WO2022252066A1 - 一种可移动平台的天线选择方法及可移动平台 - Google Patents

一种可移动平台的天线选择方法及可移动平台 Download PDF

Info

Publication number
WO2022252066A1
WO2022252066A1 PCT/CN2021/097452 CN2021097452W WO2022252066A1 WO 2022252066 A1 WO2022252066 A1 WO 2022252066A1 CN 2021097452 W CN2021097452 W CN 2021097452W WO 2022252066 A1 WO2022252066 A1 WO 2022252066A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
antenna
mobile platform
working
platform
Prior art date
Application number
PCT/CN2021/097452
Other languages
English (en)
French (fr)
Inventor
马宁
尹小俊
张志鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/097452 priority Critical patent/WO2022252066A1/zh
Publication of WO2022252066A1 publication Critical patent/WO2022252066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present application relates to the field of communication technology, and in particular to a method for selecting an antenna of a movable platform and the movable platform.
  • Movable platforms including drones, unmanned boats, unmanned vehicles, etc.
  • the mobile platform can use the mobile communication network to communicate.
  • drones communicate with base stations in mobile communication networks through onboard antennas. Since the attitude of the UAV changes greatly during flight, it is easy to cause antenna occlusion.
  • metal substances in the drone body and airborne accessories These metal substances will also cause the antenna to be blocked and affect the communication between the drone and the base station. Therefore, drones usually install multiple antennas to ensure omnidirectional coverage.
  • the base station usually selects the working antenna of the UAV according to the communication quality through the set antenna selection strategy, but this antenna selection method will cause the problem of selection lag, which will affect the communication quality of the UAV. .
  • one of the purposes of the present application is to provide a method for selecting an antenna of a movable platform and the movable platform, so as to solve the problem of selecting an airborne antenna.
  • a method for selecting an antenna of a mobile platform is provided, the method is executed by the mobile platform, and the mobile platform is connected to a base station in a mobile communication network through communication, and the method includes:
  • At least one working antenna is determined according to the relative position and antenna gain.
  • a mobile platform is provided, the mobile platform is installed with a mobile communication module, and communicates with a base station in a mobile communication network, including:
  • memory for storing processor-executable instructions
  • the processor is configured as:
  • At least one working antenna is determined according to the relative position and antenna gain.
  • the antenna selection method of the mobile platform and the mobile platform provided by this application the working antenna is selected by the mobile platform, and compared with the selection strategy of the base station according to the communication quality, the mobile platform is based on its position information, attitude information and the position of the base station The information determines the relative position of the movable platform and the base station, and determines at least one working antenna according to the relative position and antenna gain, thereby solving the problem of hysteresis in antenna selection by the mobile communication network.
  • Fig. 1 shows a method for selecting an antenna of a mobile platform according to an exemplary embodiment of the present application.
  • Fig. 2 shows an application scenario according to an exemplary embodiment of the present application.
  • Fig. 3A is an application scenario shown in this application according to another exemplary embodiment.
  • Fig. 3B is an application scenario shown in this application according to another exemplary embodiment.
  • Fig. 4 shows an application scenario according to another exemplary embodiment of the present application.
  • Fig. 5A is an application scenario shown in this application according to another exemplary embodiment.
  • Fig. 5B is an application scenario shown in this application according to another exemplary embodiment.
  • Fig. 6 shows a movable platform according to another exemplary embodiment of the present application.
  • Movable platforms including drones, unmanned boats, unmanned vehicles, etc. Take drones as an example.
  • drones use WIFI to transmit image data and control commands.
  • the transmission rate is generally around 10Mbps and can support 1080p/30fps image transmission services.
  • UAVs have higher and higher requirements for transmission bandwidth.
  • the large bandwidth of 5G can transmit 4K or even 8K video.
  • the use of 5G communication can also extend the control distance of drones, and can well solve the problem of signal occlusion in point-to-point communication. Therefore, using 5G mobile communication networks for drones to communicate is a research hotspot.
  • drones In the communication using the mobile communication network, due to the large changes in the attitude of the UAV during flight, it is easy to cause the antenna to be blocked. At the same time, there are many metal substances in the drone body and airborne accessories. These metal substances will also cause the antenna to be blocked and affect the communication between the drone and the base station. Therefore, drones usually install multiple antennas to ensure omnidirectional coverage. For example, in a quadrotor UAV, one antenna is usually installed on each of the four legs of the arm, and even more than 4 antennas can be installed. In a mobile communication network, due to power consumption and cost constraints, most terminal equipment can only support 1-2 antennas for transmission or 1-4 antennas for reception at the same time.
  • the number of onboard antennas of the UAV is greater than the maximum antenna receiving and transmitting capability that can be supported, and all the onboard antennas cannot work at the same time, so it is necessary to select the working antenna for communicating with the base station from all the onboard antennas.
  • an antenna selection strategy is usually deployed on the base station.
  • the terminal antenna selection strategy in the LTE standard is to select the working antenna according to the communication quality with each airborne antenna. For example, choose one of the two transmitting antennas. select etc.
  • the ability of the base station to select antennas is limited, and the number of antennas onboard UAVs exceeds the ability of the base station to select antennas; The attitude changes greatly. If the working antenna is selected according to the communication quality, it is easy to have the problem of hysteresis. For example, the original working antenna of the UAV is Antenna 1.
  • the mobile communication network detects that the communication quality between Antenna 2 and the base station is better than that of Antenna 1, so it instructs the UAV to switch to Antenna 2. for the working antenna.
  • the UAV receives the switching command and switches the working antenna, the attitude of the UAV may have changed from attitude A to attitude B.
  • antenna 2 is not necessarily the antenna with the best communication quality, or even no
  • the human-machine is in posture B, the antenna 2 is blocked by the fuselage. Obviously, there will be a problem of lag in the selection of the drone's airborne antenna by the mobile communication network, and it may even cause communication interruption.
  • the FPV (First Person View, first-person perspective) traversal machine transmits FPV images to ground equipment such as remote control terminals through the mobile communication network, so that users can control the traversal machine according to the returned FPV images. If the FPV image transmission is delayed, stuck, or even interrupted due to the delay in antenna selection, the user may not be able to control the drone correctly, or even cause the drone to lose control. This is undoubtedly a major safety hazard in drone flight.
  • the antenna selection method for the mobile platform as shown in Figure 1 can be used to select the working antenna on the mobile platform.
  • the method is performed by a mobile platform, including:
  • the base station For a mobile platform, its working antenna is selected by the base station according to the communication quality, which is actually a passive antenna selection method, so there will be selection hysteresis.
  • the mobile platform actively selects the working antenna, and determines the relative position of the mobile platform and the base station according to the position information, posture information and base station information of the mobile platform, and At least one working antenna is determined based on the relative position and antenna gain.
  • Such a selection method does not depend on the communication quality between the base station and each antenna. Therefore, on the one hand, it solves the problem of selection hysteresis, and on the other hand, it solves the problem that the mobile communication network will choose to send and receive antennas that will exceed its antenna. A matter of choice.
  • the position information and attitude information of the mobile platform can be obtained through various sensor modules on it.
  • drones can be equipped with various sensor modules, including GNSS sensors, GPS modules, compass, barometer, IMU (Inertial Measurement unit, inertial measurement unit), gyroscope, etc. Through these sensors, the position and attitude of the drone can be measured, so as to obtain the position information and attitude information of the drone.
  • IMU Inertial Measurement unit, inertial measurement unit
  • gyroscope etc.
  • the position and attitude of the drone can be measured, so as to obtain the position information and attitude information of the drone.
  • different movable platforms can also obtain their position information and attitude information through different sensors or devices, and this application does not limit the ways of obtaining the position information and attitude information of the movable platforms.
  • the location information of the base station can be obtained based on the location area (location area code LAC or tracking area code TAC) and cell identification code (cell number CID or unique cell identifier ECI) of the base station.
  • location area code LAC or tracking area code TAC location area code
  • cell identification code cell number CID or unique cell identifier ECI
  • the location information of the base station can be obtained in the following two ways:
  • Method 1 Obtain the identifier of the base station according to the location area of the base station and the cell identification code, and then determine the location information of the base station from the corresponding relationship between the identifier of the base station and the location according to the identifier.
  • the corresponding relationship between the base station identifier and the location can be pre-stored in the memory of the mobile platform, and after the mobile platform obtains the identifier of the base station, the location information of the base station can be found from the pre-stored corresponding relationship according to the identifier.
  • the corresponding relationship between the base station identifier and the location can also be obtained based on the broadcast message of the base station.
  • the mobile platform can receive the broadcast message of the base station, and the broadcast message can include the corresponding relationship between the base station identifier and the location. After the mobile platform obtains the identifier of the base station, it can find out the location information of the base station in the correspondence contained in the broadcast message according to the identifier.
  • the corresponding relationship between the base station identifier and the location can also be obtained through the remote control terminal communicating with the mobile platform.
  • the remote control terminal can be a remote control, smart phone, tablet, flight glasses and other terminals that can control the flight of the drone.
  • the remote control terminal may pre-download the corresponding relationship between the base station identifier and the location, and when the mobile platform needs to obtain the location information of the base station, the corresponding relationship is sent to the mobile platform.
  • those skilled in the art can also obtain the correspondence between the base station identifier and the location from other ways according to actual needs, which is not limited in this application.
  • Method 2 The mobile platform first sends the location area and cell identification code of the base station to the remote control terminal communicating with the mobile platform, and then receives the location information of the base station obtained by the remote control terminal according to the location area and cell identification code. That is, the remote control terminal queries the location information of the base station through the Internet, mobile communication network, etc. according to the location area and cell identification code of the base station, and then feeds back the queried location information of the base station to the mobile platform.
  • the drone 210 can determine the connection between the center point of the drone 210 and the base station 220 according to its own position information, attitude information and the position information of the base station 220, and then According to the central axis of the UAV 210 and the connection line, the angle ⁇ between the UAV 210 and the base station 220 can be determined.
  • the included angle ⁇ can be used to represent the relative position of the UAV 210 and the base station 220 .
  • the antenna is directional, and the antenna has different radiation and reception capabilities for different directions in space.
  • at least one working antenna can be determined according to the relative position and antenna gain.
  • the antenna gain can be obtained through the antenna pattern.
  • the gain of the antenna in the direction of the base station may be obtained from the antenna pattern.
  • at least one antenna is selected in order from large to small as the working antenna.
  • the foregoing antenna gain may be a statistical value of the antenna gain within a preset time period. The average value of antenna gain is obtained by long-term filtering, so as to remove the influence of individual fluctuation values on antenna selection.
  • FIG. 3A-FIG. 3B it is another application scenario of the present application.
  • the base station 321 and the base station 322 are base stations of adjacent cells.
  • the UAV uses the antenna 1 as the working antenna, and the UAV 310 is hovering in the air, that is, the UAV 310 is in a state of constant position and changing attitude.
  • the attitude of the UAV 310 is as shown in FIG. 3A , since the antenna 1 is closer to the base station 321 , the communication quality between the antenna 1 and the base station 321 is better than that with the base station 322 .
  • the attitude of the UAV 310 changes to the attitude shown in Figure 3B, similarly, because the antenna 1 is closer to the base station 322 at this time, the signal quality of the antenna 1 received by the base station 322 is better than that of the base station 321. Received communication quality of antenna 1. It can be seen that when the UAV is hovering in the air, if the working antenna is fixed, it may cause frequent switching of the serving base station (that is, the base station currently serving the UAV) that receives the signal of the working antenna. The handover of the serving base station is a hard handover.
  • the serving base station when the serving base station is handed over from base station 321 to base station 322, it is necessary to interrupt the communication link between the drone and base station 321 first, and then establish a new communication with base station 322. The link is disconnected before it is connected.
  • the UAV 310 cannot communicate with any base station, so that data transmission cannot be performed. Therefore, when the serving base station frequently switches, the UAV 310 and the base station are always in a state of connection-interruption-connection-interruption, so that the UAV 310 cannot transmit data smoothly.
  • the FPV traversing machine when the FPV traversing machine transmits FPV images to the remote control terminal through the mobile communication network, frequent base station switching will cause the FPV image transmission to lag and freeze, which brings a major safety hazard.
  • the base station can be replaced by switching the working antenna.
  • the working antenna is switched to the antenna corresponding to the base station of the neighboring cell, so as to avoid switching base stations.
  • the communication quality between the base station 321 and the antenna 1 is equivalent to the communication quality between the base station 322 and the antenna 2
  • the communication quality between base station 322 and antenna 1 is equivalent to the communication quality between base station 321 and antenna 2
  • the communication quality between antenna 1 and base station 321 is lower than that of its neighbors.
  • the working antenna can be switched to the antenna corresponding to the adjacent cell base station 322, that is, antenna 2, thereby avoiding switching base stations. In this way, when the UAV 310 hovers in the air, its working antenna will switch back and forth between antenna 1 and antenna 2, but it always maintains a communication connection with the same base station.
  • the above-mentioned embodiments provide a method for selecting an antenna of a movable platform, in which the movable platform actively selects a working antenna, and the relative position of the movable platform and the base station is determined according to the position information, posture information of the movable platform and the position information of the base station , and at least one working antenna is determined according to the relative position and antenna gain.
  • Such an antenna selection method does not depend on testing the communication quality between the antennas through the base station, so it can solve the problem of hysteresis in traditional methods.
  • the communication quality of the non-working antenna can be tested periodically to assist in judging whether to replace the working antenna, including: pre-setting the test period for the non-working antenna, Among them, in order to avoid a great impact on the normal operation of the working antenna and ensure data transmission, the test cycle of the non-working antenna is shorter than the working cycle of the working antenna; The gain of the working antenna in the direction of the base station, and determine whether to replace the working antenna based on the measured value.
  • measuring the gain of the non-working antenna in the direction of the base station may be to count the receiving signal-to-noise ratio (Signal-Noise Ratio, SNR) of each non-working antenna.
  • SNR Signal-to-noise Ratio
  • the SNR of each non-working antenna and the SNR of the working antenna it is determined whether to replace the working antenna. For example, if the SNR of the working antenna is greater than the SNRs of the non-working antennas, the working antenna is not replaced; if the SNR of the working antenna is greater than the SNR of the non-working antennas, the working antenna is replaced with the antenna with the largest SNR.
  • a mobile platform that can move autonomously, after planning its trajectory, it is also possible to predict the working antenna corresponding to each trajectory point, and make a good switching strategy for the working antenna.
  • the user can not only set the position information of each trajectory point, but also set the posture information of the movable platform when it reaches the trajectory point.
  • the corresponding relationship between each trajectory point and each base station can be determined.
  • base stations 410, 420, and 430 are base stations of neighboring cells.
  • the motion trajectory of a movable platform includes trajectory points A ⁇ E, then, according to the motion trajectory, the corresponding relationship between each trajectory point A ⁇ E and each base station 410, 420, 430 can be determined as: the service corresponding to trajectory points A and B
  • the base station is base station 420
  • the serving base station corresponding to trajectory points C and D is base station 430
  • the serving base station corresponding to trajectory point E is base station 410 .
  • the mobile platform can pre-store the corresponding relationship between each track point and the base station. During the movement, it can determine the base station corresponding to the next track point according to the corresponding relationship, and judge whether to switch the current working antenna to the base station of the neighboring cell. the corresponding antenna.
  • the movable platform 510 may first determine whether it is in a low-altitude flight based on its location information, for example, determine whether it is in a low-altitude flight state according to the altitude information in the location information. When it is determined to be in a low-altitude flight state, it may be determined whether to switch the base station and/or switch the working antenna according to the map of the environment where the base station is located.
  • the UAV 510 may be determined to be in a low-altitude flight state according to its flight altitude.
  • the location of the UAV 510 is as shown in Figure 5A, according to the map of the environment where the base station 521 is located, it can be determined that there is no obstruction between the base station 521 and the UAV 510, so the antenna selection method as described above can be used, It is determined that the antenna 3 is a working antenna, and communicates with the base station 521 through the antenna 3 .
  • the UAV 510 moves to the position shown in FIG. 5B , it can be determined that there is a tall building block 530 between the UAV 510 and the base station 521 according to the map of the environment where the base station is located.
  • the UAV 510 may choose to switch the working antenna to the antenna 1, and then continue to maintain the communication connection with the base station 521 through the antenna 1.
  • the UAV 510 can also choose to switch the communication base station to the base station 522, and at the same time, based on the antenna selection method above, reselect the working antenna for communication with the base station 522 from various onboard antennas.
  • the mobile platform can be installed with a mobile communication module, and the mobile communication module can be used to access the mobile communication network.
  • the mobile communication module may be a data card supporting a mobile communication network, of course, it may also be other products capable of realizing similar functions.
  • the communication data between the mobile platform and the base station may include image transmission data, such as 4K video.
  • the image transmission data may include FPV image data, so that the user can manipulate the movable platform according to the FPV image.
  • the communication data between the mobile platform and the base station may also include control data for the mobile platform.
  • the working antenna is selected by the mobile platform, and compared with the selection strategy of the base station based on the communication quality, the mobile platform determines the mobile antenna according to its position information, attitude information and the position information of the base station The relative position of the platform and the base station, and at least one working antenna is determined according to the relative position and antenna gain, thereby solving the problem of hysteresis in antenna selection by the mobile communication network.
  • the present application also provides a schematic structural diagram of the movable platform.
  • the mobile platform includes a processor, an internal bus, a network interface, a memory, and a non-volatile memory, and of course may also include hardware required by other services.
  • the processor reads the corresponding computer program from the non-volatile memory into the memory and then runs it, so as to realize the antenna selection method of the mobile platform described in any of the above embodiments. where the processor is configured as:
  • At least one working antenna is determined according to the relative position and antenna gain.
  • the location information of the base station is obtained based on the location area and cell identification code of the base station.
  • the processor is further configured to:
  • the remote control terminal After sending the location area and cell identification code to the remote control terminal, the remote control terminal acquires the location information of the base station according to the location area and cell identification code.
  • the processor is further configured to:
  • the processor is further configured to:
  • the working antenna is switched to the antenna corresponding to the base station of the neighboring cell, so as to avoid switching the base station.
  • the movable platform is in a state of constant position and variable posture.
  • the processor is further configured to:
  • the test cycle of the non-working antenna is less than the working cycle of the working antenna; in the test cycle, switch the working antenna to the non-working antenna, and measure the non-working antenna in the Gain in the direction of the above-mentioned base station, and determine whether to replace the working antenna according to the measured value.
  • the processor is further configured to:
  • the processor is further configured to:
  • the mobile communication module includes a data card supporting a mobile communication network.
  • the communication data between the mobile platform and the base station includes video transmission data.
  • the image transmission data includes FPV image data.
  • the communication data between the mobile platform and the base station includes control data for the mobile platform.
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种可移动平台的天线选择方法及可移动平台,所述方法由可移动平台执行,所述可移动平台与移动通信网络中的基站通信连接,包括:获取所述可移动平台的位置信息和姿态信息;获取所述基站的位置信息;根据所述可移动平台的位置信息、姿态信息和所述基站的位置信息确定所述可移动平台与所述基站的相对位置;根据所述相对位置和天线增益确定至少一根工作天线。与基站根据通信质量的选择策略相比,工作天线由可移动平台选择,解决了移动通信网络对天线选择滞后性的问题。

Description

一种可移动平台的天线选择方法及可移动平台 技术领域
本申请涉及通信技术领域,尤其涉及一种可移动平台的天线选择方法及可移动平台。
背景技术
可移动平台,包括无人机、无人船、无人车等。相关技术中,可移动平台可以利用移动通信网络进行通信。以无人机为例,无人机通过机载天线与移动通信网络中的基站通信。由于无人机飞行时姿态变化较大,容易造成天线遮挡。同时无人机机身和机载配件中有较多的金属物质,这些金属物质同样会造成天线遮挡,影响无人机与基站的通信。因此无人机通常会安装多根天线来确保全向性的覆盖。在相关技术中,通常是基站通过已设定的天线选择策略并根据通信质量来选择无人机的工作天线,但这种天线选择的方式会出现选择滞后的问题,影响无人机的通信质量。
发明内容
有鉴于此,本申请的目的之一是提供一种可移动平台的天线选择方法及可移动平台,以解决机载天线的选择问题。
为了达到上述技术效果,本发明实施例公开了如下技术方案:
第一方面,提供了一种可移动平台的天线选择方法,所述方法由可移动平台执行,所述可移动平台与移动通信网络中的基站通信连接,所述方法包括:
获取所述可移动平台的位置信息和姿态信息;
获取所述基站的位置信息;
根据所述可移动平台的位置信息、姿态信息和所述基站的位置信息确定所述可移动平台与所述基站的相对位置;
根据所述相对位置和天线增益确定至少一根工作天线。
第二方面,提供了一种可移动平台,所述可移动平台安装有移动通信模块,与移动通信网络中的基站通信连接,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取所述可移动平台的位置信息和姿态信息;
获取所述基站的位置信息;
根据所述可移动平台的位置信息、姿态信息和所述基站的位置信息确定所述可移动平台与所述基站的相对位置;
根据所述相对位置和天线增益确定至少一根工作天线。
本申请提供的可移动平台的天线选择方法及可移动平台,工作天线由可移动平台选择,且与基站根据通信质量的选择策略相比,可移动平台根据其位置信息、姿态信息以及基站的位置信息确定可移动平台与基站的相对位置,并根据相对位置和天线增益来确定至少一根工作天线,从而解决了移动通信网络对天线选择滞后性的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅 仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请根据一示例性实施例示出的可移动平台的天线选择方法。
图2是本申请根据一示例性实施例示出的一种应用场景。
图3A是本申请根据另一示例性实施例示出的一种应用场景。
图3B是本申请根据另一示例性实施例示出的一种应用场景。
图4是本申请根据另一示例性实施例示出的一种应用场景。
图5A是本申请根据另一示例性实施例示出的一种应用场景。
图5B是本申请根据另一示例性实施例示出的一种应用场景。
图6是本申请根据另一示例性实施例示出的一种可移动平台。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
可移动平台,包括无人机、无人船、无人车等。以无人机为例,其中一种相关技术中,无人机使用WIFI进行图像数据和控制指令的传输,其传输速率一般在10Mbps左右,能支持1080p/30fps的图传业务。但随着4k视频的普及,无人机对传输带宽的要求也越来越高。随着5G通信技术的日益成熟,5G的大带宽可以传输4K甚至8K的视频。此外,使用5G通信还能延伸无人机的控制距离,并能很好地解决点对点通信中信号遮挡 的问题,因此无人机使用5G移动通信网络进行通信是一个研究热点。
在使用移动通信网络进行通信中,由于无人机飞行时姿态变化较大,容易造成天线遮挡。同时无人机机身和机载配件中有较多的金属物质,这些金属物质同样会造成天线遮挡,影响无人机与基站的通信。因此无人机通常会安装多根天线来确保全向性的覆盖。例如,在四旋翼无人机中,通常在机臂的四个脚架上各安装一根天线,甚至可以安装4根以上的天线。在移动通信网络中,由于功耗和成本的限制,大部分终端设备只能同时支持1~2根天线发射或1~4根天线接收。因此无人机机载天线的数量大于能支持的最大天线收发能力,所有的机载天线无法全部同时工作,从而需要从所有机载天线中选出用于与基站通信的工作天线。
在相关技术中,通常在基站上部署天线选择策略,比如LTE标准中的终端天线选择策略是根据与各机载天线之间的通信质量来选择工作天线,比如,对发射天线进行二选一的选择等。但是,一方面,让基站做天线选择的能力有限,无人机机载天线的数量超过了基站做天线选择的能力;另一方面,无人机尤其是穿越机在空中活动自由度大,其姿态变化较大,如果根据通信质量来选择工作天线,则很容易出现滞后性的问题。例如,无人机原先的工作天线为天线1,当无人机的姿态变化为姿态A时,移动通信网络探测到天线2与基站的通信质量优于天线1,因此指示无人机切换天线2为工作天线。但当无人机收到切换指令并进行工作天线切换时,无人机的姿态可能已经从姿态A变化为姿态B,在姿态B下,天线2不一定是通信质量最佳的天线,甚至无人机在姿态B的情况下,天线2被机身遮挡。显然由移动通信网络进行无人机机载天线的选择会存在滞后性的问题,甚至可能造成通信中断。在一些应用场景下,FPV(First Person View,第一人称视角)穿越机通过移动通信网络向遥控终端等地面设备传输FPV图像,以使用户根据回传的FPV图像对穿越机进行操控。如果因天线选择滞后导致FPV图像传输滞后、卡顿、甚至中断,那么用户可能无法正确操 控无人机,甚至导致无人机失控,这无疑是无人机飞行中一重大安全隐患。
为了解决上述技术问题,当可移动平台与移动通信网络中的基站通信连接时,可以通过如图1提供的可移动平台的天线选择方法,来选择可移动平台上的工作天线。其中,所述方法由可移动平台执行,包括:
110:获取所述可移动平台的位置信息和姿态信息;
120:获取所述基站的位置信息;
130:根据所述可移动平台的位置信息、姿态信息和所述基站的位置信息确定所述可移动平台与所述基站的相对位置;
140:根据所述相对位置和天线增益确定至少一根工作天线。
对于可移动平台来说,其工作天线由基站根据通信质量选择,实际上是一种被动的天线选择方法,因此会出现选择滞后性。而本申请提供的可移动平台的天线选择方法,由可移动平台主动地选择工作天线,且根据可移动平台的位置信息、姿态信息以及基站的位置信息确定可移动平台与基站的相对位置,并根据相对位置和天线增益来确定至少一根工作天线。这样的选择方法并不依赖于通过基站去测试和各天线之间的通信质量,因此一方面解决了选择滞后性的问题,另一方面解决了由移动通信网络对天线做收发选择会超过其天线选择能力的问题。
可移动平台的位置信息和姿态信息可以通过其搭载的各种传感器模块获取。以无人机为例,无人机上可以搭载各种传感器模块,包括GNSS传感器、GPS模块、指南针、气压计、IMU(Inertial Measurement unit,惯性测量单元)、陀螺仪等。通过这些传感器,可以测量无人机所处位置及姿态,从而获取到无人机的位置信息和姿态信息。当然,不同的可移动平台还可以通过不同的传感器或装置获取其位置信息和姿态信息,本申请对可移动平台的位置信息和姿态信息的获取途径不做限制。
示例性地,在120中,基站的位置信息可以基于该基站的位置区(位 置区码LAC或跟踪区域码TAC)和小区识别码(小区号CID或小区唯一标识ECI)获取。例如,基站的位置信息可以通过以下两种方式获取:
方式一:根据基站的位置区和小区识别码获取基站的标识,然后根据该标识,从基站标识与位置的对应关系中确定基站的位置信息。
其中,基站标识与位置的对应关系可以预存在可移动平台的存储器中,在可移动平台获取到基站的标识后,根据该标识从其预存的对应关系中查找出基站的位置信息。
基站标识与位置的对应关系还可以基于基站的广播消息获取,可移动平台可以接收基站的广播消息,广播消息中可以包括基站标识与位置的对应关系。可移动平台在获取到基站的标识后,可以根据该标识在广播消息所包含的对应关系中查找出基站的位置信息。
基站标识与位置的对应关系还可以通过与可移动平台通信的遥控终端获取。遥控终端可以是遥控器、智能手机、平板、飞行眼镜等可操控无人机飞行的终端。遥控终端可以预先下载有基站标识与位置的对应关系,当可移动平台需要获取基站的位置信息时,再将该对应关系发送到可移动平台。当然,本领域技术人员还可以根据实际需要从其他途径获取基站标识与位置的对应关系,本申请不做限制。
方式二:可移动平台先将基站的位置区和小区识别码发送到与可移动平台通信的遥控终端,然后接收该遥控终端根据位置区和小区识别码获取的基站的位置信息。即由遥控终端根据基站的位置区和小区识别码,通过互联网、移动通信网络等查询基站的位置信息,再将查询到的基站的位置信息反馈给可移动平台。
在获取到可移动平台的位置信息、姿态信息,以及基站的位置信息后,可以确定出可移动平台与基站的相对位置。以无人机为例,如图2所示,无人机210根据自身的位置信息、姿态信息以及基站220的位置信息, 可以确定出无人机210中心点与基站220之间连线,然后根据无人机210的中轴与该连线,可以确定出无人机210与基站220的夹角θ。夹角θ可以用于表示无人机210与基站220的相对位置。
天线是有方向性的,天线对空间中不同方向具有不同的辐射和接收能力。在确定可移动平台与基站的相对位置后,可以根据相对位置和天线增益可以确定出至少一根工作天线。其中,天线增益可以通过天线方向图获取。具体地,可以从天线方向图中获取天线在基站方向上的增益。根据各天线在基站方向上的增益大小,从大到小依次选取至少一根天线作为工作天线。在一些实施例中,上述天线增益可以是预设时间段内天线增益的统计值。通过长时间滤波得到天线增益的平均值,从而去除个别波动值对天线选择的影响。
如图3A-图3B所示,为本申请的另一个应用场景,以无人机310为例,无人机310上有天线1和天线2,当然还可以有更多的机载天线。基站321与基站322为相邻小区的基站。假设无人机以天线1为工作天线,且无人机310在空中盘旋,即无人机310处于位置不变,姿态变化的状态。那么当无人机310的姿态为如图3A所示的姿态时,由于天线1更靠近基站321,天线1与基站321的通信质量优于与基站322的通信质量。而当无人机310的姿态变化到如图3B所示的姿态时,同理,由于此时的天线1更靠近基站322,基站322接收到的天线1的信号质量反而优于与基站321所接收到的天线1的通信质量。可见,当无人机在空中盘旋时,如果工作天线固定不变,可能会导致接收工作天线信号的服务基站(即目前为无人机提供服务的基站)发生频繁切换。服务基站的切换是一种硬切换,如在上述场景中,当服务基站从基站321切换至基站322时,需要先中断无人机与基站321的通信链路,再与基站322建立新的通信链路,即先断后通。而在硬切换的过程中,会存在一个时间段使得无人机310无法与任何一个基站通信,从而无法进行数据传输。因此,当服务基站发生频繁切换时, 无人机310与基站总是处于连接-中断-连接-中断的状态,使得无人机310无法流畅地传输数据。如上文所述,以FPV穿越机为例,当FPV穿越机通过移动通信网络向遥控终端传输FPV图像时,频繁的基站切换会导致FPV图像传输滞后、卡顿,这为无人机飞行带来了重大的安全隐患。
实际上,由于可移动平台上通常有多根天线,为了解决基站频繁的硬切换带来通信滞后、中断的问题,可以通过切换工作天线来代替切换基站。在一些实施例中,当当前服务小区基站的通信质量低于邻小区基站的通信质量时,将工作天线切换为与邻小区基站对应的天线,以避免切换基站。如在上述例子中,若当无人机处于如图3A的姿态时,基站321与天线1的通信质量和基站322与天线2的通信质量相当,以及当无人机处于如图3B的姿态时,基站322与天线1的通信质量和基站321与天线2的通信质量相当,那么当无人机310从图3A的姿态变化为图3B的姿态后,天线1与基站321的通信质量低于邻小区基站322的通信质量时,可以将工作天线切换为与邻小区基站322对应的天线,即天线2,从而避免了切换基站。如此,当无人机310在空中盘旋时,其工作天线会在天线1和天线2之间来回切换,但始终保持着与同一基站通信连接。
上述实施例提供了一种可移动平台的天线选择方法,由可移动平台主动地选择工作天线,且根据可移动平台的位置信息、姿态信息以及基站的位置信息确定可移动平台与基站的相对位置,并根据相对位置和天线增益来确定至少一根工作天线,这样的天线选择方法并不依赖于通过基站去测试和各天线之间的通信质量,因此能够解决传统方法选择滞后性的问题。
在一些实施例中,还可以在工作天线工作的过程中,阶段性的对非工作天线的通信质量进行测试,来辅助判断是否要更换工作天线,包括:预先设置对非工作天线的测试周期,其中,为了避免对工作天线的正常工作造成较大影响,以确保数据传输,非工作天线的测试周期小于工作天线的工作周期;在测试周期内,将工作天线临时切换至非工作天线,测量非 工作天线在基站方向上的增益,并根据测量值确定是否更换工作天线。在测试周期内,测量非工作天线在基站方向上的增益可以是统计各非工作天线的接收信噪比(Signal-Noise Ratio,SNR)。根据各非工作天线的SNR以及工作天线的SNR,确定是否要更换工作天线。例如,若工作天线的SNR大于各非工作天线的SNR,则不更换工作天线;若存在工作天线的SNR大于非工作天线的SNR,则将工作天线更换为SNR最大的天线。
进一步地,对于能够自主运动的可移动平台,还可以在规划其运动轨迹之后,预测各轨迹点所对应的工作天线,做好工作天线的切换策略。用户在设定可移动平台的运动轨迹时,除了可以设定各轨迹点的位置信息,还可以设定可移动平台达到该轨迹点时的姿态信息。根据设定好的运动轨迹可以确定出各轨迹点与各基站的对应关系。如图4所示,基站410、420、430为相邻小区的基站。某可移动平台的运动轨迹包括轨迹点A~E,那么,根据该运动轨迹可以确定出各轨迹点A~E与各基站410、420、430的对应关系为:轨迹点A、B对应的服务基站是基站420,轨迹点C、D对应的服务基站是基站430,轨迹点E对应的服务基站是基站410。如此,可以确定出当可移动平台从轨迹点B向轨迹点C运动的过程中,需要将工作天线从与基站420对应的天线切换为与基站430对应的天线。当可移动平台从轨迹点D向轨迹点E运动的过程中,需要将工作天线从与基站430对应的天线切换为与基站410对应的天线。从而预先做好工作天线的切换策略。
在一些实施例中,还可以在可移动平台沿着预设的运动轨迹运动过程中,根据各轨迹点与各基站的对应关系,判断是否将当前的工作天线切换到邻小区基站对应的天线。例如,可移动平台可以预存有各轨迹点与基站的对应关系,在运动过程中,可以根据该对应关系,确定下一轨迹点所对应的基站,并判断是否将当前工作天线切换为邻小区基站对应的天线。
此外,参见图5A-5B,为本申请的另一个应用场景。以无人机510为例,无人机510上有天线1-3,当然还可以有更多的机载天线。基站521 和基站522为相邻小区的基站。当无人机510飞行较低或作业区域有高楼等情况时,无人机和基站之间可能会存在遮挡物,影响无人机与基站的通信。由此,可移动平台510可以首先基于其位置信息确定自身是否处于低空飞行的情况,如根据位置信息中的高度信息确定是否处于低空飞行状态。当确定处于低空飞行状态下,可以根据基站所处环境的地图确定是否切换基站和/或切换工作天线。
例如,无人机510可以根据其飞行高度确定处于低空飞行状态。当无人机510所处位置如图5A所示时,根据基站521所处环境的地图可以确定基站521与无人机510之间没有遮挡物,因此可以通过如上文所述的天线选择方法,确定天线3为工作天线,并通过天线3与基站521通信连接。而当无人机510移动到如图5B所示的位置时,根据基站所处环境的地图可以确定无人机510与基站521之间存在高楼遮挡物530。若继续以天线3与基站521通信,将大大影响通信质量。此时,无人机510可以选择将工作天线切换为天线1,继而通过天线1继续保持与基站521的通信连接。无人机510还可以选择将通信基站切换为基站522,同时基于上文的天线选择方法,从各机载天线中重新选择定出与基站522通信的工作天线。
此外,在一些实施例中,可移动平台可以安装有移动通信模块,利用移动通信模块接入移动通信网络。
在一些实施例中,移动通信模块可以是支持移动通信网络的数据卡,当然,也可以是能够实现类似功能的其他产品。
在一些实施例中,可移动平台与基站的通信数据可以包括图传数据,如4K视频。
在一些实施例中,该图传数据可以包括FPV图像数据,以使用户根据FPV图像对可移动平台进行操控。
在一些实施例中,可移动平台与基站的通信数据还可以包括对可移动平台的控制数据。
本申请提供的可移动平台的天线选择方法,工作天线由可移动平台选择,且与基站根据通信质量的选择策略相比,可移动平台根据其位置信息、姿态信息以及基站的位置信息确定可移动平台与基站的相对位置,并根据相对位置和天线增益来确定至少一根工作天线,从而解决了移动通信网络对天线选择滞后性的问题。
基于上述任一可移动平台的天线选择方法,本申请还提供了一种可移动平台的结构示意图。如图6,在硬件层面,该可移动平台包括处理器、内部总线、网络接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,以实现上述任意实施例所述的可移动平台的天线选择方法。其中,处理器被配置为:
获取所述可移动平台的位置信息和姿态信息;
获取所述可移动平台的位置信息和姿态信息;
获取所述基站的位置信息;
根据所述可移动平台的位置信息、姿态信息和所述基站的位置信息确定所述可移动平台与所述基站的相对位置;
根据所述相对位置和天线增益确定至少一根工作天线。
在一些实施例中,所述基站的位置信息基于所述基站的位置区和小区识别码获取。
在一些实施例中,所述处理器还被配置为:
根据所述基站的位置区和小区识别码获取所述基站的标识;
根据所述标识从基站标识与位置的对应关系中确定所述基站的位置信息,其中所述基站标识与位置的对应关系预存在所述可移动平台,或基于所述基站的广播消息获取,或通过与所述可移动平台通信的遥控终端获取;或
先将所述位置区和小区识别码发送到所述遥控终端后,然后接收所述遥控终端根据所述位置区和小区识别码获取所述基站的位置信息。
在一些实施例中,所述处理器还被配置为:
根据所述相对位置以及预设时间段内天线增益的统计值,确定至少一根工作天线。
在一些实施例中,所述处理器还被配置为:
当当前小区基站的通信质量低于邻小区基站的通信质量时,将所述工作天线切换为与所述邻小区基站对应的天线,以避免切换基站。
在一些实施例中,可移动平台处于位置不变,姿态变化的状态。
在一些实施例中,所述处理器还被配置为:
预先设置对非工作天线的测试周期,所述测试周期小于所述工作天线的工作周期;在所述测试周期内,将所述工作天线切换至非工作天线,并测量所述非工作天线在所述基站方向上的增益,并根据测量值确定是否更换工作天线。
在一些实施例中,所述处理器还被配置为:
根据所述可移动平台运动轨迹确定出的各轨迹点与各个基站的对应关系;
判断是否将当前的工作天线切换到邻小区基站对应的天线。
在一些实施例中,所述处理器还被配置为:
在基于所述可移动平台的位置信息确定所述可移动平台处于低空飞 行状态的情况下,根据所述基站所处环境的地图确定是否切换基站和/或切换工作天线。
在一些实施例中,所述移动通信模块包括支持移动通信网络的数据卡。
在一些实施例中,所述可移动平台与所述基站的通信数据包括图传数据。
在一些实施例中,所述图传数据包括FPV图像数据。
在一些实施例中,所述可移动平台与所述基站的通信数据包括对所述可移动平台的控制数据。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (27)

  1. 一种可移动平台的天线选择方法,其特征在于,所述方法由可移动平台执行,所述可移动平台与移动通信网络中的基站通信连接,所述方法包括:
    获取所述可移动平台的位置信息和姿态信息;
    获取所述基站的位置信息;
    根据所述可移动平台的位置信息、姿态信息和所述基站的位置信息确定所述可移动平台与所述基站的相对位置;
    根据所述相对位置和天线增益确定至少一根工作天线。
  2. 根据权利要求1所述的方法,其特征在于,所述基站的位置信息基于所述基站的位置区和小区识别码获取。
  3. 根据权利要求2所述的方法,其特征在于,所述获取所述基站的位置信息包括:
    根据所述基站的位置区和小区识别码获取所述基站的标识;
    根据所述标识从基站标识与位置的对应关系中确定所述基站的位置信息,其中所述基站标识与位置的对应关系预存在所述可移动平台,或基于所述基站的广播消息获取,或通过与所述可移动平台通信的遥控终端获取;或
    先将所述位置区和小区识别码发送到所述遥控终端后,然后接收所述遥控终端根据所述位置区和小区识别码获取所述基站的位置信息。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述相对位置和天线增益确定至少一根工作天线,包括:
    根据所述相对位置以及预设时间段内天线增益的统计值,确定至少一根工作天线。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述相对位置和天线增益确定至少一根工作天线,包括:
    当当前小区基站的通信质量低于邻小区基站的通信质量时,将所述工 作天线切换为与所述邻小区基站对应的天线,以避免切换基站。
  6. 根据权利要求5所述的方法,其特征在于,所述可移动平台处于位置不变,姿态变化的状态。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    预先设置对非工作天线的测试周期,所述测试周期小于所述工作天线的工作周期;在所述测试周期内,将所述工作天线切换至非工作天线,并测量所述非工作天线在所述基站方向上的增益,并根据测量值确定是否更换工作天线。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述可移动平台运动轨迹确定出的各轨迹点与各个基站的对应关系;
    判断是否将当前的工作天线切换到邻小区基站对应的天线。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在基于所述可移动平台的位置信息确定所述可移动平台处于低空飞行状态的情况下,根据所述基站所处环境的地图确定是否切换基站和/或切换工作天线。
  10. 根据权利要求1所述的方法,其特征在于,所述可移动平台安装有移动通信模块。
  11. 根据权利要求10所述的方法,其特征在于,所述移动通信模块包括支持移动通信网络的数据卡。
  12. 根据权利要求1所述的方法,其特征在于,所述可移动平台与所述基站的通信数据包括图传数据。
  13. 根据权利要求12所述的方法,其特征在于,所述图传数据包括FPV图像数据。
  14. 根据权利要求1所述的方法,其特征在于,所述可移动平台与所述基站的通信数据包括对所述可移动平台的控制数据。
  15. 一种可移动平台,其特征在于,所述可移动平台安装有移动通信 模块,与移动通信网络中的基站通信连接,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取所述可移动平台的位置信息和姿态信息;
    获取所述基站的位置信息;
    根据所述可移动平台的位置信息、姿态信息和所述基站的位置信息确定所述可移动平台与所述基站的相对位置;
    根据所述相对位置和天线增益确定至少一根工作天线。
  16. 根据权利要求15所述的可移动平台,其特征在于,所述基站的位置信息基于所述基站的位置区和小区识别码获取。
  17. 根据权利要求16所述的可移动平台,其特征在于,所述处理器还被配置为:
    根据所述基站的位置区和小区识别码获取所述基站的标识;
    根据所述标识从基站标识与位置的对应关系中确定所述基站的位置信息,其中所述基站标识与位置的对应关系预存在所述可移动平台,或基于所述基站的广播消息获取,或通过与所述可移动平台通信的遥控终端获取;或
    先将所述位置区和小区识别码发送到所述遥控终端后,然后接收所述遥控终端根据所述位置区和小区识别码获取所述基站的位置信息。
  18. 根据权利要求15所述的可移动平台,其特征在于,所述处理器还被配置为:
    根据所述相对位置以及预设时间段内天线增益的统计值,确定至少一根工作天线。
  19. 根据权利要求15所述的可移动平台,其特征在于,所述处理器还被配置为:
    当当前小区基站的通信质量低于邻小区基站的通信质量时,将所述工 作天线切换为与所述邻小区基站对应的天线,以避免切换基站。
  20. 根据权利要求19所述的可移动平台,其特征在于,所述可移动平台处于位置不变,姿态变化的状态。
  21. 根据权利要求15所述的可移动平台,其特征在于,所述处理器还被配置为:
    预先设置对非工作天线的测试周期,所述测试周期小于所述工作天线的工作周期;在所述测试周期内,将所述工作天线切换至非工作天线,并测量所述非工作天线在所述基站方向上的增益,并根据测量值确定是否更换工作天线。
  22. 根据权利要求15所述的可移动平台,其特征在于,所述处理器还被配置为:
    根据所述可移动平台运动轨迹确定出的各轨迹点与各个基站的对应关系;
    判断是否将当前的工作天线切换到邻小区基站对应的天线。
  23. 根据权利要求15所述的可移动平台,其特征在于,所述处理器还被配置为:
    在基于所述可移动平台的位置信息确定所述可移动平台处于低空飞行状态的情况下,根据所述基站所处环境的地图确定是否切换基站和/或切换工作天线。
  24. 根据权利要求15所述的可移动平台,其特征在于,所述移动通信模块包括支持移动通信网络的数据卡。
  25. 根据权利要求15所述的可移动平台,其特征在于,所述可移动平台与所述基站的通信数据包括图传数据。
  26. 根据权利要求25所述的可移动平台,其特征在于,所述图传数据包括FPV图像数据。
  27. 根据权利要求15所述的可移动平台,其特征在于,所述可移动平台与所述基站的通信数据包括对所述可移动平台的控制数据。
PCT/CN2021/097452 2021-05-31 2021-05-31 一种可移动平台的天线选择方法及可移动平台 WO2022252066A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097452 WO2022252066A1 (zh) 2021-05-31 2021-05-31 一种可移动平台的天线选择方法及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097452 WO2022252066A1 (zh) 2021-05-31 2021-05-31 一种可移动平台的天线选择方法及可移动平台

Publications (1)

Publication Number Publication Date
WO2022252066A1 true WO2022252066A1 (zh) 2022-12-08

Family

ID=84322638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097452 WO2022252066A1 (zh) 2021-05-31 2021-05-31 一种可移动平台的天线选择方法及可移动平台

Country Status (1)

Country Link
WO (1) WO2022252066A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180152909A1 (en) * 2016-11-30 2018-05-31 Cisco Technology, Inc. Precise uav tracking in 3-d space
CN108475076A (zh) * 2017-04-21 2018-08-31 深圳市大疆创新科技有限公司 天线对准方法和地面控制端
CN108886392A (zh) * 2017-10-12 2018-11-23 深圳市大疆创新科技有限公司 天线选择方法和电子设备
CN110635831A (zh) * 2019-09-30 2019-12-31 北京信成未来科技有限公司 一种基于fdma的无人机测控蜂窝通信方法
CN110649939A (zh) * 2019-09-30 2020-01-03 北京信成未来科技有限公司 一种基于mf-cdma的无人机测控蜂窝通信方法
CN110677917A (zh) * 2019-09-30 2020-01-10 北京信成未来科技有限公司 一种基于cs-aloha的无人机测控蜂窝通信方法
CN111158036A (zh) * 2020-01-16 2020-05-15 吉林大学 一种吊舱姿态实时测量、解算与监控装置
WO2020098942A1 (en) * 2018-11-15 2020-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Antenna arrangement for an unmanned aerial vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180152909A1 (en) * 2016-11-30 2018-05-31 Cisco Technology, Inc. Precise uav tracking in 3-d space
CN108475076A (zh) * 2017-04-21 2018-08-31 深圳市大疆创新科技有限公司 天线对准方法和地面控制端
CN108886392A (zh) * 2017-10-12 2018-11-23 深圳市大疆创新科技有限公司 天线选择方法和电子设备
WO2020098942A1 (en) * 2018-11-15 2020-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Antenna arrangement for an unmanned aerial vehicle
CN110635831A (zh) * 2019-09-30 2019-12-31 北京信成未来科技有限公司 一种基于fdma的无人机测控蜂窝通信方法
CN110649939A (zh) * 2019-09-30 2020-01-03 北京信成未来科技有限公司 一种基于mf-cdma的无人机测控蜂窝通信方法
CN110677917A (zh) * 2019-09-30 2020-01-10 北京信成未来科技有限公司 一种基于cs-aloha的无人机测控蜂窝通信方法
CN111158036A (zh) * 2020-01-16 2020-05-15 吉林大学 一种吊舱姿态实时测量、解算与监控装置

Similar Documents

Publication Publication Date Title
US11368822B2 (en) Changing topology in a wireless network
US9918235B2 (en) Adaptive antenna operation for UAVs using terrestrial cellular networks
JP6556847B2 (ja) 移動物体およびそのアンテナ自動アライメント方法
CN205265924U (zh) 一种无人飞行器
US11860644B2 (en) Flying device, flight control device, and flying control method
US20180375567A1 (en) Extending wireless signal coverage with drones
US20200413267A1 (en) Ue modem for drones with flight path and 3d wireless environment signal quality information
US20180077617A1 (en) Wireless Communication Enhancements for Unmanned Aerial Vehicle Communications
CN105682158A (zh) 一种无人飞行器的通信控制方法及装置
CN105101315B (zh) 远程操控移动通信系统及方法
CN112055309B (zh) 一种通信方法以及相关设备
JP2018112871A (ja) 飛行装置及び飛行制御方法
CN116420381A (zh) 陆地网络和非陆地网络之间的小区重选优先级
US11452034B2 (en) Distance-based serving cell selection for communications between an aerial vehicle and a cellular radio access network
CN117121402A (zh) Haps覆盖中的自主波束切换
CN107613503B (zh) 波束通信的方法和装置
WO2022252066A1 (zh) 一种可移动平台的天线选择方法及可移动平台
US9544791B2 (en) Satellite communication device and satellite communication system
EP3772227B1 (en) Cellular telecommunications network
JP7355873B2 (ja) マルチロータuavシステム及び通信方法
CN106604293B (zh) 具有无线千兆比特能力的设备配置
CN114080858B (zh) 卫星接入的方法、卫星、终端、通信设备及存储介质
JP2022149426A (ja) 無人移動装置、制御方法、通信システム及びプログラム
EP3970417B1 (en) Initiation of transfer of user equipment to base station according to visual data
EP3557909A1 (en) Gps supported handover techniques for unmanned aerial vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943442

Country of ref document: EP

Kind code of ref document: A1