WO2022250159A1 - Method for manufacturing grain-oriented electromagnetic steel sheet - Google Patents

Method for manufacturing grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
WO2022250159A1
WO2022250159A1 PCT/JP2022/021832 JP2022021832W WO2022250159A1 WO 2022250159 A1 WO2022250159 A1 WO 2022250159A1 JP 2022021832 W JP2022021832 W JP 2022021832W WO 2022250159 A1 WO2022250159 A1 WO 2022250159A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
annealing
rolling
sheet
cold
Prior art date
Application number
PCT/JP2022/021832
Other languages
French (fr)
Japanese (ja)
Inventor
猛 今村
之啓 新垣
広 山口
雅紀 竹中
広朗 戸田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022573141A priority Critical patent/JP7255761B1/en
Publication of WO2022250159A1 publication Critical patent/WO2022250159A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

Provided is a method for manufacturing a grain-oriented electromagnetic steel sheet which has a defect-free, uniform, and highly adhesive coating over the entire width and entire length of a coil and which also exhibits excellent magnetic characteristics. In the case of this method for manufacturing a grain-oriented electromagnetic steel sheet: a steel slab, which has a component composition comprising C, Si, Mn, Ti, Al, N, one kind or two kinds selected from S and Se, and the balance Fe and inevitable impurities, is heated to 1,300˚ C or higher and hot-rolling to obtain a hot-rolled sheet; one or more passes of cold-rolling with process annealing therebetween are optionally applied to the hot-rolled sheet with or without annealing the hot-rolled sheet to obtain a cold-rolled sheet; decarburization annealing is applied to the cold-rolled sheet to obtain a decarburized annealed sheet; and, after the surface of the decarburized annealed sheet is coated with an annealing separator, finishing annealing is applied to obtain the grain-oriented electromagnetic steel sheet; wherein the total draft of the finishing-rolling during the hot-rolling is set to 83% or higher, the total draft of the first cold-rolling is set to 50% or higher, and a weight equivalent of 0.1 mg/m2 to 7.0 mg/m2 per one surface of an Si-containing compound is caused to adhere to the surfaces of the cold-rolled sheet.

Description

方向性電磁鋼板の製造方法Manufacturing method of grain-oriented electrical steel sheet
 本開示は、方向性電磁鋼板の製造方法に関する。 The present disclosure relates to a method for manufacturing a grain-oriented electrical steel sheet.
 電磁鋼板は変圧器やモータ等の鉄心として広く用いられている材料である。電磁鋼板は方向性電磁鋼板と無方向性電磁鋼板に大別され、方向性電磁鋼板については鉄の磁化容易軸である<001>方位が、鋼板の圧延方向に高度に揃った集合組織を有していることが特徴的である。かかる集合組織は、仕上焼鈍において二次再結晶を起こさせることで形成される。ここで、上記二次再結晶とは、粒界エネルギーを利用して、いわゆるGoss方位と称される{110}<001>方位の結晶粒を優先的に巨大粒成長させる現象をいう。上記の二次再結晶を生じさせる代表的な技術として、インヒビタと呼ばれる析出物を利用する技術がある。例えば、特許文献1に記載のAlN、MnSを使用する方法、特許文献2に記載のMnS、MnSeを使用する方法等が知られており、工業的に実用化されている。これらのインヒビタを用いる方法は安定して二次再結晶粒を発達させるのに有用である。これらの方法においては、インヒビタを鋼中に微細分散させるために、1300℃以上の高温でのスラブ加熱を行い、インヒビタ成分を一度固溶させることが必要である。  Electrical steel sheet is a material widely used as iron cores for transformers and motors. Electrical steel sheets are broadly classified into grain-oriented electrical steel sheets and non-oriented electrical steel sheets. For grain-oriented electrical steel sheets, the <001> orientation, which is the axis of easy magnetization of iron, has a texture that is highly aligned in the rolling direction of the steel sheet. It is characteristic that Such a texture is formed by causing secondary recrystallization in the final annealing. Here, the secondary recrystallization refers to a phenomenon in which crystal grains of {110}<001> orientation, so-called Goss orientation, preferentially grow into large grains by utilizing grain boundary energy. As a representative technique for causing the above secondary recrystallization, there is a technique that utilizes precipitates called inhibitors. For example, a method using AlN and MnS described in Patent Document 1, a method using MnS and MnSe described in Patent Document 2, and the like are known and have been industrially put into practical use. Methods using these inhibitors are useful for stably developing secondary recrystallized grains. In these methods, in order to finely disperse the inhibitor in the steel, it is necessary to heat the slab at a high temperature of 1300° C. or higher to dissolve the inhibitor component once.
 一方、インヒビタ成分を含有しない素材において、Goss方位結晶粒を二次再結晶により発達させる技術が特許文献3等で開示されている。これは、インヒビタ成分のような不純物を極力排除する事で、一次再結晶時の結晶粒界が持つ粒界エネルギーの粒界方位差角依存性を顕在化させ、インヒビタを用いずともGoss方位を有する粒を二次再結晶させる技術であり、その効果をテクスチャーインヒビション効果と呼んでいる。この方法では、インヒビタの鋼中微細分散が必要ではないため、必須であった高温スラブ加熱も必要としないことなど、製造面でインヒビタを利用する方法に対するメリットを有する。 On the other hand, Patent Document 3 and the like disclose a technique for developing Goss-oriented crystal grains by secondary recrystallization in a material that does not contain an inhibitor component. By eliminating impurities such as inhibitor components as much as possible, the dependence of the grain boundary energy on the grain boundary during primary recrystallization on the grain boundary misorientation angle is made apparent, and the Goss orientation can be obtained without using an inhibitor. It is a technique for secondary recrystallization of grains with grains, and its effect is called texture inhibition effect. Since this method does not require fine dispersion of the inhibitor in the steel, it does not require high-temperature slab heating, which was essential, and thus has advantages over the method using the inhibitor in terms of production.
特公昭40-15644号公報Japanese Patent Publication No. 40-15644 特公昭51-13469号公報Japanese Patent Publication No. 51-13469 特開2000-129356号公報JP-A-2000-129356
 本発明者らは、インヒビタを利用する成分系を用いて方向性電磁鋼板を製造するにあたり、製品板の被膜外観において、数mmピッチの縞模様が発生することがあり、縞模様が発生した場所では被膜密着性が劣化することを独自に知見した。 The inventors of the present invention have found that when producing a grain-oriented electrical steel sheet using a composition system that utilizes an inhibitor, a striped pattern with a pitch of several millimeters may occur in the film appearance of the product sheet, and the location where the striped pattern occurs We found that the coating adhesion deteriorated in
 本発明は、上記課題を鑑みてなされたもので、コイルの全幅及び全長にわたって、欠陥のない均一で密着性の優れた被膜を有し、かつ磁気特性も優れた方向性電磁鋼板を得るための製造方法について提案するものである。 The present invention has been made in view of the above problems, and provides a grain-oriented electrical steel sheet that has a defect-free uniform coating with excellent adhesion over the entire width and length of the coil and also has excellent magnetic properties. This paper proposes a manufacturing method.
 本発明者らは、鋭意検討によって、熱間圧延の仕上圧延の総圧下率及び1回目の冷間圧延の総圧下率を高くし、かつ、脱炭焼鈍前に冷延板表面にSi化合物を付着させることで、被膜密着性が良好となることを知見した。 Through intensive studies, the present inventors have found that the total reduction ratio of finish rolling of hot rolling and the total reduction ratio of the first cold rolling are increased, and Si compounds are added to the surface of the cold rolled sheet before decarburization annealing. The inventors have found that the adhesion of the film improves by adhering it.
 本発明は、上記知見に基づいてなされたものである。すなわち、本発明の要旨構成は以下のとおりである。 The present invention has been made based on the above findings. That is, the gist and configuration of the present invention are as follows.
[1] 質量%で、
 C:0.01%以上0.10%以下、
 Si:2.0%以上4.0%以下、
 Mn:0.01%以上0.30%以下、
 Ti:0.010%以下、
 Al:0.010%以下及び
 N:0.0050%以下を含有し、さらに
 S及びSeのうちいずれか1種または2種を合計で0.005%以上0.10%以下含有し、残部がFe及び不可避的不純物からなる成分組成を有する鋼スラブを、1300℃以上にスラブ加熱し、熱間圧延を施して熱延板とし、
 次いで、前記熱延板に熱延板焼鈍を施しもしくは施すことなく、任意で中間焼鈍を挟む1回以上の冷間圧延を施して冷延板とし、
 次いで、前記冷延板に、脱炭焼鈍を施して脱炭焼鈍板とし、
 次いで、前記脱炭焼鈍板の表面に焼鈍分離剤を塗布した後、仕上焼鈍を施して方向性電磁鋼板を得る、方向性電磁鋼板の製造方法において、
 前記熱間圧延における仕上圧延の総圧下率を83%以上とし、かつ1回目の前記冷間圧延の総圧下率を50%以上とし、
 前記脱炭焼鈍前の前記冷延板の表面にSiを含有する化合物をSi重量換算で片面当たり0.1mg/m以上7.0mg/m以下付着させる、方向性電磁鋼板の製造方法。
[1] in % by mass,
C: 0.01% or more and 0.10% or less,
Si: 2.0% or more and 4.0% or less,
Mn: 0.01% or more and 0.30% or less,
Ti: 0.010% or less,
Contains Al: 0.010% or less and N: 0.0050% or less, further contains one or two of S and Se in a total of 0.005% or more and 0.10% or less, and the balance is A steel slab having a chemical composition consisting of Fe and unavoidable impurities is slab-heated to 1300 ° C. or higher and hot-rolled to form a hot-rolled sheet,
Then, the hot-rolled sheet is cold-rolled one or more times with or without hot-rolled sheet annealing, optionally with intermediate annealing, to obtain a cold-rolled sheet;
Then, the cold-rolled sheet is subjected to decarburization annealing to obtain a decarburization-annealed sheet,
Next, in the method for producing a grain-oriented electrical steel sheet, an annealing separator is applied to the surface of the decarburized annealed sheet, and then finish annealing is performed to obtain a grain-oriented electrical steel sheet,
The total rolling reduction of the finish rolling in the hot rolling is 83% or more, and the total rolling reduction of the first cold rolling is 50% or more,
A method for producing a grain-oriented electrical steel sheet, wherein a compound containing Si is attached to the surface of the cold-rolled steel sheet before the decarburization annealing in an amount of 0.1 mg/m 2 or more and 7.0 mg/m 2 or less per side in terms of Si weight.
[2] 前記脱炭焼鈍を前段焼鈍と後段焼鈍とに分け、
 前記前段焼鈍は雰囲気酸化性P(HO)/P(H)が0.3以上0.7以下、
 前記後段焼鈍は雰囲気酸化性P(HO)/P(H)が0.005以上0.2以下の焼鈍雰囲気にて行う、前記[1]に記載の方向性電磁鋼板の製造方法。
[2] dividing the decarburization annealing into a pre-stage annealing and a post-stage annealing;
In the pre-annealing, the atmosphere oxidation P(H 2 O)/P(H 2 ) is 0.3 or more and 0.7 or less,
The method for producing a grain-oriented electrical steel sheet according to the above [1], wherein the post-annealing is performed in an annealing atmosphere in which the atmosphere oxidizing P(H 2 O)/P(H 2 ) is 0.005 or more and 0.2 or less.
