WO2022249739A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022249739A1
WO2022249739A1 PCT/JP2022/015542 JP2022015542W WO2022249739A1 WO 2022249739 A1 WO2022249739 A1 WO 2022249739A1 JP 2022015542 W JP2022015542 W JP 2022015542W WO 2022249739 A1 WO2022249739 A1 WO 2022249739A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
bfr
pucch
information
transmission
Prior art date
Application number
PCT/JP2022/015542
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023524057A priority Critical patent/JPWO2022249739A1/ja
Priority to CN202280052086.5A priority patent/CN117730557A/zh
Priority to EP22811014.4A priority patent/EP4351198A1/en
Publication of WO2022249739A1 publication Critical patent/WO2022249739A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • radio link quality monitoring Radio Link Monitoring (RLM)
  • RLM Radio Link Monitoring
  • UE user equipment
  • RRC Radio Resource Control
  • a terminal performs communication using a plurality of transmission/reception points (TRP)/UE panels.
  • beam management e.g., beam failure detection
  • BFD beam failure detection
  • BFR beam failure recovery
  • the present disclosure has been made in view of this point, and provides a terminal, a wireless communication method, and a base station that can appropriately detect beam failures or recover from beam failures even when using multiple transmission/reception points.
  • One of the purposes is to provide
  • a terminal includes a receiving unit that receives information about beam failure detection settings for each transmission/reception point (TRP) and information about settings of uplink control channel resources corresponding to a scheduling request; When a beam failure is detected in the TRP, one of an uplink control channel resource corresponding to the first TRP and an uplink control channel resource corresponding to a second TRP different from the first TRP is used. and a control unit for controlling transmission of the scheduling request.
  • TRP transmission/reception point
  • beam failure detection or beam failure recovery can be appropriately performed even when multiple transmission/reception points are used.
  • FIG. 15 A diagram showing an example of a beam recovery procedure in NR.
  • 2A-2C are diagrams illustrating an example configuration of PUCCH resources and spatial relationships for scheduling requests.
  • 3A to 3C are diagrams showing examples of BFR types applied to each cell within a cell group according to the first aspect.
  • FIG. 4 is a diagram illustrating an example of SR transmission control according to the first example.
  • 5A and 5B are diagrams showing other examples of BFR types applied to each cell within a cell group according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of SR transmission control according to the first example.
  • 7A and 7B are diagrams showing an example of setting a plurality of SRs according to the second mode.
  • FIG. 8 is a diagram showing an example of association between TRP indexes and PUCCH resource indexes for SR according to the third example.
  • 9A and 9B are diagrams showing examples of associations between TRP indexes and spatial relationships between SR configuration/PUCCH resources for SR according to the fourth example.
  • FIG. 10 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 13 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • communication is performed using beamforming.
  • the UE and the base station e.g., gNB (gNodeB)
  • the beam used for signal transmission transmission beam, Tx beam, etc.
  • the beam used for signal reception reception beam, Rx beam, etc.
  • Radio link failure may occur frequently due to deterioration of radio link quality. Since the occurrence of RLF requires cell reconnection, frequent occurrence of RLF causes degradation of system throughput.
  • BFR beam recovery
  • BFR beam failure recovery
  • L1/L2 Layer 1/Layer 2
  • a beam failure (BF) in the present disclosure may also be called a link failure.
  • Fig. 1 shows Rel. 15 A diagram showing an example of a beam recovery procedure in NR.
  • the number of beams, etc. is an example, and is not limited to this.
  • the UE performs measurements based on reference signal (RS) resources transmitted using two beams.
  • RS reference signal
  • the RS may be at least one of a synchronization signal block (SSB) and a channel state measurement RS (Channel State Information RS (CSI-RS)).
  • SSB may also be called an SS/PBCH (Physical Broadcast Channel) block.
  • PBCH Physical Broadcast Channel
  • RS is a primary synchronization signal (Primary SS (PSS)), a secondary synchronization signal (Secondary SS (SSS)), a mobility reference signal (Mobility RS (MRS)), a signal included in SSB, SSB, CSI-RS, for demodulation At least one of a reference signal (DeModulation Reference Signal (DMRS)), a beam-specific signal, etc., or a signal configured by extending or modifying these may be used.
  • the RS measured in step S101 is an RS for beam failure detection (Beam Failure Detection RS (BFD-RS), an RS for beam failure detection), an RS (BFR-RS) for use in a beam recovery procedure, or the like.
  • BFD-RS Beam Failure Detection RS
  • BFR-RS RS for use in a beam recovery procedure, or the like.
  • step S102 the UE cannot detect the BFD-RS (or the reception quality of the RS deteriorates) due to the radio waves from the base station being jammed.
  • Such disturbances can be caused, for example, by effects such as obstacles, fading, and interference between the UE and the base station.
  • the UE detects a beam failure when a predetermined condition is met.
  • the UE may detect the occurrence of a beam failure, for example, when BLER (Block Error Rate) is less than a threshold for all configured BFD-RSs (BFD-RS resource configuration).
  • BLER Block Error Rate
  • BFD-RS resource configuration a threshold for all configured BFD-RSs
  • the lower layer (physical (PHY) layer) of the UE may notify (indicate) the beam failure instance to the upper layer (MAC layer).
  • the criteria for determination are not limited to BLER, and may be the reference signal received power (Layer 1 Reference Signal Received Power (L1-RSRP)) in the physical layer.
  • L1-RSRP Layer 1 Reference Signal Received Power
  • beam failure detection may be performed based on a physical downlink control channel (PDCCH) or the like.
  • BFD-RS may be expected to be Quasi-Co-Location (QCL) with the DMRS of the PDCCH monitored by the UE.
  • QCL is an index that indicates the statistical properties of a channel. For example, if one signal/channel and another signal/channel have a QCL relationship, between these different signals/channels, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameter (e.g., spatial Rx Parameter) are the same (QCL with respect to at least one of these). You may
  • the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • Information on BFD-RS eg, RS index, resource, number, number of ports, precoding, etc.
  • BFD beam failure detection
  • Information on BFD-RS may be set (notified) to Information about BFD-RS may be called information about BFR resources.
  • higher layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE Media access control element
  • MAC PDU Protocol Data Unit
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • a higher layer (eg, MAC layer) of the UE may start a predetermined timer (which may be referred to as a beam failure detection timer) when receiving a beam failure instance notification from the PHY layer of the UE.
  • a predetermined timer which may be referred to as a beam failure detection timer
  • the MAC layer of the UE receives beam failure instance notifications a certain number of times (for example, beamFailureInstanceMaxCount set by RRC) or more before the timer expires, it triggers BFR (for example, starts one of the random access procedures described later ).
  • the base station may determine that the UE has detected a beam failure when there is no notification from the UE or when a predetermined signal (beam recovery request in step S104) is received from the UE.
  • step S103 the UE starts searching for a new candidate beam to be newly used for communication for beam recovery.
  • the UE may select a new candidate beam corresponding to that RS.
  • the RS measured in step S103 is called a new candidate RS, an RS for new candidate beam identification (New Candidate Beam Identification RS (NCBI-RS)), CBI-RS, CB-RS (Candidate Beam RS), etc.
  • NCBI-RS may be the same as BFD-RS or may be different.
  • the new candidate beam may be simply called a candidate beam or a candidate RS.
  • a UE may determine a beam corresponding to an RS that satisfies a predetermined condition as a new candidate beam.
  • the UE may determine new candidate beams based on, for example, the configured NCBI-RSs whose L1-RSRP exceeds the threshold. Note that the criteria for judgment are not limited to L1-RSRP.
  • L1-RSRP for SSB may be referred to as SS-RSRP.
  • L1-RSRP for CSI-RS may be referred to as CSI-RSRP.
  • NCBI-RS e.g. resources, number of RSs, number of ports, precoding, etc.
  • NCBI New Candidate Beam Identification
  • NCBI-RS e.g., thresholds mentioned above
  • Information about new candidate RSs may be obtained based on information about BFD-RSs.
  • Information on NCBI-RS may be called information on resources for NBCI or the like.
  • BFD-RS may be read as radio link monitoring reference signals (Radio Link Monitoring RS (RLM-RS)).
  • RLM-RS Radio Link Monitoring RS
  • step S104 the UE that has identified the new candidate beam transmits a beam failure recovery request (BFRQ).
  • a beam recovery request may also be referred to as a beam recovery request signal, a beam failure recovery request signal, or the like.
  • BFRQ for example, physical uplink control channel (PUCCH), random access channel (PRACH), physical uplink shared channel (PUSCH), configured (setting) It may be transmitted using at least one of a configured grant (CG) PUSCH.
  • PUCCH physical uplink control channel
  • PRACH random access channel
  • PUSCH physical uplink shared channel
  • CG configured grant
  • the BFRQ may include information on the new candidate beam/new candidate RS identified in step S103.
  • Resources for BFRQ may be associated with the new candidate beam.
  • Beam information includes beam index (BI), port index of predetermined reference signal, RS index, resource index (for example, CSI-RS resource indicator (CRI)), SSB resource index (SSBRI)) or the like.
  • CB-BFR Contention-Based BFR
  • CF-BFR Contention-Free BFR
  • a UE may transmit a preamble (also called an RA preamble, a Physical Random Access Channel (PRACH), a RACH preamble, etc.) as a BFRQ using PRACH resources.
  • a preamble also called an RA preamble, a Physical Random Access Channel (PRACH), a RACH preamble, etc.
  • the UE may transmit a randomly selected preamble from one or more preambles.
  • the UE may transmit a UE-specific assigned preamble from the base station.
  • the base station may assign the same preamble to multiple UEs.
  • the base station may assign preambles for individual UEs.
  • CB-BFR and CF-BFR are respectively referred to as CB PRACH-based BFR (contention-based PRACH-based BFR (CBRA-BFR)) and CF PRACH-based BFR (contention-free PRACH-based BFR (CFRA-BFR)).
  • CBRA-BFR may be referred to as CBRA for BFR
  • CFRA-BFR may be referred to as CFRA for BFR.
  • information on PRACH resources may be notified by higher layer signaling (RRC signaling, etc.), for example.
  • RRC signaling may include information indicating the correspondence between detected DL-RSs (beams) and PRACH resources, and different PRACH resources may be associated with each DL-RS.
  • the base station that detected the BFRQ transmits a response signal (which may be called a gNB response or the like) to the BFRQ from the UE.
  • the response signal may include reconfiguration information (eg, DL-RS resource configuration information) for one or more beams.
  • the response signal may be transmitted, for example, in the UE common search space of PDCCH.
  • the response signal is reported using a cyclic redundancy check (CRC) scrambled PDCCH (DCI) by the UE identifier (eg, cell-radio RNTI (Cell-Radio RNTI (C-RNTI))) may be The UE may determine which transmit beam and/or receive beam to use based on the beam reconstruction information.
  • CRC cyclic redundancy check
  • DCI cell-radio RNTI
  • C-RNTI Cell-Radio RNTI
  • the UE may monitor the response signal based on at least one of the BFR control resource set (CControl Resource SET (CORESET)) and the BFR search space set.
  • CControl Resource SET CORESET
  • contention resolution may be determined to be successful when the UE receives the PDCCH corresponding to the C-RNTI for itself.
  • a period may be set for the UE to monitor the response from the base station (eg, gNB) to BFRQ.
  • the time period may be referred to, for example, as a gNB response window, a gNB window, a beam recovery request response window, and the like.
  • the UE may retransmit the BFRQ if no gNB response is detected within the window period.
  • the UE may send a message to the base station indicating that the beam reconstruction is complete.
  • the message may be transmitted by PUCCH or PUSCH, for example.
  • Beam recovery success may represent, for example, the case of reaching step S106.
  • a beam recovery failure may correspond, for example, to reaching a predetermined number of BFRQ transmissions or to expiring a beam failure recovery timer (Beam-failure-recovery-Timer).
  • Rel. 15 supports beam recovery procedures (eg, BFRQ notification) for beam failures detected in SpCells (PCell/PSCell) using random access procedures.
  • beam recovery procedures eg, BFRQ notification
  • SpCells PCell/PSCell
  • the beam recovery procedure for the beam failure detected in the SCell e.g., notification of BFRQ (step S104 in FIG. 1)
  • PUCCH for BFR e.g., scheduling request (SR)
  • MAC for BFR Using at least one of the CE (eg, UL-SCH) transmissions is supported.
  • the UE may utilize MAC CE-based two-step to send information about beam failures.
  • the information about beam failure may include information about the cell that detected the beam failure and information about the new candidate beam (or new candidate RS index).
  • the UE may send a PUCCH-BFR (Scheduling Request (SR)) to the SpCell (eg, PCell/PSCell).
  • PUCCH-BFR may also be called PUCCH-SR, PUCCH-SR for BFR, or PUCCH for SR.
  • the PCell/PSCell may transmit a UL grant (eg, DCI) for step 2 below to the UE.
  • a UL grant eg, DCI
  • step 1 for example, PUCCH transmission
  • step 2 For example, MAC CE transmission
  • Step 2 The UE sends information about the cell in which the beam failure is detected (failed) (e.g., cell index) and information about the new candidate beam using MAC CE via an uplink channel (e.g., PUSCH) to the base station (PCell/PSCell).
  • an uplink channel e.g., PUSCH
  • the QCL of PDCCH/PUCCH/PDSCH/PUSCH may be updated to a new beam.
  • step numbers are merely numbers for explanation, and multiple steps may be grouped together or their order may be changed. Also, whether or not to implement BFR may be configured in the UE using higher layer signaling.
  • PUCCH-SR resources for example, dedicated PUCCH-SR resources
  • X may be 1, 2 or 2 or more.
  • the cell group may be, for example, at least one of a master cell group (MCG), a secondary cell group (SCG), and a PUCCH cell group.
  • MCG and SCG may be groups configured in dual connectivity (DC).
  • a PUCCH cell group may be a group configured in PUCCH transmission.
  • Rel. 17 and later it is conceivable to perform beam failure detection/beam failure recovery for each of multiple TRPs/multiple UE panels in a certain cell (for example, per-TRP BFR). For example, it is conceivable that the transmission of scheduling requests (SR) for per-TRP/per-TRP BFR is supported.
  • SR scheduling requests
  • the problem is how to control the scheduling request settings (for example, SR configuration, SR settings).
  • SR eg, SR index / SchedulingRequestID / SR ID
  • PUCCH resource eg, PUCCH-SR resource
  • spatial relationship corresponding to PUCCH resource eg , spatial relation
  • SR for BFR or, PUCCH-SR
  • the present inventors focus on the case where the beam failure recovery procedure (beam failure detection / beam failure recovery request / beam failure recovery based UE operation) is applied in units of one or more TRP / panel, and the SR in such a case
  • the present embodiment was conceived by studying the setting/SR transmission method.
  • the UE may be a UE that uses multiple panels to transmit and receive with the TRP.
  • Each panel may correspond to a separate TRP, one panel may correspond to a plurality of TRPs, or a plurality of panels may correspond to one TRP.
  • a UE panel may correspond to a specific group.
  • the UE may assume that each group of beams/RS is measured in each panel of the UE. It may be assumed that the UE receives multiple groups of beams simultaneously (using different panels).
  • TRP may be interchanged with TRP (or base station) panel, RS group, antenna port group, spatial relationship group, QCL group, TCI state, TCI state group, CORESET group, CORESET pool, etc.
  • the TRP index may be interchanged with an RS group index, an antenna port group index, a QCL group index, a TCI state index, a TCI state group index, a CORESET group index, a CORESET pool index, and the like.
  • the UE panel may be read interchangeably as RS group, antenna port group, spatial relationship group, QCL group, TCI state group, CORESET group, and the like.
  • the panel may be associated with the group index of the SSB/CSI-RS group. Also, in the present disclosure, a panel may be associated with a TRP. Also, in the present disclosure, multiple panels may be associated with a group index for group beam-based reporting. Also, in this disclosure, a panel may be associated with a group index of an SSB/CSI-RS group for group beam-based reporting.
  • serving cell/cell may be read as PCell, PSCell, SpCell, or SCell.
  • PSCell PSCell
  • SpCell SpCell
  • SCell SCell
  • beam failure detected BFD RS, failed BFD RS, beam failure detected TRP, failed TRP, beam failure detected UE panel, failed UE Panels may be read interchangeably.
  • A/B may be read as at least one of A and B, or A and B.
  • A/B/C may be read as at least one of A, B and C.
  • SR setting example At least one of the following options 0, 1 and 2 may be supported for SR configuration.
  • X 0 PUCCH resources are configured for SR (eg, SR index/SchedulingRequestID) in a cell group, and Y 0 spatial relationships are configured for the PUCCH resources.
  • SR eg, SR index/SchedulingRequestID
  • one SR PUCCH resource (here, SR PUCCH resource #1) is configured for SR configured in a cell group (or SpCell), and one SR PUCCH resource is configured. (here, spatial relationship #1) is set. Note that the numbers of X 0 and Y 0 are not limited to this.
  • Option 0 is Rel.
  • the SR setting method for the SCell BFR in 16 may be applied.
  • Option 0 may be read as 0th SR/0th SR setting.
  • SR per cell group eg, SR index / SchedulingRequestID
  • maximum X 1 PUCCH resources eg, dedicated PUCCH-SR resources
  • Y 1 spatial relationship for PUCCH resources is set.
  • one SR PUCCH resource (here, SR PUCCH resource #1) is configured for SR configured in a cell group (or SpCell), and two PUCCH resources for SR are configured. (here, spatial relationships #1 and #2) are set. Note that the numbers of X 1 and Y 1 are not limited to this. Option 1 may be read as first SR/first SR setting.
  • X 2 PUCCH resources eg, dedicated PUCCH-SR resources
  • SR eg, SR index/SchedulingRequestID
  • Y 2 spaces are configured for each PUCCH resource.
  • SR PUCCH resources #1 and #2 are configured for SR configured in a cell group (or SpCell), and each SR PUCCH resource is configured. is set to one spatial relationship (here, spatial relationships #1 and #2).
  • FIG. 2C shows a case where different spatial relationships are configured for PUCCH resource #1 for SR and PUCCH resource #2 for SR, but the same spatial relationship may be configured. Note that the numbers of X 2 and Y 2 are not limited to this. Option 2 may be read as second SR/second SR setting.
  • the UE provides information on SR (eg, SR index/SchedulingRequestID) in the cell group, information on PUCCH resources (eg, PUCCH-SR resources) in the cell group, and information on spatial relationships (eg, spatial relation) set for the PUCCH resources. , may be received from the network (eg, base station) using higher layer signaling/DCI.
  • SR eg, SR index/SchedulingRequestID
  • PUCCH resources eg, PUCCH-SR resources
  • spatial relationships eg, spatial relation
  • the information about SR may be at least one of information indicating the SR index (or SchedulingRequestID) to be set and information indicating the number of SRs to be set.
  • the information on PUCCH resources in the cell group may be at least one of information indicating PUCCH resources and information indicating the number of configured PUCCH resources.
  • the information about the spatial relationship may be at least one of information indicating the spatial relationship and information indicating the set spatial relation coefficient.
  • spatial relations eg, spatial relations
  • beams, spatial filters, spatial domain filters, TCI states, and QCLs may be read interchangeably.
  • the UE uses higher layer signaling/DCI to receive information about the configuration of BFR for each BFR/BFR unit from the network (eg, base station).
  • the information about setting of BFR for each BFR/BFR unit may be information indicating whether or not BFR is set/applied for each BFR/BFR unit.
  • the information about the configuration of BFR per BFR/BFR unit may be information indicating the BFR type (BFR per BFR/BFR unit or cell-specific BFR).
  • the UE sets the number of SRs (or the number of SR indexes) configured per cell group, and the BFR type configured/applied to a specific cell included in the cell group (eg, BFR per TRP/BFR per cell). Based on at least one of the SR or PUCCH-SR transmission may be controlled. In this case, the UE may control the transmission of SR or PUCCH-SR based on at least one of the number of configured PUCCH resources and spatial relation coefficients configured (or corresponding) to the PUCCH resources.
  • BFR In the first aspect, in BFR, a case where up to one SR (or SR index) can be set for each cell group (or only one is set) will be described as an example.
  • BFR is Rel. 16 SCell BFR/Rel.
  • BFR per TRP in 17 may be included.
  • PUCCH may be read as PUCCH for SR
  • PUCCH resource may be read as PUCCH-SR resource or PUCCH resource for SR.
  • PUCCH for SR and PUCCH resource for SR may be read interchangeably.
  • the BFR for each TRP may be read as the BFR for each TRP.
  • Cell-specific BFR may be read as cell-based BFR.
  • ⁇ Case A> In a cell group, it is assumed that at least a specific cell is configured with BFR per TRP, or a specific cell supporting BFR per TRP is configured. In this case, a per-TRP BFR (eg, per-TRP BFR) procedure may be applied in that particular cell.
  • a per-TRP BFR eg, per-TRP BFR
  • a specific cell may be a SpCell (eg, PCell/PSCell).
  • the cell group containing the SpCell may contain the SpCell and one or more SCells (see FIGS. 3A to 3C).
  • at least SpCell supports BFR for each TRP, and part or all of the other SCells may be configured to support BFR for each TRP, or may be configured not to support BFR for each TRP.
  • BFR for each TRP may be set/applied to SpCell, and cell-specific BFR may be set/applied to other SCells (here, SCells #1 to #3).
  • BFR per TRP is set / applied to SpCell
  • BFR per TRP is set / applied to some SCells (here, SCell # 2)
  • the remaining SCells (here , SCell #1, #3) may be configured/applied with cell-specific BFR.
  • some SCells here, SCell#1 may not have the BFR itself set.
  • option 1 and option 2 may be applied as the BFR SR setting for the cell group. That is, two beam/spatial relationships may be configured for one PUCCH (or PUCCH resource) (see Option 1/FIG. 2B above), or two PUCCHs (or PUCCH resources). Two beam/spatial relationships may be set for , see Option 2 above/FIG. 2C.
  • TRP #0 and TRP #1 Multiple TRPs (e.g., TRP #0 and TRP #1) are included in SpCell, and beam failure (e.g., TRP failure) is detected in some of them (e.g., TRP #0), SR is May be triggered.
  • One PUCCH resource is configured for a cell group/SR, two spatial relationships are configured for the PUCCH resource (Option 1 above), and beam failure is detected in TRP#0 (or TRP# SR triggered based on 0 beam obstructions).
  • the UE may send the SR utilizing the spatial relationship (here, spatial relationship #2) associated with the other TRP (eg, TRP #1) (case A1 in FIG. 4/option 1).
  • two PUCCH resources are set for the cell group / SR, one spatial relationship is set for each PUCCH resource (option 2 above), and beam failure is detected in TRP # 0 (or SR triggered based on beam failure of TRP#0).
  • the UE may transmit SR using PUCCH for SR/PUCCH resource for SR (here, PUCCH resource for SR #2) associated with another TRP (for example, TRP #1). (See case A1/option 2 in FIG. 4). This allows the UE to transmit SRs using PUCCH resources in which no beam failure has been detected (or which have high quality).
  • the UE may use SR PUCCH/SR PUCCH resources associated with other TRPs (eg, TRP #1) other than TRPs.
  • the UE uses the PUCCH for SR/PUCCH resource for SR (here, PUCCH resource for SR #1) associated with the TRP (for example, TRP #0) in which the beam failure is detected to transmit the SR.
  • PUCCH for SR/PUCCH resource for SR here, PUCCH resource for SR #1
  • TRP #0 the beam failure is detected to transmit the SR.
  • the SCell may apply a cell-specific BFR (eg, cell-specific BFR).
  • An SR may be triggered if a beam failure (eg, TRP failure) is detected in the SCell.
  • the SR may be transmitted by PUCCH (eg, PUCCH-SR) of SpCells included in the cell group to which the SCell belongs.
  • One PUCCH resource is configured for the cell group/SR, two spatial relationships are configured for the PUCCH resource (Option 1 above), and if beam failure is detected in the SCell (or beam failure of the SCell SR is triggered based on ).
  • the UE may transmit the default beam/default spatial relationship for SR (or transmit SR using the default beam/default spatial relationship) (see case A2/option 1 in FIG. 4).
