WO2022230141A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022230141A1
WO2022230141A1 PCT/JP2021/017070 JP2021017070W WO2022230141A1 WO 2022230141 A1 WO2022230141 A1 WO 2022230141A1 JP 2021017070 W JP2021017070 W JP 2021017070W WO 2022230141 A1 WO2022230141 A1 WO 2022230141A1
Authority
WO
WIPO (PCT)
Prior art keywords
bfd
nbi
sets
trp
bfr
Prior art date
Application number
PCT/JP2021/017070
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023516977A priority Critical patent/JPWO2022230141A1/ja
Priority to PCT/JP2021/017070 priority patent/WO2022230141A1/ja
Priority to EP21939300.6A priority patent/EP4333524A1/en
Priority to CN202180099394.9A priority patent/CN117461371A/zh
Publication of WO2022230141A1 publication Critical patent/WO2022230141A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • BFD beam failure detection
  • BFR beam failure recovery
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately perform at least one of BFD and BFR.
  • a terminal includes at least one of setting 0 or more beam failure detection reference signal (BFD-RS) sets and determining 0 or more BFD-RS sets, and 0 or more new beam identification references
  • BFD-RS beam failure detection reference signal
  • a control unit that assumes at least one of setting a signal (NBI-RS) set and determining 0 or more NBI-RS sets, and one or more included in the BFD-RS set determined based on the assumption and a receiving unit that receives at least one of the BFD-RS of the NBI-RS set and one or more NBI-RSs included in the NBI-RS set.
  • BFD-RS beam failure detection reference signal
  • At least one of BFD and BFR can be performed appropriately.
  • FIG. 1 is a diagram showing an example of the number of RLM-RSs.
  • FIG. 2 is a diagram showing an example of a beam recovery procedure.
  • FIG. 3 is a diagram showing an example of combinations of the total number of BFD-RS sets and the total number of NBI-RS sets.
  • FIG. 4 is a diagram showing an example of the number of BFD-RS sets and the number of NBI-RS sets according to the third embodiment.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 6 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 7 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 8 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • the reception processing e.g., reception, demapping, demodulation, decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, encoding
  • the TCI state may represent those that apply to downlink signals/channels.
  • the equivalent of TCI conditions applied to uplink signals/channels may be expressed as spatial relations.
  • the TCI state is information about the pseudo-colocation (QCL) of signals/channels, and may be called spatial reception parameters, spatial relation information, or the like.
  • the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameters (e.g., spatial Rx parameter) are identical (QCL with respect to at least one of these). You may
  • the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types may be defined for the QCL.
  • QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be called QCL parameters) are shown below: QCL type A (QCL-A): Doppler shift, Doppler spread, mean delay and delay spread, QCL type B (QCL-B): Doppler shift and Doppler spread, QCL type C (QCL-C): Doppler shift and mean delay; • QCL Type D (QCL-D): Spatial reception parameters.
  • CORESET Control Resource Set
  • QCL QCL type D
  • a UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI conditions or QCL assumptions of that signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information about the QCL between the channel of interest (in other words, the reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by higher layer signaling, physical layer signaling or a combination thereof.
  • Physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel It may be at least one of a channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Uplink Control Channel
  • RSs that have a QCL relationship with the channel are, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SRS reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • An SSB may also be called an SS/PBCH block.
  • a QCL type X RS in a TCI state may mean an RS that has a QCL type X relationship with (the DMRS of) a certain channel/signal, and this RS is called a QCL type X QCL source in that TCI state.
  • QCL type A RS is always set for PDCCH and PDSCH, and QCL type D RS may be additionally set. Since it is difficult to estimate Doppler shift, delay, etc. by receiving DMRS one-shot, QCL type A RS is used to improve channel estimation accuracy. QCL type D RS is used for receive beam determination during DMRS reception.
  • TRS 1-1, 1-2, 1-3, 1-4 are transmitted, and TRS 1-1 is notified as QCL type C/D RS depending on the TCI status of PDSCH.
  • the UE can use the information obtained from the past periodic TRS1-1 reception/measurement results for PDSCH DMRS reception/channel estimation.
  • the PDSCH QCL source is TRS1-1 and the QCL target is the PDSCH DMRS.
  • Multi-TRP In NR, one or more transmission/reception points (Transmission/Reception Points (TRP)) (multi TRP (multi TRP (MTRP))) uses one or more panels (multi-panel) to the UE DL transmission is under consideration. It is also being considered that the UE uses one or more panels to perform UL transmissions for one or more TRPs.
  • TRP Transmission/Reception Points
  • MTRP multi TRP
  • a plurality of TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • Multi-TRPs may be connected by ideal/non-ideal backhauls to exchange information, data, and the like.
  • Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP.
  • Non-Coherent Joint Transmission NCJT may be used as one form of multi-TRP transmission.
  • TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) with a first precoding to transmit a first PDSCH.
  • TRP#2 also modulates and layer-maps a second codeword to transmit a second PDSCH with a second number of layers (eg, 2 layers) with a second precoding.
  • multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of time and frequency resources.
  • first PDSCH and second PDSCH are not quasi-co-located (QCL).
  • Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI, single PDCCH) (single master mode, based on single DCI Multi-TRP (single-DCI based multi-TRP)).
  • Multiple PDSCHs from multi-TRP may be scheduled using multiple DCIs (multi-DCI, multiple PDCCH) (multi-master mode, multi-DCI based multi-TRP (multiple PDCCH)). TRP)).
  • PDSCH transport block (TB) or codeword (CW) repetition across multi-TRPs.
  • repetition schemes URLLC schemes, eg schemes 1, 2a, 2b, 3, 4
  • SDM space division multiplexed
  • FDM frequency division multiplexed
  • RV redundancy version
  • the RVs may be the same or different for the multi-TRPs.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted within one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • one control resource set (CORESET) in PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
  • the UE may determine multi-TRP based on multi-DCI if at least one of the following conditions 1 and 2 is met: In this case, TRP may be read as a CORESET pool index.
  • TRP may be read as a CORESET pool index.
  • a CORESET pool index of 1 is set.
  • Two different values (eg, 0 and 1) of the CORESET pool index are set.
  • the UE may determine multi-TRP based on single DCI if the following conditions are met: In this case, two TRPs may be translated into two TCI states indicated by MAC CE/DCI. [conditions] "Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE)” is used.
  • DCI for common beam indication may be a UE-specific DCI format (e.g., DL DCI format (e.g., 1_1, 1_2), UL DCI format (e.g., 0_1, 0_2)), or a UE group common (UE-group common) DCI format.
  • DL DCI format e.g., 1_1, 1_2
  • UL DCI format e.g., 0_1, 0_2
  • UE group common UE-group common
  • Radio Link Monitoring In NR, Radio Link Monitoring (RLM) is utilized.
  • the network may set the radio link monitoring reference signal (Radio Link Monitoring RS (RLM-RS)) for each BWP to the UE using higher layer signaling.
  • RLM Radio Link Monitoring RS
  • the UE may receive configuration information for RLM (eg, RRC "RadioLinkMonitoringConfig" information element).
  • the configuration information for the RLM may include failure detection resource configuration information (for example, "failureDetectionResourcesToAddModList” of the upper layer parameter).
  • the failure detection resource configuration information may include parameters related to RLM-RS (for example, "RadioLinkMonitoringRS" of higher layer parameters).
  • Parameters related to RLM-RS information indicating that it corresponds to the purpose of RLM, an index corresponding to the resource of RLM-RS (for example, the index included in the upper layer parameter "failureDetectionResources" (RadioLinkMonitoringRS in failureDetectionResourcesToAddModList)) ), etc.
  • the index may be, for example, a CSI-RS resource configuration index (eg, non-zero power CSI-RS resource ID) or an SS/PBCH block index (SSB index).
  • the information of interest may indicate beam failure, (cell level) Radio Link Failure (RLF), or both.
  • the UE may identify the RLM-RS resource based on the index corresponding to the RLM-RS resource and perform RLM using the RLM-RS resource.
  • the UE follows the implicit RLM-RS decision procedure below.
  • the UE uses that RS provided for the active TCI state for PDCCH reception in RLM.
  • the active TCI state for PDCCH reception includes two RSs, the UE assumes one RS has QCL type D, and the UE uses that RS with QCL type D for RLM. The UE does not assume that both RSs have QCL type D.
  • the UE is not required to use aperiodic or semi-persistent RSs for RLM.
  • L max 4
  • the UE is provided N Select RLM RSs. If more than one CORESET is associated with multiple search space sets with the same monitoring period, the UE determines the order of CORESETs from the highest CORESET index.
  • L max is the maximum number of SS/PBCH block indices in the cell.
  • the maximum number of SS/PBCH blocks transmitted in a half-frame is L max .
  • BFD Beam Failure Detection
  • BFR Beam Failure Recovery
  • the UE and the base station e.g., gNB (gNodeB)
  • the beam used for signal transmission transmission beam, Tx beam, etc.
  • the beam used for signal reception reception beam, Rx beam, etc.
  • Radio link failure may occur frequently due to deterioration of radio link quality. Since the occurrence of RLF requires cell reconnection, frequent occurrence of RLF causes degradation of system throughput.
  • BFR beam recovery
  • BFR beam failure recovery
  • L1/L2 Layer 1/Layer 2
  • a beam failure (BF) in the present disclosure may also be called a link failure.
  • Fig. 2 shows Rel. 15 A diagram showing an example of a beam recovery procedure in NR.
  • the number of beams, etc. is an example, and is not limited to this.
  • the UE performs measurements based on reference signal (RS) resources transmitted using two beams.
  • RS reference signal
  • the RS may be at least one of a synchronization signal block (SSB) and a channel state measurement RS (Channel State Information RS (CSI-RS)).
  • SSB may also be called an SS/PBCH (Physical Broadcast Channel) block.
  • PBCH Physical Broadcast Channel
  • RS is a primary synchronization signal (Primary SS (PSS)), a secondary synchronization signal (Secondary SS (SSS)), a mobility reference signal (Mobility RS (MRS)), a signal included in SSB, SSB, CSI-RS, for demodulation At least one of a reference signal (DeModulation Reference Signal (DMRS)), a beam-specific signal, etc., or a signal configured by extending or modifying these may be used.
  • the RS measured in step S101 is an RS for beam failure detection (Beam Failure Detection RS (BFD-RS), an RS for beam failure detection), an RS (BFR-RS) for use in a beam recovery procedure, or the like.
  • BFD-RS Beam Failure Detection RS
  • BFR-RS RS for use in a beam recovery procedure, or the like.
  • step S102 the UE cannot detect the BFD-RS (or the reception quality of the RS deteriorates) due to the radio waves from the base station being jammed.
  • Such disturbances can be caused, for example, by effects such as obstacles, fading, and interference between the UE and the base station.
  • the UE detects a beam failure when a predetermined condition is met.
  • the UE may detect the occurrence of a beam failure, for example, when BLER (Block Error Rate) is less than a threshold for all configured BFD-RSs (BFD-RS resource configuration).
  • BLER Block Error Rate
  • BFD-RS resource configuration a threshold for all configured BFD-RSs
  • the lower layer (physical (PHY) layer) of the UE may notify (indicate) the beam failure instance to the upper layer (MAC layer).
  • the criteria for determination are not limited to BLER, and may be the reference signal received power (Layer 1 Reference Signal Received Power (L1-RSRP)) in the physical layer.
  • L1-RSRP Layer 1 Reference Signal Received Power
  • beam failure detection may be performed based on a physical downlink control channel (PDCCH) or the like.
  • BFD-RS may be expected to be Quasi-Co-Location (QCL) with the DMRS of the PDCCH monitored by the UE.
  • QCL is an index that indicates the statistical properties of a channel. For example, if one signal/channel and another signal/channel have a QCL relationship, between these different signals/channels, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameter (e.g., spatial Rx Parameter) are the same (QCL with respect to at least one of these). You may
  • the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • Information on BFD-RS eg, RS index, resource, number, number of ports, precoding, etc.
  • BFD beam failure detection
  • Information on BFD-RS may be set (notified) to Information about BFD-RS may be called information about BFR resources.
  • a higher layer (eg, MAC layer) of the UE may start a predetermined timer (which may be referred to as a beam failure detection timer) when receiving a beam failure instance notification from the PHY layer of the UE.
  • a predetermined timer which may be referred to as a beam failure detection timer
  • the MAC layer of the UE receives beam failure instance notifications a certain number of times (for example, beamFailureInstanceMaxCount set by RRC) or more before the timer expires, it triggers BFR (for example, starts one of the random access procedures described later ).
  • the base station may determine that the UE has detected a beam failure when there is no notification from the UE or when a predetermined signal (beam recovery request in step S104) is received from the UE.
  • step S103 the UE starts searching for a new candidate beam to be newly used for communication for beam recovery.
  • the UE may select a new candidate beam corresponding to that RS.
  • RSs measured in step S103 are new candidate RS, RS for new candidate beam identification, NCBI-RS (New Candidate Beam Identification RS), RS for new beam identification, RS for new beam identification, NBI-RS (New Beam Identification RS), CBI-RS (Candidate Beam Identification RS), CB-RS (Candidate Beam RS), etc.
  • NBI-RS may be the same as or different from BFD-RS. Note that the new candidate beam may be simply called a candidate beam or a candidate RS.
  • a UE may determine a beam corresponding to an RS that satisfies a predetermined condition as a new candidate beam.
  • the UE may determine new candidate beams based on, for example, the configured NBI-RSs whose L1-RSRP exceeds the threshold. Note that the criteria for judgment are not limited to L1-RSRP.
  • L1-RSRP for SSB may be referred to as SS-RSRP.
  • L1-RSRP for CSI-RS may be referred to as CSI-RSRP.
  • NBI-RS e.g. resources, number of RSs, number of ports, precoding, etc.
  • NBI new beam identification
  • Information about new candidate RSs may be obtained based on information about BFD-RSs.
  • Information about NBI-RS may be called information about resources for NBI or the like.
  • BFD-RS may be interchanged with radio link monitoring reference signals (Radio Link Monitoring RS (RLM-RS)).
  • RLM-RS Radio Link Monitoring RS
  • step S104 the UE that has identified the new candidate beam transmits a beam failure recovery request (BFRQ).
  • a beam recovery request may also be referred to as a beam recovery request signal, a beam failure recovery request signal, or the like.
  • BFRQ for example, physical uplink control channel (PUCCH), random access channel (PRACH), physical uplink shared channel (PUSCH), configured (setting) It may be transmitted using at least one of a configured grant (CG) PUSCH.
  • PUCCH physical uplink control channel
  • PRACH random access channel
  • PUSCH physical uplink shared channel
  • CG configured grant
  • the BFRQ may include information on the new candidate beam/new candidate RS identified in step S103.
  • Resources for BFRQ may be associated with the new candidate beam.
  • Beam information includes beam index (BI), port index of predetermined reference signal, RS index, resource index (for example, CSI-RS resource indicator (CRI)), SSB resource index (SSBRI)) or the like.
  • CB-BFR Contention-Based BFR
  • CF-BFR Contention-Free BFR
  • a UE may transmit a preamble (also called an RA preamble, a Physical Random Access Channel (PRACH), a RACH preamble, etc.) as a BFRQ using PRACH resources.
  • a preamble also called an RA preamble, a Physical Random Access Channel (PRACH), a RACH preamble, etc.
  • the UE may transmit a randomly selected preamble from one or more preambles.
  • the UE may transmit a UE-specific assigned preamble from the base station.
  • the base station may assign the same preamble to multiple UEs.
  • the base station may assign preambles for individual UEs.
  • CB-BFR and CF-BFR are respectively referred to as CB PRACH-based BFR (contention-based PRACH-based BFR (CBRA-BFR)) and CF PRACH-based BFR (contention-free PRACH-based BFR (CFRA-BFR)).
  • CBRA-BFR may be referred to as CBRA for BFR
  • CFRA-BFR may be referred to as CFRA for BFR.
  • information on PRACH resources may be notified by higher layer signaling (RRC signaling, etc.), for example.
  • RRC signaling may include information indicating the correspondence between detected DL-RSs (beams) and PRACH resources, and different PRACH resources may be associated with each DL-RS.
  • the base station that detected the BFRQ transmits a response signal (which may be called a gNB response or the like) to the BFRQ from the UE.
  • the response signal may include reconfiguration information (eg, DL-RS resource configuration information) for one or more beams.
  • the response signal may be transmitted, for example, in the UE common search space of PDCCH.
  • the response signal is reported using a cyclic redundancy check (CRC) scrambled PDCCH (DCI) by the UE identifier (eg, cell-radio RNTI (Cell-Radio RNTI (C-RNTI))) may be The UE may determine which transmit beam and/or receive beam to use based on the beam reconstruction information.
  • CRC cyclic redundancy check
  • DCI cell-radio RNTI
  • C-RNTI Cell-Radio RNTI
  • the UE may monitor the response signal based on at least one of the BFR control resource set (CControl Resource SET (CORESET)) and the BFR search space set.
  • CControl Resource SET CORESET
  • contention resolution may be determined to be successful when the UE receives the PDCCH corresponding to the C-RNTI for itself.
  • a period may be set for the UE to monitor the response from the base station (eg, gNB) to BFRQ.
  • the time period may be referred to, for example, as a gNB response window, a gNB window, a beam recovery request response window, and the like.
  • the UE may retransmit the BFRQ if no gNB response is detected within the window period.
  • the UE may send a message to the base station indicating that the beam reconstruction is complete.
  • the message may be transmitted by PUCCH or PUSCH, for example.
  • Beam recovery success may represent, for example, the case of reaching step S106.
  • a beam recovery failure may correspond, for example, to reaching a predetermined number of BFRQ transmissions or to expiring a beam failure recovery timer (Beam-failure-recovery-Timer).
  • Rel. 15 supports beam recovery procedures (eg, BFRQ notification) for beam failures detected in SpCells (PCell/PSCell) using random access procedures.
  • the beam recovery procedure for the beam failure detected in the SCell eg, notification of BFRQ
  • PUCCH for BFR eg, scheduling request (SR)
  • MAC CE for BFR eg, UL-SCH
  • the UE may transmit information about beam failures using MAC CE-based two-step.
  • the information about beam failure may include information about the cell that detected the beam failure and information about the new candidate beam (or new candidate RS index).
  • Step 1 When BF is detected, the UE may transmit a PUCCH-BFR (scheduling request (SR)) to the PCell/PSCell. A UL grant (DCI) for step 2 below may then be sent from the PCell/PSCell to the UE.
  • PUCCH-BFR scheduling request
  • DCI UL grant
  • Step 2 The UE then sends information about the cell in which the beam failure was detected (failed) (e.g., cell index) and information about the new candidate beam using MAC CE via an uplink channel (e.g., PUSCH) to You may transmit to a base station (PCell/PSCell).
  • a base station PCell/PSCell
  • the QCL of PDCCH/PUCCH/PDSCH/PUSCH may be updated to a new beam.
  • step numbers are merely numbers for explanation, and multiple steps may be grouped together or their order may be changed. Also, whether or not to implement BFR may be configured in the UE using higher layer signaling.
  • BFD-RS (BFD-RS) Rel.
  • the UE sets q 0 bar of periodic (P)-CSI-RS resource configuration index and candidate beam RS list ( candidateBeamRSList) or extended candidate beam RS list (candidateBeamRSListExt-r16) or candidate beam RS list for SCell (candidateBeamRSSCellList-r16) at least one set q 1 of P-CSI-RS resource configuration index and SS/PBCH block index , can be provided.
  • the q 0 bar is the overlined notation of “q 0 ”.
  • the q0 bar is simply denoted as q0 .
  • the q 1 bar is the notation with "q 1 " overlined.
  • the q 1 bar is simply denoted as q 1 .
  • the set q 0 of P-CSI-RS resources provided by failure detection resources may be referred to as explicit BFD-RS.
  • the UE may perform L1-RSRP measurements, etc., using RS resources corresponding to indices in at least one of set q 0 and set q 1 to detect beam failure.
  • providing the above-described upper layer parameter indicating the information of the index corresponding to the BFD resource can be interpreted as setting the BFD resource, setting the BFD-RS, etc.
  • BFD resource, periodic CSI-RS resource configuration index or SSB index set q 0 , BFD-RS, BFD-RS set, and RS set may be read interchangeably.
  • the UE If the UE is not provided q 0 by the failureDetectionResources for one BWP of its serving cell, the UE follows the implicit BFD-RS determination procedure below to determine the RSs (set q 0 ).
