WO2022252662A1 - 一种权值确定方法及相关装置 - Google Patents

一种权值确定方法及相关装置 Download PDF

Info

Publication number
WO2022252662A1
WO2022252662A1 PCT/CN2022/074334 CN2022074334W WO2022252662A1 WO 2022252662 A1 WO2022252662 A1 WO 2022252662A1 CN 2022074334 W CN2022074334 W CN 2022074334W WO 2022252662 A1 WO2022252662 A1 WO 2022252662A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
downlink
uplink
reference signal
parameter
Prior art date
Application number
PCT/CN2022/074334
Other languages
English (en)
French (fr)
Inventor
邱双
汪智勇
姜玥
杨建强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22814711.2A priority Critical patent/EP4318970A1/en
Publication of WO2022252662A1 publication Critical patent/WO2022252662A1/zh
Priority to US18/521,787 priority patent/US20240106514A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a weight determination method and a related device.
  • Massive multiple input multiple output is an antenna system that uses multiple antennas on both the network device side and the user device side to form multiple channels. Massive MIMO technology greatly improves the channel capacity.
  • the uplink and downlink channels of a frequency division duplexing (FDD) system use different communication frequency bands. There is a large deviation from the weight of the ideal downlink reference signal, resulting in loss of downlink beam gain.
  • FDD frequency division duplexing
  • An embodiment of the present application provides a method for determining a weight, which is used to reduce a weight deviation of a downlink reference signal, thereby increasing a gain of a downlink beam.
  • the first aspect of the embodiment of the present application provides a weight determination method, which can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device, or by A logical module or software implementation that can realize all or part of the network device functions.
  • the weight determination method provided in the first aspect includes: receiving an uplink reference signal, and obtaining the channel reciprocity parameter between the uplink channel and the downlink channel based on the uplink reference signal; according to the channel reciprocity parameter and the carrier frequency of the uplink channel and the downlink channel The information determines the state information of the downlink channel, and determines the weight value of the downlink reference signal according to the state information of the downlink channel.
  • the network device based on the reciprocity between the uplink channel and the downlink channel and the carrier frequency information, obtains the state information of the downlink channel according to the uplink reference signal, and further determines the accurate weight of the downlink reference signal according to the state information of the downlink channel. value, thereby reducing the weight deviation of the downlink reference signal and improving the accuracy of beam selection.
  • the uplink reference signal includes the sounding reference signal SRS or the demodulation reference signal;
  • the reciprocity parameter includes fading or overall phase, the overall phase is determined based on the channel reciprocity related to the carrier frequency, and the carrier frequency information includes the uplink The frequency of the channel and the frequency of the downlink channel.
  • the channel reciprocity parameter includes a first channel reciprocity parameter and a second channel reciprocity parameter, wherein the first channel reciprocity parameter is related to the amplitude and phase corresponding to the multipath channel, The second channel reciprocity parameter is related to the distance and angle corresponding to the multipath channel.
  • the first reciprocity parameter and the second reciprocity parameter are determined based on a one-dimensional relaxation algorithm.
  • the channel reciprocity parameter also includes the amplitude, phase, distance or angle corresponding to the multipath channel, wherein the distance includes the propagation distance, the horizontal distance of the antenna element or the vertical distance of the antenna element, and the angle includes the horizontal azimuth angle and vertical azimuth.
  • the network device jointly determines the first mutual trust parameter and the second reciprocity parameter based on the one-dimensional relaxation algorithm based on the one-dimensional relaxation algorithm, which simplifies the calculation amount of estimating the state information of the downlink channel.
  • the channel reciprocity parameters include a third channel reciprocity parameter, a fourth channel reciprocity parameter, a fifth channel reciprocity parameter, and a sixth channel reciprocity parameter, where the first The three channel reciprocity parameters are related to the amplitude, phase and distance corresponding to the multipath channel, the fourth channel reciprocity parameter is related to the distance corresponding to the multipath channel, the fifth channel reciprocity parameter and the sixth channel reciprocity The parameters are related to the distance and angle corresponding to the multipath channel.
  • the network device jointly determines the third mutual trust parameter, the fourth reciprocity parameter and the fifth reciprocity parameter based on the three-dimensional relaxation algorithm based on the subcarrier and the antenna array, which improves the accuracy of the network device in estimating the state information of the downlink channel. Spend.
  • the process of determining the weight of the downlink reference signal according to the state information of the downlink channel includes: determining the beam energy of at least one beam based on the state information of the downlink channel, at least one beam is a beam corresponding to the downlink channel, Determine the weight of the downlink reference signal according to the energy of the beam.
  • the beam energy can be represented by the reference signal received power RSRP or the r vector determined based on the capon algorithm, and the beam whose beam energy satisfies the preset condition is determined as the target beam, and the weight of the downlink reference signal is determined according to the target beam value.
  • the network device selects the beam according to the beam energy, and further determines the weight of the downlink reference signal, thereby reducing the loss of beam gain and improving the accuracy of the weight of the downlink reference signal.
  • the process of determining the beam energy of the at least one beam based on the state information of the downlink channel includes determining the beam energy of the at least one beam based on the channel covariance matrix of the downlink channel.
  • the second aspect of the embodiment of the present application provides a weight determination method, which can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device, or by A logical module or software implementation that can realize all or part of the network device functions.
  • the weight determination method provided in the second aspect includes: obtaining a phase difference based on the carrier frequency information of the uplink channel and the carrier frequency information of the downlink channel, and the phase difference is the phase difference between the phase corresponding to the first beam and the phase corresponding to the second beam , the first beam is associated with the carrier frequency of the uplink channel, the second beam is associated with the carrier frequency of the downlink channel, the first beam is corrected according to the phase difference to obtain the corrected first beam, and the downlink reference signal is determined according to the corrected first beam weight.
  • the network device corrects the first beam according to the phase difference between the first beam and the second beam based on the reciprocity of the beam main lobe azimuth angles of the uplink channel and the downlink channel, so that the corrected first beam
  • the weight of the downlink reference signal is determined, thereby reducing the weight deviation of the downlink reference signal and improving the accuracy of beam selection.
  • the process of obtaining the phase difference based on the carrier frequency of the uplink channel and the carrier frequency of the downlink channel includes: obtaining the azimuth angle of the second beam according to the carrier frequency of the downlink channel and the phase corresponding to the second beam, and according to the first The phase corresponding to the first beam is obtained from the azimuth angles of the two beams and the carrier frequency of the uplink channel, and a phase difference is obtained according to the phase corresponding to the first beam and the phase corresponding to the second beam.
  • the phase of the first beam is acquired based on the reciprocity of the uplink and downlink channel azimuth angles and the corresponding relationship between the beam azimuth angle and the phase.
  • the phase difference includes a phase difference in a horizontal direction and a phase difference in a vertical direction.
  • the network device corrects the phase of the first wave beam so that the azimuth angles of the main lobes of the uplink and downlink beams are aligned, and the network device determines the weight of the downlink reference signal based on the reference signal of the uplink channel, which improves the determination of the weight accuracy.
  • the state information of the uplink channel is obtained, and the state information of the downlink channel is determined according to the corrected first beam and the state information of the uplink channel.
  • the network device can determine the state information of the downlink channel according to the corrected first beam and the state information of the uplink channel, which simplifies the estimation of the state information of the downlink channel.
  • the process of determining the weight of the downlink reference signal according to the corrected first beam includes: determining the beam energy of the second beam based on the corrected first beam, and determining the weight of the downlink reference signal according to the beam energy value.
  • the beam energy may be characterized by a reference signal received power RSRP or an r vector determined based on a capon algorithm.
  • the network device selects the beam according to the beam energy, and further determines the weight of the downlink reference signal, thereby reducing the loss of beam gain and improving the accuracy of the weight of the downlink reference signal.
  • determining the beam energy of the second beam based on the corrected first beam includes: determining the beam energy of the second beam based on the beam energy of the first beam before correction and the first beam after correction.
  • the network device performs beam selection according to the historically known beam energy of the first beam, and further determines the weight of the downlink reference signal, which simplifies the calculation complexity of the beam energy of the second beam.
  • the process of determining the beam energy of the second beam based on the corrected first beam includes: determining the beam energy of the second beam based on the channel covariance matrix of the uplink channel corresponding to the corrected first beam.
  • the third aspect of the embodiment of the present application provides a weight determination method, which can be executed by a terminal, or by a component of the terminal, such as a processor, a chip, or a chip system of the terminal, or by a method that can realize all Or a logic module or software implementation of some terminal functions.
  • the weight determination method provided by the third aspect includes: receiving the downlink reference signal, obtaining the channel reciprocity parameter between the uplink channel and the downlink channel based on the downlink reference signal, and according to the channel reciprocity parameter and the carrier frequency of the uplink channel and the downlink channel The information determines the state information of the uplink channel, and determines the weight value of the uplink reference signal according to the state information of the uplink channel.
  • the terminal based on the reciprocity between the uplink channel and the downlink channel and the carrier frequency information, the terminal obtains the state information of the uplink channel according to the downlink reference signal, and further determines the accurate weight value of the uplink reference signal according to the state information of the uplink channel , thereby reducing the weight deviation of the uplink reference signal and improving the accuracy of beam selection.
  • the channel reciprocity parameter includes a first channel reciprocity parameter and a second channel reciprocity parameter, wherein the first channel reciprocity parameter is related to the amplitude and phase corresponding to the multipath channel , the second channel reciprocity parameter is related to the distance and angle corresponding to the multipath channel.
  • the terminal unites subcarriers to determine the first mutual trust parameter and the second reciprocity parameter based on the one-dimensional relaxation algorithm, which simplifies the amount of calculation for estimating the state information of the uplink channel.
  • the channel reciprocity parameters include a third channel reciprocity parameter, a fourth channel reciprocity parameter, a fifth channel reciprocity parameter, and a sixth channel reciprocity parameter, where the first The three channel reciprocity parameters are related to the amplitude and distance corresponding to the multipath channel, the fourth channel reciprocity parameter is related to the distance corresponding to the multipath channel, the fifth channel reciprocity parameter and the sixth channel reciprocity parameter are related to The distance corresponding to the multipath channel is related to the angle.
  • the terminal jointly determines the third mutual trust parameter, the fourth reciprocity parameter, and the fifth reciprocity parameter based on the three-dimensional relaxation algorithm based on the subcarrier and the antenna array, which improves the accuracy of the terminal in estimating the state information of the uplink channel.
  • determining the weight value of the uplink reference signal according to the state information of the uplink channel includes: determining the beam energy of at least one beam based on the state information of the uplink channel, at least one beam is a beam corresponding to the uplink channel, according to The beam energy determines the weight of the uplink reference signal.
  • the terminal performs beam selection according to the beam energy, and further determines the weight of the uplink reference signal, thereby reducing the loss of beam gain and improving the accuracy of the weight of the uplink reference signal.
  • the process of determining the beam energy of the at least one beam based on the state information of the uplink channel includes determining the beam energy of the at least one beam based on the channel covariance matrix of the uplink channel.
  • the fourth aspect of the embodiment of the present application provides a weight determination method, which can be executed by a terminal, or by a component of the terminal, such as a processor, a chip, or a chip system of the terminal, or by a method that can realize all Or a logic module or software implementation of some terminal functions.
  • the weight determination method provided in the fourth aspect includes: obtaining a phase difference based on the carrier frequency information of the uplink channel and the carrier frequency information of the downlink channel, and the phase difference is the phase difference between the phase corresponding to the first beam and the phase corresponding to the second beam , the first beam is associated with the carrier frequency of the downlink channel, and the second beam is associated with the carrier frequency of the uplink channel; correct the first beam according to the phase difference to obtain the corrected first beam; determine the uplink reference signal according to the corrected first beam weight.
  • the terminal corrects the first beam according to the phase difference between the first beam and the second beam based on the reciprocity of the beam main lobe azimuth angles of the uplink channel and the downlink channel, and then determines according to the corrected first beam
  • the weight of the uplink reference signal reduces the weight deviation of the uplink reference signal and improves the accuracy of beam selection.
  • obtaining the phase difference based on the carrier frequency of the uplink channel and the carrier frequency of the downlink channel includes: obtaining the azimuth angle of the first beam and the phase corresponding to the first beam according to the carrier frequency of the downlink channel; The azimuth of the beam and the carrier frequency of the uplink channel obtain the phase corresponding to the second beam; and obtain the phase difference according to the phase corresponding to the first beam and the phase corresponding to the second beam.
  • the terminal corrects the phase of the first wave beam so that the azimuth angles of the main lobes of the uplink and downlink beams are aligned, and the terminal determines the weight of the uplink reference signal based on the reference signal of the downlink channel, which improves the accuracy of weight determination sex.
  • the terminal obtains the state information of the downlink channel, and determines the state information of the uplink channel according to the corrected first beam and the state information of the downlink channel.
  • the terminal can determine the state information of the downlink channel according to the corrected first beam and the state information of the uplink channel, which simplifies the estimation of the state information of the downlink channel.
  • the process of determining the weight of the uplink reference signal according to the corrected first beam includes: determining the beam energy of the second beam based on the corrected first beam, and determining the weight of the downlink reference signal according to the beam energy. weight.
  • the terminal performs beam selection according to the beam energy, and further determines the weight of the uplink reference signal, thereby reducing the loss of beam gain and improving the accuracy of the weight of the uplink reference signal.
  • the process of determining the beam energy of the second beam based on the corrected first beam includes: the terminal determines the beam energy of the second beam based on the beam energy of the first beam before correction and the corrected first beam energy.
  • the terminal performs beam selection according to the historically known beam energy of the first beam, and further determines the weight of the uplink reference signal, which simplifies the calculation complexity of the beam energy of the second beam.
  • the process of determining the beam energy of the second beam based on the corrected first beam includes: determining the beam energy of the second beam based on the channel covariance matrix of the downlink channel corresponding to the corrected first beam.
  • the fifth aspect of the embodiment of the present application provides a communication device, the communication device includes a unit or module for performing the method described in the first aspect and any one of the implementation modes or the second aspect and any one of the possible implementation modes .
  • the units or modules included in the communication device may be implemented by means of software and/or hardware.
  • the communication device can be, for example, a network device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a logic module or software that can realize all or part of the functions of the network device.
  • the sixth aspect of the embodiment of the present application provides a communication device, the communication device includes a unit or module for performing the method described in the third aspect and any one of the implementation modes or the fourth aspect and any possible implementation mode .
  • the units or modules included in the communication device may be implemented by software and/or hardware.
  • the communication device may be, for example, a terminal, or a chip, a chip system, or a processor that supports the terminal to implement the above method.
  • the seventh aspect of the embodiment of the present application provides a communication device, including: a processor, the processor is coupled with a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the device executes the above first aspect And any implementation manner of the first aspect or the method of the second aspect and any possible implementation manner of the second aspect.
  • the eighth aspect of the embodiment of the present application provides a communication device, including: a processor, the processor is coupled with a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the device executes the above third aspect And any implementation manner of the third aspect or the method of the fourth aspect and any possible implementation manner of the fourth aspect.
  • a ninth aspect of the embodiment of the present application provides a communication system, the communication system includes the communication device of the fifth aspect and the communication device of the seventh aspect, or the communication system includes the communication device of the sixth aspect and the communication device of the eighth aspect.
  • the tenth aspect of the embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a program.
  • the program executes the first aspect and any possible implementation of the first aspect.
  • the method provided by the method, or make the computer execute the method provided by the second aspect and any possible implementation manner of the second aspect, or make the computer execute the third aspect and any possible implementation manner of the third aspect
  • the eleventh aspect of the embodiment of the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on the computer, the computer can realize any one of the first aspect and the first aspect.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flow chart of a weight determination method provided in an embodiment of the present application.
  • FIG. 3a is a schematic diagram of a two-dimensional planar antenna array provided by an embodiment of the present application.
  • Fig. 3b is a schematic flow chart of another weight determination method provided by the embodiment of the present application.
  • Fig. 4a is a schematic flow chart of another weight determination method provided by the embodiment of the present application.
  • Fig. 4b is a schematic flow chart of another weight determination method provided by the embodiment of the present application.
  • Fig. 5a is a schematic diagram of a horizontal beam azimuth provided by an embodiment of the present application.
  • Fig. 5b is a schematic diagram of a corrected horizontal beam azimuth provided by the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another weight determination method provided in the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another weight determination method provided in the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Embodiments of the present application provide a weight determination method and a related device, which are used to reduce beam gain loss caused by beam selection deviation.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • the reference signal can generally be used for channel estimation, or auxiliary signal demodulation and detection.
  • Reference signals include, for example: demodulation reference signal (demodulation reference signal, DMRS), channel state information reference signal (channel state information reference signal, CSI-RS), phase tracking reference signal (phase tracking reference signal, PTRS), sounding reference signal (sounding reference signal, SRS) and so on.
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • PTRS phase tracking reference signal
  • SRS sounding reference signal
  • SRS sounding reference signal
  • the uplink and downlink channels of frequency division duplexing use different communication frequency bands, including the uplink channel frequency band and the downlink channel frequency band.
  • the uplink channel frequency band provides the signal transmission channel from the terminal device to the network device
  • the downlink channel frequency band provides the Signal transmission channel from network equipment to terminal equipment.
  • the duplex channel is composed of two simplex channels, and the duplexer in the terminal equipment and network equipment is used to allow the transmission and reception of wireless signals on the duplex channel at the same time.
  • the reference signal receiving power (reference signal receiving power, RSRP) is the average value of the signal power received on the resource element (resource element, RE) carrying the reference signal in a certain symbol.
  • RSRP is used in the communication network to indicate the wireless signal A parameter of strength.
  • Conjugate transpose A H , example in, The complex conjugate numbers representing the elements of A are matrices of elements.
  • Diagonal matrix diag(A), example
  • the communication system shown in FIG. 1 is taken as an example below to describe the system architecture applicable to the method provided by the embodiment of the present application. As shown in FIG. 1 , it is a communication system 10 provided by the embodiment of the present application.
  • the communication system 10 includes at least one network device 20 and one or more terminal devices 30 connected to the network device 20 . Further, different terminal devices 30 can communicate with each other.
  • the network device 20 involved in this application is a device that connects the terminal device 30 to a wireless network, such as an evolved base station (evolutional Node B, eNB or eNodeB) in LTE; or a 5G network, 6G network or future A base station in an evolved public land mobile network (PLMN), a broadband network gateway (broadband network gateway, BNG), an aggregation switch or a non-3GPP access device; or the network device 20 in the embodiment of the present application also It may be a wireless controller in a cloud radio access network (cloud radio access network, CRAN); or a transmission and reception point (TRP), or a device including a TRP, etc., which is not specifically limited in this embodiment of the present application .
  • a wireless network such as an evolved base station (evolutional Node B, eNB or eNodeB) in LTE; or a 5G network, 6G network or future
  • PLMN evolved public land mobile network
  • BNG broadband network gateway
  • BNG broadband network
  • the base stations in the embodiments of the present application may include various forms of base stations, for example: macro base stations, micro base stations (also called small stations), relay stations, access points, etc. Not specifically limited.
  • the network device 20 in the embodiment of the present application may also refer to a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU), or the network device may also be a CU and a DU consist of. Multiple DUs can share one CU. One DU can also be connected to multiple CUs. CU and DU can be understood as the division of network devices from the perspective of logical functions. Wherein, the CU and the DU may be physically separated or deployed together, which is not specifically limited in this embodiment of the present application. The CU and the DU may be connected through an interface, such as an F1 interface. CU and DU can be divided according to the protocol layer of the wireless network.
  • radio resource control radio resource control
  • service data adaptation protocol stack service data adaptation protocol, SDAP
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • functions such as the radio link control (radio link control, RLC) protocol layer, media access control (media access control, MAC) protocol layer, and physical (physical, PHY) protocol layer are set in the DU.
  • a CU or DU can be divided into functions with more protocol layers.
  • a CU or DU can also be divided into some processing functions having a protocol layer.
  • part of the functions of the RLC layer and the functions of the protocol layers above the RLC layer are set in the CU, and the rest of the functions of the RLC layer and the functions of the protocol layers below the RLC layer are set in the DU.
  • the functions of the CU or DU may also be divided according to service types or other system requirements. For example, according to delay, the functions whose processing time needs to meet the delay requirement are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio functions, or the radio functions can be set remotely.
  • a CU can be composed of a CU control plane (CU control plane, CU-CP) and a CU user plane (CU user plane, CU-UP).
  • Logical functional perspectives are divided.
  • the CU-CP and CU-UP can be divided according to the protocol layer of the wireless network.
  • the functions of the RRC protocol layer and the PDCP protocol layer corresponding to the signaling radio bearer (Signal radio bearer, SRB) are set in the CU-CP
  • the data radio bearer, DRB are set in the CU-UP.
  • the functions of the SDAP protocol layer may also be set in the CU-UP.
  • the terminal device 30 involved in this application may be a device for implementing wireless communication functions, such as a terminal or a chip that may be used in a terminal.
  • the terminal may be a user equipment (user equipment, UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, or a mobile device in IoT, a 5G network, or a future evolved PLMN. , wireless communication equipment, terminal agents or terminal devices, etc.
  • An access terminal may be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, industrial control (industrial Wireless terminals in control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc. Terminals can be mobile or fixed.
  • the communication system shown in FIG. 1 is only used as an example, and is not used to limit the technical solution of the present application. Those skilled in the art should understand that, in a specific implementation process, the communication system may also include other devices, which is not limited.
  • the methods provided in the embodiments of the present application may be executed by various communication devices, such as network devices and terminal devices.
  • the method for determining the weight value provided by the embodiment of the present application is introduced below by taking a network device as an example and referring to the accompanying drawings.
  • the method provided by the embodiment of the present application may be executed by a communication device, or by a component of the communication device, such as a processor, a chip, or a chip system of the communication device, or by a device capable of implementing all or part of the A logical module or software implementation of the functionality of a communication device.
  • FIG. 2 is a schematic flowchart of a weight determination method provided in the embodiment of the present application.
  • the weight determination method provided in the embodiment of the present application includes:
  • the network device receives the uplink reference signal sent by the terminal device, for example, the uplink reference signal includes a sounding reference signal SRS and a demodulation reference signal (demodulation reference signal, DMRS).
  • the network device obtains state information of the uplink channel according to the received uplink reference signal.
  • the network device obtains the channel reciprocity parameter between the uplink channel and the downlink channel based on the uplink reference signal.
  • the channel reciprocity parameter is obtained based on the channel reciprocity between the uplink channel and the downlink channel.
  • the channel reciprocity parameter corresponds to the multipath channel One or more of the magnitude, phase, angle or distance of , wherein the distance includes the propagation distance, the horizontal distance of the antenna element or the vertical distance of the antenna element, and the angle includes the horizontal azimuth or the vertical azimuth.
  • Fig. 3a is a schematic diagram of a two-dimensional planar antenna array in the embodiment of the present application, as shown in Fig. 3a, the antenna panel (antenna panel) array is placed on the yoz plane, assuming that there are M antenna elements in the horizontal direction of the antenna panel (antenna element), there are N antenna elements in the vertical direction.
  • d H represents the distance between antenna elements in the horizontal direction
  • d V represents the distance between antenna elements in the vertical direction
  • represents the wavelength
  • the network device estimates the uplink channel according to the steering vector. For example, the uplink channel corresponding to the i-th subcarrier of the m-th antenna element in the horizontal direction and the n-th antenna element in the vertical direction satisfies the following formula (2):
  • dp represents the distance corresponding to the multipath channel
  • ⁇ p and ⁇ p are the angles corresponding to the multipath channel
  • ⁇ f represents the carrier spacing, Indicates the uplink starting frequency
  • the above-mentioned uplink channel satisfies the following formula:
  • the network device can obtain the channel reciprocity parameter through various algorithms.
  • the network device can obtain the channel reciprocity parameter through the one-dimensional relaxation (1D-RELAX) algorithm by combining subcarriers, or through the joint antenna array
  • the channel reciprocity parameter is obtained by using a three-dimensional relaxation (3D-RELAX) algorithm with subcarriers, which is not specifically limited.
  • the network device obtains the channel reciprocity parameter through the 1D-RELAX algorithm
  • the channel reciprocity parameter obtained by the network device through the 1D-RELAX algorithm includes the first channel reciprocity parameter and the second channel reciprocity parameter.
  • Channel reciprocity parameters the first channel reciprocity parameter is related to the amplitude and phase corresponding to the multipath channel
  • the second channel reciprocity parameter is related to the distance and angle corresponding to the multipath channel, for example, the first channel reciprocity sex parameter for fading
  • the second channel reciprocity parameter is the phase
  • the network device further transforms the above formula (5), and the uplink channel satisfies the following formula:
  • the channel reciprocity parameters estimated by the network equipment through the 1D-RELAX algorithm based on the formula of the uplink channel include the overall fading and overall aspect in and Satisfy the following formula:
  • the network device obtains the channel reciprocity parameter through the 3D-RELAX algorithm
  • the channel reciprocity parameter obtained by the network device through the 3D-RELAX algorithm includes the third channel reciprocity parameter, the first A four-channel reciprocity parameter, a fifth-channel reciprocity parameter, and a sixth-channel reciprocity parameter.
  • the third channel reciprocity parameter is related to the corresponding amplitude, phase and distance of the multipath channel
  • the fourth channel reciprocity parameter is related to the corresponding distance of the multipath channel
  • the fifth channel reciprocity parameter is related to the distance corresponding to the multipath channel is related to the angle
  • the sixth reciprocity parameter is related to the distance and angle corresponding to the multipath channel, for example, the third channel reciprocity parameter is The fourth channel reciprocity parameter is The fifth channel reciprocity parameter is The sixth channel reciprocity parameter is
  • the network device further transforms the above formula (5), and the uplink channel satisfies the following formula:
  • the channel reciprocity parameters estimated by the 3D-RELAX algorithm include and in and Satisfy the following formula:
  • corresponding to multipath channel, phase corresponding to multipath channel It is related to the distance d p corresponding to the multipath channel, is related to the distance d p corresponding to the multipath channel, It is related to the distance d H , angle ⁇ p and angle ⁇ p corresponding to the multipath channel, It is related to the distance d V and the angle ⁇ p corresponding to the multipath channel.
  • the network device determines the state information of the downlink channel according to the channel reciprocity parameter and the carrier frequency information of the uplink channel and the downlink channel.
  • the channel reciprocity parameter includes the first channel reciprocity parameter, for example and a second channel reciprocity parameter, such as Alternatively, a third channel reciprocity parameter such as Fourth channel reciprocity parameters, such as Fifth channel reciprocity parameters such as and sixth channel reciprocity parameters, such as
  • the carrier frequency information of the uplink channel includes the uplink start frequency or uplink center frequency of the uplink channel.
  • the uplink start frequency is, for example, Uplink center frequency such as
  • the carrier frequency information of the downlink channel includes the downlink start frequency or downlink center frequency of the downlink channel.
  • the downlink start frequency is, for example, Downlink center frequency such as
  • the channel reciprocity parameter obtained by the network device according to the 1D-RELAX algorithm and as well as and The state information of the downlink channel is obtained, and the state information of the downlink channel satisfies the following formula (14):
  • the channel reciprocity parameter obtained by the network device according to the 3D-RELAX algorithm and as well as and The state information of the downlink channel is obtained, and the state information of the downlink channel satisfies the following formula (15):
  • the network device determines the weight of the downlink reference signal according to the state information of the downlink channel. Specifically, the network device determines the beam energy of at least one beam based on the state information of the downlink channel, and the network device determines the weight of the downlink reference beam according to the beam energy.
  • the beam energy Including the reference signal receiving power (reference signal receiving power, RSRP) or the r vector based on the capon algorithm.
  • the beam corresponding to the downlink channel is B DL , then B DL satisfies the following formula (16):
  • W DFT is the weight matrix of the beam corresponding to the uplink channel
  • HDL indicates the state information of the reconstructed downlink channel.
  • the process of the network device determining the weight value of the downlink reference signal according to the state information of the downlink channel includes: the network device determines the beam corresponding to the carrier frequency information of the downlink channel according to the state information of the downlink reference signal, and according to the at least one beam The beam energy determines the weight of the downlink reference signal.
  • the RSRP determined by the network device satisfies the following formula (17):
  • the network device determines the beam energy of at least one beam based on the channel covariance matrix of the downlink channel, for example, when the beam energy is When referring to the signal received power RSRP, the RSRP determined by the network device satisfies the following formula (18):
  • R DL E ⁇ H ⁇ H H ⁇
  • R DL is the channel covariance matrix of the downlink channel.
  • the r vector of the beam corresponding to the downlink channel satisfies the following formula:
  • the network device determines the beam whose beam energy satisfies the preset condition as the target beam, for example, the network device determines the beam with the largest beam energy as the target beam, and further determines the weight of the downlink reference signal according to the target beam.
  • Fig. 3b is a schematic flow diagram of a weight design method provided by the embodiment of the present application.
  • the network device estimates the uplink channel according to the sounding reference signal, and the The downlink channel is reconstructed with the inter-reciprocity parameter, and beam selection is performed based on the downlink channel, so as to determine the weight of the downlink reference signal, such as the CSI-RS.
  • the network device obtains the state information of the downlink channel according to the uplink reference signal based on the reciprocity between the uplink channel and the downlink channel and the carrier frequency information, and further determines the accurate downlink channel according to the state information of the downlink channel.
  • the weight of the reference signal reduces the weight deviation of the downlink reference signal and improves the accuracy of beam selection.
  • Fig. 4a is a schematic flow chart of a weight determination method provided by the embodiment of the present application.
  • the weight determination method provided by the embodiment of the present application includes:
  • the network device obtains the phase difference based on the carrier frequency information of the uplink channel and the carrier frequency information of the downlink channel.
  • the phase difference is the phase difference between the phase corresponding to the first beam and the phase corresponding to the second beam.
  • the first beam is associated with the uplink information
  • the carrier frequency of the second beam is associated with the carrier frequency of the downlink channel.
  • the network device obtains the azimuth angle of the second beam according to the carrier frequency of the downlink channel and the phase corresponding to the second beam. Since the uplink channel and the downlink channel have reciprocity, the azimuth angle of the second beam is the same as that of the first beam. The azimuth angle is the same. Therefore, the network device obtains the phase corresponding to the first beam according to the azimuth angle of the second beam and the carrier frequency of the uplink channel, and obtains the phase difference according to the phase corresponding to the first beam and the phase corresponding to the second beam.
  • ⁇ k is the azimuth angle of the second beam, is the phase corresponding to the second beam.
  • the network device corrects the first beam based on the reciprocity between the uplink channel and the downlink channel, so the azimuth angle of the first beam after correction is also ⁇ k , so the phase corresponding to the first beam is determined according to the azimuth angle of the second beam to satisfy
  • f ul is the carrier frequency of the uplink channel
  • f dl is the carrier frequency of the downlink channel
  • the network device calculates the phase difference according to the phase corresponding to the first beam and the phase corresponding to the second beam, for example, the phase difference Satisfy the following formula (23):
  • the network device corrects the first beam according to the phase difference to obtain the corrected first beam. Specifically, the network device compensates the phase difference for the weight matrix of the horizontal and vertical first beams, for example, and respectively represent the phase difference of the Kth beam in the vertical and horizontal directions, and the elements of the weight matrix of the corrected beam in the vertical and horizontal directions satisfy the following formula:
  • the network device determines the weight of the downlink reference signal according to the corrected first beam. Specifically, the network device determines the beam energy of the second beam based on the corrected first beam, and determines the weight of the downlink reference signal according to the beam energy of the second beam. weight.
  • the energy of the second beam may be the reference signal received power RSRP, for example, the reference signal received power of the second beam satisfies the following formula (27):
  • the network device sorts the calculated reference signal received power RSRP of the second beam, and determines the weight of the corresponding downlink reference signal of the second beam whose RSRP satisfies a preset condition.
  • the network device determines the beam energy of the second beam based on the beam energy of the first beam before correction and the first beam after correction, and determines the weight of the downlink reference signal according to the beam energy of the second beam, beam energy It can be characterized by the reference signal received power or the r-vector based on the capon algorithm.
  • the reference signal received power RSRP of the second beam satisfies the following formula (29):
  • W DFT is the weight matrix of the first beam before correction.
  • the network device determines the beam energy of the second beam based on the corrected channel covariance matrix of the uplink channel corresponding to the first beam, and the beam energy of the second beam may be represented by the reference signal received power.
  • the reference signal received power RSRP of the second beam satisfies the following formula:
  • the energy of the second beam can also be represented by the r-vector based on the capon algorithm.
  • the r-vector of the second beam satisfies the following formula:
  • R SRS represents the channel covariance matrix of the uplink channel
  • the network device corrects the first beam according to the phase difference between the first beam and the second beam based on the reciprocity of the beam main lobe azimuth angles of the uplink channel and the downlink channel, thereby according to the correction
  • the weight value of the downlink reference signal is determined for the first beam after that, thereby reducing the weight deviation of the downlink reference signal and improving the accuracy of beam selection.
  • Figure 5a shows the horizontal beam azimuth angles corresponding to the frequency points of the uplink channel and downlink channel before beam correction.
  • the solid line indicates the horizontal beam azimuth angle corresponding to the frequency point of the downlink channel, and the dotted line indicates the corresponding frequency point of the uplink channel.
  • the azimuth angle of the horizontal beam as shown in Figure 5a, there is a deviation in the beam azimuth angle corresponding to the frequency point of the uplink and downlink channels before beam correction.
  • the network device When the network device performs beam selection, for example, when the user exists at a position of 47.5°, if When using the uplink channel for beam selection, the 8th beam will be selected, and when using the downlink channel for beam selection, the 7th beam will be selected, thereby reducing the loss of beam gain.
  • Figure 5b shows the horizontal beam azimuth angle corresponding to the frequency point of the uplink channel and the downlink channel after beam correction.
  • the solid line represents the horizontal beam azimuth angle corresponding to the frequency point of the downlink channel, and the dotted line represents the corresponding frequency point of the uplink channel.
  • the azimuth angle of the horizontal beam as shown in Figure 5b, aligns the azimuth angle of the main lobe of the uplink beam after correction, thereby reducing the loss of beam gain.
  • FIG. 6 is a schematic flowchart of a weight determination method provided in the embodiment of the present application.
  • the weight determination method provided in the embodiment of the present application includes:
  • step 604 The method executed by the terminal from step 601 to step 604 is similar to the method executed by the network device in step 201 and step 204 in the above method embodiment, and will not be repeated here.
  • the terminal based on the reciprocity between the uplink channel and the downlink channel and the carrier frequency information, the terminal obtains the state information of the uplink channel according to the downlink reference signal, and further determines the accurate weight value of the uplink reference signal according to the state information of the uplink channel , thereby reducing the weight deviation of the uplink reference signal and improving the accuracy of beam selection.
  • FIG. 7 is a schematic flowchart of a weight determination method provided in the embodiment of the present application.
  • the weight determination method provided in the embodiment of the present application includes:
  • step 701 to step 703 The method executed by the terminal from step 701 to step 703 is similar to the method executed by the network device in step 401 and step 403 in the above method embodiment, and will not be repeated here.
  • the terminal corrects the first beam according to the phase difference between the first beam and the second beam based on the reciprocity of the beam main lobe azimuth angles of the uplink channel and the downlink channel, and then determines according to the corrected first beam
  • the weight of the uplink reference signal reduces the weight deviation of the uplink reference signal and improves the accuracy of beam selection.
  • FIG. 8 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the communication device is used to implement various steps corresponding to the above-mentioned network device or terminal in the foregoing embodiments.
  • the communication device 800 includes an interface unit 801 and a processing unit 802 .
  • the communication device 800 is configured to implement various steps of the corresponding network equipment in the above embodiments: the interface unit 801 is used to receive the uplink reference signal; the processing unit 802 is used to obtain the uplink channel and The channel reciprocity parameter between the downlink channels; the processing unit 802 is also used to determine the state information of the downlink channel according to the channel reciprocity parameter and the carrier frequency information of the uplink channel and the downlink channel, and determine the downlink reference according to the state information of the downlink channel The weight of the signal.
  • the channel reciprocity parameter includes a first channel reciprocity parameter and a second channel reciprocity parameter; the first channel reciprocity parameter is related to the amplitude and phase corresponding to the multipath channel, The second channel reciprocity parameter is related to the distance and angle corresponding to the multipath channel.
  • the channel reciprocity parameters include a third channel reciprocity parameter, a fourth channel reciprocity parameter, a fifth channel reciprocity parameter, and a sixth channel reciprocity parameter;
  • the channel reciprocity parameter is related to the amplitude, phase and distance corresponding to the multipath channel
  • the fourth channel reciprocity parameter is related to the distance corresponding to the multipath channel
  • the fifth channel reciprocity parameter and the sixth channel reciprocity parameter It is related to the distance and angle corresponding to the multipath channel.
  • the processing unit 802 is specifically configured to determine the beam energy of at least one beam based on the state information of the downlink channel, at least one beam is a beam corresponding to the downlink channel, and determine the weight of the downlink reference signal according to the beam energy value.
  • the processing unit 802 is specifically configured to determine the beam energy of at least one beam based on the channel covariance matrix of the downlink channel.
  • the communication device 800 is configured to implement various steps corresponding to the network equipment in the above embodiments: the processing unit 802 is configured to obtain the phase difference based on the carrier frequency information of the uplink channel and the carrier frequency information of the downlink channel, The phase difference is the phase difference between the phase corresponding to the first beam and the phase corresponding to the second beam, the first beam is associated with the carrier frequency of the uplink channel, and the second beam is associated with the carrier frequency of the downlink channel;
  • the processing unit 802 is further configured to correct the first beam according to the phase difference to obtain a corrected first beam, and determine the weight of the downlink reference signal according to the corrected first beam.
  • the processing unit 802 specifically acquires the azimuth angle of the second beam according to the carrier frequency of the downlink channel and the phase corresponding to the second beam, and acquires the azimuth angle of the second beam according to the azimuth angle of the second beam and the carrier frequency of the uplink channel. a phase corresponding to a beam; and obtaining a phase difference according to the phase corresponding to the first beam and the phase corresponding to the second beam.
  • the communication device further includes an interface unit 801, and the interface unit 801 is configured to obtain status information of an uplink channel;
  • the processing unit 802 is further configured to determine the state information of the downlink channel according to the corrected first beam and the state information of the uplink channel.
  • the processing unit 802 is further configured to determine the beam energy of the second beam based on the corrected first beam; and determine the weight of the downlink reference signal according to the beam energy.
  • the processing unit 802 is further configured to determine the beam energy of the second beam based on the beam energy of the first beam before correction and the first beam after correction.
  • the processing unit 802 is further configured to determine the beam energy of the second beam based on the corrected channel covariance matrix of the uplink channel corresponding to the first beam.
  • the communication device 800 is configured to implement various steps of the corresponding terminal in the above embodiments: the interface unit 801 is used to receive the downlink reference signal; the processing unit 802 is used to obtain the uplink channel and Channel reciprocity parameters between downlink channels;
  • the processing unit 802 is also configured to determine the state information of the uplink channel according to the channel reciprocity parameter and the carrier frequency information of the uplink channel and the downlink channel;
  • the processing unit 802 is further configured to determine the weight of the uplink reference signal according to the status information of the uplink channel.
  • the channel reciprocity parameter includes a first channel reciprocity parameter and a second channel reciprocity parameter; the first channel reciprocity parameter is related to the amplitude and phase corresponding to the multipath channel, and the second The two-channel reciprocity parameter is related to the distance and angle corresponding to the multipath channel.
  • the channel reciprocity parameters include a third channel reciprocity parameter, a fourth channel reciprocity parameter, a fifth channel reciprocity parameter, and a sixth channel reciprocity parameter; the third channel The reciprocity parameter is related to the amplitude and distance corresponding to the multipath channel, the fourth channel reciprocity parameter is related to the distance corresponding to the multipath channel, the fifth channel reciprocity parameter and the sixth channel reciprocity parameter are related to the multipath The distance corresponding to the channel is related to the angle.
  • the processing unit 802 is specifically configured to determine the beam energy of at least one beam based on the state information of the uplink channel, at least one beam is a beam corresponding to the uplink channel, and determine the weight of the uplink reference signal according to the beam energy .
  • the processing unit 802 is specifically configured to determine the beam energy of at least one beam based on the channel covariance matrix of the uplink channel.
  • the communication device 800 is used to implement various steps corresponding to the terminal in the above-mentioned embodiments: the processing unit 802 is used to obtain the phase difference based on the carrier frequency information of the uplink channel and the carrier frequency information of the downlink channel, and the phase The difference is the phase difference between the phase corresponding to the first beam and the phase corresponding to the second beam, the first beam is associated with the carrier frequency of the downlink channel, and the second beam is associated with the carrier frequency of the uplink channel;
  • the processing unit 802 is further configured to correct the first beam according to the phase difference to obtain a corrected first beam
  • the processing unit 802 is further configured to determine the weight of the uplink reference signal according to the corrected first beam.
  • the processing unit 802 is specifically configured to obtain the azimuth angle of the first beam and the phase corresponding to the first beam according to the carrier frequency of the downlink channel, and obtain the azimuth angle of the first beam and the carrier frequency of the uplink channel The phase corresponding to the second beam, and the phase difference obtained according to the phase corresponding to the first beam and the phase corresponding to the second beam.
  • the communication device further includes an interface unit 801, the interface unit 801 is specifically configured to obtain state information of the downlink channel, and the processing unit 802 is further configured to determine according to the corrected first beam and the state information of the downlink channel Status information of the uplink channel.
  • the processing unit 802 is specifically configured to determine the beam energy of the second beam based on the corrected first beam, and determine the weight of the downlink reference signal according to the beam energy.
  • the processing unit 802 is specifically configured to determine the beam energy of the second beam based on the beam energy of the first beam before correction and the first beam after correction.
  • the processing unit 802 is specifically configured to determine the beam energy of the second beam based on the corrected channel covariance matrix of the downlink channel corresponding to the first beam.
  • the above-mentioned communication device may also include a storage unit, which is used to store data or instructions (also referred to as codes or programs), and each of the above-mentioned units may interact or be coupled with the storage unit to implement corresponding methods or functions .
  • the processing unit 802 may read data or instructions in the storage unit, so that the communication device implements the methods in the foregoing embodiments.
  • each unit in the communication device can be implemented in the form of software calling through the processing elements; they can also be implemented in the form of hardware; some units can also be implemented in the form of software calling through the processing elements, and some units can be implemented in the form of hardware.
  • each unit can be an independently established processing element, or can be integrated into a certain chip of the communication device.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the communication device. function of the unit.
  • all or part of these units can be integrated together, or implemented independently.
  • the processing element mentioned here may also be a processor, which may be an integrated circuit with signal processing capability.
  • each step of the above method or each unit above may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software called by the processing element.
  • the units in any of the above communication devices may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (application specific integrated circuit, ASIC), or, one or multiple microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the units in the communication device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 9 is a schematic diagram of a communication device provided by an embodiment of the present application, which is used to implement operations of network devices or terminals in the above embodiments.
  • the communication device includes: a processor 910 and an interface 930 , and the processor 910 is coupled to the interface 930 .
  • the interface 930 is used to communicate with other devices.
  • Interface 930 may be a transceiver or an input-output interface.
  • Interface 930 may be, for example, an interface circuit.
  • the communication device further includes a memory 920 for storing instructions executed by the processor 910 or storing input data required by the processor 910 to execute the instructions or storing data generated after the processor 910 executes the instructions.
  • the method performed by the network device or terminal in the above embodiments may be implemented by calling the program stored in the memory (which may be the memory 920 in the network device or terminal, or may be an external memory) by the processor 910 . That is, the network device or terminal may include a processor 910, and the processor 910 executes the method performed by the network device or terminal in the above method embodiments by calling a program in the memory.
  • the processor here may be an integrated circuit with signal processing capabilities, such as a CPU.
  • a network device or a terminal may be realized by one or more integrated circuits configured to implement the above method. For example: one or more ASICs, or one or more microprocessors DSP, or one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Alternatively, the above implementation manners may be combined.
  • the functions/implementation process of the interface unit 910 and the processing unit 920 in FIG. 8 can be realized by calling the computer-executable instructions stored in the memory 920 by the processor 910 in the communication device 900 shown in FIG. 9 .
  • the function/implementation process of the processing unit 802 in FIG. 8 can be realized by the processor 910 in the communication device 900 shown in FIG.
  • The/implementation process can be realized by the interface 930 in the communication device 900 shown in FIG.
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as radio frequency modules or antennas), and the information is from other terminal devices or network devices; or, the terminal device chip sends information to other modules in the terminal device (such as radio frequency modules) or antenna) to send information, which is sent by a terminal device to other terminal devices or network devices.
  • the network equipment chip implements the functions of the network equipment in the above method embodiments.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is from other network devices or terminal devices; or, the network device chip sends information to other modules in the network device (such as radio frequency modules) or antenna) to send information, which is sent by network devices to other network devices or terminal devices.
  • the interface unit 801 in the above-mentioned communication device 800 is equivalent to the interface 930 in the communication device 900 , and the processing unit 802 in the communication device 800 may be equivalent to the processor 910 in the communication device 900 .
  • FIG. 10 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system 1000 includes a network device 1001 and a terminal 1002.
  • the network device 1001 may be the network device in the above method embodiment, and the terminal 1002 may be The terminal in the foregoing method embodiment.
  • a computer-readable storage medium is also provided, and computer-executable instructions are stored in the computer-readable storage medium.
  • the processor of the device executes the computer-executable instructions
  • the device executes the above method embodiment A method performed by a network device in a network.
  • a computer-readable storage medium is also provided, and computer-executable instructions are stored in the computer-readable storage medium.
  • the processor of the device executes the computer-executable instructions
  • the device executes the above method embodiment The method executed by the terminal.
  • a computer program product in another embodiment, includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium.
  • the processor of the device executes the computer-executed instructions, the device executes the steps of the method performed by the network device in the foregoing method embodiments.
  • a computer program product in another embodiment, includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium.
  • the processor of the device executes the computer execution instruction, the device executes the steps of the method performed by the terminal in the above method embodiments.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种权值确定方法以及相关装置,用于减少波束选择偏差导致波束增益损失。本申请实施例的方法包括接收上行参考信号,基于上行参考信号获得上行信道与下行信道之间的信道互易性参数,根据信道互易性参数以及上行信道与下行信道的载频信息确定下行信道的状态信息,根据下行信道的状态信息确定下行参考信号的权值。

Description

一种权值确定方法及相关装置
本申请要求于2021年5月31日提交中国专利局、申请号为CN202110604208.4、发明名称为“一种权值确定方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种权值确定方法及相关装置。
背景技术
大规模多输入多输出(multiple input multiple output,MIMO)是一种在网络设备端和用户设备端都使用多根天线,从而构成多个信道的天线系统。大规模多输入多输出技术极大地提升了信道容量。
频分双工(frequency division duplexing,FDD)系统的上下行信道采用不同的通信频段,当上下行信道的频差较大时,网络设备侧利用上行信道进行下行参考信号的权值确定时,会与理想的下行参考信号的权值存在较大偏差,从导致下行波束增益的损失。
发明内容
本申请实施例提供了一种权值确定方法,用于减少下行参考信号的权值偏差,从而提升下行波束的增益。
本申请实施例第一方面提供了一种权值确定方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。第一方面提供的权值确定方法包括:接收上行参考信号,基于上行参考信号获得上行信道与下行信道之间的信道互易性参数;根据信道互易性参数以及上行信道与下行信道的载频信息确定下行信道的状态信息,根据下行信道的状态信息确定下行参考信号的权值。本申请实施例中,网络设备基于上行信道和下行信道之间互易性以及载频信息,根据上行参考信号获取下行信道的状态信息,进一步根据下行信道的状态信息确定准确的下行参考信号的权值,从而减少了下行参考信号的权值偏差,提升了波束选择的准确性。
一种可能的实施方式中,上行参考信号包括探测参考信号SRS或解调参考信号;互易性参数包括衰落或整体相位,整体相位基于载频相关的信道互易性确定,载频信息包括上行信道的频率和下行信道的频率。一种可能的实施方式中,信道互易性参数包括第一信道互易性参数和第二信道互易性参数,其中第一信道互易性参数与多径信道对应的幅值和相位相关,第二信道互易性参数与多径信道对应的距离和角度相关。
一种可能的实施方式中,第一互易性参数和第二互易性参数基于一维松弛算法确定。
一种可能的实施方式中,信道互易性参数还包括多径信道对应的幅值、相位、距离或角度,其中,距离包括传播距离、天线阵子水平距离或天线阵子垂直距离,角度包括水平方位角和垂直方位角。
本申请实施例中网络设备联合子载波基于一维松弛算法确定第一互信参数和第二互易性参数,简化了估计下行信道的状态信息的计算量。
一种可能的实施方式中,信道互易性参数包括第三信道互易性参数、第四信信道互易性参数、第五信道互易性参数和第六信道互易性参数,其中,第三信道互易性参数与多径信道对应的幅值、相位和距离相关,第四信道互易性参数与多径信道对应的距离相关,第五信道互易性参数和第六信道互易性参数与多径信道对应的距离和角度相关。
本申请实施例中网络设备联合子载波和天线阵列基于三维松弛算法确定了第三互信参数、第四互易性参数和第五互易性参数,提升了网络设备估计下行信道的状态信息的准确度。
一种可能的实施方式中,根据下行信道的状态信息确定下行参考信号的权值的过程包括:基于下行信道的状态信息确定至少一个波束的波束能量,至少一个波束为对应于下行信道的波束,根据波束能量确定下行参考信号的权值。
一种可能的实施方式中,波束能量可以由参考信号接收功率RSRP或基于capon算法确定的r向量表征,将波束能量满足预设条件的波束确定为目标波束,根据目标波束确下行参考信号的权值。
本申请实施例中网络设备根据波束能量进行波束选择,进一步确定下行参考信号的权值,从而减少了波束增益的损失,提升了下行参考信号的权值的准确性。
一种可能的实施方式中,基于下行信道的状态信息确定至少一个波束的波束能量过程包括基于下行信道的信道协方差矩阵确定至少一个波束的波束能量。
本申请实施例第二方面提供了一种权值确定方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。第二方面提供的权值确定方法包括:基于上行信道的载频信息和下行信道的载频信息获得相位差,相位差为第一波束对应的相位和第二波束对应的相位之间的相位差,第一波束关联于上行信道的载频,第二波束关联于下行信道的载频,根据相位差校正第一波束得到校正后的第一波束,根据校正后的第一波束确定下行参考信号的权值。
本申请实施例中网络设备基于上行信道和下行信道的波束主瓣方位角的互易性,根据第一波束与第二波束之间的相位差校正第一波束,从而根据校正后的第一波束确定下行参考信号的权值,从而减少了下行参考信号的权值偏差,提升了波束选择的准确性。
一种可能的实施方式中,基于上行信道的载频和下行信道的载频获得相位差的过程包括:根据下行信道的载频和第二波束对应的相位获取第二波束的方位角,根据第二波束的方位角和上行信道的载频获取第一波束对应的相位,以及根据第一波束对应的相位和第二波束对应的相位获得相位差。
一种可能的实施方式中,基于上下行信道方位角的互易性以及波束方位角与相位的对应关系获取第一波束的相位。
一种可能的实施方式中,相位差包括水平方向的相位差和垂直方向的相位差。
本申请实施例中网络设备对第一波波束的相位进行校正,使得上下行波束主瓣的方位角对齐,网络设备基于上行信道的参考信号进行下行参考信号的权值确定,提升了权值确定的准确性。
一种可能的实施方式中,获得上行信道的状态信息,根据校正后的第一波束和上行信道的状态信息确定下行信道的状态信息。
本申请实施例中网络设备可以根据校正后的第一波束和上行信道的状态信息确定下行信道的状态信息,简化了下行信道状态信息的估计。
一种可能的实施方式中,根据校正后的第一波束确定下行参考信号的权值的过程包括:基于校正后的第一波束确定第二波束的波束能量,根据波束能量确定下行参考信号的权值。
一种可能的实施方式中,波束能量可以由参考信号接收功率RSRP或基于capon算法确定的r向量表征。
本申请实施例中网络设备根据波束能量进行波束选择,进一步确定下行参考信号的权值,从而减少了波束增益的损失,提升了下行参考信号的权值的准确性。
一种可能的实施方式中,基于校正后的第一波束确定第二波束的波束能量的包括:基于校正前的第一波束的波束能量和校正后的第一波束确定第二波束的波束能量。
本申请实施例中网络设备根据历史已知的第一波束的波束能量进行波束选择,进一步确定下行参考信号的权值,简化了第二波束的波束能量的计算复杂度。
一种可能的实施方式中,基于校正后的第一波束确定第二波束的波束能量的过程包括:基于校正后的第一波束对应的上行信道的信道协方差矩阵确定第二波束的波束能量。
本申请实施例第三方面提供了一种权值确定方法,该方法可以由终端执行,也可以由终端的部件,例如终端的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分终端功能的逻辑模块或软件实现。第三方面提供的权值确定方法包括:接收下行参考信号,基于下行参考信号获得上行信道与下行信道之间的信道互易性参数,根据信道互易性参数以及上行信道与下行信道的载频信息确定上行信道的状态信息,根据上行信道的状态信息确定上行参考信号的权值。
本申请实施例中,终端基于上行信道和下行信道之间互易性以及载频信息,根据下行参考信号获取上行信道的状态信息,进一步根据上行信道的状态信息确定准确的上行参考信号的权值,从而减少了上行参考信号的权值偏差,提升了波束选择的准确性。
一种可能的实施方式中,信道互易性参数包括第一信道互易性参数和第二信道互易性参数,其中,第一信道互易性参数与多径信道对应的幅值和相位相关,第二信道互易性参数与多径信道对应的距离和角度相关。
本申请实施例中终端联合子载波基于一维松弛算法确定第一互信参数和第二互易性参数,简化了估计上行信道的状态信息的计算量。
一种可能的实施方式中,信道互易性参数包括第三信道互易性参数、第四信信道互易性参数、第五信道互易性参数和第六信道互易性参数,其中,第三信道互易性参数与多径信道对应的幅值和距离相关,第四信道互易性参数与多径信道对应的距离相关,第五信道 互易性参数和第六信道互易性参数与多径信道对应的距离和角度相关。
本申请实施例中终端联合子载波和天线阵列基于三维松弛算法确定了第三互信参数、第四互易性参数和第五互易性参数,提升了终端估计上行信道的状态信息的准确度。
一种可能的实施方式中,根据上行信道的状态信息确定上行参考信号的权值的包括:基于上行信道的状态信息确定至少一个波束的波束能量,至少一个波束为对应于上行信道的波束,根据波束能量确定上行参考信号的权值。
本申请实施例中终端根据波束能量进行波束选择,进一步确定上行参考信号的权值,从而减少了波束增益的损失,提升了上行参考信号的权值的准确性。
一种可能的实施方式中,基于上行信道的状态信息确定至少一个波束的波束能量的过程包括,基于上行信道的信道协方差矩阵确定至少一个波束的波束能量。
本申请实施例第四方面提供了一种权值确定方法,该方法可以由终端执行,也可以由终端的部件,例如终端的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分终端功能的逻辑模块或软件实现。第四方面提供的权值确定方法包括:基于上行信道的载频信息和下行信道的载频信息获得相位差,相位差为第一波束对应的相位和第二波束对应的相位之间的相位差,第一波束关联于下行信道的载频,第二波束关联于上行信道的载频;根据相位差校正第一波束得到校正后的第一波束;根据校正后的第一波束确定上行参考信号的权值。
本申请实施例中终端基于上行信道和下行信道的波束主瓣方位角的互易性,根据第一波束与第二波束之间的相位差校正第一波束,从而根据校正后的第一波束确定上行参考信号的权值,从而减少了上行参考信号的权值偏差,提升了波束选择的准确性。
一种可能的实施方式中,基于上行信道的载频和下行信道的载频获得相位差,包括:根据下行信道的载频获取第一波束的方位角和第一波束对应的相位;根据第一波束的方位角和上行信道的载频获取第二波束对应的相位;以及根据第一波束对应的相位和第二波束对应的相位获得相位差。
本申请实施例中终端对第一波波束的相位进行校正,使得上下行波束主瓣的方位角对齐,终端基于下行信道的参考信号进行上行参考信号的权值确定,提升了权值确定的准确性。
一种可能的实施方式中,终端获得下行信道的状态信息,并根据校正后的第一波束和下行信道的状态信息确定上行信道的状态信息。
本申请实施例中终端可以根据校正后的第一波束和上行信道的状态信息确定下行信道的状态信息,简化了下行信道状态信息的估计。
一种可能的实施方式中,根据校正后的第一波束确定上行参考信号的权值的过程包括:基于校正后的第一波束确定第二波束的波束能量,并根据波束能量确定下行参考信号的权值。
本申请实施例中终端根据波束能量进行波束选择,进一步确定上行参考信号的权值,从而减少了波束增益的损失,提升了上行参考信号的权值的准确性。
一种可能的实施方式中,基于校正后的第一波束确定第二波束的波束能量的过程包括:终端基于校正前的第一波束的波束能量和校正后的第一波束确定第二波束的波束能量。
本申请实施例中终端根据历史已知的第一波束的波束能量进行波束选择,进一步确定上行参考信号的权值,简化了第二波束的波束能量的计算复杂度。
一种可能的实施方式中,基于校正后的第一波束确定第二波束的波束能量的过程包括:基于校正后的第一波束对应的下行信道的信道协方差矩阵确定第二波束的波束能量。
本申请实施例第五方面提供了一种通信装置,该通信装置包括用于执行第一方面以及任意一种的实施方式或第二方面以及任意一种可能的实施方式所述方法的单元或模块。该通信装置包括的单元或模块可以通过软件和/或硬件方式实现。该通信装置例如可以为网络设备,也可以为支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以为能实现全部或部分网络设备功能的逻辑模块或软件。
本申请实施例第六方面提供了一种通信装置,该通信装置包括用于执行第三方面以及任意一种的实施方式或第四方面以及任意一种可能的实施方式所述方法的单元或模块。通信装置包括的单元或模块可以通过软件和/或硬件方式实现。该通信装置例如可以为终端,也可以为支持终端实现上述方法的芯片、芯片系统、或处理器等
本申请实施例第七方面提供了一种通信装置,包括:处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得装置执行上述第一方面以及第一方面任意一种的的实施方式或第二方面的方法以及第二方面任意一种可能的实施方式。
本申请实施例第八方面提供了一种通信装置,包括:处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得装置执行上述第三方面以及第三方面任意一种的的实施方式或第四方面的方法以及第四方面任意一种可能的实施方式。
本申请实施例第九方面提供了一种通信系统,通信系统包括上述第五方面通信装置和第七方面的通信装置,或者通信系统包括上述第六方面通信装置和第八方面的通信装置。
本申请实施例第十方面提供了一种计算机可读存储介质,计算机可读存储介质存储有程序,当程序被执行时,使得计算机执行上述第一方面以及第一方面的任意一种可能的实施方式所提供的方法,或者使得计算机执行如上述第二方面以及第二方面的任意一种可能的实施方式所提供的方法,或者使得计算机执行如上述第三方面以及第三方面的任意一种可能的实施方式所提供的方法,或者使得计算机执行如上述第四方面以及第四方面的任意一种可能的实施方式所提供的方法。
本申请实施例第十一方面提供了一种计算机程序产品,计算机程序产品中包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机实现上述第一方面以及第一方面的任意一种可能的实施方式所提供的方法,或者上述第二方面以及第二方面的任意一种可能的实施方式所提供的方法,或者上述第三方面以及第三方面的任意一种可能的实施方式所提供的方法,或者上述第四方面以及第四方面的任意一种可能的实施方式所提供的 方法。
可以理解,上述提供的任一种通信装置、通信系统、计算机可读介质、或计算机程序产品等所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统架构示意图;
图2为本申请实施例提供的一种权值确定方法流程示意图;
图3a为本申请实施例提供的一种二维平面天线阵列示意图;
图3b为本申请实施例提供的另一种权值确定方法流程示意图;
图4a为本申请实施例提供的另一种权值确定方法流程示意图;
图4b为本申请实施例提供的另一种权值确定方法流程示意图;
图5a为本申请实施例提供的一种水平波束方位角示意图;
图5b为本申请实施例提供的一种校正后的水平波束方位角示意图;
图6为本申请实施例提供的另一种权值确定方法流程示意图;
图7为本申请实施例提供的另一种权值确定方法流程示意图;
图8为本申请实施例提供一种通信装置结构示意图;
图9为本申请实施例提供另一种通信装置结构示意图;
图10为本申请实施例提供一种通信装置结构示意图。
具体实施方式
本申请实施例提供了一种权值确定方法以及相关装置,用于减少波束选择偏差导致波束增益损失。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
参考信号一般可以用于进行信道估计、或辅助信号解调、检测。参考信号例如包括:解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、相位跟踪参考信号(phase tracking  reference signal,PTRS)、探测参考信号(sounding reference signal,SRS)等。DMRS用于辅助信号解调,CSI-RS用于获取信道信息,PTRS用于获取相位变化信息,SRS用于估计上行信道,做频率选择性调度,或用于估计下行信道,做下行波束赋形。
频分双工(frequency division duplexing,FDD)的上下行信道采用不同的通信频段,包括上行信道频段和下行信道频段,上行信道频段提供从终端设备到网络设备的信号传输信道,下行信道频段提供从网络设备到终端设备的信号传输信道。在FDD系统中,双工信道是由两个单工信道所组成的,利用在终端设备和网络设备里的双工器,允许同时在双工信道上进行无线信号的发射和接收。
参考信号接收功率(reference signal receiving power,RSRP)是在某个符号内承载参考信号的资源元素(resource element,RE)上接收到的信号功率的平均值,RSRP是通信网络中用于指示无线信号强度的一种参数。下面对本申请中涉及到的数学计算符号进行说明:
克罗内克积:
Figure PCTCN2022074334-appb-000001
示例,
Figure PCTCN2022074334-appb-000002
转置:A T,示例,
Figure PCTCN2022074334-appb-000003
共轭转置:A H,示例
Figure PCTCN2022074334-appb-000004
其中,
Figure PCTCN2022074334-appb-000005
表示A的元素的共轭复数为元素组成的矩阵。
对角矩阵:diag(A),示例,
Figure PCTCN2022074334-appb-000006
下面以图1所示通信系统为例,对本申请实施例提供的方法所适用的系统架构进行描述。如图1所示,为本申请实施例提供的一种通信系统10。该通信系统10包括至少一个网络设备20,以及与该网络设备20连接的一个或多个终端设备30。进一步的,不同的终端设备30之间可以相互通信。
本申请涉及的网络设备20,是一种将终端设备30接入到无线网络的设备,例如可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB);或者5G网络、6G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非3GPP接入设备;或者本申请实施例中的网络设备20还可以是云无线接入网络(cloud radio access network,CRAN)中的无线控制器;或者传输接收节点(transmission and reception point,TRP),或者包括TRP的设备等,本申请实施例对此不作具体限定。
作为一些可能的实现方式,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
作为一种可能的实现方式,本申请实施例中的网络设备20也可以是指集中单元 (central unit,CU)或者分布式单元(distributed unit,DU),或者,网络设备也可以是CU和DU组成的。多个DU可以共用一个CU。一个DU也可以连接多个CU。CU和DU可以理解为是对网络设备从逻辑功能角度的划分。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如,无线资源控制(radio resource control,RRC)协议层、业务数据适配协议栈(service data adaptation protocol,SDAP)协议层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)协议层的功能设置在CU中,而无线链路控制(radio link control,RLC)协议层,媒体接入控制(media access control,MAC)协议层,物理(physical,PHY)协议层等的功能设置在DU中。
可以理解,对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。
例如,可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一种设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
在一些实施例中,CU可以由CU控制面(CU control plane,CU-CP)和CU用户面(CU user plane,CU-UP)组成,CU-CP和CU-UP可以理解为是对CU从逻辑功能的角度进行划分。其中,CU-CP和CU-UP可以根据无线网络的协议层划分,例如,RRC协议层和信令无线承载(signal radio bearer,SRB)对应的PDCP协议层的功能设置在CU-CP中,数据无线承载(data radio bearer,DRB)对应的PDCP协议层的功能设置在CU-UP中。此外,SDAP协议层的功能也可能设置在CU-UP中。
可以理解,本申请中的网络设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
本申请涉及的终端设备30,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是IoT、5G网络、或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving) 中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
图1所示的通信系统仅用于举例,并非用于限制本申请的技术方案。本领域的技术人员应当明白,在具体实现过程中,该通信系统还可以包括其他设备,不予限制。
本申请实施例中提供的方法可以由多种通信设备执行,例如网络设备和终端设备。下面以网络设备为例,结合附图对本申请实施例提供的权值确定方法进行介绍。
可以理解的是,本申请实施例提供的方法可以由通信设备执行,也可以由通信设备的部件执行,例如通信设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分通信设备功能的逻辑模块或软件实现。
请参阅图2,图2为本申请实施例提供的一种权值确定方法的流程示意图,本申请实施例提供的权值确定方法包括:
201.接收上行参考信号。
网络设备接收终端设备发送的上行参考信号,例如,上行参考信号包括探测参考信号SRS、解调参考信号(demodulation reference signal,DMRS)。网络设备根据接收到的上行参考信号获得上行信道的状态信息。
202.基于上行参考信号获得上行信道与下行信道之间的信道互易性参数。
网络设备基于上行参考信号获得上行信道与下行信道之间的信道互易性参数,该信道互易性参数基于上行信道和下行信道的信道互易性获得,信道互易性参数与多径信道对应的幅值、相位、角度或距离中的一项或多项相关,其中,距离包括传播距离、天线阵子水平距离或天线阵子垂直距离,角度包括水平方位角或垂直方位角。
下面基于一个2维平面天线阵列示意图,对网络设备基于上行参考信号获得上行信道与下行信道之间的信道互易性参数的过程举例进行介绍:
请参阅图3a,图3a为本申请实施例中的一个二维平面天线阵列示意图,如图3a所示,天线面板(antenna panel)阵列置于yoz平面,假设天线面板水平方向有M个天线阵子(antenna element),垂直方向有N个天线阵子,对于第p个路径,假设其水平方向的方位角为φ p,垂直方向的方位角为θ p,则水平方向的第m个、垂直方向第n个天线阵子在第p个路径对应的引导矢量a m,npp)满足如下公式(1):
Figure PCTCN2022074334-appb-000007
其中,d H表示水平方向的天线阵子间距,d V表示垂直方向的天线阵子间距,λ表示波长。
网络设备根据引导矢量对上行信道进行估计,例如,水平方向第m个,垂直方向第n个天线阵子的第i个子载波对应的上行信道满足如下公式(2):
Figure PCTCN2022074334-appb-000008
其中,d p表示多径信道对应的距离,
Figure PCTCN2022074334-appb-000009
表示多径信道对应的相位,θ p、φ p为多径信道对应的角度,
Figure PCTCN2022074334-appb-000010
表示第i个子载波的波长,由于
Figure PCTCN2022074334-appb-000011
满足如下公式:
Figure PCTCN2022074334-appb-000012
其中,Δf表示载波间隔,
Figure PCTCN2022074334-appb-000013
表示上行起始频率;
因此,将
Figure PCTCN2022074334-appb-000014
代入上述上行信道的公式(2)之后,上述上行信道满足如下公式:
Figure PCTCN2022074334-appb-000015
对该公式进一步简化,令
Figure PCTCN2022074334-appb-000016
简化后的上行信道满足如下公式:
Figure PCTCN2022074334-appb-000017
本申请实施例中网络设备可以通过多种算法获取信道互易性参数,例如,网络设备可以联合子载波通过一维松弛(1D-RELAX)算法获取信道互易性参数,也可以通过联合天线阵列和子载波通过三维松弛(3D-RELAX)算法获取信道互易性参数,具体不做限定。
下面基于以上两种算法,分别举例介绍网络设备获取的信道互易性参数:
在本申请实施例提供的一个示例中,网络设备通过1D-RELAX算法获取信道互易性参数,网络设备通过1D-RELAX算法获得的信道互易性参数包括第一信道互易性参数和第二信道互易性参数,第一信道互易性参数与多径信道对应的幅值和相位相关,第二信道互易性参数与多径信道对应的距离和角度相关,例如,第一信道互易性参数为衰落
Figure PCTCN2022074334-appb-000018
第二信道互易性参数为相位
Figure PCTCN2022074334-appb-000019
具体的,网络设备对上述公式(5)进一步进行变换,上行信道满足如下公式:
Figure PCTCN2022074334-appb-000020
网络设备基于上行信道的公式通过1D-RELAX算法估计得到的信道互易性参数包括整体衰落
Figure PCTCN2022074334-appb-000021
和整体相位
Figure PCTCN2022074334-appb-000022
其中
Figure PCTCN2022074334-appb-000023
Figure PCTCN2022074334-appb-000024
满足如下公式:
Figure PCTCN2022074334-appb-000025
Figure PCTCN2022074334-appb-000026
公式(8)中,
Figure PCTCN2022074334-appb-000027
由以上公式可知,
Figure PCTCN2022074334-appb-000028
与多径信道对应的幅值|α p|和多径信道对应的相位
Figure PCTCN2022074334-appb-000029
相关,
Figure PCTCN2022074334-appb-000030
与多径信道对应的距离d p和多径信道对应的角度φ p以及θ p相关。
在本申请实施例提供的另一个示例中,网络设备通过3D-RELAX算法获取信道互易性参数,网络设备通过3D-RELAX算法获得的信道互易性参数包括第三信道互易性参数、第四信道互易性参数、第五信道互易性参数和第六信道互易性参数。
第三信道互易性参数与多径信道对应幅值、相位和距离相关,第四信道互易性参数与多径信道对应的距离相关,第五信道互易性参数与多径信道对应的距离和角度相关,第六互易性参数与多径信道对应的距离和角度相关,例如,第三信道互易性参数为
Figure PCTCN2022074334-appb-000031
第四信道互易性参数为
Figure PCTCN2022074334-appb-000032
第五信道互易性参数为
Figure PCTCN2022074334-appb-000033
第六信道互易性参数为
Figure PCTCN2022074334-appb-000034
具体的,网络设备对上述公式(5)进一步进行变换,上行信道满足如下公式:
Figure PCTCN2022074334-appb-000035
网络设备基于上行信道的公式,通过3D-RELAX算法估计得到的信道互易性参数包括
Figure PCTCN2022074334-appb-000036
Figure PCTCN2022074334-appb-000037
其中
Figure PCTCN2022074334-appb-000038
Figure PCTCN2022074334-appb-000039
满足如下公式:
Figure PCTCN2022074334-appb-000040
其中
Figure PCTCN2022074334-appb-000041
Figure PCTCN2022074334-appb-000042
其中
Figure PCTCN2022074334-appb-000043
Figure PCTCN2022074334-appb-000044
其中
Figure PCTCN2022074334-appb-000045
Figure PCTCN2022074334-appb-000046
其中
Figure PCTCN2022074334-appb-000047
由以上公式可知,
Figure PCTCN2022074334-appb-000048
与多径信道对应的幅值|α p|、多径信道对应的相位
Figure PCTCN2022074334-appb-000049
和多径信道对应的距离d p相关,
Figure PCTCN2022074334-appb-000050
与多径信道对应的距离d p相关,
Figure PCTCN2022074334-appb-000051
与多径信道对应的距离d H、角度φ p以及角度θ p相关,
Figure PCTCN2022074334-appb-000052
与多径信道对应的距离d V和角度θ p相关。
203.根据信道互易性参数以及上行信道和下行信道的载频信息确定下行信道的状态信息。
网络设备根据信道互易性参数以及上行信道和下行信道的载频信息确定下行信道的状态信息,信道互易性参数包括第一信道互易性参数,例如
Figure PCTCN2022074334-appb-000053
和第二信道互易性参数, 例如
Figure PCTCN2022074334-appb-000054
或者,第三信道互易性参数,例如
Figure PCTCN2022074334-appb-000055
第四信道互易性参数,例如
Figure PCTCN2022074334-appb-000056
第五信道互易性参数,例如
Figure PCTCN2022074334-appb-000057
和第六信道互易性参数,例如
Figure PCTCN2022074334-appb-000058
上行信道的载频信息包括上行信道的上行起始频率或上行中心频率,上行起始频率例如
Figure PCTCN2022074334-appb-000059
上行中心频率例如
Figure PCTCN2022074334-appb-000060
下行信道的载频信息包括下行信道的下行起始频率或下行中心频率,下行起始频率例如
Figure PCTCN2022074334-appb-000061
下行中心频率例如
Figure PCTCN2022074334-appb-000062
在本申请实施例提供的一个示例中,网络设备根据1D-RELAX算法获得的信道互易性参数
Figure PCTCN2022074334-appb-000063
Figure PCTCN2022074334-appb-000064
以及
Figure PCTCN2022074334-appb-000065
Figure PCTCN2022074334-appb-000066
获得下行信道的状态信息,下行信道的状态信息满足如下公式(14):
Figure PCTCN2022074334-appb-000067
在本申请实施例提供的另一个示例中,网络设备根据3D-RELAX算法获得的信道互易性参数
Figure PCTCN2022074334-appb-000068
Figure PCTCN2022074334-appb-000069
以及
Figure PCTCN2022074334-appb-000070
Figure PCTCN2022074334-appb-000071
获得下行信道的状态信息,下行信道的状态信息满足如下公式(15):
Figure PCTCN2022074334-appb-000072
204.根据下行信道的状态信息确定下行参考信号的权值。
网络设备根据下行信道的状态信息确定下行参考信号的权值,具体的,网络设备基于下行信道的状态信息确定至少一个波束的波束能量,网络设备根据波束能量确定下行参考波束的权值,波束能量包括参考信号接收功率(reference signal receiving power,RSRP)或基于capon算法求解的r向量。
在一个示例中,例如下行信道对应的波束为B DL,则B DL满足如下公式(16):
B DL=W DFT×H DL  (16)
其中,W DFT为上行信道对应的波束的权值矩阵,H DL表示重构的下行信道的状态信息。
本申请实施例中网络设备根据下行信道的状态信息确定下行参考信号的权值过程包括:网络设备根据下行参考信号的状态信息确定出对应于下行信道载频信息的波束,并根据至少一个波束的波束能量确定下行参考信号的权值。
当波束能量由参考信号接收功率RSRP表征时,网络设备确定的RSRP满足如下公式(17):
Figure PCTCN2022074334-appb-000073
一种可能的实施例中,网络设备基于下行信道的状态信息确定至少一个波束的波束能量过程中,网络设备基于下行信道的信道协方差矩阵确定至少一个波束的波束能量,例如,当波束能量为参考信号接收功率RSRP时,网络设备确定的RSRP满足如下公式(18):
Figure PCTCN2022074334-appb-000074
其中,R DL=E{H×H H},R DL为下行信道的信道协方差矩阵。
当波束能量由网络设备基于capon算法求解的r向量表征时,下行信道对应的波束的r向量满足如下公式:
Figure PCTCN2022074334-appb-000075
或者,
Figure PCTCN2022074334-appb-000076
网络设备将波束能量满足预设条件的波束确定为目标波束,例如,网络设备将波束能量最大的波束确定为目标波束,进一步根据目标波束确定下行参考信号的权值。
请参阅图3b,图3b为本申请实施例提供的一种权值设计方法流程示意图,在图3b所示的流程中,网络设备根据探测参考信号估计上行信道,并根据上行信道和下行信息之间互易性参数重构下行信道,基于下行信道进行波束选择,从而确定下行参考信号的权值,下行参考信号例如CSI-RS。
从上述实施例的步骤中可以看出网络设备基于上行信道和下行信道之间互易性以及载频信息,根据上行参考信号获取下行信道的状态信息,进一步根据下行信道的状态信息确定准确的下行参考信号的权值,从而减少了下行参考信号的权值偏差,提升了波束选择的准确性。
请参阅图4a,图4a为本申请实施例提供的一种权值确定方法的流程示意图,本申请实施例提供的权值确定方法包括:
401.基于上行信道的载频信息和下行信道的载频信息获得相位差。
网络设备基于上行信道的载频信息和下行信道的载频信息获得相位差,该相位差为第一波束对应的相位和第二波束对应的相位之间的相位差,第一波束关联于上行信息的载频,第二波束关联于下行信道的载频。
本申请实施例中网络设备根据下行信道的载频和第二波束对应的相位获取第二波束的方位角,由于上行信道和下行信道具有互易性,所以第二波束的方位角与第一波束的方位角一致。因此,网络设备根据第二波束的方位角和上行信道的载频获取第一波束对应的相位,以及根据第一波束对应的相位和第二波束对应的相位获得相位差。
下面结合图4b介绍本申请实施例中网络设备获得相位差的一个示例,网络设备根据下行信道的载频和第二波束对应的相位获得第二波束的方位角,第二波束的方位角和第二波束对应的相位满足如下公式(21):
Figure PCTCN2022074334-appb-000077
其中θ k为第二波束方位角,
Figure PCTCN2022074334-appb-000078
为第二波束对应的相位。
网络设备基于上行信道和下行信道之间互易性对第一波束进行校正,因此校正后的第一波束方位角也为θ k,因此根据第二波束的方位角确定第一波束对应的相位满足如下公式 (22):
Figure PCTCN2022074334-appb-000079
其中f ul为上行信道的载频,f dl为下行信道的载频。
进一步的,网络设备根据第一波束对应的相位和第二波束对应的相位计算相位差,例如,例如相位差
Figure PCTCN2022074334-appb-000080
满足如下公式(23):
Figure PCTCN2022074334-appb-000081
402.根据相位差校正第一波束得到校正后的第一波束。
网络设备根据相位差校正第一波束得到校正后的第一波束,具体的,网络设备将相位差分别补偿水平和垂直的第一波束的权值矩阵,例如,
Figure PCTCN2022074334-appb-000082
Figure PCTCN2022074334-appb-000083
分别表示垂直和水平方向的第K个波束的相位差,校正后的波束在垂直和水平方向上的权值矩阵的元素满足如下公式:
第k行第n列元素:
Figure PCTCN2022074334-appb-000084
第k行第m列元素:
Figure PCTCN2022074334-appb-000085
校正后的第一波束的权值矩阵
Figure PCTCN2022074334-appb-000086
满足如下公式(26):
Figure PCTCN2022074334-appb-000087
403.根据校正后的第一波束确定下行参考信号的权值。
网络设备根据校正后的第一波束确定下行参考信号的权值,具体的,网络设备基于校正后的第一波束确定第二波束的波束能量,并根据第二波束的波束能量确定下行参考信号的权值。
本申请实施例中第二波束的能量可以是参考信号接收功率RSRP,例如,第二波束的参考信号接收功率满足如下公式(27):
Figure PCTCN2022074334-appb-000088
其中第二波束B DL满足如下公式(28):
Figure PCTCN2022074334-appb-000089
网络设备对计算出的第二波束的参考信号接收功率RSRP进行排序,并确定RSRP满足预设条件的第二波束所述对应的下行参考信号的权值。
在一个示例中,网络设备基于校正前的第一波束的波束能量和校正后的第一波束确定第二波束的波束能量,并根据第二波束的波束能量确定下行参考信号的权值,波束能量可以由参考信号接收功率或基于capon算法求解的r向量表征。
例如,第二波束的参考信号接收功率RSRP满足如下公式(29):
Figure PCTCN2022074334-appb-000090
其中,W DFT为校正前的第一波束的权值矩阵。
Figure PCTCN2022074334-appb-000091
R BB=B×B H,B=W DFT×H,则第k个第二波束的参考信号接收功率满足如下公式:
Figure PCTCN2022074334-appb-000092
当网络设备忽略R BB的非对角元素时,上式简化为如下公式:
Figure PCTCN2022074334-appb-000093
在另一个示例中,网络设备基于校正后的第一波束对应的上行信道的信道协方差矩阵确定第二波束的波束能量,第二波束的波束能量可以由参考信号接收功率表征。
例如,第二波束的参考信号接收功率RSRP满足如下公式:
Figure PCTCN2022074334-appb-000094
本申请实施例中第二波束的能量还可以由基于capon算法求解的r向量表征,例如,第二波束的r向量满足如下公式:
Figure PCTCN2022074334-appb-000095
或者,
Figure PCTCN2022074334-appb-000096
其中,R SRS表示上行信道的信道协方差矩阵,
Figure PCTCN2022074334-appb-000097
表示校正后的第一波束的权值矩阵。
从上述实施例的步骤中可以看出网络设备基于上行信道和下行信道的波束主瓣方位角的互易性,根据第一波束与第二波束之间的相位差校正第一波束,从而根据校正后的第一波束确定下行参考信号的权值,从而减少了下行参考信号的权值偏差,提升了波束选择的准确性。
请参阅图5a,图5a为波束校正之前上行信道和下行信道频点对应的水平波束方位角,其中,实线表示下行信道的频点对应的水平波束方位角,虚线表示上行信道的频点对应的水平波束的方位角,如图5a所示,波束校正之前上下行信道的频点对应的波束方位角存在偏差,网络设备在进行波束选择时,例如,当用户存在于47.5°位置时,如果利用上行信道进行波束选择时,会选择到第8个波束,而利用下行信道进行波束选择时,则会选择第7个波束,从而减少波束增益的损失。
请参阅图5b,图5b为波束校正之后上行信道和下行信道频点对应的水平波束方位角,其中,实线表示下行信道的频点对应的水平波束方位角,虚线表示上行信道的频点对应的水平波束的方位角,如图5b所示,校正后的上行波束主瓣的方位角对齐,从而减少了波束增益的损失。
请参阅图6,图6为本申请实施例提供的一种权值确定方法的流程示意图,本申请实施例提供的权值确定方法包括:
601.接收下行参考信号。
602.基于下行参考信号获得上行信道和下行信道之间的互易性参数。
603.根据信道互易性参数以及上行信道和下行信道的载频信息确定上行信道的状态信息。
604.根据上行信道的状态信息确定上行参考信号的权值。
步骤601至步骤604终端所述执行的方法和上述方法实施例中步骤201和步骤204中网络设备所述执行的方法类似,此处不再赘述。
本申请实施例中,终端基于上行信道和下行信道之间互易性以及载频信息,根据下行参考信号获取上行信道的状态信息,进一步根据上行信道的状态信息确定准确的上行参考信号的权值,从而减少了上行参考信号的权值偏差,提升了波束选择的准确性。
请参阅图7,图7为本申请实施例提供的一种权值确定方法的流程示意图,本申请实施例提供的权值确定方法包括:
701.基于下行信道的载频信息和上行信道的载频信息获得相位差。
702.根据相位差校正第一波束得到校正后的第一波束。
703.根据校正后的第一波束确定上行参考信号的权值。
步骤701至步骤703终端所述执行的方法和上述方法实施例中步骤401和步骤403中网络设备所述执行的方法类似,此处不再赘述。
本申请实施例中终端基于上行信道和下行信道的波束主瓣方位角的互易性,根据第一波束与第二波束之间的相位差校正第一波束,从而根据校正后的第一波束确定上行参考信号的权值,从而减少了上行参考信号的权值偏差,提升了波束选择的准确性。
以上介绍了本申请实施例提供的信号处理方法,下面结合附图介绍本申请实施例涉及的相关装置。
请参阅图8,图8为本申请实施例提供的一种通信装置示意图。该通信装置用于实现上述各实施例中对应上述网络设备或终端的各个步骤,如图8所示,该通信装置800包括接口单元801和处理单元802。
在一个实施例中,该通信装置800用于实现上述各实施例中对应网络设备的各个步骤:接口单元801,用于接收上行参考信号;处理单元802,用于基于上行参考信号获得上行信道与下行信道之间的信道互易性参数;处理单元802还用于根据信道互易性参数以及上行信道与下行信道的载频信息确定下行信道的状态信息,以及根据下行信道的状态信息确定下行参考信号的权值。
一种可选的实施方式中,信道互易性参数包括第一信道互易性参数和第二信道互易性参数;第一信道互易性参数与多径信道对应的幅值和相位相关,第二信道互易性参数与多径信道对应的距离和角度相关。
一种可选的实施方式中,信道互易性参数包括第三信道互易性参数、第四信信道互易性参数、第五信道互易性参数和第六信道互易性参数;第三信道互易性参数与多径信道对 应的幅值、相位和距离相关,第四信道互易性参数与多径信道对应的距离相关,第五信道互易性参数和第六信道互易性参数与多径信道对应的距离和角度相关。
一种可选的实施方式中,处理单元802具体用于基于下行信道的状态信息确定至少一个波束的波束能量,至少一个波束为对应于下行信道的波束,以及根据波束能量确定下行参考信号的权值。
一种可选的实施方式中,处理单元802具体用于基于下行信道的信道协方差矩阵确定至少一个波束的波束能量。
在另一个实施例中,该通信装置800用于实现上述各实施例中对应网络设备的各个步骤:处理单元802,用于基于上行信道的载频信息和下行信道的载频信息获得相位差,相位差为第一波束对应的相位和第二波束对应的相位之间的相位差,第一波束关联于上行信道的载频,第二波束关联于下行信道的载频;
处理单元802还用于根据相位差校正第一波束得到校正后的第一波束,以及根据校正后的第一波束确定下行参考信号的权值。
一种可选的实施方式中,处理单元802具体于根据下行信道的载频和第二波束对应的相位获取第二波束的方位角,根据第二波束的方位角和上行信道的载频获取第一波束对应的相位;以及根据第一波束对应的相位和第二波束对应的相位获得相位差。
一种可选的实施方式中,该通信装置还包括接口单元801,接口单元801用于获得上行信道的状态信息;
处理单元802还用于根据校正后的第一波束和上行信道的状态信息确定下行信道的状态信息。
一种可选的实施方式中,处理单元802还用于基于校正后的第一波束确定第二波束的波束能量;根据波束能量确定下行参考信号的权值。
一种可选的实施方式中,处理单元802还用于基于校正前的第一波束的波束能量和校正后的第一波束确定第二波束的波束能量。
一种可选的实施方式中,处理单元802还用于基于校正后的第一波束对应的上行信道的信道协方差矩阵确定第二波束的波束能量。
在另一个实施例中,该通信装置800用于实现上述各实施例中对应终端的各个步骤:接口单元801,用于接收下行参考信号;处理单元802,用于基于下行参考信号获得上行信道与下行信道之间的信道互易性参数;
处理单元802还用于根据信道互易性参数以及上行信道与下行信道的载频信息确定上行信道的状态信息;
处理单元802还用于根据上行信道的状态信息确定上行参考信号的权值。
一种可能的实施方式中,信道互易性参数包括第一信道互易性参数和第二信道互易性参数;第一信道互易性参数与多径信道对应的幅值和相位相关,第二信道互易性参数与多径信道对应的距离和角度相关。
一种可能的实施方式中,信道互易性参数包括第三信道互易性参数、第四信信道互易性参数、第五信道互易性参数和第六信道互易性参数;第三信道互易性参数与多径信道对应的幅值和距离相关,第四信道互易性参数与多径信道对应的距离相关,第五信道互易性参数和第六信道互易性参数与多径信道对应的距离和角度相关。
一种可能的实施方式中,处理单元802具体用于基于上行信道的状态信息确定至少一个波束的波束能量,至少一个波束为对应于上行信道的波束,以及根据波束能量确定上行参考信号的权值。
一种可能的实施方式中,处理单元802具体用于基于上行信道的信道协方差矩阵确定至少一个波束的波束能量。
在另一个实施例中,该通信装置800用于实现上述各实施例中对应终端的各个步骤:处理单元802,用于基于上行信道的载频信息和下行信道的载频信息获得相位差,相位差为第一波束对应的相位和第二波束对应的相位之间的相位差,第一波束关联于下行信道的载频,第二波束关联于上行信道的载频;
处理单元802还用于根据相位差校正第一波束得到校正后的第一波束;
处理单元802还用于根据校正后的第一波束确定上行参考信号的权值。
一种可能的实施方式中,处理单元802具体用于根据下行信道的载频获取第一波束的方位角和第一波束对应的相位,以及根据第一波束的方位角和上行信道的载频获取第二波束对应的相位,以及根据第一波束对应的相位和第二波束对应的相位获得相位差。
一种可能的实施方式中,该通信装置还包括接口单元801,接口单元801具体用于获得下行信道的状态信息,处理单元802还用于根据校正后的第一波束和下行信道的状态信息确定上行信道的状态信息。
一种可能的实施方式中,处理单元802具体用于基于校正后的第一波束确定第二波束的波束能量,以及根据波束能量确定下行参考信号的权值。
一种可能的实施方式中,处理单元802具体用于基于校正前的第一波束的波束能量和校正后的第一波束确定第二波束的波束能量。
一种可能的实施方式中,处理单元802具体用于基于校正后的第一波束对应的下行信道的信道协方差矩阵确定第二波束的波束能量。
可选地,上述通信装置还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。例如,处理单元802可以读取存储单元中的数据或者指令,使得通信装置实现上述实施例中的方法。
应理解以上通信装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且通信装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在通信装置的某一个芯片中实现,此外,也可以以程序的形式 存储于存储器中,由通信装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一通信装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当通信装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
请参阅图9,图9为本申请实施例提供的一种通信装置示意图,用于实现以上实施例中网络设备或终端的操作。如图9所示,该通信装置包括:处理器910和接口930,处理器910与接口930耦合。接口930用于实现与其他设备进行通信。接口930可以为收发器或输入输出接口。接口930例如可以是接口电路。可选地,该通信装置还包括存储器920,用于存储处理器910执行的指令或存储处理器910运行指令所需要的输入数据或存储处理器910运行指令后产生的数据。
以上实施例中网络设备或终端执行的方法可以通过处理器910调用存储器(可以是网络设备或终端中的存储器920,也可以是外部存储器)中存储的程序来实现。即,网络设备或终端可以包括处理器910,该处理器910通过调用存储器中的程序,以执行以上方法实施例中网络设备或终端执行的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。网络设备或终端可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
具体的,图8中的接口单元910和处理单元920的功能/实现过程可以通过图9所示的通信装置900中的处理器910调用存储器920中存储的计算机可执行指令来实现。或者,图8中的处理单元802的功能/实现过程可以通过图9所示的通信装置900中的处理器910调用存储器920中存储的计算机执行指令来实现,图8中的接口单元801的功能/实现过程可以通过图9中所示的通信装置900中的接口930来实现,示例性的,接口单元801的功能/实现过程可以通过处理器调用存储器中的程序指令以驱动接口930来实现。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是来自其他终端设备或网络设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给其他终端设备或网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是来自其他网络设备或终端设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给其他网络设备或终端设备的。
上述通信装置800中的接口单元801相当于通信装置900中的接口930,通信装置800中的处理单元802可以相当于通信装置900中的处理器910。
请参阅图10,图10是本申请实施例提供的一种通信系统示意图,该通信系统1000包括网络设备1001和终端1002,网络设备1001可以是上述方法实施例中的网络设备,终端1002可以是上述方法实施例中的终端。
在本申请的另一实施例中,还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当设备的处理器执行该计算机执行指令时,设备执行上述方法实施例中网络设备所执行的方法。
在本申请的另一实施例中,还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当设备的处理器执行该计算机执行指令时,设备执行上述方法实施例中终端所执行的方法。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中。当设备的处理器执行该计算机执行指令时,设备执行上述方法实施例中网络设备所执行方法的步骤。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中。当设备的处理器执行该计算机执行指令时,设备执行上述方法实施例中终端所执行方法的步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (26)

  1. 一种权值确定方法,其特征在于,包括:
    接收上行参考信号;
    基于所述上行参考信号获得上行信道与下行信道之间的信道互易性参数;
    根据所述信道互易性参数以及所述上行信道与所述下行信道的载频信息确定所述下行信道的状态信息;
    根据所述下行信道的状态信息确定下行参考信号的权值。
  2. 根据权利要求1所述的方法,其特征在于,所述信道互易性参数包括第一信道互易性参数和第二信道互易性参数;
    所述第一信道互易性参数与多径信道对应的幅值和相位相关,所述第二信道互易性参数与所述多径信道对应的距离和角度相关。
  3. 根据权利要求1所述的方法,其特征在于,所述信道互易性参数包括第三信道互易性参数、第四信信道互易性参数、第五信道互易性参数和第六信道互易性参数;
    所述第三信道互易性参数与多径信道对应的幅值、相位和距离相关,所述第四信道互易性参数与所述多径信道对应的距离相关,所述第五信道互易性参数和所述第六信道互易性参数与所述多径信道对应的距离和角度相关。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述下行信道的状态信息确定下行参考信号的权值包括:
    基于所述下行信道的状态信息确定至少一个波束的波束能量,所述至少一个波束为对应于所述下行信道的波束;
    根据所述波束能量确定所述下行参考信号的权值。
  5. 根据权利要求4所述的方法,其特征在于,所述基于所述下行信道的状态信息确定所述至少一个波束的波束能量包括:
    基于所述下行信道的信道协方差矩阵确定所述至少一个波束的波束能量。
  6. 一种权值确定方法,其特征在于,包括:
    基于上行信道的载频信息和下行信道的载频信息获得相位差,所述相位差为第一波束对应的相位和第二波束对应的相位之间的相位差,所述第一波束关联于所述上行信道的载频,所述第二波束关联于所述下行信道的载频;
    根据所述相位差校正所述第一波束得到校正后的第一波束;
    根据所述校正后的第一波束确定下行参考信号的权值。
  7. 根据权利要求6所述的方法,其特征在于,基于所述上行信道的载频和所述下行信道的载频获得所述相位差,包括:
    根据所述下行信道的载频和所述第二波束对应的相位获取所述第二波束的方位角;
    根据所述第二波束的方位角和所述上行信道的载频获取所述第一波束对应的相位;以及根据所述第一波束对应的相位和所述第二波束对应的相位获得所述相位差。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    获得所述上行信道的状态信息;
    根据所述校正后的第一波束和所述上行信道的状态信息确定所述下行信道的状态信息。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述根据校正后的第一波束确定下行参考信号的权值包括:
    基于所述校正后的第一波束确定所述第二波束的波束能量;
    根据所述波束能量确定所述下行参考信号的权值。
  10. 根据权利要求9所述的方法,其特征在于,所述基于所述校正后的第一波束确定所述第二波束的波束能量包括:
    基于校正前的第一波束的波束能量和所述校正后的第一波束确定所述第二波束的波束能量。
  11. 根据权利要求9所述的方法,其特征在于,所述基于所述校正后的第一波束确定所述第二波束的波束能量包括:
    基于所述校正后的第一波束对应的上行信道的信道协方差矩阵确定所述第二波束的波束能量。
  12. 一种权值确定方法,其特征在于,包括:
    接收下行参考信号;
    基于所述下行参考信号获得上行信道与下行信道之间的信道互易性参数;
    根据所述信道互易性参数以及所述上行信道与所述下行信道的载频信息确定所述上行信道的状态信息;
    根据所述上行信道的状态信息确定上行参考信号的权值。
  13. 根据权利要求12所述的方法,其特征在于,所述信道互易性参数包括第一信道互易性参数和第二信道互易性参数;
    所述第一信道互易性参数与多径信道对应的幅值和相位相关,所述第二信道互易性参数与所述多径信道对应的距离和角度相关。
  14. 根据权利要求12所述的方法,其特征在于,所述信道互易性参数包括第三信道互易性参数、第四信信道互易性参数、第五信道互易性参数和第六信道互易性参数;
    所述第三信道互易性参数与多径信道对应的幅值和距离相关,所述第四信道互易性参数与所述多径信道对应的距离相关,所述第五信道互易性参数和所述第六信道互易性参数与所述多径信道对应的距离和角度相关。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述根据所述上行信道的状态信息确定上行参考信号的权值包括:
    基于所述上行信道的状态信息确定至少一个波束的波束能量,所述至少一个波束为对应于所述上行信道的波束;
    根据所述波束能量确定所述上行参考信号的权值。
  16. 根据权利要求15所述的方法,其特征在于,所述基于所述上行信道的状态信息确定所述至少一个波束的波束能量包括:
    基于所述上行信道的信道协方差矩阵确定所述至少一个波束的波束能量。
  17. 一种权值确定方法,其特征在于,包括:
    基于上行信道的载频信息和下行信道的载频信息获得相位差,所述相位差为第一波束对应的相位和第二波束对应的相位之间的相位差,所述第一波束关联于所述下行信道的载频,所述第二波束关联于所述上行信道的载频;
    根据所述相位差校正所述第一波束得到校正后的第一波束;
    根据所述校正后的第一波束确定上行参考信号的权值。
  18. 根据权利要求17所述的方法,其特征在于,基于所述上行信道的载频和所述下行信道的载频获得所述相位差,包括:
    根据所述下行信道的载频获取所述第一波束的方位角和所述第一波束对应的相位;
    根据所述第一波束的方位角和所述上行信道的载频获取所述第二波束对应的相位;
    以及根据所述第一波束对应的相位和所述第二波束对应的相位获得所述相位差。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    获得所述下行信道的状态信息;
    根据所述校正后的第一波束和所述下行信道的状态信息确定所述上行信道的状态信息。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述根据校正后的第一波束确定上行参考信号的权值包括:
    基于所述校正后的第一波束确定所述第二波束的波束能量;
    根据所述波束能量确定所述下行参考信号的权值。
  21. 根据权利要求20所述的方法,其特征在于,所述基于所述校正后的第一波束确定所述第二波束的波束能量包括:
    基于校正前的第一波束的波束能量和所述校正后的第一波束确定所述第二波束的波束能量。
  22. 根据权利要求20所述的方法,其特征在于,所述基于所述校正后的第一波束确定所述第二波束的波束能量包括:
    基于所述校正后的第一波束对应的下行信道的信道协方差矩阵确定所述第二波束的波束能量。
  23. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求1至11中任一项所述的方法的单元或模块,或者,所述通信装置包括用于执行权利要求12至22中任一项所述的方法的单元或模块。
  24. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述处理器用于存储指令,当所述指令被所述处理器执行时,以使得所述通信装置执行权利要求1至11中任一项所述的方法,或者,以使得所述通信装置执行权利要求12至22中任一项所述的方法。
  25. 一种计算机可读存储介质,其上存储有指令,其特征在于,所述指令被执行时,以使得计算机执行权利要求1至11中任一项所述的方法,或者,以使得计算机执行权利要求12至22中任一项所述的方法。
  26. 一种计算机程序产品,所述计算机程序产品中包括指令,其特征在于,所述指令被执行时,以使得计算机实现权利要求1至11中任一项所述的方法,或者,以使得计算机实 现权利要求12至22中任一项所述的方法。
PCT/CN2022/074334 2021-05-31 2022-01-27 一种权值确定方法及相关装置 WO2022252662A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22814711.2A EP4318970A1 (en) 2021-05-31 2022-01-27 Weight determination method and related apparatus
US18/521,787 US20240106514A1 (en) 2021-05-31 2023-11-28 Weight determining method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110604208.4 2021-05-31
CN202110604208.4A CN115483953A (zh) 2021-05-31 2021-05-31 一种权值确定方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/521,787 Continuation US20240106514A1 (en) 2021-05-31 2023-11-28 Weight determining method and related apparatus

Publications (1)

Publication Number Publication Date
WO2022252662A1 true WO2022252662A1 (zh) 2022-12-08

Family

ID=84323855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074334 WO2022252662A1 (zh) 2021-05-31 2022-01-27 一种权值确定方法及相关装置

Country Status (4)

Country Link
US (1) US20240106514A1 (zh)
EP (1) EP4318970A1 (zh)
CN (1) CN115483953A (zh)
WO (1) WO2022252662A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486006A (zh) * 2002-09-24 2004-03-31 深圳市中兴通讯股份有限公司 智能天线上下行权值转换方法
CN101364828A (zh) * 2007-08-09 2009-02-11 中兴通讯股份有限公司 一种下行波束形成方法
CN109039962A (zh) * 2018-07-26 2018-12-18 南京东科优信网络安全技术研究院有限公司 一种基于路径相位差分的频分双工系统互易信道参数构建方法
CN110771060A (zh) * 2017-04-27 2020-02-07 瑞典爱立信有限公司 用于上行链路和下行链路通信中的方向互易性的方法和装置
CN111490950A (zh) * 2019-01-28 2020-08-04 成都华为技术有限公司 信道构建方法及通信设备
US20200304182A1 (en) * 2019-03-21 2020-09-24 Samsung Electronics Co., Ltd. Multi-user precoders based on partial reciprocity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486006A (zh) * 2002-09-24 2004-03-31 深圳市中兴通讯股份有限公司 智能天线上下行权值转换方法
CN101364828A (zh) * 2007-08-09 2009-02-11 中兴通讯股份有限公司 一种下行波束形成方法
CN110771060A (zh) * 2017-04-27 2020-02-07 瑞典爱立信有限公司 用于上行链路和下行链路通信中的方向互易性的方法和装置
CN109039962A (zh) * 2018-07-26 2018-12-18 南京东科优信网络安全技术研究院有限公司 一种基于路径相位差分的频分双工系统互易信道参数构建方法
CN111490950A (zh) * 2019-01-28 2020-08-04 成都华为技术有限公司 信道构建方法及通信设备
US20200304182A1 (en) * 2019-03-21 2020-09-24 Samsung Electronics Co., Ltd. Multi-user precoders based on partial reciprocity

Also Published As

Publication number Publication date
CN115483953A (zh) 2022-12-16
EP4318970A1 (en) 2024-02-07
US20240106514A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
US10461817B2 (en) Enhanced multiple-input multiple-output beam refinement protocol transmit sector sweep
US10587435B2 (en) Technique for radio channel estimation
JP5633914B2 (ja) 部分的チャンネル状態情報による多層ビーム成形
JP2001506833A (ja) スマートアンテナcdma無線通信システム
TWI759517B (zh) 資料傳輸的方法和終端設備
WO2018095305A1 (zh) 一种波束训练方法及装置
EP4022790A1 (en) Deep learning aided fingerprint based beam alignment
TWI771345B (zh) 用於傳輸數據的方法、終端設備和網絡設備
RU2750572C1 (ru) Способ и аппаратура обработки сигналов
WO2018145313A1 (zh) 无线通信方法、终端设备和网络设备
CN110912594B (zh) 波束训练方法及装置
CN109121222A (zh) 通信方法和通信设备
US11956037B2 (en) Spatial reuse for wireless network
WO2019195047A1 (en) Method and apparatus for millimeter-wave mimo mode selection
WO2019062797A1 (zh) 传输数据的方法和装置
CN110312322B (zh) 随机接入的方法及执行随机接入的设备
EP3616458A1 (en) Apparatuses, methods, computer programs, and computer program products for interference avoidance
WO2022252662A1 (zh) 一种权值确定方法及相关装置
WO2022267818A1 (zh) 一种移动性管理方法及通信装置
WO2014113974A1 (zh) 波束选择的方法和基站
CN113905392A (zh) 一种共用波束测量结果的方法及装置
JP2021514140A (ja) 推定された干渉レベルに従ったアップリンク測定信号および対応するアップリンク送信ビームの信号強度のスケーリング
WO2018132126A1 (en) Beam tracking indication for enhanced directional multi-gigabit single-carrier physical layer protocol data units
WO2024067518A1 (zh) 一种扇区扫描方法及装置
WO2024065810A1 (en) Method for uplink sounding reference signal precoder selection for interference suppression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022814711

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022814711

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE