WO2022252193A1 - 触控基板、显示装置及显示系统 - Google Patents

触控基板、显示装置及显示系统 Download PDF

Info

Publication number
WO2022252193A1
WO2022252193A1 PCT/CN2021/098187 CN2021098187W WO2022252193A1 WO 2022252193 A1 WO2022252193 A1 WO 2022252193A1 CN 2021098187 W CN2021098187 W CN 2021098187W WO 2022252193 A1 WO2022252193 A1 WO 2022252193A1
Authority
WO
WIPO (PCT)
Prior art keywords
invisible light
photosensitive
layer
light sensor
electrode
Prior art date
Application number
PCT/CN2021/098187
Other languages
English (en)
French (fr)
Inventor
刘锋
蔡寿金
李成
车春城
李田生
周琳
王迎姿
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180001425.2A priority Critical patent/CN115735187A/zh
Priority to US18/565,132 priority patent/US20240201813A1/en
Priority to PCT/CN2021/098187 priority patent/WO2022252193A1/zh
Publication of WO2022252193A1 publication Critical patent/WO2022252193A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present disclosure relates to the field of display technology, in particular to a touch substrate, a display device and a display system.
  • H2H Human to Human
  • H2M Human to Machine
  • M2M Object to Machine
  • the Internet of Things came into being in this context, and it is considered to be the third wave of the world's information industry after computers and the Internet.
  • the Internet of Things adopts information technology to promote the comprehensive upgrading of human life and production services. Its application development has broad prospects and strong industrial driving capabilities. European and American countries have incorporated the development of the Internet of Things into the overall informatization strategy, and my country has also clearly incorporated the Internet of Things into the national medium and long-term science and technology development plan (2006-2020) and the national industrial roadmap for 2050.
  • human-computer interaction is particularly important. It is not only the architecture foundation of the Internet of Things, but also the ultimate goal of the Internet of Things. Communicate with the system through the human-computer interface and operate it. Things as small as the play button on the radio, as large as the dashboard on the plane, or the control room of the power plant are not used all the time, and there are many ways to realize human interaction, such as touch based on pressure, resistance, and capacitance , Face recognition based on light, ultrasound based on sound, tactile feedback based on electrostatic feedback, etc., are currently used more in the touch interaction of consumer products such as mobile phones and TVs, but their technologies have certain limitations, that is, they must be touched In order to achieve the purpose of interaction, it not only limits the scope of application, but also cannot realize long-distance touch interaction. Under this background, optical touch came into being.
  • a touch substrate, a display device, and a display system provided by an embodiment of the present disclosure, the specific solutions are as follows:
  • an embodiment of the present disclosure provides a touch substrate, including:
  • a substrate substrate including a photosensitive region
  • a plurality of photosensitive pixels are arranged in an array in the photosensitive area, and each photosensitive pixel includes a plurality of non-visible light sensors and at least one transistor, wherein one of the transistors is connected to at least one of the plurality of non-visible light sensors Two of the invisible light sensors.
  • the above-mentioned touch control substrate provided by the embodiments of the present disclosure further includes: a plurality of gate lines and a plurality of data lines, wherein the gate lines extend along the first direction, and the data lines extend along the first direction. extending in the second direction;
  • Each photosensitive pixel is divided into four regions by one gate line and one data line intersecting, and at least one region is provided with one transistor and at least two invisible light sensors electrically connected thereto. .
  • each of the photosensitive pixels includes two transistors, and one of the transistors and at least Two of the invisible light sensors.
  • one area includes two invisible light sensors arranged along the diagonal direction.
  • the above-mentioned touch control substrate provided by the embodiments of the present disclosure further includes a bias layer, the bias layer is located on the side of the invisible light sensor away from the base substrate, and the bias layer includes a bias line extending in a second direction, and a lead line extending in the first direction;
  • the invisible light sensor includes a first electrode, and the first electrode is located between the layer where the transistor is located and the bias layer;
  • the first electrode of each invisible light sensor is electrically connected to the bias line through different leads.
  • the invisible light sensor further includes a photosensitive layer, the photosensitive layer is located between the first electrode and the layer where the transistor is located, and the photosensitive layer layer is in direct contact with the first electrode, and the ratio of the area of the photosensitive layer included in one invisible light sensor to the area of one photosensitive pixel is 1:2500 ⁇ 9:2500.
  • one region includes a plurality of the invisible light sensors arranged in an array along the first direction and the second direction.
  • only one region includes a transistor, and a plurality of the invisible light sensors are arranged in an array along the first direction and the second direction.
  • the above-mentioned touch control substrate provided by the embodiments of the present disclosure further includes a bias layer, the bias layer is located on the side of the invisible light sensor away from the base substrate, and the bias layer includes a bias line extending in a second direction, and a lead line extending in the first direction;
  • the invisible light sensor includes a first electrode, and the first electrode is located between the layer where the transistor is located and the bias layer;
  • the first electrodes of the plurality of invisible light sensors arranged in an array are arranged in series, and the first electrodes arranged in series are connected to the bias voltage through the same lead wire. Wire connection.
  • the invisible light sensor further includes a photosensitive layer, the photosensitive layer is located between the first electrode and the layer where the transistor is located, and the photosensitive layer The layer is in direct contact with the first electrode, and the ratio of the area of the photosensitive layer included in one invisible light sensor to the area of one photosensitive pixel is 1:10000 ⁇ 1:900.
  • the orthographic projection of the bias line on the base substrate and the channel region of one of the transistors of the photosensitive pixel are in the The orthographic projections on the substrate substrate overlap each other.
  • the invisible light sensor further includes a second electrode, and the second electrode is located between the layer where the source/drain of the transistor is located and the photosensitive layer. Between, the second electrode is opposite to the first electrode, and the second electrode is in direct contact with the photosensitive layer;
  • the second electrodes of all the invisible light sensors in one region are arranged in series, and the second electrodes arranged in series are electrically connected to the source/drain of the transistor.
  • the orthographic projection of the transistor on the substrate to the data line is in the first direction.
  • the distance between the orthographic projections on the base substrate is smaller than the distance between the orthographic projections of the invisible light sensor on the base substrate to the orthographic projections of the data lines on the base substrate.
  • the center-to-center distance between two adjacent photosensitive pixels is 3mm ⁇ 5mm.
  • the above-mentioned touch control substrate provided by the embodiments of the present disclosure further includes: a non-visible light anti-reflection film located on the side of the non-visible light sensor facing the liquid crystal display module, and the non-visible light anti-reflection film is only Cover the invisible light sensor.
  • an embodiment of the present disclosure also provides a display device, including:
  • liquid crystal display module located on the light emitting side of the backlight
  • the touch substrate is located on the opposite side of the display surface of the liquid crystal display module, and the touch substrate is the above-mentioned touch substrate provided by the embodiments of the present disclosure.
  • the liquid crystal display module includes a black matrix, and when each of the photosensitive pixels includes four invisible light sensors arranged along the diagonal direction , the spacing of the four invisible light sensors satisfies the following relationship:
  • d1 represents the minimum distance between the two invisible light sensors in the first direction in an area
  • d2 represents the maximum distance between the two invisible light sensors in the first direction in an area
  • d 3 represents the minimum distance between the two invisible light sensors in the second direction in an area
  • d 4 represents the maximum distance in the second direction between the two invisible light sensors in an area
  • C represents The side length of a display pixel contained in the liquid crystal display module
  • A represents the width of the black matrix in the first direction
  • D represents the width of the black matrix in the second direction
  • n represents positive integer.
  • the liquid crystal display module includes a black matrix, and when each of the photosensitive pixels includes a plurality of the invisible light sensors arranged in an array, the array arrangement The spacing of the plurality of invisible light sensors satisfies the following relationship:
  • d5 represents the maximum distance between the plurality of invisible light sensors arranged in an array in the first direction and the second direction
  • D represents the width of the black matrix in the second direction
  • the liquid crystal display module includes a plurality of display pixels, and the ratio of the area of one display pixel to the area of one photosensitive pixel is 1:1- 2:1.
  • the above-mentioned display device provided by the embodiment of the present disclosure further includes: a reflection sheet, a diffusion sheet, and a light guide sheet; wherein, the reflection sheet is located on a side of the touch substrate away from the liquid crystal display module.
  • the diffusion sheet is located between the touch substrate and the liquid crystal display module, and the light guide sheet is located between the diffusion sheet and the liquid crystal display module.
  • an embodiment of the present disclosure further provides a display system, including a display device and an invisible light emitter, wherein the display device is the above-mentioned display device provided by the embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a touch substrate provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic structural diagram of a photosensitive pixel in Fig. 1;
  • FIG. 3 is another structural schematic diagram of a photosensitive pixel in FIG. 1;
  • Fig. 4 is another structural schematic diagram of a photosensitive pixel in Fig. 1;
  • Fig. 5 is another structural schematic diagram of a photosensitive pixel in Fig. 1;
  • FIG. 6 is a schematic cross-sectional structure diagram of a photosensitive pixel
  • FIG. 7 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the size of a display pixel
  • FIG. 9 is a schematic diagram of the size of a photosensitive pixel
  • FIG. 10 is a schematic diagram of size matching between a photosensitive pixel and a display pixel
  • FIG. 11 is a schematic structural diagram of a display system provided by an embodiment of the present disclosure.
  • near-infrared light sensors can realize long-distance interaction. It has great application prospects in the fields of smart large screens (such as TV & electronic whiteboards), Gaming MNT, etc. It has millimeter-level precise positioning, millisecond-level response speed, and technical features such as display flexibility. Realize the effect of accurate positioning operation without delay in the air and non-contact handwriting.
  • the near-infrared light sensor by disposing the near-infrared light sensor between the liquid crystal display module and the backlight source of the liquid crystal display device, both display and remote real-time interaction can be realized.
  • the present disclosure finds that the near-infrared light sensor using amorphous silicon (a-si) material is more sensitive to the absorption of both near-infrared light bands and visible light bands, especially the green light absorption peak at 550nm band Can reach 80%. Therefore, in the case where the near-infrared light sensor is disposed between the liquid crystal display module and the backlight of the liquid crystal display device, an excessively large area of the near-infrared light sensor will adversely affect the display effect.
  • a-si amorphous silicon
  • a touch substrate 001 which is especially suitable for the field of remote large-scale non-visible light (such as near-infrared light) interaction technology, as shown in Figure 1 and Figure 2 may include:
  • the base substrate 101 including the photosensitive area AA;
  • a plurality of photosensitive pixels PD are arranged in an array in the photosensitive area AA, and each photosensitive pixel PD includes a plurality of invisible light sensors 102 and at least one transistor 103, wherein one transistor 103 is connected to at least one of the plurality of invisible light sensors 102 Two invisible light sensors 102 .
  • the photosensitive area of one photosensitive pixel PD is the sum of the photosensitive areas of multiple non-visible light sensors 102 , under the condition of achieving the same photosensitive area, the area of a non-visible light sensor 102 in the present disclosure can be reduced to 1/m of the non-separated non-visible light sensor 102 (m is the total number of non-visible light sensors 102 in a photosensitive pixel PD) , thereby reducing the influence of the excessively large area of the invisible light sensor 102 on the uniformity of the backlight, and effectively improving the display effect.
  • the above-mentioned touch control substrate provided by the embodiments of the present disclosure, as shown in FIG. 2 to FIG.
  • the first direction X extends, and the data line 105 extends along the second direction Y;
  • Each photosensitive pixel PD is divided into four regions by a crossing gate line 104 and a data line 105 , and at least one region is provided with a transistor 103 and at least two invisible light sensors 102 electrically connected thereto.
  • FIGS. A transistor 103 and at least two invisible light sensors 102 electrically connected therein are arranged respectively.
  • the two transistors 103 of a photosensitive pixel PD are controlled by a gate line 104 and a data line 105 divided into four regions, so that the two transistors 103 can be turned on and off at the same time.
  • the present disclosure uses two transistors 103 to halve the charge reading time, thereby increasing the operating frequency to above 120 Hz and optimizing user experience.
  • the distribution uniformity of the transistor 103 and the invisible light sensor 102 in the photosensitive pixel PD can be improved. , so that the influence on the uniformity of the backlight can be reduced.
  • any area may include
  • the two invisible light sensors 102 provided are equivalent to two areas in the diagonal direction D, and the four invisible light sensors 102 can be arranged in four rows and four columns, so that the four invisible light sensors 102 can be arranged in the first direction X and the second direction Y are staggered, so as to ensure that the four invisible light sensors 102 are evenly distributed in the photosensitive pixel PD, which can not only reduce the influence of the invisible light sensors 102 on the uniformity of the backlight, but also facilitate the invisible light sensor 102 to receive infrared light.
  • Visible light signals (such as near-infrared light around 820nm), so that both the display effect and the touch interaction effect can be taken into account.
  • a bias layer 106 may also be included.
  • the bias layer 106 may include a bias line 1061 extending along the second direction Y, and a lead line 1062 extending along the first direction X;
  • the invisible light sensor 102 may include a first electrode 1021, and the first electrode 1021 is located between the layer where the transistor 103 is located and the bias layer 106;
  • each photosensitive pixel PD the first electrode 1021 of each invisible light sensor 102 is electrically connected to the bias line 1061 through different lead wires 1062, so that the bias voltage line 1061 loads driving signals for different invisible light sensors 102 through different lead wires 1062 .
  • the invisible light sensor 102 may further include a photosensitive layer 1022 located on the first electrode 1021 Between the layer where the transistor 103 is located, and the photosensitive layer 1022 is in direct contact with the first electrode 1021, since the number of invisible light sensors 102 contained in each photosensitive pixel PD is small, the photosensitive layer 1022 contained in each invisible light sensor 102 The area can be larger, for example, the ratio of the area of the photosensitive layer 1022 included in the invisible light sensor 102 to the area of a photosensitive pixel PD can be 1:2500-9:2500, so as to take into account the display effect and the touch interaction effect.
  • the bisector of the distance d between the centers of two adjacent photosensitive pixels PD is the boundary of the photosensitive pixel PD, and the area of one photosensitive pixel PD can be equal to the center of two adjacent photosensitive pixels PD.
  • the square of the distance d for example, the distance d between the centers of two adjacent photosensitive pixels PD is 3 mm ⁇ 5 mm, correspondingly, the area of one photosensitive pixel PD is 3 mm*3 mm ⁇ 5 mm*5 mm.
  • the area of the photosensitive layer 1022 contained in a non-visible light sensor 102 can be 100 ⁇ m *100 ⁇ m ⁇ 180 ⁇ m*180 ⁇ m.
  • the photosensitive layer 1022 may include a stacked P-type semiconductor layer and an N-type semiconductor layer; or may include a stacked N-type semiconductor layer, an intrinsic semiconductor layer I, and a P-type semiconductor layer, wherein the intrinsic The thickness of the semiconductor layer I may be greater than the thickness of the P-type semiconductor layer and the thickness of the N-type semiconductor layer.
  • any region may include A plurality of invisible light sensors 102 arranged in an array in the direction Y. Specifically, in two areas in the diagonal direction D in FIG. 4 , a plurality of invisible light sensors 102 in any area form a 3*3 square array.
  • a plurality of invisible light sensors 102 forming a square array can not only meet the requirements of the photosensitive pixel PD, but also have gaps between the plurality of invisible light sensors 102, which can make the aperture ratio of the photosensitive pixel PD reach more than 50%, which is greatly reduced. The adverse effect on the display caused by the large area of the non-visible light sensor 102 is eliminated.
  • a bias layer 106 may also be included.
  • the bias layer 106 may include a bias line 1061 extending along the second direction Y, and a lead line 1062 extending along the first direction X;
  • the invisible light sensor 102 includes a first electrode 1021, and the first electrode 1021 is located between the layer where the transistor 103 is located and the bias layer 106;
  • the first electrodes 1021 of a plurality of invisible light sensors 102 arranged in an array are arranged in series, and the first electrodes 1021 arranged in series are electrically connected to the bias line 1061 through the same lead wire 1062, so as to facilitate A plurality of invisible light sensors 102 arranged in an array are uniformly loaded with a driving signal through the bias line 1061 .
  • the photosensitive layer 1022 can be located between the first electrode 1021 and the layer where the transistor 103 is located, and the photosensitive layer 1022 can be in direct contact with the first electrode 1021, the area of the photosensitive layer 1022 contained in a non-visible light sensor 102 is comparable to that of a photosensitive pixel
  • the area ratio is 1:10000 ⁇ 1:900.
  • the area of a photosensitive pixel PD may be 3 mm*3 mm ⁇ 5 mm*5 mm, and the area of the photosensitive layer 1022 included in an invisible light sensor 102 may be 50 ⁇ m*50 ⁇ m ⁇ 100 ⁇ m*100 ⁇ m.
  • the invisible light sensor 102 may further include a second electrode 1023 located at the source/ Between the layer where the drain is located and the photosensitive layer 1022, the second electrode 1023 is opposite to the first electrode 1021, and the second electrode 1023 is in direct contact with the photosensitive layer 1022; , can ensure the flatness of the first electrode 1021 and reduce the leakage current.
  • the second electrodes 1023 of all invisible light sensors 102 in one region may be arranged in series, and the second electrodes 1023 arranged in series are electrically connected to the source/drain of the transistor 103 .
  • the orthographic projections of the channel regions on the base substrate 101 overlap with each other, so as to reduce the influence of light on the performance of the transistor 103 .
  • the distance between the orthographic projections of the data lines 105 on the base substrate 101 is less than the distance between the orthographic projections of the invisible light sensor 102 on the base substrate 101 to the orthographic projections of the data lines 105 on the base substrate 101, equivalent to The area where the transistor 103 is located is located between the area where the data line 105 is located and the area where the invisible light sensor 102 is located, so that the source/drain of the transistor 103 is electrically connected to the data line 105 and the second electrode 1023 of the invisible light sensor 102 respectively.
  • the near-infrared light emitter emits near-infrared light with a wavelength of 800nm to 900nm, the size of the light spot is controlled within 5mm, and the divergence at a distance of 5m does not exceed 5%.
  • the distance of transmission and reception is controlled within the range of 0m to 10m from the screen. If it is too far away, it does not make much sense depending on the usage scenario.
  • the emission power of the near-infrared light emitter is controlled within 1mw, which meets the harm prevention needs of the household (it is reported that high-intensity near-infrared light can damage the iris of the human eye), and can also meet the signal strength of the receiving end.
  • the invisible near-infrared light emitted in this way is projected on the touch substrate, and a large light spot must cover the invisible light sensor 102 , so that the conversion from optical signal to electrical signal can be realized based on the invisible light sensor 102 .
  • the invisible light sensor 102 may be a near-infrared light sensor. As shown in FIG. to match the spot size of non-visible light emitters, such as near-infrared light emitters.
  • the photosensitive layer 1022 made of amorphous silicon (a-si) is sensitive to the absorption of near-infrared and visible light bands. Therefore, in the touch substrate provided by the embodiment of the present disclosure, in order to prevent ambient light from interfering with the touch effect and prevent the invisible light sensor 102 from being overexposed due to receiving ambient light, as shown in FIG. 8 , the touch substrate 001 can also be It includes: a non-visible light anti-reflection film 107 located on the side of the non-visible light sensor 102 facing the liquid crystal display module 003 , and, in order to increase the transmittance of the backlight, the non-visible light anti-reflection film 107 can only cover the non-visible light sensor 102 .
  • a non-visible light anti-reflection film 107 located on the side of the non-visible light sensor 102 facing the liquid crystal display module 003 , and, in order to increase the transmittance of the backlight, the non-visible light anti-reflection film 107 can only cover
  • the material of the non-visible light anti-reflection film 107 can be a black matrix (BM) material, which can selectively transmit non-visible light (such as near-infrared light) and block other wavebands (such as non-near-infrared light). Infrared band) invisible light and visible light.
  • BM black matrix
  • Read circuit ROIC As shown in FIG. Read circuit ROIC; among them, the gate drive circuit GOA is located on the left and right borders, and the width is between 1mm and 2mm; the number of read circuit ROIC increases with the increase of product size.
  • the touch control substrate 001 may further include: a gate insulating layer 108, a first insulating layer 109, a first protective layer 110, a flat layer 111, a second insulating layer 112, a second protective layer 113, an oxide The indium tin layer 114 and the bias terminal (Pad) 115, wherein the indium tin oxide layer 114 can protect the bias terminal 115 and prevent the bias terminal 115 from being corroded by water and oxygen in the air.
  • a gate insulating layer 108 a gate insulating layer 108, a first insulating layer 109, a first protective layer 110, a flat layer 111, a second insulating layer 112, a second protective layer 113, an oxide The indium tin layer 114 and the bias terminal (Pad) 115, wherein the indium tin oxide layer 114 can protect the bias terminal 115 and prevent the bias terminal 115 from being corroded by water and oxygen in the air.
  • an embodiment of the present disclosure also provides a display device. As shown in FIG. On the light emitting side, the touch substrate 001 is located on the opposite side of the display surface of the liquid crystal display module 003 , and the touch substrate 001 is the above-mentioned touch substrate provided by the embodiment of the present disclosure. Since the problem-solving principle of the display device is similar to the problem-solving principle of the above-mentioned touch substrate, the implementation of the display device provided by the embodiment of the present disclosure can refer to the implementation of the above-mentioned touch substrate provided by the embodiment of the present disclosure. No longer.
  • the visible light sensor 102 causes a certain degree of occlusion, so in order to maximize the area of the non-visible light sensor 102 exposed by the black matrix 301, so that each photosensitive pixel PD receives a maximum signal amount of non-visible light (such as near-infrared light),
  • a maximum signal amount of non-visible light such as near-infrared light
  • d 1 represents the minimum distance between two invisible light sensors 102 in an area in the first direction X
  • d 2 represents the maximum distance between two invisible light sensors 102 in an area in the first direction X
  • d 3 Indicates the minimum distance between two invisible light sensors 102 in a region in the second direction
  • d 4 represents the maximum distance between two invisible light sensors 102 in a region in the second direction Y
  • C represents the liquid crystal display module 003
  • A represents the width of the black matrix 301 in the first direction X
  • D represents the width of the black matrix 301 in the second direction Y
  • n represents a positive integer.
  • the area of the display pixel P is 315 ⁇ m*315 ⁇ m, that is, C is equal to 315 ⁇ m
  • the width A of the black matrix 301 in the first direction X is equal to 14 ⁇ m to 19 ⁇ m
  • the black matrix 301 is in the second direction X.
  • the width B in the direction Y is equal to 65 ⁇ m ⁇ 97 ⁇ m, then according to the above formula, d 1 ⁇ 19+105*n( ⁇ m), d 2 ⁇ 86+105*n( ⁇ m), d 3 ⁇ 97+315*n( ⁇ m), d 3 ⁇ 218+315*n( ⁇ m).
  • each photosensitive pixel PD includes a plurality of invisible light sensors 102 arranged in an array
  • the spacing of the plurality of non-visible light sensors 102 arranged in an array satisfies the following relationship:
  • d5 represents the maximum distance between the plurality of invisible light sensors 102 arranged in an array in the first direction X and the second direction Y
  • D represents the width of the black matrix 301 in the second direction Y.
  • the liquid crystal display module 003 may include a plurality of display pixels P, and the area of one display pixel P is equal to the area of one photosensitive pixel PD.
  • the ratio can be 1:1 ⁇ 2:1.
  • the area of one photosensitive pixel PD can be equal to the area of 1 to 2 display pixels P, so as to take into account both the display effect and the touch interaction effect.
  • the display pixel P may include a red sub-pixel R, a green sub-pixel G, a blue sub-pixel B, etc., which is not specifically limited here.
  • the diffuser 005 can be located between the touch substrate 001 and the liquid crystal display module 003, the light guide plate 006 can be located between the diffuser 005 and the liquid crystal display module 003, the backlight 002 can be located on the side of the reflection sheet 004.
  • the reflection sheet 004 , the diffusion sheet 005 and the light guide sheet 006 can cooperate to control the emitted light from the backlight source 002 to evenly enter the liquid crystal display module 003 .
  • the liquid crystal display module 003 may be a twisted nematic (Twisted Nematic, TN) type liquid crystal display, an advanced ultra-dimensional field switch (Advanced Dimension Switch, ADS ) type liquid crystal display, high aperture ratio-advanced ultra-dimensional field switch (High-Advanced Dimension Switch, HADS) type liquid crystal display, in-plane switch (In-Plane Switch, IPS) type liquid crystal display, etc.
  • ADS Advanced ultra-dimensional field switch
  • High-Advanced Dimension Switch, HADS high aperture ratio-advanced ultra-dimensional field switch
  • IPS in-plane switch
  • the essential components of the liquid crystal display module 003 are those that should be understood by those skilled in the art, and will not be repeated here, nor should they be used as limitations on the present disclosure.
  • an embodiment of the present disclosure also provides a display system, as shown in FIG. 11 , which may include a display device 100 and a non-visible light emitter 200, wherein the display device 100 is the above-mentioned display device provided by the embodiment of the present disclosure .
  • the display system is similar to the problem-solving principle of the above-mentioned display device, the implementation of the display system provided by the embodiment of the present disclosure can refer to the implementation of the above-mentioned display device provided by the embodiment of the present disclosure, and the repetition will not be repeated. repeat.
  • the invisible light emitter 200 can be a near-infrared light emitter
  • the invisible light sensor 102 can be a near-infrared light sensor
  • the invisible near-infrared light emitted by the near-infrared light emitter is projected on the display device 100.
  • the light spot covers the near-infrared light sensor, so that the conversion from optical signal to electrical signal can be realized based on the near-infrared light sensor, and then the touch position can be determined by processing the electrical signal to realize long-distance touch interaction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开提供的触控基板、显示装置及显示系统,包括:衬底基板,包括感光区;多个感光像素,在感光区呈阵列排布,每个感光像素包括多个非可见光传感器、以及至少一个晶体管,其中,一个晶体管连接上述多个非可见光传感器中的至少两个非可见光传感器。

Description

触控基板、显示装置及显示系统 技术领域
本公开涉及显示技术领域,尤其涉及一种触控基板、显示装置及显示系统。
背景技术
随着通信技术、计算机技术和电子技术的不断发展,移动通信正在从人与人(Human to Human,H2H)向人与物(Human to Machine,H2M),以及物与物(Machine to Machine,M2M)通信的方向发展,万物互联成为移动通信发展的必然趋势。
物联网(Internet of Things,IoT)正是在此背景下应运而生的,其被认为是继计算机、互联网之后,世界信息产业的第三次浪潮。物联网采用信息化技术手段,促进人类生活和生产服务的全面升级,其应用开发的前景广阔,产业带动能力强。欧美国家已纷纷将发展物联网纳入整体信息化战略,我国也已将物联网明确纳入国家中长期科学技术发展规划(2006~2020年)和2050年国家产业路线图。
而在物联网的大背景下,人机交互就显得尤为重要了,不仅是物联网的架构基础,也是物联网的最终目标,实现服务于人类的万物互联,而所谓的人机交互是指用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室都时时刻刻不在被用到,实现人家交互的方式也比较多,例如基于压力,电阻,电容的触控,基于光线的人脸识别、基于声音的超声、基于静电反馈的触觉反馈等等,目前应用较多的为手机电视等消费品的触控交互,但是其技术具备一定的局限性,那就是必须接触式的触控才能实现交互的目的,不仅局限了应用的范围,而且还没办法实现远距离的触控交互,在此背景下,光触控应运而生。
发明内容
本公开实施例提供的一种触控基板、显示装置及显示系统,具体方案如下:
一方面,本公开实施例提供了一种触控基板,包括:
衬底基板,包括感光区;
多个感光像素,在所述感光区呈阵列排布,每个所述感光像素包括多个非可见光传感器、以及至少一个晶体管,其中,一个所述晶体管连接所述多个非可见光传感器中的至少两个所述非可见光传感器。
可选地,在本公开实施例提供的上述触控基板中,还包括:多条栅线和多条数据线,其中,所述栅线沿所述第一方向延伸,所述数据线沿所述第二方向延伸;
每个所述感光像素被交叉设置的一条所述栅线和一条所述数据线分割为四个区域,至少一个区域中设置有一个所述晶体管及其电连接的至少两个所述非可见光传感器。
可选地,在本公开实施例提供的上述触控基板中,每个所述感光像素包括两个晶体管,在对角方向上的两个区域内分别设置一个所述晶体管及其电连接的至少两个所述非可见光传感器。
可选地,在本公开实施例提供的上述触控基板中,一个区域包括沿所述对角方向设置的两个非可见光传感器。
可选地,在本公开实施例提供的上述触控基板中,还包括偏压层,所述偏压层位于所述非可见光传感器背离所述衬底基板的一侧,所述偏压层包括沿第二方向延伸的偏压线,以及沿所述第一方向延伸的引线;
所述非可见光传感器包括第一电极,所述第一电极位于所述晶体管所在层与所述偏压层之间;
在每个所述感光像素中,各所述非可见光传感器的所述第一电极通过不同所述引线与所述偏压线电连接。
可选地,在本公开实施例提供的上述触控基板中,所述非可见光传感器 还包括感光层,所述感光层位于所述第一电极与所述晶体管所在层之间,且所述感光层与所述第一电极直接接触,一个所述非可见光传感器所含所述感光层的面积与一个所述感光像素的面积之比为1:2500~9:2500。
可选地,在本公开实施例提供的上述触控基板中,一个区域包括沿所述第一方向及所述第二方向呈阵列排布的多个所述非可见光传感器。
可选地,在本公开实施例提供的上述触控基板中,仅一个区域包括一个晶体管,以及沿所述第一方向及所述第二方向呈阵列排布的多个所述非可见光传感器。
可选地,在本公开实施例提供的上述触控基板中,还包括偏压层,所述偏压层位于所述非可见光传感器背离所述衬底基板的一侧,所述偏压层包括沿第二方向延伸的偏压线,以及沿所述第一方向延伸的引线;
所述非可见光传感器包括第一电极,所述第一电极位于所述晶体管所在层与所述偏压层之间;
在每个所述感光像素中,阵列排布的多个所述非可见光传感器的所述第一电极之间串联设置,且串联设置的所述第一电极通过同一所述引线与所述偏压线电连接。
可选地,在本公开实施例提供的上述触控基板中,所述非可见光传感器还包括感光层,所述感光层位于所述第一电极与所述晶体管所在层之间,且所述感光层与所述第一电极直接接触,一个所述非可见光传感器所含所述感光层的面积与一个所述感光像素的面积之比为1:10000~1:900。
可选地,在本公开实施例提供的上述触控基板中,所述偏压线在所述衬底基板上的正投影与所述感光像素的其中一个所述晶体管的沟道区在所述衬底基板上的正投影相互交叠。
可选地,在本公开实施例提供的上述触控基板中,所述非可见光传感器还包括第二电极,所述第二电极位于所述晶体管的源/漏极所在层与所述感光层之间,所述第二电极与所述第一电极相对而置,且所述第二电极与所述感光层直接接触;
一个区域的全部所述非可见光传感器的所述第二电极之间串联设置,且串联设置的所述第二电极与所述晶体管的源/漏极电连接。
可选地,在本公开实施例提供的上述触控基板中,在一个区域内,在所述第一方向上,所述晶体管在所述衬底基板上的正投影到所述数据线在所述衬底基板上的正投影之间的距离,小于所述非可见光传感器在所述衬底基板上的正投影到所述数据线在所述衬底基板上的正投影之间的距离。
可选地,在本公开实施例提供的上述触控基板中,相邻两个所述感光像素的中心间距为3mm~5mm。
可选地,在本公开实施例提供的上述触控基板中,还包括:位于所述非可见光传感器面向所述液晶显示模组一侧的非可见光增透膜,所述非可见光增透膜仅覆盖所述非可见光传感器。
另一方面,本公开实施例还提供了一种显示装置,包括:
背光源;
液晶显示模组,位于所述背光源的出光侧;
触控基板,位于所述液晶显示模组的显示面的相对侧,所述触控基板为本公开实施例提供的上述触控基板。
可选地,在本公开实施例提供的上述显示装置中,所述液晶显示模组包括黑矩阵,在每个所述感光像素包括沿所述对角方向设置的四个所述非可见光传感器时,四个所述非可见光传感器的间距满足以下关系:
Figure PCTCN2021098187-appb-000001
d 3≥D+C*n,d 4≤C-D+C*n;
其中,d 1表示一个区域中两个所述非可见光传感器在所述第一方向上的最小距离,d 2表示一个区域中两个所述非可见光传感器在所述第一方向上的最大距离,d 3表示一个区域中两个所述非可见光传感器在所述第二方向上的最小距离,d 4表示一个区域中两个所述非可见光传感器在所述第二方向上的最大距离,C表示所述液晶显示模组所含一个显示像素的边长,A表示所述黑矩阵在所述第一方向上的宽度,D表示所述黑矩阵在所述第二方向上的宽度,n表示正整 数。
可选地,在本公开实施例提供的上述显示装置中,所述液晶显示模组包括黑矩阵,在每个所述感光像素包括阵列排布的多个所述非可见光传感器时,阵列排布的多个所述非可见光传感器的间距满足以下关系:
d 5≥D;
其中,d 5表示阵列排布的多个所述非可见光传感器在所述第一方向和所述第二方向上的最大距离,D表示所述黑矩阵在所述第二方向上的宽度。
可选地,在本公开实施例提供的上述显示装置中,所述液晶显示模组包括多个显示像素,一个所述显示像素的面积与一个所述感光像素的面积之比为1:1~2:1。
可选地,在本公开实施例提供的上述显示装置中,还包括:反射片、扩散片和导光片;其中,所述反射片位于所述触控基板背离所述液晶显示模组的一侧,所述扩散片位于所述触控基板与所述液晶显示模组之间,所述导光片位于所述扩散片与所述液晶显示模组之间。
另一方面,本公开实施例还提供了一种显示系统,包括显示装置和非可见光发射器,其中,所述显示装置为本公开实施例提供的上述显示装置。
附图说明
图1为本公开实施例提供的触控基板的结构示意图;
图2为图1中一个感光像素的一种结构示意图;
图3为图1中一个感光像素的又一种结构示意图;
图4为图1中一个感光像素的又一种结构示意图;
图5为图1中一个感光像素的又一种结构示意图;
图6为一个感光像素的剖面结构示意图;
图7为本公开实施例提供的显示装置的结构示意图;
图8为一个显示像素的尺寸示意图;
图9为一个感光像素的尺寸示意图;
图10为一个感光像素与一个显示像素的尺寸匹配示意图;
图11为本公开实施例提供的显示系统的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
采用近红外光传感器可实现远距离交互,在智慧大屏(例如TV&电子白板)、Gaming MNT等领域具有巨大的应用前景,具备毫米级精确定位,毫秒级响应速度,可显示柔性等技术特点,实现凌空精确无延时定位操作、非接触式手写的效果。
在一些实施例中,通过将近红外光传感器设置在液晶显示装置的液晶显示模组与背光源之间,使得既能显示又可以远距离即时交互。但是,随着研究深入,本公开发现由于采用非晶硅(a-si)材料的近红外光传感器对近红外 光波段和可见光波段的吸收都比较敏感,特别是在550nm波段的绿光吸收峰值能达到80%。因此,在近红外光传感器设置在液晶显示装置的液晶显示模组与背光源之间的情况下,近红外光传感器的面积过大会对显示效果造成不良影响。
为了至少解决相关技术中存在的上述技术问题,本公开实施例提供了一种触控基板001,尤其适用于远程大尺寸非可见光(例如近红外光)交互技术领域,如图1和图2所示,可以包括:
衬底基板101,包括感光区AA;
多个感光像素PD,在感光区AA呈阵列排布,每个感光像素PD包括多个非可见光传感器102、以及至少一个晶体管103,其中,一个晶体管103连接上述多个非可见光传感器102中的至少两个非可见光传感器102。
在本公开实施例提供的上述显示装置中,通过在一个感光像素PD中设置多个相互独立的非可见光传感器102,使得一个感光像素PD的感光面积为多个非可见光传感器102的感光面积之和,在实现相同感光面积的条件下,本公开中一个非可见光传感器102的面积可缩小为非分离式的非可见光传感器102的1/m(m为一个感光像素PD中非可见光传感器102的总数),从而减小了非可见光传感器102的面积过大对背光均一性的影响,有效提高了显示效果。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2至图5所示,还可以包括:多条栅线104和多条数据线105,其中,栅线104沿第一方向X延伸,数据线105沿第二方向Y延伸;
每个感光像素PD被交叉设置的一条栅线104和一条数据线105分割为四个区域,至少一个区域中设置有一个晶体管103及其电连接的至少两个非可见光传感器102。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2至图4所示,每个感光像素PD可以包括两个晶体管103,在对角方向D上的两个区域内分别设置一个晶体管103及其电连接的至少两个非可见光传感器102。
一个感光像素PD的两个晶体管103通过分割四个区域的一条栅线104及一数据线105控制,可以实现两个晶体管103的同时开启、同时关闭。相较于一个感光像素PD采用一个晶体管103的方案,本公开采用两个晶体管103可以使电荷读取时间减半,从而可提升工作频率到120Hz以上,优化用户体验。
另外,通过在对角方向D上的两个区域内分别设置一个晶体管103及其电连接的至少两个非可见光传感器102,可以提高晶体管103和非可见光传感器102在感光像素PD中的分布均匀性,从而可以减小对背光均一性的影响。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2和图3所示,在对角方向D上的两个区域内,任一个区域可以包括沿对角方向D设置的两个非可见光传感器102,相当于在对角方向D上的两个区域内,四个非可见光传感器102可以设置在四行四列空间,使得四个非可见光传感器102在第一方向X及第二方向Y上错开设置,从而保证四个非可见光传感器102在感光像素PD内分布较均匀,这样不但可以减小非可见光传感器102对背光均一性的影响,而且利于非可见光传感器102接收非可见光信号(例如820nm左右的近红外光),从而可以兼顾显示效果及触控交互效果。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2和图3所示,还可以包括偏压层106,偏压层106位于非可见光传感器102背离衬底基板101的一侧,偏压层106可以包括沿第二方向Y延伸的偏压线1061,以及沿第一方向X延伸的引线1062;
非可见光传感器102可以包括第一电极1021,第一电极1021位于晶体管103所在层与偏压层106之间;
在每个感光像素PD中,各非可见光传感器102的第一电极1021通过不同引线1062与偏压线1061电连接,以使得偏压线1061通过不同引线1062为不同的非可见光传感器102加载驱动信号。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2、图3和图6所示,非可见光传感器102还可以包括感光层1022,感光层1022位于第一电极1021与晶体管103所在层之间,且感光层1022与第一电极1021直接接触, 由于每个感光像素PD中所含非可见光传感器102的数量较少,因此各非可见光传感器102所含感光层1022的面积可以较大,例如一个非可见光传感器102所含感光层1022的面积与一个感光像素PD的面积之比可以为1:2500~9:2500,以兼顾显示效果与触控交互效果。
在一些实施例中,如图1所示,相邻两个感光像素PD的中心间距d的平分线为感光像素PD的边界,一个感光像素PD的面积可以等于相邻两个感光像素PD的中心间距d的平方,例如相邻两个感光像素PD的中心间距d为3mm~5mm,相应地,一个感光像素PD的面积为3mm*3mm~5mm*5mm。在满足一个非可见光传感器102所含感光层1022的面积与一个感光像素PD的面积之比为1:2500~9:2500的条件下,一个非可见光传感器102所含感光层1022的面积可以为100μm*100μm~180μm*180μm。
在一些实施例中,感光层1022可以包括层叠设置的P型半导体层和N型半导体层;或者可以包括层叠设置的N型半导体层、本征半导体层I和P型半导体层,其中,本征半导体层I的厚度可以大于P型半导体层的厚度和N型半导体层的厚度。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图4所示,在对角方向D上的两个区域内,任一个区域可以包括沿第一方向X及第二方向Y呈阵列排布的多个非可见光传感器102。具体地,图4中在对角方向D上的两个区域内,任一个区域的多个非可见光传感器102构成了3*3的方形阵列。
构成方形阵列的多个非可见光传感器102不仅可以满足感光像素PD的需求,而且多个非可见光传感器102之间具有间隙,可以使感光像素PD的开口率达到50%以上,很大程度上减小了因非可见光传感器102面积过大对显示造成的不良影响。
在一些实施例中,在本公开实施例提供的上述触控基板中,为了兼顾显示效果与触控交互效果,如图5所示,还可以仅在一个区域内设置一个晶体管103,以及沿第一方向X及第二方向Y呈阵列排布的多个非可见光传感器102,具体地,在图5中构成了5*5的方形阵列。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图4至图6所示,还可以包括偏压层106,偏压层106位于非可见光传感器102背离衬底基板101的一侧,偏压层106可以包括沿第二方向Y延伸的偏压线1061,以及沿第一方向X延伸的引线1062;
非可见光传感器102包括第一电极1021,第一电极1021位于晶体管103所在层与偏压层106之间;
在每个感光像素PD中,阵列排布的多个非可见光传感器102的第一电极1021之间串联设置,且串联设置的第一电极1021通过同一引线1062与偏压线1061电连接,以便于通过偏压线1061为阵列排布的多个非可见光传感器102统一加载驱动信号。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图4至图6所示,在阵列排布的多个非可见光传感器102中,每个非可见光传感器102还可以包括感光层1022,感光层1022可以位于第一电极1021与晶体管103所在层之间,且感光层1022可以与第一电极1021直接接触,一个非可见光传感器102所含感光层1022的面积与一个感光像素的面积之比为1:10000~1:900。
由于方形阵列中所含的非可见光传感器102的数量较多,上述比例的非可见光传感器102的面积较小,因此,可以保证背光的透过率。在一些实施例中,一个感光像素PD的面积可以为3mm*3mm~5mm*5mm,一个非可见光传感器102所含感光层1022的面积可以为50μm*50μm~100μm*100μm。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2至图6所示,非可见光传感器102还可以包括第二电极1023,第二电极1023位于晶体管103的源/漏极所在层与感光层1022之间,第二电极1023与第一电极1021相对而置,且第二电极1023与感光层1022直接接触;通过单独设置与感光层1022直接接触的第一电极1021,可以保证第一电极1021的平整度,减少漏电流。另外,一个区域的全部非可见光传感器102的第二电极1023之间可以串联设置,且串联设置的第二电极1023与晶体管103的源/漏极电连接。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2至图5所示,偏压线1061在衬底基板101上的正投影与感光像素PD的其中一个晶体管103的沟道区在衬底基板101上的正投影相互交叠,以降低光线对晶体管103性能的影响。
在一些实施例中,在本公开实施例提供的上述触控基板中,如图2至图5,在一个区域内,在第一方向X上,晶体管103在衬底基板101上的正投影到数据线105在衬底基板101上的正投影之间的距离,小于非可见光传感器102在衬底基板101上的正投影到数据线105在衬底基板101上的正投影之间的距离,相当于晶体管103所在区域位于数据线105所在区域与非可见光传感器102所在区域之间,以便于晶体管103的源/漏极分别与数据线105、非可见光传感器102的第二电极1023电连接。
近红外光发射器发射800nm~900nm波长的近红外光,光斑大小控制在5mm以内,5m距离发散不超过5%。发射和接收的距离控制为距离屏幕的0m~10m范围,太远的话根据使用场景,意义不大。近红外光发射器的发射功率控制在1mw以内,这样满足家用的防伤害需求(有报道说高强度的近红外光能伤害人的眼睛虹膜),同时也能满足接收端的信号强度。这样发射的不可见近红外光投射在触控基板上,较大的光斑一定覆盖住非可见光传感器102,从而可基于非可见光传感器102实现从光信号变电信号的转换。
基于此,在本公开实施例提供的上述触控基板中,非可见光传感器102可以为近红外光传感器,如图1所示,相邻两个感光像素PD的中心间距d可以为3mm~5mm,以匹配非可见光发射器(例如近红外光发射器)的光斑大小。
在一些实施例中,采用非晶硅(a-si)材料的感光层1022对近红外和可见光波段的吸收都比较敏感。因此,在本公开实施例提供的上述触控基板中,为了避免环境光线干扰触控效果、以及防止非可见光传感器102因接收环境光线而过曝,如图8所示,触控基板001还可以包括:位于非可见光传感器102面向液晶显示模组003一侧的非可见光增透膜107,并且,为了增大对背光的透过率,非可见光增透膜107可以仅覆盖非可见光传感器102。在一些实施例中, 该非可见光增透膜107的材料可以为黑矩阵(BM)材料,该黑矩阵材料可选择性透过非可见光(例如近红外光),而拦截其他波段(例如非近红外波段)的非可见光及可见光。
需要说明的是,在本公开实施例提供的上述触控基板中,如图1所示,还可以包括:为栅线104提供扫描信号的栅极驱动电路GOA、以及与数据线105电连接的读取电路ROIC;其中,栅极驱动电路GOA位于左右边框,宽度在1mm~2mm之间;读取电路ROIC的颗数随产品尺寸的增大而增加。
此外,如图6所示,触控基板001还可以包括:栅绝缘层108、第一绝缘层109、第一保护层110、平坦层111、第二绝缘层112、第二保护层113、氧化铟锡层114、偏压端子(Pad)115,其中,氧化铟锡层114可以保护偏压端子115,避免偏压端子115被空气中的水氧等腐蚀。对于触控基板001中其他必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
基于同一发明构思,本公开实施例还提供了一种显示装置,如图7所示,触控基板001、背光源002和液晶显示模组003,其中,液晶显示模组003位于背光源002的出光侧,触控基板001位于液晶显示模组003的显示面的相对侧,触控基板001为本公开实施例提供的上述触控基板。由于该显示装置解决问题的原理与上述触控基板解决问题的原理相似,因此,本公开实施例提供的该显示装置的实施可以参见本公开实施例提供的上述触控基板的实施,重复之处不再赘述。
在一些实施例中,在本公开实施例提供的上述显示装置中,如图7所示,液晶显示模组003位于触控基板001的上方,导致液晶显示模组003的黑矩阵301会对非可见光传感器102造成一定程度上的遮挡,因此为了使得被黑矩阵301暴露的非可见光传感器102的面积最大化,以使得每个感光像素PD接收非可见光(例如近红外光)的信号量最大化,如图8和图9所示,在每个感光像素PD包括沿对角方向D设置的四个非可见光传感器102时,四个非可见光传感器102的间距可以满足以下关系:
Figure PCTCN2021098187-appb-000002
d 3≥D+C*n,d 4≤C-D+C*n;
其中,d 1表示一个区域中的两个非可见光传感器102在第一方向X上的最小距离,d 2表示一个区域中的两个非可见光传感器102在第一方向X上的最大距离,d 3表示一个区域中的两个非可见光传感器102在第二方向上的最小距离,d 4表示一个区域中的两个非可见光传感器102在第二方向Y上的最大距离,C表示液晶显示模组003所含一个显示像素P的边长,A表示黑矩阵301在第一方向X上的宽度,D表示黑矩阵301在第二方向Y上的宽度,n表示正整数。
以55寸的液晶显示模组003为例,显示像素P的面积为315μm*315μm,即C等于315μm,黑矩阵301在第一方向X上的宽度A等于14μm~19μm,黑矩阵301在第二方向Y上的宽度B等于65μm~97μm,则根据上述公式可得d 1≥19+105*n(μm),d 2≤86+105*n(μm),d 3≥97+315*n(μm),d 3≤218+315*n(μm)。
在一些实施例中,在本公开实施例提供的上述显示装置中,如图4、图5和图8所示,在每个感光像素PD包括阵列排布的多个非可见光传感器102时,为了使得被黑矩阵301暴露的非可见光传感器102的面积最大化,阵列排布的多个非可见光传感器102的间距满足以下关系:
d 5≥D;
其中,d 5表示阵列排布的多个非可见光传感器102在第一方向X和第二方向Y上的最大距离,D表示黑矩阵301在第二方向Y上的宽度。
在一些实施例中,在本公开实施例提供的上述显示装置中,如图10所示,液晶显示模组003可以包括多个显示像素P,一个显示像素P的面积与一个感光像素PD的面积之比可以为1:1~2:1,换言之,一个感光像素PD的面积可以等于1至2个显示像素P的面积,以兼顾显示效果及触控交互效果。
在具体实施时,显示像素P可以包括红色子像素R、绿色子像素G、蓝色子像素B等,在此不做具体限定。
在一些实施例中,在本公开实施例提供的上述显示装置中,如图7所示,还可以包括:反射片004、扩散片005和导光片006;其中,反射片004可以位 于触控基板001背离液晶显示模组003的一侧,扩散片005可以位于触控基板001与液晶显示模组003之间,导光片006可以位于扩散片005与液晶显示模组003之间,背光源002可以位于反射片004的侧面。反射片004、扩散片005和导光片006可协同控制背光源002的发射光线均匀入射至液晶显示模组003。
在一些实施例中,在本公开实施例提供的上述显示装置中,液晶显示模组003可以为扭转向列(Twisted Nematic,TN)型液晶显示屏、高级超维场开关(Adwanced Dimension Switch,ADS)型液晶显示屏、高开口率-高级超维场开关(High-Adwanced Dimension Switch,HADS)型液晶显示屏、平面内开关(In-Plane Switch,IPS)型液晶显示屏等,在此不做具体限定。对于液晶显示模组003中必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
基于同一发明构思,本公开实施例还提供了一种显示系统,如图11所示,可以包括显示装置100和非可见光发射器200,其中,显示装置100为本公开实施例提供的上述显示装置。由于该显示系统解决问题的原理与上述显示装置解决问题的原理相似,因此,本公开实施例提供的该显示系统的实施可以参见本公开实施例提供的上述显示装置的实施,重复之处不再赘述。
在具体实施时,非可见光发射器200可以为近红外光发射器,非可见光传感器102可以为近红外光传感器,近红外光发射器发射的不可见近红外光线投射在显示装置100上,较大的光斑覆盖住近红外光传感器,从而可基于近红外光传感器实现从光信号到电信号的转换,进而通过对电信号的处理确定触控位置,实现远距离触控交互。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (21)

  1. 一种触控基板,其中,包括:
    衬底基板,包括感光区;
    多个感光像素,在所述感光区呈阵列排布,每个所述感光像素包括多个非可见光传感器、以及至少一个晶体管,其中,一个所述晶体管连接所述多个非可见光传感器中的至少两个所述非可见光传感器。
  2. 如权利要求1所述的触控基板,其中,还包括:多条栅线和多条数据线,其中,所述栅线沿所述第一方向延伸,所述数据线沿所述第二方向延伸;
    每个所述感光像素被交叉设置的一条所述栅线和一条所述数据线分割为四个区域,至少一个区域中设置有一个所述晶体管及其电连接的至少两个所述非可见光传感器。
  3. 如权利要求2所述的触控基板,其中,每个所述感光像素包括两个晶体管,在对角方向上的两个区域内分别设置一个所述晶体管及其电连接的至少两个所述非可见光传感器。
  4. 如权利要求3所述的触控基板,其中,一个区域包括沿所述对角方向设置的两个非可见光传感器。
  5. 如权利要求4所述的触控基板,其中,还包括偏压层,所述偏压层位于所述非可见光传感器背离所述衬底基板的一侧,所述偏压层包括沿第二方向延伸的偏压线,以及沿所述第一方向延伸的引线;
    所述非可见光传感器包括第一电极,所述第一电极位于所述晶体管所在层与所述偏压层之间;
    在每个所述感光像素中,各所述非可见光传感器的所述第一电极通过不同所述引线与所述偏压线电连接。
  6. 如权利要求5所述的触控基板,其中,所述非可见光传感器还包括感光层,所述感光层位于所述第一电极与所述晶体管所在层之间,且所述感光层与所述第一电极直接接触,一个所述非可见光传感器所含所述感光层的面 积与一个所述感光像素的面积之比为1:2500~9:2500。
  7. 如权利要求3所述的触控基板,其中,一个区域包括沿所述第一方向及所述第二方向呈阵列排布的多个所述非可见光传感器。
  8. 如权利要求2所述的触控基板,其中,仅一个区域包括一个晶体管,以及沿所述第一方向及所述第二方向呈阵列排布的多个所述非可见光传感器。
  9. 如权利要求7或8所述的触控基板,其中,还包括偏压层,所述偏压层位于所述非可见光传感器背离所述衬底基板的一侧,所述偏压层包括沿第二方向延伸的偏压线,以及沿所述第一方向延伸的引线;
    所述非可见光传感器包括第一电极,所述第一电极位于所述晶体管所在层与所述偏压层之间;
    在每个所述感光像素中,阵列排布的多个所述非可见光传感器的所述第一电极之间串联设置,且串联设置的所述第一电极通过同一所述引线与所述偏压线电连接。
  10. 如权利要求9所述的触控基板,其中,所述非可见光传感器还包括感光层,所述感光层位于所述第一电极与所述晶体管所在层之间,且所述感光层与所述第一电极直接接触,一个所述非可见光传感器所含所述感光层的面积与一个所述感光像素的面积之比为1:10000~1:900。
  11. 如权利要求5或9所述的触控基板,其中,所述偏压线在所述衬底基板上的正投影与所述感光像素的其中一个所述晶体管的沟道区在所述衬底基板上的正投影相互交叠。
  12. 如权利要求6或10所述的触控基板,其中,所述非可见光传感器还包括第二电极,所述第二电极位于所述晶体管的源/漏极所在层与所述感光层之间,所述第二电极与所述第一电极相对而置,且所述第二电极与所述感光层直接接触;
    一个区域的全部所述非可见光传感器的所述第二电极之间串联设置,且串联设置的所述第二电极与所述晶体管的源/漏极电连接。
  13. 如权利要求2-12任一项所述的触控基板,其中,在一个区域内,在 所述第一方向上,所述晶体管在所述衬底基板上的正投影到所述数据线在所述衬底基板上的正投影之间的距离,小于所述非可见光传感器在所述衬底基板上的正投影到所述数据线在所述衬底基板上的正投影之间的距离。
  14. 如权利要求1~13任一项所述的触控基板,其中,相邻两个所述感光像素的中心间距为3mm~5mm。
  15. 如权利要求1~14任一项所述的触控基板,其中,还包括:位于所述非可见光传感器背离所述衬底基板一侧的非可见光增透膜,所述非可见光增透膜仅覆盖所述非可见光传感器。
  16. 一种显示装置,其中,包括:
    背光源;
    液晶显示模组,位于所述背光源的出光侧;
    触控基板,位于所述液晶显示模组的显示面的相对侧,所述触控基板为如权利要求1-15任一项所述的触控基板。
  17. 如权利要求16所述的显示装置,其中,所述液晶显示模组包括黑矩阵,在每个所述感光像素包括沿所述对角方向设置的四个所述非可见光传感器时,四个所述非可见光传感器的间距满足以下关系:
    Figure PCTCN2021098187-appb-100001
    其中,d 1表示一个区域中所述非可见光传感器在所述第一方向上的最小距离,d 2表示一个区域中两个所述非可见光传感器在所述第一方向上的最大距离,d 3表示一个区域中两个所述非可见光传感器在所述第二方向上的最小距离,d 4表示一个区域中两个所述非可见光传感器在所述第二方向上的最大距离,C表示所述液晶显示模组所含一个显示像素的边长,A表示所述黑矩阵在所述第一方向上的宽度,D表示所述黑矩阵在所述第二方向上的宽度,n表示正整数。
  18. 如权利要求16所述的显示装置,其中,所述液晶显示模组包括黑矩阵,在每个所述感光像素包括阵列排布的多个所述非可见光传感器时,阵列排布的多个所述非可见光传感器的间距满足以下关系:
    d 5≥D;
    其中,d 5表示阵列排布的多个所述非可见光传感器在所述第一方向和所述第二方向上的最大距离,D表示所述黑矩阵在所述第二方向上的宽度。
  19. 如权利要求16~18任一项所述的显示装置,其中,所述液晶显示模组包括多个显示像素,一个所述显示像素的面积与一个所述感光像素的面积之比为1:1~2:1。
  20. 如权利要求16~19任一项所述的显示装置,其中,还包括:反射片、扩散片和导光片,其中,所述反射片位于所述触控基板背离所述液晶显示模组的一侧,所述扩散片位于所述触控基板与所述液晶显示模组之间,所述导光片位于所述扩散片与所述液晶显示模组之间。
  21. 一种显示系统,其中,包括显示装置和非可见光发射器,其中,所述显示装置为如权利要求16~20任一项所述的显示装置。
PCT/CN2021/098187 2021-06-03 2021-06-03 触控基板、显示装置及显示系统 WO2022252193A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180001425.2A CN115735187A (zh) 2021-06-03 2021-06-03 触控基板、显示装置及显示系统
US18/565,132 US20240201813A1 (en) 2021-06-03 2021-06-03 Touch substrate, display apparatus and display system
PCT/CN2021/098187 WO2022252193A1 (zh) 2021-06-03 2021-06-03 触控基板、显示装置及显示系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098187 WO2022252193A1 (zh) 2021-06-03 2021-06-03 触控基板、显示装置及显示系统

Publications (1)

Publication Number Publication Date
WO2022252193A1 true WO2022252193A1 (zh) 2022-12-08

Family

ID=84323833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098187 WO2022252193A1 (zh) 2021-06-03 2021-06-03 触控基板、显示装置及显示系统

Country Status (3)

Country Link
US (1) US20240201813A1 (zh)
CN (1) CN115735187A (zh)
WO (1) WO2022252193A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446495A (zh) * 2010-10-04 2012-05-09 三星电子株式会社 显示设备
CN106066742A (zh) * 2016-08-04 2016-11-02 京东方科技集团股份有限公司 传感器和显示装置
CN109360838A (zh) * 2018-09-26 2019-02-19 京东方科技集团股份有限公司 一种感控显示面板及感控显示装置
CN109947302A (zh) * 2019-03-29 2019-06-28 京东方科技集团股份有限公司 一种空中显示装置及其控制方法
CN110456547A (zh) * 2019-08-19 2019-11-15 厦门天马微电子有限公司 一种显示装置
CN210639626U (zh) * 2019-09-10 2020-05-29 昆山龙腾光电股份有限公司 阵列基板、显示面板及显示装置
WO2020155092A1 (en) * 2019-02-01 2020-08-06 Boe Technology Group Co., Ltd. Apparatus integrated with display panel for tof 3d spatial positioning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446495A (zh) * 2010-10-04 2012-05-09 三星电子株式会社 显示设备
CN106066742A (zh) * 2016-08-04 2016-11-02 京东方科技集团股份有限公司 传感器和显示装置
CN109360838A (zh) * 2018-09-26 2019-02-19 京东方科技集团股份有限公司 一种感控显示面板及感控显示装置
WO2020155092A1 (en) * 2019-02-01 2020-08-06 Boe Technology Group Co., Ltd. Apparatus integrated with display panel for tof 3d spatial positioning
CN109947302A (zh) * 2019-03-29 2019-06-28 京东方科技集团股份有限公司 一种空中显示装置及其控制方法
CN110456547A (zh) * 2019-08-19 2019-11-15 厦门天马微电子有限公司 一种显示装置
CN210639626U (zh) * 2019-09-10 2020-05-29 昆山龙腾光电股份有限公司 阵列基板、显示面板及显示装置

Also Published As

Publication number Publication date
US20240201813A1 (en) 2024-06-20
CN115735187A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US10817095B2 (en) Electronic device, touch display panel and touch display substrate
CN204391112U (zh) 显示电路和电子设备显示器结构
CN101685212B (zh) 液晶显示面板
US11334179B2 (en) Display panel to mitigate short-circuiting between touch electrodes, and display device
CN106775165B (zh) 内嵌式触控显示面板及电子装置
US20180275809A1 (en) In-cell touch screen and display device
US20200327297A1 (en) Touch panels and driving control methods thereof, touch display devices
CN104123054A (zh) 触控显示装置
CN107491233B (zh) 一种彩膜基板、显示面板及显示装置
US10928940B2 (en) Touch panel, method for manufacturing the same, and touch display device
US11842019B2 (en) Touch substrate and display panel
US20180260059A1 (en) Array substrate, in-cell touch screen, and display device
US10459552B2 (en) Array substrate, method for manufacturing the same and method for driving the same, touch panel and display device
US11989382B2 (en) Touch structure, display panel and electronic device
US11099440B2 (en) Display device and array substrate thereof
CN113190140B (zh) 显示面板及显示装置
CN106897692B (zh) 指纹识别组件和显示装置
WO2022252193A1 (zh) 触控基板、显示装置及显示系统
US20170235389A1 (en) Touch Panel and Display Device
US20210200353A1 (en) Display screen and electronic device thereof
WO2022252194A1 (zh) 触控基板、显示装置及显示系统
CN109061929B (zh) 一种显示面板及显示装置
WO2022147895A1 (zh) 一种阵列基板、显示面板以及显示装置
WO2022266921A1 (zh) 触控基板、显示装置及显示系统
WO2023065105A1 (zh) 阵列基板、显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18565132

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.04.2024)