所述坐标变化条件,包括:
    所述预设维度的坐标值固定的条件;或,
    所述预设维度的坐标值根据相同递增值递增的条件。
  5. 如权利要求1所述的方法,其中,所述根据预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量,包括:
    根据所述预设拍摄条件计算所述多个预设世界坐标在预设维度的多个第一坐标 值,并确定所述预设维度的多个第一坐标值为所述第一坐标变化参量;和
    根据预设算法计算所述多张参考图像在所述预设维度的多个第二坐标值,并确定所述预设维度的多个第二坐标值的第二坐标变化参量。
  6. 如权利要求5所述的方法,其中,所述判断所述第二坐标变化参量与所述第一坐标变化参量是否一致,包括:
    根据所述预设维度下的多个第一坐标值,确定第一坐标变化函数;
    根据所述预设维度下的多个第二坐标值,确定第二坐标变化函数;和
    判断所述第一坐标变化函数和所述第二坐标变化函数是否一致。
  7. 如权利要求1所述的方法,其中,所述根据预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量,包括:
    确定拍摄参考物在所述预设拍摄条件下与所述多个参考世界坐标对应的多个标准成像面积,并确定所述多个标准成像面积为所述第一坐标变化参量;和
    确定所述拍摄参考物在所述多张参考图像中的多个实际成像面积,并确定所述多个实际成像面积为所述第二坐标变化参量。
  8. 如权利要求7所述的方法,其中,所述判断所述第二坐标变化参量与所述第一坐标变化参量是否一致,包括:
    根据所述多个标准成像面积,确定第一面积变化函数;
    根据所述多个实际成像面积,确定第二面积变化函数;和
    判断所述第一面积变化函数和所述第二面积变化函数是否一致。
  9. 如权利要求1所述的方法,还包括:
    在所述判断所述第二坐标变化参量与所述第一坐标变化参量是否一致之后,若所述第二坐标变化参量与所述第一坐标变化参量不一致,则计算所述第二坐标变化参量与所述第一坐标变化参量的坐标变化参量差值;和
    根据所述坐标变化参量差值修正所述相机内参。
  10. 如权利要求1所述的方法,其中,所述获取目标相机在预设拍摄条件下的多个参考世界坐标下拍摄的多张参考图像,包括:
    获取用户通过预设的标定验证系统上传的所述多张参考图像,和/或,包含所述多张参考图像的视频。
  11. 如权利要求10所述的方法,还包括:
    通过所述标定验证系统显示与所述多张参考图像对应的相机内参的标定验证结果文件包,其中,所述验证结果文件包中包括所述第二坐标变化参量与所述第一坐标变化参量的比较结果;和
    响应于用户对所述验证结果文件包的下载请求,下载所述验证结果文件包。
  12. 一种相机内参的标定验证装置,包括:
    获取模块,用于获取目标相机在预设拍摄条件下的多个参考世界坐标的条件下拍摄的多张参考图像,其中,所述目标相机已标定相机内参;
    确定模块,用于根据所述预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量;
    判断模块,用于判断所述第二坐标变化参量与所述第一坐标变化参量是否一致;和
    验证反馈模块,用于在所述第二坐标变化参量与所述第一坐标变化参量一致时,反馈所述相机内参标定成功的验证消息。
  13. 一种相机内参的标定验证系统,包括:
    上传单元,用于接收用户在所述标定验证系统上传的多张参考图像,和/或,包含所述多张参考图像的视频,其中,所述多张参考图像是已标定相机内参的目标相机,在预设的拍摄条件下的多个参考世界坐标的条件下拍摄的;
    处理单元,用于根据所述预设拍摄条件确定所述多个参考世界坐标对应的第一坐标变化参量,并根据预设算法确定所述多张参考图像的第二坐标变化参量,并在判断所述第二坐标变化参量与所述第一坐标变化参量一致时生成所述相机内参标定成功的验证消息;和
    结果反馈单元,用于反馈所述验证消息。
  14. 如权利要求13所述的系统,其中,
    所述结果反馈单还用于:显示所述验证消息对应的验证结果文件包,其中,所述验证结果文件包中包括所述第二坐标变化参量与所述第一坐标变化参量的比较结果;和响应于用户对所述验证结果文件包的下载请求,下载所述验证结果文件包。
  15. 一种电子设备,包括:
    处理器;和
    用于存储所述处理器可执行指令的存储器;
    所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现上述权利要求1-11中任一所述的相机内参的标定验证方法。
  16. 一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-11中任一所述的相机内参的标定验证方法。
  17. 一种计算机程序,包括:
    指令,所述指令当由处理器执行时使所述处理器执行根据权利要求1-11中任一项所述的相机内参的标定验证方法。
  18. 一种计算机程序产品,包括指令,所述指令当由处理器执行时使所述处理器执行根据权利要求1-11中任一项所述的相机内参的标定验证方法。
PCT/CN2022/088716 2021-05-31 2022-04-24 相机内参的标定验证方法、装置、设备及介质 WO2022252873A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/560,030 US20240259549A1 (en) 2021-05-31 2022-04-24 Calibration verification method for camera intrinsic parameter and apparatus, device, and medium
EP22814920.9A EP4318398A4 (en) 2021-05-31 2022-04-24 CALIBRATION AND VERIFICATION METHOD AND APPARATUS FOR INTRINSIC CAMERA PARAMETERS, APPARATUS AND MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110600932.XA CN115482286A (zh) 2021-05-31 2021-05-31 相机内参的标定验证方法、装置、设备及介质
CN202110600932.X 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022252873A1 true WO2022252873A1 (zh) 2022-12-08

Family

ID=84322762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088716 WO2022252873A1 (zh) 2021-05-31 2022-04-24 相机内参的标定验证方法、装置、设备及介质

Country Status (4)

Country Link
US (1) US20240259549A1 (zh)
EP (1) EP4318398A4 (zh)
CN (1) CN115482286A (zh)
WO (1) WO2022252873A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116152350A (zh) * 2022-12-09 2023-05-23 禾多科技(北京)有限公司 内参评估方法、装置、终端及存储介质
CN117433444A (zh) * 2023-12-21 2024-01-23 中铁第一勘察设计院集团有限公司 基于机器视觉测量仪的基坑变形监测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190180476A1 (en) * 2016-08-12 2019-06-13 Olympus Corporation Calibration device, calibration method, optical device, image-acquisition device, and projection device
CN110490938A (zh) * 2019-08-05 2019-11-22 Oppo广东移动通信有限公司 用于校验摄像头标定参数的方法、装置及电子设备
CN110619665A (zh) * 2019-09-12 2019-12-27 西安交通大学 虚拟仿真环境下双目相机的标定及验证方法
CN110689585A (zh) * 2019-10-09 2020-01-14 北京百度网讯科技有限公司 多相机外参的联合标定方法、装置、设备和介质
CN111612852A (zh) * 2020-05-20 2020-09-01 北京百度网讯科技有限公司 用于验证相机参数的方法和装置
CN112184836A (zh) * 2020-10-16 2021-01-05 深圳市道通科技股份有限公司 一种相机标定的方法及相机标定设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9940717B2 (en) * 2014-12-23 2018-04-10 Intel Corporation Method and system of geometric camera self-calibration quality assessment
US10504244B2 (en) * 2017-09-28 2019-12-10 Baidu Usa Llc Systems and methods to improve camera intrinsic parameter calibration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190180476A1 (en) * 2016-08-12 2019-06-13 Olympus Corporation Calibration device, calibration method, optical device, image-acquisition device, and projection device
CN110490938A (zh) * 2019-08-05 2019-11-22 Oppo广东移动通信有限公司 用于校验摄像头标定参数的方法、装置及电子设备
CN110619665A (zh) * 2019-09-12 2019-12-27 西安交通大学 虚拟仿真环境下双目相机的标定及验证方法
CN110689585A (zh) * 2019-10-09 2020-01-14 北京百度网讯科技有限公司 多相机外参的联合标定方法、装置、设备和介质
CN111612852A (zh) * 2020-05-20 2020-09-01 北京百度网讯科技有限公司 用于验证相机参数的方法和装置
CN112184836A (zh) * 2020-10-16 2021-01-05 深圳市道通科技股份有限公司 一种相机标定的方法及相机标定设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUAN FANGLI , XU AIJUN: "An improved fast camera calibration method for mobile visual measurement system", SCIENCE OF SURVEYING AND MAPPING, vol. 44, no. 2, 1 February 2019 (2019-02-01), pages 128 - 135+144, XP093009304, ISSN: 1009-2307, DOI: 10.16251/j.cnki.1009-2307.2019.02.021 *
KOIDE KENJI; MENEGATTI EMANUELE: "General Hand-Eye Calibration Based on Reprojection Error Minimization", IEEE ROBOTICS AND AUTOMATION LETTERS, vol. 4, no. 2, 1 April 2019 (2019-04-01), pages 1021 - 1028, XP011709435, DOI: 10.1109/LRA.2019.2893612 *
See also references of EP4318398A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116152350A (zh) * 2022-12-09 2023-05-23 禾多科技(北京)有限公司 内参评估方法、装置、终端及存储介质
CN116152350B (zh) * 2022-12-09 2023-12-29 禾多科技(北京)有限公司 内参评估方法、装置、终端及存储介质
CN117433444A (zh) * 2023-12-21 2024-01-23 中铁第一勘察设计院集团有限公司 基于机器视觉测量仪的基坑变形监测方法及系统
CN117433444B (zh) * 2023-12-21 2024-03-15 中铁第一勘察设计院集团有限公司 基于机器视觉测量仪的基坑变形监测方法及系统

Also Published As

Publication number Publication date
CN115482286A (zh) 2022-12-16
EP4318398A1 (en) 2024-02-07
EP4318398A4 (en) 2024-09-25
US20240259549A1 (en) 2024-08-01

Similar Documents

Publication Publication Date Title
WO2022252873A1 (zh) 相机内参的标定验证方法、装置、设备及介质
CN110988849A (zh) 雷达系统的标定方法、装置、电子设备及存储介质
CN113674357B (zh) 相机外参标定方法、装置、电子设备和计算机可读介质
CN109859216B (zh) 基于深度学习的测距方法、装置、设备及存储介质
CN113255619B (zh) 车道线识别及定位方法、电子设备和计算机可读介质
CN114399588B (zh) 三维车道线生成方法、装置、电子设备和计算机可读介质
CN111986265B (zh) 用于标定相机方法、装置、电子设备和介质
CN113327318B (zh) 图像显示方法、装置、电子设备和计算机可读介质
JP2022531186A (ja) 情報処理方法、装置、電子機器、記憶媒体およびプログラム
CN114445597B (zh) 三维车道线生成方法、装置、电子设备和计算机可读介质
CN116182878A (zh) 道路曲面信息生成方法、装置、设备和计算机可读介质
CN116079697A (zh) 一种基于图像的单目视觉伺服方法、装置、设备及介质
CN113379852B (zh) 用于验证相机标定结果的方法、装置、电子设备和介质
CN111586295B (zh) 图像生成方法、装置和电子设备
CN114140538B (zh) 车载相机位姿调整方法、装置、设备和计算机可读介质
US20220237824A1 (en) Distortion calibration method for ultra-wide angle imaging apparatus, system and photographing device including same
CN116740382A (zh) 障碍物信息生成方法、装置、电子设备和计算机可读介质
CN115187673A (zh) 一种扫描仪标定方法、装置、电子设备及存储介质
JP5760558B2 (ja) カメラシミュレーション装置、カメラシミュレーション方法、及びカメラシミュレーションプログラム
CN112132909B (zh) 参数获取方法及装置、媒体数据处理方法和存储介质
CN116630436B (zh) 相机外参修正方法、装置、电子设备和计算机可读介质
CN115482275B (zh) 位置参数获取方法、装置、设备及介质
CN113096194B (zh) 确定时序的方法、装置、终端及非暂时性存储介质
CN114494428B (zh) 车辆位姿矫正方法、装置、电子设备和计算机可读介质
CN112013793B (zh) 加速器机架角度质控方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022814920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18560030

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022814920

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE