WO2022252194A1 - 触控基板、显示装置及显示系统 - Google Patents

触控基板、显示装置及显示系统 Download PDF

Info

Publication number
WO2022252194A1
WO2022252194A1 PCT/CN2021/098196 CN2021098196W WO2022252194A1 WO 2022252194 A1 WO2022252194 A1 WO 2022252194A1 CN 2021098196 W CN2021098196 W CN 2021098196W WO 2022252194 A1 WO2022252194 A1 WO 2022252194A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
line
bias
electrode
touch
Prior art date
Application number
PCT/CN2021/098196
Other languages
English (en)
French (fr)
Inventor
蔡寿金
李成
车春城
刘锋
李田生
周琳
钟昆璟
孔德玺
王迎姿
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/565,136 priority Critical patent/US20240201814A1/en
Priority to PCT/CN2021/098196 priority patent/WO2022252194A1/zh
Priority to CN202180001426.7A priority patent/CN116075937A/zh
Publication of WO2022252194A1 publication Critical patent/WO2022252194A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present disclosure relates to the field of display technology, in particular to a touch substrate, a display device and a display system.
  • H2H Human to Human
  • H2M Human to Machine
  • M2M Object to Machine
  • the Internet of Things came into being in this context, and it is considered to be the third wave of the world's information industry after computers and the Internet.
  • the Internet of Things adopts information technology to promote the comprehensive upgrading of human life and production services. Its application development has broad prospects and strong industrial driving capabilities. European and American countries have incorporated the development of the Internet of Things into the overall informatization strategy, and my country has also clearly incorporated the Internet of Things into the national medium and long-term science and technology development plan (2006-2020) and the national industrial roadmap for 2050.
  • human-computer interaction is particularly important. It is not only the architecture foundation of the Internet of Things, but also the ultimate goal of the Internet of Things. Communicate with the system through the human-computer interface and operate it. Things as small as the play button on the radio, as large as the dashboard on the plane, or the control room of the power plant are not used all the time, and there are many ways to realize human interaction, such as touch based on pressure, resistance, and capacitance , Face recognition based on light, ultrasound based on sound, tactile feedback based on electrostatic feedback, etc., are currently used more in the touch interaction of consumer products such as mobile phones and TVs, but their technologies have certain limitations, that is, they must be touched In order to achieve the purpose of interaction, it not only limits the scope of application, but also cannot realize long-distance touch interaction. Under this background, optical touch came into being.
  • a touch substrate, a display device, and a display system provided by an embodiment of the present disclosure, the specific solutions are as follows:
  • an embodiment of the present disclosure provides a touch substrate, including:
  • a substrate substrate including a photosensitive region
  • a plurality of photosensitive pixels are arranged in an array in the photosensitive area, and one photosensitive pixel includes a non-visible light sensor, and the side length of the photosensitive pixel is between the non-visible light sensors of two adjacent photosensitive pixels.
  • the distance ratio is 25:24 ⁇ 12:11;
  • a plurality of bias lines located on the side of the plurality of invisible light sensors away from the base substrate, the plurality of bias lines include a plurality of first bias lines and a plurality of second bias lines arranged crosswise , at least one of the first bias line and the second bias line is electrically connected to the invisible light sensor.
  • one of the first bias lines is electrically connected to a row of the invisible light sensors
  • one of the second bias lines is connected to a row of the invisible light sensors.
  • the sensor corresponds to the electrical connection.
  • the base substrate further includes a non-photosensitive region located around the photosensitive region;
  • the touch control substrate further includes: a closed-loop wiring arranged in the non-photosensitive area, the closed-loop wiring is electrically connected to at least part of the bias voltage line, and the line width of the closed-loop wiring is larger than the bias voltage The line width of the line.
  • the line width of the bias line is 8 ⁇ m ⁇ 15 ⁇ m
  • the line width of the closed loop wiring is 200 ⁇ m ⁇ 500 ⁇ m.
  • the closed-loop wiring and the bias line are of the same layer and of the same material.
  • the material of the bias voltage line is metal single substance and/or alloy.
  • the side length of the photosensitive pixel is 3mm ⁇ 5mm.
  • the above-mentioned touch control substrate provided by the embodiments of the present disclosure further includes: a non-visible light anti-reflection film located on the side of the non-visible light sensor away from the base substrate, and the non-visible light anti-reflection film is completely Cover the photosensitive area.
  • the material of the non-visible light anti-reflection film is a black matrix material, and the black matrix material selectively transmits non-visible light.
  • the above-mentioned touch control substrate provided by the embodiments of the present disclosure further includes: a plurality of gate lines and a plurality of data lines, the extension direction of the gate lines is the same as the extension direction of the first bias line, The extending direction of the data line is the same as the extending direction of the second bias line;
  • the orthographic projection of the gate line on the substrate and the orthographic projection of the first bias line on the substrate do not overlap or overlap at least partially;
  • the orthographic projection of the data line on the base substrate and the orthographic projection of the second bias voltage line on the base substrate do not overlap or at least partially overlap each other.
  • the invisible light sensor includes a stacked first electrode, a photosensitive layer and a second electrode, wherein the first electrode is located on the base substrate and the photosensitive layer, and the first electrode is in direct contact with the photosensitive layer; the second electrode is electrically connected to the first bias line and the second bias line, and the first electrode The two electrodes are in direct contact with the photosensitive layer.
  • the photosensitive layer includes a P-type amorphous silicon semiconductor layer, an intrinsic amorphous silicon semiconductor layer, and an N-type amorphous silicon semiconductor layer that are stacked, wherein , the P-type amorphous silicon semiconductor layer is in direct contact with the second electrode, and the N-type amorphous silicon semiconductor layer is in direct contact with the first electrode.
  • the ratio of the area of the photosensitive layer of one invisible light sensor to the area of one photosensitive pixel is 0.0004 ⁇ 0.0036.
  • one photosensitive pixel further includes a transistor, the gate of the transistor is electrically connected to the gate line, and the first electrode of the transistor is connected to the gate line.
  • the data line is electrically connected, and the second electrode of the transistor is electrically connected to the first electrode;
  • the gate of the transistor is on the same layer and material as the gate line, the data line, the first pole of the transistor, and the second pole of the transistor are on the same layer and material, and the data line is located at the Between the layer where the gate line is located and the layer where the first electrode is located.
  • the orthographic projection of the channel region of the transistor on the base substrate is located at the position of the second bias line on the base substrate. In orthographic projection.
  • the embodiments of the present disclosure also provide a display device, including a display module and a touch substrate, wherein the touch substrate is the above-mentioned touch substrate provided by the embodiments of the present disclosure, and the touch substrate It is located on the side of the display module away from the display surface.
  • the display module is a liquid crystal display module.
  • a backlight module is further included;
  • the display module is located on the light emitting side of the backlight module, and the touch substrate is located on the side of the backlight module away from the display module;
  • the backlight module includes a backlight source, a diffusion sheet and a light guide sheet, wherein the backlight source is located on the same side of the diffusion sheet and the light guide sheet, and the diffusion sheet is located between the touch substrate and the light guide sheet. Between the display modules, the light guide sheet is located between the diffusion sheet and the display module.
  • the backlight module further includes a reflective sheet located between the touch substrate and the diffusion sheet, the reflective sheet is configured to reflect visible light and Transmits non-visible light.
  • the display module is an electroluminescent display module.
  • the display module includes a plurality of display pixels, and the ratio of the area of one display pixel to the area of one photosensitive pixel is 9:1-12 :1.
  • an embodiment of the present disclosure further provides a display system, including a display device and an invisible light emitter, wherein the display device is the above-mentioned display device provided by the embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a touch substrate provided by an embodiment of the present disclosure
  • FIG. 2 is another structural schematic diagram of a touch substrate provided by an embodiment of the present disclosure
  • FIG. 3 is another structural schematic diagram of a touch substrate provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional structure diagram of a photosensitive pixel provided by an embodiment of the present disclosure
  • FIG. 5 is another schematic structural diagram of a touch substrate provided by an embodiment of the present disclosure.
  • FIG. 6 is another schematic structural diagram of a touch substrate provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 8 is another schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 9 is another structural schematic diagram of a display device provided by an embodiment of the present disclosure.
  • 10 is a schematic diagram of size matching between photosensitive pixels and display pixels
  • FIG. 11 is a schematic structural diagram of a display system provided by an embodiment of the present disclosure.
  • near-infrared light sensors can realize long-distance interaction. It has great application prospects in the fields of smart large screens (such as TV & electronic whiteboards), Gaming MNT, etc. It has millimeter-level precise positioning, millisecond-level response speed, and technical features such as display flexibility. Realize the effect of accurate positioning operation without delay in the air and non-contact handwriting.
  • a bias line extending vertically is used to provide a bias voltage for the near-infrared light sensor, so that the near-infrared light sensor works in a reverse bias state.
  • the near-infrared light When near-infrared light irradiates the near-infrared light sensor, the near-infrared light will be converted into Carriers, after the carriers are written into an integrated circuit (IC) for further processing, the touch position can be determined to realize the function of optical touch.
  • IC integrated circuit
  • a touch substrate which is especially suitable for the field of remote large-scale non-visible light (such as near-infrared light) interaction technology, as shown in Figures 1 to 3 , which can include:
  • the base substrate 101 including the photosensitive area AA;
  • a plurality of photosensitive pixels PD are arranged in an array in the photosensitive area AA, and one photosensitive pixel PD may include a non-visible light sensor 102, and the side length d of the photosensitive pixel PD (also called a pixel period, or called two adjacent photosensitive pixels The ratio of the distance between the centers of the PDs) to the distance d' between the invisible light sensors 102 of two adjacent photosensitive pixels PD is 25:24 ⁇ 12:11;
  • a plurality of bias lines 103 located on the side of the plurality of invisible light sensors 102 away from the substrate 101, the plurality of bias lines 103 may include a plurality of first bias lines 1031 and a plurality of second bias lines arranged crosswise 1031 , at least one of the first bias line 1031 and the second bias line 1032 is electrically connected to the invisible light sensor 102 .
  • the ratio of the side length d of a photosensitive pixel PD to the distance d' between the invisible light sensors 102 of two adjacent photosensitive pixels PD is 25:24 ⁇ 12:11 , it can be seen that the distance d' between the invisible light sensors 102 of two adjacent photosensitive pixels PD is relatively large, so the filling rate of the photosensitive pixels PD is not considered.
  • the multiple first bias lines 1031 and multiple The mesh structure formed by the second bias lines 1031 will not affect the filling rate of the photosensitive pixels PD.
  • the overall impedance of the bias line 103 with a mesh structure is smaller, so that the uniformity of the signal read by the invisible light sensor 102 at the near and far ends of the photosensitive area AA can be improved, which is beneficial to Improve the recognition effect of light touch.
  • the touch substrate provided by the embodiments of the present disclosure, as shown in FIG. It can be electrically connected with a row of invisible light sensors 102 correspondingly. It is equivalent to an invisible light sensor 102 being electrically connected to a first bias line 1031 and a second bias line 1032 respectively through two via holes, thereby greatly reducing the distance between the invisible light sensor 102 and the bias line 103 impedance.
  • the base substrate 1011 may further include a non-photosensitive region BB located around the photosensitive region AA;
  • the touch substrate may further include: a closed-loop wiring 104 disposed in the non-photosensitive area BB, the closed-loop wiring 104 is electrically connected to at least part of the bias line 103 , and the line width of the closed-loop wiring 104 is greater than that of the bias line 103 .
  • the existence of the closed-loop trace 104 is convenient to load the bias voltage for the bias line 103; and, since the closed-loop trace 104 has a larger line width and a smaller impedance, when the closed-loop trace 104 is electrically connected to the bias line 103, it is quite Therefore, a small resistor is connected in parallel to the bias line 103, thereby greatly reducing the impedance of the bias voltage on the transmission path.
  • the line width of the bias voltage line 103 can be 8 ⁇ m to 15 ⁇ m, and the closed-loop wiring 104 The line width can be 200 ⁇ m ⁇ 500 ⁇ m.
  • the material of the bias line 103 may be a material with good conductivity and low resistance such as metal element and/or alloy.
  • the near-infrared light emitter emits near-infrared light with a wavelength of 800nm to 900nm, the size of the light spot is controlled within 5mm, and the divergence at a distance of 5m does not exceed 5%.
  • the distance of transmission and reception is controlled within the range of 0m to 10m from the screen. If it is too far away, it does not make much sense depending on the usage scenario.
  • the emission power of the near-infrared light emitter is controlled within 1mw, which meets the harm prevention requirements of the household (it is reported that high-intensity near-infrared light can damage the iris of the human eye), and also meets the signal strength of the receiving end.
  • the invisible near-infrared light emitted in this way is projected on the display device, and a large light spot must cover the invisible light sensor 102 , so that the conversion from optical signal to electrical signal can be realized based on the invisible light sensor 102 .
  • the bisector of the distance between the centers of two adjacent photosensitive pixels PD is the boundary of the photosensitive pixel PD (that is, the side length d of the photosensitive pixel PD and the center of the two adjacent photosensitive pixels PD The spacing is equal), so the area of a photosensitive pixel PD can be equal to the square of the center distance between two adjacent photosensitive pixels PD, for example, the center distance between two adjacent photosensitive pixels PD is the value range of the side length d of the photosensitive pixel PD 3mm ⁇ 5mm, correspondingly, the area of the photosensitive pixel P may be 3mm*3mm ⁇ 5mm*5mm, that is, 9mm 2 ⁇ 25mm 2 .
  • the non-visible light sensor 102 may be a near-infrared sensor, and the near-infrared sensor using amorphous silicon (a-si) material is sensitive to absorption in both near-infrared and visible light bands. Therefore, in the above-mentioned display device provided by the embodiment of the present disclosure, in order to prevent the ambient light from interfering with the optical touch effect and prevent the invisible light sensor 102 from being overexposed due to receiving the ambient light, as shown in FIG.
  • a-si amorphous silicon
  • the embodiment of the present disclosure provides In the above touch control substrate, it may also include: a non-visible light anti-reflection film 105, located on the side of the non-visible light sensor 102 away from the base substrate 101, the non-visible light anti-reflection film 105 can selectively transmit non-visible light (such as near-infrared Light) light in the wavelength band. Moreover, for ease of manufacture, the non-visible light anti-reflection film 105 can completely cover the photosensitive area AA.
  • a non-visible light anti-reflection film 105 located on the side of the non-visible light sensor 102 away from the base substrate 101, the non-visible light anti-reflection film 105 can selectively transmit non-visible light (such as near-infrared Light) light in the wavelength band.
  • non-visible light anti-reflection film 105 can completely cover the photosensitive area AA.
  • the material of the non-visible light anti-reflection film 105 can be a black matrix (BM) material, which can selectively transmit non-visible light (such as near-infrared light) and block other wavebands (such as non-near-infrared light). band) of invisible light and visible light.
  • BM black matrix
  • the extension direction of the data line 107 is the same as that of the first bias line 1031, and the extension direction of the data line 107 is the same as that of the second bias line 1032;
  • the orthographic projection of the gate line 106 on the base substrate 101 may not overlap or at least partially overlap the orthographic projection of the first bias line 1031 on the base substrate 101;
  • the orthographic projection of the data line 107 on the base substrate 101 may not overlap or at least partially overlap the orthographic projection of the second bias line 1032 on the base substrate 101 .
  • the orthographic projections of can be non-overlapping (as shown in FIG. 2 ), partially (as shown in FIG. 5 ) or fully overlapped (as shown in FIG. 6 ); similarly, the second bias line 1032 extending in the same direction
  • the orthographic projections of the data line 107 may not overlap each other (as shown in FIG. 2 ), or partially (as shown in FIG. 5 ) or fully overlap (as shown in FIG. 6 ).
  • the bias line 103 will not interfere with the signals on the gate line 106 and the data line 107 .
  • the invisible light sensor 102 may include a first electrode 1021, a photosensitive layer 1022 and a second electrode 1023 arranged in layers, wherein, The first electrode 1021 is located between the base substrate 101 and the photosensitive layer 1022, and the first electrode 1021 is in direct contact with the photosensitive layer 1022; the second electrode 1023 is electrically connected to the first bias line 1031 and the second bias line 1032, and The second electrode 1023 is in direct contact with the photosensitive layer 1022 .
  • the first electrode 1021 is located between the base substrate 101 and the photosensitive layer 1022, and the first electrode 1021 is in direct contact with the photosensitive layer 1022; the second electrode 1023 is electrically connected to the first bias line 1031 and the second bias line 1032, and The second electrode 1023 is in direct contact with the photosensitive layer 1022 .
  • the photosensitive layer 1022 may include a P-type amorphous silicon semiconductor layer, an intrinsic amorphous silicon semiconductor layer and an N-type amorphous silicon semiconductor layer stacked. , wherein the P-type amorphous silicon semiconductor layer is in direct contact with the second electrode 1023 , and the N-type amorphous silicon semiconductor layer is in direct contact with the first electrode 1021 .
  • the ratio of the area of the photosensitive layer 1022 of an invisible light sensor 102 to the area of a photosensitive pixel PD is 0.0004-0.0036, so that the photosensitive pixel PD The larger filling rate is beneficial to improve the sensitivity of light touch.
  • the area of one photosensitive pixel PD may be 9 mm 2 -25 mm 2
  • the area of the photosensitive layer 1022 of one invisible light sensor 102 may be 2000 ⁇ m 2 -2500 ⁇ m 2 .
  • the first pole of the transistor 108 is electrically connected to the data line 107, and the second pole of the transistor 108 is electrically connected to the first electrode 1021;
  • the first electrode of the transistor 108 and the second electrode of the transistor 108 are in the same layer and material, and the data line 107 is located between the layer where the gate line 106 is located and the layer where the first electrode 1021 is located. In this way, the on and off of the transistor 108 can be controlled through the gate line 106 , and the photocurrent read by the transistor 108 can be written into the integrated circuit through the data line 107 .
  • the orthographic projection of the channel region of the transistor 108 on the base substrate 101 is located on the base substrate of the second bias line 1032 In the orthographic projection on 101 , the channel region of the transistor 108 is shielded by the second bias line 1032 to prevent the influence of light on the channel region of the transistor 108 .
  • the detection substrate provided by the embodiments of the present disclosure as shown in FIG. Read circuit ROIC; among them, the gate drive circuit GOA is located on the left and right borders, and the width is between 1mm and 2mm; the number of read circuit ROIC increases with the increase of product size.
  • the above-mentioned touch control substrate provided by the embodiments of the present disclosure, as shown in FIG. Second insulating layer 113, second protective layer 114, indium tin oxide layer 115, bias terminal (Pad) 116, wherein, indium tin oxide layer 115 can protect bias terminal 116, avoids bias terminal 116 from the water in the air Oxygen and other corrosion.
  • the embodiment of the present disclosure also provides a display device, as shown in FIG. 7 , including a display module 701 and a touch substrate 702, wherein the touch substrate 702 is the above-mentioned touch panel provided by the embodiment of the present disclosure.
  • the substrate 702 , and the touch substrate 702 is located on the opposite side of the display surface of the display module 701 . Since the problem-solving principle of the display device is similar to the problem-solving principle of the above-mentioned touch substrate, the implementation of the display device provided by the embodiment of the present disclosure can refer to the implementation of the above-mentioned touch substrate provided by the embodiment of the present disclosure. No longer.
  • the display module 701 can be a liquid crystal display module (LCD), specifically a twisted nematic (Twisted Nematic, TN) liquid crystal display, advanced Advanced Dimension Switch (ADS) LCD, High Aperture Ratio-Advanced Dimension Switch (HADS) LCD, In-Plane Switch (IPS) type liquid crystal display screen, etc., which are not specifically limited here.
  • LCD liquid crystal display module
  • ADS advanced Advanced Dimension Switch
  • HADS High Aperture Ratio-Advanced Dimension Switch
  • IPS In-Plane Switch
  • the above display device provided by the embodiments of the present disclosure may further include a backlight module 703;
  • the display module 701 is located on the light emitting side of the backlight module 703, and the touch substrate 702 is located on the side of the backlight module 703 away from the display module 701;
  • the backlight module 703 may include a backlight source 7031, a diffusion sheet 7032 and a light guide sheet 7033, wherein the backlight source 7031 may be located on the same side of the diffusion sheet 7032 and the light guide sheet 7033, and the diffusion sheet 7032 may be located between the touch substrate 702 and the display module. Between the groups 701 , the light guide sheet 7033 can be located between the diffusion sheet 7032 and the display module 701 .
  • the light emitted from the backlight source 7031 enters the diffusion sheet 7032 and the light guide sheet 7033 through the sides of the diffusion sheet 7032 and the light guide sheet 7033, and can evenly enter the liquid crystal display module after passing through the synergy of the diffusion sheet 7032 and the light guide sheet 7033.
  • the backlight module 703 may further include a reflective sheet 7034 located between the touch substrate 702 and the diffusion sheet 7032 , in order not to affect the non-visible light (such as near-infrared light) being detected by the non-visible light sensor 102, the reflective sheet 7034 may be configured to reflect visible light and transmit non-visible light (such as near-infrared light).
  • the display module 701 may be an electroluminescent display module, such as an organic electroluminescent display module (OLED), a quantum Point-emitting display modules (QLED), mini/micro-luminescent display modules (mini/Micro LED), etc. are essential components for electroluminescent display modules, which should be understood by those of ordinary skill in the art. It will not be described in detail here, nor should it be used as a limitation on the present disclosure.
  • OLED organic electroluminescent display module
  • QLED quantum Point-emitting display modules
  • mini/micro-luminescent display modules mini/Micro LED
  • the display module 701 may include a plurality of display pixels P, and the ratio of the area of a display pixel P to the area of a photosensitive pixel PD may be 9 :1 ⁇ 12:1, that is, the area of one photosensitive pixel PD can be equal to the area of 9 to 12 display pixels P.
  • the display pixel P may include a red sub-pixel R, a green sub-pixel G, a blue sub-pixel B, etc., which are not specifically limited here.
  • FIG. 7 to FIG. Provides protection and support.
  • Other essential components in the display device should be understood by those skilled in the art, and will not be repeated here, nor should they be used as limitations on the present disclosure.
  • an embodiment of the present disclosure also provides a display system, as shown in FIG. 11 , which may include a display device 1101 and an invisible light emitter 1102, wherein the display device 1101 is the above-mentioned display device provided by the embodiment of the present disclosure .
  • the display system is similar to the problem-solving principle of the above-mentioned display device, the implementation of the display system provided by the embodiment of the present disclosure can refer to the implementation of the above-mentioned display device provided by the embodiment of the present disclosure, and the repetition will not be repeated. repeat.
  • the invisible light emitted by the invisible light emitter 1102 is projected on the display device 1101, and the larger light spot covers the invisible light sensor 102, so that the conversion from optical signal to electrical signal can be realized based on the invisible light sensor 102, and then The touch position is determined by processing the electrical signal to realize remote touch interaction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开提供的触控基板、显示装置及显示系统,包括衬底基板,包括感光区;多个感光像素,在感光区呈阵列排布,一个感光像素包括一个非可见光传感器,感光像素的边长与相邻两个感光像素所含非可见光传感器之间的距离之比为25:24~12:11;多条偏压线,位于多个非可见光传感器背离衬底基板的一侧,多条偏压线包括交叉设置的多条第一偏压线和多条第二偏压线,第一偏压线和第二偏压线中的至少之一与非可见光传感器电连接。

Description

触控基板、显示装置及显示系统 技术领域
本公开涉及显示技术领域,尤其涉及一种触控基板、显示装置及显示系统。
背景技术
随着通信技术、计算机技术和电子技术的不断发展,移动通信正在从人与人(Human to Human,H2H)向人与物(Human to Machine,H2M),以及物与物(Machine to Machine,M2M)通信的方向发展,万物互联成为移动通信发展的必然趋势。
物联网(Internet of Things,IoT)正是在此背景下应运而生的,其被认为是继计算机、互联网之后,世界信息产业的第三次浪潮。物联网采用信息化技术手段,促进人类生活和生产服务的全面升级,其应用开发的前景广阔,产业带动能力强。欧美国家已纷纷将发展物联网纳入整体信息化战略,我国也已将物联网明确纳入国家中长期科学技术发展规划(2006~2020年)和2050年国家产业路线图。
而在物联网的大背景下,人机交互就显得尤为重要了,不仅是物联网的架构基础,也是物联网的最终目标,实现服务于人类的万物互联,而所谓的人机交互是指用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室都时时刻刻不在被用到,实现人家交互的方式也比较多,例如基于压力,电阻,电容的触控,基于光线的人脸识别、基于声音的超声、基于静电反馈的触觉反馈等等,目前应用较多的为手机电视等消费品的触控交互,但是其技术具备一定的局限性,那就是必须接触式的触控才能实现交互的目的,不仅局限了应用的范围,而且还没办法实现远距离的触控交互,在此背景下,光触控应运而生。
发明内容
本公开实施例提供的一种触控基板、显示装置及显示系统,具体方案如下:
一方面,本公开实施例提供了一种触控基板,包括:
衬底基板,包括感光区;
多个感光像素,在所述感光区呈阵列排布,一个所述感光像素包括一个非可见光传感器,所述感光像素的边长与相邻两个所述感光像素的所述非可见光传感器之间的距离之比为25:24~12:11;
多条偏压线,位于所述多个非可见光传感器背离所述衬底基板的一侧,所述多条偏压线包括交叉设置的多条第一偏压线和多条第二偏压线,所述第一偏压线和所述第二偏压线中的至少之一与所述非可见光传感器电连接。
可选地,在本公开实施例提供的上述触控基板中,一条所述第一偏压线与一行所述非可见光传感器对应电连接,一条所述第二偏压线与一列所述非可见光传感器对应电连接。
可选地,在本公开实施例提供的上述触控基板中,所述衬底基板还包括位于所述感光区周围的非感光区;
所述触控基板还包括:闭环走线,设置在所述非感光区,所述闭环走线与至少部分所述偏压线电连接,且所述闭环走线的线宽大于所述偏压线的线宽。
可选地,在本公开实施例提供的上述触控基板中,所述偏压线的线宽为8μm~15μm,所述闭环走线的线宽为200μm~500μm。
可选地,在本公开实施例提供的上述触控基板中,所述闭环走线与所述偏压线同层、同材料。
可选地,在本公开实施例提供的上述触控基板中,所述偏压线的材料为金属单质和/或合金。
可选地,在本公开实施例提供的上述触控基板中,所述感光像素的边长为3mm~5mm。
可选地,在本公开实施例提供的上述触控基板中,还包括:非可见光增透膜,位于所述非可见光传感器背离所述衬底基板的一侧,所述非可见光增透膜完全覆盖所述感光区。
可选地,在本公开实施例提供的上述触控基板中,所述非可见光增透膜的材料为黑矩阵材料,所述黑矩阵材料选择性透过非可见光。
可选地,在本公开实施例提供的上述触控基板中,还包括:多条栅线和多条数据线,所述栅线的延伸方向与所述第一偏压线的延伸方向相同,所述数据线的延伸方向与所述第二偏压线的延伸方向相同;
所述栅线在所述衬底基板上的正投影与所述第一偏压线在所述衬底基板上的正投影互不交叠或者至少部分交叠;
所述数据线在所述衬底基板上的正投影与所述第二偏压线在所述衬底基板上的正投影互不交叠或者至少部分交叠。
可选地,在本公开实施例提供的上述触控基板中,所述非可见光传感器包括层叠设置的第一电极、感光层和第二电极,其中,所述第一电极位于所述衬底基板与所述感光层之间,且所述第一电极与所述感光层直接接触;所述第二电极与所述第一偏压线及所述第二偏压线电连接,且所述第二电极与所述感光层直接接触。
可选地,在本公开实施例提供的上述触控基板中,所述感光层包括层叠设置的P型非晶硅半导体层、本征非晶硅半导体层和N型非晶硅半导体层,其中,所述P型非晶硅半导体层与所述第二电极直接接触,所述N型非晶硅半导体层与所述第一电极直接接触。
可选地,在本公开实施例提供的上述触控基板中,一个所述非可见光传感器的所述感光层的面积与一个所述感光像素的面积之比为0.0004~0.0036。
可选地,在本公开实施例提供的上述触控基板中,一个所述感光像素还包括一个晶体管,所述晶体管的栅极与所述栅线电连接,所述晶体管的第一极与所述数据线电连接,所述晶体管的第二极与所述第一电极电连接;
所述晶体管的栅极与所述栅线同层、同材料,所述数据线、所述晶体管 的第一极及所述晶体管的第二极同层、同材料,且所述数据线位于所述栅线所在层与所述第一电极所在层之间。
可选地,在本公开实施例提供的上述触控基板中,所述晶体管的沟道区在所述衬底基板上的正投影位于所述第二偏压线在所述衬底基板上的正投影内。
另一方面,本公开实施例还提供了一种显示装置,包括显示模组和触控基板,其中,所述触控基板为本公开实施例提供的上述触控基板,且所述触控基板位于所述显示模组远离显示面的一侧。
可选地,在本公开实施例提供的上述显示装置中,所述显示模组为液晶显示模组。
可选地,在本公开实施例提供的上述显示装置中,还包括背光模组;
所述显示模组位于所述背光模组的出光侧,所述触控基板位于所述背光模组远离所述显示模组的一侧;
所述背光模组包括背光源、扩散片和导光片,其中,所述背光源位于所述扩散片和所述导光片的同一侧面,所述扩散片位于所述触控基板与所述显示模组之间,所述导光片位于所述扩散片与所述显示模组之间。
可选地,在本公开实施例提供的上述显示装置中,所述背光模组还包括反射片,位于所述触控基板与所述扩散片之间,所述反射片被配置为反射可见光并透射非可见光。
可选地,在本公开实施例提供的上述显示装置中,所述显示模组为电致发光显示模组。
可选地,在本公开实施例提供的上述显示装置中,所述显示模组包括多个显示像素,一个所述显示像素的面积与一个所述感光像素的面积之比为9:1~12:1。
另一方面,本公开实施例还提供了一种显示系统,包括显示装置和非可见光发射器,其中,所述显示装置为本公开实施例提供的上述显示装置。
附图说明
图1为本公开实施例提供的触控基板的一种结构示意图;
图2为本公开实施例提供的触控基板的又一种结构示意图;
图3为本公开实施例提供的触控基板的又一种结构示意图;
图4为本公开实施例提供的一个感光像素的剖面结构示意图;
图5为本公开实施例提供的触控基板的又一种结构示意图;
图6为本公开实施例提供的触控基板的又一种结构示意图;
图7为本公开实施例提供的显示装置的一种结构示意图;
图8为本公开实施例提供的显示装置的又一种结构示意图;
图9为本公开实施例提供的显示装置的又一种结构示意图;
图10为感光像素与显示像素的尺寸匹配示意图;
图11为本公开实施例提供的显示系统的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及 其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
采用近红外光传感器可实现远距离交互,在智慧大屏(例如TV&电子白板)、Gaming MNT等领域具有巨大的应用前景,具备毫米级精确定位,毫秒级响应速度,可显示柔性等技术特点,实现凌空精确无延时定位操作、非接触式手写的效果。
通常采用纵向延伸的偏压线(bias line)为近红外光传感器提供偏置电压,使近红外光传感器工作于反偏状态,近红外光照射近红外光传感器时,近红外光会被转换为载流子,该载流子被写入集成电路(IC)进一步处理后即可确定触控位置,实现光触控的功能。然而,随着产品的尺寸增大,偏压线的起止端与集成电路的距离相差较大,使得偏压线的起止端的阻抗差异较大,导致偏压线上传输的偏压信号在偏压线的起止端的差异随之增大,最终致使集成电路读取的电信号也会因为偏压信号差异而有所不同,严重影响了光触控的识别效果。
为了至少解决相关技术中存在的上述技术问题,本公开实施例提供了一种触控基板,尤其适用于远程大尺寸非可见光(例如近红外光)交互技术领域,如图1至图3所示,可以包括:
衬底基板101,包括感光区AA;
多个感光像素PD,在感光区AA呈阵列排布,一个感光像素PD可以包括一个非可见光传感器102,感光像素PD的边长d(也称为像素周期,或称为相邻两个感光像素PD的中心间距)与相邻两个感光像素PD的非可见光传感器102之间的距离d’之比为25:24~12:11;
多条偏压线103,位于多个非可见光传感器102背离衬底基板101的一侧,多条偏压线103可以包括交叉设置的多条第一偏压线1031和多条第二偏压线1031,第一偏压线1031和第二偏压线1032中的至少之一与非可见光传感器102电连接。
在本公开实施例提供的上述触控基板中,由于感光像素PD的边长d与相邻两个感光像素PD的非可见光传感器102之间的距离d’之比为25:24~12:11,可见,相邻两个感光像素PD的非可见光传感器102之间的距离d’较大,因此不用考虑感光像素PD的填充率,换言之,交叉设置的多条第一偏压线1031和多条第二偏压线1031形成的网状结构,不会影响感光像素PD的填充率。并且,相较于单向延伸的偏压线103,具有网状结构的偏压线103整体阻抗较小,从而可提升感光区AA近远端的非可见光传感器102读取信号的均一性,利于提高光触控的识别效果。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2所示,一条第一偏压线1031可以与一行非可见光传感器102对应电连接,一条第二偏压线1032可以与一列非可见光传感器102对应电连接。相当于一个非可见光传感器102通过两个过孔分别与一条第一偏压线1031及一条第二偏压线1032电连接,从而极大减小了非可见光传感器102与偏压线103之间的阻抗。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图3所示,衬底基板1011还可以包括位于感光区AA周围的非感光区BB;
触控基板还可以包括:闭环走线104,设置在非感光区BB,闭环走线104与至少部分偏压线103电连接,且闭环走线104的线宽大于偏压线103的线宽。
闭环走线104的存在,便于为偏压线103加载偏置电压;并且,由于闭环走线104的线宽较大、阻抗较小,在闭环走线104与偏压线103电连接时,相当于为偏压线103并联了一个较小的电阻,从而极大减小了偏置电压在传输路径上的阻抗。
在一些实施例中,在本公开实施例提供的上述触控基板中,为了保证偏置电压在传输路径上的阻抗较小,偏压线103的线宽可以为8μm~15μm,闭环走线104的线宽可以为200μm~500μm。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图4所示,闭环走线104可以与偏压线103同层、同材料,这样可以避免单独通过掩膜 (mask)工艺制作闭环走线104,从而可减少膜层数量、节约成本、提高生成效率。
在一些实施例中,在本公开实施例提供的上述触控基板中,偏压线103的材料可以为金属单质和/或合金等导电性较好、且电阻较小的材料。
近红外光发射器发射800nm~900nm波长的近红外光,光斑大小控制在5mm以内,5m距离发散不超过5%。发射和接收的距离控制为距离屏幕的0m~10m范围,太远的话根据使用场景,意义不大。近红外光发射器的发射功率控制在1mw以内,这样满足家用的防伤害需求(有报道说高强度的近红外的光线能伤害人的眼睛虹膜),同时也能满足接收端的信号强度。这样发射的不可见近红外光投射在显示装置上,较大的光斑一定覆盖住非可见光传感器102,从而可基于非可见光传感器102实现从光信号变电信号的转换。
基于此,在本公开实施例提供的上述触控基板中,如图1所示,感光像素PD的边长d可以为3mm~5mm,以匹配非可见光发射器(例如近红外光发射器)的光斑大小。
在一些实施例中,如图1所示,相邻两个感光像素PD的中心间距的平分线为感光像素PD的边界(即感光像素PD的边长d与相邻两个感光像素PD的中心间距等同),因此一个感光像素PD的面积可以等于相邻两个感光像素PD的中心间距的平方,例如相邻两个感光像素PD的中心间距为感光像素PD的边长d的取值范围3mm~5mm,相应地,感光像素P的面积可以为3mm*3mm~5mm*5mm,即9mm 2~25mm 2
在一些实施例中,非可见光传感器102可以为近红外传感器,采用非晶硅(a-si)材料的近红外传感器对近红外和可见光波段的吸收都比较敏感。因此,在本公开实施例提供的上述显示装置中,为了避免环境光线干扰光触控效果、以及防止非可见光传感器102因接收环境光线而过曝,如图4所示,在本公开实施例提供的上述触控基板中,还可以包括:非可见光增透膜105,位于非可见光传感器102背离衬底基板101的一侧,该非可见光增透膜105可选择性透过非可见光(例如近红外光)波段的光线。并且,为了便于制作,非可见光增 透膜105可以完全覆盖感光区AA。在一些实施例中,非可见光增透膜105的材料可以为黑矩阵(BM)材料,该黑矩阵材料可选择性透过非可见光(例如近红外光),而拦截其他波段(例如非近红外波段)的非可见光及可见光。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2、图5和图6所示,还可以包括:多条栅线106和多条数据线107,栅线106的延伸方向与第一偏压线1031的延伸方向相同,数据线107的延伸方向与第二偏压线1032的延伸方向相同;
栅线106在衬底基板101上的正投影可以与第一偏压线1031在衬底基板101上的正投影互不交叠或者至少部分交叠;
数据线107在衬底基板101上的正投影可以与第二偏压线1032在衬底基板101上的正投影互不交叠或者至少部分交叠。
由于各感光像素PD的中心间距d足够大,因此有充足的空间设置栅线106、数据线107及偏压线103,在此基础上,延伸方向相同的第一偏压线1031与栅线106的正投影可以互不交叠(如图2所示),也可以部分(如图5所示)或全部交叠(如图6所示);同样,延伸方向相同的第二偏压线1032与数据线107的正投影可以互不交叠(如图2所示),也可以部分(如图5所示)或全部交叠(如图6所示)。并且,由于第一偏压线1031与第二偏压线1032上加载的是固定电位的偏置电压,因此,即使第一偏压线1031与栅线106相互交叠、第二偏压线1032与数据线107相互交叠,偏压线103也不会对栅线106、数据线107上的信号造成干扰。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图4所示,非可见光传感器102可以包括层叠设置的第一电极1021、感光层1022和第二电极1023,其中,第一电极1021位于衬底基板101与感光层1022之间,且第一电极1021与感光层1022直接接触;第二电极1023与第一偏压线1031及第二偏压线1032电连接,且第二电极1023与感光层1022直接接触。通过单独设置与感光层1022直接接触的第一电极1021,可以保证第一电极1021的平整度,减少漏电流。
在一些实施例中,在本公开实施例提供的上述触控基板中,感光层1022可以包括层叠设置的P型非晶硅半导体层、本征非晶硅半导体层和N型非晶硅半导体层,其中,P型非晶硅半导体层与第二电极1023直接接触,N型非晶硅半导体层与第一电极1021直接接触。
在一些实施例中,在本公开实施例提供的上述触控基板中,一个非可见光传感器102的感光层1022的面积与一个感光像素PD的面积之比为0.0004~0.0036,以使得感光像素PD的填充率较大,利于提高光触控的灵敏度。在一些实施例中,一个感光像素PD的面积可以为9mm 2~25mm 2,一个非可见光传感器102的感光层1022的面积可以为2000μm 2~2500μm 2
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2和图4所示,一个感光像素PD还可以包括一个晶体管108,该晶体管108的栅极与栅线106电连接,晶体管108的第一极与数据线107电连接,晶体管108的第二极与第一电极1021电连接;晶体管108的栅极与栅线106同层、同材料,数据线107、晶体管108的第一极及晶体管108的第二极同层、同材料,且数据线107位于栅线106所在层与第一电极1021所在层之间。如此,则可通过栅线106控制晶体管108的导通与截止,并通过数据线107将晶体管108所读取的光电流写入集成电路。
在一些实施例中,在本公开实施例提供的上述探测基板中,如图2所示,晶体管108的沟道区在衬底基板101上的正投影位于第二偏压线1032在衬底基板101上的正投影内,以通过第二偏压线1032遮挡晶体管108的沟道区,防止光照对晶体管108的沟道区的影响。
在一些实施例中,在本公开实施例提供的上述探测基板中,如图1所示,还可以包括:为栅线106提供扫描信号的栅极驱动电路GOA、以及与数据线107电连接的读取电路ROIC;其中,栅极驱动电路GOA位于左右边框,宽度在1mm~2mm之间;读取电路ROIC的颗数随产品尺寸的增大而增加。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图4所示,还可以包括:栅绝缘层109、第一绝缘层110、第一保护层111、平坦层112、 第二绝缘层113、第二保护层114、氧化铟锡层115、偏压端子(Pad)116,其中,氧化铟锡层115可以保护偏压端子116,避免偏压端子116被空气中的水氧等腐蚀。对于触控基板中其他必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
另一方面,本公开实施例还提供了一种显示装置,如图7所示,包括显示模组701和触控基板702,其中,该触控基板702为本公开实施例提供的上述触控基板702,且触控基板702位于显示模组701的显示面的相对侧。由于该显示装置解决问题的原理与上述触控基板解决问题的原理相似,因此,本公开实施例提供的该显示装置的实施可以参见本公开实施例提供的上述触控基板的实施,重复之处不再赘述。
在一些实施例中,在本公开实施例提供的上述显示装置中,显示模组701可以为液晶显示模组(LCD),具体可以为扭转向列(Twisted Nematic,TN)型液晶显示屏、高级超维场开关(Adwanced Dimension Switch,ADS)型液晶显示屏、高开口率-高级超维场开关(High-Adwanced Dimension Switch,HADS)型液晶显示屏、平面内开关(In-Plane Switch,IPS)型液晶显示屏等,在此不做具体限定。对于液晶显示模组中必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
在一些实施例中,在本公开实施例提供的上述显示装置中,如图7所示,还可以包括背光模组703;
显示模组701位于背光模组703的出光侧,触控基板702位于背光模组703远离显示模组701的一侧;
背光模组703可以包括背光源7031、扩散片7032和导光片7033,其中,背光源7031可以位于扩散片7032和导光片7033的同一侧面,扩散片7032可以位于触控基板702与显示模组701之间,导光片7033可以位于扩散片7032与显示模组701之间。背光源7031的发射光线通过扩散片7032和导光片7033的侧面进入扩散片7032和导光片7033,在经过扩散片7032和导光片7033的协同作用后可均匀入射至液晶显示模组。
在一些实施例中,在本公开实施例提供的上述显示装置中,如图8所示,背光模组703还可以包括反射片7034,该反射片7034位于触控基板702与扩散片7032之间,为了不影响非可见光(例如近红外光)被非可见光传感器102探测,反射片7034可以被配置为反射可见光并透射非可见光(例如近红外光)。
在一些实施例中,在本公开实施例提供的上述显示装置中,如图9所示,显示模组701可以为电致发光显示模组,例如有机电致发光显示模组(OLED)、量子点发光显示模组(QLED)、迷你/微发光显示模组(mini/Micro LED)等对于电致发光显示模组中必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
由于感光像素PD位于背光模组703的下方,不会对背光均一性造成影响,因此可以设置较大的感光像素PD,以保证感光像素PD具有足够的感光面积。因此,在本公开实施例提供的上述显示装置中,如图10所示,显示模组701可以包括多个显示像素P,一个显示像素P的面积与一个感光像素PD的面积之比可以为9:1~12:1,即一个感光像素PD的面积可以等于9至12个显示像素P的面积。在一些实施例中,显示像素P可以包括红色子像素R、绿色子像素G、蓝色子像素B等,在此不做具体限定。
在一些实施例中,在本公开实施例提供的上述显示装置中,如图7至图9所示,还可以包括支撑框架704,以对显示模组701、探测基板702及背光模组703等提供保护和支撑作用。对于显示装置中其他必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
基于同一发明构思,本公开实施例还提供了一种显示系统,如图11所示,可以包括显示装置1101和非可见光发射器1102,其中,显示装置1101为本公开实施例提供的上述显示装置。由于该显示系统解决问题的原理与上述显示装置解决问题的原理相似,因此,本公开实施例提供的该显示系统的实施可以参见本公开实施例提供的上述显示装置的实施,重复之处不再赘述。
在具体实施时,非可见光发射器1102发射的非可见光投射在显示装置 1101上,较大的光斑覆盖住非可见光传感器102,从而可基于非可见光传感器102实现从光信号到电信号的转换,进而通过对电信号的处理确定触控位置,实现远距离触控交互。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (22)

  1. 一种触控基板,其中,包括:
    衬底基板,包括感光区;
    多个感光像素,在所述感光区呈阵列排布,一个所述感光像素包括一个非可见光传感器,所述感光像素的边长与相邻两个所述感光像素的所述非可见光传感器之间的距离之比为25:24~12:11;
    多条偏压线,位于所述多个非可见光传感器背离所述衬底基板的一侧,所述多条偏压线包括交叉设置的多条第一偏压线和多条第二偏压线,所述第一偏压线和所述第二偏压线中的至少之一与所述非可见光传感器电连接。
  2. 如权利要求1所述的触控基板,其中,一条所述第一偏压线与一行所述非可见光传感器对应电连接,一条所述第二偏压线与一列所述非可见光传感器对应电连接。
  3. 如权利要求1所述的触控基板,其中,所述衬底基板还包括位于所述感光区周围的非感光区;
    所述触控基板还包括:闭环走线,设置在所述非感光区,所述闭环走线与至少部分所述偏压线电连接,且所述闭环走线的线宽大于所述偏压线的线宽。
  4. 如权利要求3所述的触控基板,其中,所述偏压线的线宽为8μm~15μm,所述闭环走线的线宽为200μm~500μm。
  5. 如权利要求3所述的触控基板,其中,所述闭环走线与所述偏压线同层、同材料。
  6. 如权利要求5所述的触控基板,其中,所述偏压线的材料为金属单质或合金。
  7. 如权利要求1~6任一项所述的触控基板,其中,所述感光像素的边长为3mm~5mm。
  8. 如权利要求1~7任一项所述的触控基板,其中,还包括:非可见光增 透膜,位于所述非可见光传感器背离所述衬底基板的一侧,所述非可见光增透膜完全覆盖所述感光区。
  9. 如权利要求8所述的触控基板,其中,所述非可见光增透膜的材料为黑矩阵材料,所述黑矩阵材料选择性透过非可见光。
  10. 如权利要求1~9任一项所述的触控基板,其中,还包括:多条栅线和多条数据线,所述栅线的延伸方向与所述第一偏压线的延伸方向相同,所述数据线的延伸方向与所述第二偏压线的延伸方向相同;
    所述栅线在所述衬底基板上的正投影与所述第一偏压线在所述衬底基板上的正投影互不交叠或者至少部分交叠;
    所述数据线在所述衬底基板上的正投影与所述第二偏压线在所述衬底基板上的正投影互不交叠或者至少部分交叠。
  11. 如权利要求10所述的触控基板,其中,所述非可见光传感器包括层叠设置的第一电极、感光层和第二电极,其中,所述第一电极位于所述衬底基板与所述感光层之间,且所述第一电极与所述感光层直接接触;所述第二电极与所述第一偏压线及所述第二偏压线电连接,且所述第二电极与所述感光层直接接触。
  12. 如权利要求11所述的触控基板,其中,所述感光层包括层叠设置的P型非晶硅半导体层、本征非晶硅半导体层和N型非晶硅半导体层,其中,所述P型非晶硅半导体层与所述第二电极直接接触,所述N型非晶硅半导体层与所述第一电极直接接触。
  13. 如权利要求11所述的触控基板,其中,一个所述非可见光传感器的所述感光层的面积与一个所述感光像素的面积之比为0.0004~0.0036。
  14. 如权利要求11所述的触控基板,其中,一个所述感光像素还包括一个晶体管,所述晶体管的栅极与所述栅线电连接,所述晶体管的第一极与所述数据线电连接,所述晶体管的第二极与所述第一电极电连接;
    所述晶体管的栅极与所述栅线同层、同材料,所述数据线、所述晶体管的第一极及所述晶体管的第二极同层、同材料,且所述数据线位于所述栅线 所在层与所述第一电极所在层之间。
  15. 如权利要求11所述的触控基板,其中,所述晶体管的沟道区在所述衬底基板上的正投影位于所述第二偏压线在所述衬底基板上的正投影内。
  16. 一种显示装置,其中,包括显示模组和触控基板,其中,所述触控基板为如权利要求1~15任一项所述的触控基板,且所述触控基板位于所述显示模组远离显示面的一侧。
  17. 如权利要求16所述的显示装置,其中,还包括背光源;
    所述显示模组为液晶显示模组,所述显示模组位于所述背光源的出光侧。
  18. 如权利要求17所述的显示装置,其中,还包括扩散片和导光片,其中,所述扩散片位于所述背光源的出光侧与所述显示模组之间,所述导光片位于所述扩散片与所述显示模组之间。
  19. 如权利要求18所述的显示装置,其中,还包括反射片,位于所述背光源的出光侧与所述扩散片之间,所述反射片被配置为反射可见光并透射非可见光。
  20. 如权利要求16所述的显示装置,其中,所述显示模组为电致发光显示模组。
  21. 如权利要求16~20任一项所述的显示装置,其中,所述显示模组包括多个显示像素,一个所述显示像素的面积与一个所述感光像素的面积之比为9:1~12:1。
  22. 一种显示系统,其中,包括显示装置和非可见光发射器,其中,所述显示装置为如权利要求16~21任一项所述的显示装置。
PCT/CN2021/098196 2021-06-03 2021-06-03 触控基板、显示装置及显示系统 WO2022252194A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/565,136 US20240201814A1 (en) 2021-06-03 2021-06-03 Touch substrate, display apparatus and display system
PCT/CN2021/098196 WO2022252194A1 (zh) 2021-06-03 2021-06-03 触控基板、显示装置及显示系统
CN202180001426.7A CN116075937A (zh) 2021-06-03 2021-06-03 触控基板、显示装置及显示系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098196 WO2022252194A1 (zh) 2021-06-03 2021-06-03 触控基板、显示装置及显示系统

Publications (1)

Publication Number Publication Date
WO2022252194A1 true WO2022252194A1 (zh) 2022-12-08

Family

ID=84323826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098196 WO2022252194A1 (zh) 2021-06-03 2021-06-03 触控基板、显示装置及显示系统

Country Status (3)

Country Link
US (1) US20240201814A1 (zh)
CN (1) CN116075937A (zh)
WO (1) WO2022252194A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447851A (zh) * 2011-12-26 2012-05-09 深港产学研基地 高填充系数的双cmos图像传感器像素单元及工作方法
CN105718118A (zh) * 2016-04-25 2016-06-29 京东方科技集团股份有限公司 阵列基板、触控显示面板及触控压力检测方法、显示装置
US20160295143A1 (en) * 2015-03-31 2016-10-06 SK Hynix Inc. Pixel amplification apparatus and cmos image sensor including the same
CN106201071A (zh) * 2016-06-29 2016-12-07 京东方科技集团股份有限公司 触控基板及其制作方法、触控显示装置
CN107689384A (zh) * 2016-08-05 2018-02-13 上海箩箕技术有限公司 显示模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447851A (zh) * 2011-12-26 2012-05-09 深港产学研基地 高填充系数的双cmos图像传感器像素单元及工作方法
US20160295143A1 (en) * 2015-03-31 2016-10-06 SK Hynix Inc. Pixel amplification apparatus and cmos image sensor including the same
CN105718118A (zh) * 2016-04-25 2016-06-29 京东方科技集团股份有限公司 阵列基板、触控显示面板及触控压力检测方法、显示装置
CN106201071A (zh) * 2016-06-29 2016-12-07 京东方科技集团股份有限公司 触控基板及其制作方法、触控显示装置
CN107689384A (zh) * 2016-08-05 2018-02-13 上海箩箕技术有限公司 显示模组

Also Published As

Publication number Publication date
US20240201814A1 (en) 2024-06-20
CN116075937A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN107230434B (zh) 显示装置
US11216099B2 (en) Array substrate and manufacturing method thereof, display panel and display device
CN105426013B (zh) 智能手机
US10101838B2 (en) In-cell touch display panel and electronic device
CN107425041A (zh) 一种触控显示面板、装置及制作方法
US8902135B2 (en) Pixel structure of organic electroluminescence device
US9582126B2 (en) Double-sided touch display device
CN103728762A (zh) 一种触摸液晶显示屏阵列基板及相应的触摸液晶显示屏
CN111580695B (zh) 显示面板及其制作方法和显示装置
CN102566171A (zh) 液晶显示设备和制造该液晶显示设备的方法
US11842019B2 (en) Touch substrate and display panel
US11640212B2 (en) Control component, display screen, and control device
US20190204959A1 (en) Touch input device
CN107919059A (zh) 显示基板、显示面板和显示装置
US11099440B2 (en) Display device and array substrate thereof
US20230367439A1 (en) Touch structure, display panel and electronic device
CN106897692B (zh) 指纹识别组件和显示装置
WO2022252194A1 (zh) 触控基板、显示装置及显示系统
CN114879393B (zh) 显示面板及终端设备
US20210200353A1 (en) Display screen and electronic device thereof
WO2022252193A1 (zh) 触控基板、显示装置及显示系统
US20180364844A1 (en) In-cell touch screen
WO2022147895A1 (zh) 一种阵列基板、显示面板以及显示装置
WO2022266921A1 (zh) 触控基板、显示装置及显示系统
US20240231603A1 (en) Array substrate, panel, handwriting tablet and method for driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943557

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18565136

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/03/2024)

122 Ep: pct application non-entry in european phase

Ref document number: 21943557

Country of ref document: EP

Kind code of ref document: A1