WO2022249866A1 - β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION - Google Patents

β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION Download PDF

Info

Publication number
WO2022249866A1
WO2022249866A1 PCT/JP2022/019596 JP2022019596W WO2022249866A1 WO 2022249866 A1 WO2022249866 A1 WO 2022249866A1 JP 2022019596 W JP2022019596 W JP 2022019596W WO 2022249866 A1 WO2022249866 A1 WO 2022249866A1
Authority
WO
WIPO (PCT)
Prior art keywords
myrcene
composition
peak
polymerization
substance group
Prior art date
Application number
PCT/JP2022/019596
Other languages
French (fr)
Japanese (ja)
Inventor
泰政 後藤
伶奈 児島
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023523389A priority Critical patent/JPWO2022249866A1/ja
Publication of WO2022249866A1 publication Critical patent/WO2022249866A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/22Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having three or more carbon-to-carbon double bonds

Definitions

  • the present invention relates to a ⁇ -myrcene composition having a low content of polymerization inhibitors and improved initiator efficiency in anionic polymerization, and a method for producing a polymer using the ⁇ -myrcene composition.
  • An object of the present invention is to provide a ⁇ -myrcene composition having a low content of polymerization inhibitors and improved initiator efficiency in anionic polymerization, and a method for producing a polymer using the ⁇ -myrcene composition. .
  • the present invention (1) In the gas chromatography analysis under the following conditions, The area ratio of the ⁇ -myrcene peak is 75% or more, When the relative retention time of the ⁇ -myrcene peak is set to 1.0, The area ratio of the peak of substance group 1 appearing in the range of relative retention time 1.29 to 1.78 is 1000 ppm or less, ⁇ -myrcene compositions.
  • Components corresponding to substance group 1 include L-pinocarbeol, pinene oxide, L-perillaldehyde, peryl alcohol, (4-isopropyl-1,3-cyclohexadien-1-yl)methanol, and dibutyl
  • the ⁇ -myrcene composition according to any one of (1) to (4), containing one or more selected from the group consisting of hydroxytoluene.
  • the area ratio of the peak of substance group 2 appearing in the range of relative retention time 1.10 to 1.29 is 10000 ppm or less, and the component corresponding to substance group 2 is 5-ethyldiene-1-methylcyclo.
  • ⁇ -myrcene composition containing one or more selected from the group consisting of ptene, (4E,6Z)-2,6-dimethyl-2,4,6-octatriene, and 3,4-dimethyl-2,4,6-octatriene;
  • the ⁇ -myrcene composition according to any one of (1) to (5).
  • the area ratio of the peak of substance group 3 appearing in the range of relative retention time 1.78 to 2.45 is 6000 ppm or less, and the component corresponding to substance group 3 is 2, 6, 11, 15- Tetramethylhexadeca-2,6,8,10,14-pentaene, 2,6,11,15-tetramethyl-2,6,8,10,14-hexadecapentaene, 2,6,8,10 , 14-hexadecapentene-1,6,11,15-tetramethyl, 5-(5-methyl-1-methylene-4-hexene-1-yl)-1-(4-methyl-3-pentene- 1-yl), 4-(5-methyl-1-methylene-4-hexen-1-yl)-1-(4-methyl-3-penten-1-yl), 5-ethynyl-1,5-bis (4-methyl-3-penten-1-yl), 4-ethynyl-1,4-bis(4-methyl-3-penten-1-yl), including one or more selected from the group consist
  • the area ratio of the peak of substance group 4 appearing in the range of relative retention time 0.00 to 0.49 is 1000 ppm or less, and the components corresponding to substance group 4 include 1-butene, 2-butene, ( The ⁇ -myrcene composition according to any one of 1) to (7). (9) A method for producing a polymer, comprising the step of polymerizing the ⁇ -myrcene composition according to any one of (1) to (8). (10) The ⁇ -myrcene composition according to any one of (1) to (8) is combined with an aromatic vinyl hydrocarbon-based monomer, or a conjugated diene-based monomer other than the aromatic vinyl hydrocarbon-based monomer and ⁇ -myrcene.
  • a method of making a copolymer comprising the step of copolymerizing with (11)
  • the ⁇ -myrcene composition according to any one of (1) to (8) is combined with an aromatic vinyl hydrocarbon-based monomer or a conjugated diene-based monomer other than the aromatic vinyl hydrocarbon-based monomer and ⁇ -myrcene.
  • a to B means A or more and B or less.
  • PaA is the unit of absolute pressure
  • Pa is the unit of gauge pressure.
  • ⁇ -myrcene> ⁇ -myrcene is a natural product, and the purity of ⁇ -myrcene as a raw material generally distributed is often about 70%. In addition, the purity of ⁇ -myrcene generally includes structural isomers of ⁇ -myrcene in many cases.
  • the purity of ⁇ -myrcene in the present invention means the purity of a single ⁇ -myrcene product that does not contain structural isomers of ⁇ -myrcene.
  • the purity of ⁇ -myrcene in the present invention is obtained as the area ratio of the ⁇ -myrcene peak in gas chromatography analysis under the conditions described later.
  • the ⁇ -myrcene composition according to the present embodiment has a ⁇ -myrcene peak area ratio of 75% or more, preferably 78% or more, and more preferably 80% or more in gas chromatography analysis under the conditions described later. be.
  • the area ratio of the ⁇ -myrcene peak is, for example, 75, 80, 85, 90, 95, 99%, and may be within a range between any two of the numerical values exemplified here. .
  • the area ratio of the ⁇ -myrcene peak in the ⁇ -myrcene composition is 75% or more, the content of polymerization inhibitors in the ⁇ -myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved.
  • Examples of the method for making the ⁇ -myrcene peak area ratio of the ⁇ -myrcene composition 75% or more include distillation purification of ⁇ -myrcene as a raw material.
  • the ⁇ -myrcene composition according to the present embodiment has a relative retention time of 1.29 to 1.78 when the relative retention time of the ⁇ -myrcene peak is 1.0 in the gas chromatography analysis under the conditions described later. is 1000 ppm or less, preferably 800 ppm or less, more preferably 500 ppm or less, and still more preferably 300 ppm or less.
  • the area ratios of the peaks of Substance Group 1 are, for example, 1, 10, 100, and 1000 ppm, and may be within a range between any two of the numerical values exemplified here.
  • the peak area ratio of substance group 1 in the ⁇ -myrcene composition is 1000 ppm or less, the content of polymerization inhibitors in the ⁇ -myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved.
  • a method for making the peak area ratio of the substance group 1 of the ⁇ -myrcene composition 1000 ppm or less for example, ⁇ -myrcene as a raw material is purified by distillation.
  • the ⁇ -myrcene composition according to the present embodiment contains L-pinocarveol, pinene oxide, L-perillaldehyde, peryl alcohol, (4-isopropyl-1,3-cyclohexadiene-1 -yl) methanol, and one or more selected from the group consisting of dibutylhydroxytoluene.
  • the peak area ratio of the component corresponding to the substance group 1 in the ⁇ -myrcene composition is 1000 ppm or less, the content of polymerization inhibitors in the ⁇ -myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved. do.
  • Examples of the method for making the peak area ratio of the component corresponding to the above substance group 1 in the ⁇ -myrcene composition 1000 ppm or less include distillation purification of ⁇ -myrcene as a raw material.
  • the peak area ratio of the components corresponding to substance group 1 is the total peak area ratio of the components corresponding to substance group 1 .
  • the mechanism by which the initiator efficiency is improved by controlling the peak area ratio of the component corresponding to substance group 1 to 1000 ppm or less is unknown. If the ⁇ -myrcene composition contains a large amount of the polymerization inhibitor or oxygen-containing compound, the polymerization inhibitor or oxygen-containing compound reacts with the active terminal in the anionic polymerization, and deactivates the active species.
  • the ⁇ -myrcene composition according to the present embodiment has a relative retention time of 1.10 to 1.29 when the relative retention time of the ⁇ -myrcene peak is 1.0 in the gas chromatography analysis under the conditions described later. is preferably 10000 ppm or less, more preferably 8000 ppm or less, still more preferably 5000 ppm or less, and still more preferably 3000 ppm or less.
  • the peak area ratio of substance group 2 is, for example, 1, 10, 100, 1000 and 10000 ppm, and may be within a range between any two of the numerical values exemplified here.
  • the peak area ratio of substance group 2 in the ⁇ -myrcene composition is 10000 ppm or less, the content of polymerization inhibitors in the ⁇ -myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved.
  • a method for making the peak area ratio of the substance group 2 of the ⁇ -myrcene composition 10000 ppm or less for example, ⁇ -myrcene as a raw material is purified by distillation.
  • the ⁇ -myrcene composition according to the present embodiment contains 5-ethyldiene-1-methylcycloheptene and (4E,6Z)-2,6-dimethyl-2,4,6-octatriene as components corresponding to substance group 2. , 3,4-dimethyl-2,4,6-octatriene.
  • the peak area ratio of the component corresponding to the substance group 2 described above in the ⁇ -myrcene composition is 10000 ppm or less, the content of polymerization inhibitors in the ⁇ -myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved. do.
  • Examples of the method of making the peak area ratio of the component corresponding to the substance group 2 in the ⁇ -myrcene composition 10000 ppm or less include distillation purification of ⁇ -myrcene as a raw material.
  • the peak area ratio of the components corresponding to substance group 2 is the total peak area ratio of the components corresponding to substance group 2 .
  • the mechanism by which the initiator efficiency is improved by controlling the area ratio of the peak of the component corresponding to substance group 2 to 10000 ppm or less is unknown, but it is considered as follows. be done. That is, when a large amount of group D monomers corresponding to substance group 2 are contained in the ⁇ -myrcene composition, group D monomers preferentially react in anionic polymerization to generate active terminals, but then group A monomers, ⁇ Although it cannot react with myrcene and the reaction stops, it is thought that the reaction is prevented from stopping by keeping the content of such D group monomers at 10000 ppm or less.
  • the A group monomers and D group monomers referred to herein refer to the fact that the reactivity of vinyl monomers in anionic polymerization greatly depends on the resonance effect due to conjugation and the strength of the electron-withdrawing properties of the substituents. Anion It is based on the theory of systematically combining combinations with polymerizable monomers.
  • ⁇ -myrcene corresponds to the A group monomer
  • an initiator belonging to the a group is selected.
  • the active terminal is included in the ⁇ -myrcene composition.
  • D group monomers It is believed to preferentially react with the contained D group monomers. It is considered that the active terminal produced from the D group monomer has low reactivity with myrcene, which is the A group monomer, and thus the reaction has stopped. In the present embodiment, it is considered that stopping the reaction is prevented by keeping the content of the group D monomer corresponding to the substance group 2 below a predetermined amount.
  • the ⁇ -myrcene composition according to the present embodiment has a relative retention time of 1.78 to 2.45 when the relative retention time of the ⁇ -myrcene peak is 1.0 in gas chromatography analysis under the conditions described later. is preferably 6000 ppm or less, more preferably 4000 ppm or less, still more preferably 2000 ppm or less, still more preferably 1000 ppm or less.
  • the area ratios of the peaks of substance group 3 are, for example, 1, 10, 100, 1000 and 6000 ppm, and may be within a range between any two of the numerical values exemplified here.
  • the peak area ratio of substance group 3 in the ⁇ -myrcene composition is 6000 ppm or less, the content of polymerization inhibitors in the ⁇ -myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved.
  • a method for making the peak area ratio of substance group 3 of the ⁇ -myrcene composition 6000 ppm or less for example, ⁇ -myrcene as a raw material is purified by distillation.
  • the ⁇ -myrcene composition according to the present embodiment contains 2,6,11,15-tetramethylhexadeca-2,6,8,10,14-pentaene, 2,6,11 as components corresponding to substance group 3.
  • the peak area ratio of the component corresponding to the substance group 3 described above in the ⁇ -myrcene composition is 6000 ppm or less, the content of polymerization inhibitors in the ⁇ -myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved. do.
  • Examples of the method of making the peak area ratio of the component corresponding to the substance group 3 in the ⁇ -myrcene composition 6000 ppm or less include distillation purification of ⁇ -myrcene as a raw material.
  • the peak area ratio of the components corresponding to substance group 3 is the total peak area ratio of the components corresponding to substance group 3 .
  • the mechanism by which the initiator efficiency is improved by controlling the peak area ratio of the component corresponding to substance group 3 to 6000 ppm or less is unknown, but it corresponds to substance group 3. If a large amount of the ⁇ -myrcene dimer component is contained in the ⁇ -myrcene composition, the polymerization termination mechanism due to the ⁇ -myrcene dimer component will proceed in the anionic polymerization, and the polymerization initiator efficiency will decrease. Conceivable.
  • the ⁇ -myrcene composition according to the present embodiment has a relative retention time of 0.00 to 0.49 when the relative retention time of the ⁇ -myrcene peak is 1.0 in the gas chromatography analysis under the conditions described later. is preferably 1000 ppm or less, more preferably 800 ppm or less, still more preferably 500 ppm or less, and still more preferably 300 ppm or less.
  • the peak area ratios of the substance group 4 are, for example, 1, 300, 500, 800, and 1000 ppm, and may be within the range between any two of the numerical values exemplified here.
  • the area ratio of the peak of substance group 4 in the ⁇ -myrcene composition is 1000 ppm or less, the content of polymerization inhibitors in the ⁇ -myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved.
  • a method for making the peak area ratio of substance group 4 of the ⁇ -myrcene composition 1000 ppm or less for example, ⁇ -myrcene as a raw material is purified by distillation.
  • the ⁇ -myrcene composition according to the present embodiment contains 1-butene, 2-butene, 1,4-pentadiene, 2,4-hexadiene, 4-methyl-1,3-pentadiene, It may contain one or more selected from the group consisting of 4-methylcyclopentadiene and 4-methyl-1-methylenecyclohexane.
  • the peak area ratio of the component corresponding to substance group 4 in the ⁇ -myrcene composition is 1000 ppm or less, the content of polymerization inhibitors in the ⁇ -myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved. do.
  • the peak area ratio of the component corresponding to the substance group 4 in the ⁇ -myrcene composition 1000 ppm or less for example, ⁇ -myrcene as a raw material is purified by distillation.
  • the peak area ratio of the components corresponding to substance group 4 is the total peak area ratio of the components corresponding to substance group 4 .
  • the mechanism by which the initiator efficiency is improved by controlling the area ratio of the peak of the component corresponding to substance group 4 to 1000 ppm or less is unknown, but it corresponds to substance group 4. If the ⁇ -myrcene composition contains a large amount of the low boiling point component, the termination mechanism of polymerization due to the low boiling point component proceeds in the anionic polymerization, and the polymerization initiator efficiency is reduced.
  • the ⁇ -myrcene composition according to the present embodiment is subjected to gas chromatography analysis under the following conditions to obtain the content of the component contained in the ⁇ -myrcene composition as the peak area ratio of each component.
  • the gas chromatograph mass spectrometry is measured under the same conditions as the measurement conditions of the gas chromatography, such as the temperature rising conditions of the column, the peak with the same retention time as the peak qualitatively attributed to myrcene is also derived from myrcene in the gas chromatography analysis. It can be qualitatively determined that the peak Examples of the gas chromatograph mass spectrometer include GCMS-QP2020 NX manufactured by Shimadzu Corporation.
  • Substance group 2 The retention time of the ⁇ -myrcene peak identified as described above is defined as a relative retention time of 1.0, and peaks appearing in the range of relative retention times of 1.10 to 1.29 are defined as substance group 2 peaks. stipulate.
  • Substance group 3 The retention time of the ⁇ -myrcene peak identified as described above is defined as a relative retention time of 1.0, and peaks appearing in the range of relative retention times of 1.78 to 2.45 are defined as substance group 3 peaks. stipulate.
  • Substance group 4 The retention time of the ⁇ -myrcene peak identified as described above is defined as a relative retention time of 1.0, and the peaks appearing in the range of relative retention times of 0.00 to 0.49 are defined as the peaks of Substance Group 4. stipulate.
  • the ⁇ -myrcene composition according to the present embodiment is obtained, for example, by distilling and refining the ⁇ -myrcene raw material composition.
  • the distillation method is not particularly limited, for example, the ⁇ -myrcene raw material composition is placed in a vessel equipped with a distillation column, heated, and distilled under reduced pressure. By removing a predetermined amount of the initial distillation, the substance group 4 is removed, and then part of the distillate is recovered as a refined product. The amount remaining in the reaction vessel becomes a residue, and by leaving a predetermined amount of residue, substance group 1, substance group 2, and substance group 3 can be efficiently removed.
  • the distillation temperature is from 40°C to 150°C. If the distillation temperature is 40° C. or less, the distillation rate becomes slow, which is disadvantageous in terms of production efficiency. Dimerization of ⁇ -myrcene occurs at distillation temperatures above 150°C. As a result, the ratio of high-boiling components in the raw material ⁇ -myrcene increases, and the boiling point rises, making it difficult to distill ⁇ -myrcene, which is disadvantageous in that the yield of ⁇ -myrcene decreases.
  • the distillation pressure is preferably equal to or lower than the vapor pressure of ⁇ -myrcene, and is determined according to the distillation temperature. If the distillation pressure is high, the boiling point of ⁇ -myrcene will rise and the distillation temperature will also rise, so dimerization of ⁇ -myrcene occurs in the same manner as in the case of the high distillation temperature described above, and the yield of ⁇ -myrcene decreases, which is disadvantageous. .
  • Polymerization inhibitors include TBC (tertiary butylcatechol), BHT (dibutylhydroxytoluene), benzoquinone, hydroquinone, and the like.
  • the amount to be added is preferably 1% by weight or less, more preferably 0.5% by weight or less, and still more preferably 0.1% by weight based on the weight of the ⁇ -myrcene raw material composition from the viewpoint of the purity of the purified product. 10 ppm or more is preferable from the viewpoint of expression of the effect of the polymerization inhibitor.
  • the ⁇ -myrcene composition according to the present embodiment can be obtained as a polymer by using the ⁇ -myrcene composition according to the present embodiment, an aromatic vinyl hydrocarbon-based monomer, and a conjugated diene-based monomer other than ⁇ -myrcene as polymerization raw materials. .
  • the resulting polymer even if it is a ⁇ -myrcene polymer composed of ⁇ -myrcene monomer units, is composed of ⁇ -myrcene monomer units and aromatic vinyl hydrocarbon-based monomer units or aromatic vinyl hydrocarbon-based monomer units and other than ⁇ -myrcene monomer units. It may be a copolymer (P) containing conjugated diene-based monomer units.
  • the monomer units contained in the copolymer (P) according to this embodiment are described below.
  • the aromatic vinyl hydrocarbon-based monomer unit is a structural unit of the copolymer derived from the aromatic vinyl hydrocarbon-based monomer used for copolymerization.
  • aromatic vinyl hydrocarbon monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene and ⁇ -methylstyrene. , ⁇ -methyl-p-methylstyrene and the like.
  • These aromatic vinyl hydrocarbon monomers may be used alone or in combination of two or more.
  • a conjugated diene is a constituent unit of a copolymer derived from a conjugated diene-based monomer used for copolymerization.
  • conjugated diene-based monomers include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3- hexadiene, farnesene and the like. These conjugated diene-based monomers may be used alone or in combination of two or more.
  • Copolymer (P) containing ⁇ -myrcene monomer units and aromatic vinyl hydrocarbon-based monomer units according to the present embodiment, ⁇ -myrcene monomer units, aromatic vinyl hydrocarbon-based monomer units, and conjugated diene-based monomers other than ⁇ -myrcene
  • the copolymer (P) containing units may be a block copolymer containing polymer blocks containing ⁇ -myrcene monomer units.
  • the "polymer block containing ⁇ -myrcene monomer units" of the copolymer (P) of the present embodiment means that 80 to 100 mass of ⁇ -myrcene monomer units are contained in 100% by mass of the polymer block containing ⁇ -myrcene monomer units. %, more preferably 90 to 100% by mass of ⁇ -myrcene monomer units. Specifically, it may be, for example, 80, 85, 90, 95, or 100% by mass, and may be within a range between any two of the numerical values exemplified here. Also, the block containing ⁇ -myrcene monomer units may be a block containing substantially only ⁇ -myrcene monomer units.
  • the "polymer block containing ⁇ -myrcene monomer units" in the present embodiment contains 0 to 20% by mass of monomer units other than ⁇ -myrcene monomer units in 100% by mass of the polymer block containing ⁇ -myrcene monomer units.
  • Monomer units other than such ⁇ -myrcene monomer units are monomer units derived from impurities contained in ⁇ -myrcene, for example, monomer units derived from terpene oxide and monomer units derived from dimers of ⁇ -myrcene. mentioned.
  • the "polymer block containing ⁇ -myrcene monomer units" in the present embodiment may contain monomer units other than ⁇ -myrcene monomer units and monomer units derived from impurities contained in ⁇ -myrcene.
  • the unit content is preferably less than 20% by mass, more preferably less than 10% by mass, based on 100% by mass of polymer blocks containing ⁇ -myrcene monomer units.
  • the content of the ⁇ -myrcene monomer unit in the polymer block containing the ⁇ -myrcene monomer unit can be adjusted, for example, by adjusting the content of the ⁇ -myrcene monomer contained in the ⁇ -myrcene composition, Adjusting the ratio of the ⁇ -myrcene composition with respect to the total amount added when other monomers are added to the reaction system at once, It can be controlled by controlling the supply flow rate or the like.
  • the polymer of the present embodiment is obtained by polymerizing monomers by a known polymerization method, examples of which include anionic polymerization, cationic polymerization, and living radical polymerization. Anionic polymerization is preferred from the viewpoint of structural control of the copolymer.
  • the ⁇ -myrcene composition and the aromatic vinyl hydrocarbon-based monomer to be copolymerized, or the ⁇ -myrcene composition, the aromatic vinyl hydrocarbon-based monomer, and the conjugated diene-based monomer are added to the reaction system all at once.
  • ⁇ Method for producing block copolymer> In order to obtain a block copolymer by including a polymer block containing a ⁇ -myrcene monomer unit in the copolymer (P), for example, the content of the ⁇ -myrcene monomer in the total monomers added to the reaction system is 80 mass. % or more of the polymerization monomer is added to the reaction system and polymerized for a predetermined period of time. For example, the polymerization monomer is continuously supplied to the reaction system for a certain period of time. In one embodiment, polymer blocks containing ⁇ -myrcene monomer units can be included in the copolymer (P) by adding only the ⁇ -myrcene composition to the reaction system and polymerizing for a predetermined period of time.
  • a block copolymer containing polymer blocks can be obtained by performing the following steps (A) to (C) in any order and any number of times.
  • some steps may not be performed.
  • step (B) it is possible to include polymer blocks containing ⁇ -myrcene monomer units in the copolymer (P).
  • step (D) may be performed between steps (A) to (C).
  • a step of adding an aromatic vinyl hydrocarbon-based monomer to the reaction system and polymerizing the aromatic vinyl hydrocarbon-based monomer for a predetermined time (B) Adding a ⁇ -myrcene composition to the reaction system to obtain a predetermined amount of ⁇ -myrcene (C) adding a conjugated diene-based monomer other than ⁇ -myrcene to the reaction system and polymerizing the conjugated diene-based monomer for a predetermined time (D) adding a ⁇ -myrcene composition and an aromatic vinyl hydrocarbon to the reaction system; A step of adding a mixture containing a monomer and at least two or more of conjugated diene monomers other than ⁇ -myrcene, and polymerizing the monomers contained in the mixture.
  • n-butyl lithium n-butyl lithium, 10% by mass cyclohexane solution (trade name), Styrene (trade name) manufactured by Albemarle, 1,3-butadiene (trade name) manufactured by Denka, Chiba Butadiene Kogyo Co., Ltd.
  • a ⁇ -myrcene raw material composition was prepared as a purchased product, and 0.05 part by weight of BHT (dibutylhydroxytoluene) was mixed with 100 parts by weight of the ⁇ -myrcene raw material composition to prepare a raw material for distillation.
  • BHT dibutylhydroxytoluene
  • Example 1 The starting material was continuously supplied from the bottom to the fifth stage of the first column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 0.1, kettle temperature of 93° C.) at a flow rate of 100 g/h.
  • the first column 1.0 g/h was continuously withdrawn from the top of the column.
  • the bottom liquid of the first tower was sent to the second tower.
  • the bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 2.0, pot temperature of 109°C).
  • Example 2 The starting material was continuously supplied from the bottom to the fifth stage of the first column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 0.1, kettle temperature of 93° C.) at a flow rate of 100 g/h.
  • 1.0 g/h was continuously withdrawn from the top of the column.
  • the bottom liquid of the first tower was sent to the second tower.
  • the bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 1.0, kettle temperature of 122°C).
  • Example 3> The starting material was continuously supplied to the first column (10 theoretical plates, distillation pressure 5 kPaA, reflux ratio 0.1, kettle temperature 76° C.) from the bottom to the fifth column at a flow rate of 100 g/h. In the first column, 1.0 g/h was continuously withdrawn from the top of the column. The bottom liquid of the first tower was sent to the second tower. The bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure 5 kPaA, reflux ratio 0.1, kettle temperature 101° C.).
  • Example 4 The starting material was continuously supplied to the fifth stage from the bottom of the first column (10 theoretical stages, distillation pressure 60 kPaA, reflux ratio 0.5, kettle temperature 143° C.) at a flow rate of 100 g/h. In the first column, 1.0 g/h was continuously withdrawn from the top of the column. The bottom liquid of the first tower was sent to the second tower. The bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure 60 kPaA, reflux ratio 1.0, kettle temperature 148° C.).
  • Example 5 The raw material was continuously supplied directly to the second column (10 theoretical plates, distillation pressure 5 kPaA, reflux ratio 1.0, pot temperature 110° C.) at a flow rate of 100 g per hour. In the second column, 4.4 g/h was continuously withdrawn from the bottom of the column, and 95.6 g/h was recovered as a ⁇ -myrcene composition from the top of the column. The purity of ⁇ -myrcene in the resulting ⁇ -myrcene composition was 85.4%. Table 1 shows the analysis results of the resulting ⁇ -myrcene composition.
  • Example 6> The starting material was continuously supplied from the bottom to the fifth stage of the first column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 1.0, pot temperature of 93° C.) at a flow rate of 100 g/h. In the first column, 0.5 g/h was continuously withdrawn from the top of the column. The bottom liquid of the first tower was sent to the second tower. The bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure 10 kPaA, reflux ratio 0.1, kettle temperature 121° C.).
  • Example 7 1000 g of raw material was placed in a 3000 mL three-necked flask equipped with a distillation column with 10 theoretical plates. Distillation was carried out under conditions of a pot temperature of 95° C., a distillation pressure of 10 kPaA, and no reflux, and after removing 50 g of the initial distillation, 820 g of a ⁇ -myrcene composition was recovered as a distillate. 130 g of residue remained in the flask. The purity of ⁇ -myrcene in the obtained ⁇ -myrcene composition was 82.6%. Table 2 shows the analysis results of the resulting ⁇ -myrcene composition.
  • Example 9 1000 g of raw material was placed in a 3000 mL three-necked flask equipped with a distillation column with 10 theoretical plates. Distillation was carried out under conditions of a kettle temperature of 160°C, a distillation pressure of 85 kPaA, and no reflux. After 50 g of initial distillation was removed, distillation stopped when 530 g was distilled. The distillate obtained so far was obtained as a ⁇ -myrcene composition. The purity of ⁇ -myrcene in the obtained ⁇ -myrcene composition was 83.3%. Table 2 shows the analysis results of the resulting ⁇ -myrcene composition.
  • ⁇ Comparative Example 2 1000 g of raw material was placed in a 3000 mL three-necked flask equipped with a distillation column with 10 theoretical plates. Distillation was carried out under conditions of a kettle temperature of 95° C., a distillation pressure of 10 kPaA, and no reflux, and after removing 10 g of the initial distillation, 975 g of a ⁇ -myrcene composition was recovered as a distillate. 15 g of residue remained in the flask. The purity of ⁇ -myrcene in the resulting ⁇ -myrcene composition was 73.8%. Table 2 shows the analysis results of the resulting ⁇ -myrcene composition.
  • GC gas chromatography
  • ⁇ -myrcene and substance groups 1 to 4 The peaks of ⁇ -myrcene and substance groups 1 to 4 in the chromatogram obtained from gas chromatography (GC) measurement were identified and determined as follows. (1) ⁇ -myrcene In the chromatogram obtained by gas chromatography analysis under the above conditions, the maximum peak appearing at a retention time of approximately 16 to 17 minutes is highly likely to be derived from ⁇ -myrcene. The largest peak appearing at the retention time of 16-17 minutes was identified as originating from ⁇ -myrcene by gas chromatograph-mass spectrometry.
  • Substance group 2 The retention time of the ⁇ -myrcene peak identified as described above is defined as a relative retention time of 1.0, and peaks appearing in the range of relative retention times of 1.10 to 1.29 are defined as substance group 2 peaks. determined.
  • Substance group 3 The retention time of the ⁇ -myrcene peak identified as described above is defined as a relative retention time of 1.0, and peaks appearing in the range of relative retention times of 1.78 to 2.45 are defined as substance group 3 peaks. determined.
  • Substance group 4 The retention time of the ⁇ -myrcene peak identified as described above is defined as a relative retention time of 1.0, and the peaks appearing in the range of relative retention times of 0.00 to 0.49 are defined as the peaks of Substance Group 4. determined.
  • ⁇ Polymerization of ⁇ -myrcene composition > ⁇ Polymerization Example 1> 500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree.
  • THF tetrahydrofuran
  • Example 2 214.6 g of the ⁇ -myrcene composition obtained in Example 1 was added thereto, ⁇ -myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a ⁇ -myrcene polymer. This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the weight average molecular weight (Mw) of the ⁇ -myrcene polymer was 85,000. Table 3 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • ⁇ Polymerization Example 2 500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 233.4 g of the ⁇ -myrcene composition obtained in Example 2 was added thereto, ⁇ -myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the weight average molecular weight (Mw) of the ⁇ -myrcene polymer was 89,000.
  • Table 3 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the ⁇ -myrcene polymer weight average molecular weight (Mw) was 99,000.
  • Table 3 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the weight average molecular weight (Mw) of the resulting poly- ⁇ -myrcene polymer was 97,000. 3 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the weight average molecular weight (Mw) of the ⁇ -myrcene polymer was 113,000.
  • Table 3 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the weight average molecular weight (Mw) of the ⁇ -myrcene polymer was 135,000.
  • Table 3 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the weight average molecular weight (Mw) of the ⁇ -myrcene polymer was 88,000.
  • Table 4 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the weight average molecular weight (Mw) of the ⁇ -myrcene polymer was 126,000.
  • Table 4 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • ⁇ Polymerization Example 9 500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 240.1 g of the ⁇ -myrcene composition obtained in Example 9 was added thereto, ⁇ -myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the weight average molecular weight (Mw) of the ⁇ -myrcene polymer was 95,000.
  • Table 4 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • the ⁇ -myrcene composition 25 obtained in Example 1 was obtained. .8 g was added to anionically polymerize the ⁇ -myrcene. The internal temperature rose to 58°C. After lowering the internal temperature of the reaction system to 50° C., sampling a small amount of the reaction solution and confirming that 95% by mass or more of the added ⁇ -myrcene was consumed by GC measurement, 36.0 g of 1,3-butadiene was added. , 1,3-butadiene was anionically polymerized.
  • the internal temperature of the reaction system was lowered to 50° C., a small amount of the reaction solution was sampled, and after confirming that 95% by mass or more of the added 1,3-butadiene had been consumed by GC measurement, 110.0 g of styrene was added for the second time. was added to complete the polymerization.
  • the polymerization active terminal was deactivated with water to obtain a polymerization liquid containing the block copolymer.
  • This polymerization solution was devolatilized to obtain a block copolymer.
  • the weight average molecular weight (Mw) of the block copolymer was 78,000. Table 5 shows the analysis results of the obtained block copolymer.
  • THF tetrahydrofuran
  • This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the weight average molecular weight (Mw) of the ⁇ -myrcene polymer was 162,000.
  • Table 3 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • This polymerization solution was devolatilized to obtain a ⁇ -myrcene polymer.
  • the weight average molecular weight (Mw) of the ⁇ -myrcene polymer was 221,000.
  • Table 4 shows the analysis results of the obtained ⁇ -myrcene polymer.
  • THF tetrahydrofuran
  • the internal temperature of the reaction system was lowered to 50° C., 28.7 g of the ⁇ -myrcene composition obtained in Comparative Example 1 was added, and ⁇ -myrcene was anionically polymerized.
  • the internal temperature rose to 55°C.
  • sampling a small amount of the reaction solution and confirming that 95% by mass or more of the added ⁇ -myrcene was consumed by GC measurement 36.0 g of 1,3-butadiene was added. , 1,3-butadiene was anionically polymerized.
  • the internal temperature rose to 64°C.
  • the internal temperature of the reaction system was lowered to 50° C., a small amount of the reaction solution was sampled, and after confirming that 95% by mass or more of the added 1,3-butadiene had been consumed by GC measurement, 110.0 g of styrene was added for the second time. was added to complete the polymerization. Finally, the polymerization active terminal was deactivated with water to obtain a polymerization liquid containing the block copolymer. This polymerization solution was devolatilized to obtain a block copolymer. The weight average molecular weight (Mw) of the block copolymer was 118,000. Table 5 shows the analysis results of the obtained block copolymer.
  • the weight average molecular weight (Mw) of the ⁇ -myrcene polymer and copolymer (P) is a polystyrene-equivalent value measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • ⁇ Evaluation of obtained ⁇ -myrcene polymer> The ⁇ -myrcene polymers obtained in Polymerization Examples 1 to 9 and Comparative Polymerization Examples 1 to 3 were evaluated based on the following evaluation criteria.
  • the weight-average molecular weight of the ⁇ -myrcene polymer is 140,000 or more (the weight-average molecular weight at which the initiator efficiency is less than 49%)
  • the copolymer (P) obtained in Polymerization Example 10 was evaluated based on the following evaluation criteria.
  • the ⁇ -myrcene compositions according to the examples had improved initiator efficiency during anionic polymerization, and ⁇ -myrcene-containing polymers having the desired weight-average molecular weight were obtained. It is understood. On the other hand, it is understood that the ⁇ -myrcene composition according to the comparative example cannot yield a ⁇ -myrcene-containing polymer having the desired molecular weight when anionic polymerization is carried out with the same amount of catalyst as in the example.
  • the purified ⁇ -myrcene composition according to the present invention has a low content of polymerization inhibitors and an improved initiator efficiency during anionic polymerization.
  • the ⁇ -myrcene composition according to the present invention has industrial applicability as an anionically polymerizable ⁇ -myrcene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Provided are a β-myrcene composition with a reduced polymerization inhibitor content and exhibiting an improved initiator efficiency in anionic polymerization, and a method for producing a polymer using said β-myrcene composition. The present invention provides a β-myrcene composition of which, in gas chromatography analysis under the following conditions, the area ratio of the peak of β-myrcene is 75% or more, and when the relative retention time of the peak of β-myrcene is 1.0, the area ratio of the peak of a substance group 1 appearing in the range of the relative retention time from 1.29 to 1.78, is 1000 ppm or less. Conditions of gas chromatography analysis: column used: DB -1, Agilent Technologies; stationary phase: dimethylpolysiloxane; inside diameter: 0.32 mm; length: 50.0 m; film thickness: 0.52 μm; temperature rise conditions: 60℃, 12 min hold → 10℃/min temperature rise → 300℃, 12 min hold, temperature rise time 24 min, total 48 min; injection port temperature: 280℃; injection port pressure: 169.2 kPa; carrier gas: helium; column flow rate: 4.0 mL/min; split ratio: 20; injection amount: 0.5 μL; injection of the β-myrcene composition as is; detector: FID; detection temperature: 300℃.

Description

βミルセン組成物、および当該βミルセン組成物を用いたポリマーの製造方法β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAME β-MYRCENE COMPOSITION
 本発明は、重合阻害物質の含有量が少なく、アニオン重合における開始剤効率が向上された、βミルセン組成物、および当該βミルセン組成物を用いたポリマーの製造方法に関する。 The present invention relates to a β-myrcene composition having a low content of polymerization inhibitors and improved initiator efficiency in anionic polymerization, and a method for producing a polymer using the β-myrcene composition.
 近年、脱炭素社会が謳われる中、樹脂の分野でも植物由来のモノマーが注目されている。βミルセンは植物由来のモノマーであり、近年注目を集めており、芳香族炭化水素や共役ジエンとのコポリマーが特許文献1~5で報告されている。 In recent years, as a carbon-free society has been advocated, plant-derived monomers have also attracted attention in the field of resins. β-myrcene is a plant-derived monomer that has been attracting attention in recent years.
特許第6412153Patent No. 6412153 特許第6321207Patent No. 6321207 特許第6190934Patent No. 6190934 特許第6159574Patent No. 6159574 特許第5952788Patent No. 5952788
 βミルセンは植物由来であり、種々の不純物を多く含むため、精製により純度を上げてから重合に用いることが行われていたが、ポリマーの重量平均分子量の制御が依然として困難である場合があった。本発明は、重合阻害物質の含有量が少なく、アニオン重合における開始剤効率が向上された、βミルセン組成物、および当該βミルセン組成物を用いたポリマーの製造方法を提供することを課題とする。 Since β-myrcene is derived from plants and contains many impurities, it has been practiced to raise the purity by purification before using it in polymerization. . An object of the present invention is to provide a β-myrcene composition having a low content of polymerization inhibitors and improved initiator efficiency in anionic polymerization, and a method for producing a polymer using the β-myrcene composition. .
 本発明者らの検討の結果、特定の不純物の含有量を所定の範囲内に制御することによって、重合阻害物質の含有量が少なく、アニオン重合における開始剤効率が大幅に向上されることを見出した。
 即ち、本発明は、
(1)下記条件のガスクロマトグラフィー分析において、
 βミルセンのピークの面積率が75%以上であり、
 前記βミルセンのピークの相対保持時間を1.0としたとき、
 相対保持時間が1.29~1.78の範囲に現れる物質群1のピークの面積率が1000ppm以下である、
βミルセン組成物。
<ガスクロマトグラフィー分析の条件>
使用カラム:DB-1、アジレント・テクノロジー社製、固定相:ジメチルポリシロキサン、内径:0.32mm、長さ:50.0m、膜厚:0.52μm
昇温条件:60℃、12分ホールド→10℃/分で昇温→300℃、12分ホールド、昇温時間24分、トータル48分
注入口温度:280℃
注入口圧力:169.2kPa
キャリアガス:ヘリウム
カラム流量:4.0mL/分
スプリット比:20
注入量:0.5μL、βミルセン組成物をそのまま注入
検出器:FID
検出温度:300℃
(2) 相対保持時間が1.10~1.29の範囲に現れる物質群2のピークの面積率が10000ppm以下である、(1)に記載のβミルセン組成物。
(3) 相対保持時間が1.78~2.45の範囲に現れる物質群3のピークの面積率が6000ppm以下である、(1)又は(2)に記載のβミルセン組成物。
(4) 相対保持時間が0.00~0.49の範囲に現れる物質群4のピークの面積率が1000ppm以下である、(1)~(3)のいずれか一つに記載のβミルセン組成物。
(5) 前記物質群1に該当する成分として、L-ピノカルベオール、ピネンオキサイド、L-ペリルアルデヒド、ペリルアルコール、(4-イソプロピル-1,3-シクロヘキサジエン-1-イル)メタノール、及びジブチルヒドロキシトルエンからなる群から選択される1種以上を含む、(1)~(4)のいずれか一つに記載のβミルセン組成物。
(6) 相対保持時間が1.10~1.29の範囲に現れる物質群2のピークの面積率が10000ppm以下であり、前記物質群2に該当する成分として、5-エチルジエン-1-メチルシクロへプテン、(4E,6Z)-2,6-ジメチル-2,4,6-オクタトリエン、3,4-ジメチル-2,4,6-オクタトリエンからなる群から選択される1種以上を含む、(1)~(5)のいずれか一つに記載のβミルセン組成物。
(7) 相対保持時間が1.78~2.45の範囲に現れる物質群3のピークの面積率が6000ppm以下であり、前記物質群3に該当する成分として、2,6,11,15-テトラメチルヘキサデカ-2,6,8,10,14-ペンタエン、2,6,11,15-テトラメチル-2,6,8,10,14-ヘキサデカペンタエン、2,6,8,10,14-ヘキサデカペンタエン-1,6,11,15-テトラメチル、5-(5-メチル-1-メチレン-4-ヘキセン-1-イル)-1-(4-メチル-3-ペンテン-1-イル)、4-(5-メチル-1-メチレン-4-ヘキセン-1-イル)-1-(4-メチル-3-ペンテン-1-イル)、5-エチニル-1,5-ビス(4-メチル-3-ペンテン-1-イル)、4-エチニル-1,4-ビス(4-メチル-3-ペンテン-1-イル)からなる群から選択される1種以上を含む、(1)~(6)のいずれか一つに記載のβミルセン組成物。
(8) 相対保持時間が0.00~0.49の範囲に現れる物質群4のピークの面積率が1000ppm以下であり、前記物質群4に該当する成分として、1-ブテン、2-ブテン、1,4-ペンタジエン、2,4-ヘキサジエン、4-メチル-1,3-ペンタジエン、4-メチルシクロペンタジエン、4-メチル-1-メチレンシクロヘキサンからなる群から選択される1種以上を含む、(1)~(7)のいずれか一つに記載のβミルセン組成物。
(9) (1)~(8)のいずれか一つに記載のβミルセン組成物を重合する工程を含む、ポリマーの製造方法。
(10) (1)~(8)のいずれか一つに記載のβミルセン組成物を、芳香族ビニル炭化水素系モノマー、または前記芳香族ビニル炭化水素系モノマーおよびβミルセン以外の共役ジエン系モノマーと共重合する工程を含む、コポリマーの製造方法。
(11) (1)~(8)のいずれか一つに記載のβミルセン組成物を、芳香族ビニル炭化水素系モノマー、または前記芳香族ビニル炭化水素系モノマーおよびβミルセン以外の共役ジエン系モノマーと共重合する工程を含む、βミルセンモノマー単位を含むポリマーブロックを有する、ブロックコポリマーの製造方法。
に関する。
As a result of studies by the present inventors, it was found that by controlling the content of specific impurities within a predetermined range, the content of polymerization inhibitors is reduced and the initiator efficiency in anionic polymerization is greatly improved. rice field.
That is, the present invention
(1) In the gas chromatography analysis under the following conditions,
The area ratio of the β-myrcene peak is 75% or more,
When the relative retention time of the β-myrcene peak is set to 1.0,
The area ratio of the peak of substance group 1 appearing in the range of relative retention time 1.29 to 1.78 is 1000 ppm or less,
β-myrcene compositions.
<Conditions for gas chromatography analysis>
Column used: DB-1, manufactured by Agilent Technologies, stationary phase: dimethylpolysiloxane, inner diameter: 0.32 mm, length: 50.0 m, film thickness: 0.52 μm
Heating conditions: 60°C, hold for 12 minutes → heat up at 10°C/min → 300°C, hold for 12 minutes, heat up time 24 minutes, total 48 minutes Inlet temperature: 280°C
Inlet pressure: 169.2 kPa
Carrier gas: Helium Column flow rate: 4.0 mL/min Split ratio: 20
Injection volume: 0.5 μL, injection of β-myrcene composition as it is Detector: FID
Detection temperature: 300°C
(2) The β-myrcene composition according to (1), wherein the area ratio of the peak of Substance Group 2 appearing in the relative retention time range of 1.10 to 1.29 is 10000 ppm or less.
(3) The β-myrcene composition according to (1) or (2), wherein the area ratio of the peak of substance group 3 appearing in the relative retention time range of 1.78 to 2.45 is 6000 ppm or less.
(4) The β-myrcene composition according to any one of (1) to (3), wherein the area ratio of the peak of substance group 4 appearing in the range of relative retention times of 0.00 to 0.49 is 1000 ppm or less. thing.
(5) Components corresponding to substance group 1 include L-pinocarbeol, pinene oxide, L-perillaldehyde, peryl alcohol, (4-isopropyl-1,3-cyclohexadien-1-yl)methanol, and dibutyl The β-myrcene composition according to any one of (1) to (4), containing one or more selected from the group consisting of hydroxytoluene.
(6) The area ratio of the peak of substance group 2 appearing in the range of relative retention time 1.10 to 1.29 is 10000 ppm or less, and the component corresponding to substance group 2 is 5-ethyldiene-1-methylcyclo. containing one or more selected from the group consisting of ptene, (4E,6Z)-2,6-dimethyl-2,4,6-octatriene, and 3,4-dimethyl-2,4,6-octatriene; The β-myrcene composition according to any one of (1) to (5).
(7) The area ratio of the peak of substance group 3 appearing in the range of relative retention time 1.78 to 2.45 is 6000 ppm or less, and the component corresponding to substance group 3 is 2, 6, 11, 15- Tetramethylhexadeca-2,6,8,10,14-pentaene, 2,6,11,15-tetramethyl-2,6,8,10,14-hexadecapentaene, 2,6,8,10 , 14-hexadecapentene-1,6,11,15-tetramethyl, 5-(5-methyl-1-methylene-4-hexene-1-yl)-1-(4-methyl-3-pentene- 1-yl), 4-(5-methyl-1-methylene-4-hexen-1-yl)-1-(4-methyl-3-penten-1-yl), 5-ethynyl-1,5-bis (4-methyl-3-penten-1-yl), 4-ethynyl-1,4-bis(4-methyl-3-penten-1-yl), including one or more selected from the group consisting of ( The β-myrcene composition according to any one of 1) to (6).
(8) The area ratio of the peak of substance group 4 appearing in the range of relative retention time 0.00 to 0.49 is 1000 ppm or less, and the components corresponding to substance group 4 include 1-butene, 2-butene, ( The β-myrcene composition according to any one of 1) to (7).
(9) A method for producing a polymer, comprising the step of polymerizing the β-myrcene composition according to any one of (1) to (8).
(10) The β-myrcene composition according to any one of (1) to (8) is combined with an aromatic vinyl hydrocarbon-based monomer, or a conjugated diene-based monomer other than the aromatic vinyl hydrocarbon-based monomer and β-myrcene. A method of making a copolymer, comprising the step of copolymerizing with
(11) The β-myrcene composition according to any one of (1) to (8) is combined with an aromatic vinyl hydrocarbon-based monomer or a conjugated diene-based monomer other than the aromatic vinyl hydrocarbon-based monomer and β-myrcene. A method for making a block copolymer having polymer blocks comprising beta-myrcene monomer units, comprising the step of copolymerizing with
Regarding.
 本発明によれば、重合阻害物質の含有量が少なく、アニオン重合における開始剤効率が向上された、βミルセン組成物、および当該βミルセン組成物を用いたポリマーの製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a β-myrcene composition having a low polymerization inhibitor content and improved initiator efficiency in anionic polymerization, and a method for producing a polymer using the β-myrcene composition. .
<用語の説明>
 本願明細書において、例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。また、「PaA」は絶対圧力の単位、「Pa」はゲージ圧力の単位を表す。
<Description of terms>
In the specification of the present application, for example, the description “A to B” means A or more and B or less. "PaA" is the unit of absolute pressure, and "Pa" is the unit of gauge pressure.
 以下、本発明の実施形態について、詳細に説明する。本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。以下に示す実施形態中で示した各種特徴事項は互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to this, and various modifications are possible without departing from the scope of the invention. Various features shown in the embodiments shown below can be combined with each other. In addition, the invention is established independently for each characteristic item.
<βミルセン>
 βミルセンは天然物であり、一般に流通する原料としてのβミルセンの純度は70%程度であることが多い。なお、ここでいうβミルセンの純度は、一般にはβミルセンの構造異性体を含むものである場合も多い。本発明におけるβミルセンの純度は、βミルセンの構造異性体を含まない、βミルセン単一品についての純度を意味する。本発明におけるβミルセンの純度は、後述の条件のガスクロマトグラフィー分析における、βミルセンのピークの面積率として得られる。
 本実施形態にかかるβミルセン組成物は、後述の条件のガスクロマトグラフィー分析において、βミルセンのピークの面積率が75%以上であり、好ましくは78%以上であり、さらに好ましくは80%以上である。βミルセンのピークの面積率は、具体的には、例えば、75、80、85、90、95、99%であり、ここで例示した数値のいずれか2つの間の範囲内であってもよい。
 βミルセン組成物のβミルセンのピークの面積率が75%以上であると、βミルセン組成物中の重合阻害物質の含有量が少なくなり、アニオン重合における開始剤効率が向上する。
 βミルセン組成物のβミルセンのピークの面積率を75%以上とする方法としては、例えば、原料としてのβミルセンの蒸留精製が挙げられる。
<β-myrcene>
β-myrcene is a natural product, and the purity of β-myrcene as a raw material generally distributed is often about 70%. In addition, the purity of β-myrcene generally includes structural isomers of β-myrcene in many cases. The purity of β-myrcene in the present invention means the purity of a single β-myrcene product that does not contain structural isomers of β-myrcene. The purity of β-myrcene in the present invention is obtained as the area ratio of the β-myrcene peak in gas chromatography analysis under the conditions described later.
The β-myrcene composition according to the present embodiment has a β-myrcene peak area ratio of 75% or more, preferably 78% or more, and more preferably 80% or more in gas chromatography analysis under the conditions described later. be. Specifically, the area ratio of the β-myrcene peak is, for example, 75, 80, 85, 90, 95, 99%, and may be within a range between any two of the numerical values exemplified here. .
When the area ratio of the β-myrcene peak in the β-myrcene composition is 75% or more, the content of polymerization inhibitors in the β-myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved.
Examples of the method for making the β-myrcene peak area ratio of the β-myrcene composition 75% or more include distillation purification of β-myrcene as a raw material.
<物質群1>
 本実施形態にかかるβミルセン組成物は、後述の条件のガスクロマトグラフィー分析において、βミルセンのピークの相対保持時間を1.0としたとき、相対保持時間が1.29~1.78の範囲に現れる物質群1のピークの面積率が1000ppm以下であり、好ましくは800ppm以下であり、さらに好ましくは500ppm以下であり、さらに好ましくは300ppm以下である。物質群1のピークの面積率は、具体的には、例えば、1、10、100、1000ppmであり、ここで例示した数値のいずれか2つの間の範囲内であってもよい。
 βミルセン組成物の物質群1のピークの面積率が1000ppm以下であると、βミルセン組成物中の重合阻害物質の含有量が少なくなり、アニオン重合における開始剤効率が向上する。
 βミルセン組成物の物質群1のピークの面積率を1000ppm以下とする方法としては、例えば、原料としてのβミルセンの蒸留精製が挙げられる。
<Substance Group 1>
The β-myrcene composition according to the present embodiment has a relative retention time of 1.29 to 1.78 when the relative retention time of the β-myrcene peak is 1.0 in the gas chromatography analysis under the conditions described later. is 1000 ppm or less, preferably 800 ppm or less, more preferably 500 ppm or less, and still more preferably 300 ppm or less. Specifically, the area ratios of the peaks of Substance Group 1 are, for example, 1, 10, 100, and 1000 ppm, and may be within a range between any two of the numerical values exemplified here.
When the peak area ratio of substance group 1 in the β-myrcene composition is 1000 ppm or less, the content of polymerization inhibitors in the β-myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved.
As a method for making the peak area ratio of the substance group 1 of the β-myrcene composition 1000 ppm or less, for example, β-myrcene as a raw material is purified by distillation.
<物質群1に該当する成分>
 本実施形態にかかるβミルセン組成物は、物質群1に該当する成分として、L-ピノカルベオール、ピネンオキサイド、L-ペリルアルデヒド、ペリルアルコール、(4-イソプロピル-1,3-シクロヘキサジエン-1-イル)メタノール、及びジブチルヒドロキシトルエンからなる群から選択される1種以上を含むことがある。
 βミルセン組成物において上述の物質群1に該当する成分のピークの面積率が1000ppm以下であると、βミルセン組成物中の重合阻害物質の含有量が少なくなり、アニオン重合における開始剤効率が向上する。
 βミルセン組成物において上述の物質群1に該当する成分のピークの面積率を1000ppm以下とする方法としては、例えば、原料としてのβミルセンの蒸留精製が挙げられる。
 なお、物質群1に該当する成分が複数含まれる場合、物質群1に該当する成分のピークの面積率は、物質群1に該当する成分の合計によるピーク面積率である。
<Components corresponding to substance group 1>
The β-myrcene composition according to the present embodiment contains L-pinocarveol, pinene oxide, L-perillaldehyde, peryl alcohol, (4-isopropyl-1,3-cyclohexadiene-1 -yl) methanol, and one or more selected from the group consisting of dibutylhydroxytoluene.
When the peak area ratio of the component corresponding to the substance group 1 in the β-myrcene composition is 1000 ppm or less, the content of polymerization inhibitors in the β-myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved. do.
Examples of the method for making the peak area ratio of the component corresponding to the above substance group 1 in the β-myrcene composition 1000 ppm or less include distillation purification of β-myrcene as a raw material.
When a plurality of components corresponding to substance group 1 are included, the peak area ratio of the components corresponding to substance group 1 is the total peak area ratio of the components corresponding to substance group 1 .
 本実施形態にかかるβミルセン組成物において、物質群1に該当する成分のピークの面積率を1000ppm以下に制御することにより開始剤効率が向上するメカニズムについては不明であるが、物質群1に該当する重合禁止剤や含酸素化合物がβミルセン組成物中に多く含まれると、アニオン重合において重合禁止剤や含酸素化合物が活性末端と反応し、活性種を失活させているものと考えられる。 In the β-myrcene composition according to the present embodiment, the mechanism by which the initiator efficiency is improved by controlling the peak area ratio of the component corresponding to substance group 1 to 1000 ppm or less is unknown. If the β-myrcene composition contains a large amount of the polymerization inhibitor or oxygen-containing compound, the polymerization inhibitor or oxygen-containing compound reacts with the active terminal in the anionic polymerization, and deactivates the active species.
<物質群2>
 本実施形態にかかるβミルセン組成物は、後述の条件のガスクロマトグラフィー分析において、βミルセンのピークの相対保持時間を1.0としたとき、相対保持時間が1.10~1.29の範囲に現れる物質群2のピークの面積率が10000ppm以下であることが好ましく、さらに好ましくは8000ppm以下であり、さらに好ましくは5000ppm以下であり、さらに好ましくは3000ppm以下である。物質群2のピークの面積率は、具体的には、例えば、1、10、100、1000、10000ppmであり、ここで例示した数値のいずれか2つの間の範囲内であってもよい。
 βミルセン組成物の物質群2のピークの面積率が10000ppm以下であると、βミルセン組成物中の重合阻害物質の含有量が少なくなり、アニオン重合における開始剤効率が向上する。
 βミルセン組成物の物質群2のピークの面積率を10000ppm以下とする方法としては、例えば、原料としてのβミルセンの蒸留精製が挙げられる。
<Substance group 2>
The β-myrcene composition according to the present embodiment has a relative retention time of 1.10 to 1.29 when the relative retention time of the β-myrcene peak is 1.0 in the gas chromatography analysis under the conditions described later. is preferably 10000 ppm or less, more preferably 8000 ppm or less, still more preferably 5000 ppm or less, and still more preferably 3000 ppm or less. Specifically, the peak area ratio of substance group 2 is, for example, 1, 10, 100, 1000 and 10000 ppm, and may be within a range between any two of the numerical values exemplified here.
When the peak area ratio of substance group 2 in the β-myrcene composition is 10000 ppm or less, the content of polymerization inhibitors in the β-myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved.
As a method for making the peak area ratio of the substance group 2 of the β-myrcene composition 10000 ppm or less, for example, β-myrcene as a raw material is purified by distillation.
<物質群2に該当する成分>
 本実施形態にかかるβミルセン組成物は、物質群2に該当する成分として、5-エチルジエン-1-メチルシクロへプテン、(4E,6Z)-2,6-ジメチル-2,4,6-オクタトリエン、3,4-ジメチル-2,4,6-オクタトリエンからなる群から選択される1種以上を含むことがある。
 βミルセン組成物において上述の物質群2に該当する成分のピークの面積率が10000ppm以下であると、βミルセン組成物中の重合阻害物質の含有量が少なくなり、アニオン重合における開始剤効率が向上する。
 βミルセン組成物において上述の物質群2に該当する成分のピークの面積率を10000ppm以下とする方法としては、例えば、原料としてのβミルセンの蒸留精製が挙げられる。
 なお、物質群2に該当する成分が複数含まれる場合、物質群2に該当する成分のピークの面積率は、物質群2に該当する成分の合計によるピーク面積率である。
<Components corresponding to substance group 2>
The β-myrcene composition according to the present embodiment contains 5-ethyldiene-1-methylcycloheptene and (4E,6Z)-2,6-dimethyl-2,4,6-octatriene as components corresponding to substance group 2. , 3,4-dimethyl-2,4,6-octatriene.
When the peak area ratio of the component corresponding to the substance group 2 described above in the β-myrcene composition is 10000 ppm or less, the content of polymerization inhibitors in the β-myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved. do.
Examples of the method of making the peak area ratio of the component corresponding to the substance group 2 in the β-myrcene composition 10000 ppm or less include distillation purification of β-myrcene as a raw material.
When a plurality of components corresponding to substance group 2 are included, the peak area ratio of the components corresponding to substance group 2 is the total peak area ratio of the components corresponding to substance group 2 .
 本実施形態にかかるβミルセン組成物において、物質群2に該当する成分のピークの面積率を10000ppm以下に制御することにより開始剤効率が向上するメカニズムについては不明であるが、以下のように考えられる。すなわち、物質群2に該当するDグループモノマーがβミルセン組成物中に多く含まれると、アニオン重合においてDグループモノマーが優先的に反応して活性末端を生成するものの、その後Aグループモノマーであるβミルセンとは反応できず、反応が停止するが、このようなDグループモノマーの含有量を10000ppm以下にすることで、反応の停止を防いでいるものと考えられる。 In the β-myrcene composition according to the present embodiment, the mechanism by which the initiator efficiency is improved by controlling the area ratio of the peak of the component corresponding to substance group 2 to 10000 ppm or less is unknown, but it is considered as follows. be done. That is, when a large amount of group D monomers corresponding to substance group 2 are contained in the β-myrcene composition, group D monomers preferentially react in anionic polymerization to generate active terminals, but then group A monomers, β Although it cannot react with myrcene and the reaction stops, it is thought that the reaction is prevented from stopping by keeping the content of such D group monomers at 10000 ppm or less.
 ここでいうAグループモノマー、Dグループモノマーとは、アニオン重合におけるビニルモノマーの反応性が、共役による共鳴効果とその置換基の電子吸引性の強さに大きく依存することを利用し、ビニルモノマーをAグループモノマー、Bグループモノマー、Cグループモノマー、Dグループモノマーに分けて分類し、開始剤も反応性の異なるaグループ、bグループ、cグループ、dグループの4種のグループに分けることで、アニオン重合可能なモノマーとの組み合わせを体系的にまとめる理論に基づくものである。
 本実施形態においては、βミルセンはAグループモノマーに該当するため、aグループに属する開始剤が選択される。しかしながら、aグループに属する開始剤から生成される活性末端の反応性は、Aグループモノマー、Bグループモノマー、Cグループモノマー、Dグループモノマーの順に大きくなるため、当該活性末端はβミルセン組成物中に含有されるDグループモノマーと優先的に反応すると考えられる。Dグループモノマーから生成される活性末端はAグループモノマーであるミルセンとの反応性が低いため、反応が停止しているものと考えられる。本実施形態においては、物質群2に該当するDグループモノマーの含有量を所定量以下にすることで、反応の停止を防いでいるものと考えられる。
The A group monomers and D group monomers referred to herein refer to the fact that the reactivity of vinyl monomers in anionic polymerization greatly depends on the resonance effect due to conjugation and the strength of the electron-withdrawing properties of the substituents. Anion It is based on the theory of systematically combining combinations with polymerizable monomers.
In the present embodiment, since β-myrcene corresponds to the A group monomer, an initiator belonging to the a group is selected. However, since the reactivity of the active terminal generated from the initiator belonging to group a increases in the order of A group monomer, B group monomer, C group monomer, and D group monomer, the active terminal is included in the β-myrcene composition. It is believed to preferentially react with the contained D group monomers. It is considered that the active terminal produced from the D group monomer has low reactivity with myrcene, which is the A group monomer, and thus the reaction has stopped. In the present embodiment, it is considered that stopping the reaction is prevented by keeping the content of the group D monomer corresponding to the substance group 2 below a predetermined amount.
<物質群3>
 本実施形態にかかるβミルセン組成物は、後述の条件のガスクロマトグラフィー分析において、βミルセンのピークの相対保持時間を1.0としたとき、相対保持時間が1.78~2.45の範囲に現れる物質群3のピークの面積率が6000ppm以下であることが好ましく、さらに好ましくは4000ppm以下であり、さらに好ましくは2000ppm以下であり、さらに好ましくは1000ppm以下である。物質群3のピークの面積率は、具体的には、例えば、1、10、100、1000、6000ppmであり、ここで例示した数値のいずれか2つの間の範囲内であってもよい。
 βミルセン組成物の物質群3のピークの面積率が6000ppm以下であると、βミルセン組成物中の重合阻害物質の含有量が少なくなり、アニオン重合における開始剤効率が向上する。
 βミルセン組成物の物質群3のピークの面積率を6000ppm以下とする方法としては、例えば、原料としてのβミルセンの蒸留精製が挙げられる。
<Substance Group 3>
The β-myrcene composition according to the present embodiment has a relative retention time of 1.78 to 2.45 when the relative retention time of the β-myrcene peak is 1.0 in gas chromatography analysis under the conditions described later. is preferably 6000 ppm or less, more preferably 4000 ppm or less, still more preferably 2000 ppm or less, still more preferably 1000 ppm or less. Specifically, the area ratios of the peaks of substance group 3 are, for example, 1, 10, 100, 1000 and 6000 ppm, and may be within a range between any two of the numerical values exemplified here.
When the peak area ratio of substance group 3 in the β-myrcene composition is 6000 ppm or less, the content of polymerization inhibitors in the β-myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved.
As a method for making the peak area ratio of substance group 3 of the β-myrcene composition 6000 ppm or less, for example, β-myrcene as a raw material is purified by distillation.
<物質群3に該当する成分>
 本実施形態にかかるβミルセン組成物は、物質群3に該当する成分として、2,6,11,15-テトラメチルヘキサデカ-2,6,8,10,14-ペンタエン、2,6,11,15-テトラメチル-2,6,8,10,14-ヘキサデカペンタエン、2,6,8,10,14-ヘキサデカペンタエン-1,6,11,15-テトラメチル、5-(5-メチル-1-メチレン-4-ヘキセン-1-イル)-1-(4-メチル-3-ペンテン-1-イル)、4-(5-メチル-1-メチレン-4-ヘキセン-1-イル)-1-(4-メチル-3-ペンテン-1-イル)、5-エチニル-1,5-ビス(4-メチル-3-ペンテン-1-イル)、4-エチニル-1,4-ビス(4-メチル-3-ペンテン-1-イル)からなる群から選択される1種以上を含むことがある。
 βミルセン組成物において上述の物質群3に該当する成分のピークの面積率が6000ppm以下であると、βミルセン組成物中の重合阻害物質の含有量が少なくなり、アニオン重合における開始剤効率が向上する。
 βミルセン組成物において上述の物質群3に該当する成分のピークの面積率を6000ppm以下とする方法としては、例えば、原料としてのβミルセンの蒸留精製が挙げられる。
 なお、物質群3に該当する成分が複数含まれる場合、物質群3に該当する成分のピークの面積率は、物質群3に該当する成分の合計によるピーク面積率である。
<Components corresponding to substance group 3>
The β-myrcene composition according to the present embodiment contains 2,6,11,15-tetramethylhexadeca-2,6,8,10,14-pentaene, 2,6,11 as components corresponding to substance group 3. , 15-tetramethyl-2,6,8,10,14-hexadecapentene, 2,6,8,10,14-hexadecapentene-1,6,11,15-tetramethyl, 5-( 5-methyl-1-methylene-4-hexen-1-yl)-1-(4-methyl-3-penten-1-yl), 4-(5-methyl-1-methylene-4-hexene-1- yl)-1-(4-methyl-3-penten-1-yl), 5-ethynyl-1,5-bis(4-methyl-3-penten-1-yl), 4-ethynyl-1,4- It may contain one or more selected from the group consisting of bis(4-methyl-3-penten-1-yl).
When the peak area ratio of the component corresponding to the substance group 3 described above in the β-myrcene composition is 6000 ppm or less, the content of polymerization inhibitors in the β-myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved. do.
Examples of the method of making the peak area ratio of the component corresponding to the substance group 3 in the β-myrcene composition 6000 ppm or less include distillation purification of β-myrcene as a raw material.
When a plurality of components corresponding to substance group 3 are included, the peak area ratio of the components corresponding to substance group 3 is the total peak area ratio of the components corresponding to substance group 3 .
 本実施形態にかかるβミルセン組成物において、物質群3に該当する成分のピークの面積率を6000ppm以下に制御することにより開始剤効率が向上するメカニズムについては不明であるが、物質群3に該当するβミルセンの二量体成分がβミルセン組成物中に多く含まれると、アニオン重合においてβミルセンの二量体成分に起因する重合の停止機構が進行し、重合開始剤効率が低下するものと考えられる。 In the β-myrcene composition according to the present embodiment, the mechanism by which the initiator efficiency is improved by controlling the peak area ratio of the component corresponding to substance group 3 to 6000 ppm or less is unknown, but it corresponds to substance group 3. If a large amount of the β-myrcene dimer component is contained in the β-myrcene composition, the polymerization termination mechanism due to the β-myrcene dimer component will proceed in the anionic polymerization, and the polymerization initiator efficiency will decrease. Conceivable.
<物質群4>
 本実施形態にかかるβミルセン組成物は、後述の条件のガスクロマトグラフィー分析において、βミルセンのピークの相対保持時間を1.0としたとき、相対保持時間が0.00~0.49の範囲に現れる物質群4のピークの面積率が1000ppm以下であることが好ましく、さらに好ましくは800ppm以下であり、さらに好ましくは500ppm以下であり、さらに好ましくは300ppm以下である。物質群4のピークの面積率は、具体的には、例えば、1、300、500、800、1000ppmであり、ここで例示した数値のいずれか2つの間の範囲内であってもよい。
 βミルセン組成物の物質群4のピークの面積率が1000ppm以下であると、βミルセン組成物中の重合阻害物質の含有量が少なくなり、アニオン重合における開始剤効率が向上する。
 βミルセン組成物の物質群4のピークの面積率を1000ppm以下とする方法としては、例えば、原料としてのβミルセンの蒸留精製が挙げられる。
<Substance Group 4>
The β-myrcene composition according to the present embodiment has a relative retention time of 0.00 to 0.49 when the relative retention time of the β-myrcene peak is 1.0 in the gas chromatography analysis under the conditions described later. is preferably 1000 ppm or less, more preferably 800 ppm or less, still more preferably 500 ppm or less, and still more preferably 300 ppm or less. Specifically, the peak area ratios of the substance group 4 are, for example, 1, 300, 500, 800, and 1000 ppm, and may be within the range between any two of the numerical values exemplified here.
When the area ratio of the peak of substance group 4 in the β-myrcene composition is 1000 ppm or less, the content of polymerization inhibitors in the β-myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved.
As a method for making the peak area ratio of substance group 4 of the β-myrcene composition 1000 ppm or less, for example, β-myrcene as a raw material is purified by distillation.
<物質群4に該当する成分>
 本実施形態にかかるβミルセン組成物は、物質群4に該当する成分として、1-ブテン、2-ブテン、1,4-ペンタジエン、2,4-ヘキサジエン、4-メチル-1,3-ペンタジエン、4-メチルシクロペンタジエン、4-メチル-1-メチレンシクロヘキサンからなる群から選択される1種以上を含むことがある。
 βミルセン組成物において上述の物質群4に該当する成分のピークの面積率が1000ppm以下であると、βミルセン組成物中の重合阻害物質の含有量が少なくなり、アニオン重合における開始剤効率が向上する。
 βミルセン組成物において上述の物質群4に該当する成分のピークの面積率を1000ppm以下とする方法としては、例えば、原料としてのβミルセンの蒸留精製が挙げられる。
 なお、物質群4に該当する成分が複数含まれる場合、物質群4に該当する成分のピークの面積率は、物質群4に該当する成分の合計によるピーク面積率である。
<Components corresponding to substance group 4>
The β-myrcene composition according to the present embodiment contains 1-butene, 2-butene, 1,4-pentadiene, 2,4-hexadiene, 4-methyl-1,3-pentadiene, It may contain one or more selected from the group consisting of 4-methylcyclopentadiene and 4-methyl-1-methylenecyclohexane.
When the peak area ratio of the component corresponding to substance group 4 in the β-myrcene composition is 1000 ppm or less, the content of polymerization inhibitors in the β-myrcene composition is reduced, and the initiator efficiency in anionic polymerization is improved. do.
As a method for making the peak area ratio of the component corresponding to the substance group 4 in the β-myrcene composition 1000 ppm or less, for example, β-myrcene as a raw material is purified by distillation.
When a plurality of components corresponding to substance group 4 are included, the peak area ratio of the components corresponding to substance group 4 is the total peak area ratio of the components corresponding to substance group 4 .
 本実施形態にかかるβミルセン組成物において、物質群4に該当する成分のピークの面積率を1000ppm以下に制御することにより開始剤効率が向上するメカニズムについては不明であるが、物質群4に該当する低沸点成分がβミルセン組成物中に多く含まれると、アニオン重合において低沸点成分に起因する重合の停止機構が進行し、重合開始剤効率が低下するものと考えられる。 In the β-myrcene composition according to the present embodiment, the mechanism by which the initiator efficiency is improved by controlling the area ratio of the peak of the component corresponding to substance group 4 to 1000 ppm or less is unknown, but it corresponds to substance group 4. If the β-myrcene composition contains a large amount of the low boiling point component, the termination mechanism of polymerization due to the low boiling point component proceeds in the anionic polymerization, and the polymerization initiator efficiency is reduced.
<ガスクロマトグラフィー分析>
 本実施形態にかかるβミルセン組成物について、以下の条件のガスクロマトグラフィー分析を行うことによって、βミルセン組成物中に含まれる成分の含有量を、各成分のピークの面積率として得る。
<Gas chromatography analysis>
The β-myrcene composition according to the present embodiment is subjected to gas chromatography analysis under the following conditions to obtain the content of the component contained in the β-myrcene composition as the peak area ratio of each component.
<ガスクロマトグラフィー分析の条件>
使用カラム:DB-1、アジレント・テクノロジー社製、固定相:ジメチルポリシロキサン、内径:0.32mm、長さ:50.0m、膜厚:0.52μm
昇温条件:60℃、12分ホールド→10℃/分で昇温→300℃、12分ホールド、昇温時間24分、トータル48分
注入口温度:280℃
注入口圧力:169.2kPa
キャリアガス:ヘリウム
カラム流量:4.0mL/分
スプリット比:20
注入量:0.5μL、βミルセン組成物をそのまま注入
検出器:FID
検出温度:300℃
<Conditions for gas chromatography analysis>
Column used: DB-1, manufactured by Agilent Technologies, stationary phase: dimethylpolysiloxane, inner diameter: 0.32 mm, length: 50.0 m, film thickness: 0.52 μm
Heating conditions: 60°C, hold for 12 minutes → heat up at 10°C/min → 300°C, hold for 12 minutes, heat up time 24 minutes, total 48 minutes Inlet temperature: 280°C
Inlet pressure: 169.2 kPa
Carrier gas: Helium Column flow rate: 4.0 mL/min Split ratio: 20
Injection volume: 0.5 μL, injection of β-myrcene composition as it is Detector: FID
Detection temperature: 300°C
<各成分のピークの同定>
 以下の手順により、各成分のピークを同定する。
(1)βミルセン
 上記の条件にてガスクロマトグラフィー分析を行って得られるクロマトグラムにおいて、およそ16~17分の保持時間に現れる最大のピークがβミルセンに由来するものである可能性が高い。当該16~17分の保持時間に現れる最大のピークについて、例えば、ガスクロマトグラフ質量分析により当該ピークがβミルセンに由来するものであることを同定する。すなわち、カラムの昇温条件等をガスクロマトグラフィーの測定条件と同じにしてガスクロマトグラフ質量分析を測定すれば、ミルセンと定性されたピークと同じ保持時間のピークがガスクロマトグラフィー分析においてもミルセンに由来するピークであると定性できる。ガスクロマトグラフ質量分析装置としては、例えば島津製作所社製のGCMS-QP2020 NXが挙げられる。
<ガスクロマトグラフ質量分析の条件>
使用カラム:DB-1、アジレント・テクノロジー社製、固定相:ジメチルポリシロキサン、内径:0.32mm、長さ:50.0m、膜厚:0.52μm
昇温条件:60℃、12分ホールド→10℃/分で昇温→300℃、12分ホールド、昇温時間24分、トータル48分
注入口温度:280℃
注入口圧力:169.2kPa
キャリアガス:ヘリウム
カラム流量:4.0mL/分
スプリット比:20
注入量:0.5μL、βミルセン原料組成物またはβミルセン組成物をそのまま注入
イオン化:EI
質量範囲:m/z=29~550
(2)物質群1
 上述のようにして同定されたβミルセンのピークの保持時間を、相対保持時間1.0と定め、相対保持時間が1.29~1.78の範囲に現れるピークを、物質群1のピークと定める。
(3)物質群2
 上述のようにして同定されたβミルセンのピークの保持時間を、相対保持時間1.0と定め、相対保持時間が1.10~1.29の範囲に現れるピークを、物質群2のピークと定める。
(4)物質群3
 上述のようにして同定されたβミルセンのピークの保持時間を、相対保持時間1.0と定め、相対保持時間が1.78~2.45の範囲に現れるピークを、物質群3のピークと定める。
(5)物質群4
 上述のようにして同定されたβミルセンのピークの保持時間を、相対保持時間1.0と定め、相対保持時間が0.00~0.49の範囲に現れるピークを、物質群4のピークと定める。
<Identification of peaks of each component>
The following procedure identifies the peak of each component.
(1) β-myrcene In the chromatogram obtained by gas chromatography analysis under the above conditions, the maximum peak appearing at a retention time of approximately 16 to 17 minutes is highly likely to be derived from β-myrcene. The maximum peak appearing at the retention time of 16 to 17 minutes is identified as originating from β-myrcene, for example, by gas chromatography-mass spectrometry. In other words, if the gas chromatograph mass spectrometry is measured under the same conditions as the measurement conditions of the gas chromatography, such as the temperature rising conditions of the column, the peak with the same retention time as the peak qualitatively attributed to myrcene is also derived from myrcene in the gas chromatography analysis. It can be qualitatively determined that the peak Examples of the gas chromatograph mass spectrometer include GCMS-QP2020 NX manufactured by Shimadzu Corporation.
<Conditions for Gas Chromatograph Mass Spectrometry>
Column used: DB-1, manufactured by Agilent Technologies, stationary phase: dimethylpolysiloxane, inner diameter: 0.32 mm, length: 50.0 m, film thickness: 0.52 μm
Heating conditions: 60°C, hold for 12 minutes → heat up at 10°C/min → 300°C, hold for 12 minutes, heat up time 24 minutes, total 48 minutes Inlet temperature: 280°C
Inlet pressure: 169.2 kPa
Carrier gas: Helium Column flow rate: 4.0 mL/min Split ratio: 20
Injection amount: 0.5 μL, β-myrcene raw material composition or β-myrcene composition is directly injected and ionized: EI
Mass range: m/z = 29-550
(2) Substance group 1
The retention time of the β-myrcene peak identified as described above is defined as a relative retention time of 1.0, and peaks appearing in the range of relative retention times of 1.29 to 1.78 are defined as substance group 1 peaks. stipulate.
(3) Substance group 2
The retention time of the β-myrcene peak identified as described above is defined as a relative retention time of 1.0, and peaks appearing in the range of relative retention times of 1.10 to 1.29 are defined as substance group 2 peaks. stipulate.
(4) Substance group 3
The retention time of the β-myrcene peak identified as described above is defined as a relative retention time of 1.0, and peaks appearing in the range of relative retention times of 1.78 to 2.45 are defined as substance group 3 peaks. stipulate.
(5) Substance group 4
The retention time of the β-myrcene peak identified as described above is defined as a relative retention time of 1.0, and the peaks appearing in the range of relative retention times of 0.00 to 0.49 are defined as the peaks of Substance Group 4. stipulate.
<各ピークの面積率の測定>
 上記の各成分のピークの面積率は、例えば、ガスクロマトグラフィーのクロマトグラムを用い、各ピークの面積から分析機器のソフトを用いて自動で算出される。
<Measurement of area ratio of each peak>
The area ratio of the peak of each component described above is automatically calculated from the area of each peak using, for example, a chromatogram of gas chromatography using the software of an analytical instrument.
<βミルセン組成物の製造方法>
 本実施形態にかかるβミルセン組成物は、例えば、βミルセン原料組成物を蒸留精製することにより得られる。蒸留方法は特に限定されないが、例えば、蒸留塔が付いた容器にβミルセン原料組成物を入れ、加熱、減圧下で留出させることが挙げられる。初留を所定量除くことで、物質群4を除去し、その後、留出物の一部を精製物として回収する。反応容器に残った分が残渣となり、残渣を所定量残すことで物質群1、物質群2、物質群3を効率的に除去することができる。
<Method for producing β-myrcene composition>
The β-myrcene composition according to the present embodiment is obtained, for example, by distilling and refining the β-myrcene raw material composition. Although the distillation method is not particularly limited, for example, the β-myrcene raw material composition is placed in a vessel equipped with a distillation column, heated, and distilled under reduced pressure. By removing a predetermined amount of the initial distillation, the substance group 4 is removed, and then part of the distillate is recovered as a refined product. The amount remaining in the reaction vessel becomes a residue, and by leaving a predetermined amount of residue, substance group 1, substance group 2, and substance group 3 can be efficiently removed.
<蒸留温度>
 蒸留温度は40℃から150℃であることが好ましい。蒸留温度が40℃以下では、留出速度が遅くなり生産効率の面で不利となる。蒸留温度が150℃以上では、βミルセンの二量体化が起こる。その結果、原料βミルセン中の高沸点成分の割合が増加し、沸点が上昇するため、βミルセンが留出しにくくなり、βミルセンの収率が下がる点で不利となる。
<Distillation temperature>
Preferably, the distillation temperature is from 40°C to 150°C. If the distillation temperature is 40° C. or less, the distillation rate becomes slow, which is disadvantageous in terms of production efficiency. Dimerization of β-myrcene occurs at distillation temperatures above 150°C. As a result, the ratio of high-boiling components in the raw material β-myrcene increases, and the boiling point rises, making it difficult to distill β-myrcene, which is disadvantageous in that the yield of β-myrcene decreases.
<蒸留圧力>
 蒸留圧力は、βミルセンの蒸気圧以下とすることが好ましく、蒸留温度に応じて決定する。蒸留圧力が高いとβミルセンの沸点が高くなり、蒸留温度も高くなるため、上述の蒸留温度が高い場合と同様にβミルセンの二量体化が起こり、βミルセンの収率が下がり不利となる。
<Distillation pressure>
The distillation pressure is preferably equal to or lower than the vapor pressure of β-myrcene, and is determined according to the distillation temperature. If the distillation pressure is high, the boiling point of β-myrcene will rise and the distillation temperature will also rise, so dimerization of β-myrcene occurs in the same manner as in the case of the high distillation temperature described above, and the yield of β-myrcene decreases, which is disadvantageous. .
<重合禁止剤>
 蒸留装置にβミルセン原料組成物を仕込む際、熱重合を抑制するために重合禁止剤を添加することが好ましい。重合禁止剤としては、TBC(ターシャリーブチルカテコール)、BHT(ジブチルヒドロキシトルエン)、ベンゾキノン、ハイドロキノン等が挙げられる。添加する量は精製物の純度の観点からβミルセン原料組成物の重量に対して1重量%以下が好ましく、0.5重量%以下がより好ましく、0.1重量%がさらに好ましい。重合禁止剤の効果発現の観点から10ppm以上が好ましい。
<Polymerization inhibitor>
When charging the β-myrcene raw material composition into the distillation apparatus, it is preferable to add a polymerization inhibitor to suppress thermal polymerization. Polymerization inhibitors include TBC (tertiary butylcatechol), BHT (dibutylhydroxytoluene), benzoquinone, hydroquinone, and the like. The amount to be added is preferably 1% by weight or less, more preferably 0.5% by weight or less, and still more preferably 0.1% by weight based on the weight of the β-myrcene raw material composition from the viewpoint of the purity of the purified product. 10 ppm or more is preferable from the viewpoint of expression of the effect of the polymerization inhibitor.
<収率>
 収率は蒸留で留出させた精製物量(ミルセン組成物の量)と蒸留装置に仕込んだβミルセン原料組成物の量から計算する。
収率=(精製物量)/(蒸留装置に仕込んだβミルセン原料組成物量)×100
<Yield>
The yield is calculated from the amount of refined product (amount of myrcene composition) distilled by distillation and the amount of β-myrcene raw material composition charged to the distillation apparatus.
Yield = (amount of purified product) / (amount of β-myrcene raw material composition charged in distillation apparatus) x 100
<βミルセン組成物を用いて得られるポリマー>
 本実施形態にかかるβミルセン組成物は、重合原料として、本実施形態にかかるβミルセン組成物、芳香族ビニル炭化水素系モノマー、βミルセン以外の共役ジエン系モノマーを用い、ポリマーを得ることができる。得られるポリマーは、βミルセンモノマー単位からなるβミルセンポリマーであっても、βミルセンモノマー単位と、芳香族ビニル炭化水素系モノマー単位または芳香族ビニル炭化水素系モノマー単位およびβミルセン以外の共役ジエン系モノマー単位を含有するコポリマー(P)であってもよい。
 以下に、本実施形態にかかるコポリマー(P)に含有されるモノマー単位について説明する。
<Polymer obtained using β-myrcene composition>
The β-myrcene composition according to the present embodiment can be obtained as a polymer by using the β-myrcene composition according to the present embodiment, an aromatic vinyl hydrocarbon-based monomer, and a conjugated diene-based monomer other than β-myrcene as polymerization raw materials. . The resulting polymer, even if it is a β-myrcene polymer composed of β-myrcene monomer units, is composed of β-myrcene monomer units and aromatic vinyl hydrocarbon-based monomer units or aromatic vinyl hydrocarbon-based monomer units and other than β-myrcene monomer units. It may be a copolymer (P) containing conjugated diene-based monomer units.
The monomer units contained in the copolymer (P) according to this embodiment are described below.
<芳香族ビニル炭化水素系モノマー単位>
 芳香族ビニル炭化水素系モノマー単位は、共重合に用いられる芳香族ビニル炭化水素系モノマーに由来するコポリマーの構成単位である。芳香族ビニル炭化水素系モノマーとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン等が挙げられる。これらの芳香族ビニル炭化水素系モノマーは、単独で使用しても2種類以上を組み合わせて使用してもよい。
<Aromatic Vinyl Hydrocarbon Monomer Unit>
The aromatic vinyl hydrocarbon-based monomer unit is a structural unit of the copolymer derived from the aromatic vinyl hydrocarbon-based monomer used for copolymerization. Examples of aromatic vinyl hydrocarbon monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene and α-methylstyrene. , α-methyl-p-methylstyrene and the like. These aromatic vinyl hydrocarbon monomers may be used alone or in combination of two or more.
<共役ジエン系モノマー単位>
 共役ジエンは、共重合に用いられる共役ジエン系モノマーに由来するコポリマーの構成単位である。共役ジエン系モノマーとしては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2、3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、ファルネセン等が挙げられる。これらの共役ジエン系モノマーは、単独で使用しても2種類以上を組み合わせて使用してもよい。
<Conjugated diene-based monomer unit>
A conjugated diene is a constituent unit of a copolymer derived from a conjugated diene-based monomer used for copolymerization. Examples of conjugated diene-based monomers include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3- hexadiene, farnesene and the like. These conjugated diene-based monomers may be used alone or in combination of two or more.
<βミルセンモノマー単位を含有するポリマーブロック>
 本実施形態にかかるβミルセンモノマー単位と芳香族ビニル炭化水素系モノマー単位を含有するコポリマー(P)及びβミルセンモノマー単位と芳香族ビニル炭化水素系モノマー単位およびβミルセン以外の共役ジエン系モノマー単位を含有するコポリマー(P)は、βミルセンモノマー単位を含有するポリマーブロックを含有するブロックコポリマーであってもよい。
<Polymer block containing β-myrcene monomer unit>
Copolymer (P) containing β-myrcene monomer units and aromatic vinyl hydrocarbon-based monomer units according to the present embodiment, β-myrcene monomer units, aromatic vinyl hydrocarbon-based monomer units, and conjugated diene-based monomers other than β-myrcene The copolymer (P) containing units may be a block copolymer containing polymer blocks containing β-myrcene monomer units.
 本実施形態のコポリマー(P)が有する「βミルセンモノマー単位を含有するポリマーブロック」とは、βミルセンモノマー単位を含有するポリマーブロック100質量%中にβミルセンモノマー単位を80~100質量%含有するブロックであることが好ましく、より好ましくはβミルセンモノマー単位を90~100質量%含有する。具体的には、例えば、80、85、90、95、または100質量%であり、ここで例示した数値のいずれか2つの間の範囲内であってよい。また、βミルセンモノマー単位を含有するブロックが実質的にβミルセンモノマー単位のみを含有するブロックであってもよい。
 本実施形態における「βミルセンモノマー単位を含有するポリマーブロック」は、βミルセンモノマー単位を含有するポリマーブロック100質量%中にβミルセンモノマー単位以外のモノマー単位を0~20質量%含有する。このようなβミルセンモノマー単位以外のモノマー単位は、βミルセンに含まれる不純物に由来するモノマー単位であり、例えば酸化テルペンに由来するモノマー単位や、βミルセンの二量体に由来するモノマー単位が挙げられる。
 なお、本実施形態における「βミルセンモノマー単位を含有するポリマーブロック」は、βミルセンモノマー単位とβミルセンに含まれる不純物に由来するモノマー単位以外のモノマー単位を含み得るが、そのようなモノマー単位の含有量は、βミルセンモノマー単位を含有するポリマーブロック100質量%中20質量%未満であることが好ましく、10質量%未満であることがさらに好ましい。
The "polymer block containing β-myrcene monomer units" of the copolymer (P) of the present embodiment means that 80 to 100 mass of β-myrcene monomer units are contained in 100% by mass of the polymer block containing β-myrcene monomer units. %, more preferably 90 to 100% by mass of β-myrcene monomer units. Specifically, it may be, for example, 80, 85, 90, 95, or 100% by mass, and may be within a range between any two of the numerical values exemplified here. Also, the block containing β-myrcene monomer units may be a block containing substantially only β-myrcene monomer units.
The "polymer block containing β-myrcene monomer units" in the present embodiment contains 0 to 20% by mass of monomer units other than β-myrcene monomer units in 100% by mass of the polymer block containing β-myrcene monomer units. . Monomer units other than such β-myrcene monomer units are monomer units derived from impurities contained in β-myrcene, for example, monomer units derived from terpene oxide and monomer units derived from dimers of β-myrcene. mentioned.
The "polymer block containing β-myrcene monomer units" in the present embodiment may contain monomer units other than β-myrcene monomer units and monomer units derived from impurities contained in β-myrcene. The unit content is preferably less than 20% by mass, more preferably less than 10% by mass, based on 100% by mass of polymer blocks containing β-myrcene monomer units.
 βミルセンモノマー単位を含有するポリマーブロック中のβミルセンモノマー単位の含有量は、例えば、βミルセン組成物中に含有されるβミルセンモノマーの含有量を調整すること、βミルセン組成物と他のモノマーを一括で反応系に添加する際の添加総量に対するβミルセン組成物の割合を調整すること、βミルセン組成物と他のモノマーを定量供給する際のβミルセン組成物と他のモノマーの供給流量を制御すること等により制御することができる。 The content of the β-myrcene monomer unit in the polymer block containing the β-myrcene monomer unit can be adjusted, for example, by adjusting the content of the β-myrcene monomer contained in the β-myrcene composition, Adjusting the ratio of the β-myrcene composition with respect to the total amount added when other monomers are added to the reaction system at once, It can be controlled by controlling the supply flow rate or the like.
<ポリマーの製造方法>
 本実施形態のポリマーは、モノマーを公知の重合方法で重合させることにより得られ、例えば、アニオン重合、カチオン重合、リビングラジカル重合などが挙げられる。コポリマーの構造制御の観点からアニオン重合が好ましい。
 なお、重合の際に、共重合するβミルセン組成物および芳香族ビニル炭化水素系モノマー、またはβミルセン組成物、芳香族ビニル炭化水素系モノマー、および共役ジエン系モノマーを一括で反応系に添加することや、共重合するβミルセン組成物および芳香族ビニル炭化水素系モノマー、またはβミルセン組成物、芳香族ビニル炭化水素系モノマー、および共役ジエン系モノマーを一定量で反応系に供給すること等により、ポリマーブロックを有しないコポリマーを得ることができる。
<Method for producing polymer>
The polymer of the present embodiment is obtained by polymerizing monomers by a known polymerization method, examples of which include anionic polymerization, cationic polymerization, and living radical polymerization. Anionic polymerization is preferred from the viewpoint of structural control of the copolymer.
At the time of polymerization, the β-myrcene composition and the aromatic vinyl hydrocarbon-based monomer to be copolymerized, or the β-myrcene composition, the aromatic vinyl hydrocarbon-based monomer, and the conjugated diene-based monomer are added to the reaction system all at once. Alternatively, by supplying a constant amount of the β-myrcene composition and the aromatic vinyl hydrocarbon-based monomer to be copolymerized, or the β-myrcene composition, the aromatic vinyl hydrocarbon-based monomer, and the conjugated diene-based monomer to the reaction system. , a copolymer without polymer blocks can be obtained.
<ブロックコポリマーの製造方法>
 コポリマー(P)中にβミルセンモノマー単位を含有するポリマーブロックを含有させて、ブロックコポリマーを得るには、例えば、反応系に添加する全モノマー中の、βミルセンモノマーの含有量が80質量%以上となるように重合モノマーを反応系に添加して、所定時間重合することや、反応系に定量供給する全モノマー中の、βミルセンモノマーの供給流量比が80質量%以上となるように重合モノマーを反応系に一定時間供給し続けること等が挙げられる。一実施形態においては、βミルセン組成物のみを反応系に添加し、所定時間重合することにより、コポリマー(P)中にβミルセンモノマー単位を含有するポリマーブロックを含有させることができる。
<Method for producing block copolymer>
In order to obtain a block copolymer by including a polymer block containing a β-myrcene monomer unit in the copolymer (P), for example, the content of the β-myrcene monomer in the total monomers added to the reaction system is 80 mass. % or more of the polymerization monomer is added to the reaction system and polymerized for a predetermined period of time. For example, the polymerization monomer is continuously supplied to the reaction system for a certain period of time. In one embodiment, polymer blocks containing β-myrcene monomer units can be included in the copolymer (P) by adding only the β-myrcene composition to the reaction system and polymerizing for a predetermined period of time.
 一態様においては、例えば、以下の(A)~(C)の工程を任意の順序で、任意の回数実施することで、ポリマーブロックを含有するブロックコポリマーが得られる。ここで、(A)~(C)の工程のうち、実施しない工程があってもよい。(B)の工程を実施することで、コポリマー(P)中にβミルセンモノマー単位を含有するポリマーブロックを含有させることが可能である。また、(A)~(C)の工程の間に、(D)の工程を実施してもよい。
(A)反応系に芳香族ビニル炭化水素系モノマーを添加して、芳香族ビニル炭化水素系モノマーを所定時間重合する工程
(B)反応系にβミルセン組成物を添加して、βミルセンを所定時間重合する工程
(C)反応系にβミルセン以外の共役ジエン系モノマーを添加して、共役ジエン系モノマーを所定時間重合する工程
(D)反応系にβミルセン組成物、芳香族ビニル炭化水素系モノマー、およびβミルセン以外の共役ジエン系モノマーの少なくとも2種以上を含む混合物を添加して、混合物に含まれるモノマーを重合させる工程
In one aspect, for example, a block copolymer containing polymer blocks can be obtained by performing the following steps (A) to (C) in any order and any number of times. Here, among the steps (A) to (C), some steps may not be performed. By performing the step (B), it is possible to include polymer blocks containing β-myrcene monomer units in the copolymer (P). Further, step (D) may be performed between steps (A) to (C).
(A) A step of adding an aromatic vinyl hydrocarbon-based monomer to the reaction system and polymerizing the aromatic vinyl hydrocarbon-based monomer for a predetermined time (B) Adding a β-myrcene composition to the reaction system to obtain a predetermined amount of β-myrcene (C) adding a conjugated diene-based monomer other than β-myrcene to the reaction system and polymerizing the conjugated diene-based monomer for a predetermined time (D) adding a β-myrcene composition and an aromatic vinyl hydrocarbon to the reaction system; A step of adding a mixture containing a monomer and at least two or more of conjugated diene monomers other than β-myrcene, and polymerizing the monomers contained in the mixture.
 (A)~(D)の各工程から次の工程に移行する際には、例えば、前の工程において、反応系の溶液をサンプリングし、ガスクロマトグラフィー(GC)測定を実施することにより当該前の工程において反応系に添加した全モノマーの95質量%以上が重合反応に消費されていることを確認してから次の工程に移行することが好ましい。また、予め反応系に添加した全モノマーの95質量%以上が重合反応に消費されるのに要する時間(所定時間とも称する)を予想できる場合には、当該時間が経過した後に次の工程に移行してもよい。 When moving from each step of (A) to (D) to the next step, for example, in the previous step, the solution of the reaction system is sampled and gas chromatography (GC) is measured. It is preferable to proceed to the next step after confirming that 95% by mass or more of all the monomers added to the reaction system in the step 2) are consumed in the polymerization reaction. In addition, if the time required for the polymerization reaction to consume 95% by mass or more of all the monomers added in advance to the reaction system (also referred to as a predetermined time) can be predicted, the process proceeds to the next step after the time has elapsed. You may
 以下に実施例及び比較例を示して、本発明の具体的な実施態様をより詳細に説明する。本発明は、以下の実施例によって限定されるものではない。 Specific embodiments of the present invention will be described in more detail below by showing examples and comparative examples. The invention is not limited by the following examples.
<使用原料>
・βミルセン原料組成物 ミルセン(商品名)、ヤスハラケミカル社製(βミルセン単一品の純度は分析により72.6%)
・BHT 2,6-Di-tert-butyl-p-cresol(商品名)、東京化成工業社製
・シクロヘキサン シクロヘキサン(商品名)、出光興産社製
・THF テトラヒドロフラン(商品名)、純正化学社製
・n-ブチルリチウム n-ブチルリチウム、10質量%シクロヘキサン溶液(商品名)、アルベマール社製
・スチレン(商品名)、デンカ社製
・1,3-ブタジエン(商品名)、千葉ブタジエン工業社製
<Raw materials used>
・β-myrcene raw material composition myrcene (trade name), manufactured by Yasuhara Chemical Co. (purity of single β-myrcene product is 72.6% by analysis)
・BHT 2,6-Di-tert-butyl-p-cresol (trade name), manufactured by Tokyo Chemical Industry Co., Ltd. ・Cyclohexane Cyclohexane (trade name), manufactured by Idemitsu Kosan Co., Ltd. ・THF Tetrahydrofuran (trade name), manufactured by Junsei Chemical Co., Ltd. ・n-butyl lithium n-butyl lithium, 10% by mass cyclohexane solution (trade name), Styrene (trade name) manufactured by Albemarle, 1,3-butadiene (trade name) manufactured by Denka, Chiba Butadiene Kogyo Co., Ltd.
<蒸留用の原料の調製>
 βミルセン原料組成物を購入品として準備し、βミルセン原料組成物100重量部にBHT(ジブチルヒドロキシトルエン)0.05重量部を混合し、蒸留用の原料を用意した。
<Preparation of raw materials for distillation>
A β-myrcene raw material composition was prepared as a purchased product, and 0.05 part by weight of BHT (dibutylhydroxytoluene) was mixed with 100 parts by weight of the β-myrcene raw material composition to prepare a raw material for distillation.
<連続蒸留>
<実施例1>
 原料を1塔目(理論段数10段、蒸留圧力10kPaA、還流比0.1、釜温度93℃)の下から5段目に毎時100gの流量で連続的に供給した。1塔目では塔頂から毎時1.0gを連続的に抜き出した。1塔目の塔底液は2塔目へ送った。2塔目(理論段数10段、蒸留圧力10kPaA、還流比2.0、釜温度109℃)の下から5段目に1塔目の塔底液を連続的に供給した。2塔目では塔底から毎時18.0gを連続的に抜き出し、塔頂から毎時81.0gをβミルセン組成物として回収した。
 得られたβミルセン組成物中のβミルセンの純度は93.2%であった。得られたβミルセン組成物の分析結果を表1に示す。
<Continuous distillation>
<Example 1>
The starting material was continuously supplied from the bottom to the fifth stage of the first column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 0.1, kettle temperature of 93° C.) at a flow rate of 100 g/h. In the first column, 1.0 g/h was continuously withdrawn from the top of the column. The bottom liquid of the first tower was sent to the second tower. The bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 2.0, pot temperature of 109°C). In the second column, 18.0 g/h was continuously withdrawn from the bottom of the column, and 81.0 g/h was recovered as a β-myrcene composition from the top of the column.
The purity of β-myrcene in the obtained β-myrcene composition was 93.2%. Table 1 shows the analysis results of the resulting β-myrcene composition.
<実施例2>
 原料を1塔目(理論段数10段、蒸留圧力10kPaA、還流比0.1、釜温度93℃)の下から5段目に毎時100gの流量で連続的に供給した。1塔目では塔頂から毎時1.0gを連続的に抜き出した。1塔目の塔底液は2塔目へ送った。2塔目(理論段数10段、蒸留圧力10kPaA、還流比1.0、釜温度122℃)の下から5段目に1塔目の塔底液を連続的に供給した。2塔目では塔底から毎時4.4gを連続的に抜き出し、塔頂から毎時94.6gをβミルセン組成物として回収した。
 得られたβミルセン組成物中のβミルセンの純度は85.7%であった。得られたβミルセン組成物の分析結果を表1に示す。
<Example 2>
The starting material was continuously supplied from the bottom to the fifth stage of the first column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 0.1, kettle temperature of 93° C.) at a flow rate of 100 g/h. In the first column, 1.0 g/h was continuously withdrawn from the top of the column. The bottom liquid of the first tower was sent to the second tower. The bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 1.0, kettle temperature of 122°C). In the second column, 4.4 g/h was continuously withdrawn from the bottom of the column, and 94.6 g/h was recovered as a β-myrcene composition from the top of the column.
The purity of β-myrcene in the resulting β-myrcene composition was 85.7%. Table 1 shows the analysis results of the resulting β-myrcene composition.
<実施例3>
 原料を1塔目(理論段数10段、蒸留圧力5kPaA、還流比0.1、釜温度76℃)の下から5段目に毎時100gの流量で連続的に供給した。1塔目では塔頂から毎時1.0gを連続的に抜き出した。1塔目の塔底液は2塔目へ送った。2塔目(理論段数10段、蒸留圧力5kPaA、還流比0.1、釜温度101℃)の下から5段目に1塔目の塔底液を連続的に供給した。2塔目では塔底から毎時4.4gを連続的に抜き出し、塔頂から毎時94.6gをβミルセン組成物として回収した。
 得られたβミルセン組成物中のβミルセンの純度は85.4%であった。得られたβミルセン組成物の分析結果を表1に示す。
<Example 3>
The starting material was continuously supplied to the first column (10 theoretical plates, distillation pressure 5 kPaA, reflux ratio 0.1, kettle temperature 76° C.) from the bottom to the fifth column at a flow rate of 100 g/h. In the first column, 1.0 g/h was continuously withdrawn from the top of the column. The bottom liquid of the first tower was sent to the second tower. The bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure 5 kPaA, reflux ratio 0.1, kettle temperature 101° C.). In the second column, 4.4 g/h was continuously withdrawn from the bottom of the column, and 94.6 g/h was recovered as a β-myrcene composition from the top of the column.
The purity of β-myrcene in the resulting β-myrcene composition was 85.4%. Table 1 shows the analysis results of the resulting β-myrcene composition.
<実施例4>
原料を1塔目(理論段数10段、蒸留圧力60kPaA、還流比0.5、釜温度143℃)の下から5段目に毎時100gの流量で連続的に供給した。1塔目では塔頂から毎時1.0gを連続的に抜き出した。1塔目の塔底液は2塔目へ送った。2塔目(理論段数10段、蒸留圧力60kPaA、還流比1.0、釜温度148℃)の下から5段目に1塔目の塔底液を連続的に供給した。2塔目では初め塔底から毎時4.4gを連続的に抜き出していたが、塔底液の粘度が上昇してきたため、粘度が下がるまで抜出量を徐々に増やしていき、毎時22.0gを連続的に抜き出し、塔頂から毎時77.0gのβミルセン組成物を得た。
 得られたβミルセン組成物中のβミルセンの純度は85.6%であった。得られたβミルセン組成物の分析結果を表1に示す。
<Example 4>
The starting material was continuously supplied to the fifth stage from the bottom of the first column (10 theoretical stages, distillation pressure 60 kPaA, reflux ratio 0.5, kettle temperature 143° C.) at a flow rate of 100 g/h. In the first column, 1.0 g/h was continuously withdrawn from the top of the column. The bottom liquid of the first tower was sent to the second tower. The bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure 60 kPaA, reflux ratio 1.0, kettle temperature 148° C.). In the second tower, 4.4 g per hour was continuously extracted from the bottom of the tower at the beginning, but since the viscosity of the bottom liquid increased, the withdrawal amount was gradually increased until the viscosity decreased, and 22.0 g per hour was removed. Withdrawal was carried out continuously to obtain 77.0 g of β-myrcene composition per hour from the top of the column.
The purity of β-myrcene in the obtained β-myrcene composition was 85.6%. Table 1 shows the analysis results of the resulting β-myrcene composition.
<実施例5>
 原料を直接2塔目(理論段数10段、蒸留圧力5kPaA、還流比1.0、釜温度110℃)の下から5段目に毎時100gの流量で連続的に供給した。2塔目では塔底から毎時4.4gを連続的に抜き出し、塔頂から毎時95.6gをβミルセン組成物として回収した。
 得られたβミルセン組成物中のβミルセンの純度は85.4%であった。得られたβミルセン組成物の分析結果を表1に示す。
<Example 5>
The raw material was continuously supplied directly to the second column (10 theoretical plates, distillation pressure 5 kPaA, reflux ratio 1.0, pot temperature 110° C.) at a flow rate of 100 g per hour. In the second column, 4.4 g/h was continuously withdrawn from the bottom of the column, and 95.6 g/h was recovered as a β-myrcene composition from the top of the column.
The purity of β-myrcene in the resulting β-myrcene composition was 85.4%. Table 1 shows the analysis results of the resulting β-myrcene composition.
<実施例6>
 原料を1塔目(理論段数10段、蒸留圧力10kPaA、還流比1.0、釜温度93℃)の下から5段目に毎時100gの流量で連続的に供給した。1塔目では塔頂から毎時0.5gを連続的に抜き出した。1塔目の塔底液は2塔目へ送った。2塔目(理論段数10段、蒸留圧力10kPaA、還流比0.1、釜温度121℃)の下から5段目に1塔目の塔底液を連続的に供給した。2塔目では塔底から毎時3.0gを連続的に抜き出し、塔頂から毎時96.5gをβミルセン組成物として回収した。
 得られたβミルセン組成物中のβミルセンの純度は84.6%であった。得られたβミルセン組成物の分析結果を表1に示す。
<Example 6>
The starting material was continuously supplied from the bottom to the fifth stage of the first column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 1.0, pot temperature of 93° C.) at a flow rate of 100 g/h. In the first column, 0.5 g/h was continuously withdrawn from the top of the column. The bottom liquid of the first tower was sent to the second tower. The bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure 10 kPaA, reflux ratio 0.1, kettle temperature 121° C.). In the second column, 3.0 g/h was continuously withdrawn from the bottom of the column, and 96.5 g/h was recovered from the top of the column as a β-myrcene composition.
The purity of β-myrcene in the obtained β-myrcene composition was 84.6%. Table 1 shows the analysis results of the resulting β-myrcene composition.
<比較例1>
 原料を1塔目(理論段数10段、蒸留圧力10kPaA、還流比0.1、釜温度93℃)の下から5段目に毎時100gの流量で連続的に供給した。1塔目では塔頂から毎時1.0gを連続的に抜き出した。1塔目の塔底液は2塔目へ送った。2塔目(理論段数10段、蒸留圧力10kPaA、還流比1.0、釜温度145℃)の下から5段目に1塔目の塔底液を連続的に供給した。2塔目では塔底から毎時1.8gを連続的に抜き出し、塔頂から毎時97.2gをβミルセン組成物として回収した。
 得られたβミルセン組成物中のβミルセンの純度は83.5%であった。得られたβミルセン組成物の分析結果を表1に示す。
<Comparative Example 1>
The starting material was continuously supplied from the bottom to the fifth stage of the first column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 0.1, kettle temperature of 93° C.) at a flow rate of 100 g/h. In the first column, 1.0 g/h was continuously withdrawn from the top of the column. The bottom liquid of the first tower was sent to the second tower. The bottom liquid of the first column was continuously supplied to the fifth column from the bottom of the second column (10 theoretical plates, distillation pressure of 10 kPaA, reflux ratio of 1.0, pot temperature of 145°C). In the second column, 1.8 g/h was continuously withdrawn from the bottom of the column, and 97.2 g/h was recovered as a β-myrcene composition from the top of the column.
The purity of β-myrcene in the resulting β-myrcene composition was 83.5%. Table 1 shows the analysis results of the resulting β-myrcene composition.
<回分蒸留>
<実施例7>
 理論段数10段の蒸留塔を備えた3000mL三口フラスコに、原料を1000g入れた。釜温度95℃、蒸留圧力10kPaA、還流無し、の条件下において蒸留し、初留50gを除いた後、βミルセン組成物を留出物として820g回収した。フラスコには、残渣を130g残した。
 得られたβミルセン組成物中のβミルセンの純度は82.6%であった。得られたβミルセン組成物の分析結果を表2に示す。
<Batch distillation>
<Example 7>
1000 g of raw material was placed in a 3000 mL three-necked flask equipped with a distillation column with 10 theoretical plates. Distillation was carried out under conditions of a pot temperature of 95° C., a distillation pressure of 10 kPaA, and no reflux, and after removing 50 g of the initial distillation, 820 g of a β-myrcene composition was recovered as a distillate. 130 g of residue remained in the flask.
The purity of β-myrcene in the obtained β-myrcene composition was 82.6%. Table 2 shows the analysis results of the resulting β-myrcene composition.
<実施例8>
 理論段数10段の蒸留塔を備えた3000mL三口フラスコに、原料を1000g入れた。釜温度95℃、蒸留圧力10kPaA、還流無し、の条件下において蒸留し、初留10gを除いた後、βミルセン組成物を留出物として955g回収した。フラスコには、残渣を35g残した。
 得られたβミルセン組成物中のβミルセンの純度は79.2%であった。得られたβミルセン組成物の分析結果を表2に示す。
<Example 8>
1000 g of raw material was placed in a 3000 mL three-necked flask equipped with a distillation column with 10 theoretical plates. Distillation was carried out under conditions of a kettle temperature of 95° C., a distillation pressure of 10 kPaA, and no reflux, and after removing 10 g of initial distillation, 955 g of a β-myrcene composition was recovered as a distillate. 35 g of residue remained in the flask.
The purity of β-myrcene in the obtained β-myrcene composition was 79.2%. Table 2 shows the analysis results of the resulting β-myrcene composition.
<実施例9>
 理論段数10段の蒸留塔を備えた3000mL三口フラスコに、原料を1000g入れた。釜温度160℃、蒸留圧力85kPaA、還流無し、の条件下において蒸留した。初留50gを除いた後、530gを留出させたところで留出が止まった。ここまでの留出液をβミルセン組成物として得た。
 得られたβミルセン組成物中のβミルセンの純度は83.3%であった。得られたβミルセン組成物の分析結果を表2に示す。
<Example 9>
1000 g of raw material was placed in a 3000 mL three-necked flask equipped with a distillation column with 10 theoretical plates. Distillation was carried out under conditions of a kettle temperature of 160°C, a distillation pressure of 85 kPaA, and no reflux. After 50 g of initial distillation was removed, distillation stopped when 530 g was distilled. The distillate obtained so far was obtained as a β-myrcene composition.
The purity of β-myrcene in the obtained β-myrcene composition was 83.3%. Table 2 shows the analysis results of the resulting β-myrcene composition.
<比較例2>
 理論段数10段の蒸留塔を備えた3000mL三口フラスコに、原料を1000g入れた。釜温度95℃、蒸留圧力10kPaA、還流無し、の条件下において蒸留し、初留10gを除いた後、βミルセン組成物を留出物として975g回収した。フラスコには、残渣を15g残した。
 得られたβミルセン組成物中のβミルセンの純度は73.8%であった。得られたβミルセン組成物の分析結果を表2に示す。
<Comparative Example 2>
1000 g of raw material was placed in a 3000 mL three-necked flask equipped with a distillation column with 10 theoretical plates. Distillation was carried out under conditions of a kettle temperature of 95° C., a distillation pressure of 10 kPaA, and no reflux, and after removing 10 g of the initial distillation, 975 g of a β-myrcene composition was recovered as a distillate. 15 g of residue remained in the flask.
The purity of β-myrcene in the resulting β-myrcene composition was 73.8%. Table 2 shows the analysis results of the resulting β-myrcene composition.
<βミルセン原料組成物、βミルセン組成物の成分の分析>
 βミルセン原料組成物およびβミルセン組成物中に含有されるβミルセン及び物質群1~物質群4の不純物は、以下の条件によりガスクロマトグラフィー(GC)測定を実施し、面積から定量した。βミルセン原料組成物の分析には、購入品を精製せずにそのまま分析に用いた。
GC装置名:Nexis GC-2030(島津製作所社製)
使用カラム:DB-1、アジレント・テクノロジー社製、固定相:ジメチルポリシロキサン、内径:0.32mm、長さ:50.0m、膜厚:0.52μm
昇温条件:60℃、12分ホールド→10℃/分で昇温→300℃、12分ホールド、昇温時間24分、トータル48分
注入口温度:280℃
注入口圧力:169.2kPa
キャリアガス:ヘリウム
カラム流量:4.0mL/分
スプリット比:20
注入量:0.5μL、βミルセン原料組成物またはβミルセン組成物をそのまま注入
検出器:FID
検出温度:300℃
<Analysis of components of β-myrcene raw material composition and β-myrcene composition>
β-myrcene and impurities of substance groups 1 to 4 contained in the β-myrcene raw material composition and the β-myrcene composition were measured by gas chromatography (GC) under the following conditions and quantified from the area. For the analysis of the β-myrcene raw material composition, the purchased product was used as it was without purification.
GC device name: Nexis GC-2030 (manufactured by Shimadzu Corporation)
Column used: DB-1, manufactured by Agilent Technologies, stationary phase: dimethylpolysiloxane, inner diameter: 0.32 mm, length: 50.0 m, film thickness: 0.52 μm
Heating conditions: 60°C, hold for 12 minutes → heat up at 10°C/min → 300°C, hold for 12 minutes, heat up time 24 minutes, total 48 minutes Inlet temperature: 280°C
Inlet pressure: 169.2 kPa
Carrier gas: Helium Column flow rate: 4.0 mL/min Split ratio: 20
Injection volume: 0.5 μL, β-myrcene raw material composition or β-myrcene composition is directly injected Detector: FID
Detection temperature: 300°C
<βミルセン及び物質群1~物質群4のピークの同定>
 ガスクロマトグラフィー(GC)測定から得られるクロマトグラム中のβミルセン及び物質群1~物質群4のピークは以下のように同定・決定した。
(1)βミルセン
 上記の条件にてガスクロマトグラフィー分析を行って得られるクロマトグラムにおいて、およそ16~17分の保持時間に現れる最大のピークがβミルセンに由来するものである可能性が高い。当該16~17分の保持時間に現れる最大のピークについて、ガスクロマトグラフ質量分析により当該ピークがβミルセンに由来するものであることを同定した。
<ガスクロマトグラフ質量分析の条件>
 ガスクロマトグラフ質量分析計:GCMS-QP2020 NX(島津製作所社製)
使用カラム:DB-1、アジレント・テクノロジー社製、固定相:ジメチルポリシロキサン、内径:0.32mm、長さ:50.0m、膜厚:0.52μm
昇温条件:60℃、12分ホールド→10℃/分で昇温→300℃、12分ホールド、昇温時間24分、トータル48分
注入口温度:280℃
注入口圧力:169.2kPa
キャリアガス:ヘリウム
カラム流量:4.0mL/分
スプリット比:20
注入量:0.5μL、βミルセン原料組成物またはβミルセン組成物をそのまま注入
イオン化:EI
質量範囲:m/z=29~550
(2)物質群1
 上述のようにして同定されたβミルセンのピークの保持時間を、相対保持時間1.0と定め、相対保持時間が1.29~1.78の範囲に現れるピークを、物質群1のピークと定めた。
(3)物質群2
 上述のようにして同定されたβミルセンのピークの保持時間を、相対保持時間1.0と定め、相対保持時間が1.10~1.29の範囲に現れるピークを、物質群2のピークと定めた。
(4)物質群3
 上述のようにして同定されたβミルセンのピークの保持時間を、相対保持時間1.0と定め、相対保持時間が1.78~2.45の範囲に現れるピークを、物質群3のピークと定めた。
(5)物質群4
 上述のようにして同定されたβミルセンのピークの保持時間を、相対保持時間1.0と定め、相対保持時間が0.00~0.49の範囲に現れるピークを、物質群4のピークと定めた。
<Identification of peaks of β-myrcene and substance groups 1 to 4>
The peaks of β-myrcene and substance groups 1 to 4 in the chromatogram obtained from gas chromatography (GC) measurement were identified and determined as follows.
(1) β-myrcene In the chromatogram obtained by gas chromatography analysis under the above conditions, the maximum peak appearing at a retention time of approximately 16 to 17 minutes is highly likely to be derived from β-myrcene. The largest peak appearing at the retention time of 16-17 minutes was identified as originating from β-myrcene by gas chromatograph-mass spectrometry.
<Conditions for Gas Chromatograph Mass Spectrometry>
Gas chromatograph mass spectrometer: GCMS-QP2020 NX (manufactured by Shimadzu Corporation)
Column used: DB-1, manufactured by Agilent Technologies, stationary phase: dimethylpolysiloxane, inner diameter: 0.32 mm, length: 50.0 m, film thickness: 0.52 μm
Heating conditions: 60°C, hold for 12 minutes → heat up at 10°C/min → 300°C, hold for 12 minutes, heat up time 24 minutes, total 48 minutes Inlet temperature: 280°C
Inlet pressure: 169.2 kPa
Carrier gas: Helium Column flow rate: 4.0 mL/min Split ratio: 20
Injection amount: 0.5 μL, β-myrcene raw material composition or β-myrcene composition is directly injected and ionized: EI
Mass range: m/z = 29-550
(2) Substance group 1
The retention time of the β-myrcene peak identified as described above is defined as a relative retention time of 1.0, and peaks appearing in the range of relative retention times of 1.29 to 1.78 are defined as substance group 1 peaks. determined.
(3) Substance group 2
The retention time of the β-myrcene peak identified as described above is defined as a relative retention time of 1.0, and peaks appearing in the range of relative retention times of 1.10 to 1.29 are defined as substance group 2 peaks. determined.
(4) Substance group 3
The retention time of the β-myrcene peak identified as described above is defined as a relative retention time of 1.0, and peaks appearing in the range of relative retention times of 1.78 to 2.45 are defined as substance group 3 peaks. determined.
(5) Substance group 4
The retention time of the β-myrcene peak identified as described above is defined as a relative retention time of 1.0, and the peaks appearing in the range of relative retention times of 0.00 to 0.49 are defined as the peaks of Substance Group 4. determined.
<各ピークの面積率の測定>
 上記の各成分のピークの面積率は、ガスクロマトグラフィーのクロマトグラムを用い、各ピークの面積から算出した。
<Measurement of area ratio of each peak>
The area ratio of the peak of each component described above was calculated from the area of each peak using the chromatogram of gas chromatography.
<βミルセン組成物の重合>
<重合例1>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ214.6gの実施例1で得たβミルセン組成物を加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマーの重量平均分子量(Mw)は8.5万であった。得られたβミルセンポリマーの分析結果を表3に示す。
<Polymerization of β-myrcene composition>
<Polymerization Example 1>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 214.6 g of the β-myrcene composition obtained in Example 1 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the β-myrcene polymer was 85,000. Table 3 shows the analysis results of the obtained β-myrcene polymer.
<重合例2>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ233.4gの実施例2で得たβミルセン組成物を加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマーの重量平均分子量(Mw)は8.9万であった。得られたβミルセンポリマーの分析結果を表3に示す。
<Polymerization Example 2>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 233.4 g of the β-myrcene composition obtained in Example 2 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the β-myrcene polymer was 89,000. Table 3 shows the analysis results of the obtained β-myrcene polymer.
<重合例3>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ234.2gの実施例3で得たβミルセン組成物を加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマー重量平均分子量(Mw)は9.9万であった。得られたβミルセンポリマーの分析結果を表3に示す。
<Polymerization Example 3>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 234.2 g of the β-myrcene composition obtained in Example 3 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The β-myrcene polymer weight average molecular weight (Mw) was 99,000. Table 3 shows the analysis results of the obtained β-myrcene polymer.
<重合例4>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ233.6gの実施例4で得たβミルセン組成物を加え、β-ミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。得られたポβミルセンポリマーの重量平均分子量(Mw)は9.7万であった。得られたβミルセンポリマーの分析結果を3に示す。
<Polymerization Example 4>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 233.6 g of the β-myrcene composition obtained in Example 4 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminal was deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the resulting poly-β-myrcene polymer was 97,000. 3 shows the analysis results of the obtained β-myrcene polymer.
<重合例5>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ234.2gの実施例5で得たβミルセン組成物を加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマーの重量平均分子量(Mw)は11.3万であった。得られたβミルセンポリマーの分析結果を表3に示す。
<Polymerization Example 5>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 234.2 g of the β-myrcene composition obtained in Example 5 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the β-myrcene polymer was 113,000. Table 3 shows the analysis results of the obtained β-myrcene polymer.
<重合例6>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ236.4gの実施例6で得たβミルセン組成物を加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマーの重量平均分子量(Mw)は13.5万であった。得られたβミルセンポリマーの分析結果を表3に示す。
<Polymerization Example 6>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 236.4 g of the β-myrcene composition obtained in Example 6 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the β-myrcene polymer was 135,000. Table 3 shows the analysis results of the obtained β-myrcene polymer.
<重合例7>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ242.1gの実施例7で得たβミルセン組成物を加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマーの重量平均分子量(Mw)は8.8万であった。得られたβミルセンポリマーの分析結果を表4に示す。
<Polymerization Example 7>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 242.1 g of the β-myrcene composition obtained in Example 7 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the β-myrcene polymer was 88,000. Table 4 shows the analysis results of the obtained β-myrcene polymer.
<重合例8>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ252.5gの実施例8で得たβミルセン組成物を加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマーの重量平均分子量(Mw)は12.6万であった。得られたβミルセンポリマーの分析結果を表4に示す。
<Polymerization Example 8>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 252.5 g of the β-myrcene composition obtained in Example 8 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the β-myrcene polymer was 126,000. Table 4 shows the analysis results of the obtained β-myrcene polymer.
<重合例9>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ240.1gの実施例9で得たβミルセン組成物を加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマーの重量平均分子量(Mw)は9.5万であった。得られたβミルセンポリマーの分析結果を表4に示す。
<Polymerization Example 9>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 240.1 g of the β-myrcene composition obtained in Example 9 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the β-myrcene polymer was 95,000. Table 4 shows the analysis results of the obtained β-myrcene polymer.
<重合例10>
 撹拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ1回目のスチレン30.0gを加え、内温を80℃まで上昇させ、スチレンをアニオン重合させた。反応系の内温を50℃まで下げ、反応液を少量サンプリングしてGC測定により添加したスチレンが95質量%以上消費されていることを確認した後、実施例1で得たβミルセン組成物25.8gを加え、βミルセンをアニオン重合させた。内温は58℃まで上昇した。反応系の内温を50℃に下げ、反応液を少量サンプリングしてGC測定により添加したβミルセンが95質量%以上消費されていることを確認した後、1,3-ブタジエン36.0gを加え、1,3-ブタジエンをアニオン重合させた。内温は65℃まで上昇した。反応系の内温を50℃に下げ、反応液を少量サンプリングしてGC測定により添加した1,3-ブタジエンが95質量%以上消費されていることを確認した後、2回目のスチレン110.0gを加え、重合を完結させた。最後に重合活性末端を水により失活させて、ブロックコポリマーを含む重合液を得た。この重合液を脱揮して、ブロックコポリマーを得た。ブロックコポリマーの重量平均分子量(Mw)は7.8万であった。得られたブロックコポリマーの分析結果を表5に示す。
<Polymerization Example 10>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 30.0 g of styrene was added for the first time, and the internal temperature was raised to 80° C. to anionically polymerize styrene. After lowering the internal temperature of the reaction system to 50° C., sampling a small amount of the reaction solution and confirming that 95% by mass or more of the added styrene was consumed by GC measurement, the β-myrcene composition 25 obtained in Example 1 was obtained. .8 g was added to anionically polymerize the β-myrcene. The internal temperature rose to 58°C. After lowering the internal temperature of the reaction system to 50° C., sampling a small amount of the reaction solution and confirming that 95% by mass or more of the added β-myrcene was consumed by GC measurement, 36.0 g of 1,3-butadiene was added. , 1,3-butadiene was anionically polymerized. The internal temperature rose to 65°C. The internal temperature of the reaction system was lowered to 50° C., a small amount of the reaction solution was sampled, and after confirming that 95% by mass or more of the added 1,3-butadiene had been consumed by GC measurement, 110.0 g of styrene was added for the second time. was added to complete the polymerization. Finally, the polymerization active terminal was deactivated with water to obtain a polymerization liquid containing the block copolymer. This polymerization solution was devolatilized to obtain a block copolymer. The weight average molecular weight (Mw) of the block copolymer was 78,000. Table 5 shows the analysis results of the obtained block copolymer.
<比較重合例1>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ239.5gの比較例1で得たβミルセン組成物を加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマーの重量平均分子量(Mw)は16.2万であった。得られたβミルセンポリマーの分析結果を表3に示す。
<Comparative Polymerization Example 1>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 239.5 g of the β-myrcene composition obtained in Comparative Example 1 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the β-myrcene polymer was 162,000. Table 3 shows the analysis results of the obtained β-myrcene polymer.
<比較重合例2>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ271.0gの比較例2で得たβミルセン組成物を加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマーの重量平均分子量(Mw)は22.1万であった。得られたβミルセンポリマーの分析結果を表4に示す。
<Comparative Polymerization Example 2>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 271.0 g of the β-myrcene composition obtained in Comparative Example 2 was added thereto, β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the β-myrcene polymer was 221,000. Table 4 shows the analysis results of the obtained β-myrcene polymer.
<比較重合例3>
 攪拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。ここへ購入品である275.5gのヤスハラケミカル社製のβミルセンを加え、βミルセンをアニオン重合し、重合活性末端を水により失活させて、βミルセンポリマーを含む重合液を得た。この重合液を脱揮して、βミルセンポリマーを得た。βミルセンポリマーの重量平均分子量(Mw)は35.2万であった。得られたβミルセンポリマーの分析結果を表3および4に示す。
<Comparative Polymerization Example 3>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. 275.5 g of purchased β-myrcene manufactured by Yasuhara Chemical Co., Ltd. was added thereto, and the β-myrcene was anionically polymerized, and the polymerization active terminals were deactivated with water to obtain a polymerization solution containing a β-myrcene polymer. This polymerization solution was devolatilized to obtain a β-myrcene polymer. The weight average molecular weight (Mw) of the β-myrcene polymer was 352,000. The analytical results of the resulting β-myrcene polymer are shown in Tables 3 and 4.
<比較重合例4>
 撹拌機を備えた反応容器中にシクロヘキサン500.0g、及びテトラヒドロフラン(THF)75.0mgを加えた。この中に、重合開始剤溶液として、n-ブチルリチウムの10質量%シクロヘキサン溶液2.5mLを加え、30℃に保った。反応液を少量サンプリングしてGC測定により添加したスチレンが95質量%以上消費されていることを確認した後、ここへ1回目のスチレン30.0gを加え、内温を80℃まで上昇させ、スチレンをアニオン重合させた。反応系の内温を50℃まで下げ、比較例1で得たβミルセン組成物28.7gを加え、βミルセンをアニオン重合させた。内温は55℃まで上昇した。反応系の内温を50℃に下げ、反応液を少量サンプリングしてGC測定により添加したβミルセンが95質量%以上消費されていることを確認した後、1,3-ブタジエン36.0gを加え、1,3-ブタジエンをアニオン重合させた。内温は64℃まで上昇した。反応系の内温を50℃に下げ、反応液を少量サンプリングしてGC測定により添加した1,3-ブタジエンが95質量%以上消費されていることを確認した後、2回目のスチレン110.0gを加え、重合を完結させた。最後に重合活性末端を水により失活させて、ブロックコポリマーを含む重合液を得た。この重合液を脱揮して、ブロックコポリマーを得た。ブロックコポリマーの重量平均分子量(Mw)は11.8万であった。得られたブロックコポリマーの分析結果を表5に示す。
<Comparative Polymerization Example 4>
500.0 g of cyclohexane and 75.0 mg of tetrahydrofuran (THF) were added into a reaction vessel equipped with a stirrer. 2.5 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to the mixture as a polymerization initiator solution, and the mixture was kept at 30.degree. A small amount of the reaction solution was sampled and 95% by mass or more of the added styrene was confirmed by GC measurement. was anionically polymerized. The internal temperature of the reaction system was lowered to 50° C., 28.7 g of the β-myrcene composition obtained in Comparative Example 1 was added, and β-myrcene was anionically polymerized. The internal temperature rose to 55°C. After lowering the internal temperature of the reaction system to 50° C., sampling a small amount of the reaction solution and confirming that 95% by mass or more of the added β-myrcene was consumed by GC measurement, 36.0 g of 1,3-butadiene was added. , 1,3-butadiene was anionically polymerized. The internal temperature rose to 64°C. The internal temperature of the reaction system was lowered to 50° C., a small amount of the reaction solution was sampled, and after confirming that 95% by mass or more of the added 1,3-butadiene had been consumed by GC measurement, 110.0 g of styrene was added for the second time. was added to complete the polymerization. Finally, the polymerization active terminal was deactivated with water to obtain a polymerization liquid containing the block copolymer. This polymerization solution was devolatilized to obtain a block copolymer. The weight average molecular weight (Mw) of the block copolymer was 118,000. Table 5 shows the analysis results of the obtained block copolymer.
<重量平均分子量>
 βミルセンポリマー及びコポリマー(P)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値である。測定条件は、以下の通りである。
 GPC装置名:HLC-8220GPC(東ソー社製)
 使用カラム:ShodexGPCKF-404(昭和電工社製)を直列に4本接続
 カラム温度:40℃
 検出方法:示差屈折率法
 移動相:テトラヒドロフラン
 サンプル濃度:2質量%
 検量線:標準ポリスチレン(VARIAN社製、重量平均分子量Mw=2,560,000、841,700、280,500、143,400、63,350、31,420、9,920、2,930)を用いて作成。
<Weight average molecular weight>
The weight average molecular weight (Mw) of the β-myrcene polymer and copolymer (P) is a polystyrene-equivalent value measured by gel permeation chromatography (GPC). The measurement conditions are as follows.
GPC device name: HLC-8220GPC (manufactured by Tosoh Corporation)
Column used: Four ShodexGPCKF-404 (manufactured by Showa Denko) connected in series Column temperature: 40°C
Detection method: Differential refractive index method Mobile phase: Tetrahydrofuran Sample concentration: 2% by mass
Calibration curve: standard polystyrene (manufactured by VARIAN, weight average molecular weight Mw = 2,560,000, 841,700, 280,500, 143,400, 63,350, 31,420, 9,920, 2,930) Created using
<得られたβミルセンポリマーの評価>
 重合例1~9、比較重合例1~3において得られたβミルセンポリマーを、下記の評価基準に基づき評価した。
 A: βミルセンポリマーの重量平均分子量が10万未満(開始剤効率が68%以上となる重量平均分子量)
 B: βミルセンポリマーの重量平均分子量が10万以上14万未満(開始剤効率が49%以上68%未満となる重量平均分子量)
 C: βミルセンポリマーの重量平均分子量が14万以上(開始剤効率が49%未満となる重量平均分子量)
 なお、開始剤効率とβミルセンポリマーの重量平均分子量との関係は、以下のように規定される。
  重合に使用したβミルセン組成物中のβミルセンの重量/(重合開始剤のモル数×(開始剤効率/100))=βミルセンポリマーの重量平均分子量
<Evaluation of obtained β-myrcene polymer>
The β-myrcene polymers obtained in Polymerization Examples 1 to 9 and Comparative Polymerization Examples 1 to 3 were evaluated based on the following evaluation criteria.
A: The weight-average molecular weight of the β-myrcene polymer is less than 100,000 (the weight-average molecular weight at which the initiator efficiency is 68% or more)
B: The weight average molecular weight of the β-myrcene polymer is 100,000 or more and less than 140,000 (weight average molecular weight at which the initiator efficiency is 49% or more and less than 68%).
C: The weight-average molecular weight of the β-myrcene polymer is 140,000 or more (the weight-average molecular weight at which the initiator efficiency is less than 49%)
The relationship between the initiator efficiency and the weight average molecular weight of the β-myrcene polymer is defined as follows.
Weight of β-myrcene in the β-myrcene composition used for polymerization/(moles of polymerization initiator×(initiator efficiency/100))=weight average molecular weight of β-myrcene polymer
<得られたコポリマー(P)の評価>
 重合例10において得られたコポリマー(P)を、下記の評価基準に基づき評価した。
 A: コポリマー(P)の重量平均分子量が9万未満(開始剤効率が75%以上となる重量平均分子量)
 B: コポリマー(P)の重量平均分子量が9万以上11.5万未満(開始剤効率が60%以上75%未満となる重量平均分子量)
 C: コポリマー(P)の重量平均分子量が11.5万以上(開始剤効率が60%未満となる重量平均分子量)
 なお、開始剤効率とコポリマー(P)の重量平均分子量との関係は、以下のように規定される。
  重合に使用したモノマーの総量/(重合開始剤のモル数×(開始剤効率/100))=コポリマー(P)の重量平均分子量
<Evaluation of obtained copolymer (P)>
The copolymer (P) obtained in Polymerization Example 10 was evaluated based on the following evaluation criteria.
A: Weight average molecular weight of copolymer (P) is less than 90,000 (weight average molecular weight at which initiator efficiency is 75% or more)
B: The weight average molecular weight of the copolymer (P) is 90,000 or more and less than 115,000 (the weight average molecular weight at which the initiator efficiency is 60% or more and less than 75%)
C: The weight average molecular weight of the copolymer (P) is 115,000 or more (the weight average molecular weight at which the initiator efficiency is less than 60%)
The relationship between the initiator efficiency and the weight average molecular weight of the copolymer (P) is defined as follows.
Total amount of monomers used for polymerization / (moles of polymerization initiator x (initiator efficiency / 100)) = weight average molecular weight of copolymer (P)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~表5の結果より、実施例にかかるβミルセン組成物は、アニオン重合した際の開始剤効率が向上されており、目的とする重量平均分子量を有するβミルセン含有ポリマーが得られていることが理解される。他方、比較例にかかるβミルセン組成物は、実施例と同じ触媒量でアニオン重合を実施した場合、目的の分子量のβミルセン含有ポリマーを得ることができないことが理解される。 From the results in Tables 1 to 5, the β-myrcene compositions according to the examples had improved initiator efficiency during anionic polymerization, and β-myrcene-containing polymers having the desired weight-average molecular weight were obtained. It is understood. On the other hand, it is understood that the β-myrcene composition according to the comparative example cannot yield a β-myrcene-containing polymer having the desired molecular weight when anionic polymerization is carried out with the same amount of catalyst as in the example.
 本発明にかかる精製βミルセン組成物は、重合阻害物質の含有量が少なく、アニオン重合した際の開始剤効率が向上されている。本発明にかかるβミルセン組成物は、工業的にアニオン重合可能なβミルセンとして産業上の利用可能性を有する。 The purified β-myrcene composition according to the present invention has a low content of polymerization inhibitors and an improved initiator efficiency during anionic polymerization. The β-myrcene composition according to the present invention has industrial applicability as an anionically polymerizable β-myrcene.

Claims (11)

  1.  下記条件のガスクロマトグラフィー分析において、
     βミルセンのピークの面積率が75%以上であり、
     前記βミルセンのピークの相対保持時間を1.0としたとき、
     相対保持時間が1.29~1.78の範囲に現れる物質群1のピークの面積率が1000ppm以下である、
    βミルセン組成物。
    <ガスクロマトグラフィー分析の条件>
    使用カラム:DB-1、アジレント・テクノロジー社製、固定相:ジメチルポリシロキサン、内径:0.32mm、長さ:50.0m、膜厚:0.52μm
    昇温条件:60℃、12分ホールド→10℃/分で昇温→300℃、12分ホールド、昇温時間24分、トータル48分
    注入口温度:280℃
    注入口圧力:169.2kPa
    キャリアガス:ヘリウム
    カラム流量:4.0mL/分
    スプリット比:20
    注入量:0.5μL、βミルセン組成物をそのまま注入
    検出器:FID
    検出温度:300℃
    In the gas chromatography analysis under the following conditions,
    The area ratio of the β-myrcene peak is 75% or more,
    When the relative retention time of the β-myrcene peak is set to 1.0,
    The area ratio of the peak of substance group 1 appearing in the range of relative retention time 1.29 to 1.78 is 1000 ppm or less,
    β-myrcene compositions.
    <Conditions for gas chromatography analysis>
    Column used: DB-1, manufactured by Agilent Technologies, stationary phase: dimethylpolysiloxane, inner diameter: 0.32 mm, length: 50.0 m, film thickness: 0.52 μm
    Heating conditions: 60°C, hold for 12 minutes → heat up at 10°C/min → 300°C, hold for 12 minutes, heat up time 24 minutes, total 48 minutes Inlet temperature: 280°C
    Inlet pressure: 169.2 kPa
    Carrier gas: Helium Column flow rate: 4.0 mL/min Split ratio: 20
    Injection volume: 0.5 μL, injection of β-myrcene composition as it is Detector: FID
    Detection temperature: 300°C
  2.  相対保持時間が1.10~1.29の範囲に現れる物質群2のピークの面積率が10000ppm以下である、請求項1に記載のβミルセン組成物。 The β-myrcene composition according to claim 1, wherein the area ratio of the peak of substance group 2 appearing in the range of 1.10 to 1.29 in relative retention time is 10000 ppm or less.
  3.  相対保持時間が1.78~2.45の範囲に現れる物質群3のピークの面積率が6000ppm以下である、請求項1又は請求項2に記載のβミルセン組成物。 The β-myrcene composition according to claim 1 or claim 2, wherein the peak area ratio of substance group 3 appearing in the range of 1.78 to 2.45 in relative retention time is 6000 ppm or less.
  4.  相対保持時間が0.00~0.49の範囲に現れる物質群4のピークの面積率が1000ppm以下である、請求項1~請求項3のいずれか一項に記載のβミルセン組成物。  The β-myrcene composition according to any one of claims 1 to 3, wherein the area ratio of the peak of substance group 4 appearing in the range of 0.00 to 0.49 in relative retention time is 1000 ppm or less.
  5.  前記物質群1に該当する成分として、L-ピノカルベオール、ピネンオキサイド、L-ペリルアルデヒド、ペリルアルコール、(4-イソプロピル-1,3-シクロヘキサジエン-1-イル)メタノール、及びジブチルヒドロキシトルエンからなる群から選択される1種以上を含む、請求項1~請求項4のいずれか一項に記載のβミルセン組成物。 Components corresponding to substance group 1 include L-pinocarbeol, pinene oxide, L-perillaldehyde, peryl alcohol, (4-isopropyl-1,3-cyclohexadien-1-yl)methanol, and dibutylhydroxytoluene. The β-myrcene composition according to any one of claims 1 to 4, comprising one or more selected from the group consisting of:
  6.  相対保持時間が1.10~1.29の範囲に現れる物質群2のピークの面積率が10000ppm以下であり、前記物質群2に該当する成分として、5-エチルジエン-1-メチルシクロへプテン、(4E,6Z)-2,6-ジメチル-2,4,6-オクタトリエン、3,4-ジメチル-2,4,6-オクタトリエンからなる群から選択される1種以上を含む、請求項1~請求項5のいずれか一項に記載のβミルセン組成物。 The area ratio of the peak of substance group 2 appearing in the range of 1.10 to 1.29 relative retention time is 10000 ppm or less, and the component corresponding to substance group 2 is 5-ethyldiene-1-methylcycloheptene, ( 4E,6Z)-2,6-dimethyl-2,4,6-octatriene and 3,4-dimethyl-2,4,6-octatriene. The β-myrcene composition according to any one of claims 1 to 5.
  7.  相対保持時間が1.78~2.45の範囲に現れる物質群3のピークの面積率が6000ppm以下であり、前記物質群3に該当する成分として、2,6,11,15-テトラメチルヘキサデカ-2,6,8,10,14-ペンタエン、2,6,11,15-テトラメチル-2,6,8,10,14-ヘキサデカペンタエン、2,6,8,10,14-ヘキサデカペンタエン-1,6,11,15-テトラメチル、5-(5-メチル-1-メチレン-4-ヘキセン-1-イル)-1-(4-メチル-3-ペンテン-1-イル)、4-(5-メチル-1-メチレン-4-ヘキセン-1-イル)-1-(4-メチル-3-ペンテン-1-イル)、5-エチニル-1,5-ビス(4-メチル-3-ペンテン-1-イル)、4-エチニル-1,4-ビス(4-メチル-3-ペンテン-1-イル)からなる群から選択される1種以上を含む、請求項1~請求項6のいずれか一項に記載のβミルセン組成物。 2,6,11,15-tetramethylhexa Deca-2,6,8,10,14-pentaene, 2,6,11,15-tetramethyl-2,6,8,10,14-hexadecapentene, 2,6,8,10,14- Hexadecapentaene-1,6,11,15-tetramethyl, 5-(5-methyl-1-methylene-4-hexen-1-yl)-1-(4-methyl-3-penten-1-yl ), 4-(5-methyl-1-methylene-4-hexen-1-yl)-1-(4-methyl-3-penten-1-yl), 5-ethynyl-1,5-bis(4- methyl-3-penten-1-yl), 4-ethynyl-1,4-bis(4-methyl-3-penten-1-yl), comprising one or more selected from the group consisting of claims 1 to 7. The beta-myrcene composition of any one of claims 6.
  8.  相対保持時間が0.00~0.49の範囲に現れる物質群4のピークの面積率が1000ppm以下であり、前記物質群4に該当する成分として、1-ブテン、2-ブテン、1,4-ペンタジエン、2,4-ヘキサジエン、4-メチル-1,3-ペンタジエン、4-メチルシクロペンタジエン、4-メチル-1-メチレンシクロヘキサンからなる群から選択される1種以上を含む、請求項1~請求項7のいずれか一項に記載のβミルセン組成物。 The area ratio of the peak of substance group 4 appearing in the range of 0.00 to 0.49 relative retention time is 1000 ppm or less, and the components corresponding to the substance group 4 include 1-butene, 2-butene, 1,4 -Pentadiene, 2,4-hexadiene, 4-methyl-1,3-pentadiene, 4-methylcyclopentadiene, 4-methyl-1-methylenecyclohexane containing one or more selected from the group consisting of, claims 1- 8. The beta-myrcene composition according to any one of claims 7.
  9. 請求項1~請求項8のいずれか一項に記載のβミルセン組成物を重合する工程を含む、ポリマーの製造方法。 A method for producing a polymer, comprising the step of polymerizing the β-myrcene composition according to any one of claims 1 to 8.
  10.  請求項1~請求項8のいずれか一項に記載のβミルセン組成物を、芳香族ビニル炭化水素系モノマー、または前記芳香族ビニル炭化水素系モノマーおよびβミルセン以外の共役ジエン系モノマーと共重合する工程を含む、コポリマーの製造方法。 The β-myrcene composition according to any one of claims 1 to 8 is copolymerized with an aromatic vinyl hydrocarbon-based monomer or a conjugated diene-based monomer other than the aromatic vinyl hydrocarbon-based monomer and β-myrcene. A method for producing a copolymer, comprising the step of
  11.  請求項1~請求項8のいずれか一項に記載のβミルセン組成物を、芳香族ビニル炭化水素系モノマー、または前記芳香族ビニル炭化水素系モノマーおよびβミルセン以外の共役ジエン系モノマーと共重合する工程を含む、βミルセンモノマー単位を含むポリマーブロックを有する、ブロックコポリマーの製造方法。 The β-myrcene composition according to any one of claims 1 to 8 is copolymerized with an aromatic vinyl hydrocarbon-based monomer or a conjugated diene-based monomer other than the aromatic vinyl hydrocarbon-based monomer and β-myrcene. A method of making a block copolymer having polymer blocks comprising beta-myrcene monomer units, comprising the step of:
PCT/JP2022/019596 2021-05-25 2022-05-06 β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION WO2022249866A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023523389A JPWO2022249866A1 (en) 2021-05-25 2022-05-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021087972 2021-05-25
JP2021-087972 2021-05-25

Publications (1)

Publication Number Publication Date
WO2022249866A1 true WO2022249866A1 (en) 2022-12-01

Family

ID=84228758

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2022/019596 WO2022249866A1 (en) 2021-05-25 2022-05-06 β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION
PCT/JP2022/019597 WO2022249867A1 (en) 2021-05-25 2022-05-06 METHOD FOR PRODUCING PURIFIED β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION
PCT/JP2022/019595 WO2022249865A1 (en) 2021-05-25 2022-05-06 Copolymer containing vinyl aromatic hydrocarbon monomeric units and conjugated diene monomeric units

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/019597 WO2022249867A1 (en) 2021-05-25 2022-05-06 METHOD FOR PRODUCING PURIFIED β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION
PCT/JP2022/019595 WO2022249865A1 (en) 2021-05-25 2022-05-06 Copolymer containing vinyl aromatic hydrocarbon monomeric units and conjugated diene monomeric units

Country Status (2)

Country Link
JP (3) JPWO2022249865A1 (en)
WO (3) WO2022249866A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701981A (en) * 2012-06-29 2012-10-03 太仓市新星轻工助剂厂 Synthetic method of plasticizer 4-(4-methyl-3-pentenyl)-4-cyclohexene-1,2-acid isooctyl ester
CN102718674A (en) * 2012-06-15 2012-10-10 中国林业科学研究院林产化学工业研究所 Myrcenyl amide as well as synthesis method and applications thereof
CN114324657A (en) * 2021-12-29 2022-04-12 浙江大学 Method for detecting myrcene in soil by combining purging and trapping with GC-MS (gas chromatography-mass spectrometer)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164927B2 (en) * 2013-05-16 2017-07-19 住友ゴム工業株式会社 Pneumatic tire
JP6159574B2 (en) * 2013-05-16 2017-07-05 住友ゴム工業株式会社 Branched conjugated diene copolymer, hydrogenated branched conjugated diene copolymer, rubber composition, and pneumatic tire
US10053603B2 (en) * 2014-04-02 2018-08-21 Kraton Polymers U.S. Llc Block copolymers containing a copolymer myrcene block
CN109467661B (en) * 2018-11-05 2020-06-16 大连理工大学 Functionalized styrene thermoplastic elastomer and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718674A (en) * 2012-06-15 2012-10-10 中国林业科学研究院林产化学工业研究所 Myrcenyl amide as well as synthesis method and applications thereof
CN102701981A (en) * 2012-06-29 2012-10-03 太仓市新星轻工助剂厂 Synthetic method of plasticizer 4-(4-methyl-3-pentenyl)-4-cyclohexene-1,2-acid isooctyl ester
CN114324657A (en) * 2021-12-29 2022-04-12 浙江大学 Method for detecting myrcene in soil by combining purging and trapping with GC-MS (gas chromatography-mass spectrometer)

Also Published As

Publication number Publication date
WO2022249865A1 (en) 2022-12-01
JPWO2022249867A1 (en) 2022-12-01
JPWO2022249865A1 (en) 2022-12-01
JPWO2022249866A1 (en) 2022-12-01
WO2022249867A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
Wahlen et al. Anionic polymerization of terpene monomers: New options for bio-based thermoplastic elastomers
JP6106658B2 (en) Process for producing branched conjugated diene polymer
Lo et al. Studies on dilithium initiators. 3. Effect of additives and seeding
Cai et al. High-glass-transition-temperature hydrocarbon polymers produced through cationic cyclization of diene polymers with various microstructures
WO2022249866A1 (en) β-MYRCENE COMPOSITION AND METHOD FOR PRODUCING POLYMER USING SAID β-MYRCENE COMPOSITION
KR101358997B1 (en) A method of gel inhibition for the homopolymerization or copolymerization process of conjugated diene
EP3143057B1 (en) Branched broad mwd conjugated diene polymer
KR100622112B1 (en) Butadiene/isoprene/aromatic vinyl hydrocarbon sevenblock copolymer and the preparing method thereof
Liu et al. Synthesis and characterization of the well-defined polypentadiene via living anionic polymerization of (E)-1, 3-pentadiene
JP5240985B2 (en) Block copolymer composition and method for producing hydrogenated product thereof
JP2009114308A (en) Method for producing block copolymer composition or its hyrogenation product
KR20060002016A (en) Styrene resin reduced in content of low-molecular ingredient and the use thereof
CN110357997B (en) Conjugated diene and monovinylarene random copolymer and preparation method thereof
Gramlich et al. Catalytic synthesis and post-polymerization functionalization of conjugated polyisoprene
CN104558328A (en) Polybutadiene rubber, preparation method of polybutadiene rubber and oil-extended rubber
CN115716889A (en) Liquid polybutadiene, preparation method and application thereof, composition and application thereof, polymer coating, adhesive and crosslinking agent
CN113698520A (en) Liquid polybutadiene, preparation method and application thereof, composition, polymer coating, adhesive and crosslinking agent
RU2818076C1 (en) Liquid polybutadiene and method for production thereof and use thereof, composition, polymer coating, adhesive material and cross-linking agent
US3686158A (en) Process for preparing colorless,high-vinyl diene polymers
Carlotti et al. Retarded Anionic Polymerization: Copolymerization of Butadiene and Styrene in the Presence of Alkyllithium and n, s‐Dibutylmagnesium or Triisobutylaluminium Derivatives
JP2004131738A (en) Transparent block copolymer and its production process
JPWO2022249867A5 (en)
Hahn et al. Nopadiene: A Pinene-Derived Cyclic Diene as a Styrene Substitute for Fully Biobased Thermoplastic Elastomers
CN114539492B (en) Monovinylarene-conjugated diene block copolymer, preparation method thereof, oil-extended rubber and application thereof
KR102066260B1 (en) A copolymer, a method for manufacturing the same, and a adhesive composition comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811139

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523389

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22811139

Country of ref document: EP

Kind code of ref document: A1