  • the UE sets the P-CSI-RS resource configuration index having the same value as the RS index in the RS set indicated by the TCI state (TCI-State) for the corresponding CORESET that the UE uses for PDCCH monitoring, set q 0 decision to include in If there are two RS indices in one TCI state, set q 0 contains RS indices with QCL type D configuration for the corresponding TCI state. The UE assumes that set q 0 contains up to two RS indices. The UE assumes a single-port RS within its set q 0 .
  • This set q 0 may be called implicit BFD-RS.
  • the UE determines the BFD-RS (RS set) according to the PDCCH TCI state.
  • the UE assumes that its RS set contains up to two RSs.
  • each TRP may be associated with one or more BFD-RSs.
  • one or more BFD-RSs may be referred to as a set of BFD-RSs (BFD-RS set).
  • BFD-RS set BFD-RS set
  • Rel. 15 up to two BFD-RSs are configured per BWP.
  • the two BFD-RSs may be called one BFD-RS set.
  • Rel. 17 onwards the number of BFD-RSs per BWP may not be two, eg, the number of BFD-RSs may be determined based on UE capabilities.
  • NBI-RS NBI-RS
  • setting of independent NBI-RS sets for each TRP can be introduced.
  • one or more NBI-RSs may be referred to as a set of NBI-RSs (NBI-RS set).
  • one BFD-RS set and one NBI-RS set are considered to be associated one-to-one.
  • up to 2 BFD-RS sets and 2 BFD-RS sets can be configured per TRP. That is, in the BFR of the TRP, 0, 1 or 2 BFD-RS sets can be configured for each TRP. In such a case, in the case where two BFD-RS sets are configured, the NW can configure only one BFD-RS (NBI-RS) set, or two BFD-RS ( The question is whether the NBI-RS) set must be set.
  • BAI-RS BFD-RS
  • the number of NBI-RS sets that can be/must be set, and the combination of the allowed number of BFD-RS sets and the number of NBI-RS sets are not sufficiently considered.
  • the BFD / BFR of multiple TRPs based on single / multi DCI cannot be appropriately controlled, and the communication quality and throughput decrease. may invite.
  • the present inventors came up with the method of setting/determining the BFD-RS set/NBI-RS set.
  • A/B/C and “at least one of A, B and C” may be read interchangeably.
  • cell, serving cell, CC, carrier, BWP, DL BWP, UL BWP, active DL BWP, active UL BWP, band may be read interchangeably.
  • index, ID, indicator, and resource ID may be read interchangeably.
  • supporting, controlling, controllable, operating, and capable of operating may be read interchangeably.
  • configure, activate, update, indicate, enable, specify, and select may be read interchangeably.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • RRC, RRC signaling, RRC parameters, higher layers, higher layer parameters, RRC information elements (IEs), RRC messages may be read interchangeably.
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • MAC CE and activation/deactivation commands may be read interchangeably.
  • pool, set, group, list, and candidate may be read interchangeably.
  • DMRS Downlink Reference Signal
  • DMRS port Downlink Reference Signal
  • antenna port may be read interchangeably.
  • SpCell In the present disclosure, special cells, SpCell, PCell, and PSCell may be read interchangeably.
  • beams, spatial domain filters, spatial settings, TCI states, UL TCI states, unified TCI states, unified beams, common TCI states, common beams, TCI assumptions, QCL assumptions, QCL parameters, spatial Domain Receive Filter, UE Spatial Domain Receive Filter, UE Receive Beam, DL Beam, DL Receive Beam, DL Precoding, DL Precoder, DL-RS, TCI State/QCL Assumed QCL Type D RS, TCI State/QCL Assumed QCL type A RS, spatial relationship, spatial domain transmit filter, UE spatial domain transmit filter, UE transmit beam, UL beam, UL transmit beam, UL precoding, UL precoder, PL-RS may be read interchangeably.
  • QCL type X-RS, DL-RS associated with QCL type X, DL-RS with QCL type X, source of DL-RS, SSB, CSI-RS, SRS may be read interchangeably. good.
  • CSI-RS, NZP-CSI-RS, periodic (P)-CSI-RS, P-TRS, semi-persistent (SP)-CSI-RS, aperiodic (A)-CSI-RS, TRS, tracking CSI-RS for use, CSI-RS with TRS information (higher layer parameter trs-Info), NZP CSI-RS resources in the NZP CSI-RS resource set with TRS information, multiple NZP-CSI-RS on the same antenna port NZP-CSI-RS resources and TRS resources in the NZP-CSI-RS resource set consisting of resources may be read interchangeably.
  • CSI-RS resource, CSI-RS resource set, CSI-RS resource group, and information element (IE) may be read interchangeably.
  • the panel Uplink (UL) transmitting entity, TRP, spatial relationship, control resource set (COntrol REsource SET (CORESET)), PDSCH, codeword, base station, antenna port of a signal (e.g., reference signal for demodulation (DeModulation Reference Signal (DMRS)) port), antenna port group for a signal (e.g. DMRS port group), group for multiplexing (e.g. Code Division Multiplexing (CDM) group, reference signal group, CORESET group), CORESET pool, CORESET subset, CW, redundancy version (RV), layers (MIMO layer, transmission layer, spatial layer) may be read interchangeably. Also, panel identifier (ID) and panel may be read interchangeably.
  • DMRS DeModulation Reference Signal
  • the TRP ID, the TRP related ID, the CORESET pool index, the position of one of the two TCI states corresponding to one codepoint of the field in the DCI (ordinal number, first TCI state or second TCI state ) and TRP may be read interchangeably.
  • TRP transmission point
  • panel DMRS port group
  • CORESET pool one of two TCI states associated with one codepoint of the TCI field may be read interchangeably.
  • single TRP, single TRP system, single TRP transmission, and single PDSCH may be read interchangeably.
  • multi-TRP, multi-TRP system, multi-TRP transmission, and multi-PDSCH may be read interchangeably.
  • a single DCI, a single PDCCH, multiple TRPs based on a single DCI, and activating two TCI states on at least one TCI codepoint may be read interchangeably.
  • single TRP single TRP
  • channels with single TRP channels with one TCI state/spatial relationship
  • multi-TRP not enabled by RRC/DCI multiple TCI states/spatial relations enabled by RRC/DCI shall not be set
  • neither CORESET Pool Index (CORESETPoolIndex) value of 1 shall be set for any CORESET
  • neither codepoint of the TCI field shall be mapped to two TCI states.
  • multi-TRP channels with multi-TRP, channels with multiple TCI state/spatial relationships, multi-TRP enabled by RRC/DCI, multiple TCI state/spatial relationships enabled by RRC/DCI and at least one of multi-TRP based on a single DCI and multi-TRP based on multiple DCIs
  • multi-TRPs based on multi-DCI setting a CORESET pool index (CORESETPoolIndex) value of 1 for a CORESET, may be read interchangeably.
  • multiple TRPs based on a single DCI, where at least one codepoint of a TCI field is mapped to two TCI states may be read interchangeably.
  • TRP#1 first TRP
  • TRP#2 second TRP
  • TRP#1 first TRP
  • TRP#2 second TRP
  • CORESET0 CORESET with index 0, and common CORESET may be read interchangeably.
  • the total/final number of BFD-RS sets/number of NBI-RS sets may be determined by explicit configuration or by implicit decision rules.
  • 0 BFD-RS sets may be explicitly configured. That is, the BFD-RS set may not be configured.
  • an implicit BFD-RS set decision rule may be applied.
  • a total of one BFD-RS set may be determined.
  • the BFD-RSs included in the BFD-RS set may be RSs that have a CORESET and QCL relationship.
  • a total of two BFD-RS sets may be determined.
  • the BFD-RSs included in the BFD-RS set may be RSs that have a QCL relationship (QCLed with CORESET) with the CORESET of each CORESET pool index in multiple TRPs based on multiple DCIs.
  • a new RRC parameter may be configured to indicate enable/disable of implicit BFD-RS set determination. For example, when the parameter indicates that it is disabled (not valid), the determined total BFD-RS set may be zero.
  • a new RRC parameter may also be configured to indicate the number of total/implicit BFD-RS sets derived by the UE when no BFD-RS sets are configured.
  • the parameter may indicate 0, 1 or 2.
  • a total of 1 or 2 BFD-RS sets may be determined respectively.
  • the total BFD-RS sets determined may be 0.
  • One BFD-RS set may be explicitly configured.
  • the configured BFD-RS set may be used for BFR per cell, or if the association between TRP and BFD-RS is configured, it may be used for BFR of a specific TRP in BFR per TRP. good too.
  • the implicit BFD-RS set decision rule may not apply.
  • a total of one BFD-RS set may be configured for BFR for each cell.
  • one BFD-RS set may be configured for a specific TRP in the BFR for each TRP, and no BFD-RS set may be determined for other TRPs.
  • an implicit BFD-RS set decision rule may additionally be applied.
  • one BFD-RS set is set for a specific TRP in the BFR per TRP, and one BFD-RS set is determined for other TRPs based on an implicit BFD-RS set determination rule. It doesn't have to be.
  • the BFD-RS included in the BFD-RS set for the other TRP is an RS in a QCL relationship with a CORESET of a CORESET pool index different from the CORESET pool index of a specific TRP in multiple TRPs based on multi-DCI may be
  • a new RRC parameter for indicating enable/disable of implicit BFD-RS set determination may be configured.
  • the parameter indicates that it is disabled (not valid)
  • the determined total BFD-RS set may be zero.
  • a new RRC parameter may be configured to indicate the number of total/implicit BFD-RS sets derived by the UE when one BFD-RS set is explicitly configured. For example, the parameter may indicate 0 or 1. When the parameter indicates 1, a total of one BFD-RS set may be determined. When the parameter indicates 0, the total BFD-RS sets determined may be 0.
  • a new RRC parameter may implicitly indicate information about the TRP that derives the BFD-RS set (for example, information about the CORESET pool index). For example, when implicitly deriving one BFD-RS set is indicated, the new RRC parameter indicates information about the TRP that implicitly derives the BFD-RS set (for example, information about the CORESET pool index). You may
  • Two BFD-RS sets may be explicitly configured.
  • the configured BFD-RS set may be used for each TRP's BFD-RS in the per-TRP BFR.
  • the implicit BFD-RS set decision rule may not apply.
  • an RS that is in a relationship between a CORESET and a QCL is a CORESET specific QCL type (for example, QCL type D) may mean the RS of
  • signaling configuration may be read interchangeably.
  • BFR, BFR setting, BFR procedure, BFD, BFD procedure, BFD-RS, BFD-RS setting, RLM, RLM setting, RLM procedure, RLM-RS, RLM-RS setting, NBI, NBI setting, NBI- RS and NBI-RS setting may be read interchangeably.
  • cell-specific BFR, Rel. BFR of 15/16 may be read interchangeably.
  • TRP BFR, TRP-specific BFR, Rel. 17/Rel. 17 and later BFRs may be read interchangeably.
  • setting a certain parameter/number/combination may mean explicitly setting a certain parameter/number/combination.
  • determining a certain parameter/number/combination may mean that a certain parameter/number/combination is determined based on an implicit rule.
  • a combination of the total number of BFD-RS sets and the total number of NBI-RS sets for BFR per TRP in a certain CC may be set/determined.
  • one or more RSs may be configured in one set depending on/based on UE capabilities.
  • each set may be associated with a TRP.
  • the total BFD-RS set may include at least one of explicitly set BFD-RSs and implicitly determined BFD-RSs.
  • FIG. 3 is a diagram showing an example of combinations of the total number of BFD-RS sets and the total number of NBI-RS sets.
  • the total number of BFD-RS sets and the total number of NBI-RS sets can be 0, 1 or 2, respectively.
  • All combinations of the number of BFD-RS sets and the number of NBI-RS sets may be allowed.
  • cases where the total number of NBI-RS sets is larger than the total number of BFD-RS sets are not allowed good.
  • the UE may not assume/expect a case where the total number of NBI-RS sets is larger than the total number of BFD-RS sets configured/determined. Cases 0-1, 0-2 and 1-2 shown in FIG. 3 will not be described in detail below.
  • case 2-2 may be allowed.
  • each BFD-RS set and each NBI-RS set may correspond one-to-one.
  • a correspondence/association between each BFD-RS set and each NBI-RS set may be defined. Case 2-2 shown in FIG. 3 will also not be detailed below.
  • a total BFD-RS set number of 0 may not be allowed. This is because implicit decision rules are applied when there is no explicit BFD-RS (set) configuration.
  • the total number of BFD-RS sets is 0 for at least one BFD-RS (set) in a CC with a particular frequency range (eg, FR2).
  • the UE may not assume/expect the total number of BFD-RS sets to be 0 in a CC in a particular frequency range (eg, FR2).
  • Zero BFD-RS set numbers may be allowed for a CC in a particular frequency range (eg, FR2).
  • the UE may expect/expect the total number of BFD-RS sets to be zero in a CC in a particular frequency range (eg, FR2).
  • a new RRC parameter may be defined to indicate enable/disable of implicit determination of the BFD-RS set for a certain CC (or a certain UE in a certain frequency range). For example, the UE may determine that the total BFD-RS set to be determined is 0 when the parameter is indicated to be disabled (not valid).
  • 0 BFD-RS is configured/determined (that is, BFD-RS is not configured/determined)
  • 0 NBI-RS may be configured/determined (NBI-RS is configured/determined may be omitted).
  • UE if 0 BFD-RS is configured / determined (if BFD-RS is not configured / determined), 0 NBI-RS is configured / determined (NBI-RS is not configured / determined) can be judged.
  • the UE may perform the BFD/BFR procedure using individual BFD-RSs.
  • the individual BFD-RS may be a BFD-RS configured in existing specifications (defined up to Rel.16).
  • the UE assumes/expects configuration/determination of one NBI-RS in the CC.
  • the UE may not assume/expect that the NBI-RS set is not configured/determined when the BFD-RS set is configured/determined.
  • one additional NBI-RS set may be set/determined (option 2-1-1).
  • Option 2-1-1 may follow at least one of Option 2-1-1-A and Option 2-1-1-B.
  • one NBI-RS set may be configured as BFR per cell in multiple TRPs.
  • Rel. NBI-RS may be configured according to the BFR procedures specified by 16 (option 2-1-1-A).
  • one NBI-RS set may be set as BFR for each TRP (for only one TRP) when using multiple TRPs (option 2-1- 1-B).
  • one BFD-RS set/NBI-RS set may be associated with one TRP (eg, other group ID based on CORESET pool index/single DCI).
  • BFR procedures and UE behavior after beam recovery may be applied for that associated TRP.
  • the UE may assume/judge not to perform BFD/BFR for TRPs other than the associated TRP.
  • Option 2-1-1-B may be applied only to cases where BFD-RS (set) is explicitly set. This is because, in the case where the BFD-RS (set) is implicitly determined, the method of determining one set for only one TRP is not defined.
  • option 2-1-1-B may be applied to the case where BFD-RS (set) is explicitly set and the case where BFD-RS (set) is implicitly determined.
  • new RRC parameters may be defined.
  • the RRC parameter may be a parameter for instructing to determine one or two implicit BFD-RS sets.
  • the parameter may indicate information about the TRP corresponding to the BFD-RS set.
  • the NE may signal the UE an RRC parameter that directs the determination of one BFD-RS set associated with a CORESET pool index of a particular value (eg, 0).
  • NBI-RS may not be configured/determined.
  • the MAC CE for BFR may not contain information on the new beam identification for that CC.
  • the BFR MAC CE does not contain information on the new beam identification for the CC
  • the BFR MAC CE contains information on which CC the beam failure has occurred. but does not include information about new beam identification (eg, new beam index).
  • BFR MAC CE contains information about which CC has a beam failure, but does not contain information about new beam identification (for example, new beam index)
  • the BFR MAC CE does not contain information about the new beam identification for the CC
  • the BFR MAC CE does not contain information about which CC the beam failure has occurred.” It may be read as "No”.
  • the BFR MAC CE does not contain information about which CC has a beam failure means that, for example, if the NBI-RS (set) is not set for the UE, the BFR MAC CE is not transmitted. may mean.
  • the UE since a new beam for recovery is not determined/configured, the UE is after the BFR is triggered, after the MAC CE for BFR is triggered, or after receiving a response from the NW It may be assumed that the CC/TRP will be deactivated after a certain period of time. In addition, the UE is instructed/notified to deactivate CC/TRP after BFR is triggered, after MAC CE for BFR is triggered, or after a specific period of time after receiving a response from the NW. may
  • the UE may assume/expect configuration/determination of NBI-RS.
  • the UE may not assume/expect that the NBI-RS set is not configured/determined when the BFD-RS set is configured/determined.
  • the UE may expect/expect at least one NBI-RS set to be configured/determined.
  • one NBI-RS set may be configured/determined (option 3-1-1).
  • Option 3-1-1 may follow at least one of Options 3-1-1-A, 3-1-1-B and 3-1-1-C.
  • one NBI-RS set may be configured to be associated with only one BFD-RS set (option 3-1-1-A). There may be no NBI-RS associated with another BFD-RS.
  • BFR for each TRP may be applied for TRPs corresponding to both the BFD-RS set and the NBI-RS set.
  • the BFR MAC CE may not contain information on the new beam identification for that TRP. Also, since a new beam for recovery is not set/determined for the TRP, the TRP may be deactivated after the BFR is triggered.
  • one NBI-RS set may not be explicitly associated with a BFD-RS set (Option 3-1-1-B).
  • the UE may, by default, assume that the first TRP (eg, the TRP corresponding to the minimum/maximum TRP index) is associated with one NBI-RS set.
  • one NBI-RS set may be configured not to be associated with any BFD-RS set (Option 3-1-1-C).
  • the UE uses the BFR MAC CE to detect the NBI-RS for a certain CC if the NBI-RS can be found. may report.
  • the operation of the UE upon recovery to the new beam may be applied only to the TRPs for which the beam failure has been detected. Also, at this time, the operation of the UE upon recovery to the new beam may be applied to the CC (multiple (for example, two) TRPs).
  • option 3-1-1-C if beam failure occurs in two TRPs, the UE, if NBI-RS can be found, uses MAC CE for BFR to NBI- RS may be reported. At this time, the operation of the UE upon recovery to the new beam may be applied to the CC (multiple (for example, two) TRPs).
  • the UE may expect/expect two NBI-RS sets to be configured/determined.
  • two NBI-RS sets may be configured/determined (option 3-1-2).
  • the UE may perform the same BFR operation as case 2-2 above.
  • each BFD-RS set and each NBI-RS set may be associated one-to-one.
  • Option 3-2 When two BFD-RS sets are configured/determined, NBI-RS may not be configured/determined.
  • Option 3-2 may use the aspect described in Option 2-2.
  • the UE may not assume/expect zero or one NBI-RS set to be configured/determined.
  • the UE may expect/expect two NBI-RS sets to be configured/determined.
  • the UE may not assume/expect that one NBI-RS set is configured/determined.
  • the UE may expect/expect zero or two NBI-RS sets to be configured/determined.
  • One NBI-RS set may be configured/determined when two BFD-RS sets are configured/determined.
  • the aspect of Option 3-1-1 described above may be used.
  • the BFR operation can be appropriately controlled according to the number of BFD-RS sets and the number of NBI-RS sets that are set/determined.
  • ⁇ Second embodiment> an implicit determination/derivement method for the NBI-RS set is described.
  • the UE may derive/determine the NBI-RS set based on certain rules when the NBI-RS set is not explicitly configured.
  • the UE may assume that one or more SSB/CSI-RSs are the set of NBI-RSs in the BFR per cell.
  • the UE may, for per-cell BFR, associate the plurality of SSB/CSI-RS associated with the first TRP with the first and the SSB/CSI-RS associated with the second TRP are the NBI-RS sets for the second TRP.
  • the first TRP may be the TRP corresponding to the first TRP index
  • the second TRP may be the TRP corresponding to the second TRP index.
  • the first TRP may be the TRP corresponding to the minimum (or maximum) TRP index
  • the second TRP may be the TRP corresponding to the maximum (or minimum) TRP index. good.
  • the plurality of SSB/CSI-RSs may be all SSB/CSI-RSs among SSB/CSI-RSs set in the higher layer (for each TRP), or some SSBs /CSI-RS.
  • the CSI-RS may be a periodic (P-) CSI-RS.
  • the UE may be configured whether to enable/disable implicit NBI-RS (set) determination using higher layer signaling (RRC signaling).