  • two PUCCH resources are configured for the cell group / SR, one spatial relationship is configured for each PUCCH resource (option 2 above), and if a beam failure is detected in the SCell (or the SCell SR is triggered based on beam obstruction).
  • the UE may transmit the default PUCCH/default PUCCH resource for SR (or transmit SR using the default PUCCH/default PUCCH resource) (see case A2/option 2 in FIG. 4).
  • the UE may control the transmission of SR using the default spatial relationship (option 1) or the default PUCCH resource (option 2) when detecting a beam failure in the SCell.
  • the default beam/default spatial relationship for SR may be predefined in the specification, determined based on predetermined rules (e.g., index order of spatial relationships, etc.), or may be determined from the base station. It may be set in the UE by higher layer signaling or the like.
  • the default beam/default spatial relation for SR can be SR's first spatial relation (e.g., 1st spatial relation), SR's lowest spatial relation index (e.g., lowest spatial relation ID), or lowest control It may be the spatial relationship of the SR associated with the resource set index (eg lowest CORESETPoolIndex).
  • the default PUCCH / default PUCCH resource for SR may be predefined in the specification, may be determined based on a predetermined rule (eg, PUCCH resource index order, etc.), or may be determined from the base station. It may be set in the UE by higher layer signaling or the like.
  • the default PUCCH/default PUCCH resource for SR is the first PUCCH resource for SR (eg, 1st PUCCH resource), the lowest PUCCH resource for SR (eg, lowest PUCCH resource ID), or the lowest It may be the PUCCH resource for SR associated with the control resource set index (eg, lowest CORESETPoolIndex).
  • the SCell may apply a per-TRP BFR (eg, per-TRP BFR) procedure.
  • TRP#0 and TRP#1 When multiple TRPs (eg, TRP#0 and TRP#1) are included in the SCell and a beam failure (eg, TRP failure) is detected in at least some of them (eg, TRP#0), SR may be triggered.
  • TRP failure e.g, TRP failure
  • One PUCCH resource is configured for a cell group/SR, two spatial relationships are configured for this PUCCH resource (Option 1 above), and beams are configured for all TRPs (eg, TRP#0 and TRP#1).
  • TRP#0 and TRP#1 the UE may transmit the default beam/default spatial relationship for SR (or transmit SR using the default beam/default spatial relationship) (see case A3/option 1 in FIG. 4).
  • two PUCCH resources are configured for a cell group/SR, one spatial relationship is configured for each PUCCH resource (option 2 above), and all TRPs (eg, TRP#0 and TRP#1).
  • TRP#0 and TRP#1 all TRPs.
  • the UE may transmit default PUCCH/default PUCCH resources for SR (or transmit SR using default PUCCH/default PUCCH resources) (case A3/option 2 in FIG. 4).
  • the SR using the default spatial relationship (option 1) or the default PUCCH resource (option 2). may control the transmission of
  • SR transmission can be appropriately controlled.
  • one PUCCH resource is set for the cell group / SR, two spatial relationships are set for the PUCCH resource (option 1 above), and beam failure is detected in TRP # 0 (or SR triggered based on beam failure of TRP#0).
  • the UE may transmit the default beam/default spatial relationship for SR (or transmit SR using the default beam/default spatial relationship) (see case A4/option 1 in FIG. 4).
  • the UE may transmit the SR using the spatial relationship (Non-failed) associated with another TRP (eg, TRP#1) (see case A4/option 1 in FIG. 4).
  • two PUCCH resources are set for the cell group / SR, one spatial relationship is set for each PUCCH resource (option 2 above), and beam failure is detected in TRP # 0 (or SR triggered based on beam failure of TRP#0).
  • the UE may transmit the default PUCCH/default PUCCH resource for SR (or transmit SR using the default PUCCH/default PUCCH resource) (see case A4/option 2 in FIG. 4).
  • the UE may transmit SR using PUCCH for SR/PUCCH resource for SR (Non-failed) associated with another TRP (for example, TRP #1) (case A4/ See Option 2).
  • the UE may use SR PUCCH/SR PUCCH resources associated with other TRPs (eg, TRP #1) other than TRPs. For example, the UE may transmit the SR using the PUCCH for SR/PUCCH resource for SR associated with the TRP (eg, TRP#0) in which the beam failure is detected.
  • the predetermined condition may be the cell (or cell index) in which the TRP detected a beam failure.
  • a beam failure when a beam failure is detected in a TRP with a cell (eg, SpCell) that performs SR transmission using a PUCCH resource for SR, even if a PUCCH resource for SR corresponding to a TRP in which beam failure is not detected is used. good.
  • a beam failure when a beam failure is detected in a TRP with another cell (eg, SCell) different from a cell (eg, SpCell) that performs SR transmission using PUCCH resources for SR, the TRP in which the beam failure is detected
  • a corresponding PUCCH resource for SR may be used.
  • the reverse configuration may be applied.
  • a specific cell eg, SpCell
  • BFR per-TRP BFR
  • SCell at least one other cell
  • the SCell may apply a BFR per TRP (eg, per-TRP BFR) procedure
  • the SpCell may apply a cell-specific BFR (eg, cell-specific BFR).
  • cell-specific BFR is set/applied to SpCell
  • BFR for each TRP is set/applied to some SCells (here, SCell #1, #3)
  • remaining SCells A cell-specific BFR may be set/applied to (here, SCell#2).
  • the BFR itself may not be set in the SpCell.
  • the above option 0 may be applied as the BFR SR setting for the cell group (Alt.1).
  • one PUCCH resource is configured for the SR of the cell group, and one spatial relationship is configured for the PUCCH resource (that is, one PUCCH/PUCCH resource for one beam/ spatial relationship may be established).
  • the SpCell does not set/support BFR per TRP, when a beam obstruction is detected in an SCell and an SR is triggered, the SR can be properly transmitted in that SpCell as long as the SpCell is not detected as a beam obstruction.
  • At least one of option 1 and option 2 may be applied as the BFR SR setting for the cell group (Alt. 2). That is, two beam/spatial relationships may be configured for one PUCCH (or PUCCH resource) (option 1), or two for two PUCCHs (or PUCCH resources). Be/spatial relationship may be set (option 2).
  • the SpCell may apply a cell-specific BFR (eg, cell-specific BFR).
  • An SR may be triggered if a beam failure (eg, TRP failure) is detected in the SpCell.
  • One PUCCH resource is configured for a cell group/SR, two spatial relationships are configured for the PUCCH resource (Option 1 above), and if beam failure is detected in SpCell (or beam failure of SpCell SR is triggered based on ).
  • the UE may transmit the default beam/default spatial relationship for SR (or transmit SR using the default beam/default spatial relationship).
  • two PUCCH resources are configured for the cell group / SR, one spatial relationship is configured for each PUCCH resource (option 2 above), and if beam failure is detected in the SpCell (or SpCell's SR is triggered based on beam obstruction).
  • the UE may transmit the default PUCCH/default PUCCH resource for SR (or transmit SR using the default PUCCH/default PUCCH resource).
  • the default spatial relationship (option 1) or the default PUCCH resource (option 2) is used to transmit SR. may be controlled.
  • SR transmission can be appropriately controlled.
  • a BFR procedure using PRACH (eg, Rel. 15 BFR procedure) may be applied.
  • the SCell may apply a cell-specific BFR (eg, cell-specific BFR).
  • An SR may be triggered if a beam failure (eg, TRP failure) is detected in the SCell.
  • the SR may be transmitted by PUCCH (eg, PUCCH-SR) of SpCells included in the cell group to which the SCell belongs.
  • ⁇ Case B1 One PUCCH resource is configured for the cell group/SR, two spatial relationships are configured for the PUCCH resource (Option 1 above), and if beam failure is detected in the SCell (or beam failure of the SCell SR is triggered based on ). In this case, the UE may transmit the default beam/default spatial relationship for SR (or transmit SR using the default beam/default spatial relationship) (see case B1/option 1 in FIG. 6).
  • two PUCCH resources are configured for the cell group / SR, one spatial relationship is configured for each PUCCH resource (option 2 above), and if a beam failure is detected in the SCell (or the SCell SR is triggered based on beam obstruction).
  • the UE may transmit default PUCCH/default PUCCH resources for SR (or transmit SR using default PUCCH/default PUCCH resources) (see case B1/option 2 in FIG. 6).
  • the UE may control the transmission of SR using the default spatial relationship (option 1) or the default PUCCH resource (option 2) when detecting a beam failure in the SCell.
  • the default beam/default spatial relationship for SR may be predefined in the specification, determined based on predetermined rules (e.g., index order of spatial relationships, etc.), or may be determined from the base station. It may be set in the UE by higher layer signaling or the like.
  • the default beam/default spatial relation for SR can be SR's first spatial relation (e.g., 1st spatial relation), SR's lowest spatial relation index (e.g., lowest spatial relation ID), or lowest control It may be the spatial relationship of the SR associated with the resource set index (eg lowest CORESETPoolIndex).
  • the default PUCCH / default PUCCH resource for SR may be predefined in the specification, may be determined based on a predetermined rule (eg, PUCCH resource index order, etc.), or may be determined from the base station. It may be set in the UE by higher layer signaling or the like.
  • the default PUCCH/default PUCCH resource for SR is the first PUCCH resource for SR (eg, 1st PUCCH resource), the lowest PUCCH resource for SR (eg, lowest PUCCH resource ID), or the lowest It may be the PUCCH resource for SR associated with the control resource set index (eg, lowest CORESETPoolIndex).
  • the SCell may apply a per-TRP BFR (eg, per-TRP BFR) procedure.
  • TRP#0 and TRP#1 When multiple TRPs (eg, TRP#0 and TRP#1) are included in the SCell and a beam failure (eg, TRP failure) is detected in at least some of them (eg, TRP#0), SR may be triggered.
  • TRP failure e.g, TRP failure
  • ⁇ Case B2 One PUCCH resource is configured for a cell group/SR, two spatial relationships are configured for this PUCCH resource (Option 1 above), and beams are configured for all TRPs (eg, TRP#0 and TRP#1). Suppose an obstacle is detected (or an SR is triggered based on a beam failure of two TRPs). In this case, the UE may transmit the default beam/default spatial relationship for SR (or transmit SR using the default beam/default spatial relationship) (see case B2/option 1 in FIG. 6).
  • two PUCCH resources are configured for a cell group/SR, one spatial relationship is configured for each PUCCH resource (option 2 above), and all TRPs (eg, TRP#0 and TRP#1).
  • TRP#0 and TRP#1 all TRPs.
  • the UE may transmit the default PUCCH/default PUCCH resource for SR (or transmit SR using the default PUCCH/default PUCCH resource) (see case B2/option 2 in FIG. 6).
  • the SR using the default spatial relationship (option 1) or the default PUCCH resource (option 2). may control the transmission of
  • SR transmission can be appropriately controlled.
  • one PUCCH resource is set for the cell group / SR, two spatial relationships are set for the PUCCH resource (option 1 above), and beam failure is detected in TRP # 0 (or SR triggered based on beam failure of TRP#0).
  • the UE may transmit the default beam/default spatial relationship for SR (or transmit SR using the default beam/default spatial relationship) (see case B3/option 1 in FIG. 6).
  • the UE may transmit the SR using the spatial relationship (Non-failed) associated with another TRP (eg, TRP#1) (see case B3/option 1 in FIG. 6).
  • two PUCCH resources are set for the cell group / SR, one spatial relationship is set for each PUCCH resource (option 2 above), and beam failure is detected in TRP # 0 (or SR triggered based on beam failure of TRP#0).
  • the UE may transmit the default PUCCH/default PUCCH resource for SR (or transmit SR using the default PUCCH/default PUCCH resource) (see case B3/option 2 in FIG. 6).
  • the UE may transmit SR using PUCCH for SR/PUCCH resource for SR (Non-failed) associated with another TRP (for example, TRP #1) (case B3/ See Option 2).
  • two SR configurations may be set in consideration of different conditions for each cell group.
  • an SR corresponding to option 0 for example, the first SR
  • an SR corresponding to option 1/2 for example, the second SR
  • FIG. 7A shows a case where a first SR configuration corresponding to option 0 and a second SR configuration corresponding to option 1 are set for a certain cell group.
  • FIG. 7B shows a case where a first SR configuration corresponding to option 0 and a second SR configuration corresponding to option 2 are set for a certain cell group.
  • one SR (eg, the first SR) is Rel. 16 and one SR (eg, the second SR) is set for Rel. 17 may be set for the BFR per TRP.
  • the setting conditions for the two SRs are the following Alt. 2-1 to Alt. 2-3.
  • Configuration of two SRs may be controlled based on whether or not BFR for each TRP is configured (eg, whether or not to configure) for at least one serving cell included in the cell group.
  • the first SR may be the SR corresponding to option 0 above
  • the second SR may be the SR corresponding to option 1/2 above.
  • the UE may control to transmit the first SR (for example, the SR corresponding to option 0) under the first condition.
  • the first condition is if SR is triggered by beam failure of two TRPs of SCell (SCell with per-TRP BFR configured) or beam failure of SCell (SCell with cell-specific BFR applied) SR may be triggered by
  • the UE may control to transmit a second SR (for example, an SR corresponding to option 1/2) under the second condition.
  • a second condition may be when SR is triggered by beam obstruction of one TRP of a SpCell/SCell (SpCell/SCell with per-TRP BFR set).
  • SR transmission can be controlled considering the TRP (or spatial relationship/PUCCH resource) where the beam failure is detected.
  • the setting of the first SR and the setting of the second SR may be separately controlled based on different conditions. Different conditions may be cell type (SpCell/SCell), BFR type to be set/applied (cell specific BFR/BFR per TRP). For example, the configuration of one SR is controlled based on whether cell-specific BFR is applied to at least one SCell (for example, whether or not configuration is performed), and BFR per TRP is applied to at least one serving cell (SpCell/SCell).
  • the setting of other SRs may be controlled based on whether or not is set (for example, setting presence/absence).
  • one SCell in the cell group is not configured with per-TRP BFR (or cell-specific BFR is applied)
  • one SR eg, the first SR corresponding to Option 0
  • another SR eg, the second SR corresponding to Option 1/2
  • the UE may control to send the first SR (the SR corresponding to option 0).
  • the UE sends a second SR (SR corresponding to option 1/2 ) may be controlled to be transmitted.
  • SR transmission can be controlled considering the TRP (or spatial relationship/PUCCH resource) where the beam failure is detected.
  • the setting of the first SR and the setting of the second SR may be separately controlled based on different conditions. Different conditions may be cell type (SpCell/SCell), BFR type to be set/applied (cell specific BFR/BFR per TRP). For example, the configuration of one SR is controlled based on whether or not BFR (eg, cell-specific BFR/BFR per TRP) is applied to at least one SCell (eg, whether or not it is configured), and the SpCell is controlled for each TRP
  • the setting of other SRs may be controlled based on whether or not the BFR of is set (for example, whether or not it is set).
  • one SCell in the cell group is configured with BFR (e.g., per-TRP BFR or cell-specific/per-cell BFR)
  • one SR e.g., the first SR corresponding to option 0
  • another SR for example, a second SR corresponding to option 1/2
  • the UE may be controlled to send a second SR (eg, the SR corresponding to option 1/2) only when a beam failure in one TRP of the SpCell (eg, TRP#0) is detected. good.
  • a second SR eg, the SR corresponding to option 1/2
  • the UE may utilize the spatial relationship associated with the other TRP (e.g., TRP#1) (option 1) or the other TRP (e.g., TRP#1).
  • Associated PUCCH for SR/PUCCH resources for SR may be utilized (option 2).
  • the UE may control to send the first SR (e.g., the SR corresponding to option 0).
  • the third aspect may be applied in the first aspect/second aspect/fourth aspect. Also, the third aspect may be applied when at least one of the following rules 1 to 3 is used as the SR PUCCH resource selection rule.
  • Rule 1 PUCCH resources for SR associated with other TRPs (eg, non-failed BFD-RS set) are selected
  • Rule 2 TRP where beam failure is detected (eg, failed BFD-RS set) to Associated PUCCH resource for SR is selected
  • Rule 3 UE implementation selects PUCCH resource for SR (UE implementation)
  • the association between the PUCCH resource index for SR and the TRP index may be set for each BWP/cell.
  • the base station uses a predetermined upper layer parameter (eg, BFR-Config) to associate the PUCCH resource index for SR with the TRP index for each BWP/cell using RRC/MAC CE. (see FIG. 8).
  • FIG. 8 shows a case where TRP#1 and SR PUCCH resource #1 correspond, and TRP#2 and SR PUCCH resource #2 correspond.
  • the number of TRPs and the number of PUCCH resources for SR are not limited to these.
  • the TRP index may be configured so that it is not specified (or defined/introduced).
  • the TRP index is the CORESET pool index (e.g. ⁇ 0, 1 ⁇ ), the index of the enhanced TCI state for PDSCH MAC CE (e.g. enhanced TCI state for PDSCH MAC CE) (e.g. ⁇ first TCI state, second TCI state ⁇ ), and index of the BFD/NBI RS set (eg, ⁇ first BFD/NBI RS set, second BFD/NBI RS set ⁇ ).
  • the CORESET pool index e.g. ⁇ 0, 1 ⁇
  • the index of the enhanced TCI state for PDSCH MAC CE e.g. enhanced TCI state for PDSCH MAC CE
  • the BFD/NBI RS set e.g, ⁇ first BFD/NBI RS set, second BFD/NBI RS set ⁇ .
  • Rule 1 or rule 2 may indicate that there is a relationship between the SR PUCCH resource and the TRP. Also, which PUCCH resource for SR is to be transmitted may be selected based on a predetermined condition (for example, relevance).
  • a configuration in which two SR PUCCH resources correspond to one SR configuration/ID for each TRP, or a configuration in which two SR configurations/IDs correspond to each TRP may be supported.
  • the UE/base station When multiple (for example, two) SR PUCCH resources (or one or more SR PUCCH resources having multiple spatial relationships) are associated with one SR configuration/ID, the UE/base station: UE operation/base station operation may be controlled based on at least one of the following options 4-1 to 4-2.
  • FIG. 9A shows a case where TRP#1 and SR ID#1 are associated, and TRP#2 and SR ID#2 are associated.
  • the number of TRPs and the number of SR IDs are not limited to these.
  • SR ID #1 may correspond to SR PUCCH resource #1
  • SR ID #2 may correspond to SR PUCCH resource #2.
  • the association between the SR ID and the PUCCH resource for SR may be set/instructed from the base station to the UE by RRC/MAC CE/DCI.
  • Separate (for example, different) spatial relationships may be configured for different PUCCH resources for SR.
  • the UE may judge/determine which PUCCH resource for SR to transmit based on the association for different cases (or for each case).
  • the SR PUCCH corresponding to (or related to) the SR setting/ID associated with the TRP in which the beam failure was detected is transmitted. good too.
  • an SR setting/ID associated with a TRP different from the TRP in which the beam failure was detected for example, a TRP in which beam failure is not detected (non-failed TRP)
  • PUCCH for SR corresponding to may be transmitted.
  • SR ID for example, SR configuration/ID
  • two spatial relations correspond to one PUCCH resource for SR.
  • setting associations between spatial relationships and TRPs may be supported.
  • Spatial relationships and associations with TRPs may be configured from the base station to the UE using RRC/MAC CE or the like (see FIG. 9B).
  • FIG. 9B shows a case where TRP#1 and spatial relationship #1 are associated, and TRP#2 and spatial relationship #2 are associated.
  • the TRP number and the spatial relation coefficient are not limited to these.
  • the UE may decide which spatial relationship to select/apply for PUCCH transmission for SR based on the association for different cases (or for each case).
  • the SR PUCCH may be transmitted applying the spatial relationship associated with the TRP in which the beam failure was detected (for example, failed TRP).
  • the PUCCH for SR may be transmitted.
  • the different cases may be at least one of Cases 4-1 to 4-4 below.
  • Case 4-1 is when a TRP-specific BFR (eg, TRP-specific BFR) is set, and beam failure/TRP failure occurs in at least one TRP with SpCell/SCell (eg, one TRP) Equivalent to
  • Case 4-2 corresponds to the case where a beam failure/SCell failure occurs in at least one SCell when a TRP-specific BFR (eg, TRP-specific BFR) is set.
  • a TRP-specific BFR eg, TRP-specific BFR
  • Case 4-3 is different in one or more (or more than one) cells (eg, SpCell/SCell) when a TRP-specific BFR (eg, TRP-specific BFR) is configured in a cell
  • a TRP-specific BFR eg, TRP-specific BFR
  • Case 4-4 is a beam failure (or TRP failure) occurs and a beam failure occurs in another SCell when cell-specific BFR is set.
  • the association between the TRP index and the SR configuration/ID (SR configuration/ID), or the association between the TRP index and the spatial relationship of the PUCCH for SR is set, and based on the association, SR (or PUCCH for SR ) transmission, the UE behavior in BFR can be appropriately controlled.
  • UE capability information In the above first to fourth aspects, the following UE capabilities may be set. Note that the UE capabilities below may be read as parameters (eg, higher layer parameters) set in the UE from the network (eg, base station).
  • UE capability information regarding whether to support SR for BFR configured with two PUCCH resources may be defined.
  • UE capability information regarding whether to support default PUCCH resources for SR for BFR may be defined.
  • UE capability information regarding whether to support SR for BFR configured with one PUCCH resource with two spatial relationships may be defined.
  • UE capability information may be defined as to whether to support the default spatial relationship for SR for BFR.
  • UE capability information regarding whether to support SpCells in which BFR for each TRP is set may be defined.
  • UE capability information regarding whether to support SCells in which BFR for each TRP is set may be defined.
  • UE capability information regarding the maximum number of SCells/serving cells for which the BFR for each TRP can be set may be defined.
  • the first to fourth aspects may be configured to be applied to a UE that supports/reports at least one of the UE capabilities described above.
  • the first to fourth aspects may be configured to be applied to the UE set from the network.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 11 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit information on beam failure detection settings for each transmission/reception point (TRP) and information on settings of uplink control channel resources corresponding to the scheduling request.
  • TRP transmission/reception point
  • the control unit 110 When the terminal detects a beam failure in the first TRP, the control unit 110 generates uplink control channel resources corresponding to the first TRP and uplink control channel resources corresponding to a second TRP different from the first TRP. , may be used to control reception of the scheduling request transmitted from the terminal.
  • FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transmitting/receiving unit 220 may receive information on beam failure detection settings for each transmission/reception point (TRP) and information on settings of uplink control channel resources corresponding to the scheduling request.
  • TRP transmission/reception point
  • the transmitting/receiving unit 220 may provide information regarding the association between the TRP index and the index of the uplink control channel resource corresponding to the scheduling request.
  • the transmitting/receiving unit 220 may receive information regarding the association between the TRP index and the index of the configuration information of the scheduling request.
  • the transmitting/receiving unit 220 may receive information about the association between the TRP index and the spatial relationship index of the uplink control channel resource corresponding to the scheduling request.
  • the control unit 210 controls uplink control channel resources corresponding to the first TRP, uplink control channel resources corresponding to a second TRP different from the first TRP, may be used to control the transmission of scheduling requests.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a media access control element (MAC Control Element (CE)).
  • CE media access control element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information (by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”", “Quasi-Co-Location (QCL)", “Transmission Configuration Indication state (TCI state)", “spatial “spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “Reference Signal (RS) port group)", "layer”, “number of layers”, “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “ Terms such as “antenna element", “panel”, “transmit/receive point” may be used interchangeably.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a decimal number)
  • Future Radio Access FAA
  • RAT New - Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied to systems using communication methods, next-generation systems extended based on these, and the like
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

複数の送受信ポイントを利用する場合であってもビーム障害検出又はビーム障害回復を適切に行うこと。本開示の一態様に係る端末は、送受信ポイント(TRP)毎のビーム障害検出の設定に関する情報と、スケジューリング要求に対応する上り制御チャネルリソースの設定に関する情報と、を受信する受信部と、第1のTRPでビーム障害が検出された場合、前記第1のTRPに対応する上り制御チャネルリソースと、前記第1のTRPと異なる第2のTRPに対応する上り制御チャネルリソースと、の一方を利用してスケジューリング要求の送信を制御する制御部と、を有する。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 既存のLTEシステム(LTE Rel.8-15)では、無線リンク品質のモニタリング(無線リンクモニタリング(Radio Link Monitoring(RLM)))が行われる。RLMより無線リンク障害(Radio Link Failure(RLF))が検出されると、RRC(Radio Resource Control)コネクションの再確立(re-establishment)がユーザ端末(User Equipment(UE))に要求される。
 将来の無線通信システム(例えば、NR)では、ビーム障害を検出して他のビームに切り替える手順(ビーム障害回復(Beam Failure Recovery(BFR))手順、BFR、リンクリカバリ手順(Link recovery procedures)などと呼ばれてもよい)を実施することが検討されている。
 Rel.17以降のNRでは、端末(UE)が複数の送受信ポイント(TRP)/UEパネルを利用して通信を行うことも想定される。この場合、複数のTRP/複数のUEパネルにおいてビームマネジメント(例えば、ビーム障害検出)を行うことが考えられるが、各TRP/UEパネルにおけるビーム障害検出(BFD)又はビーム障害回復(BFR)をどのように制御するかが問題となる。各TRP/UEパネルにおけるビーム障害検出又はビーム障害回復を適切に制御できないと通信スループットの低下又は通信品質の劣化が生じるおそれがある。
 本開示はかかる点に鑑みてなされたものであり、複数の送受信ポイントを利用する場合であってもビーム障害検出又はビーム障害回復を適切に行うことが可能な端末、無線通信方法及び基地局を提供することを目的の一つとする。
 本開示の一態様に係る端末は、送受信ポイント(TRP)毎のビーム障害検出の設定に関する情報と、スケジューリング要求に対応する上り制御チャネルリソースの設定に関する情報と、を受信する受信部と、第1のTRPでビーム障害が検出された場合、前記第1のTRPに対応する上り制御チャネルリソースと、前記第1のTRPと異なる第2のTRPに対応する上り制御チャネルリソースと、の一方を利用してスケジューリング要求の送信を制御する制御部と、を有する。
 本開示の一態様によれば、複数の送受信ポイントを利用する場合であってもビーム障害検出又はビーム障害回復を適切に行うことができる。
図1は、Rel.15 NRにおけるビーム回復手順の一例を示す図である。 図2A-図2Cは、スケジューリング要求に対するPUCCHリソースと空間関係の設定の一例を示す図である。 図3A-図3Cは、第1の態様にかかるセルグループ内の各セルに適用するBFRタイプの一例を示す図である。 図4は、第1の態様にかかるSRの送信制御の一例を示す図である。 図5A及び図5Bは、第1の実施形態にかかるセルグループ内の各セルに適用するBFRタイプの他の例を示す図である。 図6は、第1の態様にかかるSRの送信制御の一例を示す図である。 図7A及び図7Bは、第2の態様にかかる複数のSRを設定する場合の一例を示す図である。 図8は、第3の態様にかかるTRPインデックスとSR用PUCCHリソースインデックスとの関連づけの一例を示す図である。 図9A及び図9Bは、第4の態様にかかるTRPインデックスとSR設定/SR用PUCCHリソースの空間関係との関連づけの一例を示す図である。 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図11は、一実施形態に係る基地局の構成の一例を示す図である。 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(ビーム障害検出)
 NRでは、ビームフォーミングを利用して通信を行う。例えば、UE及び基地局(例えば、gNB(gNodeB))は、信号の送信に用いられるビーム(送信ビーム、Txビームなどともいう)、信号の受信に用いられるビーム(受信ビーム、Rxビームなどともいう)を用いてもよい。
 ビームフォーミングを用いる場合、障害物による妨害の影響を受けやすくなるため、無線リンク品質が悪化することが想定される。無線リンク品質の悪化によって、無線リンク障害(Radio Link Failure(RLF))が頻繁に発生するおそれがある。RLFが発生するとセルの再接続が必要となるため、頻繁なRLFの発生は、システムスループットの劣化を招く。
 NRにおいては、RLFの発生を抑制するために、特定のビームの品質が悪化する場合、他のビームへの切り替え(ビーム回復(Beam Recovery(BR))、ビーム障害回復(Beam Failure Recovery(BFR))、L1/L2(Layer 1/Layer 2)ビームリカバリなどと呼ばれてもよい)手順を実施する。なお、BFR手順は単にBFRと呼ばれてもよい。
 なお、本開示におけるビーム障害(beam failure(BF))は、リンク障害(link failure)と呼ばれてもよい。
 図1は、Rel.15 NRにおけるビーム回復手順の一例を示す図である。ビームの数などは一例であって、これに限られない。図1の初期状態(ステップS101)において、UEは、2つのビームを用いて送信される参照信号(Reference Signal(RS))リソースに基づく測定を実施する。
 当該RSは、同期信号ブロック(Synchronization Signal Block(SSB))及びチャネル状態測定用RS(Channel State Information RS(CSI-RS))の少なくとも1つであってもよい。なお、SSBは、SS/PBCH(Physical Broadcast Channel)ブロックなどと呼ばれてもよい。
 RSは、プライマリ同期信号(Primary SS(PSS))、セカンダリ同期信号(Secondary SS(SSS))、モビリティ参照信号(Mobility RS(MRS))、SSBに含まれる信号、SSB、CSI-RS、復調用参照信号(DeModulation Reference Signal(DMRS))、ビーム固有信号などの少なくとも1つ、又はこれらを拡張、変更などして構成される信号であってもよい。ステップS101において測定されるRSは、ビーム障害検出のためのRS(Beam Failure Detection RS(BFD-RS)、ビーム障害検出用RS)、又はビーム回復手順に利用するためのRS(BFR-RS)などと呼ばれてもよい。
 ステップS102において、基地局からの電波が妨害されたことによって、UEはBFD-RSを検出できない(又はRSの受信品質が劣化する)。このような妨害は、例えばUE及び基地局間の障害物、フェージング、干渉などの影響によって発生し得る。
 UEは、所定の条件が満たされると、ビーム障害を検出する。UEは、例えば、設定されたBFD-RS(BFD-RSリソース設定)の全てについて、BLER(Block Error Rate)が閾値未満である場合、ビーム障害の発生を検出してもよい。ビーム障害の発生が検出されると、UEの下位レイヤ(物理(PHY)レイヤ)は、上位レイヤ(MACレイヤ)に対してビーム障害インスタンスを通知(指示)してもよい。
 なお、判断の基準(クライテリア)は、BLERに限られず、物理レイヤにおける参照信号受信電力(Layer 1 Reference Signal Received Power(L1-RSRP))であってもよい。また、RS測定の代わりに又はRS測定に加えて、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などに基づいてビーム障害検出が実施されてもよい。BFD-RSは、UEによってモニタされるPDCCHのDMRSと擬似コロケーション(Quasi-Co-Location(QCL))であると期待されてもよい。
 ここで、QCLとは、チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 BFD-RSに関する情報(例えば、RSのインデックス、リソース、数、ポート数、プリコーディングなど)、ビーム障害検出(BFD)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。BFD-RSに関する情報は、BFR用リソースに関する情報などと呼ばれてもよい。
 本開示において、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、メディアアクセス制御制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 UEの上位レイヤ(例えば、MACレイヤ)は、UEのPHYレイヤからビーム障害インスタンス通知を受信した場合に、所定のタイマ(ビーム障害検出タイマと呼ばれてもよい)を開始してもよい。UEのMACレイヤは、当該タイマが満了するまでにビーム障害インスタンス通知を一定回数(例えば、RRCで設定されるbeamFailureInstanceMaxCount)以上受信したら、BFRをトリガ(例えば、後述のランダムアクセス手順のいずれかを開始)してもよい。
 基地局は、UEからの通知がない場合、又はUEから所定の信号(ステップS104におけるビーム回復要求)を受信した場合に、当該UEがビーム障害を検出したと判断してもよい。
 ステップS103において、UEはビーム回復のため、新たに通信に用いるための新候補ビーム(new candidate beam)のサーチを開始する。UEは、所定のRSを測定することによって、当該RSに対応する新候補ビームを選択してもよい。ステップS103において測定されるRSは、新候補RS、新候補ビーム識別のためのRS(New Candidate Beam Identification RS(NCBI-RS))、CBI-RS、CB-RS(Candidate Beam RS)などと呼ばれてもよい。NCBI-RSは、BFD-RSと同じであってもよいし、異なってもよい。なお、新候補ビームは、単に候補ビーム又は候補RSと呼ばれてもよい。
 UEは、所定の条件を満たすRSに対応するビームを、新候補ビームとして決定してもよい。UEは、例えば、設定されたNCBI-RSのうち、L1-RSRPが閾値を超えるRSに基づいて、新候補ビームを決定してもよい。なお、判断の基準(クライテリア)は、L1-RSRPに限られない。SSBに関するL1-RSRPは、SS-RSRPと呼ばれてもよい。CSI-RSに関するL1-RSRPは、CSI-RSRPと呼ばれてもよい。
 NCBI-RSに関する情報(例えば、RSのリソース、数、ポート数、プリコーディングなど)、新候補ビーム識別(NCBI)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。新候補RS(又は、NCBI-RS)に関する情報は、BFD-RSに関する情報に基づいて取得されてもよい。NCBI-RSに関する情報は、NBCI用リソースに関する情報などと呼ばれてもよい。
 なお、BFD-RS、NCBI-RSなどは、無線リンクモニタリング参照信号(Radio Link Monitoring RS(RLM-RS))で読み替えられてもよい。
 ステップS104において、新候補ビームを特定したUEは、ビーム回復要求(Beam Failure Recovery reQuest(BFRQ))を送信する。ビーム回復要求は、ビーム回復要求信号、ビーム障害回復要求信号などと呼ばれてもよい。
 BFRQは、例えば、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、コンフィギュアド(設定)グラント(configured grant(CG))PUSCHの少なくとも1つを用いて送信されてもよい。
 BFRQは、ステップS103において特定された新候補ビーム/新候補RSの情報を含んでもよい。BFRQのためのリソースが、当該新候補ビームに関連付けられてもよい。ビームの情報は、ビームインデックス(Beam Index(BI))、所定の参照信号のポートインデックス、RSインデックス、リソースインデックス(例えば、CSI-RSリソース指標(CSI-RS Resource Indicator(CRI))、SSBリソース指標(SSBRI))などを用いて通知されてもよい。
 Rel.15 NRでは、衝突型ランダムアクセス(Random Access(RA))手順に基づくBFRであるCB-BFR(Contention-Based BFR)及び非衝突型ランダムアクセス手順に基づくBFRであるCF-BFR(Contention-Free BFR)が検討されている。CB-BFR及びCF-BFRでは、UEは、PRACHリソースを用いてプリアンブル(RAプリアンブル、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、RACHプリアンブルなどともいう)をBFRQとして送信してもよい。
 CB-BFRでは、UEは、1つ又は複数のプリアンブルからランダムに選択したプリアンブルを送信してもよい。一方、CF-BFRでは、UEは、基地局からUE固有に割り当てられたプリアンブルを送信してもよい。CB-BFRでは、基地局は、複数UEに対して同一のプリアンブルを割り当ててもよい。CF-BFRでは、基地局は、UE個別にプリアンブルを割り当ててもよい。
 なお、CB-BFR及びCF-BFRは、それぞれCB PRACHベースBFR(contention-based PRACH-based BFR(CBRA-BFR))及びCF PRACHベースBFR(contention-free PRACH-based BFR(CFRA-BFR))と呼ばれてもよい。CBRA-BFRは、BFR用CBRAと呼ばれてもよい。CFRA-BFRは、BFR用CFRAと呼ばれてもよい。
 CB-BFR、CF-BFRのいずれであっても、PRACHリソース(RAプリアンブル)に関する情報は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によって通知されてもよい。例えば、当該情報は、検出したDL-RS(ビーム)とPRACHリソースとの対応関係を示す情報を含んでもよく、DL-RSごとに異なるPRACHリソースが関連付けられてもよい。
 ステップS105において、BFRQを検出した基地局は、UEからのBFRQに対する応答信号(gNBレスポンスなどと呼ばれてもよい)を送信する。当該応答信号には、1つ又は複数のビームについての再構成情報(例えば、DL-RSリソースの構成情報)が含まれてもよい。
 当該応答信号は、例えばPDCCHのUE共通サーチスペースにおいて送信されてもよい。当該応答信号は、UEの識別子(例えば、セル-無線RNTI(Cell-Radio RNTI(C-RNTI)))によって巡回冗長検査(Cyclic Redundancy Check(CRC))スクランブルされたPDCCH(DCI)を用いて通知されてもよい。UEは、ビーム再構成情報に基づいて、使用する送信ビーム及び受信ビームの少なくとも一方を判断してもよい。
 UEは、当該応答信号を、BFR用の制御リソースセット(COntrol REsource SET(CORESET))及びBFR用のサーチスペースセットの少なくとも一方に基づいてモニタしてもよい。
 CB-BFRに関しては、UEが自身に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断されてもよい。
 ステップS105の処理に関して、BFRQに対する基地局(例えば、gNB)からの応答(レスポンス)をUEがモニタするための期間が設定されてもよい。当該期間は、例えばgNB応答ウィンドウ、gNBウィンドウ、ビーム回復要求応答ウィンドウなどと呼ばれてもよい。UEは、当該ウィンドウ期間内において検出されるgNB応答がない場合、BFRQの再送を行ってもよい。
 ステップS106において、UEは、基地局に対してビーム再構成が完了した旨を示すメッセージを送信してもよい。当該メッセージは、例えば、PUCCHによって送信されてもよいし、PUSCHによって送信されてもよい。
 ビーム回復成功(BR success)は、例えばステップS106まで到達した場合を表してもよい。一方で、ビーム回復失敗(BR failure)は、例えばBFRQ送信が所定の回数に達した、又はビーム障害回復タイマ(Beam-failure-recovery-Timer)が満了したことに該当してもよい。
 Rel.15では、SpCell(PCell/PSCell)で検出されたビーム障害に対するビーム回復手順(例えば、BFRQの通知)を、ランダムアクセス手順を利用して行うことがサポートされている。
 一方で、Rel.16では、SCellで検出されたビーム障害に対するビーム回復手順(例えば、BFRQの通知(図1のステップS104))を、BFR用のPUCCH(例えば、スケジューリングリクエスト(SR))送信と、BFR用のMAC CE(例えば、UL-SCH)送信の少なくとも一つを利用して行うことがサポートされる。例えば、UEは、MAC CEベースの2ステップを利用して、ビーム障害に関する情報を送信してもよい。ビーム障害に関する情報は、ビーム障害を検出したセルに関する情報、新候補ビーム(又は、新候補RSインデックス)に関する情報が含まれていてもよい。
[ステップ1]
 BFが検出された場合、UEから、SpCell(例えば、PCell/PSCell)に対して、PUCCH-BFR(スケジューリング要求(SR))が送信されてもよい。PUCCH-BFRは、PUCCH-SR、BFR用PUCCH-SR、又はSR用PUCCHと呼ばれてもよい。
 次いで、PCell/PSCellから、UEに対して、下記ステップ2のためのULグラント(例えば、DCI)が送信されてもよい。ビーム障害が検出された場合に、新候補ビームに関する情報を送信するためのMAC CE(又は、UL-SCH)が存在する場合には、ステップ1(例えば、PUCCH送信)を省略して、ステップ2(例えば、MAC CE送信)を行ってもよい。
[ステップ2]
 UEは、ビーム障害が検出された(失敗した)セルに関する情報(例えば、セルインデックス)及び新候補ビームに関する情報を、MAC CEを用いて、上りリンクチャネル(例えば、PUSCH)を介して、基地局(PCell/PSCell)に送信してもよい。その後、BFR手順を経て、基地局からの応答信号を受信してから所定期間(例えば、28シンボル)後に、PDCCH/PUCCH/PDSCH/PUSCHのQCLが、新たなビームに更新されてもよい。
 なお、これらのステップの番号は説明のための番号に過ぎず、複数のステップがまとめられてもよいし、順番が入れ替わってもよい。また、BFRを実施するか否かは、上位レイヤシグナリングを用いてUEに設定されてもよい。
 ところで、将来の無線通信システム(例えば、Rel.17以降)では、複数のパネル(マルチパネル)を有するUEのビーム管理、又は複数の送受信ポイント(マルチTransmission/Reception Point(TRP))を利用したビーム管理の拡張が検討されている。
 Rel.17以降のビーム障害検出/ビーム障害回復において、Rel.16のSCell BFR BFRQに基づくBFRQフレームワークをサポートすることが想定される。この場合、セルグループにおいてX個までのPUCCH-SRリソース(例えば、dedicated PUCCH-SR resource)が設定されてもよい。Xは、1であってもよいし、2又は2以上であってもよい。
 本開示において、セルグループは、例えば、マスタセルグループ(MCG)、セカンダリセルグループ(SCG)、及びPUCCHセルグループの少なくとも一つであってもよい。MCG及びSCGは、デュアルコネクティビティ(DC)において設定されるグループであってもよい。PUCCHセルグループは、PUCCH送信において設定されるグループであってもよい。
 また、Rel.17以降では、あるセルにおいて、複数のTRP/複数のUEパネル毎にビーム障害検出/ビーム障害回復を行うこと(例えば、per-TRP BFR)が考えられる。例えば、TRP毎/TRP単位のBFRに対してスケジューリング要求(SR)の送信がサポートされることも考えられる。
 この場合、スケジューリング要求の設定(例えば、SR configuration、SR設定)をどのように制御するかが問題となる。例えば、セルグループ(又は、セル/TRP)に対する、SR(例えば、SRインデックス/SchedulingRequestID/SR ID)の設定、PUCCHリソース(例えば、PUCCH-SRリソース)の設定、PUCCHリソースに対応する空間関係(例えば、spatial relation)の設定をどのように制御するかが問題となる。あるいは、セルグループに含まれる各セルに設定/適用されるBFRタイプ(例えば、TRP毎のBFRが設定/適用されるか否か)に基づいてどのようにBFR用のSR(又は、PUCCH-SR)の送信を制御するかが問題となる。
 本発明者らは、1以上のTRP/パネル単位でビーム障害回復手順(ビーム障害検出/ビーム障害回復要求/ビーム障害回復に基づくUE動作)が適用されるケースに着目し、かかる場合のSRの設定/SRの送信方法を検討し、本実施の形態を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各態様は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、UEは、複数のパネルを用いて、TRPとの送受信を行うUEであってもよい。各パネルは、それぞれ別々のTRPに対応してもよいし、1つのパネルが複数のTRPに対応してもよいし、複数のパネルが1つのTRPに対応してもよい。
 本開示において、UEのパネル(又はパネルインデックス)は、特定のグループに対応してもよい。この場合、UEは、各グループのビーム/RSが、当該UEの各パネルにおいて測定されると想定してもよい。UEは、複数のグループのビームを、(異なるパネルを用いて)同時に受信すると想定してもよい。
 本開示において、TRPは、TRP(又は基地局)のパネル、RSグループ、アンテナポートグループ、空間関係グループ、QCLグループ、TCI状態、TCI状態グループ、CORESETグループ、CORESETプールなどと互いに読み替えられてもよい。また、TRPインデックスは、RSグループインデックス、アンテナポートグループインデックス、QCLグループインデックス、TCI状態インデックス、TCI状態グループインデックス、CORESETグループインデックス、CORESETプールインデックスなどと互いに読み替えられてもよい。
 本開示において、UEのパネルは、RSグループ、アンテナポートグループ、空間関係グループ、QCLグループ、TCI状態グループ、CORESETグループなどと互いに読み替えられてもよい。
 本開示において、パネルは、SSB/CSI-RSグループのグループインデックスに関連付けられていてもよい。また、本開示において、パネルは、TRPに関連付けられていてもよい。また、本開示において、複数のパネルは、グループビームベース報告のグループインデックスに関連付けられていてもよい。また、本開示において、パネルは、グループビームベース報告のためのSSB/CSI-RSグループのグループインデックスに関連付けられていてもよい。
 本開示において、サービングセル/セルは、PCell、PSCell、SpCell、又はSCellに読み替えられてもよい。以下の説明では、サービングセルに対して2つのTRPが対応する場合を例に挙げるが、サービングセルに対して3以上のTRPが対応してもよい。
 本開示において、ビーム障害が検出されたBFD RS、失敗した(failed)BFD RS、ビーム障害が検出されたTRP、失敗した(failed)TRP、ビーム障害を検出したUEパネル、失敗した(failed)UEパネル、は互いに読み替えられてもよい。
 本開示において、A/Bは、A及びBの少なくとも一方、又は、A及びBに読み替えられてもよい。本開示において、A/B/Cは、A、B及びCの少なくとも1つに読み替えられてもよい。
(SRの設定例)
 SRの設定は、以下のオプション0、1、2の少なくとも一つがサポートされてもよい。
<オプション0>
 セルグループにおけるSR(例えば、SRインデックス/SchedulingRequestID)に、X個のPUCCHリソース(又は、SR用PUCCH)が設定され、PUCCHリソースに対してY個の空間関係が設定される。以下の説明では、X=1、Y=1を想定する(図2A参照)。
 図2Aでは、セルグループ(又は、SpCell)に設定されるSRに対して、1個のSR用PUCCHリソース(ここでは、SR用PUCCHリソース#1)が設定され、当該SR用PUCCHリソースに1個の空間関係(ここでは、空間関係#1)が設定される場合を示している。なお、X、Yの数はこれに限られない。
 オプション0は、Rel.16におけるSCell BFRに対するSRの設定方法が適用されてもよい。オプション0は、第0のSR/第0のSR設定と読み替えられてもよい。
<オプション1>
 セルグループ毎のSR(例えば、SRインデックス/SchedulingRequestID)に、セルグループ内で最大X個のPUCCHリソース(例えば、dedicated PUCCH-SRリソース)が設定され、PUCCHリソースに対してY個の空間関係が設定される。以下の説明では、X=1、Y=2を想定する(図2B参照)。
 図2Bでは、セルグループ(又は、SpCell)に設定されるSRに対して、1個のSR用PUCCHリソース(ここでは、SR用PUCCHリソース#1)が設定され、当該SR用PUCCHリソースに2個の空間関係(ここでは、空間関係#1、#2)が設定される場合を示している。なお、X、Yの数はこれに限られない。オプション1は、第1のSR/第1のSR設定と読み替えられてもよい。
<オプション2>
 セルグループ毎のSR(例えば、SRインデックス/SchedulingRequestID)に、セルグループ内で最大X個のPUCCHリソース(例えば、dedicated PUCCH-SRリソース)が設定され、各PUCCHリソースに対してY個の空間関係が設定される。以下の説明では、X=2(又は、2以上)、Y=1を想定する(図2C参照)。
 図2Cでは、セルグループ(又は、SpCell)に設定されるSRに対して、2個のSR用PUCCHリソース(ここでは、SR用PUCCHリソース#1、#2)が設定され、各SR用PUCCHリソースに1個の空間関係(ここでは、空間関係#1、#2)が設定される場合を示している。図2Cでは、SR用PUCCHリソース#1とSR用PUCCHリソース#2にそれぞれ異なる空間関係が設定される場合を示しているが、同じ空間関係が設定されてもよい。なお、X、Yの数はこれに限られない。オプション2は、第2のSR/第2のSR設定と読み替えられてもよい。
 UEは、セルグループにおけるSR(例えば、SRインデックス/SchedulingRequestID)に関する情報、セルグループにおけるPUCCHリソース(例えば、PUCCH-SRリソース)に関する情報、PUCCHリソースに設定される空間関係(例えば、spatial relation)に関する情報、の少なくとも一つをネットワーク(例えば、基地局)から上位レイヤシグナリング/DCIを利用して受信してもよい。
 SRに関する情報は、設定されるSRインデックス(又は、SchedulingRequestID)を示す情報、及び設定されるSR数を示す情報の少なくとの一つであってもよい。セルグループにおけるPUCCHリソースに関する情報は、PUCCHリソースを示す情報、及び設定されるPUCCHリソース数を示す情報の少なくとも一つであってもよい。空間関係に関する情報は、空間関係を示す情報、及び設定される空間関係数を示す情報の少なくとも一つであってもよい。本開示において、空間関係(例えば、spatial relation)、ビーム、空間フィルタ、空間ドメインフィルタ、TCI状態、QCLは互いに読み替えられてもよい。
 また、UEは、各セル(例えば、セルグループに含まれるセル)について、BFR毎/BFR単位のBFRの設定に関する情報を上位レイヤシグナリング/DCIを利用してネットワーク(例えば、基地局)から受信してもよい。BFR毎/BFR単位のBFRの設定に関する情報は、BFR毎/BFR単位のBFRの設定有無/適用有無を示す情報であってもよい。あるいは、BFR毎/BFR単位のBFRの設定に関する情報は、BFRタイプ(BFR毎/BFR単位のBFR、又はセル固有のBFR)を示す情報であってもよい。
 UEは、セルグループ毎に設定されるSR数(又は、SRインデックス数)、及びセルグループに含まれる特定のセルに設定/適用されるBFRタイプ(例えば、TRP毎のBFR/セル毎のBFR)の少なくとも一つに基づいて、SR又はPUCCH-SRの送信を制御してもよい。この場合、UEは、設定されるPUCCHリソース数、PUCCHリソースに設定される(又は、対応する)空間関係数の少なくとも一つに基づいて、SR又はPUCCH-SRの送信を制御してもよい。
(第1の態様)
 第1の態様では、BFRにおいて、セルグループ毎にSR(又は、SRインデックス)が1つまで設定可能である場合(又は、1つのみ設定される場合)を例に挙げて説明する。BFRは、Rel.16におけるSCell BFR/Rel.17におけるTRP毎のBFRが含まれていてもよい。以下の説明において、PUCCHは、SR用PUCCHと読み替えられ、PUCCHリソースは、PUCCH-SRリソース又はSR用PUCCHリソースと読み替えられてもよい。また、SR用PUCCHと、SR用PUCCHリソースは読み替えられてもよい。TRP毎のBFRは、TRP単位のBFRと読み替えられてもよい。セル固有のBFRは、セル単位のBFRと読み替えられてもよい。
<ケースA>
 セルグループにおいて、少なくとも特定のセルにTRP毎のBFRが設定される場合、又はTRP毎のBFRがサポートされる特定のセルが設定される場合を想定する。この場合、当該特定のセルではTRP毎のBFR(例えば、per-TRP BFR)手順が適用されてもよい。
 特定のセルは、SpCell(例えば、PCell/PSCell)であってもよい。この場合、SpCellが含まれるセルグループは、例えば、当該SpCellと1以上のSCellとを含んでいてもよい(図3A-図3C参照)。ケースAにおいては、少なくともSpCellがTRP毎のBFRをサポートし、他のSCell一部又は全部は、TRP毎のBFRをサポートする構成であってもよいし、TRP毎のBFRをサポートしない構成であってもよい。
 例えば、図3Aに示すように、SpCellにTRP毎のBFRが設定/適用され、他のSCell(ここでは、SCell#1-#3)にセル固有のBFRが設定/適用されてもよい。あるいは、図3Bに示すように、SpCellにTRP毎のBFRが設定/適用され、一部のSCell(ここでは、SCell#2)にTRP毎のBFRが設定/適用され、残りのSCell(ここでは、SCell#1、#3)にセル固有のBFRが設定/適用されてもよい。あるいは、図3Cに示すように、一部のSCell(ここでは、SCell#1)にBFR自体が設定されなくてもよい。
 また、当該セルグループに対するBFR用SRの設定として、上記オプション1及び上記オプション2の少なくとも一つが適用されてもよい。すなわち、1個のPUCCH(又は、PUCCHリソース)に対して2個のビーム/空間関係が設定されてもよいし(上記オプション1/図2B参照)、又は2個のPUCCH(又は、PUCCHリソース)に対して2個のビーム/空間関係が設定されてもよい(上記オプション2/図2C参照)。
《SpCellにおけるビーム障害》
 SpCellにおいて複数のTRP(例えば、TRP#0とTRP#1)が含まれ、そのうちの一部のTRP(例えば、TRP#0)においてビーム障害(例えば、TRP failure)が検出される場合、SRがトリガされてもよい。
・ケースA1
 セルグループ/SRに対して1個のPUCCHリソースが設定され、当該PUCCHリソースに2個の空間関係が設定され(上記オプション1)、TRP#0でビーム障害が検出された場合(又は、TRP#0のビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、他のTRP(例えば、TRP#1)に関連付けられた空間関係(ここでは、空間関係#2)を利用してSRを送信してもよい(図4のケースA1/オプション1参照)。
 これにより、UEは、ビーム障害が検出されていない(又は、品質が高い)空間関係を利用してSRを送信することができる。
 あるいは、セルグループ/SRに対して2個のPUCCHリソースが設定され、各PUCCHリソースに1個の空間関係が設定され(上記オプション2)、TRP#0でビーム障害が検出された場合(又は、TRP#0のビーム障害に基づいてSRがトリガされた場合)を想定する。
 この場合、UEは、他のTRP(例えば、TRP#1)に関連付けられたSR用PUCCH/SR用PUCCHリソース(ここでは、SR用PUCCHリソース#2)を利用してSRを送信してもよい(図4のケースA1/オプション2参照)。これにより、UEは、ビーム障害が検出されていない(又は、品質が高い)PUCCHリソースを利用してSRを送信することができる。
 また、UEは、他のTRP(例えば、TRP#1)以外のTRPに関連付けられたSR用PUCCH/SR用PUCCHリソースを利用してもよい。例えば、UEは、ビーム障害が検出されたTRP(例えば、TRP#0)に関連付けられたSR用PUCCH/SR用PUCCHリソース(ここでは、SR用PUCCHリソース#1)を利用してSRを送信してもよい。
《SCellにおけるビーム障害》
[TRP毎のBFR設定なし]
 SCellにTRP毎のBFR動作が設定されない場合、当該SCellではセル固有のBFR(例えば、cell-specific BFR)が適用されてもよい。SCellにおいてビーム障害(例えば、TRP failure)が検出される場合、SRがトリガされてもよい。SRは、当該SCellが属するセルグループに含まれるSpCellのPUCCH(例えば、PUCCH-SR)により送信されてもよい。
・ケースA2
 セルグループ/SRに対して1個のPUCCHリソースが設定され、当該PUCCHリソースに2個の空間関係が設定され(上記オプション1)、SCellでビーム障害が検出された場合(又は、SCellのビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトビーム/デフォルト空間関係を送信(又は、デフォルトビーム/デフォルト空間関係を利用してSRを送信)してもよい(図4のケースA2/オプション1参照)。
 あるいは、セルグループ/SRに対して2個のPUCCHリソースが設定され、各PUCCHリソースに1個の空間関係が設定され(上記オプション2)、SCellでビーム障害が検出された場合(又は、SCellのビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトPUCCH/デフォルトPUCCHリソースを送信(又は、デフォルトPUCCH/デフォルトPUCCHリソースを利用してSRを送信)してもよい(図4のケースA2/オプション2参照)。
 このように、UEは、SCellにおいてビーム障害を検出した場合、デフォルトの空間関係(オプション1)、又はデフォルトのPUCCHリソース(オプション2)を利用してSRの送信を制御してもよい。これにより、SR送信用の空間関係/PUCCHリソースが複数設定される場合であっても、SRの送信を適切に制御することができる。
 オプション1において、SR用のデフォルトビーム/デフォルト空間関係は、仕様であらかじめ定義されてもよいし、所定ルール(例えば、空間関係のインデックス順など)に基づいて決定されてもよいし、基地局からUEに上位レイヤシグナリング等で設定されてもよい。例えば、SR用のデフォルトビーム/デフォルト空間関係は、SRの1番目の空間関係(例えば、1st spatial relation)、SRの最下位の空間関係インデックス(例えば、lowest spatial relation ID)、又は最下位の制御リソースセットインデックス(例えば、lowest CORESETPoolIndex)に関連付けられたSRの空間関係であってもよい。
 オプション2において、SR用のデフォルトPUCCH/デフォルトPUCCHリソースは、仕様であらかじめ定義されてもよいし、所定ルール(例えば、PUCCHリソースのインデックス順など)に基づいて決定されてもよいし、基地局からUEに上位レイヤシグナリング等で設定されてもよい。例えば、SR用のデフォルトPUCCH/デフォルトPUCCHリソースは、SR用の1番目のPUCCHリソース(例えば、1st PUCCH resource)、SR用の最下位のPUCCHリソース(例えば、lowest PUCCH resource ID)、又は最下位の制御リソースセットインデックス(例えば、lowest CORESETPoolIndex)に関連付けられたSR用のPUCCHリソースであってもよい。
[TRP毎のBFR設定あり]
 SCellにTRP毎のBFR動作が設定される場合、当該SCellではTRP毎のBFR(例えば、per-TRP BFR)手順が適用されてもよい。
 SCellにおいて複数のTRP(例えば、TRP#0とTRP#1)が含まれ、そのうちの少なくとも一部のTRP(例えば、TRP#0)においてビーム障害(例えば、TRP failure)が検出される場合、SRがトリガされてもよい。
・ケースA3
 セルグループ/SRに対して1個のPUCCHリソースが設定され、当該PUCCHリソースに2個の空間関係が設定され(上記オプション1)、全てのTRP(例えば、TRP#0とTRP#1)でビーム障害が検出された場合(又は、2個のTRPのビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトビーム/デフォルト空間関係を送信(又は、デフォルトビーム/デフォルト空間関係を利用してSRを送信)してもよい(図4のケースA3/オプション1参照)。
 あるいは、セルグループ/SRに対して2個のPUCCHリソースが設定され、各PUCCHリソースに1個の空間関係が設定され(上記オプション2)、全てのTRP(例えば、TRP#0とTRP#1)でビーム障害が検出された場合(又は、2個のTRPのビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトPUCCH/デフォルトPUCCHリソースを送信(又は、デフォルトPUCCH/デフォルトPUCCHリソースを利用してSRを送信)してもよい(図4のケースA3/オプション2)。
 このように、UEは、SCellの複数のTRP(例えば、全てのTRP)においてビーム障害を検出した場合、デフォルトの空間関係(オプション1)、又はデフォルトのPUCCHリソース(オプション2)を利用してSRの送信を制御してもよい。これにより、SR送信用の空間関係/PUCCHリソースが複数設定される場合であっても、SRの送信を適切に制御することができる。
・ケースA4
 あるいは、セルグループ/SRに対して1個のPUCCHリソースが設定され、当該PUCCHリソースに2個の空間関係が設定され(上記オプション1)、TRP#0でビーム障害が検出された場合(又は、TRP#0のビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトビーム/デフォルト空間関係を送信(又は、デフォルトビーム/デフォルト空間関係を利用してSRを送信)してもよい(図4のケースA4/オプション1参照)。あるいは、UEは、他のTRP(例えば、TRP#1)に関連付けられた空間関係(Non-failed)を利用してSRを送信してもよい(図4のケースA4/オプション1参照)。
 あるいは、セルグループ/SRに対して2個のPUCCHリソースが設定され、各PUCCHリソースに1個の空間関係が設定され(上記オプション2)、TRP#0でビーム障害が検出された場合(又は、TRP#0のビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトPUCCH/デフォルトPUCCHリソースを送信(又は、デフォルトPUCCH/デフォルトPUCCHリソースを利用してSRを送信)してもよい(図4のケースA4/オプション2参照)。
 あるいは、UEは、他のTRP(例えば、TRP#1)に関連付けられたSR用PUCCH/SR用PUCCHリソース(Non-failed)を利用してSRを送信してもよい(図4のケースA4/オプション2参照)。
 また、UEは、他のTRP(例えば、TRP#1)以外のTRPに関連付けられたSR用PUCCH/SR用PUCCHリソースを利用してもよい。例えば、UEは、ビーム障害が検出されたTRP(例えば、TRP#0)に関連付けられたSR用PUCCH/SR用PUCCHリソースを利用してSRを送信してもよい。
 なお、本実施の形態において、どのTRPに対応するSR用PUCCH/SR用PUCCHリソースを利用するかは、所定条件に基づいて決定されてもよい。例えば、所定条件は、TRPでビーム障害が検出されたセル(又は、セルインデックス)であってもよい。
 例えば、SR用PUCCHリソースを利用してSR送信を行うセル(例えば、SpCell)のあるTRPにおいてビーム障害が検出された場合、ビーム障害が検出されないTRPに対応するSR用PUCCHリソースを利用してもよい。また、SR用PUCCHリソースを利用してSR送信を行うセル(例えば、SpCell)と異なる他のセル(例えば、SCell)のあるTRPにおいてビーム障害が検出された場合、ビーム障害が検出されたTRPに対応するSR用PUCCHリソースを利用してもよい。あるいは、この逆の構成が適用されてもよい。
<ケースB>
 セルグループにおいて、特定のセル(例えば、SpCell)にTRP毎のBFR動作が設定されず(又は、BFR自体が設定されず)、少なくとも一つの他のセル(例えば、SCell)にTRP毎のBFR動作が設定される場合を想定する(図5A、図5B参照)。この場合、当該SCellではTRP毎のBFR(例えば、per-TRP BFR)手順が適用され、SpCellでは、セル固有のBFR(例えば、cell-specific BFR)が適用されてもよい。
 例えば、図5Aに示すように、SpCellにセル固有のBFRが設定/適用され、一部のSCell(ここでは、SCell#1、#3)にTRP毎のBFRが設定/適用され、残りのSCell(ここでは、SCell#2)にセル固有のBFRが設定/適用されてもよい。あるいは、図5Bに示すように、SpCellにBFR自体が設定されなくてもよい。
 また、当該セルグループに対するBFR用SRの設定として、上記オプション0(図2A参照)が適用されてもよい(Alt.1)。具体的には、セルグループのSRに対して1個のPUCCHリソースが設定され、当該PUCCHリソースに1個の空間関係が設定(つまり、1個のPUCCH/PUCCHリソースに対して1個のビーム/空間関係が設定)されてもよい。
 SpCellにTRP毎のBFRが設定/サポートされないため、SCellにおいてビーム障害が検出されてSRがトリガされる場合、SpCellがビーム障害として検出されない限り、当該SpCellにおいてSRを適切に送信することができる。
 あるいは、当該セルグループに対するBFR用SRの設定として、上記オプション1及び上記オプション2の少なくとも一つが適用されてもよい(Alt.2)。すなわち、1個のPUCCH(又は、PUCCHリソース)に対して2個のビーム/空間関係が設定されてもよいし(オプション1)、又は2個のPUCCH(又は、PUCCHリソース)に対して2個のビーム/空間関係が設定されてもよい(オプション2)。
《SpCellにおけるビーム障害》
 SpCellにTRP毎のBFR動作が設定されない場合、当該SpCellではセル固有のBFR(例えば、cell-specific BFR)が適用されてもよい。SpCellにおいてビーム障害(例えば、TRP failure)が検出される場合、SRがトリガされてもよい。
 セルグループ/SRに対して1個のPUCCHリソースが設定され、当該PUCCHリソースに2個の空間関係が設定され(上記オプション1)、SpCellでビーム障害が検出された場合(又は、SpCellのビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトビーム/デフォルト空間関係を送信(又は、デフォルトビーム/デフォルト空間関係を利用してSRを送信)してもよい。
 あるいは、セルグループ/SRに対して2個のPUCCHリソースが設定され、各PUCCHリソースに1個の空間関係が設定され(上記オプション2)、SpCellでビーム障害が検出された場合(又は、SpCellのビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトPUCCH/デフォルトPUCCHリソースを送信(又は、デフォルトPUCCH/デフォルトPUCCHリソースを利用してSRを送信)してもよい。
 このように、UEは、TRP毎のBFR動作が設定されないSpCellにおいてビーム障害を検出した場合、デフォルトの空間関係(オプション1)、又はデフォルトのPUCCHリソース(オプション2)を利用してSRの送信を制御してもよい。これにより、SR送信用の空間関係/PUCCHリソースが複数設定される場合であっても、SRの送信を適切に制御することができる。
 あるいは、SpCellにTRP毎のBFR動作が設定されない場合、当該SpCellにおいてビーム障害が検出された場合、PRACHを利用したBFR手順(例えば、Rel.15のBFR手順)が適用されてもよい。
《SCellにおけるビーム障害》
[TRP毎のBFR設定なし]
 SCellにTRP毎のBFR動作が設定されない場合、当該SCellではセル固有のBFR(例えば、cell-specific BFR)が適用されてもよい。SCellにおいてビーム障害(例えば、TRP failure)が検出される場合、SRがトリガされてもよい。SRは、当該SCellが属するセルグループに含まれるSpCellのPUCCH(例えば、PUCCH-SR)により送信されてもよい。
・ケースB1
 セルグループ/SRに対して1個のPUCCHリソースが設定され、当該PUCCHリソースに2個の空間関係が設定され(上記オプション1)、SCellでビーム障害が検出された場合(又は、SCellのビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトビーム/デフォルト空間関係を送信(又は、デフォルトビーム/デフォルト空間関係を利用してSRを送信)してもよい(図6のケースB1/オプション1参照)。
 あるいは、セルグループ/SRに対して2個のPUCCHリソースが設定され、各PUCCHリソースに1個の空間関係が設定され(上記オプション2)、SCellでビーム障害が検出された場合(又は、SCellのビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトPUCCH/デフォルトPUCCHリソースを送信(又は、デフォルトPUCCH/デフォルトPUCCHリソースを利用してSRを送信)してもよい(図6のケースB1/オプション2参照)。
 このように、UEは、SCellにおいてビーム障害を検出した場合、デフォルトの空間関係(オプション1)、又はデフォルトのPUCCHリソース(オプション2)を利用してSRの送信を制御してもよい。これにより、SR送信用の空間関係/PUCCHリソースが複数設定される場合であっても、SRの送信を適切に制御することができる。
 オプション1において、SR用のデフォルトビーム/デフォルト空間関係は、仕様であらかじめ定義されてもよいし、所定ルール(例えば、空間関係のインデックス順など)に基づいて決定されてもよいし、基地局からUEに上位レイヤシグナリング等で設定されてもよい。例えば、SR用のデフォルトビーム/デフォルト空間関係は、SRの1番目の空間関係(例えば、1st spatial relation)、SRの最下位の空間関係インデックス(例えば、lowest spatial relation ID)、又は最下位の制御リソースセットインデックス(例えば、lowest CORESETPoolIndex)に関連付けられたSRの空間関係であってもよい。
 オプション2において、SR用のデフォルトPUCCH/デフォルトPUCCHリソースは、仕様であらかじめ定義されてもよいし、所定ルール(例えば、PUCCHリソースのインデックス順など)に基づいて決定されてもよいし、基地局からUEに上位レイヤシグナリング等で設定されてもよい。例えば、SR用のデフォルトPUCCH/デフォルトPUCCHリソースは、SR用の1番目のPUCCHリソース(例えば、1st PUCCH resource)、SR用の最下位のPUCCHリソース(例えば、lowest PUCCH resource ID)、又は最下位の制御リソースセットインデックス(例えば、lowest CORESETPoolIndex)に関連付けられたSR用のPUCCHリソースであってもよい。
[TRP毎のBFR設定あり]
 SCellにTRP毎のBFR動作が設定される場合、当該SCellではTRP毎のBFR(例えば、per-TRP BFR)手順が適用されてもよい。
 SCellにおいて複数のTRP(例えば、TRP#0とTRP#1)が含まれ、そのうちの少なくとも一部のTRP(例えば、TRP#0)においてビーム障害(例えば、TRP failure)が検出される場合、SRがトリガされてもよい。
・ケースB2
 セルグループ/SRに対して1個のPUCCHリソースが設定され、当該PUCCHリソースに2個の空間関係が設定され(上記オプション1)、全てのTRP(例えば、TRP#0とTRP#1)でビーム障害が検出された場合(又は、2個のTRPのビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトビーム/デフォルト空間関係を送信(又は、デフォルトビーム/デフォルト空間関係を利用してSRを送信)してもよい(図6のケースB2/オプション1参照)。
 あるいは、セルグループ/SRに対して2個のPUCCHリソースが設定され、各PUCCHリソースに1個の空間関係が設定され(上記オプション2)、全てのTRP(例えば、TRP#0とTRP#1)でビーム障害が検出された場合(又は、2個のTRPのビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトPUCCH/デフォルトPUCCHリソースを送信(又は、デフォルトPUCCH/デフォルトPUCCHリソースを利用してSRを送信)してもよい(図6のケースB2/オプション2参照)。
 このように、UEは、SCellの複数のTRP(例えば、全てのTRP)においてビーム障害を検出した場合、デフォルトの空間関係(オプション1)、又はデフォルトのPUCCHリソース(オプション2)を利用してSRの送信を制御してもよい。これにより、SR送信用の空間関係/PUCCHリソースが複数設定される場合であっても、SRの送信を適切に制御することができる。
・ケースB3
 あるいは、セルグループ/SRに対して1個のPUCCHリソースが設定され、当該PUCCHリソースに2個の空間関係が設定され(上記オプション1)、TRP#0でビーム障害が検出された場合(又は、TRP#0のビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトビーム/デフォルト空間関係を送信(又は、デフォルトビーム/デフォルト空間関係を利用してSRを送信)してもよい(図6のケースB3/オプション1参照)。あるいは、UEは、他のTRP(例えば、TRP#1)に関連付けられた空間関係(Non-failed)を利用してSRを送信してもよい(図6のケースB3/オプション1参照)。
 あるいは、セルグループ/SRに対して2個のPUCCHリソースが設定され、各PUCCHリソースに1個の空間関係が設定され(上記オプション2)、TRP#0でビーム障害が検出された場合(又は、TRP#0のビーム障害に基づいてSRがトリガされた場合)を想定する。この場合、UEは、SR用のデフォルトPUCCH/デフォルトPUCCHリソースを送信(又は、デフォルトPUCCH/デフォルトPUCCHリソースを利用してSRを送信)してもよい(図6のケースB3/オプション2参照)。あるいは、UEは、他のTRP(例えば、TRP#1)に関連付けられたSR用PUCCH/SR用PUCCHリソース(Non-failed)を利用してSRを送信してもよい(図6のケースB3/オプション2参照)。
(第2の態様)
 第2の態様では、BFRにおいて、セルグループ毎に複数のSR、又は最大N個(例えば、N=2)までのSRが設定可能である場合について説明する。以下の説明では、N=2を例に挙げるが、セルグループに対して設定可能なSR数は2に限られない。
 例えば、セルグループ毎に異なる条件を考慮した2個のSR構成が設定されてもよい。2個のSR(又は、2個のSRに対応するSR設定)として、上記オプション0に対応するSR(例えば、第1のSR)と、上記オプション1/2に対応するSR(例えば、第2のSR)が設定されてもよい(図7A、図7B参照)。
 図7Aでは、あるセルグループに対して、オプション0に対応する第1のSR構成と、オプション1に対応する第2のSR構成とが設定される場合を示している。図7Bでは、あるセルグループに対して、オプション0に対応する第1のSR構成と、オプション2に対応する第2のSR構成とが設定される場合を示している。
 例えば、1つのSR(例えば、第1のSR)がRel.16におけるSCell BFRに対して設定され、1つのSR(例えば、第2のSR)がRel.17におけるTRP毎のBFRに対して設定されてもよい。
 2個のSRの設定条件は、以下のAlt.2-1~Alt.2-3の少なくとも一つに従ってもよい。
<Alt.2-1>
 セルグループに含まれる少なくとも一つのサービングセルに対して、TRP毎のBFRが設定されるか否か(例えば、設定有無)に基づいて、2個のSRの設定が制御されてもよい。
 セルグループ内の少なくとも1つのサービングセル(例えば、SpCell又はSCell)にTRP毎のBFRが設定される場合、2個のSRが設定されてもよい(又は、2個のSR設定がサポートされてもよい)。第1のSR(又は、SR設定)は、上記オプション0に対応するSRであり、第2のSR(又は、SR設定)は、上記オプション1/2に対応するSRであってもよい。
 UEは、第1の条件において、第1のSR(例えば、オプション0に対応するSR)を送信するように制御してもよい。第1の条件は、SCell(TRP毎のBFRが設定されるSCell)の2個のTRPのビーム障害によりSRがトリガされる場合、又はSCell(セル固有のBFRが適用されるSCell)のビーム障害によりSRがトリガされる場合であってもよい。
 UEは、第2の条件において、第2のSR(例えば、オプション1/2に対応するSR)を送信するように制御してもよい。第2の条件は、SpCell/SCell(TRP毎のBFRが設定されるSpCell/SCell)の1個のTRPのビーム障害によりSRがトリガされる場合であってもよい。これにより、ビーム障害が検出されたTRP(又は、空間関係/PUCCHリソース)を考慮して、SR送信を制御することができる。
<Alt.2-2>
 第1のSRの設定と、第2のSRの設定とが異なる条件に基づいて別々に制御されてもよい。異なる条件は、セルタイプ(SpCell/SCell)、設定/適用されるBFRタイプ(セル固有BFR/TRP毎のBFR)であってもよい。例えば、少なくとも一つのSCellにセル固有のBFRが適用されるか否か(例えば、設定有無)に基づいて1つのSRの設定が制御され、少なくとも一つのサービングセル(SpCell/SCell)にTRP毎のBFRが設定されるか否か(例えば、設定有無)に基づいて他のSRの設定が制御されてもよい。
 セルグループ内の少なくとも1つのSCellにTRP毎のBFRが設定されない(又は、セル固有のBFRが適用される)場合、1つのSR(例えば、オプション0に対応する第1のSR)が設定されてもよい。また、セルグループ内の少なくとも1つのサービングセル(例えば、SpCell又はSCell)にTRP毎のBFRが設定される場合、他のSR(例えば、オプション1/2に対応する第2のSR)が設定されてもよい。
 SCell(セル固有のBFRが適用されるSCell)のビーム障害によりSRがトリガされる場合、UEは、第1のSR(オプション0に対応するSR)を送信するように制御してもよい。
 一方で、SpCell/SCell(TRP毎のBFRが設定されるSpCell/SCell)のビーム障害検出によりSRがトリガされる場合、UEは、UEは、第2のSR(オプション1/2に対応するSR)を送信するように制御してもよい。これにより、ビーム障害が検出されたTRP(又は、空間関係/PUCCHリソース)を考慮して、SR送信を制御することができる。
<Alt.2-3>
 第1のSRの設定と、第2のSRの設定とが異なる条件に基づいて別々に制御されてもよい。異なる条件は、セルタイプ(SpCell/SCell)、設定/適用されるBFRタイプ(セル固有BFR/TRP毎のBFR)であってもよい。例えば、少なくとも一つのSCellにBFR(例えば、セル固有のBFR/TRP毎のBFR)が適用されるか否か(例えば、設定有無)に基づいて1つのSRの設定が制御され、SpCellにTRP毎のBFRが設定されるか否か(例えば、設定有無)に基づいて他のSRの設定が制御されてもよい。
 セルグループ内の少なくとも1つのSCellにBFR(例えば、TRP毎のBFR、又はセル固有/セル単位のBFR)が設定される場合、1つのSR(例えば、オプション0に対応する第1のSR)が設定されてもよい。また、SpCellにTRP毎のBFRが設定される場合のみ、他のSR(例えば、オプション1/2に対応する第2のSR)が設定されてもよい。
 SpCellの1つのTRP(例えば、TRP#0)におけるビーム障害が検出された場合のみ、UEは、第2のSR(例えば、オプション1/2に対応するSR)を送信するように制御してもよい。UEは、第2のSRを送信する場合、他のTRP(例えば、TRP#1)に関連する空間関係を利用してもよいし(オプション1)、他のTRP(例えば、TRP#1)に関連するSR用PUCCH/SR用PUCCHリソースを利用してもよい(オプション2)。
 それ以外(例えば、SpCellの1つのTRPにおけるビーム障害が検出された場合以外)において、UEは、第1のSR(例えば、オプション0に対応するSR)を送信するように制御してもよい。
(第3の態様)
 第3の態様では、TRPインデックスとSR用PUCCHリソースインデックスとの関連づけの一例について説明する。
 第3の態様は、第1の態様/第2の態様/第4の態様において適用されてもよい。また、第3の態様は、SR用PUCCHリソースの選択ルールとして以下のルール1~ルール3の少なくとも一つが利用される場合に適用されてもよい。
ルール1:他のTRP(例えば、non-failedのBFD-RSセット)に関連付けられるSR用PUCCHリソースが選択される
ルール2:ビーム障害が検出されたTRP(例えば、failedのBFD-RSセット)に関連付けられたSR用PUCCHリソースが選択される
ルール3:UEの実装によりSR用PUCCHリソースが選択される(UEインプリ)
 UEは、BWP毎/セル毎にSR用PUCCHリソースインデックスとTRPインデックスとの関連づけが設定されてもよい。例えば、基地局は、所定の上位レイヤパラメータ(例えば、BFR-Config)を利用して、BWP毎/セル毎にSR用PUCCHリソースインデックスとTRPインデックスとの関連づけをRRC/MAC CEを利用してUEに設定/通知してもよい(図8参照)。
 図8では、TRP#1とSR用PUCCHリソース#1が対応し、TRP#2とSR用PUCCHリソース#2が対応する場合を示している。TRP数、SR用PUCCHリソース数は、これに限られない。
 なお、TRPインデックスは指定(又は、定義/導入)されない構成としてもよい。この場合、TRPインデックスとしては、CORESETプールインデックス(例えば、{0、1})、PDSCH用MAC CEの拡張TCI状態(例えば、enhanced TCI state for PDSCH MAC CE)のインデックス(例えば、{第1のTCI状態、第2のTCI状態})、及びBFD/NBIのRSセットのインデックス(例えば、{第1のBFD/NBI RSセット、第2のBFD/NBI RSセット})の少なくとも一つで示されてもよい。
 ルール1又はルール2は、SR用PUCCHリソースとTRPとの間に関連性があることを示してもよい。また、どのSR用PUCCHリソースを送信するかは、所定条件(例えば、関連性)に基づいて選択されてもよい。
(第4の態様)
 第4の態様では、TRPインデックスとSR設定/ID(SR configuration/ID)との関連づけ、又はTRPインデックスとSR用PUCCHの空間関係との関連づけの一例について説明する。
 各TRPに対する1つのSR設定/IDに2つのSR用PUCCHリソースが対応する構成、又は各TRPに対して2つのSR設定/IDが対応する構成がサポートされてもよい。
 現状の仕様(例えば、Rel.16以前)では、1つのSR設定/IDに1つのSRリソース(又は、SR用PUCCHリソース)までと定義されている。そのため、1つのSR設定/IDに2以上のSR用PUCCHリソースを対応させる場合、第4の態様におけるUE動作(例えば、SR設定/ID(又はSR用PUCCH)のトリガー条件等)を適用してもよい。
 1つのSR設定/IDに対して、複数(例えば、2つ)のSR用PUCCHリソース(又は、複数の空間関係を有する1以上のSR用PUCCHリソース)を対応させる場合、UE/基地局は、以下のオプション4-1~オプション4-2の少なくとも一つに基づいてUE動作/基地局動作を制御してもよい。
<オプション4-1>
 BFRに対して2つのSR ID(例えば、SR設定/ID)が設定される場合を想定する。この場合、SR設定/IDと、TRPとの間に関連づけの設定がサポートされてもよい。SR設定/IDと、TRPと関連づけは、RRC/MAC CE等を利用して基地局からUEに設定されてもよい(図9A参照)。
 図9Aでは、TRP#1とSR ID#1が関連付けられ、TRP#2とSR ID#2が関連付けられる場合を示している。TRP数、SR ID数は、これに限られない。
 また、SR ID#1は、SR用PUCCHリソース#1に対応し、SR ID#2は、SR用PUCCHリソース#2に対応してもよい。SR IDとSR用PUCCHリソースとの関連づけは、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。
 異なるSR用PUCCHリソースに対して、別々の(例えば、異なる)空間関係が設定されてもよい。
 UEは、異なるケースに対して(又は、ケース毎に)、当該関連づけに基づいてどのSR用PUCCHリソースを送信するかを判断/決定してもよい。
 例えば、あるTRPでビーム障害が検出された場合、当該ビーム障害が検出されたTRP(例えば、failed TRP)に関連付けられたSR設定/IDに対応(又は、関連)するSR用PUCCHが送信されてもよい。
 あるいは、あるTRPでビーム障害が検出された場合、当該ビーム障害が検出されたTRPと異なるTRP(例えば、ビーム障害が検出されていないTRP(non-failed TRP))に関連付けられたSR設定/IDに対応するSR用PUCCHが送信されてもよい。
<オプション4-2>
 BFRに対して1つのSR ID(例えば、SR設定/ID)が設定され、1つのSR用PUCCHリソースに2つの空間関係(spatial relation)が対応する場合を想定する。この場合、空間関係と、TRPとの間に関連づけの設定がサポートされてもよい。空間関係と、TRPと関連づけは、RRC/MAC CE等を利用して基地局からUEに設定されてもよい(図9B参照)。
 図9Bでは、TRP#1と空間関係#1が関連付けられ、TRP#2と空間関係#2が関連付けられる場合を示している。TRP数、空間関係数は、これに限られない。
 UEは、異なるケースに対して(又は、ケース毎に)、当該関連づけに基づいてSR用PUCCHの送信にどの空間関係を選択/適用するかを判断してもよい。
 例えば、あるTRPでビーム障害が検出された場合、当該ビーム障害が検出されたTRP(例えば、failed TRP)に関連付けられた空間関係を適用してSR用PUCCHが送信されてもよい。
 あるいは、あるTRPでビーム障害が検出された場合、当該ビーム障害が検出されたTRPと異なるTRP(例えば、ビーム障害が検出されていないTRP(non-failed TRP))に関連付けられた空間関係を適用してSR用PUCCHが送信されてもよい。
 なお、異なるケースは、以下のケース4-1~ケース4-4の少なくとも一つであってもよい。
 ケース4-1は、TRP固有のBFR(例えば、TRP-specific BFR)が設定されている場合に、少なくとも一つのSpCell/SCellのあるTRP(例えば、1つのTRP)でビーム障害/TRP障害が発生する場合に相当する。
 ケース4-2は、TRP固有のBFR(例えば、TRP-specific BFR)が設定されている場合に、少なくとも一つのSCellでビーム障害/SCell障害が発生する場合に相当する。
 ケース4-3は、あるセルにおいてTRP固有のBFR(例えば、TRP-specific BFR)が設定されている場合に、1以上(又は、1より多い)の当該セル(例えば、SpCell/SCell)において異なるTRPでビーム障害、又は異なるTRP障害が発生する場合に相当する。
 ケース4-4は、TRP固有のBFR(例えば、TRP-specific BFR)が設定されている場合に、1以上(又は、1より多い)のSpCell/SCellにおいてあるセルのTRPでビーム障害(又は、TRP障害)が発生し、セル固有のBFRが設定されている場合に別のSCellでビーム障害が発生する場合に相当する。
 このように、TRPインデックスとSR設定/ID(SR configuration/ID)との関連づけ、又はTRPインデックスとSR用PUCCHの空間関係との関連づけを設定し、当該関連づけに基づいてSR(又は、SR用PUCCH)送信を制御することにより、BFRにおけるUE動作を適切に制御することができる。
(UE能力情報)
 上記第1の態様~第4の態様において、以下のUE能力(UE capability)が設定されてもよい。なお、以下のUE能力は、ネットワーク(例えば、基地局)からUEに設定するパラメータ(例えば、上位レイヤパラメータ)と読み替えられてもよい。
 2個のPUCCHリソースが設定されるBFR(例えば、TRP毎のBFR)用のSRをサポートするか否かに関するUE能力情報が定義されてもよい。
 BFR用のSRに対してデフォルトPUCCHリソースをサポートするか否かに関するUE能力情報が定義されてもよい。
 2個の空間関係を有する1個のPUCCHリソースが設定されるBFR(例えば、TRP毎のBFR)用のSRをサポートするか否かに関するUE能力情報が定義されてもよい。
 BFR用のSRに対してデフォルト空間関係をサポートするか否かに関するUE能力情報が定義されてもよい。
 TRP毎のBFRが設定されるSpCellをサポートするか否かに関するUE能力情報が定義されてもよい。
 TRP毎のBFRが設定されるSCellをサポートするか否かに関するUE能力情報が定義されてもよい。
 セルグループ毎において、TRP毎のBFRが設定可能なSCell/サービングセルの最大数に関するUE能力情報が定義されてもよい。
 第1の態様~第4の態様は、上述したUE能力の少なくとも一つをサポート/報告するUEに適用される構成としてもよい。あるいは、第1の態様~第4の態様は、ネットワークから設定されたUEに適用される構成としてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図11は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、送受信ポイント(TRP)毎のビーム障害検出の設定に関する情報と、スケジューリング要求に対応する上り制御チャネルリソースの設定に関する情報とを送信してもよい。
 制御部110は、端末が第1のTRPでビーム障害を検出した場合、第1のTRPに対応する上り制御チャネルリソースと、前記第1のTRPと異なる第2のTRPに対応する上り制御チャネルリソースと、の一方を利用して前記端末から送信されるスケジューリング要求の受信を制御してもよい。
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、送受信ポイント(TRP)毎のビーム障害検出の設定に関する情報と、スケジューリング要求に対応する上り制御チャネルリソースの設定に関する情報と、を受信してもよい。
 送受信部220は、TRPのインデックスと、スケジューリング要求に対応する上り制御チャネルリソースのインデックスと、の関連づけに関する情報してもよい。送受信部220は、TRPインデックスと、スケジューリング要求の設定情報のインデックスと、の関連づけに関する情報を受信してもよい。送受信部220は、TRPインデックスと、スケジューリング要求に対応する上り制御チャネルリソースの空間関係のインデックスと、の関連づけに関する情報を受信してもよい。
 制御部210は、第1のTRPでビーム障害が検出された場合、第1のTRPに対応する上り制御チャネルリソースと、第1のTRPと異なる第2のTRPに対応する上り制御チャネルリソースと、の一方を利用してスケジューリング要求の送信を制御してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、メディアアクセス制御制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「参照信号(Reference Signal(RS)ポートグループ)」「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」、「送受信ポイント」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
 本出願は、2021年5月26日出願の特願2021-088742に基づく。この内容は、すべてここに含めておく。

Claims (6)

  1.  送受信ポイント(TRP)毎のビーム障害検出の設定に関する情報と、スケジューリング要求に対応する上り制御チャネルリソースの設定に関する情報と、を受信する受信部と、
     第1のTRPでビーム障害が検出された場合、前記第1のTRPに対応する上り制御チャネルリソースと、前記第1のTRPと異なる第2のTRPに対応する上り制御チャネルリソースと、の一方を利用してスケジューリング要求の送信を制御する制御部と、を有する端末。
  2.  前記受信部は、前記TRPのインデックスと、前記スケジューリング要求に対応する上り制御チャネルリソースのインデックスと、の関連づけに関する情報を受信する請求項1に記載の端末。
  3.  前記受信部は、前記TRPインデックスと、前記スケジューリング要求の設定情報のインデックスと、の関連づけに関する情報を受信する請求項1又は請求項2に記載の端末。
  4.  前記受信部は、前記TRPインデックスと、前記スケジューリング要求に対応する上り制御チャネルリソースの空間関係のインデックスと、の関連づけに関する情報を受信する請求項1又は請求項2に記載の端末。
  5.  送受信ポイント(TRP)毎のビーム障害検出の設定に関する情報と、スケジューリング要求に対応する上り制御チャネルリソースの設定に関する情報と、を受信する工程と、
     第1のTRPでビーム障害が検出された場合、前記第1のTRPに対応する上り制御チャネルリソースと、前記第1のTRPと異なる第2のTRPに対応する上り制御チャネルリソースと、の一方を利用してスケジューリング要求の送信を制御する工程と、を有する端末の無線通信方法。
  6.  送受信ポイント(TRP)毎のビーム障害検出の設定に関する情報と、スケジューリング要求に対応する上り制御チャネルリソースの設定に関する情報と、を端末に送信する送信部と、
     前記端末が第1のTRPでビーム障害を検出した場合、前記第1のTRPに対応する上り制御チャネルリソースと、前記第1のTRPと異なる第2のTRPに対応する上り制御チャネルリソースと、の一方を利用して前記端末から送信されるスケジューリング要求の受信を制御する制御部と、を有する基地局。
PCT/JP2022/015542 2021-05-26 2022-03-29 端末、無線通信方法及び基地局 WO2022249739A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023524057A JPWO2022249739A1 (ja) 2021-05-26 2022-03-29
CN202280052086.5A CN117730557A (zh) 2021-05-26 2022-03-29 终端、无线通信方法以及基站
EP22811014.4A EP4351198A1 (en) 2021-05-26 2022-03-29 Terminal, wireless communication method, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021088742 2021-05-26
JP2021-088742 2021-05-26

Publications (1)

Publication Number Publication Date
WO2022249739A1 true WO2022249739A1 (ja) 2022-12-01

Family

ID=84228763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015542 WO2022249739A1 (ja) 2021-05-26 2022-03-29 端末、無線通信方法及び基地局

Country Status (4)

Country Link
EP (1) EP4351198A1 (ja)
JP (1) JPWO2022249739A1 (ja)
CN (1) CN117730557A (ja)
WO (1) WO2022249739A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088742A (ja) 2019-12-04 2021-06-10 日本製鉄株式会社 部分複合化鉄鋼材及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088742A (ja) 2019-12-04 2021-06-10 日本製鉄株式会社 部分複合化鉄鋼材及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300 V8.12.0, April 2010 (2010-04-01)
CMCC: "Enhancements on beam management for multi-TRP", 3GPP DRAFT; R1-2104601, vol. RAN WG1, 11 May 2021 (2021-05-11), pages 1 - 4, XP052006235 *
NTT DOCOMO, INC: "Discussion on beam management for MTRP", 3GPP DRAFT; R1-2103562, vol. RAN WG1, 6 April 2021 (2021-04-06), pages 1 - 7, XP051993434 *
VIVO: "Further discussion on MTRP multibeam enhancement", 3GPP DRAFT; R1-2104345, vol. RAN WG1, 11 May 2021 (2021-05-11), pages 1 - 14, XP052006099 *

Also Published As

Publication number Publication date
CN117730557A (zh) 2024-03-19
EP4351198A1 (en) 2024-04-10
JPWO2022249739A1 (ja) 2022-12-01

Similar Documents

Publication Publication Date Title
JP7320762B2 (ja) 端末、無線通信方法及びシステム
JP7323612B2 (ja) 端末、無線通信方法及びシステム
JP7201699B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7407726B2 (ja) 端末、無線通信方法及びシステム
JP7252258B2 (ja) 端末、無線通信方法及びシステム
WO2022097619A1 (ja) 端末、無線通信方法及び基地局
JP7244637B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7279087B2 (ja) 端末、無線通信方法、及びシステム
WO2022259543A1 (ja) 端末、無線通信方法及び基地局
WO2022079813A1 (ja) 端末、無線通信方法及び基地局
WO2022220105A1 (ja) 端末、無線通信方法及び基地局
WO2022079811A1 (ja) 端末、無線通信方法及び基地局
WO2022149275A1 (ja) 端末、無線通信方法及び基地局
WO2022034655A1 (ja) 端末、無線通信方法及び基地局
JP7320860B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7320859B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022249739A1 (ja) 端末、無線通信方法及び基地局
WO2022220107A1 (ja) 端末、無線通信方法及び基地局
WO2022190365A1 (ja) 端末、無線通信方法及び基地局
WO2022153450A1 (ja) 端末、無線通信方法及び基地局
WO2022249741A1 (ja) 端末、無線通信方法及び基地局
WO2022259524A1 (ja) 端末、無線通信方法及び基地局
WO2023026910A1 (ja) 端末、無線通信方法及び基地局
JP7299324B2 (ja) 端末、無線通信方法及びシステム
WO2022230141A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524057

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022811014

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022811014

Country of ref document: EP

Effective date: 20240102

WWE Wipo information: entry into national phase

Ref document number: 202280052086.5

Country of ref document: CN