WO2022252494A1 - 一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法 - Google Patents

一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法 Download PDF

Info

Publication number
WO2022252494A1
WO2022252494A1 PCT/CN2021/128833 CN2021128833W WO2022252494A1 WO 2022252494 A1 WO2022252494 A1 WO 2022252494A1 CN 2021128833 W CN2021128833 W CN 2021128833W WO 2022252494 A1 WO2022252494 A1 WO 2022252494A1
Authority
WO
WIPO (PCT)
Prior art keywords
surrounding rock
tunnel
grooved
metal ball
micro
Prior art date
Application number
PCT/CN2021/128833
Other languages
English (en)
French (fr)
Inventor
潘东江
李治国
张理蒙
赵建兵
陈雪峰
卢高明
杨延栋
Original Assignee
盾构及掘进技术国家重点实验室
中铁隧道局集团有限公司
中铁开发投资集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盾构及掘进技术国家重点实验室, 中铁隧道局集团有限公司, 中铁开发投资集团有限公司 filed Critical 盾构及掘进技术国家重点实验室
Publication of WO2022252494A1 publication Critical patent/WO2022252494A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices

Definitions

  • the invention relates to a grooved pipe device and a monitoring method, in particular to a grooved pipe device and a monitoring method suitable for the development characteristics of micro-cracks inside the surrounding rock of a tunnel based on a conductive injection agent in the field of geotechnical engineering.
  • micro-cracks Due to the strong concealment and potential hazards of micro-cracks in rock mass, the development information of micro-cracks in surrounding rocks is the key precursory feature of disasters such as collapse of dangerous rocks in tunnels, and the monitoring of their development time and development depth is particularly important.
  • borehole imagers At present, borehole imagers, ultrasonic wave velocity meters, geological radars, microseismic monitoring systems and other equipment are commonly used to test the quality of the superficial surrounding rock of tunnels.
  • Borehole imagers, ultrasonic wave velocity meters, and geological radars can monitor the loose circle of surrounding rock in tunnels, but they are expensive and cannot identify micro-cracks, and the current technical level cannot be monitored online, often missing the development time of micro-cracks.
  • Microseismic monitoring is to evaluate the damage status and safety status of the monitored objects by monitoring the vibration caused by rock mass rupture or other objects. It is expensive and cannot distinguish between micro cracks and macro cracks.
  • the purpose of this invention is to solve the problem of monitoring the development characteristics of micro-cracks in the surrounding rock of the tunnel, and provide a grooved pipe device and monitoring method for the development characteristics of micro-cracks in the surrounding rock of the tunnel based on conductive injection agent.
  • a grooved tube device characterized by the development of micro-cracks inside the surrounding rock of the tunnel according to the present invention, including a hollow elliptical metal ball, a grooved tube, a round tube and electric wires, the round tube is slightly longer than the grooved tube, embedded Installed in the groove on the surface of the grooved tube, the front end protrudes, the hollow elliptical metal ball is set at the front end of the round tube, the electric wire is welded on the hollow elliptical metal ball, from the round tube out of the tube.
  • the outer diameter of the grooved tube is 25 to 30 mm, the width of the groove on the surface of the grooved tube is not greater than a quarter of the outer diameter of the grooved tube, and the depth of the groove is not greater than a quarter of the outer diameter of the grooved tube one.
  • the short axis of the hollow elliptical metal ball is equal to the outer diameter of the grooved tube, the major axis is 1.2 to 2 times the outer diameter of the grooved tube, and the material is iron, copper, aluminum, or A metal with good ductility and electrical conductivity.
  • the outer diameter of the round pipe is not greater than the groove width and groove depth of the grooved pipe, and the outer diameter is inscribed with the outer diameter of the grooved pipe and is fixedly connected.
  • a monitoring method of a grooved pipe device using the above-mentioned micro-crack development characteristics in the surrounding rock of the tunnel comprising the following steps:
  • the conductive injection agent attached to the surrounding rock also breaks, causing the circuit of the electronic clock of the pointer to be broken, and recording the stop time of the electronic clock of the pointer;
  • the number of boreholes is not less than 3, the diameter of the boreholes is between 28 and 32mm, the distance between the boreholes is not less than 0.5m, and the length of the boreholes is not more than 5 times the diameter of the tunnel.
  • the pressure applied by the grooved tube is not less than 0.8MPa.
  • the conductive injection agent is selected from conductive cement slurry with strong conductivity and low consolidation strength.
  • the conductive cement slurry is made by mixing graphite powder, cement and water raw materials.
  • the mass ratio of graphite powder, cement and water is (0.05-0.35) :1:(0.4 ⁇ 0.6).
  • the initial setting time of the conductive injection is 1-3 hours.
  • the present invention cleverly combines the conductive injection agent and the pointer electronic clock, and proposes a grooved pipe device and monitoring method based on the conductive injection agent to detect the development characteristics of micro-cracks inside the tunnel surrounding rock, especially suitable for pyroxene, feldspar, A rock tunnel with high electrical resistivity of rock-forming minerals such as quartz, mica, and calcite.
  • this method has the advantages of high measurement accuracy, low material cost, simple operation, and low labor cost, and provides on-site data support for the stability assessment and control timing of the tunnel surrounding rock. Its main advantages are as follows:
  • the opening degree of the micro-cracks is less than 1 mm, and the particle size of the conductive injection agent is generally less than 40 ⁇ m.
  • the main body of the conductive injection agent adheres to the surrounding rock, and part of it enters the micro-cracks.
  • the conductive injection agent is conductive cement mixed with graphite powder or carbon black, which has strong electrical conductivity and low consolidation strength. Therefore, when micro-cracks develop in the surrounding rock of the tunnel, the conductive injection agent attached to the surrounding rock can also be broken. , the test accuracy is high for the development time of micro-cracks whose opening degree is less than 1mm.
  • Conductive injection agent chooses conductive cement slurry mixed with graphite powder, the material cost is low, and it is convenient for large-scale promotion.
  • the present invention solves the problem that the existing borehole imager, ultrasonic velocity meter, geological radar, microseismic monitoring system and other equipment cannot monitor the development time of micro-cracks inside the surrounding rock of the tunnel, and fills the gap in this technology.
  • Fig. 1 is a schematic diagram of the oblique view of the grooved pipe device of the present invention.
  • Fig. 2 is a schematic top view of the grooved tube device of the present invention.
  • Fig. 3 is a schematic diagram of the method for monitoring the development characteristics of micro-cracks inside the surrounding rock of the tunnel according to the present invention.
  • the grooved tube device with micro-crack development characteristics inside the tunnel surrounding rock of the present invention is mainly composed of a hollow elliptical metal ball 1, a grooved tube 2, a round tube 3 and an electric wire 4.
  • the round tube 3 is slightly longer than the grooved tube 2, embedded in the groove on the surface of the grooved tube 2, and the front end protrudes, and the hollow elliptical metal ball 1 is arranged at the protruding front end of the round tube 3, and the described
  • the electric wire 4 is welded on the hollow elliptical metal ball 1 and drawn out from the tube of the round tube 3 .
  • the outer diameter of the grooved tube 2 is 25-30mm, the width of the groove on the surface of the grooved tube 2 is not greater than 1/4 of the outer diameter of the grooved tube 2, and the depth of the groove is not greater than the outer diameter of the grooved tube 2. a quarter of the diameter.
  • the minor axis of the hollow elliptical metal ball 1 is equal to the outer diameter of the grooved tube 2, the major axis is 1.2 to 2 times the outer diameter of the grooved tube 2, and the material is iron, copper, Aluminum, or a metal with good ductility and conductivity.
  • the outer diameter of the round pipe 3 is not greater than the groove width and groove depth of the grooved pipe 2, the outer diameter is inscribed with the outer diameter of the grooved pipe 2, and is fixedly connected.
  • the monitoring method of the grooved pipe device of the micro-crack development characteristics inside the tunnel surrounding rock of the present invention the specific steps are as follows:
  • the tunnel is excavated, use a drilling rig to drill multiple boreholes 5 into the surrounding rock, and then install grooved pipe devices into the multiple boreholes 5, and push the hollow elliptical metal ball 1 into the borehole through the grooved pipe 2 5 bottom;
  • the number of the boreholes 5 is not less than 3
  • the borehole diameter is between 28-32mm
  • the borehole spacing is not less than 0.5m
  • the borehole length is not more than 5 times the tunnel diameter.
  • the mixed cement slurry is made by mixing graphite powder, cement and water raw materials.
  • the mass ratio of graphite powder, cement and water is (0.05 ⁇ 0.35):1:(0.4 ⁇ 0.6).
  • the grouting pipe is pulled out, and the electric wire 4 connected to the hollow oval metal ball 1, the conductive injection agent 6 and the battery 7, and the pointer electronic clock are connected. 8 are connected in series, and the starting time of the pointer electronic clock 8 is recorded; the initial setting time of the conductive injection 6 is 1 to 3 hours.
  • Example 1 A large number of micro-cracks existed in the original rock of a certain tunnel. During the excavation process, a large number of damage phenomena occurred in the surrounding rock under the action of high stress, such as flaking, rupture, swelling, and collapse. It is necessary to monitor the development of micro-cracks in the surrounding rock. time to evaluate the precursory characteristics of surrounding rock instability. Excavate the tunnel with a diameter of 10m, and use a drilling rig to drill three holes into the surrounding rock. The hole diameter is 28mm, the hole spacing is 5m, and the hole lengths are 5m, 10m, and 15m respectively. Then put the grooved tube device into the borehole, and simultaneously push the hollow oval metal ball into the bottom of the borehole.
  • the outer diameter of the grooved tube is 25mm, the groove width is 5mm, and the groove depth is 5mm.
  • the short axis of the hollow elliptical metal ball 1 is 25 mm, the long axis is 30 mm, and the material is aluminum.
  • the start time of the electronic clock connected by three drill holes is 14:00
  • the stop time of the electronic clock connected by a drill hole with a length of 5m is 17:30 on the third day
  • the electronic clock with a drill hole length of 10m stops at 17:30 It was 18:40 on the seventh day
  • the analog electronic clock connected by a 15m-long drill hole has not stopped. It shows that the development time of the tunnel surrounding rock at a depth of 5m is 51 hours and 30 minutes, and the development time of the tunnel surrounding rock at a depth of 10m is 148 hours and 40 minutes, and the maximum depth of micro-cracks in the tunnel surrounding rock is 10m.
  • Embodiment 2 is basically the same as Embodiment 1, and the similarities are omitted.
  • the hole diameter is 30mm
  • the hole spacing is 6m
  • the hole lengths are 3m, 6m, 9m, and 12m.
  • the outer diameter of the grooved tube is 28mm
  • the groove width is 6mm
  • the groove depth is 6mm.
  • the short axis of the hollow elliptical metal ball is 28mm, and the long axis is 35mm.
  • the conductive injection is made by mixing graphite powder, cement, and water with a mass ratio of 0.35:1:0.5.
  • the initial setting time is about 2.5 hours.
  • the stop time of the electronic clock connected by a drill hole with a length of 3m is 15:35 on the third day, and the electronic clock with a drill hole length of 6m stops at 15:35 It was 16:20 on the seventh day, and the analog electronic clock connected by the drill hole with a length of 9m and 12m has not stopped. It shows that the development time of the tunnel surrounding rock at a depth of 3m is 48 hours and 35 minutes, and the development time of the tunnel surrounding rock at a depth of 6m is 145 hours and 20 minutes, and the maximum depth of micro-cracks in the tunnel surrounding rock is 6m.
  • Embodiment 3 is basically the same as Embodiment 1, and the similarities are omitted.
  • the hole diameter is 32mm
  • the hole spacing is 8m
  • the hole lengths are 4m, 8m, 12m, 16m, and 20m.
  • the outer diameter of the grooved tube is 30mm
  • the groove width is 6mm
  • the groove depth is 6mm.
  • the short axis of the hollow elliptical metal ball is 30mm
  • the long axis is 38mm.
  • the conductive injection is made by mixing graphite powder, cement, and water with a mass ratio of 0.25:1:0.5, and the initial setting time is about 2 hours.
  • the stop time of the electronic clock connected by a drill hole with a length of 4m is 16:30 of the next day, and the electronic clock with a drill hole length of 8m stops at 16:30 It was 20:20 on the third day, and the stop time of the electronic clock with a length of 12m drilled was 21:40 on the seventh day, while the electronic clock with a length of 16m and 20m connected by a drilled hole never stopped.
  • the development time of the surrounding rock of the tunnel at a depth of 4m is 26 hours and 30 minutes
  • the development time of the surrounding rock of the tunnel at a depth of 8m is 54 hours and 20 minutes
  • the development time of the surrounding rock of the tunnel at a depth of 12m is 151 hours and 40 minutes
  • the maximum depth of micro-cracks developed in the surrounding rock of the tunnel is 12m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Pathology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法。该装置包括中空椭圆型金属球(1)、凹槽管(2)、圆管(3)和电线(4),监测时利用钻机向围岩内部钻多个钻孔(5),并向多个钻孔(5)内装入凹槽管(2),通过凹槽管(2)将中空椭圆型金属球(1)顶入钻孔(5)底部;对凹槽管(2)施加压力将中空椭圆型金属球(1)在钻孔(5)底部挤压变形,之后拔出与中空椭圆型金属球(1)活动连接的凹槽管(2),同时引出电线(4),使中空椭圆型金属球(1)卡死在钻孔(5)底部;向钻孔(5)内注满导电注剂(6),将中空椭圆型金属球(1)、电线(4)、导电注剂(6)、电池(7)、指针电子钟(8)串联,并记录不同钻孔(5)连接的指针电子钟(8)的起始时刻和停止时刻。该装置结构简单,操作方便,监测精确度高,成本低。

Description

一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法 技术领域
本发明涉及一种凹槽管装置及监测方法,尤其是一种适用于岩土工程领域的基于导电注剂的隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法。
背景技术
由于成岩、构造运动及其他外部营力的作用,岩体中一般具有一定的宏观和微观裂隙(张开度小于1mm)。外部营力改变,裂隙周边特别是端部,产生应力集中现象,进而在缝端开始破坏。微裂缝逐渐扩展、累积最终也可能演变成宏观裂缝。例如锦屏二级水电站,由于开挖卸荷及围岩应力重调整作用,在侧壁浅部位围岩中生成小角度进平行洞壁张拉裂隙,较深部位生成具有一定弧度的剪切裂隙。由于岩体微裂隙隐蔽性强、潜在危害性大,围岩内部微裂隙发育信息是隧道危石垮塌等灾害的关键前兆特征,其发育时间、发育深度监测尤为重要。
目前常用钻孔成像仪、超声波波速仪、地质雷达、微震监测系统等设备测试隧道浅表围岩质量。钻孔成像仪、超声波波速仪、地质雷达等能够监测隧道围岩松动圈,但价格昂贵、无法识别微裂隙,且目前技术水平尚不能在线监测,往往错过微裂隙发育时间。微震监测是通过监测岩体破裂产生的震动或其他物体的震动,对监测对象的破坏状况、安全状况等作出评价,价格昂贵且无法区分微裂隙和宏观裂隙。现场施工人员也能对隧道围岩表面宏观裂隙进行地质素描,但不能发现围岩内部隐蔽性强的微裂隙。所以亟需一种方法解决上述监测手段存在的各类突出问题。
发明内容
技术问题:本发明的目的就是要解决隧道围岩内部微裂隙发育特征监测难题,提供一种基于导电注剂的隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法。
技术方案:本发明的一种隧道围岩内部微裂隙发育特征的凹槽管装置,包括中空椭圆型金属球、凹槽管、圆管和电线,所述的圆管略长于凹槽管,嵌装在凹槽管表面上的凹槽内,前端伸出,所述的中空椭圆型金属球设在圆管伸出的前端,所述的电线焊接在中空椭圆型金属球上,从圆管的管内引出。
所述的凹槽管的外径为25~30mm,凹槽管表面上的凹槽宽度不大于凹槽管外径的四分之一,凹槽的深度不大于凹槽管外径的四分之一。
所述的中空椭圆型金属球的短轴与所述的凹槽管的外径相等,长轴为所述的凹槽管的外径的1.2~2倍,材质为铁、铜、铝、或具有良好延展性和导电性的金属。
所述的圆管的外径为不大于所述的凹槽管的凹槽宽度和凹槽深度,外径与所述的凹槽管的外径相内切,并固定连接。
一种使用上述隧道围岩内部微裂隙发育特征的凹槽管装置的监测方法,包括如下步骤:
a.隧道开挖后,使用钻机向围岩内部钻多个钻孔,之后向多个钻孔内装入凹槽管,通过凹槽管将中空椭圆型金属球顶入钻孔底部;
b.对凹槽管施加压力将中空椭圆型金属球在钻孔底部挤压变形,之后拔出与中空椭圆型金属球活动连接的凹槽管,同时引出电线,使中空椭圆型金属球卡死在钻孔底部;
c.安装注浆管,并在靠近隧道围岩浅表端部进行封孔,然后向钻孔内注入导电注剂,直到注满钻孔;
d.注浆作业完成后,在达到导电注剂的初凝时间时,拔出注浆管,将与中空椭圆型金属球相连的电线、导电注剂与电池、指针电子钟串联在一起,并记录指针电子钟的起始时刻;
e.当隧道围岩内部微裂隙发育时,附着在围岩内部的导电注剂也随之破裂,造成指针电子钟的线路断路,记录指针电子钟的停止时刻;
f.记录指针电子钟的停止时刻与起始时刻的差值,即为隧道围岩内部微裂隙发育时间;当观察到某钻孔连接的指针电子钟停止时,则该钻孔的长度为隧道围岩内部微裂隙的发育深度。
所述的钻孔的数量不少于3个,钻孔直径为28~32mm之间,钻孔间距为不小于0.5m,钻孔长度不大于5倍的隧道洞径。
所述的通过凹槽管施加的压力不少于0.8MPa。
所述的导电注剂选择导电性能强、固结强度低的导电水泥浆,导电水泥浆包括石墨粉、水泥和水原料搅拌制成,石墨粉、水泥、水的质量比为(0.05~0.35):1:(0.4~0.6)。
所述的导电注剂的初凝时间为1~3小时。
有益效果:本发明巧妙结合导电注剂和指针电子钟,提出了一种基于导电注剂的隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法,尤其适用于辉石、长石、石英、云母和方解石等造岩矿物电阻率很高的岩石隧道。同时该方法具备测量精确度高、材料成本低、操作简易、人工成本低等优势,为隧道围岩稳定性评估、控制时机提供了现场数据支持。其主要优点如下:
(1)在顶部搭接一个中空椭圆型金属球的凹槽管,通过凹槽管施加一定力量将中空椭圆型金属球在钻孔底部挤压变形;在拔出凹槽管的同时,能够引出电线,使中空椭圆型金属球卡死在钻孔底部,其结构简单,方便易行。
(2)微裂隙的张开度小于1mm,导电注剂的粒径一般小于40μm,导电注剂主体粘附在围岩上,部分进入到微裂隙中。导电注剂选择掺加石墨粉或炭黑的导电水泥,导电性能强,固结强度低,所以在当隧道围岩内部微裂隙发育时,附着在围岩上的导电注剂也能随之破裂, 对张开度小于1mm的微裂隙发育时间测试精确度高。
(3)导电注剂选择掺加石墨粉的导电水泥浆,材料成本低,便于大范围推广。
(4)通过注浆、连接线路和记录数据,对人工的技术水平要求低,平时也不需要养护,所以人工成本低。
(5)本发明解决了现有的钻孔成像仪、超声波波速仪、地质雷达、微震监测系统等设备不能监测隧道围岩内部微裂隙发育时间的问题,填补了该项技术的空白。
(6)通过不同长度的钻孔,再根据不同钻孔连接的指针电子钟的不同停止时刻,就能判断隧道围岩内部微裂隙的发育深度。
附图说明
图1是本发明的凹槽管装置的斜视结构示意图。
图2是本发明的凹槽管装置的俯视结构示意图。
图3是本发明的隧道围岩内部微裂隙发育特征监测方法示意图。
图中:1-中空椭圆型金属球,2-凹槽管,3-圆管,4-电线,5-钻孔,6-导电注剂,7-电池,8-指针电子钟。
具体实施方式
下面结合附图中的实施例对本发明作进一步的描述:
如图1图2所示,本发明的隧道围岩内部微裂隙发育特征的凹槽管装置,主要由中空椭圆型金属球1、凹槽管2、圆管3和电线4构成,所述的圆管3略长于凹槽管2,嵌装在凹槽管2表面上的凹槽内,前端伸出,所述的中空椭圆型金属球1设在圆管3伸出的前端,所述的电线4焊接在中空椭圆型金属球1上,从圆管3的管内引出。所述的凹槽管2的外径为25~30mm,凹槽管2表面上的凹槽宽度不大于凹槽管2外径的四分之一,凹槽的深度不大于凹槽管2外径的四分之一。所述的中空椭圆型金属球1的短轴与所述的凹槽管2的外径相等,长轴为所述的凹槽管2的外径的1.2~2倍,材质为铁、铜、铝、或具有良好延展性和导电性的金属。所述的圆管3的外径为不大于所述的凹槽管2的凹槽宽度和凹槽深度,外径与所述的凹槽管2的外径相内切,并固定连接。
如图3所示,本发明的隧道围岩内部微裂隙发育特征的凹槽管装置的监测方法,具体步骤如下:
a.隧道开挖后,使用钻机向围岩内部钻多个钻孔5,之后向多个钻孔5内装入凹槽管装置,通过凹槽管2将中空椭圆型金属球1顶入钻孔5底部;所述的钻孔5的数量不少于3个,钻孔直径为28~32mm之间,钻孔间距为不小于0.5m,钻孔长度不大于5倍的隧道洞径。
b.通过凹槽管2施加压力将中空椭圆型金属球1在钻孔5底部挤压变形,之后拔出与中 空椭圆型金属球1活动连接的凹槽管2,同时引出电线4,使中空椭圆型金属球1卡死在钻孔(5)底部;所述的通过凹槽管2施加的压力不少于0.8MPa。
c.安装注浆管,并在靠近隧道围岩浅表端部进行封孔,然后向钻孔5内注入导电注剂6,直到注满钻孔5;所述的导电注剂6选择导电性能强、固结强度低的混合水泥浆,混合水泥浆包括石墨粉、水泥和水原料搅拌制成,石墨粉、水泥、水的质量比为(0.05~0.35):1:(0.4~0.6)。
d.注浆作业完成后,在达到导电注剂6的初凝时间时,拔出注浆管,将与中空椭圆型金属球1相连的电线4、导电注剂6与电池7、指针电子钟8串联在一起,并记录指针电子钟8的起始时刻;所述的导电注剂6的初凝时间为1~3小时。
e.当隧道围岩内部微裂隙发育时,附着在围岩内部的导电注剂6也随之破裂,造成指针电子钟8的线路断路,记录指针电子钟8的停止时刻;
f.记录指针电子钟8的停止时刻与起始时刻的差值,即为隧道围岩内部微裂隙发育时间;当观察到某钻孔连接的指针电子钟8停止时,则该钻孔的长度为隧道围岩内部微裂隙的发育深度。
实施例一、针对某隧道原岩赋存大量微裂隙,开挖过程中在高应力作用下围岩出现了大量破坏现象,如片帮、破裂鼓胀、塌方等,需要监测围岩内部微裂隙发育时间,评估围岩失稳前兆特征。开挖隧道洞径10m,使用钻机向围岩内部钻三个孔,孔直径为28mm,孔间距为5m,孔长度分别为5m、10m、15m。之后将凹槽管装置放入钻孔,同时将中空椭圆型金属球顶入钻孔底部。凹槽管的外径为25mm,凹槽宽度为5mm,凹槽深度为5mm。中空椭圆型金属球1的短轴为25mm,长轴为30mm,材质为铝质。
通过凹槽管2施加1MPa的压力将中空椭圆型金属球1在钻孔底部挤压变形,之后拔出凹槽管2,同时引出电线,使中空椭圆型金属球1卡死在钻孔底部。安装注浆管,并在靠近隧道围岩浅表端部进行封孔,然后开展导电注剂的注浆作业。导电注剂由石墨粉、水泥、水质量比为0.25:1:0.5的原料搅拌制成,初凝时间约2小时。完成注浆作业后,在达到导电注剂的初凝时间时,拔出注浆管。将中空椭圆型金属球、电线、导电注剂、电池、指针电子钟串联,并记录指针电子钟的起始时刻。
若三个钻孔连接的指针电子钟起始时刻为14点整,长度5m钻孔连接的指针电子钟停止时刻为第三天的17点30分,长度10m钻孔连接的指针电子钟停止时刻为第七天的18点40分,而长度15m钻孔连接的指针电子钟一直未停止。表明该隧道围岩内部以深5m的发育时间为51小时30分钟,该隧道围岩内部以深10m的发育时间为148小时40分钟,且隧道围岩内部微裂隙发育的最大深度为10m。
实施例二、与实施例一基本相同,相同之处略。开挖隧道洞径6m,使用钻机向围岩内部钻四个孔,孔直径为30mm,孔间距为6m,孔长度分别为3m、6m、9m、12m。之后将凹槽管装置放入钻孔,同时将中空椭圆型金属球顶入钻孔底部。凹槽管的外径为28mm,凹槽宽度为6mm,凹槽深度为6mm。中空椭圆型金属球的短轴为28mm,长轴为35mm。
通过凹槽管2施加1.2MPa的压力将中空椭圆型金属球1在钻孔底部挤压变形,之后拔出凹槽管2,同时引出电线,使中空椭圆型金属球1卡死在钻孔底部。安装注浆管,并在靠近隧道围岩浅表端部进行封孔,然后开展导电注剂的注浆作业。导电注剂由石墨粉、水泥、水质量比为0.35:1:0.5的原料搅拌制成,初凝时间约2.5小时。
若三个钻孔连接的指针电子钟起始时刻为15点整,长度3m钻孔连接的指针电子钟停止时刻为第三天的15点35分,长度6m钻孔连接的指针电子钟停止时刻为第七天的16点20分,而长度9m、12m钻孔连接的指针电子钟一直未停止。表明该隧道围岩内部以深3m的发育时间为48小时35分钟,该隧道围岩内部以深6m的发育时间为145小时20分钟,且隧道围岩内部微裂隙发育的最大深度为6m。
实施例三、与实施例一基本相同,相同之处略。开挖隧道洞径8m,使用钻机向围岩内部钻五个孔,孔直径为32mm,孔间距为8m,孔长度分别为4m、8m、12m、16m、20m。之后将凹槽管装置放入钻孔,同时将中空椭圆型金属球顶入钻孔底部。凹槽管的外径为30mm,凹槽宽度为6mm,凹槽深度为6mm。中空椭圆型金属球的短轴为30mm,长轴为38mm。
通过凹槽管2施加1.2MPa的压力将中空椭圆型金属球1在钻孔底部挤压变形,之后拔出凹槽管2,同时引出电线,使中空椭圆型金属球1卡死在钻孔底部。安装注浆管,并在靠近隧道围岩浅表端部进行封孔,然后开展导电注剂的注浆作业。导电注剂由石墨粉、水泥、水质量比为0.25:1:0.5的原料搅拌制成,初凝时间约2小时。
若三个钻孔连接的指针电子钟起始时刻为14点整,长度4m钻孔连接的指针电子钟停止时刻为第二天的16点30分,长度8m钻孔连接的指针电子钟停止时刻为第三天的20点20分,长度12m钻孔连接的指针电子钟停止时刻为第七天的21点40分,而长度16m、20m钻孔连接的指针电子钟一直未停止。表明该隧道围岩内部以深4m的发育时间为26小时30分钟,该隧道围岩内部以深8m的发育时间为54小时20分钟,该隧道围岩内部以深12m的发育时间为151小时40分钟,且隧道围岩内部微裂隙发育的最大深度为12m。

Claims (9)

  1. 一种隧道围岩内部微裂隙发育特征的凹槽管装置,其特征在于:它包括中空椭圆型金属球(1)、凹槽管(2)、圆管(3)和电线(4),所述的圆管(3)略长于凹槽管(2),嵌装在凹槽管(2)表面上的凹槽内,前端伸出,所述的中空椭圆型金属球(1)设在圆管(3)伸出的前端,所述的电线(4)焊接在中空椭圆型金属球(1)上,从圆管(3)的管内引出。
  2. 如权利要求1所述的一种隧道围岩内部微裂隙发育特征的凹槽管装置,其特征在于:所述的凹槽管(2)的外径为25~30mm,凹槽管(2)表面上的凹槽宽度不大于凹槽管(2)外径的四分之一,凹槽的深度不大于凹槽管(2)外径的四分之一。
  3. 如权利要求1所述的一种隧道围岩内部微裂隙发育特征的凹槽管装置,其特征在于:所述的中空椭圆型金属球(1)的短轴与所述的凹槽管(2)的外径相等,长轴为所述的凹槽管(2)的外径的1.2~2倍,材质为铁、铜、铝、或具有良好延展性和导电性的金属。
  4. 如权利要求1所述的一种隧道围岩内部微裂隙发育特征的凹槽管装置,其特征在于:所述的圆管(3)的外径为不大于所述的凹槽管(2)的凹槽宽度和凹槽深度,外径与所述的凹槽管(2)的外径相内切,并固定连接。
  5. 一种使用权利要求1-4任意项所述隧道围岩内部微裂隙发育特征的凹槽管装置的监测方法,其特征在于包括如下步骤:
    a.隧道开挖后,使用钻机向围岩内部钻多个钻孔(5),之后向多个钻孔(5)内装入凹槽管装置,通过凹槽管(2)将中空椭圆型金属球(1)顶入钻孔(5)底部;
    b.通过凹槽管(2)施加压力将中空椭圆型金属球(1)在钻孔(5)底部挤压变形,之后拔出与中空椭圆型金属球(1)活动连接的凹槽管(2),同时引出电线(4),使中空椭圆型金属球(1)卡死在钻孔(5)底部;
    c.安装注浆管,并在靠近隧道围岩浅表端部进行封孔,然后向钻孔(5)内注入导电注剂(6),直到注满钻孔(5);
    d.注浆作业完成后,在达到导电注剂(6)的初凝时间时,拔出注浆管,将与中空椭圆型金属球(1)相连的电线(4)、导电注剂(6)与电池(7)、指针电子钟(8)串联在一起,并记录指针电子钟(8)的起始时刻;
    e.当隧道围岩内部微裂隙发育时,附着在围岩内部的导电注剂(6)也随之破裂,造成指针电子钟(8)的线路断路,记录指针电子钟(8)的停止时刻;
    f.记录指针电子钟(8)的停止时刻与起始时刻的差值,即为隧道围岩内部微裂隙发育 时间;当观察到某钻孔连接的指针电子钟(8)停止时,则该钻孔的长度为隧道围岩内部微裂隙的发育深度。
  6. 如权利要求5所述的监测方法,其特征在于:所述的钻孔(5)的数量不少于3个,钻孔直径为28~32mm之间,钻孔间距为不小于0.5m,钻孔长度不大于5倍的隧道洞径。
  7. 如权利要求5所述的监测方法,其特征在于:所述的通过凹槽管(2)施加的压力不少于0.8MPa。
  8. 如权利要求5所述的监测方法,其特征在于:所述的导电注剂(6)选择导电性能强、固结强度低的导电水泥浆,导电水泥浆包括石墨粉、水泥和水原料搅拌制成,石墨粉、水泥、水的质量比为(0.05~0.35):1:(0.4~0.6)。
  9. 如权利要求5或8所述的监测方法,其特征在于:所述的导电注剂(6)的初凝时间为1~3小时。
PCT/CN2021/128833 2021-06-01 2021-11-05 一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法 WO2022252494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110609048.2 2021-06-01
CN202110609048.2A CN113219141B (zh) 2021-06-01 2021-06-01 一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法

Publications (1)

Publication Number Publication Date
WO2022252494A1 true WO2022252494A1 (zh) 2022-12-08

Family

ID=77082224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128833 WO2022252494A1 (zh) 2021-06-01 2021-11-05 一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法

Country Status (3)

Country Link
CN (1) CN113219141B (zh)
LU (1) LU103020B1 (zh)
WO (1) WO2022252494A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219141B (zh) * 2021-06-01 2023-03-14 盾构及掘进技术国家重点实验室 一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665984A (en) * 1985-08-29 1987-05-19 Tohoku University Method of measuring crustal stress by hydraulic fracture based on analysis of crack growth in rock
CN102102537A (zh) * 2010-12-20 2011-06-22 中铁隧道集团有限公司 隧道围岩径向应力应变分布式监测技术
CN102168950A (zh) * 2010-12-20 2011-08-31 中铁隧道集团有限公司 隧道围岩变形分布式光纤超前监测方法
CN202693398U (zh) * 2012-06-28 2013-01-23 中国地质科学院地质力学研究所 深埋隧道围岩稳定性监测模拟试验装置
CN105334308A (zh) * 2015-09-23 2016-02-17 辽宁工程技术大学 一种围岩裂隙发育动态监测方法及监测设备
CN106247965A (zh) * 2016-07-15 2016-12-21 东南大学 基于多功能智能锚杆的隧道围岩监测方法
CN110657905A (zh) * 2019-08-27 2020-01-07 山东大学 隧道围岩内部应力分布式监测装置及施工方法、监测方法
CN113219141A (zh) * 2021-06-01 2021-08-06 盾构及掘进技术国家重点实验室 一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1155178A (en) * 1978-01-06 1983-10-11 David Wright Detecting and measuring the position of a break in solid formations
JPS54141175A (en) * 1978-04-25 1979-11-02 Mitsubishi Electric Corp Crack detector terminal assemblies
FR2585129B1 (fr) * 1985-07-19 1988-07-08 Centre Nat Rech Scient Procede et dispositif de detection d'apparition et de quantification d'evolution de fissures a la surface d'un materiau
JP4139007B2 (ja) * 1999-07-23 2008-08-27 大成建設株式会社 岩盤の亀裂探査装置
JP3905354B2 (ja) * 2001-11-05 2007-04-18 財団法人ファインセラミックスセンター トンネル構造体、トンネル構造体の損傷診断方法、損傷検出材、トンネルの建設方法およびトンネルの補修方法
JP3871597B2 (ja) * 2002-04-02 2007-01-24 株式会社コベルコ マテリアル銅管 内面溝付伝熱管及びその製造装置
JP2004164910A (ja) * 2002-11-11 2004-06-10 Shin Etsu Polymer Co Ltd 異方導電性接着剤
CN1710425A (zh) * 2005-06-01 2005-12-21 于海湧 围岩裂隙扫描探测仪
JP4937853B2 (ja) * 2007-07-30 2012-05-23 公益財団法人鉄道総合技術研究所 トンネルのひび割れ位置検知システム
CN201188094Y (zh) * 2008-04-14 2009-01-28 中原工学院 测试岩石微裂纹的装置
CN101581686A (zh) * 2009-03-18 2009-11-18 河海大学 一种土体裂隙发育的监测方法
US10267134B2 (en) * 2013-01-04 2019-04-23 Carbo Ceramics Inc. Methods and systems for determining subterranean fracture closure
CA2928669A1 (en) * 2013-11-08 2015-05-14 Mukul M. Sharma Fracture diagnosis using electromagnetic methods
CN104632075B (zh) * 2014-12-16 2016-09-21 山东科技大学 一种用于覆岩裂隙探测的钻测一体化系统及方法
CN105736048B (zh) * 2016-02-24 2018-05-01 中国矿业大学(北京) 一种钻孔围岩破坏形态记忆留存方法
CN107229083B (zh) * 2016-03-25 2019-05-07 中国石油化工股份有限公司 一种裂缝感应测井响应模拟装置
CN106285628B (zh) * 2016-08-31 2019-04-09 西安科技大学 一种监测无煤柱沿空留巷底板裂隙发育的探测系统及方法
CN106223931B (zh) * 2016-08-31 2023-05-02 中国平煤神马控股集团有限公司 一种监测预留煤柱沿空留巷底板裂隙发育的系统及方法
CN107063107A (zh) * 2017-03-30 2017-08-18 云南大永高速公路建设指挥部 隧道围岩变形分布式光纤监测系统及施工、监测方法
CN112127909B (zh) * 2020-09-08 2021-12-07 河海大学 一种隧道破碎围岩精确注浆修复加固方法
CN112687082A (zh) * 2020-12-31 2021-04-20 云南省建筑科学研究院 一种混凝土裂缝远程监测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665984A (en) * 1985-08-29 1987-05-19 Tohoku University Method of measuring crustal stress by hydraulic fracture based on analysis of crack growth in rock
CN102102537A (zh) * 2010-12-20 2011-06-22 中铁隧道集团有限公司 隧道围岩径向应力应变分布式监测技术
CN102168950A (zh) * 2010-12-20 2011-08-31 中铁隧道集团有限公司 隧道围岩变形分布式光纤超前监测方法
CN202693398U (zh) * 2012-06-28 2013-01-23 中国地质科学院地质力学研究所 深埋隧道围岩稳定性监测模拟试验装置
CN105334308A (zh) * 2015-09-23 2016-02-17 辽宁工程技术大学 一种围岩裂隙发育动态监测方法及监测设备
CN106247965A (zh) * 2016-07-15 2016-12-21 东南大学 基于多功能智能锚杆的隧道围岩监测方法
CN110657905A (zh) * 2019-08-27 2020-01-07 山东大学 隧道围岩内部应力分布式监测装置及施工方法、监测方法
CN113219141A (zh) * 2021-06-01 2021-08-06 盾构及掘进技术国家重点实验室 一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法

Also Published As

Publication number Publication date
LU103020B1 (en) 2022-12-12
CN113219141B (zh) 2023-03-14
CN113219141A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN201401174Y (zh) 高密度电阻率监测围岩松动圈的系统
CN103398901B (zh) 一种锚杆室内拉拔试验装置
Liang et al. Response characteristics of coal subjected to hydraulic fracturing: An evaluation based on real-time monitoring of borehole strain and acoustic emission
CN104500034A (zh) 一种评价压力变化对水泥环完整性影响的装置及方法
Li et al. Acoustic emission monitoring technology for coal and gas outburst
CN102505965A (zh) 一种岩体破坏失稳预警识别的方法
CN106285628B (zh) 一种监测无煤柱沿空留巷底板裂隙发育的探测系统及方法
CN102071961B (zh) 一种下行瓦斯抽放钻孔和测压钻孔封孔方法
CN106195616A (zh) 一种液体二氧化碳灌装系统
WO2022252494A1 (zh) 一种隧道围岩内部微裂隙发育特征的凹槽管装置及监测方法
WO2020057363A1 (zh) 一种巷道表面绝对收敛量的观测装置及观测方法
CN105352884A (zh) 测试混凝土与煤、岩或砼粘结强度的实验方法和构件
CN106223931A (zh) 一种监测预留煤柱沿空留巷底板裂隙发育的系统及方法
CN206144498U (zh) 用于监测底板围岩裂隙的钻孔锚固结构
CN113431101B (zh) 一种压力钢管接触灌浆脱空检测方法及装置
Wang et al. Geotechnical characterization of red shale and its indication for ground control in deep underground mining
Zhao et al. Experimental investigation on basic law of rock directional fracturing with static expansive agent controlled by dense linear multi boreholes
CN113219000A (zh) 一种对岩体脆性微破坏现象预测冲击地压的方法及设备
CN103290827A (zh) 一种多点位移计安装埋设注浆方法
CN104792965B (zh) 基于钻孔能量的围岩松动圈测试方法
CN107167840B (zh) 一种可回收重复使用的微震传感器
CN105928853B (zh) 一种检验隧洞破裂围岩灌浆后阻水效果的试验方法
CN214953246U (zh) 一种超长外露锚杆无损检测装置
CN203298746U (zh) 一种岩土工程安全监测垂直多点位移计装置
CN111380638B (zh) 一种提高实体煤区采动应力实测精度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943846

Country of ref document: EP

Kind code of ref document: A1