[3] 前記熱間圧延では、前記スラブ加熱後、前記鋼スラブに1100℃以上1300℃以下で1パス以上の粗圧延を施し、続いて800℃以上1100℃以下で2パス以上の仕上圧延を施し、巻取り温度を400℃以上750℃以下とし、
 前記熱延板焼鈍では、熱延板を、800℃以上1250℃以下で5秒以上保持した後、800℃から350℃までの平均冷却速度を5℃/s以上100℃/s以下として冷却し、
 前記冷間圧延の総圧下率を50%以上92%以下とし、かつ各回の前記冷間圧延の総圧下率を50%以上92%以下とし、
 前記中間焼鈍では、800℃以上1250℃以下の温度域で5秒以上保持した後、800℃から350℃までの平均冷却速度を5℃/s以上100℃/s以下として冷却し、
 前記脱炭焼鈍では、HとNとを含む雰囲気にて、前記冷延板を750℃以上950℃以下にて10秒以上保持し、
 前記仕上焼鈍前に、MgOを含む前記焼鈍分離剤を前記脱炭焼鈍板の表面に片面当たり2.5g/m以上塗布し、
 前記仕上焼鈍では、800℃以上の温度範囲内の少なくとも一部における雰囲気がHを含む条件にて、前記脱炭焼鈍板を1050℃以上1300℃以下で3時間以上保持する、前記[1]又は[2]に記載の方向性電磁鋼板の製造方法。
[3] In the hot rolling, after the slab is heated, the steel slab is subjected to one pass or more of rough rolling at 1100°C or higher and 1300°C or lower, followed by two or more passes of finish rolling at 800°C or higher and 1100°C or lower. and the winding temperature is 400° C. or higher and 750° C. or lower,
In the hot-rolled sheet annealing, the hot-rolled sheet is held at 800° C. or higher and 1250° C. or lower for 5 seconds or longer, and then cooled from 800° C. to 350° C. at an average cooling rate of 5° C./s or higher and 100° C./s or lower. ,
The total rolling reduction of the cold rolling is 50% or more and 92% or less, and the total rolling reduction of the cold rolling each time is 50% or more and 92% or less,
In the intermediate annealing, after holding in a temperature range of 800° C. or higher and 1250° C. or lower for 5 seconds or longer, cooling is performed at an average cooling rate of 5° C./s or higher and 100° C./s or lower from 800° C. to 350° C.,
In the decarburization annealing, the cold-rolled sheet is held at 750° C. or more and 950° C. or less for 10 seconds or more in an atmosphere containing H 2 and N 2 ,
Before the finish annealing, the annealing separator containing MgO is applied to the surface of the decarburized annealed sheet in an amount of 2.5 g/m 2 or more per side,
In the final annealing, the decarburization-annealed sheet is held at 1050° C. or higher and 1300° C. or lower for 3 hours or more under conditions in which the atmosphere in at least a part of the temperature range of 800° C. or higher contains H 2 . Or the method for producing a grain-oriented electrical steel sheet according to [2].
[4] 前記成分組成は、さらに質量%又は質量ppmで、
 Ni:0%以上1.50%以下、
 Cr:0%以上0.50%以下、
 Cu:0%以上0.50%以下、
 P :0%以上0.50%以下、
 Sb:0%以上0.50%以下、
 Sn:0%以上0.50%以下、
 Bi:0%以上0.50%以下、
 Mo:0%以上0.50%以下、
 B :0ppm以上25ppm以下、
 Nb:0%以上0.020%以下、
 V :0%以上0.010%以下及び
 Zr:0%以上0.10%以下からなる群から選ばれる1種または2種以上を含有する、前記[1]から[3]のいずれかに記載の方向性電磁鋼板の製造方法。
[4] The component composition is further mass % or mass ppm,
Ni: 0% or more and 1.50% or less,
Cr: 0% or more and 0.50% or less,
Cu: 0% or more and 0.50% or less,
P: 0% or more and 0.50% or less,
Sb: 0% or more and 0.50% or less,
Sn: 0% or more and 0.50% or less,
Bi: 0% or more and 0.50% or less,
Mo: 0% or more and 0.50% or less,
B: 0 ppm or more and 25 ppm or less,
Nb: 0% or more and 0.020% or less,
V: 0% or more and 0.010% or less and Zr: 0% or more and 0.10% or less, containing one or more selected from the group consisting of 0% or more and 0.10% or less, according to any one of the above [1] to [3] A method for producing a grain-oriented electrical steel sheet.
[5] 前記成分組成は、さらに質量%で、
 Co:0%以上0.050%以下及び
 Pb:0%以上0.0100%以下からなる群から選ばれる1種または2種を含有する、前記[1]から[4]のいずれかに記載の方向性電磁鋼板の製造方法。
[5] The component composition further includes, in mass %,
Co: 0% or more and 0.050% or less and Pb: 0% or more and 0.0100% or less, containing one or two selected from the group consisting of 0% or more and 0.0100% or less, according to any one of [1] to [4] A method for producing a grain-oriented electrical steel sheet.
[6] 前記成分組成は、さらに質量%で、
 As:0%以上0.0200%以下、
 Zn:0%以上0.020%以下、
 W:0%以上0.0100%以下
 Ge:0%以上0.0050%以下及び
 Ga:0%以上0.0050%以下からなる群から選ばれる1種または2種以上を含有する、前記[1]から[5]のいずれかに記載の方向性電磁鋼板の製造方法。
[6] The component composition further includes, in mass %,
As: 0% or more and 0.0200% or less,
Zn: 0% or more and 0.020% or less,
W: 0% or more and 0.0100% or less Ge: 0% or more and 0.0050% or less Ga: 0% or more and 0.0050% or less ] to [5], the method for producing a grain-oriented electrical steel sheet.
 本発明によれば、コイルの全幅及び全長にわたって、欠陥のない均一で密着性の優れた被膜を有し、かつ磁気特性も優れた方向性電磁鋼板を得ることができる。 According to the present invention, it is possible to obtain a grain-oriented electrical steel sheet that has a defect-free uniform coating with excellent adhesion over the entire width and length of the coil, and also has excellent magnetic properties.
熱間圧延仕上圧延の総圧下率及び1回目の冷間圧延の総圧下率と、被膜密着性との関係を示す図である。It is a figure which shows the relationship between the total rolling reduction of hot-rolling finish rolling, the total rolling reduction of the 1st cold-rolling, and film adhesion. 脱炭焼鈍前のSi化合物の付着量と被膜密着性との関係を示す図である。FIG. 4 is a diagram showing the relationship between the adhesion amount of Si compound before decarburization annealing and film adhesion. 図2の点線で囲った部分を拡大して示した図である。It is the figure which expanded and showed the part enclosed with the dotted line of FIG.
 本発明は、前記課題を解決するために、熱間圧延や冷間圧延の総圧下率を規定し、かつ脱炭焼鈍前の鋼板表面にSiを含有する化合物を付着させることで、鋼板の被膜ハクリ特性を良好にすることに成功した。
 以下、本発明を成功に至らしめた実験について説明する。
In order to solve the above-mentioned problems, the present invention specifies the total rolling reduction of hot rolling and cold rolling, and adheres a compound containing Si to the surface of the steel sheet before decarburization annealing. We succeeded in improving peeling characteristics.
The experiments that have led to the success of the present invention are described below.
 <実験1>
 質量%で、C:0.051%、Si:3.08%、Mn:0.09%、Se:0.020%、Ti:0.002%、Al:0.002%、N:0.0007%を含み、残部がFe及び不可避的不純物からなる成分組成を有する鋼スラブを、1400℃の温度にスラブ加熱し、粗圧延及び仕上圧延からなる熱間圧延を施して熱延板を得た。粗圧延後の板厚は15~40mm厚の間で種々変更し、さらに仕上圧延により2.0~3.3mmに仕上げた。仕上圧延の総圧下率は、78.0%から95.0%の範囲であった。次いで、熱延板表面のスケールを酸洗で除去した後、1回目の冷間圧延にて0.60から1.8mmの種々の板厚を作製した。1回目の冷間圧延の総圧下率は10.0%から81.8%であった。次いで、1020℃で100秒間の中間焼鈍を施し、その後2回目の冷間圧延を行い、板厚0.23mmの冷延板に仕上げた。引き続いて、電解脱脂を兼ねて、5%オルト珪酸ナトリウム水溶液中で該冷延板に電解処理を行って、鋼板表面にSi化合物を片面当たり2.0mg/m付着させた。次いで、850℃×120秒、50%H+50%N、露点60℃にて脱炭焼鈍を施して脱炭焼鈍板とした。次いで、脱炭焼鈍板の表面に固形分換算で85質量%以上のMgOを含む焼鈍分離剤を塗布した後、1200℃で5時間、H雰囲気下で保持する仕上焼鈍を施して、方向性電磁鋼板を得た。得られた方向性電磁鋼板からサンプルを切り出して、被膜密着性を評価した。被膜密着性は、サンプルを種々の直径を有した円筒に巻き付けて、被膜が剥がれない最小径で評価した。この最小径が小さいほど被膜密着性が優れることを表す。巻き付ける方向はサンプルの圧延方向とした。すなわち、サンプルの圧延方向が円弧を描くように巻き付けた。熱間圧延仕上圧延の総圧下率及び1回目の冷間圧延の総圧下率と、被膜密着性との関係を図1に示す。図1から明らかなように、熱間圧延の仕上圧延の総圧下率が83%以上で、かつ1回目の冷間圧延の総圧下率が50%以上であれば、優れた被膜密着性を得ることができることがわかった。
<Experiment 1>
% by mass, C: 0.051%, Si: 3.08%, Mn: 0.09%, Se: 0.020%, Ti: 0.002%, Al: 0.002%, N: 0.02% A steel slab having a chemical composition containing 0007% and the balance being Fe and unavoidable impurities was slab-heated to a temperature of 1400 ° C. and subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot-rolled sheet. . The sheet thickness after rough rolling was varied between 15 and 40 mm, and was finished to 2.0 to 3.3 mm by finish rolling. The total reduction in finish rolling ranged from 78.0% to 95.0%. Next, after removing the scale on the surface of the hot-rolled sheet by pickling, various sheet thicknesses of 0.60 to 1.8 mm were produced by the first cold rolling. The total rolling reduction of the first cold rolling was from 10.0% to 81.8%. Next, intermediate annealing was performed at 1020° C. for 100 seconds, followed by second cold rolling to finish a cold-rolled sheet with a thickness of 0.23 mm. Subsequently, the cold-rolled steel sheet was subjected to electrolytic treatment in a 5% sodium orthosilicate aqueous solution, also serving as electrolytic degreasing, so that 2.0 mg/m 2 of Si compound was deposited on the surface of the steel sheet. Then, decarburization annealing was performed at 850° C.×120 seconds, 50% H 2 +50% N 2 , dew point 60° C. to obtain a decarburization-annealed sheet. Next, after coating the surface of the decarburized annealed sheet with an annealing separator containing 85% by mass or more of MgO in terms of solid content, finish annealing was performed at 1200 ° C. for 5 hours in an H 2 atmosphere to obtain a directional property. An electromagnetic steel sheet was obtained. A sample was cut out from the obtained grain-oriented electrical steel sheet, and the film adhesion was evaluated. Coating adhesion was evaluated by winding samples around cylinders having various diameters and determining the minimum diameter at which the coating did not peel off. The smaller the minimum diameter, the better the film adhesion. The winding direction was the rolling direction of the sample. That is, the sample was wound so that the rolling direction drew an arc. FIG. 1 shows the relationship between the total rolling reduction of the hot finish rolling, the total rolling reduction of the first cold rolling, and the film adhesion. As is clear from FIG. 1, when the total rolling reduction in the finish rolling of the hot rolling is 83% or more and the total rolling reduction in the first cold rolling is 50% or more, excellent film adhesion is obtained. I found that it can be done.
 <実験2>
 質量%で、C:0.070%、Si:3.41%、Mn:0.15%、Se:0.015%、Ti:0.001%、Al:0.001%、N:0.0008%、Sb:0.042%を含み、残部がFe及び不可避的不純物からなる成分組成を有する鋼スラブを、1400℃の温度にスラブ加熱し、粗圧延及び仕上圧延からなる熱間圧延を施して熱延板を得た。粗圧延後の板厚を35mm厚とし、さらに仕上圧延により2.5mmに仕上げた。仕上圧延の総圧下率は92.9%であった。次いで、熱延板表面のスケールを酸洗で除去した後、1回目の冷間圧延にて0.72mmの板厚とした。1回目の冷間圧延の総圧下率は71.2%であった。次いで、925℃で100秒の中間焼鈍を施し、その後2回目の冷間圧延を行い、板厚0.23mmの冷延板に仕上げた。引き続いて、電解脱脂を兼ねて、3%オルト珪酸ナトリウム水溶液中で電解処理を行って、冷延板表面にSi化合物を付着させた。この際、Si化合物の付着量は、0mg/mの付着無しを含む、種々の条件とした。その後、Si化合物を付着させた後の冷延板に、850℃×120秒、50%H+50%N、露点64℃にて脱炭焼鈍を施し、脱炭焼鈍板とした。次いで、脱炭焼鈍板表面に、固形分換算で85質量%以上のMgOを含む焼鈍分離剤を塗布した後、1200℃で10時間、H雰囲気下で保持する仕上焼鈍を施して、方向性電磁鋼板を得た。得られた方向性電磁鋼板からサンプルを切り出して、被膜密着性を評価した。被膜密着性は、サンプルを種々の直径を有した円筒に巻き付けて、被膜が剥がれない最小径で評価した。また、脱炭焼鈍前の冷延板のSi付着量を、蛍光X線分析装置を用いて測定した。蛍光X線分析装置を用い、予め検量線を作製し、該検量線に基づいてSi付着量を算出した。検量線の作製においては、Si付着処理を行わなかった方向性電磁鋼板における蛍光X線分析結果をSi付着量ゼロとした。脱炭焼鈍前のSi化合物の付着量と被膜密着性との関係を図2に示す。また、図2の点線で囲った部分を拡大して図3に示す。図2,3から明らかなように、脱炭焼鈍前の冷延板の表面にSiを含有する化合物をSi重量換算で片面当たり0.1mg/m以上7.0mg/m以下付着させることで、優れた被膜密着性を得ることができることがわかった。
<Experiment 2>
% by mass, C: 0.070%, Si: 3.41%, Mn: 0.15%, Se: 0.015%, Ti: 0.001%, Al: 0.001%, N: 0.01%. 0008%, Sb: 0.042%, and the balance being Fe and unavoidable impurities. to obtain a hot-rolled sheet. The sheet thickness after rough rolling was set to 35 mm, and was further finished to 2.5 mm by finish rolling. The total reduction in finish rolling was 92.9%. Next, after removing the scale on the surface of the hot-rolled sheet by pickling, the sheet was made to have a sheet thickness of 0.72 mm by the first cold rolling. The total rolling reduction of the first cold rolling was 71.2%. Next, intermediate annealing was performed at 925° C. for 100 seconds, followed by second cold rolling to finish a cold-rolled sheet with a thickness of 0.23 mm. Subsequently, an electrolytic treatment was performed in a 3% sodium orthosilicate aqueous solution, also serving as electrolytic degreasing, to attach a Si compound to the surface of the cold-rolled sheet. At this time, the adhesion amount of the Si compound was set under various conditions including no adhesion of 0 mg/m 2 . After that, the cold-rolled sheet to which the Si compound was attached was subjected to decarburization annealing at 850° C.×120 seconds, 50% H 2 +50% N 2 , dew point 64° C. to obtain a decarburization-annealed sheet. Next, after applying an annealing separator containing 85% by mass or more of MgO in terms of solid content to the surface of the decarburized annealed sheet, it was subjected to finish annealing at 1200 ° C. for 10 hours in an H 2 atmosphere, and the directionality An electromagnetic steel sheet was obtained. A sample was cut out from the obtained grain-oriented electrical steel sheet, and the film adhesion was evaluated. Coating adhesion was evaluated by winding samples around cylinders having various diameters and determining the minimum diameter at which the coating did not peel off. In addition, the amount of Si deposited on the cold-rolled sheet before decarburization annealing was measured using a fluorescent X-ray spectrometer. A calibration curve was prepared in advance using a fluorescent X-ray analyzer, and the Si deposition amount was calculated based on the calibration curve. In preparing the calibration curve, the result of the fluorescent X-ray analysis of the grain-oriented electrical steel sheet that was not subjected to the Si deposition treatment was taken as zero Si deposition. FIG. 2 shows the relationship between the adhesion amount of the Si compound before decarburization annealing and the film adhesion. Also, FIG. 3 shows an enlarged portion surrounded by a dotted line in FIG. As is clear from FIGS. 2 and 3, a compound containing Si is attached to the surface of the cold-rolled sheet before decarburization annealing in an amount of 0.1 mg/m 2 or more and 7.0 mg/m 2 or less per side in terms of Si weight. , it was found that excellent film adhesion can be obtained.
 上記実験1及び2の結果をまとめると、熱間圧延の仕上圧延の総圧下率及び1回目の冷間圧延の総圧下率を高くし、かつ、脱炭焼鈍前に冷延板表面にSi化合物を付着させることで、被膜密着性が良好となることが明らかとなった。これらの理由については明らかではないが、本発明者らは次のように考えている。 To summarize the results of Experiments 1 and 2, the total rolling reduction in the finish rolling of hot rolling and the total rolling reduction in the first cold rolling were increased, and Si compounds were added to the surface of the cold-rolled sheet before decarburization annealing. It was found that the adhesion of the film is improved by adhering the The reasons for these are not clear, but the inventors believe as follows.
 本実験で被膜密着性が良好であったサンプル(良好サンプル)と不良であったサンプル(不良サンプル)とで製品板外観を比較すると、明らかな差異が認められた。すなわち、良好サンプルは外観が均一で色ムラがほとんど認められないのに対し、不良サンプルは板幅方向数mmピッチで圧延方向に伸びた縞模様が認められた。縞模様が発生した原因を調査するために、中間焼鈍後の冷延板を観察した。その結果、不良サンプルの中間焼鈍後の冷延板においては、ほぼ同ピッチでリジングが発生していたことを突き止めた。リジングは鋼板表面の凹凸であり、鋼板の結晶方位と関連性が高いことが知られている。このリジングは、良好サンプルの条件でも発生が認められていたが、不良サンプル条件と比較して良好サンプルの条件の鋼板では明らかに凹凸が小さかった。凹凸が被膜密着性に及ぼす影響を推測すると、中間焼鈍の次工程は2回目の冷間圧延であることから、この凹凸が冷間圧延後の表面の粗度に影響を及ぼすことが考えられる。すなわち、2回目の冷間圧延において、凸部が選択的に圧延ロールに接触するため、表面がフラットになり粗度が比較的小さくなると考えられる一方、凹部は凸部からの素材の倒れこみなどで比較的粗度が高くなる可能性が考えられる。つまり、2回目の冷間圧延でリジングの様な凹凸が解消されてフラットな形状が確保されていても、粗度の低い個所と高い個所とが交互に配列されて縞模様を形成している可能性がある。この粗度の差は、脱炭焼鈍での鋼板表面のサブスケール形成に影響を及ぼすと推測される。すなわち、サブスケールの構造が縞模様状に変化しており、これが仕上焼鈍時の被膜形成に影響を及ぼすことで、製品板に縞模様が発生したと考えられる。サブスケール構造は、被膜外観のみならず、アンカーと呼ばれる、被膜が地鉄に食い込む形状の形成にも影響を及ぼす。このアンカー形状が発達していれば被膜密着性は良好となる一方、アンカー形成が乏しければ被膜密着性が劣化することが知られている。本実験では、脱炭焼鈍後は、縞模様状にサブスケール構造が異なっていると考えられているが、製品板でのアンカー形状も同様に縞模様状に違いがあると推測され、これが原因で被膜密着性が劣化したと推測される。 A clear difference was observed when comparing the appearance of the product plate between a sample with good coating adhesion (good sample) and a sample with poor coating adhesion (bad sample) in this experiment. That is, the good samples had a uniform appearance and almost no color unevenness, whereas the bad samples had striped patterns extending in the rolling direction at a pitch of several millimeters in the sheet width direction. In order to investigate the cause of the striped pattern, the cold-rolled sheet after intermediate annealing was observed. As a result, it was found that, in the cold-rolled sheets of the defective samples after the intermediate annealing, ridging occurred at substantially the same pitch. Ridging is unevenness on the steel sheet surface, and is known to be highly related to the crystal orientation of the steel sheet. The occurrence of this ridging was observed even under the conditions of the good samples, but the unevenness was clearly smaller in the steel sheets under the conditions of the good samples than under the conditions of the bad samples. Assuming the effect of unevenness on coating adhesion, since the step subsequent to intermediate annealing is the second cold rolling, it is conceivable that this unevenness affects the roughness of the surface after cold rolling. That is, in the second cold rolling, since the convex portions selectively contact the rolling rolls, it is thought that the surface is flat and the roughness is relatively small, while the concave portions cause the material to fall from the convex portions. It is conceivable that there is a possibility that the roughness will be relatively high at In other words, even if unevenness such as ridging is eliminated by the second cold rolling and a flat shape is secured, areas with low roughness and areas with high roughness are arranged alternately to form a striped pattern. there is a possibility. It is presumed that this difference in roughness affects the formation of subscales on the steel sheet surface during decarburization annealing. That is, the structure of the subscale changed into a striped pattern, and it is thought that this affected the film formation during the final annealing, resulting in the striped pattern in the product sheet. The subscale structure affects not only the appearance of the coating, but also the formation of a shape called an anchor, in which the coating bites into the base iron. It is known that if this anchor shape is developed, the film adhesion is good, but if the anchor formation is poor, the film adhesion is deteriorated. In this experiment, it is thought that the subscale structure differs in a striped pattern after decarburization annealing. It is presumed that the film adhesion deteriorated at
 上述の通り、熱間圧延の仕上圧延の総圧下率及び1回目の冷間圧延の総圧下率を高くすることで被膜密着性の劣化を防止できることが、本発明者らの独自の検討により明らかとなった。これは、圧下率を高めて鋼板に導入される歪量を増加させることで、動的及び静的な再結晶を促進させて、様々な結晶方位を有する粒を発生させ、鋼板の凹凸、いわゆるリジングの発生を大幅に抑制できたためと考えられる。 As described above, it is clear from the present inventors' own studies that deterioration of film adhesion can be prevented by increasing the total rolling reduction in the finish rolling of hot rolling and the total rolling reduction in the first cold rolling. became. This is because by increasing the reduction rate and increasing the amount of strain introduced into the steel sheet, dynamic and static recrystallization is promoted, grains with various crystal orientations are generated, and the unevenness of the steel sheet, the so-called This is probably because the occurrence of ridging could be greatly suppressed.
 ただし、被膜密着性が良好であったサンプルにおいても中間焼鈍後に若干の凹凸が認められた。そのため、上記圧下率の規定だけでは不十分であり、脱炭焼鈍前にSi化合物を付着させることも必要である。脱炭焼鈍前にSi化合物を付着させることで、サブスケール構造の違いが被膜形成に及ぼす影響を緩和させることができ、被膜密着性の劣化を効果的に防止したと考えられる。つまり、熱間圧延の仕上圧延の総圧下率及び1回目の冷間圧延の総圧下率を高めて中間焼鈍後の鋼板表面の凹凸をある程度抑制し、さらにサブスケールの主成分であるシリカと同類のSi化合物を付与させることで、その凹凸に起因する粗度変化が与えるサブスケール構造変化を効果的に抑制し、被膜密着性の劣化を防止できたと考えられる。なお、この発明において使用するSi化合物には、実質的にSi、O、HあるいはSi、Oからなり、すなわち、SiOで表されるシリカ又はこれにHOが結合した化合物等が該当する。 However, some unevenness was observed after the intermediate annealing even in the sample with good film adhesion. Therefore, it is not enough just to define the rolling reduction, and it is also necessary to deposit a Si compound before the decarburization annealing. Adhering the Si compound before the decarburization annealing made it possible to alleviate the influence of the difference in subscale structure on the film formation, and effectively prevented the deterioration of the film adhesion. In other words, the total rolling reduction in the finish rolling of hot rolling and the total rolling reduction in the first cold rolling are increased to suppress unevenness on the surface of the steel sheet after intermediate annealing to some extent. By adding the Si compound, it is considered that the subscale structure change caused by the roughness change due to the unevenness was effectively suppressed, and the deterioration of the coating adhesion was prevented. The Si compound used in the present invention is substantially composed of Si, O, H or Si, O, that is, silica represented by SiO 2 or a compound in which H 2 O is bonded thereto. .
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。まず、鋼板の成分組成の適正範囲及びその限定理由について説明する。なお、以下の説明において、鋼板の成分元素の含有量を表す「%」は、特に明記しない限り「質量%」を意味する。「ppm」は、特に明記しない限り、「質量ppm」を意味する。また本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Embodiments of the present invention will be described below. In addition, this invention is not limited to the following embodiment. First, the appropriate range of the chemical composition of the steel sheet and the reasons for its limitation will be described. In the following description, "%" representing the content of the constituent elements of the steel sheet means "% by mass" unless otherwise specified. "ppm" means "ppm by mass" unless otherwise specified. In the present specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
 C:0.01%以上0.10%以下
 C量が0.10%を超えると、脱炭焼鈍後に磁気時効が生じるおそれがある。一方、C量が0.01%に満たないと二次再結晶粒が粗大になり鉄損の増大や曲げ加工性の劣化を引き起こす。従って、Cは0.01%以上0.10%以下に限定する。C量は、好ましくは0.03%以上とする。また、C量は、好ましくは0.06%以下である。
C: 0.01% or more and 0.10% or less If the amount of C exceeds 0.10%, magnetic aging may occur after decarburization annealing. On the other hand, if the amount of C is less than 0.01%, secondary recrystallized grains become coarse, causing an increase in core loss and deterioration in bending workability. Therefore, C is limited to 0.01% or more and 0.10% or less. The amount of C is preferably 0.03% or more. Moreover, the amount of C is preferably 0.06% or less.
 Si:2.0%以上4.0%以下
 Siは鋼の比抵抗を高め、鉄損を改善させるために必要な元素であるが、2.0%未満であると効果がなく、4.0%を超えると二次再結晶が不安定になり磁気特性が劣化することから、Si量は2.0%以上4.0%以下に限定する。Si量は、好ましくは3.0%以上とする。Si量は、好ましくは3.6%以下である。
Si: 2.0% or more and 4.0% or less Si is an element necessary for increasing the resistivity of steel and improving iron loss. %, the secondary recrystallization becomes unstable and the magnetic properties deteriorate, so the Si content is limited to 2.0% or more and 4.0% or less. The amount of Si is preferably 3.0% or more. The amount of Si is preferably 3.6% or less.
 Mn:0.01%以上0.30%以下
 MnはMnSやMnSeをインヒビタとして利用するために必要な元素であるが、0.01%未満であるとインヒビタ量が少なくなり磁気特性が劣化し、0.30%を超えると二次再結晶が不安定になり磁気特性が劣化する。よって、Mn量は0.01%以上0.30%以下とする。Mn量は、好ましくは0.03%以上とする。Mn量は、好ましくは0.20%以下、より好ましくは0.15%以下である。
Mn: 0.01% or more and 0.30% or less Mn is an element necessary for using MnS or MnSe as an inhibitor. If it exceeds 0.30%, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the Mn content is set to 0.01% or more and 0.30% or less. The amount of Mn is preferably 0.03% or more. The Mn content is preferably 0.20% or less, more preferably 0.15% or less.
 Ti:0.010%以下
 Al:0.010%以下
 N:0.0050%以下
 また、TiやAlは窒化物を形成し、MnS及びMnSeのインヒビタとしての効果を損ね、磁気特性を劣化させることから、Ti:0.010%以下、Al:0.010%以下、N:0.0050%以下とする。好ましくは、Ti、Al、Nは、各々0.0020%以下である。ただし、これらの元素を低減することはコスト増大の可能性があるため、上記範囲内で残存しても問題ない。これらの元素は少ないほど好ましく、0%であってもよいが、コスト低減の観点から、好ましくはTi及びAlはそれぞれ0.001%以上、Nは0.0005%以上とする。
Ti: 0.010% or less Al: 0.010% or less N: 0.0050% or less In addition, Ti and Al form nitrides, impairing the inhibitory effects of MnS and MnSe and degrading the magnetic properties. Therefore, Ti: 0.010% or less, Al: 0.010% or less, and N: 0.0050% or less. Preferably, Ti, Al and N are each 0.0020% or less. However, since reducing these elements may increase the cost, there is no problem even if they remain within the above ranges. These elements are preferably as small as possible, and may be 0%, but from the viewpoint of cost reduction, Ti and Al are each preferably 0.001% or more, and N is 0.0005% or more.
 S及びSeのうちいずれか1種または2種を合計で0.005%以上0.10%以下
 S及びSeは、Mnと結合してインヒビタとなるMnS及びMnSeを形成する。しかしながら、単独もしくは合計で0.005%に満たないと、その効果が十分に得られない。一方、0.10%を超えると、スラブ加熱で十分に固溶させることができなくなり、鋼中への微細分散が達成されず、磁気特性を大きく劣化させる。よって、S及びSeの含有量は、合計で0.005%以上0.10%以下の範囲とする。好ましくは0.010%以上であり、また0.040%以下である。
0.005% or more and 0.10% or less in total of any one or two of S and Se S and Se combine with Mn to form MnS and MnSe, which act as inhibitors. However, if it is less than 0.005% alone or in total, the effect cannot be sufficiently obtained. On the other hand, if it exceeds 0.10%, it cannot be dissolved sufficiently by heating the slab, and fine dispersion in the steel cannot be achieved, which greatly deteriorates the magnetic properties. Therefore, the total content of S and Se should be in the range of 0.005% or more and 0.10% or less. It is preferably 0.010% or more and 0.040% or less.
 以上、本発明の基本成分について説明してきたが、本発明ではその他にも以下に述べる元素を適宜含有させることができる。 The basic components of the present invention have been described above, but in the present invention, the following elements can be included as appropriate.
 磁気特性を向上させる目的で、Ni:0%以上1.50%以下、Cr:0%以上0.50%以下、Cu:0%以上0.50%以下、P:0%以上0.50%以下、Sb:0%以上0.50%以下、Sn:0%以上0.50%以下、Bi:0%以上0.50%以下、,Mo:0%以上0.50%以下、B:0ppm以上25ppm以下、Nb:0%以上0.020%以下、V:0%以上0.010%以下、Zr:0%以上0.10%以下からなる群から選ばれる少なくとも1種を単独または複合して添加することができる。これら元素の添加量を上記上限量以下とすることで、二次再結晶粒の発達が抑制されることを防ぎ、特に良好な磁気特性を得ることができる。なお、磁気特性をより向上する観点からは、Ni:0.01%以上、Sb:0.005%以上、Sn:0.005%以上、Cu:0.01%以上、Cr:0.01%以上、P:0.005%以上、Mo:0.005%以上、Nb:0.001%以上、V:0.001%以上、B:0.0002%以上、Bi:0.005%以上及びZr:0.001%以上にて添加するのが好ましい。 For the purpose of improving magnetic properties, Ni: 0% to 1.50%, Cr: 0% to 0.50%, Cu: 0% to 0.50%, P: 0% to 0.50% Below, Sb: 0% to 0.50%, Sn: 0% to 0.50%, Bi: 0% to 0.50%, Mo: 0% to 0.50%, B: 0 ppm 25 ppm or less, Nb: 0% or more and 0.020% or less, V: 0% or more and 0.010% or less, and Zr: 0% or more and 0.10% or less. can be added as By setting the amount of these elements added to the above upper limit or less, it is possible to prevent the growth of secondary recrystallized grains from being suppressed and to obtain particularly good magnetic properties. From the viewpoint of further improving the magnetic properties, Ni: 0.01% or more, Sb: 0.005% or more, Sn: 0.005% or more, Cu: 0.01% or more, Cr: 0.01% Above, P: 0.005% or more, Mo: 0.005% or more, Nb: 0.001% or more, V: 0.001% or more, B: 0.0002% or more, Bi: 0.005% or more and Zr: It is preferable to add 0.001% or more.
 被膜密着性を向上する目的で、Co:0%以上0.050%以下及びPb:0%以上0.0100%以下からなる群から選ばれる1種または2種を添加することができる。Co及びPbの添加量が上記上限以下であれば、磁気特性がより好適である。被膜密着性をより向上する観点からは、Co:0.002%以上、Pb:0.0001%以上にて添加するのが好ましい。 For the purpose of improving film adhesion, one or two selected from the group consisting of Co: 0% or more and 0.050% or less and Pb: 0% or more and 0.0100% or less can be added. If the amounts of Co and Pb added are not more than the above upper limits, the magnetic properties are more favorable. From the viewpoint of further improving film adhesion, it is preferable to add Co: 0.002% or more and Pb: 0.0001% or more.
 磁気特性を向上するため、また被膜密着性をより向上する目的で、As:0%以上0.0200%以下、Zn:0%以上0.020%以下、W:0%以上0.0100%以下、Ge:0%以上0.0050%以下及びGa:0%以上0.0050%以下からなる群から選ばれる1種または2種以上を添加することができる。各々、上記上限以下であれば、磁気特性がより好適である。被膜密着性をより向上する観点からは、As:0.0010%以上、Zn:0.001%以上、W:0.0010%以上、Ge:0.0001%以上及びGa:0.0001%以上にて添加するのが好ましい。 For the purpose of improving magnetic properties and further improving film adhesion, As: 0% to 0.0200%, Zn: 0% to 0.020%, W: 0% to 0.0100% , Ge: 0% or more and 0.0050% or less, and Ga: 0% or more and 0.0050% or less. Magnetic properties are more favorable if each is equal to or less than the above upper limit. From the viewpoint of further improving film adhesion, As: 0.0010% or more, Zn: 0.001% or more, W: 0.0010% or more, Ge: 0.0001% or more, and Ga: 0.0001% or more It is preferable to add at
 次に、本開示の方向性電磁鋼板の製造条件について説明する。 Next, the manufacturing conditions for the grain-oriented electrical steel sheet of the present disclosure will be described.
 まず、上述した成分組成を有する溶鋼を用いて鋼スラブを製造する。鋼スラブの製造方法は特に限定されず、通常の造塊法及び連続鋳造法で鋼スラブを製造してもよいし、100mm以下の厚さの鋼スラブを直接鋳造法で製造してもよい。これら鋼スラブを、通常の方法でスラブ加熱した後熱間圧延を施す。鋳造後加熱せずに直ちに熱間圧延を施してもよい。 First, a steel slab is manufactured using molten steel having the chemical composition described above. The method of manufacturing the steel slab is not particularly limited, and the steel slab may be manufactured by a normal ingot casting method and continuous casting method, or a steel slab with a thickness of 100 mm or less may be manufactured by a direct casting method. These steel slabs are subjected to hot rolling after slab heating in the usual manner. Hot rolling may be performed immediately after casting without heating.
 熱間圧延前に、鋼スラブを1300℃以上にスラブ加熱する。鋼スラブを1300℃以上にスラブ加熱することで、インヒビタ成分を十分に固溶させることができる。なお、スラブ加熱温度は、スラブ表面温度を基準とする。 The steel slab is slab-heated to 1300°C or higher before hot rolling. By slab-heating the steel slab to 1300° C. or higher, the inhibitor component can be sufficiently solid-dissolved. The slab heating temperature is based on the slab surface temperature.
 次いで、加熱後の鋼スラブに熱間圧延を施して熱延板とする。上述した理由から、熱間圧延の仕上圧延の総圧下率は83%以上とする必要がある。熱間圧延の仕上圧延の総圧下率を83%以上とすることで、被膜密着性を高め、欠陥のない均一で密着性の優れた被膜を有し、かつ磁気特性も優れた方向性電磁鋼板を得ることができる。熱間圧延の仕上圧延の総圧下率は、好ましくは87%以上、より好ましくは90%以上とする。熱間圧延の仕上圧延の総圧下率の上限は特に限定されないがコストの観点から96%以下とすることが好ましい。なお、熱間圧延のパス数及び各パスにおける圧下率は特に限定されない。 Then, the steel slab after heating is hot-rolled to form a hot-rolled sheet. For the reason described above, the total rolling reduction in finish rolling of hot rolling must be 83% or more. A grain-oriented electrical steel sheet having a defect-free uniform coating with excellent adhesion and excellent magnetic properties by increasing the coating adhesion by setting the total rolling reduction of the finish rolling of hot rolling to 83% or more. can be obtained. The total reduction in finish rolling of hot rolling is preferably 87% or more, more preferably 90% or more. Although the upper limit of the total rolling reduction in finish rolling of hot rolling is not particularly limited, it is preferably 96% or less from the viewpoint of cost. The number of hot rolling passes and the rolling reduction in each pass are not particularly limited.
 熱延板の組織制御の観点から、好ましくは、1100℃以上、また好ましくは1300℃以下で1パス以上の粗圧延を施す。続いて、800℃以上、また1100℃以下で2パス以上の仕上圧延を施すことが、熱延板の組織制御の観点で好ましい。また、巻取り温度を400℃以上とし、また750℃以下とすることが炭化物の組織制御と割れ等の欠陥防止の両方の観点で好ましい。巻取り温度は、より好ましくは500℃以上であり、また700℃以下である。なお、熱間圧延における温度、及び巻取り温度は、巻取り直前の鋼板表面を基準とする。 From the viewpoint of controlling the structure of the hot-rolled sheet, it is preferably rough-rolled at 1100°C or higher, more preferably at 1300°C or lower for one or more passes. Subsequently, from the viewpoint of controlling the structure of the hot-rolled sheet, it is preferable to carry out two or more passes of finish rolling at 800° C. or higher and 1100° C. or lower. Further, it is preferable to set the winding temperature to 400° C. or higher and 750° C. or lower from the viewpoint of both control of carbide structure and prevention of defects such as cracks. The winding temperature is more preferably 500°C or higher and 700°C or lower. The temperature in hot rolling and the coiling temperature are based on the surface of the steel sheet immediately before coiling.
 次いで、熱延板に対して、任意で熱延板焼鈍を施すことができる。熱延板焼鈍を施すことで組織の均一化がはかれ、磁気特性のばらつきを小さくすることが可能となる。組織を均一化する観点から、熱延板焼鈍の焼鈍条件は800℃以上、また1250℃以下で5秒以上の保持とすることが好ましい。熱延板焼鈍の焼鈍条件は、より好ましくは900℃以上、また1150℃以下で、10秒以上、また180秒以下の保持とする。上記温度域における保持後の冷却においては、800℃から350℃までの温度域で5℃/s以上、また100℃/s以下の平均冷却速度とすることが、第二相や析出物の形態制御の観点で好ましい。上記温度域における保持後の冷却においては、より好ましくは、800℃から350℃までの温度域での平均冷却速度を15℃/s以上とし、また45℃/s以下とする。 Then, the hot-rolled sheet can optionally be subjected to hot-rolled sheet annealing. By performing hot-rolled sheet annealing, it is possible to homogenize the structure and reduce variations in magnetic properties. From the viewpoint of homogenizing the structure, the annealing conditions for hot-rolled sheet annealing are preferably 800° C. or higher and 1250° C. or lower and held for 5 seconds or longer. Annealing conditions for hot-rolled sheet annealing are more preferably 900° C. or higher and 1150° C. or lower and held for 10 seconds or longer and 180 seconds or shorter. In the cooling after holding in the above temperature range, the average cooling rate is 5 ° C./s or more and 100 ° C./s or less in the temperature range from 800 ° C. to 350 ° C. The second phase and the form of precipitates It is preferable from the viewpoint of control. In the cooling after holding in the above temperature range, the average cooling rate in the temperature range from 800°C to 350°C is more preferably 15°C/s or more and 45°C/s or less.
 次いで、冷間圧延に先立って、任意で熱間圧延時に生成した表面のスケールを除去する。スケールを除去する手法は特に限定されず、加熱された酸を使用する方法(酸洗)や、機械的にスケールを除去する方法など、公知の方法でよい。 Next, prior to cold rolling, any surface scale generated during hot rolling is removed. A method for removing scale is not particularly limited, and known methods such as a method using heated acid (pickling) and a method for mechanically removing scale may be used.
 任意でスケールを除去した後、任意で中間焼鈍を挟む1回以上の冷間圧延を施して、最終板厚を有する冷延板とする。1回目の冷間圧延では、その総圧下率を50%以上とすることが上述の理由により必須である。1回目の冷間圧延の総圧下率を50%以上とすることで、被膜密着性を高め、欠陥のない均一で密着性の優れた被膜を有し、かつ磁気特性も優れた方向性電磁鋼板を得ることができる。1回目の冷間圧延の総圧下率は、好ましくは53%以上、より好ましくは55%以上、さらに好ましくは60%以上とする。1回目の冷間圧延の総圧下率の上限は特に限定されないが、圧延負荷を低減する観点で92%以下とすることが好ましい。なお、冷間圧延では、圧延荷重を低減し、圧延形状をより良好にするため、圧延油等の潤滑剤を使用することが好ましい。 After optionally removing the scale, the steel is optionally subjected to one or more cold rolling steps with intermediate annealing to obtain a cold-rolled steel sheet having a final thickness. In the first cold rolling, it is essential to set the total rolling reduction to 50% or more for the reasons described above. A grain-oriented electrical steel sheet having a defect-free uniform coating with excellent adhesion and excellent magnetic properties by increasing the coating adhesion by setting the total rolling reduction of the first cold rolling to 50% or more. can be obtained. The total rolling reduction of the first cold rolling is preferably 53% or more, more preferably 55% or more, still more preferably 60% or more. Although the upper limit of the total rolling reduction in the first cold rolling is not particularly limited, it is preferably 92% or less from the viewpoint of reducing the rolling load. In cold rolling, it is preferable to use a lubricant such as rolling oil in order to reduce the rolling load and improve the rolling shape.
 1回目の冷延圧延後、任意で中間焼鈍を行なう。中間焼鈍では、800℃以上1250℃以下の温度域で5秒以上保持することが好ましい。中間焼鈍の焼鈍温度を800℃以上とすることで再結晶粒が過度に細かくなることを防ぎ、一次再結晶組織においてGoss方位結晶粒の核を良好に成長させ、磁気特性をより向上することができる。中間焼鈍の温度を1250℃以下とすることで、インヒビタの急激な成長や分解を防ぎ、磁気特性をより向上することができる。 After the first cold rolling, intermediate annealing is optionally performed. In the intermediate annealing, it is preferable to hold the temperature in the temperature range of 800° C. or higher and 1250° C. or lower for 5 seconds or longer. By setting the annealing temperature of the intermediate annealing to 800° C. or higher, it is possible to prevent the recrystallized grains from becoming excessively fine, to allow the nuclei of the Goss orientation crystal grains to grow well in the primary recrystallized structure, and to further improve the magnetic properties. can. By setting the temperature of the intermediate annealing to 1250° C. or lower, the rapid growth and decomposition of the inhibitor can be prevented, and the magnetic properties can be further improved.
 上記温度域における保持後の冷却では、800℃から350℃までの平均冷却速度を5℃/s以上とし、また100℃/s以下とすることが、第二相及び析出物の形態制御の観点で好ましい。より好ましくは、800℃から350℃までの平均冷却速度は、15℃/s以上であり、また45℃/s以下である。なお、中間焼鈍における温度は、鋼板表面を基準とする。 In the cooling after holding in the above temperature range, the average cooling rate from 800 ° C. to 350 ° C. is 5 ° C./s or more and 100 ° C./s or less, from the viewpoint of controlling the morphology of the second phase and precipitates. is preferred. More preferably, the average cooling rate from 800°C to 350°C is 15°C/s or more and 45°C/s or less. In addition, the temperature in the intermediate annealing is based on the surface of the steel sheet.
 1回目の冷間圧延後、中間焼鈍前には、1回目の冷間圧延時に用いた潤滑剤を除去するために、1回目の冷間圧延後の冷延板表面を脱脂することが好ましい。また、中間焼鈍後は、冷延板表面のスケールを除去することが好ましい。スケールを除去する手法は特に限定されず、加熱された酸を使用する方法(酸洗)や、機械的にスケールを除去するなど、公知の方法でよい。 After the first cold rolling and before intermediate annealing, it is preferable to degrease the surface of the cold-rolled sheet after the first cold rolling in order to remove the lubricant used during the first cold rolling. Moreover, after the intermediate annealing, it is preferable to remove the scale on the surface of the cold-rolled sheet. A method for removing scale is not particularly limited, and known methods such as a method using heated acid (pickling) and mechanical scale removal may be used.
 次いで、任意で中間焼鈍を施した冷延板に対して、さらに1回以上の冷間圧延を施してもよい。複数回の冷間圧延を行う場合は、複数回の冷間圧延の総圧下率を50%以上とし、また92%以下とすることが、組織制御の観点で好ましい。また、複数回の冷間圧延を行う場合、各々の冷間圧延で、総圧下率を50%以上とすることが好ましく、また92%以下とすることが好ましい。 Then, the cold-rolled sheet optionally subjected to intermediate annealing may be subjected to cold rolling one or more times. When cold rolling is performed multiple times, it is preferable from the viewpoint of structure control that the total rolling reduction of the multiple cold rollings is 50% or more and 92% or less. When cold rolling is performed a plurality of times, the total rolling reduction is preferably 50% or more and preferably 92% or less in each cold rolling.
 次いで、Siを含有する化合物を表面に付着させるのに先立って、脱脂や酸洗を行い、冷延板表面を清浄化することが好ましい。脱脂や酸洗の条件は常法によることができる。 Next, it is preferable to clean the surface of the cold-rolled steel sheet by degreasing and pickling prior to attaching the Si-containing compound to the surface. Conditions for degreasing and pickling can be according to conventional methods.
 本発明では、脱炭焼鈍前の冷延板表面に、Siを含有する化合物をSi重量換算で片面当たり0.1~7.0mg/mの範囲で付着させることが、上述の理由により必須である。Siを含有する化合物(以下、Si化合物ともいう)は、実質的にSi、O、HあるいはSi、Oからなる。すなわち、SiOで表されるシリカ又はこれにHOが結合した化合物等がSi化合物に該当する。好ましくは、脱炭焼鈍前の冷延板表面に、Siを含有する化合物をSi重量換算で片面当たり0.2~6.1mg/m、より好ましくは1~5mg/mの範囲で付着させる。このSi化合物を冷延板表面に付着させる手法としては、例えば、オルト珪酸(HSiO)、メタ珪酸(HSiO)、コロイダルシリカのような水溶状超微粒SiO、及び珪酸アルカリ水溶液中で鋼板を電解処理することなどが挙げられる。 In the present invention, it is essential for the above reason that a compound containing Si is attached to the surface of the cold-rolled sheet before decarburization annealing in the range of 0.1 to 7.0 mg/m 2 per side in terms of Si weight. is. A compound containing Si (hereinafter also referred to as a Si compound) consists essentially of Si, O, H or Si, O. That is, silica represented by SiO 2 or a compound in which H 2 O is bonded thereto corresponds to the Si compound. Preferably, a compound containing Si is attached to the surface of the cold-rolled steel sheet before decarburization annealing in an amount of 0.2 to 6.1 mg/m 2 , more preferably 1 to 5 mg/m 2 per side in terms of Si weight. Let Techniques for attaching this Si compound to the surface of the cold-rolled sheet include, for example, orthosilicic acid (H 4 SiO 4 ), metasilicic acid (H 2 SiO 3 ), water-soluble ultrafine SiO 2 such as colloidal silica, and alkali silicate. Examples include electrolytic treatment of the steel sheet in an aqueous solution.
 次いで、冷延板に脱炭焼鈍を施して脱炭焼鈍板とする。脱炭焼鈍の条件は特に限定されず、常法によることができる。脱炭焼鈍は、750℃以上、また950℃以下の温度域で行うことが脱炭が促進される温度域のため好ましい。また、上記温度域における保持時間は、鋼中のCを十分脱炭させるために10秒以上とすることが好ましい。脱炭焼鈍の上記温度域における雰囲気は、酸化性に影響するHと不活性ガスのNとを含むことが酸化性制御が容易となるため好ましい。さらに、脱炭焼鈍の少なくとも一部にて、露点が20℃以上80℃以下の湿潤雰囲気とすることが好ましい。さらに好ましくは、脱炭焼鈍において、800℃以上900℃以下の温度域にて、露点を40℃以上70℃以下とする。なお、脱炭焼鈍における温度は、鋼板表面を基準とする。 Then, the cold-rolled sheet is subjected to decarburization annealing to obtain a decarburization-annealed sheet. Conditions for decarburization annealing are not particularly limited, and conventional methods can be used. The decarburization annealing is preferably carried out in a temperature range of 750° C. or higher and 950° C. or lower because the temperature range promotes decarburization. Moreover, the holding time in the above temperature range is preferably 10 seconds or more in order to sufficiently decarburize the C in the steel. The atmosphere in the above temperature range for decarburization annealing preferably contains H2 , which affects oxidizability, and N2 , which is an inert gas, to facilitate control of oxidizability. Furthermore, at least part of the decarburization annealing is preferably performed in a moist atmosphere with a dew point of 20° C. or higher and 80° C. or lower. More preferably, in the decarburization annealing, the temperature range is 800°C or higher and 900°C or lower, and the dew point is set to 40°C or higher and 70°C or lower. In addition, the temperature in decarburization annealing is based on the steel plate surface.
 好ましくは、脱炭焼鈍を前段焼鈍と後段焼鈍とに分け、前段焼鈍は雰囲気酸化性P(HO)/P(H)が0.3以上0.7以下、後段焼鈍は雰囲気酸化性P(HO)/P(H)が0.005以上0.2以下の焼鈍雰囲気にて行う。このような条件にて脱炭焼鈍を施せば、高酸化性で形成された表面付近のファイアライトの一部がシリカに変化し、被膜密着性がさらに向上する。 Preferably, the decarburization annealing is divided into pre-annealing and post-annealing, and the pre-annealing has an atmosphere oxidizing P(H 2 O)/P(H 2 ) of 0.3 or more and 0.7 or less, and the post-annealing has an atmosphere oxidizing The annealing is performed in an atmosphere where P(H 2 O)/P(H 2 ) is 0.005 or more and 0.2 or less. By performing decarburization annealing under such conditions, part of the highly oxidized fayalite near the surface changes to silica, further improving the coating adhesion.
 次いで、脱炭焼鈍板の表裏両面に焼鈍分離剤を塗布した後、仕上焼鈍を施して方向性電磁鋼板を得る。焼鈍分離剤としては公知の焼鈍分離剤を用いることができる。特にMgOを主体とする焼鈍分離剤を、脱炭焼鈍板の表面に片面当たり2.5g/m以上塗布することが仕上焼鈍時の鋼板同士の融着を完全に防止できるため好ましい。ここで、MgOを主体とするとは、焼鈍分離剤中におけるMgOの含有量が、固形分換算で60%以上であることを意味する。焼鈍分離剤中におけるMgOの含有量は、好ましくは固形分換算で80%以上である。焼鈍分離剤を脱炭焼鈍板の表面に塗布する方法は、特に限定されず、公知の方法によればよい。例えば、焼鈍分離剤はスラリー状で脱炭焼鈍板の表面に塗布されるほか、静電塗装により乾式塗布され得る。スラリー状の焼鈍分離剤を塗布する際は、粘度上昇を抑制するために、スラリー状の焼鈍分離剤は5℃以上30℃以下の一定温度で保持されることが粘度等の液特性の変動を抑え、一定の目付量で塗布できるため好ましい。また、スラリー濃度を均一化するために、スラリー状の焼鈍分離剤について、調合用のタンクと、塗布に供するタンクとを分けることが好ましい。 Next, after applying an annealing separator to both the front and back surfaces of the decarburized annealed sheet, finish annealing is performed to obtain a grain-oriented electrical steel sheet. A known annealing separator can be used as the annealing separator. In particular, it is preferable to apply an annealing separator mainly composed of MgO to the surface of the decarburized annealed steel sheet in an amount of 2.5 g/m 2 or more per side, because this can completely prevent fusion between the steel sheets during the final annealing. Here, "mainly composed of MgO" means that the content of MgO in the annealing separator is 60% or more in terms of solid content. The content of MgO in the annealing separator is preferably 80% or more in terms of solid content. The method of applying the annealing separator to the surface of the decarburized annealed sheet is not particularly limited, and any known method may be used. For example, the annealing separator may be applied in the form of a slurry to the surface of the decarburized annealed plate, or dry applied by electrostatic coating. When applying the slurry annealing separator, in order to suppress the viscosity increase, the slurry annealing separator should be kept at a constant temperature of 5 ° C or higher and 30 ° C or lower to prevent fluctuations in liquid properties such as viscosity. It is preferable because it can be applied with a constant weight per unit area. Moreover, in order to equalize the slurry concentration, it is preferable to divide the slurry-like annealing separator into a mixing tank and a coating tank.
 次いで、焼鈍分離剤を塗布した後に脱炭焼鈍板に仕上焼鈍を施す。これにより、二次再結晶粒を発達させると共にフォルステライト被膜を形成させて、磁気特性に優れる方向性電磁鋼板を得ることが可能である。仕上焼鈍は常法によることができる。一例においては、脱炭焼鈍板をコイル状に巻き取って鋼板コイルとした状態で仕上焼鈍を施す。一般的に仕上焼鈍には長時間費やすために、鋼板コイルはアップエンド(鋼板コイルの中心軸が、地面に対して垂直)の状態で焼鈍されることが好ましい。仕上焼鈍前に鋼板コイルの周囲にバンド等を巻き付けることが好ましい。アップエンドの鋼板コイルの外巻が仕上焼鈍中に巻きほぐれることを防止することができるためである。 Next, after applying an annealing separator, the decarburized annealed sheet is subjected to finish annealing. This makes it possible to develop secondary recrystallized grains and form a forsterite coating, thereby obtaining a grain-oriented electrical steel sheet with excellent magnetic properties. Finish annealing can be carried out by a conventional method. In one example, the decarburization-annealed sheet is coiled into a steel sheet coil, and then subjected to finish annealing. Since finish annealing generally takes a long time, the steel sheet coil is preferably annealed in an up-end state (the central axis of the steel sheet coil is perpendicular to the ground). It is preferable to wind a band or the like around the steel sheet coil before the final annealing. This is because the outer winding of the up-end steel sheet coil can be prevented from unwinding during the finish annealing.
 仕上焼鈍は二次再結晶を完了させるために800℃以上に昇温させることが好ましく、フォルステライト被膜を形成させる場合は1050℃以上に昇温させることが好ましい。また、インヒビタ成分等を鋼中から純化させて良好な鉄損特性を得るために、仕上焼鈍においては、1100℃以上、また1300℃以下で3時間以上保持することが好ましい。また、仕上焼鈍においては、800℃以上の温度範囲内の少なくとも一部の雰囲気がHを含むことが純化促進及び被膜形成促進の観点で好ましい。 In the final annealing, the temperature is preferably raised to 800° C. or higher in order to complete the secondary recrystallization, and in the case of forming a forsterite film, the temperature is preferably raised to 1050° C. or higher. In addition, in order to obtain good core loss properties by purifying inhibitor components and the like from the steel, it is preferable to hold the steel at 1100° C. or higher and 1300° C. or lower for 3 hours or longer in the final annealing. Moreover, in the final annealing, it is preferable that at least a part of the atmosphere within the temperature range of 800° C. or higher contains H 2 from the viewpoint of promotion of purification and promotion of film formation.
 仕上焼鈍後には、付着した焼鈍分離剤を除去するため、水洗やブラッシング、酸洗を行なってもよい。酸洗後の方向性電磁鋼板に、さらに平坦化焼鈍を行い形状を矯正することが、鉄損低減のために有効である。方向性電磁鋼板は鋼板を積層して使用することが多いため、絶縁性を確保するために方向性電磁鋼板の表面に絶縁コーティングを施してもよい。該絶縁コーティングは、鉄損低減のために方向性電磁鋼板に張力を付与できるコーティングが好ましい。平坦化焼鈍前に該絶縁コーティングの液を塗布し、平坦化焼鈍で焼き付けを行ってもよい。他にも、バインダーを介した張力コーティング塗布方法、物理蒸着法、化学蒸着法により無機物を鋼板表層に蒸着させてコーティングする方法を採用してもよい。これらの方法によりコーティングを行えば、コーティング密着性に優れ、かつ著しい鉄損低減効果があるため好ましい。 After final annealing, water washing, brushing, or pickling may be performed to remove the adhered annealing separator. Further flattening annealing the pickled grain-oriented electrical steel sheet to correct the shape is effective for reducing iron loss. Since a grain-oriented electrical steel sheet is often used by laminating steel sheets, an insulating coating may be applied to the surface of the grain-oriented electrical steel sheet in order to ensure insulation. The insulating coating is preferably a coating capable of applying tension to the grain-oriented electrical steel sheet to reduce iron loss. The insulating coating liquid may be applied before flattening annealing, and baking may be performed by flattening annealing. Alternatively, a tension coating application method using a binder, a physical vapor deposition method, or a chemical vapor deposition method may be used to vapor-deposit an inorganic material on the steel sheet surface layer for coating. Coating by these methods is preferable because the coating adhesion is excellent and the iron loss is significantly reduced.
 なお、上記した条件以外の製造条件は、常法によることができる。 The manufacturing conditions other than the conditions described above can be according to the usual method.
(実施例1)
 質量%で、C:0.051%、Si:3.08%、Mn:0.09%、Se:0.020%、Ti:0.002%、Al:0.002%、N:0.0010%を含み、残部がFe及び不可避的不純物からなる成分組成を有する鋼スラブを、1400℃の温度にスラブ加熱し、4パスの粗圧延と6パスの仕上圧延とを施して熱延板とした。その際、粗圧延の最終パスにおける圧延温度を1200℃とし、仕上圧延の最終パスにおける圧延温度を950℃とした。さらに、仕上圧延の総圧下率を表1記載のごとく変更した。次いで、熱延板表面のスケールを酸洗で除去した後、1回目の冷間圧延の総圧下率を表1記載のごとく変更し、次いで1000℃で200秒の中間焼鈍を施した。この中間焼鈍の800℃から350℃までの冷却速度は30℃/sとした。その後、2回目の冷間圧延を行い、板厚0.23mmの冷延板に仕上げた。2回目の冷間圧延の総圧下率は、67.1~87.2%であった。引き続いて、電解脱脂を兼ねて5%オルト珪酸ナトリウム水溶液中で種々の条件にて電解処理を行って、脱炭焼鈍前の冷延板表面にSi化合物を付着させた。Si化合物の片面当たりの付着量は、表1に記載のごとく変化させた。なお、Si化合物の付着量は、上述した方法にて決定した。次いで、850℃×120秒、50%H+50%N、露点60℃(雰囲気酸化性P(HO)/P(H)=0.494)にて脱炭焼鈍を施して、脱炭焼鈍板とした。次いで、脱炭焼鈍板の表面に固形分換算で85質量%以上のMgOを含む焼鈍分離剤を片面当たり10.0g/m塗布した後、1200℃で5時間保持する仕上焼鈍を施して方向性電磁鋼板を得た。仕上焼鈍の雰囲気は、昇温中800℃まではN雰囲気とし、800℃から1050℃までは25%N+75%H雰囲気とし、1050℃以上から1200℃での保持終了までをH雰囲気とし、保持後の冷却時はAr雰囲気とした。
(Example 1)
% by mass, C: 0.051%, Si: 3.08%, Mn: 0.09%, Se: 0.020%, Ti: 0.002%, Al: 0.002%, N: 0.02% A steel slab having a chemical composition containing 0010% and the balance being Fe and unavoidable impurities is heated to a temperature of 1400 ° C. and subjected to 4 passes of rough rolling and 6 passes of finish rolling to form a hot rolled sheet. did. At that time, the rolling temperature in the final pass of rough rolling was set to 1200°C, and the rolling temperature in the final pass of finish rolling was set to 950°C. Furthermore, the total reduction in finish rolling was changed as shown in Table 1. Next, after removing the scale on the surface of the hot-rolled sheet by pickling, the total rolling reduction in the first cold rolling was changed as shown in Table 1, and then intermediate annealing was performed at 1000° C. for 200 seconds. The cooling rate from 800°C to 350°C in this intermediate annealing was set to 30°C/s. After that, cold rolling was performed for the second time to finish a cold-rolled sheet with a sheet thickness of 0.23 mm. The total rolling reduction of the second cold rolling was 67.1-87.2%. Subsequently, electrolytic treatment was performed under various conditions in a 5% sodium orthosilicate aqueous solution, also for electrolytic degreasing, to deposit a Si compound on the surface of the cold-rolled sheet before decarburization annealing. The adhesion amount of the Si compound per side was changed as shown in Table 1. Incidentally, the adhesion amount of the Si compound was determined by the method described above. Then, decarburization annealing is performed at 850° C.×120 seconds, 50% H 2 +50% N 2 , dew point 60° C. (atmospheric oxidation P(H 2 O)/P(H 2 )=0.494), A decarburized annealed sheet was obtained. Next, after applying 10.0 g/m 2 of an annealing separating agent containing 85% by mass or more of MgO in terms of solid content to the surface of the decarburized annealed sheet, finish annealing is performed at 1200 ° C. for 5 hours. A flexible electrical steel sheet was obtained. The atmosphere of the final annealing is N2 atmosphere during temperature rise up to 800°C, 25% N2 + 75% H2 atmosphere from 800°C to 1050°C, and H2 atmosphere from 1050°C to the end of holding at 1200°C . An atmosphere was used, and an Ar atmosphere was used during cooling after holding.
 得られた方向性電磁鋼板からサンプルを切り出して、被膜密着性及び磁気特性を評価した。被膜密着性はサンプルを種々の直径を有した円筒に巻き付けて、被膜が剥がれない最小径で評価した。被膜が剥がれない最小径が25mm以下であれば、被膜密着性に優れると判断した。磁気特性は、鉄損W17/50(磁束密度1.7T、50Hz励磁時の鉄損)をJIS C2550-1(2011)記載の方法で測定した。鉄損W17/50が0.900W/kg以下であれば、鉄損特性に優れると判断した。これら被膜密着性及び磁気特性の評価結果を表1に併記する。 A sample was cut out from the obtained grain-oriented electrical steel sheet, and the film adhesion and magnetic properties were evaluated. Coating adhesion was evaluated by winding samples around cylinders having various diameters and determining the minimum diameter at which the coating did not peel off. If the minimum diameter at which the coating did not peel off was 25 mm or less, it was judged that the coating adhesion was excellent. For magnetic properties, iron loss W 17/50 (magnetic flux density 1.7 T, iron loss at 50 Hz excitation) was measured by the method described in JIS C2550-1 (2011). If the iron loss W 17/50 was 0.900 W/kg or less, it was determined that the iron loss characteristics were excellent. Table 1 also shows the evaluation results of these film adhesion and magnetic properties.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 同表から明らかなように、本発明範囲内の条件では、磁気特性が良好でかつ被膜密着性も良好となることがわかる。 As is clear from the table, under the conditions within the scope of the present invention, the magnetic properties are good and the film adhesion is good.
(実施例2)
 表2に記載の成分組成を有する鋼スラブを、1425℃の温度にスラブ加熱し、1270℃から粗圧延を4パスで行い、1050℃から仕上圧延を5パスで行う熱間圧延により3.0mmの板厚を有する熱延板に仕上げた。この際、仕上圧延の総圧下率は92.5%であった。次いで、熱延板表面のスケールを酸洗で除去した後、985℃で30秒間の熱延板焼鈍を施した。985℃での保持後、800℃から350℃までの平均冷却速度を70℃/sとして冷却した。次いで、1回目の冷間圧延により、板厚を0.74mmに仕上げた。1回目の冷間圧延の総圧下率は75.3%であった。次いで、1100℃で40秒間の中間焼鈍を施した。1100℃での保持後は、800℃から350℃までの平均冷却速度を20℃/sとして冷却した。その後、2回目の冷間圧延を行い板厚0.23mmの冷延板に仕上げた。2回目の冷間圧延の総圧下率は68.9%であった。引き続いて電解脱脂を兼ねて2%メタ珪酸ナトリウム水溶液中での電解処理を行って、冷延板表面にSi化合物をSi重量換算で片面当たり1.2mg/m付着させた。次いで、前段を840℃×100秒、54%H+46%N、露点64℃(雰囲気酸化性P(HO)/P(H)=0.578)とし、後段を840℃×20秒、54%H+46%N、露点30℃(雰囲気酸化性P(HO)/P(H)=0.082)とする脱炭焼鈍を施して脱炭焼鈍板を得た。次いで、脱炭焼鈍板表面にMgOを主体とする焼鈍分離剤を片面当たり6.5g/m塗布した後、1200℃で5時間保持する仕上焼鈍を施した。仕上焼鈍の雰囲気は昇温中1000℃まではN雰囲気とし、1100℃以上から1200℃の保定終了を経て、冷却時の温度が1000℃までをH雰囲気とし、その後の冷却ではAr雰囲気とした。得られたサンプルの被膜密着性及び磁気特性を実施例1と同様に評価した。被膜密着性及び磁気特性の評価結果を表2に併記する。
(Example 2)
A steel slab having the chemical composition shown in Table 2 is heated to a temperature of 1425°C, subjected to four passes of rough rolling from 1270°C, and five passes of finish rolling from 1050°C. A hot-rolled sheet having a thickness of . At this time, the total reduction in finish rolling was 92.5%. Next, after removing scales on the surface of the hot-rolled sheet by pickling, the hot-rolled sheet was annealed at 985° C. for 30 seconds. After holding at 985°C, cooling was performed at an average cooling rate of 70°C/s from 800°C to 350°C. Then, the plate thickness was finished to 0.74 mm by the first cold rolling. The total rolling reduction of the first cold rolling was 75.3%. Then, an intermediate annealing was performed at 1100° C. for 40 seconds. After holding at 1100°C, cooling was performed at an average cooling rate of 20°C/s from 800°C to 350°C. After that, cold rolling was performed for the second time to finish a cold-rolled sheet with a sheet thickness of 0.23 mm. The total rolling reduction of the second cold rolling was 68.9%. Subsequently, an electrolytic treatment in a 2% sodium metasilicate aqueous solution was carried out for electrolytic degreasing, and a Si compound was deposited on the surface of the cold-rolled steel sheet at an amount of 1.2 mg/m 2 per side in terms of Si weight. Next, the former stage was set to 840° C.×100 seconds, 54% H 2 +46% N 2 , dew point 64° C. (atmospheric oxidation P(H 2 O)/P(H 2 )=0.578), and the latter stage was set to 840° C.×100 seconds. Decarburization annealing was performed for 20 seconds in 54% H 2 +46% N 2 with a dew point of 30° C. (atmospheric oxidation P(H 2 O)/P(H 2 )=0.082) to obtain a decarburization-annealed sheet. rice field. Next, after applying 6.5 g/m 2 of an annealing separator mainly composed of MgO to the surface of the decarburized annealed sheet, the sheet was subjected to finish annealing at 1200° C. for 5 hours. The atmosphere of the final annealing is N 2 atmosphere during temperature rise up to 1000 ° C., H 2 atmosphere from 1100 ° C. to 1200 ° C. after the end of holding, until the temperature at the time of cooling reaches 1000 ° C., and Ar atmosphere in the subsequent cooling. did. The coating adhesion and magnetic properties of the obtained samples were evaluated in the same manner as in Example 1. Table 2 also shows the evaluation results of film adhesion and magnetic properties.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 同表から明らかなように、本発明範囲内の条件では、磁気特性が良好でかつ被膜密着性も良好となることがわかる。 As is clear from the table, under the conditions within the scope of the present invention, the magnetic properties are good and the film adhesion is good.
(実施例3)
 質量%で、C:0.040%、Si:3.00%、Mn:0.07%、S:0.007%、Se:0.020%、Ti:0.001%、Al:0.002%、N:0.0015%、Mo:0.022%、及びSb:0.035%を含む鋼スラブを、1420℃の温度にスラブ加熱し、1300℃から粗圧延を4パスで行い、1100℃から仕上圧延を5パスで行う熱間圧延により、2.4mmの板厚の熱延板に仕上げた。この際、仕上圧延の総圧下率は93.1%であった。次いで、熱延板表面のスケールを酸洗で除去した後、1回目の冷間圧延により板厚を0.65mmに仕上げた。1回目の冷間圧延の総圧下率は72.9%であった。次いで、1060℃で80秒間の中間焼鈍を施した。1060℃での保持後、800℃から350℃までの冷却速度は40℃/sとして冷却した。その後、2回目の冷間圧延を行い、板厚0.27mmの冷延板に仕上げた。2回目の冷間圧延の総圧下率は58.5%であった。引き続いて、3%オルト系酸ナトリウム水溶液中でブラッシングによる脱脂を行い、次いで5%HCl中で60℃、3秒間の酸洗を行い、さらに3%オルト珪酸ナトリウム水溶液中での電解処理を行って、冷延板表面にSi化合物をSi重量換算で片面当たり3.5mg/m付着させた。次いで、表3に記載の条件で種々の脱炭焼鈍を施した。次いで脱炭焼鈍板の表面に固形分換算で85質量%以上のMgOを含む焼鈍分離剤を片面当たり4.0g/m塗布した後、1200℃で5時間保持する仕上焼鈍を施して方向性電磁鋼板を得た。仕上焼鈍の雰囲気は、昇温中900℃まではN雰囲気とし、900℃以上から1200℃の保定終了を経て、冷却時の温度が1000℃までをH雰囲気とし、その後の冷却ではAr雰囲気とした。得られたサンプルの被膜密着性及び磁気特性を実施例1と同様に評価した。本実施例は最終板厚が実施例1と異なるため、板厚依存性が顕著な鉄損W17/50は1.000W/kg以下であれば、鉄損特性に優れると判断した。得られたサンプルの被膜密着性及び磁気特性の評価結果を表3に併記する。
(Example 3)
% by mass, C: 0.040%, Si: 3.00%, Mn: 0.07%, S: 0.007%, Se: 0.020%, Ti: 0.001%, Al: 0.001% 002%, N: 0.0015%, Mo: 0.022%, and Sb: 0.035%, the steel slab is slab-heated to a temperature of 1420 ° C., and rough rolling is performed from 1300 ° C. in four passes, A hot-rolled sheet with a thickness of 2.4 mm was finished by hot-rolling from 1100° C. with 5 passes of finish rolling. At this time, the total reduction in finish rolling was 93.1%. Next, after removing scales on the surface of the hot-rolled sheet by pickling, the sheet was finished to a sheet thickness of 0.65 mm by the first cold rolling. The total rolling reduction of the first cold rolling was 72.9%. Then, an intermediate annealing was performed at 1060° C. for 80 seconds. After holding at 1060°C, cooling was performed at a cooling rate of 40°C/s from 800°C to 350°C. After that, a second cold rolling was performed to finish a cold-rolled sheet having a thickness of 0.27 mm. The total rolling reduction of the second cold rolling was 58.5%. Subsequently, it is degreased by brushing in a 3% sodium orthoate aqueous solution, then pickled in 5% HCl at 60° C. for 3 seconds, and further electrolytically treated in a 3% sodium orthosilicate aqueous solution. , a Si compound was deposited on the surface of the cold-rolled sheet at 3.5 mg/m 2 per side in terms of Si weight. Then, various decarburization annealing was performed under the conditions shown in Table 3. Next, an annealing separator containing 85% by mass or more of MgO in terms of solid content was applied to the surface of the decarburized annealed sheet at 4.0 g/m 2 per side, and then finish annealing was performed at 1200 ° C. for 5 hours to obtain a directional property. An electromagnetic steel sheet was obtained. The atmosphere of the final annealing is an N2 atmosphere during the temperature rise up to 900°C, an H2 atmosphere from 900°C or higher to 1200°C, and an H2 atmosphere until the cooling temperature reaches 1000°C, and an Ar atmosphere in the subsequent cooling. and The coating adhesion and magnetic properties of the obtained samples were evaluated in the same manner as in Example 1. Since the final plate thickness of this example is different from that of Example 1, it was determined that the iron loss characteristic is excellent if the iron loss W 17/50 , which is significantly dependent on the plate thickness, is 1.000 W/kg or less. Table 3 shows the evaluation results of the film adhesion and magnetic properties of the obtained samples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 同表から明らかなように、本発明範囲内の条件で磁気特性が良好でかつ被膜密着性も良好となることがわかる。また、脱炭焼鈍の前段焼鈍が雰囲気酸化性P(HO)/P(H)が0.3以上0.7以下、かつ後段焼鈍が雰囲気酸化性P(HO)/P(H)が0.005以上0.2以下の焼鈍雰囲気であれば、特に被膜密着性に優れることがわかった。 As is clear from the table, the magnetic properties are good and the film adhesion is good under the conditions within the range of the present invention. In addition, the pre-annealing of the decarburization annealing has an atmosphere-oxidizing P(H 2 O)/P(H 2 ) of 0.3 or more and 0.7 or less, and the post-annealing has an atmosphere-oxidizing P(H 2 O)/P( H 2 ) was found to be particularly excellent in coating adhesion when the annealing atmosphere is 0.005 or more and 0.2 or less.

Claims (6)

  1.  質量%で、
     C:0.01%以上0.10%以下、
     Si:2.0%以上4.0%以下、
     Mn:0.01%以上0.30%以下、
     Ti:0.010%以下、
     Al:0.010%以下及び
     N:0.0050%以下を含有し、さらに
     S及びSeのうちいずれか1種または2種を合計で0.005%以上0.10%以下含有し、残部がFe及び不可避的不純物からなる成分組成を有する鋼スラブを、1300℃以上にスラブ加熱し、熱間圧延を施して熱延板とし、
     次いで、前記熱延板に熱延板焼鈍を施しもしくは施すことなく、任意で中間焼鈍を挟む1回以上の冷間圧延を施して冷延板とし、
     次いで、前記冷延板に、脱炭焼鈍を施して脱炭焼鈍板とし、
     次いで、前記脱炭焼鈍板の表面に焼鈍分離剤を塗布した後、仕上焼鈍を施して方向性電磁鋼板を得る、方向性電磁鋼板の製造方法において、
     前記熱間圧延における仕上圧延の総圧下率を83%以上とし、かつ1回目の前記冷間圧延の総圧下率を50%以上とし、
     前記脱炭焼鈍前の前記冷延板の表面にSiを含有する化合物をSi重量換算で片面当たり0.1mg/m以上7.0mg/m以下付着させる、方向性電磁鋼板の製造方法。
    in % by mass,
    C: 0.01% or more and 0.10% or less,
    Si: 2.0% or more and 4.0% or less,
    Mn: 0.01% or more and 0.30% or less,
    Ti: 0.010% or less,
    Contains Al: 0.010% or less and N: 0.0050% or less, further contains one or two of S and Se in a total of 0.005% or more and 0.10% or less, and the balance is A steel slab having a chemical composition consisting of Fe and unavoidable impurities is slab-heated to 1300 ° C. or higher and hot-rolled to form a hot-rolled sheet,
    Then, the hot-rolled sheet is cold-rolled one or more times with or without hot-rolled sheet annealing, optionally with intermediate annealing, to obtain a cold-rolled sheet;
    Then, the cold-rolled sheet is subjected to decarburization annealing to obtain a decarburization-annealed sheet,
    Next, in the method for producing a grain-oriented electrical steel sheet, an annealing separator is applied to the surface of the decarburized annealed sheet, and then finish annealing is performed to obtain a grain-oriented electrical steel sheet,
    The total rolling reduction of the finish rolling in the hot rolling is 83% or more, and the total rolling reduction of the first cold rolling is 50% or more,
    A method for producing a grain-oriented electrical steel sheet, wherein a compound containing Si is attached to the surface of the cold-rolled steel sheet before the decarburization annealing in an amount of 0.1 mg/m 2 or more and 7.0 mg/m 2 or less per side in terms of Si weight.
  2.  前記脱炭焼鈍を前段焼鈍と後段焼鈍とに分け、
     前記前段焼鈍は雰囲気酸化性P(HO)/P(H)が0.3以上0.7以下、
     前記後段焼鈍は雰囲気酸化性P(HO)/P(H)が0.005以上0.2以下の焼鈍雰囲気にて行う、請求項1に記載の方向性電磁鋼板の製造方法。
    The decarburization annealing is divided into pre-stage annealing and post-stage annealing,
    In the pre-annealing, the atmosphere oxidation P(H 2 O)/P(H 2 ) is 0.3 or more and 0.7 or less,
    2. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein said post-annealing is performed in an annealing atmosphere in which the ratio of atmospheric oxidation P( H2O )/P( H2 ) is 0.005 or more and 0.2 or less.
  3.  前記熱間圧延では、前記スラブ加熱後、前記鋼スラブに1100℃以上1300℃以下で1パス以上の粗圧延を施し、続いて800℃以上1100℃以下で2パス以上の仕上圧延を施し、巻取り温度を400℃以上750℃以下とし、
     前記熱延板焼鈍では、熱延板を、800℃以上1250℃以下で5秒以上保持した後、800℃から350℃までの平均冷却速度を5℃/s以上100℃/s以下として冷却し、
     前記冷間圧延の総圧下率を50%以上92%以下とし、かつ各回の前記冷間圧延の総圧下率を50%以上92%以下とし、
     前記中間焼鈍では、800℃以上1250℃以下の温度域で5秒以上保持した後、800℃から350℃までの平均冷却速度を5℃/s以上100℃/s以下として冷却し、
     前記脱炭焼鈍では、HとNとを含む雰囲気にて、前記冷延板を750℃以上950℃以下にて10秒以上保持し、
     前記仕上焼鈍前に、MgOを含む前記焼鈍分離剤を前記脱炭焼鈍板の表面に片面当たり2.5g/m以上塗布し、
     前記仕上焼鈍では、800℃以上の温度範囲内の少なくとも一部における雰囲気がHを含む条件にて、前記脱炭焼鈍板を1050℃以上1300℃以下で3時間以上保持する、請求項1又は2に記載の方向性電磁鋼板の製造方法。
    In the hot rolling, after the slab is heated, the steel slab is subjected to one pass or more of rough rolling at 1100° C. or more and 1300° C. or less, followed by two passes or more of finish rolling at 800° C. or more and 1100° C. or less. The taking temperature is 400° C. or higher and 750° C. or lower,
    In the hot-rolled sheet annealing, the hot-rolled sheet is held at 800° C. or higher and 1250° C. or lower for 5 seconds or longer, and then cooled from 800° C. to 350° C. at an average cooling rate of 5° C./s or higher and 100° C./s or lower. ,
    The total rolling reduction of the cold rolling is 50% or more and 92% or less, and the total rolling reduction of the cold rolling each time is 50% or more and 92% or less,
    In the intermediate annealing, after holding in a temperature range of 800° C. or higher and 1250° C. or lower for 5 seconds or longer, cooling is performed at an average cooling rate of 5° C./s or higher and 100° C./s or lower from 800° C. to 350° C.,
    In the decarburization annealing, the cold-rolled sheet is held at 750° C. or more and 950° C. or less for 10 seconds or more in an atmosphere containing H 2 and N 2 ,
    Before the finish annealing, the annealing separator containing MgO is applied to the surface of the decarburized annealed sheet in an amount of 2.5 g/m 2 or more per side,
    2. The decarburization-annealed sheet is held at 1050° C. or higher and 1300° C. or lower for 3 hours or more under conditions in which the atmosphere in at least part of the temperature range of 800° C. or higher contains H2 in the final annealing, or 3. The method for producing a grain-oriented electrical steel sheet according to 2.
  4.  前記成分組成は、さらに質量%又は質量ppmで、
     Ni:0%以上1.50%以下、
     Cr:0%以上0.50%以下、
     Cu:0%以上0.50%以下、
     P :0%以上0.50%以下、
     Sb:0%以上0.50%以下、
     Sn:0%以上0.50%以下、
     Bi:0%以上0.50%以下、
     Mo:0%以上0.50%以下、
     B :0ppm以上25ppm以下、
     Nb:0%以上0.020%以下、
     V :0%以上0.010%以下及び
     Zr:0%以上0.10%以下からなる群から選ばれる1種または2種以上を含有する、請求項1から3のいずれか1項に記載の方向性電磁鋼板の製造方法。
    The component composition is further mass % or mass ppm,
    Ni: 0% or more and 1.50% or less,
    Cr: 0% or more and 0.50% or less,
    Cu: 0% or more and 0.50% or less,
    P: 0% or more and 0.50% or less,
    Sb: 0% or more and 0.50% or less,
    Sn: 0% or more and 0.50% or less,
    Bi: 0% or more and 0.50% or less,
    Mo: 0% or more and 0.50% or less,
    B: 0 ppm or more and 25 ppm or less,
    Nb: 0% or more and 0.020% or less,
    V: 0% or more and 0.010% or less and Zr: 0% or more and 0.10% or less, containing one or more selected from the group consisting of 0% or more and 0.10% or less, according to any one of claims 1 to 3 A method for producing a grain-oriented electrical steel sheet.
  5.  前記成分組成は、さらに質量%で、
     Co:0%以上0.050%以下及び
     Pb:0%以上0.0100%以下からなる群から選ばれる1種または2種を含有する、請求項1から4のいずれか1項に記載の方向性電磁鋼板の製造方法。
    The component composition is further mass %,
    Co: 0% or more and 0.050% or less and Pb: 0% or more and 0.0100% or less, containing one or two selected from the group consisting of 0% or more and 0.0100% or less. A method for producing a flexible electrical steel sheet.
  6.  前記成分組成は、さらに質量%で、
     As:0%以上0.0200%以下、
     Zn:0%以上0.020%以下、
     W:0%以上0.0100%以下
     Ge:0%以上0.0050%以下及び
     Ga:0%以上0.0050%以下からなる群から選ばれる1種または2種以上を含有する、請求項1から5のいずれか1項に記載の方向性電磁鋼板の製造方法。
     
    The component composition is further mass %,
    As: 0% or more and 0.0200% or less,
    Zn: 0% or more and 0.020% or less,
    W: 0% or more and 0.0100% or less, Ge: 0% or more and 0.0050% or less, and Ga: 0% or more and 0.0050% or less, one or more selected from the group consisting of claim 1 6. The method for producing a grain-oriented electrical steel sheet according to any one of 5 to 6.
PCT/JP2022/021832 2021-05-28 2022-05-27 Method for manufacturing grain-oriented electromagnetic steel sheet WO2022250159A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022573141A JP7255761B1 (en) 2021-05-28 2022-05-27 Manufacturing method of grain-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021090679 2021-05-28
JP2021-090679 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022250159A1 true WO2022250159A1 (en) 2022-12-01

Family

ID=84228380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021832 WO2022250159A1 (en) 2021-05-28 2022-05-27 Method for manufacturing grain-oriented electromagnetic steel sheet

Country Status (2)

Country Link
JP (1) JP7255761B1 (en)
WO (1) WO2022250159A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120215A (en) * 1990-03-02 1992-04-21 Kawasaki Steel Corp Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic and surface characteristic
JPH059580A (en) * 1991-06-27 1993-01-19 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet extremely excellent in magnetic property
JPH0776733A (en) * 1993-06-30 1995-03-20 Kenichi Arai Production of grain-oriented silicon steel sheet high in magnetic flux density
JPH08143970A (en) * 1994-11-24 1996-06-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
JPH08143963A (en) * 1994-11-24 1996-06-04 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JPH11264019A (en) * 1998-03-18 1999-09-28 Kawasaki Steel Corp Production of grain oriented magnetic steel sheet
JP2011246750A (en) * 2010-05-25 2011-12-08 Nippon Steel Corp Method for producing low iron loss unidirectional magnetic steel sheet
JP2013139629A (en) * 2011-12-06 2013-07-18 Jfe Steel Corp Method for producing low iron loss grain-oriented magnetic steel sheet
WO2015199211A1 (en) * 2014-06-26 2015-12-30 新日鐵住金株式会社 Electrical steel sheet
JP2017106057A (en) * 2015-12-08 2017-06-15 新日鐵住金株式会社 Production method of grain oriented magnetic steel sheet
WO2020149347A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electromagnetic steel sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120215A (en) * 1990-03-02 1992-04-21 Kawasaki Steel Corp Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic and surface characteristic
JPH059580A (en) * 1991-06-27 1993-01-19 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet extremely excellent in magnetic property
JPH0776733A (en) * 1993-06-30 1995-03-20 Kenichi Arai Production of grain-oriented silicon steel sheet high in magnetic flux density
JPH08143970A (en) * 1994-11-24 1996-06-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
JPH08143963A (en) * 1994-11-24 1996-06-04 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JPH11264019A (en) * 1998-03-18 1999-09-28 Kawasaki Steel Corp Production of grain oriented magnetic steel sheet
JP2011246750A (en) * 2010-05-25 2011-12-08 Nippon Steel Corp Method for producing low iron loss unidirectional magnetic steel sheet
JP2013139629A (en) * 2011-12-06 2013-07-18 Jfe Steel Corp Method for producing low iron loss grain-oriented magnetic steel sheet
WO2015199211A1 (en) * 2014-06-26 2015-12-30 新日鐵住金株式会社 Electrical steel sheet
JP2017106057A (en) * 2015-12-08 2017-06-15 新日鐵住金株式会社 Production method of grain oriented magnetic steel sheet
WO2020149347A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JPWO2022250159A1 (en) 2022-12-01
JP7255761B1 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
US9214275B2 (en) Method for manufacturing grain oriented electrical steel sheet
JP2013542323A (en) Method for producing insulating coating on directional electromagnetic flat steel product and electromagnetic flat steel product coated with the insulating coating
WO2016067636A1 (en) Production method for oriented electromagnetic steel sheet
JP7299511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4962516B2 (en) Method for producing grain-oriented electrical steel sheet
JP5228563B2 (en) Method for producing grain-oriented electrical steel sheet
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149337A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP7255761B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7299512B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5854236B2 (en) Method for producing grain-oriented electrical steel sheet
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
EP4335938A1 (en) Method for producing grain-oriented electromagnetic steel sheet
WO2022250160A1 (en) Method for producing grain-oriented electrical steel sheet
WO2022250156A1 (en) Method for producing grain-oriented electromagnetic steel sheet
WO2022250157A1 (en) Oriented magnetic steel sheet manufacturing method
JP2006213953A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
WO2022250161A1 (en) Method for producing grain-oriented electrical steel sheet
JP7264322B1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020149323A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2019085632A (en) Grain-oriented electrical steel sheet and production method for the same
JP7269504B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020149346A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP4259351B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022573141

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE