WO2022249865A1 - Copolymer containing vinyl aromatic hydrocarbon monomeric units and conjugated diene monomeric units - Google Patents

Copolymer containing vinyl aromatic hydrocarbon monomeric units and conjugated diene monomeric units Download PDF

Info

Publication number
WO2022249865A1
WO2022249865A1 PCT/JP2022/019595 JP2022019595W WO2022249865A1 WO 2022249865 A1 WO2022249865 A1 WO 2022249865A1 JP 2022019595 W JP2022019595 W JP 2022019595W WO 2022249865 A1 WO2022249865 A1 WO 2022249865A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
mass
myrcene
monomer unit
conjugated diene
Prior art date
Application number
PCT/JP2022/019595
Other languages
French (fr)
Japanese (ja)
Inventor
泰政 後藤
伶奈 児島
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023523388A priority Critical patent/JPWO2022249865A1/ja
Publication of WO2022249865A1 publication Critical patent/WO2022249865A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/22Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having three or more carbon-to-carbon double bonds

Definitions

  • the present invention relates to a copolymer containing an aromatic vinyl hydrocarbon-based monomer unit and a conjugated diene-based monomer unit, which has an excellent balance of rigidity, impact resistance, and moldability.
  • a resin composition containing a block copolymer composed of an aromatic vinyl hydrocarbon and a conjugated diene and having a relatively high content ratio of the aromatic vinyl hydrocarbon, particularly a block copolymer of styrene and butadiene, has rigidity and impact resistance. It is widely used for injection molding applications and extrusion molding applications such as sheets and films. Above all, it is required to improve impact resistance without impairing physical properties such as rigidity.
  • Patent Document 1 reports a block copolymer of an aromatic vinyl hydrocarbon and a conjugated diene in which the content ratio of the aromatic vinyl hydrocarbon and the conjugated diene and the block ratio of the aromatic vinyl hydrocarbon are controlled within a certain range. .
  • Patent Document 2 reports a block copolymer in which the arrangement of polymerized portions obtained by random copolymerization of an aromatic vinyl hydrocarbon and a conjugated diene is controlled.
  • Patent Document 3 reports that the content ratio of aromatic vinyl hydrocarbon is in the range of 50% by weight or less.
  • An object of the present invention is to provide a copolymer containing an aromatic vinyl hydrocarbon-based monomer unit and a conjugated diene-based monomer unit, which has an excellent balance of rigidity, impact resistance, and moldability. do.
  • a copolymer containing a myrcene monomer unit as a conjugated diene monomer unit is used to control the content of aromatic vinyl hydrocarbon monomer units and conjugated diene monomer units, as well as the content of myrcene monomer units, within a predetermined range. It was found that the balance between impact resistance and moldability can be greatly improved.
  • the present invention (1) A copolymer containing an aromatic vinyl hydrocarbon-based monomer unit and a conjugated diene-based monomer unit, When the total amount of the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit is 100% by mass, the copolymer has 60 to 85 mass of the aromatic vinyl hydrocarbon-based monomer unit.
  • the conjugated diene-based monomer unit includes a myrcene monomer unit, Containing 1 to 40% by mass of myrcene monomer units in 100% by mass of the copolymer, copolymer, (2) The copolymer according to (1), wherein the weight average molecular weight of the copolymer obtained by gel permeation chromatography using a differential refractive index method is 50,000 to 500,000, (3) the copolymer is When the total amount of the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit is 100% by mass, 65 to 80% by mass of the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit Containing 20 to 35% by mass of monomer units, The conjugated diene-based monomer unit includes a myrcene monomer unit, The copolymer according to (1) or (2), which contains 1 to 35% by mass of myr
  • the present invention contains an aromatic vinyl hydrocarbon-based monomer unit and a conjugated diene-based monomer unit, which have significantly improved balance between impact resistance and moldability without impairing rigidity.
  • a copolymer can be provided.
  • the copolymer (P) of the present embodiment contains aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units. Further, the copolymer (P) of the present embodiment contains monomer units other than aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units within a range that does not impair the effects of the present invention. may contain. The monomer units constituting the copolymer (P) of the present embodiment are described below.
  • the aromatic vinyl hydrocarbon-based monomer unit is a structural unit of the copolymer derived from the aromatic vinyl hydrocarbon-based monomer used for copolymerization.
  • aromatic vinyl hydrocarbon monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene and ⁇ -methylstyrene. , ⁇ -methyl-p-methylstyrene and the like. In one aspect, among these, styrene is preferable from the viewpoint of rigidity and moldability.
  • These aromatic vinyl hydrocarbon monomers may be used alone or in combination of two or more.
  • the copolymer (P) contains 60 to 85% by mass of aromatic vinyl hydrocarbon-based monomer units in 100% by mass of the copolymer (P). More preferably, it contains 65 to 80% by mass, more preferably 70 to 80% by mass, of aromatic vinyl hydrocarbon monomer units. Specifically, for example, it is 60, 65, 70, 75, 80, or 85% by mass, and may be within a range between any two of the numerical values exemplified here. If the amount of the aromatic vinyl hydrocarbon-based monomer unit is less than 65% by mass, the rigidity may be insufficient, and if it exceeds 85% by mass, the impact resistance may be reduced depending on the content of other components. It may be insufficient.
  • the content of aromatic vinyl hydrocarbon-based monomer units in the copolymer (P) is calculated from the mass of the aromatic vinyl hydrocarbon-based monomer with respect to the mass of all the monomers used in the polymerization. It can also be calculated by performing, for example, 1H-NMR measurement on the obtained copolymer.
  • a conjugated diene-based monomer unit is a structural unit of a copolymer derived from a conjugated diene-based monomer used for copolymerization.
  • the conjugated diene-based monomer unit according to this embodiment contains a myrcene monomer unit.
  • the conjugated diene-based monomer unit according to the present embodiment may contain a conjugated diene-based monomer unit derived from a conjugated diene-based monomer other than myrcene within a range that does not impair the effects of the present invention.
  • conjugated diene monomers other than myrcene examples include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3 -pentadiene, 1,3-hexadiene, farnesene and the like. In one embodiment, 1,3-butadiene is preferred among these from the viewpoint of impact resistance.
  • conjugated diene monomers other than myrcene may be used alone or in combination of two or more.
  • the copolymer (P) contains 15 to 40% by mass of conjugated diene-based monomer units in 100% by mass of the copolymer (P). More preferably, it contains 20 to 35% by mass of conjugated diene-based monomer units, and more preferably 20 to 30% by mass. Specifically, it is, for example, 15, 20, 25, 30, 35, or 40% by mass, and may be within a range between any two of the numerical values exemplified here. If the amount of the conjugated diene-based monomer unit is less than 10% by mass, molding processability and impact resistance may be insufficient. may be insufficient.
  • the content of the conjugated diene-based monomer unit in the copolymer (P) is calculated from the mass of the conjugated diene-based monomer with respect to the mass of all the monomers used in the polymerization. It can also be calculated by performing, for example, 1H-NMR measurement on the obtained copolymer.
  • Myrcene used in the present embodiment includes ⁇ -myrcene (2-methyl-6-methyleneocta-1,7-diene) and ⁇ -myrcene (7-methyl-3-methyleneocta-1,6-diene). It can contain both. In one aspect, it is preferred to use ⁇ -myrcene.
  • the copolymer (P) contains 1 to 40% by mass of myrcene monomer units in 100% by mass of the copolymer (P). More preferably, it contains 1 to 35% by mass of myrcene monomer units, and more preferably 1 to 30% by mass. Specifically, for example, it is 1, 5, 10, 15, 20, 25, 30, 35, or 40% by mass, and may be within a range between any two of the numerical values exemplified here. If the amount of myrcene monomer units is less than 1% by mass, impact resistance may be insufficient, and if it exceeds 40% by mass, rigidity may be insufficient due to the balance with the content of other components.
  • the content of myrcene monomer units in the copolymer (P) is calculated from the mass of myrcene relative to the mass of all monomers used in the polymerization. It can also be calculated by performing, for example, 1H-NMR measurement on the obtained copolymer.
  • the copolymer (P) of the present embodiment may contain monomer units other than aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units within a range that does not impair the effects of the present invention. good.
  • the content of monomer units other than the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit is less than 10% by mass in 100% by mass of the copolymer (P).
  • the copolymer (P) consists essentially of aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units.
  • the copolymer (P) of the present embodiment is preferably a block copolymer.
  • the structure of the block copolymer includes a polymer block containing aromatic vinyl hydrocarbon monomer units, a polymer block containing myrcene monomer units, and a conjugated diene monomer unit other than myrcene monomer units. Polymer blocks containing mer units are linked in a linear, branched, or star configuration.
  • the overall structure of the copolymer (P) of the present embodiment is preferably a structure having two or more polymer blocks.
  • polymer blocks there are no particular restrictions on the type of polymer blocks or the order in which the polymer blocks are linked, but in the case of a linear block copolymer, for example, from the viewpoint of impact resistance, aromatic vinyl hydrocarbon monomers are attached to both ends. It is preferred that the polymer blocks containing the mer units are arranged.
  • the polymer block in addition to a polymer block consisting only of a single monomer unit, one or more types selected from aromatic vinyl monomer units, myrcene monomer units, and other than myrcene monomer units A polymer having a random block portion in which monomer units are randomly polymerized, or a tapered block portion in which monomer units are polymerized in a tapered shape having a composition distribution can be used.
  • a copolymer in which polymer blocks are linked in a branched or star shape can be obtained by using a polyfunctional initiator or coupling agent.
  • a copolymer having a random block portion can be obtained by controlling the supply rate of each monomer when polymerizing a block copolymer.
  • the "polymer block containing a myrcene monomer unit" of the copolymer (P) of the present embodiment means that a myrcene monomer unit is added to 100% by mass of a polymer block containing a myrcene monomer unit.
  • the block preferably contains 80 to 100% by mass, more preferably 90 to 100% by mass of myrcene monomer units. Specifically, it may be, for example, 80, 85, 90, 95, or 100% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the block containing myrcene monomer units may be a block containing substantially only myrcene monomer units.
  • the "polymer block containing myrcene monomer units" in the present embodiment means that 0 to 20 monomer units other than myrcene monomer units are contained in 100% by mass of the polymer block containing myrcene monomer units. % by mass.
  • Such monomer units other than myrcene monomer units are monomer units derived from impurities contained in myrcene, for example, monomer units derived from terpene oxide and dimers of myrcene
  • a monomer unit that The "polymer block containing myrcene monomer units” in the present embodiment may contain monomer units other than the myrcene monomer units and the monomer units derived from impurities contained in the myrcene.
  • the content of such monomer units is preferably less than 5% by mass, more preferably less than 3% by mass in 100% by mass of polymer blocks containing myrcene monomer units.
  • a polymer block containing an aromatic vinyl hydrocarbon-based monomer unit means that an aromatic vinyl hydrocarbon-based monomer is contained in 100 mass% of a polymer block containing an aromatic vinyl hydrocarbon-based monomer unit.
  • the block preferably contains 95 to 100% by mass of body units, more preferably 99 to 100% by mass of aromatic vinyl hydrocarbon monomer units. Specifically, it is, for example, 95, 96, 97, 98, 99, or 100% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the block containing the aromatic vinyl hydrocarbon-based monomer unit may be a block containing substantially only the aromatic vinyl hydrocarbon-based monomer unit.
  • a polymer block containing a conjugated diene monomer unit other than a myrcene monomer unit is a polymer block containing a conjugated diene monomer unit other than a myrcene monomer unit.
  • the block preferably contains 95 to 100% by mass of conjugated diene monomer units other than myrcene monomer units, more preferably 99 to 100 mass% of conjugated diene monomer units other than myrcene monomer units. % by mass.
  • the block containing conjugated diene monomer units other than myrcene monomer units may be a block containing substantially only conjugated diene monomer units other than myrcene monomer units.
  • the weight average molecular weight (Mw) of the copolymer (P) of the present embodiment is preferably 50,000 to 500,000, more preferably 100,000 to 400,000 from the viewpoint of impact resistance and moldability. Specifically, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 500,000 are preferable, and may be within a range between any two of the numerical values exemplified here.
  • the weight average molecular weight (Mw) of the copolymer (P) in the present embodiment is a polystyrene-equivalent value measured by gel permeation chromatography (GPC), for example, obtained by measuring under the following conditions. It is.
  • the copolymer (P) of the present embodiment is obtained by polymerizing monomers by a known polymerization method, such as anionic polymerization, cationic polymerization, and living radical polymerization. Anionic polymerization is preferred from the viewpoint of structural control of the copolymer.
  • Anionic polymerization for producing the copolymer (P) of the present embodiment can be carried out by, for example, adding a polymerization initiator to the reaction solvent and then sequentially adding monomers to be polymerized.
  • reaction solvent used in the anionic polymerization of the present embodiment examples include aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, octane, and isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane. and aromatic hydrocarbons such as benzene, toluene, ethylbenzene and xylene.
  • a known anionic polymerization initiator can be used as the polymerization initiator used in the anionic polymerization of the present embodiment.
  • one or more selected from lithium salts or sodium salts of biphenyl, naphthalene, pyrene, etc., and organolithium compounds are preferable, and from the viewpoint of reactivity, organolithium compounds are preferable.
  • Organolithium compounds are compounds with one or more lithium atoms bound in the molecule.
  • organic lithium compounds include monofunctional organic lithium compounds such as ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium and tert-butyllithium, hexamethylenedilithium, butadienyl
  • Polyfunctional organic lithium compounds such as dilithium and isoprenyldilithium can be used.
  • living anionic polymerization using an organolithium compound as an initiator almost all of the monomers subjected to the polymerization reaction can be converted into monomer units in the polymer. Therefore, by adding the next monomer to the reaction system after the monomer is completely consumed in the polymerization reaction, the copolymer (P) in which the blocks are linked in the desired order can be obtained.
  • the reaction temperature for carrying out the anionic polymerization of the present embodiment is preferably 30 to 90°C. If the temperature is less than 30°C, the reaction rate may decrease significantly, and if it exceeds 90°C, the initiator may be deactivated.
  • the copolymer (P) thus obtained is deactivated by adding a polymerization terminator such as water, alcohol or carbon dioxide in an amount sufficient to deactivate the active terminals.
  • Methods for recovering the copolymer (P) from the obtained copolymer solution include (A) a method of precipitating with a poor solvent such as methanol, and (B) a method of precipitating by evaporating the solvent with a heating roll or the like ( (Drum dryer method), (C) a method of concentrating the solution with a concentrator and then removing the solvent with a vented extruder, (D) dispersing the solution in water and blowing steam to remove the solvent by heating to form a copolymer Any method such as a method of recovering (steam stripping method) can be adopted.
  • a poor solvent such as methanol
  • the copolymer (P) of the present embodiment may be used in combination with additives as long as the effects are not impaired.
  • additives such as stabilizers, lubricants, processing aids, antiblocking agents, antistatic agents, antifog agents, weatherability improvers, softeners, plasticizers, pigments, mineral oils, fillers, flame retardants and the like can be added.
  • Stabilizers include, for example, 2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)ethyl]-4,6-di-tert-pentylphenyl acrylate, 2-tert-butyl-6 -(3-tert-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate, octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,6 - phenolic antioxidants such as di-tert-butyl-4-methylphenol, 2,2-methylenebis(4,6-di-tert-butylphenyl)octyl phosphite, trisnonylphenyl phosphite, bis(2, Phosphorus antioxidants such as 6-di-tert-butyl-4-methylphenyl)pentaerythritol-di-phosphite
  • Lubricants, processing aids, antiblocking agents, antistatic agents, antifogging agents, etc. include saturated fatty acids such as palmitic acid, stearic acid and behenic acid, fatty acid esters such as octyl palmitate and octyl stearate, and pentaerythritol.
  • Fatty acid esters, fatty acid amides such as erucic acid amide, oleic acid amide, stearic acid amide, behenic acid amide, ethylene bis-stearic acid amide, glycerin-mono-fatty acid ester, glycerin-di-fatty acid ester, etc.
  • sorbitan-mono-palmitate sorbitan-mono-stearate and other sorbitan fatty acid esters
  • higher alcohols such as myristyl alcohol, cetyl alcohol and stearyl alcohol
  • HIPS high-impact polystyrene
  • Weather resistance improvers include benzotriazoles such as 2-(2'-hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2,4-di-tert-butylphenyl -3',5'-di-tert-butyl-4'-hydroxybenzoate and other salicylates, 2-hydroxy-4-n-octoxybenzophenone and other benzophenone UV absorbers, tetrakis (2,2,6, Examples include hindered amine weather resistance improvers such as 6-tetramethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate. Furthermore, liquid paraffin such as white oil and mineral oil, silicone oil, microcrystalline wax, etc.
  • additives are preferably 7 parts by mass or less, more preferably 5 parts by mass or less, particularly preferably in the range of 0 to 3 parts by mass with respect to 100 parts by mass of the copolymer (P) of the present embodiment. It is preferable to use
  • the copolymer (P) according to the present embodiment can be produced, for example, by the following steps, but is not limited thereto. Also, by adding the next monomer after the monomer to be polymerized is consumed, a block copolymer arranged in a desired order can be obtained. The order of addition of the monomers can be appropriately changed according to the desired block structure, and is not limited to the following. When the purity of myrcene is low, it is preferable to adjust the purity to 80% or more by purification in advance. Purification means include, for example, distillation. (1) Place solvent and randomizer in a reaction vessel. (2) Add a polymerization initiator into the reaction vessel.
  • the copolymer (P) of the present embodiment can be mixed with other resins to form a resin composition, which can be suitably used as a sheet, film, or injection-molded product.
  • the resin to be mixed with the copolymer (P) include GP polystyrene, high impact polystyrene, block copolymers of styrene and butadiene, and the like. These can be kneaded and molded by known methods to obtain sheets, films and molded articles.
  • Example 2 Anion polymerization was carried out in the same manner as in Example 1 except that 1500 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of ⁇ -myrcene added was 69.0 kg, and the addition of 1,3-butadiene was omitted. A copolymer having an "S-M-S structure" having a block and a ⁇ -myrcene block was obtained. The weight average molecular weight (Mw) was 162,000. Table 1 shows the analysis results of the obtained copolymer.
  • Example 3 2200 mL of a 10 mass% cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 40.0 kg, the amount of ⁇ -myrcene added was 57.5 kg, and the addition of 1,3-butadiene was omitted.
  • Anionic polymerization was carried out in the same manner as in Example 1 to obtain a copolymer having an "SMS structure" having a polystyrene block and a ⁇ -myrcene block.
  • the weight average molecular weight (Mw) was 105,000. Table 1 shows the analysis results of the obtained copolymer.
  • Example 4 2100 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added for the first time was 50.0 kg, the amount of ⁇ -myrcene added was 34.5 kg, the amount of 1,3-butadiene added was 20.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added for the second time was 100.0 kg, and a "SMB -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 113,000. Table 1 shows the analysis results of the obtained copolymer.
  • Example 5 1300 mL of a 10 mass% cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 120.0 kg, the amount of ⁇ -myrcene added was 46.0 kg, the addition of 1,3-butadiene was omitted, and the second time Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added was 40.0 kg, to obtain a copolymer having an "SMS structure" having a polystyrene block and a ⁇ -myrcene block. .
  • the weight average molecular weight (Mw) was 180,000. Table 1 shows the analysis results of the obtained copolymer.
  • Example 6 800 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 80.0 kg, the amount of ⁇ -myrcene added was 18.4 kg, the amount of 1,3-butadiene added was 44.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added in the second round was 60.0 kg. -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 251,000. Table 1 shows the analysis results of the obtained copolymer.
  • Example 7 1200 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 40.0 kg, the amount of ⁇ -myrcene added was 18.4 kg, the amount of 1,3-butadiene added was 24.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added in the second round was 120.0 kg. -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 198,000. Table 1 shows the analysis results of the obtained copolymer.
  • Example 8 5200 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added for the first time was 120.0 kg, the amount of ⁇ -myrcene added was 34.5 kg, the amount of 1,3-butadiene added was 20.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added in the second round was 30.0 kg. -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 43,000. Table 2 shows the analysis results of the obtained copolymer.
  • Example 9 500 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 80.0 kg, the amount of ⁇ -myrcene added was 23.0 kg, the amount of 1,3-butadiene added was 20.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added for the second time was 80.0 kg, and an "SMB" having a polystyrene block, a ⁇ -myrcene block, and a 1,3-butadiene block -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 557,000. Table 2 shows the analysis results of the obtained copolymer.
  • Example 10 1600 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 40.0 kg, the amount of ⁇ -myrcene added was 6.9 kg, the amount of 1,3-butadiene added was 30.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added in the second round was 124.0 kg. -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 144,000. Table 2 shows the analysis results of the obtained copolymer.
  • Example 11 1500 mL of 10% by mass cyclohexane solution of n-butyllithium, 27.6 kg of ⁇ -myrcene, 10.0 kg of 1,3-butadiene, and 136.0 kg of styrene for the second time. Except for this, anionic polymerization was carried out in the same manner as in Example 1 to obtain a copolymer having an "SMBS structure" having a polystyrene block, a ⁇ -myrcene block and a 1,3-butadiene block. The weight average molecular weight (Mw) was 159,000. Table 2 shows the analysis results of the obtained copolymer.
  • Example 12 1200 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added for the first time was 20.0 kg, the amount of ⁇ -myrcene added was 11.5 kg, the amount of 1,3-butadiene added was 64.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added for the second time was 106.0 kg, and "SMB -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 194,000. Table 2 shows the analysis results of the obtained copolymer.
  • Example 13 1300 mL of 10% by mass cyclohexane solution of n-butyllithium, 9.2 kg of ⁇ -myrcene, 56.0 kg of 1,3-butadiene, and 106.0 kg of styrene for the second time. Except for this, anionic polymerization was carried out in the same manner as in Example 1 to obtain a copolymer having an "SMBS structure" having a polystyrene block, a ⁇ -myrcene block and a 1,3-butadiene block. The weight average molecular weight (Mw) was 189,000. Table 2 shows the analysis results of the obtained copolymer.
  • the weight average molecular weight (Mw) was obtained as a polystyrene-equivalent value by measuring gel permeation chromatography (GPC) under the following conditions.
  • ⁇ Flexural modulus> The flexural modulus was measured according to JIS K7171 under conditions of a bending speed of 2 mm/min, a relative humidity of 50%, and an ambient temperature of 23°C.
  • melt mass flow rate was measured under conditions of a temperature of 200° C. and a load of 98 N in accordance with JIS K7210.
  • the Charpy impact strength was measured in conformity with JIS K-7111, using a notched test piece, adopting an edgewise striking direction, and under conditions of a relative humidity of 50% and an atmospheric temperature of 23°C.
  • a digital impact tester manufactured by Toyo Seiki Seisakusho Co., Ltd. was used as the measuring machine.
  • the copolymer containing aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units according to the present invention has an excellent balance of rigidity, impact resistance, and moldability.
  • INDUSTRIAL APPLICABILITY The copolymer according to the present invention can be mixed with other resins, for example, to form a resin composition, and can be suitably used as a sheet, film, or injection-molded product, and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Provided is a copolymer containing vinyl aromatic hydrocarbon monomeric units and conjugated diene monomeric units, said copolymer exhibiting a superior balance between rigidity, shock resistance and formability. The copolymer contains vinyl aromatic hydrocarbon monomeric units and conjugated diene monomeric units, and when the total amount of the vinyl aromatic hydrocarbon monomeric units and conjugated diene monomeric units is 100 mass%, the vinyl aromatic hydrocarbon monomeric units represent 60-85 mass% and conjugated diene monomeric units represent 15-40 mass%, the conjugated diene monomeric units including myrcene monomeric units at 1 to 40 mass% relative to 100 mass% of the copolymer.

Description

芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位とを含有する共重合体Copolymer containing aromatic vinyl hydrocarbon-based monomer unit and conjugated diene-based monomer unit
 本発明は、剛性、耐衝撃性、成形加工性のバランスに優れた、芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位とを含有する共重合体に関する。 The present invention relates to a copolymer containing an aromatic vinyl hydrocarbon-based monomer unit and a conjugated diene-based monomer unit, which has an excellent balance of rigidity, impact resistance, and moldability.
 芳香族ビニル炭化水素と共役ジエンからなり、芳香族ビニル炭化水素の含有比率が比較的高いブロック共重合体を含有する樹脂組成物、特にスチレンとブタジエンとのブロック共重合体は剛性、耐衝撃性を有することから射出成形用途やシート、フィルム等の押出成形用途等に幅広く使用されている。中でも剛性等の物性を損なわずに耐衝撃性を改善することが求められている。
 芳香族ビニル炭化水素と共役ジエンの含有比率、芳香族ビニル炭化水素のブロック率を一定の範囲内で制御した芳香族ビニル炭化水素と共役ジエンのブロック共重合体が特許文献1で報告されている。また、芳香族ビニル炭化水素と共役ジエンとがランダム共重合した重合部分の配置を制御したブロック共重合体が特許文献2で報告されている。
 一方、芳香族ビニル炭化水素とミルセンの共重合体は、芳香族ビニル炭化水素の含有比率が50重量%以下の範囲として特許文献3で報告されている。
A resin composition containing a block copolymer composed of an aromatic vinyl hydrocarbon and a conjugated diene and having a relatively high content ratio of the aromatic vinyl hydrocarbon, particularly a block copolymer of styrene and butadiene, has rigidity and impact resistance. It is widely used for injection molding applications and extrusion molding applications such as sheets and films. Above all, it is required to improve impact resistance without impairing physical properties such as rigidity.
Patent Document 1 reports a block copolymer of an aromatic vinyl hydrocarbon and a conjugated diene in which the content ratio of the aromatic vinyl hydrocarbon and the conjugated diene and the block ratio of the aromatic vinyl hydrocarbon are controlled within a certain range. . In addition, Patent Document 2 reports a block copolymer in which the arrangement of polymerized portions obtained by random copolymerization of an aromatic vinyl hydrocarbon and a conjugated diene is controlled.
On the other hand, in a copolymer of aromatic vinyl hydrocarbon and myrcene, Patent Document 3 reports that the content ratio of aromatic vinyl hydrocarbon is in the range of 50% by weight or less.
特許第6559125号Patent No. 6559125 特開平7-97418Japanese Patent Laid-Open No. 7-97418 特許第6321207号Patent No. 6321207
 本発明は、剛性、耐衝撃性、成形加工性のバランスに優れる、芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位とを含有する共重合体を提供することを課題とする。 An object of the present invention is to provide a copolymer containing an aromatic vinyl hydrocarbon-based monomer unit and a conjugated diene-based monomer unit, which has an excellent balance of rigidity, impact resistance, and moldability. do.
 本発明者らの検討の結果、芳香族ビニル炭化水素単量体単位と共役ジエン単量体単位を含有する共重合体において、共役ジエン単量体単位としてミルセン単量体単位を含む共重合体を用い、芳香族ビニル炭化水素単量体単位と共役ジエン単量体単位の含有量、ならびにミルセン単量体単位の含有量を所定の範囲内に制御することによって、剛性を損なわずに、耐衝撃性、成形加工性のバランスを大幅に改善できることを見出した。
 即ち、本発明は、
(1)芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位とを含有する共重合体であって、
 前記共重合体が、芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位の合計量を100質量%とした場合に、芳香族ビニル炭化水素系単量体単位60~85質量%および共役ジエン系単量体単位15~40質量%を含有し、
 前記共役ジエン系単量体単位はミルセン単量体単位を含み、
 前記共重合体100質量%中にミルセン単量体単位を1~40質量%含有する、
共重合体、
(2)示差屈折率法でのゲルパーミエーションクロマトグラフィーで得られる前記共重合体の重量平均分子量が、5万~50万である、(1)に記載の共重合体、
(3)前記共重合体が、
 芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位の合計量を100質量%とした場合に、芳香族ビニル炭化水素系単量体単位を65~80質量%および共役ジエン系単量体単位を20~35質量%を含有し、
 前記共役ジエン系単量体単位はミルセン単量体単位を含み、
 前記共重合体100質量%中にミルセン単量体単位を1~35質量%含有する、(1)又は(2)に記載の共重合体、
(4)前記共重合体が、ブロック共重合体であり、ミルセン単量体単位を含む重合体ブロックを有する、(1)~(3)のいずれか一つに記載の共重合体、
(5)芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位とを含有する共重合体の製造方法であって、
 重合するモノマーの全量を100質量%とした場合に1~40質量%のミルセンを重合してミルセン単量体単位を含む重合体ブロックを形成する工程を含み、
 前記ミルセン単量体単位を構成するミルセンの純度が80%以上である、製造方法、
(6)(1)~(4)のいずれか一つに記載される共重合体を含有する樹脂組成物を成形した成形体、
(7)シート、フィルム、または射出成形品である、(6)に記載の成形体、
に関する。
As a result of studies by the present inventors, it was found that, in a copolymer containing an aromatic vinyl hydrocarbon monomer unit and a conjugated diene monomer unit, a copolymer containing a myrcene monomer unit as a conjugated diene monomer unit is used to control the content of aromatic vinyl hydrocarbon monomer units and conjugated diene monomer units, as well as the content of myrcene monomer units, within a predetermined range. It was found that the balance between impact resistance and moldability can be greatly improved.
That is, the present invention
(1) A copolymer containing an aromatic vinyl hydrocarbon-based monomer unit and a conjugated diene-based monomer unit,
When the total amount of the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit is 100% by mass, the copolymer has 60 to 85 mass of the aromatic vinyl hydrocarbon-based monomer unit. % and 15 to 40% by mass of conjugated diene-based monomer units,
The conjugated diene-based monomer unit includes a myrcene monomer unit,
Containing 1 to 40% by mass of myrcene monomer units in 100% by mass of the copolymer,
copolymer,
(2) The copolymer according to (1), wherein the weight average molecular weight of the copolymer obtained by gel permeation chromatography using a differential refractive index method is 50,000 to 500,000,
(3) the copolymer is
When the total amount of the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit is 100% by mass, 65 to 80% by mass of the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit Containing 20 to 35% by mass of monomer units,
The conjugated diene-based monomer unit includes a myrcene monomer unit,
The copolymer according to (1) or (2), which contains 1 to 35% by mass of myrcene monomer units in 100% by mass of the copolymer,
(4) The copolymer according to any one of (1) to (3), wherein the copolymer is a block copolymer and has a polymer block containing myrcene monomer units,
(5) A method for producing a copolymer containing aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units,
A step of polymerizing 1 to 40% by mass of myrcene to form a polymer block containing a myrcene monomer unit when the total amount of monomers to be polymerized is 100% by mass;
The production method, wherein the purity of myrcene constituting the myrcene monomer unit is 80% or more,
(6) A molded article molded from a resin composition containing the copolymer described in any one of (1) to (4),
(7) The molded article according to (6), which is a sheet, film, or injection molded article;
Regarding.
 本発明によれば、剛性を損なわずに、耐衝撃性、成形加工性のバランスが大幅に改善された、芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位とを含有する共重合体を提供することができる。 According to the present invention, it contains an aromatic vinyl hydrocarbon-based monomer unit and a conjugated diene-based monomer unit, which have significantly improved balance between impact resistance and moldability without impairing rigidity. A copolymer can be provided.
<用語の説明>
 本願明細書において、例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
<Description of terms>
In the specification of the present application, for example, the description “A to B” means A or more and B or less.
 以下、本発明の実施形態について、詳細に説明する。本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。以下に示す実施形態中で示した各種特徴事項は互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to this, and various modifications are possible without departing from the scope of the invention. Various features shown in the embodiments shown below can be combined with each other. In addition, the invention is established independently for each characteristic item.
<共重合体(P)>
 本実施形態の共重合体(P)は、芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位を含有する。また、本実施形態の共重合体(P)は、本発明の効果を阻害しない範囲内で、芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位以外の単量体単位を含んでもよい。
 以下、本実施形態の共重合体(P)を構成する単量体単位について説明する。
<Copolymer (P)>
The copolymer (P) of the present embodiment contains aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units. Further, the copolymer (P) of the present embodiment contains monomer units other than aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units within a range that does not impair the effects of the present invention. may contain.
The monomer units constituting the copolymer (P) of the present embodiment are described below.
<芳香族ビニル炭化水素系単量体単位>
 芳香族ビニル炭化水素系単量体単位は、共重合に用いられる芳香族ビニル炭化水素系モノマーに由来する共重合体の構成単位である。芳香族ビニル炭化水素系モノマーとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン等が挙げられる。一態様においては、これらの中でも剛性および成形加工性の観点からスチレンが好ましい。これらの芳香族ビニル炭化水素系モノマーは、単独で使用しても2種類以上を組み合わせて使用してもよい。
<Aromatic Vinyl Hydrocarbon Monomer Unit>
The aromatic vinyl hydrocarbon-based monomer unit is a structural unit of the copolymer derived from the aromatic vinyl hydrocarbon-based monomer used for copolymerization. Examples of aromatic vinyl hydrocarbon monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene and α-methylstyrene. , α-methyl-p-methylstyrene and the like. In one aspect, among these, styrene is preferable from the viewpoint of rigidity and moldability. These aromatic vinyl hydrocarbon monomers may be used alone or in combination of two or more.
 本実施形態にかかる共重合体(P)は、共重合体(P)100質量%中に芳香族ビニル炭化水素系単量体単位を60~85質量%含有する。より好ましくは、芳香族ビニル炭化水素系単量体単位を65~80質量%、さらに好ましくは70~80質量%含有する。具体的には例えば、60、65、70、75、80、又は85質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。芳香族ビニル炭化水素系単量体単位の量が65質量%に満たないと剛性が不十分となる場合があり、85質量%を超えると他の成分の含有量との兼ね合いにより耐衝撃性が不十分となる場合がある。共重合体(P)の芳香族ビニル炭化水素系単量体単位の含有量は、重合において使用した全モノマーの質量に対する芳香族ビニル炭化水素系モノマーの質量から算出する。また、得られた共重合体について、例えば1H-NMR測定を行うことによっても算出可能である。 The copolymer (P) according to the present embodiment contains 60 to 85% by mass of aromatic vinyl hydrocarbon-based monomer units in 100% by mass of the copolymer (P). More preferably, it contains 65 to 80% by mass, more preferably 70 to 80% by mass, of aromatic vinyl hydrocarbon monomer units. Specifically, for example, it is 60, 65, 70, 75, 80, or 85% by mass, and may be within a range between any two of the numerical values exemplified here. If the amount of the aromatic vinyl hydrocarbon-based monomer unit is less than 65% by mass, the rigidity may be insufficient, and if it exceeds 85% by mass, the impact resistance may be reduced depending on the content of other components. It may be insufficient. The content of aromatic vinyl hydrocarbon-based monomer units in the copolymer (P) is calculated from the mass of the aromatic vinyl hydrocarbon-based monomer with respect to the mass of all the monomers used in the polymerization. It can also be calculated by performing, for example, 1H-NMR measurement on the obtained copolymer.
<共役ジエン系単量体単位>
 共役ジエン系単量体単位は、共重合に用いられる共役ジエン系モノマーに由来する共重合体の構成単位である。本実施形態にかかる共役ジエン系単量体単位は、ミルセン単量体単位を含有する。
 また、本実施形態にかかる共役ジエン系単量体単位は、本発明の効果を阻害しない範囲内で、ミルセン以外の共役ジエン系モノマーに由来する共役ジエン系単量体単位を含んでもよい。このような、ミルセン以外の共役ジエン系モノマーとしては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2、3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、ファルネセン等が挙げられる。一態様においては、これらの中でも耐衝撃性の観点から1,3-ブタジエンが好ましい。これらのミルセン以外の共役ジエン系モノマーは、単独で使用しても2種類以上を組み合わせて使用してもよい。
<Conjugated diene-based monomer unit>
A conjugated diene-based monomer unit is a structural unit of a copolymer derived from a conjugated diene-based monomer used for copolymerization. The conjugated diene-based monomer unit according to this embodiment contains a myrcene monomer unit.
Further, the conjugated diene-based monomer unit according to the present embodiment may contain a conjugated diene-based monomer unit derived from a conjugated diene-based monomer other than myrcene within a range that does not impair the effects of the present invention. Examples of such conjugated diene monomers other than myrcene include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3 -pentadiene, 1,3-hexadiene, farnesene and the like. In one embodiment, 1,3-butadiene is preferred among these from the viewpoint of impact resistance. These conjugated diene monomers other than myrcene may be used alone or in combination of two or more.
 本実施形態にかかる共重合体(P)は、共重合体(P)100質量%中に共役ジエン系単量体単位を15~40質量%含有する。より好ましくは、共役ジエン系単量体単位を20~35質量%含有し、さらに好ましくは20~30質量%含有する。具体的には例えば、15、20、25、30、35、又は40質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。共役ジエン系単量体単位の量が10質量%に満たないと成形加工性や耐衝撃性が不十分となる場合があり、40質量%を超えると他の成分の含有量との兼ね合いにより剛性が不十分となる場合がある。共重合体(P)の共役ジエン系単量体単位の含有量は、重合において使用した全モノマーの質量に対する共役ジエン系モノマーの質量から算出する。また、得られた共重合体について、例えば1H-NMR測定を行うことによっても算出可能である。 The copolymer (P) according to the present embodiment contains 15 to 40% by mass of conjugated diene-based monomer units in 100% by mass of the copolymer (P). More preferably, it contains 20 to 35% by mass of conjugated diene-based monomer units, and more preferably 20 to 30% by mass. Specifically, it is, for example, 15, 20, 25, 30, 35, or 40% by mass, and may be within a range between any two of the numerical values exemplified here. If the amount of the conjugated diene-based monomer unit is less than 10% by mass, molding processability and impact resistance may be insufficient. may be insufficient. The content of the conjugated diene-based monomer unit in the copolymer (P) is calculated from the mass of the conjugated diene-based monomer with respect to the mass of all the monomers used in the polymerization. It can also be calculated by performing, for example, 1H-NMR measurement on the obtained copolymer.
<ミルセン>
 本実施形態において使用されるミルセンは、α-ミルセン(2-メチル-6-メチレンオクタ-1,7-ジエン)とβ-ミルセン(7-メチル-3-メチレンオクタ-1,6-ジエン)のどちらをも含み得る。一態様においては、β-ミルセンを用いることが好ましい。
<Myrcene>
Myrcene used in the present embodiment includes α-myrcene (2-methyl-6-methyleneocta-1,7-diene) and β-myrcene (7-methyl-3-methyleneocta-1,6-diene). It can contain both. In one aspect, it is preferred to use β-myrcene.
 本実施形態にかかる共重合体(P)は、共重合体(P)100質量%中にミルセン単量体単位を1~40質量%含有する。より好ましくは、ミルセン単量体単位を1~35質量%含有し、さらに好ましくは1~30質量%含有する。具体的には例えば、1、5、10、15、20、25、30、35、又は40質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ミルセン単量体単位の量が1質量%に満たないと耐衝撃性が不十分となる場合があり、40質量%を超えると他の成分の含有量との兼ね合いにより剛性が不十分となる場合がある。
 共重合体(P)のミルセン単量体単位の含有量は、重合において使用した全モノマーの質量に対するミルセンの質量から算出する。また、得られた共重合体について、例えば1H-NMR測定を行うことによっても算出可能である。
The copolymer (P) according to the present embodiment contains 1 to 40% by mass of myrcene monomer units in 100% by mass of the copolymer (P). More preferably, it contains 1 to 35% by mass of myrcene monomer units, and more preferably 1 to 30% by mass. Specifically, for example, it is 1, 5, 10, 15, 20, 25, 30, 35, or 40% by mass, and may be within a range between any two of the numerical values exemplified here. If the amount of myrcene monomer units is less than 1% by mass, impact resistance may be insufficient, and if it exceeds 40% by mass, rigidity may be insufficient due to the balance with the content of other components. There is
The content of myrcene monomer units in the copolymer (P) is calculated from the mass of myrcene relative to the mass of all monomers used in the polymerization. It can also be calculated by performing, for example, 1H-NMR measurement on the obtained copolymer.
<芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位以外の単量体単位>
 本実施形態の共重合体(P)は、本発明の効果を阻害しない範囲内で、芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位以外の単量体単位を含んでもよい。
 本実施形態において、芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位以外の単量体単位の含有量は、共重合体(P)100質量%中に10質量%未満であることが好ましい。さらに好ましくは5質量%未満であり、より好ましくは3質量%未満である。一態様においては、共重合体(P)は実質的に芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位のみからなる。
<Monomer units other than aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units>
The copolymer (P) of the present embodiment may contain monomer units other than aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units within a range that does not impair the effects of the present invention. good.
In the present embodiment, the content of monomer units other than the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit is less than 10% by mass in 100% by mass of the copolymer (P). Preferably. More preferably less than 5% by mass, more preferably less than 3% by mass. In one embodiment, the copolymer (P) consists essentially of aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units.
<共重合体(P)の構造>
 本実施形態の共重合体(P)は、ブロック共重合体であることが好ましい。ブロック共重合体の構造としては、芳香族ビニル炭化水素系単量体単位を含有する重合体ブロック、ミルセン単量体単位を含有する重合体ブロック、およびミルセン単量体単位以外の共役ジエン系単量体単位を含有する重合体ブロックが、直鎖状、分岐状、または星型状に連結しているものが挙げられる。本実施形態の共重合体(P)の全体構造は、2種以上の重合体ブロックを有している構造であることが好ましい。重合体ブロックの種類や重合体ブロックが連結する順番には特に限定はないが、例えば直鎖状のブロック共重合体の場合には耐衝撃性の観点から両末端に芳香族ビニル炭化水素系単量体単位を含有する重合体ブロックが配置されていることが好ましい。
 重合体ブロックとしては、単一単量体単位のみからなる重合体ブロックの他、芳香族ビニル系単量体単位、ミルセン単量体単位およびミルセン単量体単位以外から選択される1種以上の単量体単位が、ランダム状に重合したランダムブロック部や、組成分布を有するテーパー状に重合したテーパーブロック部を有する重合体等が挙げられる。
 分岐状または星型状に重合体ブロックが連結された共重合体は、多官能性の開始剤やカップリング剤を用いることより得ることができる。
 ランダムブロック部を有する共重合体は、ブロック共重合体を重合する際に各モノマーの供給速度を制御することで得ることが出来る。
<Structure of copolymer (P)>
The copolymer (P) of the present embodiment is preferably a block copolymer. The structure of the block copolymer includes a polymer block containing aromatic vinyl hydrocarbon monomer units, a polymer block containing myrcene monomer units, and a conjugated diene monomer unit other than myrcene monomer units. Polymer blocks containing mer units are linked in a linear, branched, or star configuration. The overall structure of the copolymer (P) of the present embodiment is preferably a structure having two or more polymer blocks. There are no particular restrictions on the type of polymer blocks or the order in which the polymer blocks are linked, but in the case of a linear block copolymer, for example, from the viewpoint of impact resistance, aromatic vinyl hydrocarbon monomers are attached to both ends. It is preferred that the polymer blocks containing the mer units are arranged.
As the polymer block, in addition to a polymer block consisting only of a single monomer unit, one or more types selected from aromatic vinyl monomer units, myrcene monomer units, and other than myrcene monomer units A polymer having a random block portion in which monomer units are randomly polymerized, or a tapered block portion in which monomer units are polymerized in a tapered shape having a composition distribution can be used.
A copolymer in which polymer blocks are linked in a branched or star shape can be obtained by using a polyfunctional initiator or coupling agent.
A copolymer having a random block portion can be obtained by controlling the supply rate of each monomer when polymerizing a block copolymer.
<ミルセン単量体単位を含有するブロック>
 本実施形態の共重合体(P)が有する「ミルセン単量体単位を含有する重合体ブロック」とは、ミルセン単量体単位を含有する重合体ブロック100質量%中にミルセン単量体単位を80~100質量%含有するブロックであることが好ましく、より好ましくはミルセン単量体単位を90~100質量%含有する。具体的には、例えば、80、85、90、95、または100質量%であり、ここで例示した数値のいずれか2つの間の範囲内であってよい。また、ミルセン単量体単位を含有するブロックが実質的にミルセン単量体単位のみを含有するブロックであってもよい。
 本実施形態における「ミルセン単量体単位を含有する重合体ブロック」は、ミルセン単量体単位を含有する重合体ブロック100質量%中にミルセン単量体単位以外の単量体単位を0~20質量%含有する。このようなミルセン単量体単位以外の単量体単位は、ミルセンに含まれる不純物に由来する単量体単位であり、例えば酸化テルペンに由来する単量体単位や、ミルセンの二量体に由来する単量体単位が挙げられる。
 なお、本実施形態における「ミルセン単量体単位を含有する重合体ブロック」は、ミルセン単量体単位とミルセンに含まれる不純物に由来する単量体単位以外の単量体単位を含み得るが、そのような単量体単位の含有量は、ミルセン単量体単位を含有する重合体ブロック100質量%中5質量%未満であることが好ましく、3質量%未満であることがさらに好ましい。
<Block containing myrcene monomer unit>
The "polymer block containing a myrcene monomer unit" of the copolymer (P) of the present embodiment means that a myrcene monomer unit is added to 100% by mass of a polymer block containing a myrcene monomer unit. The block preferably contains 80 to 100% by mass, more preferably 90 to 100% by mass of myrcene monomer units. Specifically, it may be, for example, 80, 85, 90, 95, or 100% by mass, and may be within a range between any two of the numerical values exemplified here. Also, the block containing myrcene monomer units may be a block containing substantially only myrcene monomer units.
The "polymer block containing myrcene monomer units" in the present embodiment means that 0 to 20 monomer units other than myrcene monomer units are contained in 100% by mass of the polymer block containing myrcene monomer units. % by mass. Such monomer units other than myrcene monomer units are monomer units derived from impurities contained in myrcene, for example, monomer units derived from terpene oxide and dimers of myrcene A monomer unit that
The "polymer block containing myrcene monomer units" in the present embodiment may contain monomer units other than the myrcene monomer units and the monomer units derived from impurities contained in the myrcene. The content of such monomer units is preferably less than 5% by mass, more preferably less than 3% by mass in 100% by mass of polymer blocks containing myrcene monomer units.
<芳香族ビニル炭化水素系単量体単位を含有する重合体ブロック>
 「芳香族ビニル炭化水素系単量体単位を含有する重合体ブロック」とは、芳香族ビニル炭化水素系単量体単位を含有する重合体ブロック100質量%中に芳香族ビニル炭化水素系単量体単位を95~100質量%含有するブロックであることが好ましく、より好ましくは芳香族ビニル炭化水素系単量体単位を99~100質量%含有する。具体的には、例えば、95、96、97、98、99、または100質量%であり、ここで例示した数値のいずれか2つの間の範囲内であってよい。また、芳香族ビニル炭化水素系単量体単位を含有するブロックが実質的に芳香族ビニル炭化水素系単量体単位のみを含有するブロックであってもよい。
<Polymer Block Containing Aromatic Vinyl Hydrocarbon Monomer Unit>
"A polymer block containing an aromatic vinyl hydrocarbon-based monomer unit" means that an aromatic vinyl hydrocarbon-based monomer is contained in 100 mass% of a polymer block containing an aromatic vinyl hydrocarbon-based monomer unit. The block preferably contains 95 to 100% by mass of body units, more preferably 99 to 100% by mass of aromatic vinyl hydrocarbon monomer units. Specifically, it is, for example, 95, 96, 97, 98, 99, or 100% by mass, and may be within a range between any two of the numerical values exemplified here. Also, the block containing the aromatic vinyl hydrocarbon-based monomer unit may be a block containing substantially only the aromatic vinyl hydrocarbon-based monomer unit.
<ミルセン単量体単位以外の共役ジエン系単量体単位を含有する重合体ブロック>
 「ミルセン単量体単位以外の共役ジエン系単量体単位を含有する重合体ブロック」とは、ミルセン単量体単位以外の共役ジエン系単量体単位を含有する重合体ブロック100質量%中にミルセン単量体単位以外の共役ジエン系単量体単位を95~100質量%含有するブロックであることが好ましく、より好ましくはミルセン単量体単位以外の共役ジエン系単量体単位を99~100質量%含有する。具体的には、例えば、95、96、97、98、99、または100質量%であり、ここで例示した数値のいずれか2つの間の範囲内であってよい。また、ミルセン単量体単位以外の共役ジエン系単量体単位を含有するブロックが実質的にミルセン単量体単位以外の共役ジエン系単量体単位のみを含有するブロックであってもよい。
<Polymer block containing conjugated diene-based monomer unit other than myrcene monomer unit>
"A polymer block containing a conjugated diene monomer unit other than a myrcene monomer unit" is a polymer block containing a conjugated diene monomer unit other than a myrcene monomer unit. The block preferably contains 95 to 100% by mass of conjugated diene monomer units other than myrcene monomer units, more preferably 99 to 100 mass% of conjugated diene monomer units other than myrcene monomer units. % by mass. Specifically, it is, for example, 95, 96, 97, 98, 99, or 100% by mass, and may be within a range between any two of the numerical values exemplified here. Also, the block containing conjugated diene monomer units other than myrcene monomer units may be a block containing substantially only conjugated diene monomer units other than myrcene monomer units.
<共重合体(P)の重量平均分子量>
 本実施形態の共重合体(P)の重量平均分子量(Mw)は、耐衝撃性および成形加工性の観点から5万~50万であることが好ましく、より好ましくは10~40万である。具体的には、例えば、5、10、15、20、25、30、35、40、45、または50万が好ましく、ここで例示した数値のいずれか2つの間の範囲内であってよい。
 本実施形態における共重合体(P)の重量平均分子量(Mw)とは、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値であり、例えば次の条件で測定して得られるものである。
 GPC装置名:HLC-8220GPC(東ソー社製)
 使用カラム:ShodexGPCKF-404(昭和電工社製)を直列に4本接続
 カラム温度:40℃
 検出方法:示差屈折率法
 移動相:テトラヒドロフラン
 サンプル濃度:2質量%
 検量線:標準ポリスチレン(VARIAN社製、重量平均分子量Mw=2,560,000、841,700、280,500、143,400、63,350、31,420、9,920、2,930)を用いて作成。
<Weight average molecular weight of copolymer (P)>
The weight average molecular weight (Mw) of the copolymer (P) of the present embodiment is preferably 50,000 to 500,000, more preferably 100,000 to 400,000 from the viewpoint of impact resistance and moldability. Specifically, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 500,000 are preferable, and may be within a range between any two of the numerical values exemplified here.
The weight average molecular weight (Mw) of the copolymer (P) in the present embodiment is a polystyrene-equivalent value measured by gel permeation chromatography (GPC), for example, obtained by measuring under the following conditions. It is.
GPC device name: HLC-8220GPC (manufactured by Tosoh Corporation)
Column used: Four ShodexGPCKF-404 (manufactured by Showa Denko) connected in series Column temperature: 40°C
Detection method: Differential refractive index method Mobile phase: Tetrahydrofuran Sample concentration: 2% by mass
Calibration curve: standard polystyrene (manufactured by VARIAN, weight average molecular weight Mw = 2,560,000, 841,700, 280,500, 143,400, 63,350, 31,420, 9,920, 2,930) Created using
 共重合体(P)の重量平均分子量(Mw)を制御するには、重合温度、重合時間、および重合開始剤添加量の調整に加えて、溶媒濃度を調整する等の方法がある。 In order to control the weight average molecular weight (Mw) of the copolymer (P), there are methods such as adjusting the solvent concentration in addition to adjusting the polymerization temperature, polymerization time, and amount of polymerization initiator added.
<共重合体(P)の製造方法>
 本実施形態の共重合体(P)は、単量体を公知の重合方法で重合させることにより得られ、例えばアニオン重合、カチオン重合、リビングラジカル重合などが挙げられる。共重合体の構造制御の観点からアニオン重合が好ましい。
<Method for producing copolymer (P)>
The copolymer (P) of the present embodiment is obtained by polymerizing monomers by a known polymerization method, such as anionic polymerization, cationic polymerization, and living radical polymerization. Anionic polymerization is preferred from the viewpoint of structural control of the copolymer.
<アニオン重合>
 本実施形態の共重合体(P)を製造するためのアニオン重合は、例えば反応溶媒中に重合開始剤を添加した後に、重合する単量体を順次添加することで実施できる。
<Anionic polymerization>
Anionic polymerization for producing the copolymer (P) of the present embodiment can be carried out by, for example, adding a polymerization initiator to the reaction solvent and then sequentially adding monomers to be polymerized.
<反応溶媒>
 本実施形態のアニオン重合に用いられる反応溶媒としては、例えば、ブタン、ペンタン、ヘキサン、イソペンタン、ヘプタン、オクタン、イソオクタン等の脂肪族炭化水素、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、あるいはベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素等が挙げられる。
<Reaction solvent>
Examples of the reaction solvent used in the anionic polymerization of the present embodiment include aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, octane, and isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane. and aromatic hydrocarbons such as benzene, toluene, ethylbenzene and xylene.
<重合開始剤>
 本実施形態のアニオン重合に用いられる重合開始剤としては、公知のアニオン重合開始剤を用いることができる。これらの中では、ビフェニル、ナフタレン、ピレン等のリチウム塩或いはナトリウム塩、有機リチウム化合物から選ばれる1種以上が好ましく、反応性の観点から有機リチウム化合物が好ましい。
<Polymerization initiator>
A known anionic polymerization initiator can be used as the polymerization initiator used in the anionic polymerization of the present embodiment. Among these, one or more selected from lithium salts or sodium salts of biphenyl, naphthalene, pyrene, etc., and organolithium compounds are preferable, and from the viewpoint of reactivity, organolithium compounds are preferable.
 有機リチウム化合物は、分子中に1個以上のリチウム原子が結合した化合物である。有機リチウム化合物としては、例えば、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウムのような単官能有機リチウム化合物、ヘキサメチレンジリチウム、ブタジエニルジリチウム、イソプレニルジリチウムのような多官能有機リチウム化合物等が挙げられる。
 有機リチウム化合物を開始剤とする所謂リビングアニオン重合では、重合反応に供したモノマーは、ほぼ全量が重合体中の単量体単位に転化し得る。このため、モノマーが重合反応において完全に消費された後に次のモノマーを反応系に添加することで、所望の順序でブロックが連結した共重合体(P)を得ることができる。
Organolithium compounds are compounds with one or more lithium atoms bound in the molecule. Examples of organic lithium compounds include monofunctional organic lithium compounds such as ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium and tert-butyllithium, hexamethylenedilithium, butadienyl Polyfunctional organic lithium compounds such as dilithium and isoprenyldilithium can be used.
In so-called living anionic polymerization using an organolithium compound as an initiator, almost all of the monomers subjected to the polymerization reaction can be converted into monomer units in the polymer. Therefore, by adding the next monomer to the reaction system after the monomer is completely consumed in the polymerization reaction, the copolymer (P) in which the blocks are linked in the desired order can be obtained.
<反応温度>
 本実施形態のアニオン重合を実施する際の反応温度は、30~90℃であることが好ましい。30℃未満の場合、反応速度が著しく低下することがあり、90℃を超えると、開始剤が失活することがある。
<Reaction temperature>
The reaction temperature for carrying out the anionic polymerization of the present embodiment is preferably 30 to 90°C. If the temperature is less than 30°C, the reaction rate may decrease significantly, and if it exceeds 90°C, the initiator may be deactivated.
<重合活性末端の不活性化と共重合体(P)の回収>
 このようにして得られた共重合体(P)は、水、アルコール、二酸化炭素等の重合停止剤を、活性末端を不活性化させるのに充分な量を添加することにより、不活性化される。得られた共重合体溶液より共重合体(P)を回収する方法としては、(A)メタノール等の貧溶媒により析出させる方法、(B)加熱ロール等により溶媒を蒸発させて析出させる方法(ドラムドライヤー法)、(C)濃縮器により溶液を濃縮した後にベント式押出機で溶媒を除去する方法、(D)溶液を水に分散させ、水蒸気を吹き込んで溶媒を加熱除去して共重合体を回収する方法(スチームストリッピング法)等、任意の方法が採用できる。
<Deactivation of polymerization active terminal and recovery of copolymer (P)>
The copolymer (P) thus obtained is deactivated by adding a polymerization terminator such as water, alcohol or carbon dioxide in an amount sufficient to deactivate the active terminals. be. Methods for recovering the copolymer (P) from the obtained copolymer solution include (A) a method of precipitating with a poor solvent such as methanol, and (B) a method of precipitating by evaporating the solvent with a heating roll or the like ( (Drum dryer method), (C) a method of concentrating the solution with a concentrator and then removing the solvent with a vented extruder, (D) dispersing the solution in water and blowing steam to remove the solvent by heating to form a copolymer Any method such as a method of recovering (steam stripping method) can be adopted.
<添加剤>
 本実施形態の共重合体(P)は、効果を妨げない範囲で、添加剤を併用しても良い。例えば、安定剤、滑剤、加工助剤、ブロッキング防止剤、帯電防止剤、防曇剤、耐候性向上剤、軟化剤、可塑剤、顔料、鉱油、フィラー、難燃剤などの添加剤を添加できる。
<Additive>
The copolymer (P) of the present embodiment may be used in combination with additives as long as the effects are not impaired. For example, additives such as stabilizers, lubricants, processing aids, antiblocking agents, antistatic agents, antifog agents, weatherability improvers, softeners, plasticizers, pigments, mineral oils, fillers, flame retardants and the like can be added.
 安定剤としては、例えば、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレートや、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-tert-ブチル-4-メチルフェノールなどのフェノール系酸化防止剤、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルフォスファイト、トリスノニルフェニルフォスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-フォスファイトなどのリン系酸化防止剤などが挙げられる。 Stabilizers include, for example, 2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)ethyl]-4,6-di-tert-pentylphenyl acrylate, 2-tert-butyl-6 -(3-tert-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate, octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,6 - phenolic antioxidants such as di-tert-butyl-4-methylphenol, 2,2-methylenebis(4,6-di-tert-butylphenyl)octyl phosphite, trisnonylphenyl phosphite, bis(2, Phosphorus antioxidants such as 6-di-tert-butyl-4-methylphenyl)pentaerythritol-di-phosphite.
 また、滑剤、加工助剤、ブロッキング防止剤、帯電防止剤、防曇剤などとしては、パルミチン酸、ステアリン酸、ベヘニン酸などの飽和脂肪酸、パルミチン酸オクチル、ステアリン酸オクチルなどの脂肪酸エステルやペンタエリスリトール脂肪酸エステル、さらに、エルカ酸アミド、オレイン酸アミド、ステアリン酸アミド、ベヘン酸アミドなどの脂肪酸アミドや、エチレンビスステアリン酸アミド、また、グリセリン-モノ-脂肪酸エステル、グリセリン-ジ-脂肪酸エステル、その他に、ソルビタン-モノ-パルミチン酸エステル、ソルビタン-モノ-ステアリン酸エステルなどのソルビタン脂肪酸エステル、ミリスチルアルコール、セチルアルコール、ステアリルアルコールなどに代表される高級アルコール、耐衝撃性ポリスチレン(HIPS)などが挙げられる。 Lubricants, processing aids, antiblocking agents, antistatic agents, antifogging agents, etc., include saturated fatty acids such as palmitic acid, stearic acid and behenic acid, fatty acid esters such as octyl palmitate and octyl stearate, and pentaerythritol. Fatty acid esters, fatty acid amides such as erucic acid amide, oleic acid amide, stearic acid amide, behenic acid amide, ethylene bis-stearic acid amide, glycerin-mono-fatty acid ester, glycerin-di-fatty acid ester, etc. , sorbitan-mono-palmitate, sorbitan-mono-stearate and other sorbitan fatty acid esters; higher alcohols such as myristyl alcohol, cetyl alcohol and stearyl alcohol; and high-impact polystyrene (HIPS).
 耐候性向上剤としては、2-(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)-5-クロロベンゾトリアゾールなどのベンゾトリアゾール系、2,4-ジ-tert-ブチルフェニル-3',5'-ジ-tert-ブチル-4'-ヒドロキシベンゾエートなどのサリシレート系、2-ヒドロキシ-4-n-オクトキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレートなどのヒンダードアミン型耐候性向上剤等が例として挙げられる。さらに、ホワイトオイルやミネラルオイルなどの流動パラフィン、シリコーンオイル、マイクロクリスタリンワックスなども加えることができる。
 これらの添加剤は、本実施形態の共重合体(P)100質量部に対して、好ましくは7質量部以下、より好ましくは5質量部以下、特に好ましくは、0~3質量部の範囲で使用することが望ましい。
Weather resistance improvers include benzotriazoles such as 2-(2'-hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2,4-di-tert-butylphenyl -3',5'-di-tert-butyl-4'-hydroxybenzoate and other salicylates, 2-hydroxy-4-n-octoxybenzophenone and other benzophenone UV absorbers, tetrakis (2,2,6, Examples include hindered amine weather resistance improvers such as 6-tetramethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate. Furthermore, liquid paraffin such as white oil and mineral oil, silicone oil, microcrystalline wax, etc. can also be added.
These additives are preferably 7 parts by mass or less, more preferably 5 parts by mass or less, particularly preferably in the range of 0 to 3 parts by mass with respect to 100 parts by mass of the copolymer (P) of the present embodiment. It is preferable to use
<共重合体(P)の製造工程>
 本実施形態にかかる共重合体(P)は、例えば以下のような工程により製造することができるが、これに限定されない。また、重合すべきモノマーが消費された後に次のモノマーを添加することで所望の順序に配列されたブロック共重合体を得ることができる。モノマーの添加順序等は目的とするブロック構造に合わせて適宜変更でき、下記に限定されない。なお、ミルセンの純度が低い場合には、あらかじめ精製により純度を80%以上にしておくことが好ましい。精製の手段としては、例えば蒸留が挙げられる。
(1)反応容器中に溶媒およびランダム化剤を入れる。
(2)反応容器中に、重合開始剤を加える。
(3)芳香族ビニル炭化水素系モノマーを加え、芳香族ビニル炭化水素系モノマーをアニオン重合させる。芳香族ビニル炭化水素系単量体単位を含む重合体ブロックを形成する。
(4)芳香族ビニル炭化水素系モノマーが消費された後、ミルセンを加え、ミルセンをアニオン重合させる。ミルセン単量体単位を含む重合体ブロックを形成する。
(5)ミルセンが消費された後、ミルセン以外の共役ジエン系モノマーを加え、ミルセン以外の共役ジエン系モノマーをアニオン重合させる。ミルセン以外の共役ジエン系単量体単位を含む重合体ブロックを形成する。
(6)ミルセン以外の共役ジエン系モノマーが消費された後、芳香族ビニル炭化水素系モノマーを加え、芳香族ビニル炭化水素系モノマーをアニオン重合させる。芳香族ビニル炭化水素系単量体単位を含む重合体ブロックを形成する
(7)重合活性末端を水により失活させて、芳香族ビニル炭化水素系ブロック、ミルセンブロック、ミルセン以外の共役ジエン系ブロックを持つ重合体を含む重合液を得る。
<Manufacturing process of copolymer (P)>
The copolymer (P) according to the present embodiment can be produced, for example, by the following steps, but is not limited thereto. Also, by adding the next monomer after the monomer to be polymerized is consumed, a block copolymer arranged in a desired order can be obtained. The order of addition of the monomers can be appropriately changed according to the desired block structure, and is not limited to the following. When the purity of myrcene is low, it is preferable to adjust the purity to 80% or more by purification in advance. Purification means include, for example, distillation.
(1) Place solvent and randomizer in a reaction vessel.
(2) Add a polymerization initiator into the reaction vessel.
(3) Add an aromatic vinyl hydrocarbon monomer and anionically polymerize the aromatic vinyl hydrocarbon monomer. A polymer block containing aromatic vinyl hydrocarbon-based monomer units is formed.
(4) After the aromatic vinyl hydrocarbon monomer is consumed, myrcene is added and myrcene is anionically polymerized. A polymer block containing myrcene monomer units is formed.
(5) After myrcene is consumed, a conjugated diene-based monomer other than myrcene is added, and the conjugated diene-based monomer other than myrcene is anionically polymerized. A polymer block containing conjugated diene-based monomer units other than myrcene is formed.
(6) After the conjugated diene-based monomer other than myrcene is consumed, an aromatic vinyl hydrocarbon-based monomer is added, and the aromatic vinyl hydrocarbon-based monomer is subjected to anionic polymerization. Forming a polymer block containing an aromatic vinyl hydrocarbon-based monomer unit (7) Deactivating the polymerization active terminal with water to form an aromatic vinyl hydrocarbon-based block, a myrcene block, or a conjugated diene other than myrcene A polymerization liquid containing a polymer having blocks is obtained.
<共重合体(P)を含む樹脂組成物>
 本実施形態の共重合体(P)は、他の樹脂と混合して樹脂組成物とし、シート、フィルム、または射出成形品として好適に用いることができる。共重合体(P)と混合する樹脂としては、GPポリスチレン、ハイインパクトポリスチレン、スチレンとブタジエンのブロック共重合体等が挙げられる。
 これらは公知の方法で混錬、成形し、シート、フィルム、成形品を得ることができる。
<Resin Composition Containing Copolymer (P)>
The copolymer (P) of the present embodiment can be mixed with other resins to form a resin composition, which can be suitably used as a sheet, film, or injection-molded product. Examples of the resin to be mixed with the copolymer (P) include GP polystyrene, high impact polystyrene, block copolymers of styrene and butadiene, and the like.
These can be kneaded and molded by known methods to obtain sheets, films and molded articles.
 以下に実施例及び比較例を示して、本発明の具体的な実施態様をより詳細に説明する。本発明は、以下の実施例によって限定されるものではない。 Specific embodiments of the present invention will be described in more detail below by showing examples and comparative examples. The invention is not limited by the following examples.
<共重合体(P)の製造例>
 β-ミルセン(純度75.0%、ヤスハラケミカル社製)は、純度87.0%に精製したものを以下の重合に用いた。
<実施例1>
 攪拌機を備えた反応容器中にシクロヘキサン500.0kg、及びテトラヒドロフラン(THF)75.0gを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液1800mLを加え、30℃に保った。ここへ1回目のスチレン30.0kgを加え、内温を80℃まで上昇させ、スチレンをアニオン重合させた。反応系の内温を50℃まで下げ、27.6kgのβ-ミルセンを加え、β-ミルセンをアニオン重合させた。内温は57℃まで上昇した。反応系の内温を50℃に下げ、36.0kgの1,3-ブタジエンを加え、1,3-ブタジエンをアニオン重合させた。内温は62℃まで上昇した。反応系の内温を50℃に下げ、110.0kgの2回目のスチレンを加え、重合を完結させた。最後に重合活性末端を水により失活させて、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の重合体を含む重合液を得た。(上記一般式中、Sはポリスチレンブロックを表し、Mはβ-ミルセンブロック、Bは1,3-ブタジエンブロックを表す。)この重合液を脱揮して、共重合体を得た。重量平均分子量(Mw)は12.1万であった。得られた共重合体の分析結果を表1に示す。
<Production example of copolymer (P)>
β-myrcene (purity 75.0%, manufactured by Yasuhara Chemical Co., Ltd.) was purified to a purity of 87.0% and used in the following polymerization.
<Example 1>
500.0 kg of cyclohexane and 75.0 g of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 1800 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the temperature was maintained at 30.degree. First, 30.0 kg of styrene was added thereto, and the internal temperature was raised to 80° C. to anionically polymerize styrene. The internal temperature of the reaction system was lowered to 50° C., 27.6 kg of β-myrcene was added, and β-myrcene was anionically polymerized. The internal temperature rose to 57°C. The internal temperature of the reaction system was lowered to 50° C., 36.0 kg of 1,3-butadiene was added, and 1,3-butadiene was anionically polymerized. The internal temperature rose to 62°C. The internal temperature of the reaction system was lowered to 50° C. and 110.0 kg of styrene was added for the second time to complete the polymerization. Finally, the polymerization active terminal was deactivated with water to obtain a polymerization liquid containing a polymer having an "SMBS structure" having a polystyrene block, a β-myrcene block and a 1,3-butadiene block. . (In the above general formula, S represents a polystyrene block, M represents a β-myrcene block, and B represents a 1,3-butadiene block.) This polymerization solution was devolatilized to obtain a copolymer. The weight average molecular weight (Mw) was 121,000. Table 1 shows the analysis results of the obtained copolymer.
<実施例2>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1500mL、β-ミルセンの添加量を69.0kg、1,3-ブタジエンの添加を省略した以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロックを持つ「S-M-S構造」の共重合体を得た。重量平均分子量(Mw)は16.2万であった。得られた共重合体の分析結果を表1に示す。
<Example 2>
Anion polymerization was carried out in the same manner as in Example 1 except that 1500 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of β-myrcene added was 69.0 kg, and the addition of 1,3-butadiene was omitted. A copolymer having an "S-M-S structure" having a block and a β-myrcene block was obtained. The weight average molecular weight (Mw) was 162,000. Table 1 shows the analysis results of the obtained copolymer.
<実施例3>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を2200mL、1回目のスチレンの添加量を40.0kg、β-ミルセンの添加量を57.5kg、1,3-ブタジエンの添加を省略した以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロックを持つ「S-M-S構造」の共重合体を得た。重量平均分子量(Mw)は10.5万であった。得られた共重合体の分析結果を表1に示す。
<Example 3>
2200 mL of a 10 mass% cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 40.0 kg, the amount of β-myrcene added was 57.5 kg, and the addition of 1,3-butadiene was omitted. Anionic polymerization was carried out in the same manner as in Example 1 to obtain a copolymer having an "SMS structure" having a polystyrene block and a β-myrcene block. The weight average molecular weight (Mw) was 105,000. Table 1 shows the analysis results of the obtained copolymer.
<実施例4>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を2100mL、1回目のスチレンの添加量を50.0kg、β-ミルセンの添加量を34.5kg、1,3-ブタジエンの添加量を20.0kg、2回目のスチレンの添加量を100.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は11.3万であった。得られた共重合体の分析結果を表1に示す。
<Example 4>
2100 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added for the first time was 50.0 kg, the amount of β-myrcene added was 34.5 kg, the amount of 1,3-butadiene added was 20.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added for the second time was 100.0 kg, and a "SMB -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 113,000. Table 1 shows the analysis results of the obtained copolymer.
<実施例5>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1300mL、1回目のスチレンの添加量を120.0kg、β-ミルセンの添加量を46.0kg、1,3-ブタジエンの添加を省略し、2回目のスチレンの添加量を40.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロックを持つ「S-M-S構造」の共重合体を得た。重量平均分子量(Mw)は18.0万であった。得られた共重合体の分析結果を表1に示す。
<Example 5>
1300 mL of a 10 mass% cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 120.0 kg, the amount of β-myrcene added was 46.0 kg, the addition of 1,3-butadiene was omitted, and the second time Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added was 40.0 kg, to obtain a copolymer having an "SMS structure" having a polystyrene block and a β-myrcene block. . The weight average molecular weight (Mw) was 180,000. Table 1 shows the analysis results of the obtained copolymer.
<実施例6>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を800mL、1回目のスチレンの添加量を80.0kg、β-ミルセンの添加量を18.4kg、1,3-ブタジエンの添加量を44.0kg、2回目のスチレンの添加量を60.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は25.1万であった。得られた共重合体の分析結果を表1に示す。
<Example 6>
800 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 80.0 kg, the amount of β-myrcene added was 18.4 kg, the amount of 1,3-butadiene added was 44.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added in the second round was 60.0 kg. -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 251,000. Table 1 shows the analysis results of the obtained copolymer.
<実施例7>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1200mL、1回目のスチレンの添加量を40.0kg、β-ミルセンの添加量を18.4kg、1,3-ブタジエンの添加量を24.0kg、2回目のスチレンの添加量を120.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は19.8万であった。得られた共重合体の分析結果を表1に示す。
<Example 7>
1200 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 40.0 kg, the amount of β-myrcene added was 18.4 kg, the amount of 1,3-butadiene added was 24.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added in the second round was 120.0 kg. -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 198,000. Table 1 shows the analysis results of the obtained copolymer.
<実施例8>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を5200mL、1回目のスチレンの添加量を120.0kg、β-ミルセンの添加量を34.5kg、1,3-ブタジエンの添加量を20.0kg、2回目のスチレンの添加量を30.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は4.3万であった。得られた共重合体の分析結果を表2に示す。
<Example 8>
5200 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added for the first time was 120.0 kg, the amount of β-myrcene added was 34.5 kg, the amount of 1,3-butadiene added was 20.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added in the second round was 30.0 kg. -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 43,000. Table 2 shows the analysis results of the obtained copolymer.
<実施例9>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を500mL、1回目のスチレンの添加量を80.0kg、β-ミルセンの添加量を23.0kg、1,3-ブタジエンの添加量を20.0kg、2回目のスチレンの添加量を80.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は55.7万であった。得られた共重合体の分析結果を表2に示す。
<Example 9>
500 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 80.0 kg, the amount of β-myrcene added was 23.0 kg, the amount of 1,3-butadiene added was 20.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added for the second time was 80.0 kg, and an "SMB" having a polystyrene block, a β-myrcene block, and a 1,3-butadiene block -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 557,000. Table 2 shows the analysis results of the obtained copolymer.
<実施例10>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1600mL、1回目のスチレンの添加量を40.0kg、β-ミルセンの添加量を6.9kg、1,3-ブタジエンの添加量を30.0kg、2回目のスチレンの添加量を124.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は14.4万であった。得られた共重合体の分析結果を表2に示す。
<Example 10>
1600 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 40.0 kg, the amount of β-myrcene added was 6.9 kg, the amount of 1,3-butadiene added was 30.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added in the second round was 124.0 kg. -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 144,000. Table 2 shows the analysis results of the obtained copolymer.
<実施例11>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1500mL、β-ミルセンの添加量を27.6kg、1,3-ブタジエンの添加量を10.0kg、2回目のスチレンの添加量を136.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は15.9万であった。得られた共重合体の分析結果を表2に示す。
<Example 11>
1500 mL of 10% by mass cyclohexane solution of n-butyllithium, 27.6 kg of β-myrcene, 10.0 kg of 1,3-butadiene, and 136.0 kg of styrene for the second time. Except for this, anionic polymerization was carried out in the same manner as in Example 1 to obtain a copolymer having an "SMBS structure" having a polystyrene block, a β-myrcene block and a 1,3-butadiene block. The weight average molecular weight (Mw) was 159,000. Table 2 shows the analysis results of the obtained copolymer.
<実施例12>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1200mL、1回目のスチレンの添加量を20.0kg、β-ミルセンの添加量を11.5kg、1,3-ブタジエンの添加量を64.0kg、2回目のスチレンの添加量を106.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は19.4万であった。得られた共重合体の分析結果を表2に示す。
<Example 12>
1200 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added for the first time was 20.0 kg, the amount of β-myrcene added was 11.5 kg, the amount of 1,3-butadiene added was 64.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added for the second time was 106.0 kg, and "SMB -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 194,000. Table 2 shows the analysis results of the obtained copolymer.
<実施例13>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1300mL、β-ミルセンの添加量を9.2kg、1,3-ブタジエンの添加量を56.0kg、2回目のスチレンの添加量を106.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は18.9万であった。得られた共重合体の分析結果を表2に示す。
<Example 13>
1300 mL of 10% by mass cyclohexane solution of n-butyllithium, 9.2 kg of β-myrcene, 56.0 kg of 1,3-butadiene, and 106.0 kg of styrene for the second time. Except for this, anionic polymerization was carried out in the same manner as in Example 1 to obtain a copolymer having an "SMBS structure" having a polystyrene block, a β-myrcene block and a 1,3-butadiene block. The weight average molecular weight (Mw) was 189,000. Table 2 shows the analysis results of the obtained copolymer.
<比較例1>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1300mL、1回目のスチレンの添加量を120.0kg、β-ミルセンの添加を省略し、1,3-ブタジエンの添加量を40.0kg、2回目のスチレンの添加量を40.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、1,3-ブタジエンブロックを持つ「S-B-S構造」の共重合体を得た。重量平均分子量(Mw)は18.1万であった。得られた共重合体の分析結果を表3に示す。
<Comparative Example 1>
1300 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 120.0 kg, the addition of β-myrcene was omitted, the amount of 1,3-butadiene added was 40.0 kg, the second time Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added was 40.0 kg, to obtain a copolymer having an "SBS structure" having a polystyrene block and a 1,3-butadiene block. rice field. The weight average molecular weight (Mw) was 181,000. Table 3 shows the analysis results of the obtained copolymer.
<比較例2>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を2200mL、β-ミルセンの添加を省略し、1,3-ブタジエンの添加量を90.0kg、2回目のスチレンの添加量を80.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、1,3-ブタジエンブロックを持つ「S-B-S構造」の共重合体を得た。重量平均分子量(Mw)は10.4万であった。得られた共重合体の分析結果を表3に示す。
<Comparative Example 2>
Except that 2200 mL of 10% by mass cyclohexane solution of n-butyllithium was added, the addition of β-myrcene was omitted, the amount of 1,3-butadiene added was 90.0 kg, and the amount of styrene added in the second time was 80.0 kg. , and anionic polymerization was carried out in the same manner as in Example 1 to obtain a copolymer having an "S—B—S structure" having a polystyrene block and a 1,3-butadiene block. The weight average molecular weight (Mw) was 104,000. Table 3 shows the analysis results of the obtained copolymer.
<比較例3>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1700mL、β-ミルセンの添加量を103.4kg、1,3-ブタジエンの添加を省略し、2回目のスチレンの添加量を80.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロックを持つ「S-M-S構造」の共重合体を得た。重量平均分子量(Mw)は14.7万であった。得られた共重合体の分析結果を表3に示す。
<Comparative Example 3>
1700 mL of 10% by mass cyclohexane solution of n-butyllithium, 103.4 kg of β-myrcene, addition of 1,3-butadiene was omitted, except that the second addition of styrene was 80.0 kg. , and anionic polymerization was carried out in the same manner as in Example 1 to obtain a copolymer having an "SMS structure" having a polystyrene block and a β-myrcene block. The weight average molecular weight (Mw) was 147,000. Table 3 shows the analysis results of the obtained copolymer.
<比較例4>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1300mL、1回目のスチレンの添加量を20.0kg、β-ミルセンの添加量を69.0kg、1,3-ブタジエンの添加量を40.0kg、2回目のスチレンの添加量を80.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は19.1万であった。得られた共重合体の分析結果を表3に示す。
<Comparative Example 4>
1300 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added for the first time was 20.0 kg, the amount of β-myrcene added was 69.0 kg, the amount of 1,3-butadiene added was 40.0 kg, 2 Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added for the second time was 80.0 kg, and an "SMB" having a polystyrene block, a β-myrcene block, and a 1,3-butadiene block -S structure” copolymer was obtained. The weight average molecular weight (Mw) was 191,000. Table 3 shows the analysis results of the obtained copolymer.
<比較例5>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1500mL、1回目のスチレンの添加量を40.0kg、β-ミルセンの添加を省略し、1,3-ブタジエンの添加量を20.0kg、2回目のスチレンの添加量を140.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、1,3-ブタジエンブロックを持つ「S-B-S構造」の共重合体を得た。重量平均分子量(Mw)は16.0万であった。得られた共重合体の分析結果を表3に示す。
<Comparative Example 5>
1500 mL of a 10% by mass cyclohexane solution of n-butyllithium, the amount of styrene added in the first time was 40.0 kg, the addition of β-myrcene was omitted, the amount of 1,3-butadiene added was 20.0 kg, the second time Anion polymerization was carried out in the same manner as in Example 1, except that the amount of styrene added was 140.0 kg, to obtain a copolymer having an "S—B—S structure" having a polystyrene block and a 1,3-butadiene block. rice field. The weight average molecular weight (Mw) was 160,000. Table 3 shows the analysis results of the obtained copolymer.
<比較例6>
 n-ブチルリチウムの10質量%シクロヘキサン溶液を1700mL、β-ミルセンの添加量を11.5kg、1,3-ブタジエンの添加量を10.0kg、2回目のスチレンの添加量を150.0kgとした以外は、実施例1と同様にしてアニオン重合を行い、ポリスチレンブロック、β-ミルセンブロック、1,3-ブタジエンブロックを持つ「S-M-B-S構造」の共重合体を得た。重量平均分子量(Mw)は12.2万であった。得られた共重合体の分析結果を表3に示す。
<Comparative Example 6>
1700 mL of 10% by mass cyclohexane solution of n-butyllithium, 11.5 kg of β-myrcene, 10.0 kg of 1,3-butadiene, and 150.0 kg of styrene for the second time. Except for this, anionic polymerization was carried out in the same manner as in Example 1 to obtain a copolymer having an "SMBS structure" having a polystyrene block, a β-myrcene block and a 1,3-butadiene block. The weight average molecular weight (Mw) was 122,000. Table 3 shows the analysis results of the obtained copolymer.
<各種測定・評価>
 以下に示す方法で、各種特性・物性の測定及び評価を行った。試験片は、射出成型機により作成した。
<Various measurements and evaluations>
Various characteristics and physical properties were measured and evaluated by the methods shown below. A test piece was produced by an injection molding machine.
<重量平均分子量(Mw)>
 重量平均分子量(Mw)は、以下の条件によりゲルパーミエーションクロマトグラフィー(GPC)測定を実施し、ポリスチレン換算の値として得た。
 GPC装置名:HLC-8220GPC(東ソー社製)
 使用カラム:ShodexGPCKF-404(昭和電工社製)を直列に4本接続
 カラム温度:40℃
 検出方法:示差屈折率法
 移動相:テトラヒドロフラン
 サンプル濃度:2質量%
 検量線:標準ポリスチレン(VARIAN社製、重量平均分子量Mw=2,560,000、841,700、280,500、143,400、63,350、31,420、9,920、2,930)を用いて作成した。
<Weight average molecular weight (Mw)>
The weight average molecular weight (Mw) was obtained as a polystyrene-equivalent value by measuring gel permeation chromatography (GPC) under the following conditions.
GPC device name: HLC-8220GPC (manufactured by Tosoh Corporation)
Column used: Four ShodexGPCKF-404 (manufactured by Showa Denko) connected in series Column temperature: 40°C
Detection method: Differential refractive index method Mobile phase: Tetrahydrofuran Sample concentration: 2% by mass
Calibration curve: standard polystyrene (manufactured by VARIAN, weight average molecular weight Mw = 2,560,000, 841,700, 280,500, 143,400, 63,350, 31,420, 9,920, 2,930) Created using
<曲げ弾性率>
 曲げ弾性率は、JIS K7171に準拠して、曲げ速度2mm/min、相対湿度50%、雰囲気温度23℃の条件で測定した。
<Flexural modulus>
The flexural modulus was measured according to JIS K7171 under conditions of a bending speed of 2 mm/min, a relative humidity of 50%, and an ambient temperature of 23°C.
<メルトマスフローレート>
 メルトマスフローレートは、JIS K7210に準拠して、温度200℃、荷重98Nの条件で測定した。
<Melt mass flow rate>
The melt mass flow rate was measured under conditions of a temperature of 200° C. and a load of 98 N in accordance with JIS K7210.
<シャルピー衝撃強度>
 シャルピー衝撃強度は、JIS K-7111に準拠して、ノッチあり試験片を用い、打撃方向はエッジワイズを採用して相対湿度50%、雰囲気温度23℃の条件で測定した。なお、測定機は東洋精機製作所社製デジタル衝撃試験機を使用した。
<Charpy impact strength>
The Charpy impact strength was measured in conformity with JIS K-7111, using a notched test piece, adopting an edgewise striking direction, and under conditions of a relative humidity of 50% and an atmospheric temperature of 23°C. A digital impact tester manufactured by Toyo Seiki Seisakusho Co., Ltd. was used as the measuring machine.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3の結果より、実施例にかかる共重合体は、剛性、耐衝撃性、成形加工性のバランスに優れていることが見いだせる。他方、比較例にかかる共重合体は、剛性、耐衝撃性、および成形加工性の一つ以上の観点において劣ることが分かる。 From the results in Tables 1 to 3, it can be found that the copolymers of Examples have an excellent balance of rigidity, impact resistance, and moldability. On the other hand, it can be seen that the copolymers according to the comparative examples are inferior in one or more of rigidity, impact resistance, and moldability.
 本発明にかかる芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位とを含有する共重合体は、剛性、耐衝撃性、成形加工性のバランスに優れている。本発明にかかる共重合体は、例えば他の樹脂と混合して樹脂組成物とし、シート、フィルム、または射出成形品として好適に用いることができ、産業上の利用可能性を有する。 The copolymer containing aromatic vinyl hydrocarbon-based monomer units and conjugated diene-based monomer units according to the present invention has an excellent balance of rigidity, impact resistance, and moldability. INDUSTRIAL APPLICABILITY The copolymer according to the present invention can be mixed with other resins, for example, to form a resin composition, and can be suitably used as a sheet, film, or injection-molded product, and has industrial applicability.

Claims (7)

  1.  芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位とを含有する共重合体であって、
     前記共重合体が、芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位の合計量を100質量%とした場合に、芳香族ビニル炭化水素系単量体単位60~85質量%および共役ジエン系単量体単位15~40質量%を含有し、
     前記共役ジエン系単量体単位はミルセン単量体単位を含み、
     前記共重合体100質量%中にミルセン単量体単位を1~40質量%含有する、
    共重合体。
    A copolymer containing an aromatic vinyl hydrocarbon-based monomer unit and a conjugated diene-based monomer unit,
    When the total amount of the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit is 100% by mass, the copolymer has 60 to 85 mass of the aromatic vinyl hydrocarbon-based monomer unit. % and 15 to 40% by mass of conjugated diene-based monomer units,
    The conjugated diene-based monomer unit includes a myrcene monomer unit,
    Containing 1 to 40% by mass of myrcene monomer units in 100% by mass of the copolymer,
    copolymer.
  2.  示差屈折率法でのゲルパーミエーションクロマトグラフィーで得られる前記共重合体の重量平均分子量が、5万~50万である、請求項1に記載の共重合体。 The copolymer according to claim 1, which has a weight average molecular weight of 50,000 to 500,000 obtained by gel permeation chromatography using a differential refractive index method.
  3.  前記共重合体が、
     芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位の合計量を100質量%とした場合に、芳香族ビニル炭化水素系単量体単位を65~80質量%および共役ジエン系単量体単位を20~35質量%を含有し、
     前記共役ジエン系単量体単位はミルセン単量体単位を含み、
     前記共重合体100質量%中にミルセン単量体単位を1~35質量%含有する、請求項1又は2に記載の共重合体。
    The copolymer is
    When the total amount of the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit is 100% by mass, 65 to 80% by mass of the aromatic vinyl hydrocarbon-based monomer unit and the conjugated diene-based monomer unit Containing 20 to 35% by mass of monomer units,
    The conjugated diene-based monomer unit includes a myrcene monomer unit,
    3. The copolymer according to claim 1, which contains 1 to 35% by mass of myrcene monomer units in 100% by mass of the copolymer.
  4.  前記共重合体が、ブロック共重合体であり、ミルセン単量体単位を含む重合体ブロックを有する、請求項1~3のいずれか一項に記載の共重合体。 The copolymer according to any one of claims 1 to 3, wherein the copolymer is a block copolymer and has a polymer block containing myrcene monomer units.
  5.  芳香族ビニル炭化水素系単量体単位と共役ジエン系単量体単位とを含有する共重合体の製造方法であって、
     重合するモノマーの全量を100質量%とした場合に1~40質量%のミルセンを重合してミルセン単量体単位を含む重合体ブロックを形成する工程を含み、
     前記ミルセン単量体単位を構成するミルセンの純度が80%以上である、製造方法。
    A method for producing a copolymer containing an aromatic vinyl hydrocarbon-based monomer unit and a conjugated diene-based monomer unit,
    A step of polymerizing 1 to 40% by mass of myrcene to form a polymer block containing a myrcene monomer unit when the total amount of monomers to be polymerized is 100% by mass;
    The production method, wherein the purity of myrcene constituting the myrcene monomer unit is 80% or more.
  6.  請求項1~4のいずれか一項に記載される共重合体を含有する樹脂組成物を成形した成形体。 A molded product obtained by molding a resin composition containing the copolymer according to any one of claims 1 to 4.
  7.  シート、フィルム、または射出成形品である、請求項6に記載の成形体。 The molded article according to claim 6, which is a sheet, film, or injection molded article.
PCT/JP2022/019595 2021-05-25 2022-05-06 Copolymer containing vinyl aromatic hydrocarbon monomeric units and conjugated diene monomeric units WO2022249865A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023523388A JPWO2022249865A1 (en) 2021-05-25 2022-05-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021087972 2021-05-25
JP2021-087972 2021-05-25

Publications (1)

Publication Number Publication Date
WO2022249865A1 true WO2022249865A1 (en) 2022-12-01

Family

ID=84228758

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2022/019595 WO2022249865A1 (en) 2021-05-25 2022-05-06 Copolymer containing vinyl aromatic hydrocarbon monomeric units and conjugated diene monomeric units
PCT/JP2022/019597 WO2022249867A1 (en) 2021-05-25 2022-05-06 METHOD FOR PRODUCING PURIFIED β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION
PCT/JP2022/019596 WO2022249866A1 (en) 2021-05-25 2022-05-06 β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/019597 WO2022249867A1 (en) 2021-05-25 2022-05-06 METHOD FOR PRODUCING PURIFIED β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION
PCT/JP2022/019596 WO2022249866A1 (en) 2021-05-25 2022-05-06 β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION

Country Status (2)

Country Link
JP (3) JPWO2022249865A1 (en)
WO (3) WO2022249865A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224195A (en) * 2013-05-16 2014-12-04 住友ゴム工業株式会社 Branched conjugated diene copolymer, hydrogenated branched conjugated diene copolymer, rubber composition and pneumatic tire
JP2014224196A (en) * 2013-05-16 2014-12-04 住友ゴム工業株式会社 Branched conjugated diene copolymer, hydrogenated branched conjugated diene copolymer, rubber composition and pneumatic tire
JP2017517590A (en) * 2014-04-02 2017-06-29 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Block copolymer containing copolymer myrcene block
CN109467661A (en) * 2018-11-05 2019-03-15 大连理工大学 Functionalization styrene analog thermoplastic elastomer and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718674A (en) * 2012-06-15 2012-10-10 中国林业科学研究院林产化学工业研究所 Myrcenyl amide as well as synthesis method and applications thereof
CN102701981A (en) * 2012-06-29 2012-10-03 太仓市新星轻工助剂厂 Synthetic method of plasticizer 4-(4-methyl-3-pentenyl)-4-cyclohexene-1,2-acid isooctyl ester
CN114324657B (en) * 2021-12-29 2022-08-30 浙江大学 Method for detecting myrcene in soil by combining purging and trapping with GC-MS (gas chromatography-mass spectrometer)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224195A (en) * 2013-05-16 2014-12-04 住友ゴム工業株式会社 Branched conjugated diene copolymer, hydrogenated branched conjugated diene copolymer, rubber composition and pneumatic tire
JP2014224196A (en) * 2013-05-16 2014-12-04 住友ゴム工業株式会社 Branched conjugated diene copolymer, hydrogenated branched conjugated diene copolymer, rubber composition and pneumatic tire
JP2017517590A (en) * 2014-04-02 2017-06-29 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Block copolymer containing copolymer myrcene block
CN109467661A (en) * 2018-11-05 2019-03-15 大连理工大学 Functionalization styrene analog thermoplastic elastomer and preparation method thereof

Also Published As

Publication number Publication date
JPWO2022249867A1 (en) 2022-12-01
WO2022249867A1 (en) 2022-12-01
JPWO2022249866A1 (en) 2022-12-01
JPWO2022249865A1 (en) 2022-12-01
WO2022249866A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP3766820B2 (en) Heat shrinkable film
US7470747B2 (en) Block copolymer mixture and heat shrinkable film using it
JPWO2013168679A1 (en) Block copolymer composition and sheet
JP4731322B2 (en) Composition of block copolymer
KR20030007620A (en) Block copolymer composition
JP5240984B2 (en) Process for producing block copolymer composition or hydrogenated product thereof
JP4256360B2 (en) Block copolymer, composition thereof and film comprising the same
JP4963946B2 (en) Block copolymer using (meth) acrylic acid ester
JP5240985B2 (en) Block copolymer composition and method for producing hydrogenated product thereof
WO2022249865A1 (en) Copolymer containing vinyl aromatic hydrocarbon monomeric units and conjugated diene monomeric units
JP4714020B2 (en) Linear block copolymer composition
JP5481131B2 (en) Vinyl aromatic hydrocarbon resin composition suitable for blow molding
JP3878648B2 (en) Process for producing block copolymer
JP2024074477A (en) Block copolymer and resin composition containing said block copolymer
JP2024074478A (en) Resin composition
KR101442292B1 (en) Molding material for md shrink and md shrink film
JPH0797418A (en) Transparent high-strength block copolymer
EP3153547B1 (en) Resin composition containing block copolymer
JP2004269743A (en) Block copolymer and heat shrinkable film
JPH0132258B2 (en)
JP2006143944A (en) Block copolymer mixture and molded article
JP7042388B1 (en) Block copolymer compositions, heat shrinkable films, and containers
WO2023157557A1 (en) Block copolymer–containing block copolymer composition, block copolymer resin composition, molded article, sheet, and film
WO2016047762A1 (en) Block-copolymer-containing resin composition and molded article thereof
JP6714353B2 (en) Resin composition for profile extrusion molding and profile extrusion molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523388

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22811138

Country of ref document: EP

Kind code of ref document: A1