  • the implicit NBI-RS (set) determination may be made per CC, per TRP, or per frequency range.
  • the NBI-RS (set) can be appropriately derived.
  • the number of explicitly configured BFD-RS (NBI-RS) sets may be referred to as the number of explicit BFD-RS (NBI-RS) sets.
  • the number of implicitly determined BFD-RS (NBI-RS) sets may also be referred to as the number of implicit BFD-RS (NBI-RS) sets.
  • the sum of the number of explicit BFD-RS (NBI-RS) sets and the number of explicit BFD-RS (NBI-RS) sets may be referred to as the total number of BFD-RS (NBI-RS) sets.
  • the number of total/explicit NBI-RS sets shall be the same as the number of explicit BFD-RS sets.
  • the UE may assume/expect that the total/explicit NBI-RS set number is the same as the explicit BFD-RS set number (aspect 3-1).
  • the total/explicit NBI-RS set number must be less than or equal to the explicit BFD-RS set number.
  • the UE may assume/expect that the total/explicit NBI-RS set number is less than or equal to the explicit BFD-RS set number (aspect 3-2).
  • the number of total/explicit NBI-RS sets shall be the same as the total number of BFD-RS sets.
  • the UE may assume/expect that the total/explicit NBI-RS set number is the same as the total BFD-RS set number (aspect 3-3).
  • the total/explicit NBI-RS set number must be less than or equal to the total BFD-RS set number.
  • the UE may assume/expect that the total/explicit NBI-RS set number is less than or equal to the total BFD-RS set number (aspect 3-4).
  • FIG. 4 is a diagram showing an example of the number of BFD-RS sets and the number of NBI-RS sets according to the third embodiment.
  • the total number of BFD-RS sets and the total number of NBI-RS sets can be 0, 1 or 2, respectively.
  • the total BFD-RS set number X is divided into an explicitly set BFD-RS set number X E and an explicitly determined BFD-RS set number XI.
  • case (1, 0)-0 may not be allowed. Further, according to aspect 3-2 or aspect 3-4, case (1, 0)-0 may be settable.
  • case (1, 0)-1 may be configurable.
  • case (1, 0)-2 may not be allowed.
  • case (0, 1)-0 may not be allowed. Further, according to mode 3-1, mode 3-2, or mode 3-4, case (0, 1)-0 may be settable.
  • case (0, 1)-1 may not be allowed. Further, according to aspect 3-3 or aspect 3-4, case (0, 1)-1 may be settable.
  • case (0, 1)-2 may not be allowed.
  • case (2, 0)-0 may not be allowed. Further, according to aspect 3-2 or aspect 3-4, case (2, 0)-0 may be settable.
  • case (2, 0)-1 may not be allowed. Further, according to aspect 3-2 or aspect 3-4, case (2, 0)-1 may be settable. If case (2,0)-1 is configurable, the association between NBI-RS and one BFD-RS set may be defined. The association may be set/indicated to the UE using higher layer signaling/physical layer signaling, or association rules may be specified in advance. The rule may be, for example, that the NBI-RS set is associated by default with the TRP corresponding to the lowest (or highest) TRP index.
  • case (2, 0)-2 may be configurable.
  • case (1, 1)-0 may not be allowed. Further, according to aspect 3-2 or aspect 3-4, case (1, 1)-0 may be settable.
  • case (1, 1)-1 may not be allowed. Further, according to Aspect 3-1, Aspect 3-2, or Aspect 3-4, Case (1, 1)-1 may be settable. If case (1,1)-1 is configurable, the association between NBI-RS and one BFD-RS set may be defined. The association may be set/indicated to the UE using higher layer signaling/physical layer signaling, or association rules may be specified in advance. The rule may be, for example, that the NBI-RS set is associated with an explicitly configured BFD-RS set.
  • case (1, 1)-2 may not be allowed. Further, according to aspect 3-3 or aspect 3-4, case (1, 1)-2 may be settable. If case (1,1)-2 is configurable, the association between NBI-RS and one BFD-RS set may be defined. The association may be set/indicated to the UE using higher layer signaling/physical layer signaling, or association rules may be specified in advance. The rule may be, for example, that each NBI-RS set is associated with each BFD-RS set corresponding to the same TRP.
  • case (0, 2)-0 may not be allowed. Further, according to mode 3-1, mode 3-2, or mode 3-4, case (0, 2)-0 may be settable.
  • case (0, 2)-1 may not be allowed. Further, according to aspect 3-4 above, case (0, 2)-1 may be settable. If case (0,2)-1 is configurable, the association between NBI-RS and one BFD-RS set may be defined. The association may be set/indicated to the UE using higher layer signaling/physical layer signaling, or association rules may be specified in advance. The rule may be, for example, that the NBI-RS set is associated by default with the TRP corresponding to the lowest (or highest) TRP index.
  • case (0, 2)-2 may not be allowed. Further, according to aspect 3-3 or aspect 3-4, case (0, 2)-2 may be settable. If case (0,2)-2 is configurable, the association between NBI-RS and one BFD-RS set may be defined. The association may be set/indicated to the UE using higher layer signaling/physical layer signaling, or association rules may be specified in advance. The rule may be, for example, that each NBI-RS set is associated with each BFD-RS set corresponding to the same TRP.
  • the BFR operation can be controlled more flexibly according to the number of BFD-RS sets and the number of NBI-RS sets that are set/determined.
  • RRC IEs Higher layer parameters/UE capabilities corresponding to features in at least one of the above embodiments may be defined.
  • UE capabilities may indicate support for this feature.
  • a UE for which a higher layer parameter corresponding to that function (enabling that function) is set may perform that function. It may be defined that "UEs for which upper layer parameters corresponding to the function are not set shall not perform the function (for example, according to Rel. 15/16)".
  • a UE reporting UE capabilities indicating that it supports that function may perform that function. It may be specified that "a UE that does not report UE capabilities indicating that it supports the feature shall not perform that feature (eg according to Rel. 15/16)".
  • a UE may perform a function if it reports a UE capability indicating that it supports the function, and the higher layer parameters corresponding to the function are configured. "If the UE does not report a UE capability indicating that it supports the function, or if the upper layer parameters corresponding to the function are not set, the UE does not perform the function (e.g., according to Rel. 15/16 ) may be defined.
  • the UE capability may indicate whether the UE supports this function.
  • the function may be explicit BFD-RS set configuration/implicit BFD-RS set determination.
  • the function may be explicit NBI-RS set configuration/implicit NBI-RS set determination.
  • the UE capability may be defined by whether the UE supports configuration of 1/2/up to 2 BFD-RS sets in BFR per TRP for multiple TRPs based on single DCI/multi-DCI.
  • UE capability may be defined in terms of the number of RS resources in the BFD-RS set.
  • the UE capability may be defined by whether the UE supports configuration of 1/2/up to 2 NBI-RS sets in BFR per TRP for multiple TRPs based on single DCI/multi-DCI.
  • UE capability may be defined in terms of the number of RS resources in the NBI-RS set.
  • UE capability may be defined as whether the UE supports configuration of 1/2 NBI-RS sets when 1/2 BFD-RS sets are configured in BFR per TRP.
  • UE capability may be defined by whether the UE supports the configuration of two BFD-RS sets and one NBI-RS set.
  • a UE capability may be defined by whether or not the UE supports association of one NBI-RS set and one BFD-RS set out of two BFD-RS sets.
  • UE capability may be defined by whether or not the UE supports the association of one NBI-RS set and two BFD-RS sets.
  • UE capability may be defined as whether the UE supports deactivation of TRP/CC in the case of performing BFR on TRP/CC without NBI-RS (set).
  • the deactivation may be deactivation assumed by the UE.
  • UE capability may be defined by whether the UE supports enabling/disabling of implicit BFD-RS (set) determination.
  • Validity/invalidation of the implicit BFD-RS (set) determination may be performed for each CC/multiple CCs, may be performed for each TRP, or may be performed for each frequency range. good too. Also, the valid/invalid determination of the implicit BFD-RS (set) may be performed in one set or in two sets.
  • the UE capability may be defined by whether the UE supports implicit NBI-RS (set) determination.
  • the implicit NBI-RS (set) determination may be per CC/multiple CCs, per TRP, or per frequency range. Also, the implicit NBI-RS (set) determination may be performed in one set or in two sets.
  • the UE can implement the above functions while maintaining compatibility with existing specifications.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 6 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
  • the control unit 110 sets at least one of 0 or more beam failure detection reference signal (BFD-RS) sets and determines 0 or more BFD-RS sets, and 0 or more new beam identification reference signals (NBI-RS ) set and/or determination of zero or more NBI-RS sets.
  • BFD-RS beam failure detection reference signal
  • NBI-RS new beam identification reference signals
  • Transmitting/receiving unit 120, at least one of one or more BFD-RS included in the BFD-RS set and one or more NBI-RS included in the NBI-RS set, which is determined based on the assumption. may be transmitted (first and third embodiments).
  • FIG. 7 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220, the transmitter/receiver antenna 230, and the transmission line interface 240.
  • the control unit 210 sets at least one of 0 or more beam failure detection reference signal (BFD-RS) sets and determines 0 or more BFD-RS sets, and 0 or more new beam identification reference signals (NBI-RS ) set and/or determination of zero or more NBI-RS sets.
  • BFD-RS beam failure detection reference signal
  • NBI-RS new beam identification reference signals
  • Transmitting/receiving unit 220, at least one of one or more BFD-RS included in the BFD-RS set and one or more NBI-RS included in the NBI-RS set, which is determined based on the assumption. may be received (first and third embodiments).
  • Control unit 210 determines that the total number of the number of BFD-RS sets to be set and the number of BFD-RS sets to be determined is the sum of the number of NBI-RS sets to be set and the number of NBI-RS sets to be determined. It may be assumed that there are more than the number (first embodiment).
  • the transmitting/receiving unit 220 may receive an upper layer parameter that enables at least one of the BFD-RS set determination and the NBI-RS set determination (first and second embodiments).
  • the control unit 210 may determine the NBI-RS set based on at least one of the index for the synchronization signal block and the index for the channel state information reference signal set in higher layer signaling (second implementation form).
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 8 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be read as sidelink channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a decimal number)
  • Future Radio Access FAA
  • RAT New - Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied to systems using communication methods, next-generation systems extended based on these, and the like
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • Maximum transmit power described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、0以上のビーム障害検出用参照信号(BFD-RS)セットの設定及び0以上のBFD-RSセットの決定の少なくとも一方と、0以上の新規ビーム識別用参照信号(NBI-RS)セットの設定及び0以上のNBI-RSセットの決定の少なくとも一方と、を想定する制御部と、前記想定に基づいて決定される、前記BFD-RSセットに含まれる1以上のBFD-RSと、前記NBI-RSセットに含まれる1以上のNBI-RSと、の少なくとも1つを受信する受信部と、を有する。本開示の一態様によれば、BFD及びBFRの少なくとも1つを適切に行うことができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システムにおいて、端末は、ビーム障害検出(beam failure detection(BFD))/ビーム障害回復(Beam Failure Recovery(BFR))を行うことが検討されている。
 しかしながら、BFD/BFRのための参照信号(reference signal(RS))の設定/情報要素が提供されない場合、どのようにBFD/BFRのためのRSをどのように決定されるかが明らかでない。BFD/BFRのためのRSが適切に決定されなれば、モニタリング精度/検出精度が劣化するおそれがある。
 そこで、本開示は、BFD及びBFRの少なくとも1つを適切に行う端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、0以上のビーム障害検出用参照信号(BFD-RS)セットの設定及び0以上のBFD-RSセットの決定の少なくとも一方と、0以上の新規ビーム識別用参照信号(NBI-RS)セットの設定及び0以上のNBI-RSセットの決定の少なくとも一方と、を想定する制御部と、前記想定に基づいて決定される、前記BFD-RSセットに含まれる1以上のBFD-RSと、前記NBI-RSセットに含まれる1以上のNBI-RSと、の少なくとも1つを受信する受信部と、を有する。
 本開示の一態様によれば、BFD及びBFRの少なくとも1つを適切に行うことができる。
図1は、RLM-RS数の一例を示す図である。 図2は、ビーム回復手順の一例を示す図である。 図3は、トータルBFD-RSセット数と、トータルNBI-RSセット数と、の組み合わせの一例を示す図である。 図4は、第3の実施形態に係るBFD-RSセット数及びNBI-RSセット数の一例を示す図である。 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図6は、一実施形態に係る基地局の構成の一例を示す図である。 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
 PDCCH及びPDSCHに対してQCLタイプA RSは必ず設定され、QCLタイプD RSは追加で設定されてもよい。DMRSのワンショットの受信によってドップラーシフト、遅延などを推定することが難しいため、チャネル推定精度の向上にQCLタイプA RSが使用される。QCLタイプD RSは、DMRS受信時の受信ビーム決定に使用される。
 例えば、TRS1-1、1-2、1-3、1-4が送信され、PDSCHのTCI状態によってQCLタイプC/D RSとしてTRS1-1が通知される。TCI状態が通知されることによって、UEは、過去の周期的なTRS1-1の受信/測定の結果から得た情報を、PDSCH用DMRSの受信/チャネル推定に利用できる。この場合、PDSCHのQCLソースはTRS1-1であり、QCLターゲットはPDSCH用DMRSである。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
 マルチTRP(例えば、TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード、シングルDCIに基づくマルチTRP(single-DCI based multi-TRP))。マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード、マルチDCIに基づくマルチTRP(multi-DCI based multi-TRP))。
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 複数PDCCHに基づくセル内の(intra-cell、同じセルIDを有する)及びセル間の(inter-cell、異なるセルIDを有する)マルチTRP送信をサポートするために、複数TRPを有するPDCCH及びPDSCHの複数のペアをリンクするためのRRC設定情報において、PDCCH設定情報(PDCCH-Config)内の1つのcontrol resource set(CORESET)が1つのTRPに対応してもよい。
 次の条件1及び2の少なくとも1つが満たされた場合、UEは、マルチDCIに基づくマルチTRPと判定してもよい。この場合、TRPは、CORESETプールインデックスに読み替えられてもよい。
[条件1]
 1のCORESETプールインデックスが設定される。
[条件2]
 CORESETプールインデックスの2つの異なる値(例えば、0及び1)が設定される。
 次の条件が満たされた場合、UEは、シングルDCIに基づくマルチTRPと判定してもよい。この場合、2つのTRPは、MAC CE/DCIによって指示される2つのTCI状態に読み替えられてもよい。
[条件]
 DCI内のTCIフィールドの1つのコードポイントに対する1つ又は2つのTCI状態を指示するために、「UE固有PDSCH用拡張TCI状態アクティベーション/ディアクティベーションMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)」が用いられる。
 共通ビーム指示用DCIは、UE固有DCIフォーマット(例えば、DL DCIフォーマット(例えば、1_1、1_2)、UL DCIフォーマット(例えば、0_1、0_2))であってもよいし、UEグループ共通(UE-group common)DCIフォーマットであってもよい。
(Radio Link Monitoring(RLM))
 NRにおいて、無線リンクモニタリング(Radio Link Monitoring(RLM))が利用される。
 NRでは、ネットワーク(NW、例えば、基地局)がUEに対して、BWPごとに無線リンクモニタリング参照信号(Radio Link Monitoring RS(RLM-RS))を、上位レイヤシグナリングを用いて設定してもよい。UEは、RLM用の設定情報(例えば、RRCの「RadioLinkMonitoringConfig」情報要素)を受信してもよい。
 当該RLM用の設定情報は、障害検出リソース設定情報(例えば、上位レイヤパラメータの「failureDetectionResourcesToAddModList」)を含んでもよい。障害検出リソース設定情報は、RLM-RSに関するパラメータ(例えば、上位レイヤパラメータの「RadioLinkMonitoringRS」)を含んでもよい。
 RLM-RSに関するパラメータは、RLMの目的(purpose)に対応することを示す情報、RLM-RSのリソースに対応するインデックス(例えば、上位レイヤパラメータの「failureDetectionResources」(failureDetectionResourcesToAddModList内のRadioLinkMonitoringRS)に含まれるインデックス)などを含んでもよい。当該インデックスは、例えば、CSI-RSリソースの設定のインデックス(例えば、ノンゼロパワーCSI-RSリソースID)であってもよいし、SS/PBCHブロックインデックス(SSBインデックス)であってもよい。目的の情報は、ビーム障害、(セルレベル)Radio Link Failure(RLF)、又はそれらの両方、を示してもよい。
 UEは、RLM-RSのリソースに対応するインデックスに基づいてRLM-RSリソースを特定し、当該RLM-RSリソースを用いてRLMを実施してもよい。
 Rel.16のRLM手順において、UEは、以下の暗示的RLM-RS決定手順に従う。
[暗示的RLM-RS決定手順]
 もし、UEがRLM-RS(RadioLinkMonitoringRS)を提供されず、且つUEがPDCCH受信用に1以上のCSI-RSを含むTCI状態を提供された場合、UEは、以下の手順1から4に従う。
[[手順1]]
 もしPDCCH受信用のアクティブTCI状態が1つのRSのみを含む場合、UEは、PDCCH受信用のアクティブTCI状態用に提供されたそのRSをRLMに用いる。
[[手順2]]
 もしPDCCH受信用のアクティブTCI状態が2つのRSを含む場合、UEは、1つのRSがQCLタイプDを有すると想定し、UEは、QCLタイプDを有するそのRSをRLMに用いる。UEは、両方のRSがQCLタイプDを有すると想定しない。
[[手順3]]
 UEは、非周期的(aperiodic)又はセミパーシステント(semi-persistent)のRSをRLMに用いることを必要とされない。
[[手順4]]
 Lmax=4に対して、UEは、最小のモニタリング周期(periodicity)からの順に、複数のサーチスペースセットに関連付けられた複数のCORESET内において、PDCCH受信用のアクティブTCI状態用に提供されたNRLM個のRSを選択する。もし1より多いCORESETが、同じモニタリング周期を有する複数のサーチスペースセットに関連付けられている場合、UEは、最高のCORESETインデックスからのCORESETの順を決定する。
 ここで、Lmaxは、セル内のSS/PBCHブロックインデックスの最大数である。ハーフフレーム内において送信されるSS/PBCHブロックの最大数は、Lmaxである。
 このように、UEがRLM-RSを提供されない場合、UEは、暗示的RLM-RS決定を行い、PDCCH受信用のアクティブTCI状態をRLMに用いる。Lmax=4の場合、UEは、まずサーチスペースセットのモニタリング周期の昇順に、次にCORESETインデックスの降順に、NRLM個のRSを選択する。CORESETを選択する。
 UEは、リンク回復手順及びRLMのためにNLR-RLM個までのRLM-RSを設定されることができる。NLR-RLM個のRLM-RSから、Lmaxに依存してNRLM個までのRLM-RSがRLMに用いられる。Rel.16においては、図1に示すように、Lmax=4の場合にNRLM=2であり、Lmax=8の場合にNRLM=4であり、Lmax=64の場合にNRLM=8である。
(Beam Failure Detection(BFD)/Beam Failure Recovery(BFR))
 NRでは、ビームフォーミングを利用して通信を行う。例えば、UE及び基地局(例えば、gNB(gNodeB))は、信号の送信に用いられるビーム(送信ビーム、Txビームなどともいう)、信号の受信に用いられるビーム(受信ビーム、Rxビームなどともいう)を用いてもよい。
 ビームフォーミングを用いる場合、障害物による妨害の影響を受けやすくなるため、無線リンク品質が悪化することが想定される。無線リンク品質の悪化によって、無線リンク障害(Radio Link Failure(RLF))が頻繁に発生するおそれがある。RLFが発生するとセルの再接続が必要となるため、頻繁なRLFの発生は、システムスループットの劣化を招く。
 NRにおいては、RLFの発生を抑制するために、特定のビームの品質が悪化する場合、他のビームへの切り替え(ビーム回復(Beam Recovery(BR))、ビーム障害回復(Beam Failure Recovery(BFR))、L1/L2(Layer 1/Layer 2)ビームリカバリなどと呼ばれてもよい)手順を実施する。なお、BFR手順は単にBFRと呼ばれてもよい。
 なお、本開示におけるビーム障害(beam failure(BF))は、リンク障害(link failure)と呼ばれてもよい。
 図2は、Rel.15 NRにおけるビーム回復手順の一例を示す図である。ビームの数などは一例であって、これに限られない。初期状態(ステップS101)において、UEは、2つのビームを用いて送信される参照信号(Reference Signal(RS))リソースに基づく測定を実施する。
 当該RSは、同期信号ブロック(Synchronization Signal Block(SSB))及びチャネル状態測定用RS(Channel State Information RS(CSI-RS))の少なくとも1つであってもよい。なお、SSBは、SS/PBCH(Physical Broadcast Channel)ブロックなどと呼ばれてもよい。
 RSは、プライマリ同期信号(Primary SS(PSS))、セカンダリ同期信号(Secondary SS(SSS))、モビリティ参照信号(Mobility RS(MRS))、SSBに含まれる信号、SSB、CSI-RS、復調用参照信号(DeModulation Reference Signal(DMRS))、ビーム固有信号などの少なくとも1つ、又はこれらを拡張、変更などして構成される信号であってもよい。ステップS101において測定されるRSは、ビーム障害検出のためのRS(Beam Failure Detection RS(BFD-RS)、ビーム障害検出用RS)、又はビーム回復手順に利用するためのRS(BFR-RS)などと呼ばれてもよい。
 ステップS102において、基地局からの電波が妨害されたことによって、UEはBFD-RSを検出できない(又はRSの受信品質が劣化する)。このような妨害は、例えばUE及び基地局間の障害物、フェージング、干渉などの影響によって発生し得る。
 UEは、所定の条件が満たされると、ビーム障害を検出する。UEは、例えば、設定されたBFD-RS(BFD-RSリソース設定)の全てについて、BLER(Block Error Rate)が閾値未満である場合、ビーム障害の発生を検出してもよい。ビーム障害の発生が検出されると、UEの下位レイヤ(物理(PHY)レイヤ)は、上位レイヤ(MACレイヤ)に対してビーム障害インスタンスを通知(指示)してもよい。
 なお、判断の基準(クライテリア)は、BLERに限られず、物理レイヤにおける参照信号受信電力(Layer 1 Reference Signal Received Power(L1-RSRP))であってもよい。また、RS測定の代わりに又はRS測定に加えて、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などに基づいてビーム障害検出が実施されてもよい。BFD-RSは、UEによってモニタされるPDCCHのDMRSと擬似コロケーション(Quasi-Co-Location(QCL))であると期待されてもよい。
 ここで、QCLとは、チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 BFD-RSに関する情報(例えば、RSのインデックス、リソース、数、ポート数、プリコーディングなど)、ビーム障害検出(BFD)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。BFD-RSに関する情報は、BFR用リソースに関する情報などと呼ばれてもよい。
 UEの上位レイヤ(例えば、MACレイヤ)は、UEのPHYレイヤからビーム障害インスタンス通知を受信した場合に、所定のタイマ(ビーム障害検出タイマと呼ばれてもよい)を開始してもよい。UEのMACレイヤは、当該タイマが満了するまでにビーム障害インスタンス通知を一定回数(例えば、RRCで設定されるbeamFailureInstanceMaxCount)以上受信したら、BFRをトリガ(例えば、後述のランダムアクセス手順のいずれかを開始)してもよい。
 基地局は、UEからの通知がない場合、又はUEから所定の信号(ステップS104におけるビーム回復要求)を受信した場合に、当該UEがビーム障害を検出したと判断してもよい。
 ステップS103において、UEはビーム回復のため、新たに通信に用いるための新候補ビーム(new candidate beam)のサーチを開始する。UEは、所定のRSを測定することによって、当該RSに対応する新候補ビームを選択してもよい。ステップS103において測定されるRSは、新候補RS、新候補ビーム識別のためのRS、NCBI-RS(New Candidate Beam Identification RS)、新規ビーム識別のためのRS、新規ビーム識別用RS、NBI-RS(New Beam Identification RS)、CBI-RS(Candidate Beam Identification RS)、CB-RS(Candidate Beam RS)などと呼ばれてもよい。NBI-RSは、BFD-RSと同じであってもよいし、異なってもよい。なお、新候補ビームは、単に候補ビーム又は候補RSと呼ばれてもよい。
 UEは、所定の条件を満たすRSに対応するビームを、新候補ビームとして決定してもよい。UEは、例えば、設定されたNBI-RSのうち、L1-RSRPが閾値を超えるRSに基づいて、新候補ビームを決定してもよい。なお、判断の基準(クライテリア)は、L1-RSRPに限られない。SSBに関するL1-RSRPは、SS-RSRPと呼ばれてもよい。CSI-RSに関するL1-RSRPは、CSI-RSRPと呼ばれてもよい。
 NBI-RSに関する情報(例えば、RSのリソース、数、ポート数、プリコーディングなど)、新規ビーム識別(NBI)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。新候補RS(又は、NBI-RS)に関する情報は、BFD-RSに関する情報に基づいて取得されてもよい。NBI-RSに関する情報は、NBI用リソースに関する情報などと呼ばれてもよい。
 なお、BFD-RS、NBI-RSなどは、無線リンクモニタリング参照信号(Radio Link Monitoring RS(RLM-RS))と互いに読み替えられてもよい。
 ステップS104において、新候補ビームを特定したUEは、ビーム回復要求(Beam Failure Recovery reQuest(BFRQ))を送信する。ビーム回復要求は、ビーム回復要求信号、ビーム障害回復要求信号などと呼ばれてもよい。
 BFRQは、例えば、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、コンフィギュアド(設定)グラント(configured grant(CG))PUSCHの少なくとも1つを用いて送信されてもよい。
 BFRQは、ステップS103において特定された新候補ビーム/新候補RSの情報を含んでもよい。BFRQのためのリソースが、当該新候補ビームに関連付けられてもよい。ビームの情報は、ビームインデックス(Beam Index(BI))、所定の参照信号のポートインデックス、RSインデックス、リソースインデックス(例えば、CSI-RSリソース指標(CSI-RS Resource Indicator(CRI))、SSBリソース指標(SSBRI))などを用いて通知されてもよい。
 Rel.15 NRでは、衝突型ランダムアクセス(Random Access(RA))手順に基づくBFRであるCB-BFR(Contention-Based BFR)及び非衝突型ランダムアクセス手順に基づくBFRであるCF-BFR(Contention-Free BFR)が検討されている。CB-BFR及びCF-BFRでは、UEは、PRACHリソースを用いてプリアンブル(RAプリアンブル、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、RACHプリアンブルなどともいう)をBFRQとして送信してもよい。
 CB-BFRでは、UEは、1つ又は複数のプリアンブルからランダムに選択したプリアンブルを送信してもよい。一方、CF-BFRでは、UEは、基地局からUE固有に割り当てられたプリアンブルを送信してもよい。CB-BFRでは、基地局は、複数UEに対して同一のプリアンブルを割り当ててもよい。CF-BFRでは、基地局は、UE個別にプリアンブルを割り当ててもよい。
 なお、CB-BFR及びCF-BFRは、それぞれCB PRACHベースBFR(contention-based PRACH-based BFR(CBRA-BFR))及びCF PRACHベースBFR(contention-free PRACH-based BFR(CFRA-BFR))と呼ばれてもよい。CBRA-BFRは、BFR用CBRAと呼ばれてもよい。CFRA-BFRは、BFR用CFRAと呼ばれてもよい。
 CB-BFR、CF-BFRのいずれであっても、PRACHリソース(RAプリアンブル)に関する情報は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によって通知されてもよい。例えば、当該情報は、検出したDL-RS(ビーム)とPRACHリソースとの対応関係を示す情報を含んでもよく、DL-RSごとに異なるPRACHリソースが関連付けられてもよい。
 ステップS105において、BFRQを検出した基地局は、UEからのBFRQに対する応答信号(gNBレスポンスなどと呼ばれてもよい)を送信する。当該応答信号には、1つ又は複数のビームについての再構成情報(例えば、DL-RSリソースの構成情報)が含まれてもよい。
 当該応答信号は、例えばPDCCHのUE共通サーチスペースにおいて送信されてもよい。当該応答信号は、UEの識別子(例えば、セル-無線RNTI(Cell-Radio RNTI(C-RNTI)))によって巡回冗長検査(Cyclic Redundancy Check(CRC))スクランブルされたPDCCH(DCI)を用いて通知されてもよい。UEは、ビーム再構成情報に基づいて、使用する送信ビーム及び受信ビームの少なくとも一方を判断してもよい。
 UEは、当該応答信号を、BFR用の制御リソースセット(COntrol REsource SET(CORESET))及びBFR用のサーチスペースセットの少なくとも一方に基づいてモニタしてもよい。
 CB-BFRに関しては、UEが自身に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断されてもよい。
 ステップS105の処理に関して、BFRQに対する基地局(例えば、gNB)からの応答(レスポンス)をUEがモニタするための期間が設定されてもよい。当該期間は、例えばgNB応答ウィンドウ、gNBウィンドウ、ビーム回復要求応答ウィンドウなどと呼ばれてもよい。UEは、当該ウィンドウ期間内において検出されるgNB応答がない場合、BFRQの再送を行ってもよい。
 ステップS106において、UEは、基地局に対してビーム再構成が完了した旨を示すメッセージを送信してもよい。当該メッセージは、例えば、PUCCHによって送信されてもよいし、PUSCHによって送信されてもよい。
 ビーム回復成功(BR success)は、例えばステップS106まで到達した場合を表してもよい。一方で、ビーム回復失敗(BR failure)は、例えばBFRQ送信が所定の回数に達した、又はビーム障害回復タイマ(Beam-failure-recovery-Timer)が満了したことに該当してもよい。
 Rel.15では、SpCell(PCell/PSCell)で検出されたビーム障害に対するビーム回復手順(例えば、BFRQの通知)を、ランダムアクセス手順を利用して行うことがサポートされている。一方で、Rel.16では、SCellで検出されたビーム障害に対するビーム回復手順(例えば、BFRQの通知)を、BFR用のPUCCH(例えば、スケジューリングリクエスト(SR))送信と、BFR用のMAC CE(例えば、UL-SCH)送信の少なくとも一つを利用して行うことがサポートされる。
 例えば、UEは、MAC CEベースの2ステップを利用して、ビーム障害に関する情報を送信してもよい。ビーム障害に関する情報は、ビーム障害を検出したセルに関する情報、新候補ビーム(又は、新候補RSインデックス)に関する情報が含まれていてもよい。
[ステップ1]
 BFが検出された場合、UEから、PCell/PSCellに対して、PUCCH-BFR(スケジューリング要求(SR))が送信されてもよい。次いで、PCell/PSCellから、UEに対して、下記ステップ2のためのULグラント(DCI)が送信されてもよい。ビーム障害が検出された場合に、新候補ビームに関する情報を送信するためのMAC CE(又は、UL-SCH)が存在する場合には、ステップ1(例えば、PUCCH送信)を省略して、ステップ2(例えば、MAC CE送信)を行ってもよい。
[ステップ2]
 次いで、UEは、ビーム障害が検出された(失敗した)セルに関する情報(例えば、セルインデックス)及び新候補ビームに関する情報を、MAC CEを用いて、上りリンクチャネル(例えば、PUSCH)を介して、基地局(PCell/PSCell)に送信してもよい。その後、BFR手順を経て、基地局からの応答信号を受信してから所定期間(例えば、28シンボル)後に、PDCCH/PUCCH/PDSCH/PUSCHのQCLが、新たなビームに更新されてもよい。
 なお、これらのステップの番号は説明のための番号に過ぎず、複数のステップがまとめられてもよいし、順番が入れ替わってもよい。また、BFRを実施するか否かは、上位レイヤシグナリングを用いてUEに設定されてもよい。
(BFD-RS)
 Rel.16において、1つのサービングセルの各BWPに対し、UEは、障害検出リソース(failureDetectionResources、failureDetectionResourcesToAddModList、RadioLinkMonitoringConfig)によって周期的(P)-CSI-RSリソース設定インデックスのセットq0バーと、候補ビームRSリスト(candidateBeamRSList)又は拡張候補ビームRSリスト(candidateBeamRSListExt-r16)又はSCell用候補ビームRSリスト(candidateBeamRSSCellList-r16)によって、P-CSI-RSリソース設定インデックス及びSS/PBCHブロックインデックスの少なくとも1つのセットq1バーと、を提供されることができる。
 ここで、q0バーは、「q0」にオーバーラインを付した表記である。以下、q0バーは、単にq0と表記される。q1バーは、「q1」にオーバーラインを付した表記である。以下、q1バーは、単にq1と表記される。
 障害検出リソースによって提供されるP-CSI-RSリソースのセットq0は、明示的BFD-RSと呼ばれてもよい。
 UEは、セットq0及びセットq1の少なくとも1つのセットに含まれるインデックスに対応するRSリソースを用いてL1-RSRP測定などを実施し、ビーム障害を検出してもよい。
 なお、本開示において、BFD用リソースに対応するインデックスの情報を示す上述の上位レイヤパラメータを提供されることは、BFD用リソースを設定されること、BFD-RSを設定されることなどと互いに読み替えられてもよい。本開示において、BFD用リソース、周期的CSI-RSリソース設定インデックス又はSSBインデックスのセットq0、BFD-RS、BFD-RSセット、RSセット、は互いに読み替えられてもよい。
 もしUEが、そのサービングセルの1つのBWPに対し、障害検出リソース(failureDetectionResources)によってq0を提供されない場合、UEは、以下の暗示的BFD-RS決定手順に従って、BFD手順に用いるRS(セットq0)を決定する。
[暗示的BFD-RS決定手順]
 UEは、UEがPDCCHのモニタリングに用いる、対応するCORESETに対するTCI状態(TCI-State)によって指示されるRSセット内のRSインデックスと同じ値を有するP-CSI-RSリソース設定インデックスを、セットq0に含めることを決定する。もし1つのTCI状態内に2つのRSインデックスがある場合、セットq0が、対応するTCI状態に対してQCLタイプD設定を有するRSインデックスを含む。UEは、そのセットq0が2つまでのRSインデックスを含むと想定する。UEは、そのセットq0内においてシングルポートRSを想定する。
 このセットq0は、暗示的BFD-RSと呼ばれてもよい。
 このように、UEは、PDCCH用TCI状態によってBFD-RS(RSセット)を決定する。UEは、そのRSセットが2つまでのRSを含むと想定する。
(分析)
 Rel.17以降では、複数TRPでのビーム障害検出において、TRPごと独立したBFD-RSの設定が導入されることが検討されている。ここで、各TRPは、1以上のBFD-RSと関連付けられてもよい。
 本開示において、1以上のBFD-RSは、BFD-RSのセット(BFD-RSセット)と呼ばれてもよい。Rel.15では、BWPごとに最大2つのBFD-RSが設定される。例えば、当該2つのBFD-RSが、1つのBFD-RSセットと呼ばれてもよい。Rel.17以降では、BWPごとのBFD-RSの数は2つでなくてもよく、例えば、BFD-RSの数はUE能力に基づいて決定されてもよい。
 また、Rel.17以降では、複数TRPでのBFRにおいて、BWPごとに複数(例えば、2つ)のBFD-RSセットがサポートされ、BFD-RSセットごとに最大N個(Nは任意の整数)がサポートされることが検討されている。
 さらに、Rel.17以降では、複数TRPでの新規ビーム識別において、TRPごとに1以上のNBI-RS(NBI-RSセット)が設定されるとき、TRPごと独立したNBI-RSセットの設定が導入されることが検討されている。本開示において、1以上のNBI-RSは、NBI-RSのセット(NBI-RSセット)と呼ばれてもよい。
 また、Rel.17以降では、1つのBFD-RSセットと1つのNBI-RSセットとが1対1で関連させることが検討されている。
 これらの検討を踏まえると、例えば、シングル/マルチDCIに基づく複数TRPのBFRのために、TRPごとに最大2つのBFD-RSセット及び2つのBFD-RSセットが設定されうることになる。つまり、TRPのBFRにおいて、TRPごとに0、1又は2のBFD-RSセットが設定されうることになる。このようなケースでは、2つのBFD-RSセットが設定されるケースでは、NWは、1つのBFD-RS(NBI-RS)セットのみの設定が可能であるか、又は、2つのBFD-RS(NBI-RS)セットを設定しなければならないのか、が問題となる。
 さらに、設定可能な/設定しなければならないNBI-RSセットの数、及び、許容されるBFD-RSセットの数とNBI-RSセットとの数の組み合わせ、についても検討が十分でない。
 このようにBFD-RSセット/NBI-RSセットの設定及び関連付けについて検討が不十分であると、シングル/マルチDCIに基づく複数TRPのBFD/BFRを適切に制御できず、通信品質、スループット低下を招くおそれがある。
 そこで、本発明者らは、BFD-RSセット/NBI-RSセットの設定/決定方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B/C」、「A、B及びCの少なくとも1つ」、は互いに読み替えられてもよい。本開示において、セル、サービングセル、CC、キャリア、BWP、DL BWP、UL BWP、アクティブDL BWP、アクティブUL BWP、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。
 本開示において、設定(configure)、アクティベート(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。本開示において、RRC、RRCシグナリング、RRCパラメータ、上位レイヤ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、は互いに読み替えられてもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、MAC CE、アクティベーション/ディアクティベーションコマンド、は互いに読み替えられてもよい。
 本開示において、プール、セット、グループ、リスト、候補、は互いに読み替えられてもよい。
 本開示において、DMRS、DMRSポート、アンテナポート、は互いに読み替えられてもよい。
 本開示において、特別(special)セル、SpCell、PCell、PSCell、は互いに読み替えられてもよい。
 本開示において、ビーム、空間ドメインフィルタ、空間セッティング、TCI状態、UL TCI状態、統一(unified)TCI状態、統一ビーム、共通(common)TCI状態、共通ビーム、TCI想定、QCL想定、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DLビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態/QCL想定のQCLタイプDのRS、TCI状態/QCL想定のQCLタイプAのRS、空間関係、空間ドメイン送信フィルタ、UE空間ドメイン送信フィルタ、UE送信ビーム、ULビーム、UL送信ビーム、ULプリコーディング、ULプリコーダ、PL-RS、は互いに読み替えられてもよい。本開示において、QCLタイプX-RS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、SRS、は互いに読み替えられてもよい。
 本開示において、CSI-RS、NZP-CSI-RS、periodic(P)-CSI-RS、P-TRS、semi-persistent(SP)-CSI-RS、aperiodic(A)-CSI-RS、TRS、トラッキング用CSI-RS、TRS情報(上位レイヤパラメータtrs-Info)を有するCSI-RS、TRS情報を有するNZP CSI-RSリソースセット内のNZP CSI-RSリソース、同じアンテナポートの複数のNZP-CSI-RSリソースから成るNZP-CSI-RSリソースセット内のNZP-CSI-RSリソース、TRSリソース、は互いに読み替えられてもよい。本開示において、CSI-RSリソース、CSI-RSリソースセット、CSI-RSリソースグループ、情報要素(IE)、は互いに読み替えられてもよい。
 本開示において、パネル、Uplink(UL)送信エンティティ、TRP、空間関係、制御リソースセット(COntrol REsource SET(CORESET))、PDSCH、コードワード、基地局、ある信号のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、ある信号のアンテナポートグループ(例えば、DMRSポートグループ)、多重のためのグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ)、CORESETプール、CORESETサブセット、CW、冗長バージョン(redundancy version(RV))、レイヤ(MIMOレイヤ、送信レイヤ、空間レイヤ)、は、互いに読み替えられてもよい。また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。本開示において、TRP ID、TRP関連ID、CORESETプールインデックス、DCI内のフィールドの1つのコードポイントに対応する2つのTCI状態のうちの1つのTCI状態の位置(序数、第1TCI状態又は第2TCI状態)、TRPは、互いに読み替えられてもよい。
 本開示において、TRP、送信ポイント、パネル、DMRSポートグループ、CORESETプール、TCIフィールドの1つのコードポイントに関連付けられた2つのTCI状態の1つ、は互いに読み替えられてもよい。
 本開示において、シングルTRP、シングルTRPシステム、シングルTRP送信、シングルPDSCH、は互いに読み替えられてもよい。本開示において、マルチTRP、マルチTRPシステム、マルチTRP送信、マルチPDSCH、は互いに読み替えられてもよい。本開示において、シングルDCI、シングルPDCCH、シングルDCIに基づくマルチTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。
 本開示において、シングルTRP、シングルTRPを用いるチャネル、1つのTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されないこと、複数のTCI状態/空間関係がRRC/DCIによって有効化されないこと、いずれのCORESETに対しても1のCORESETプールインデックス(CORESETPoolIndex)値が設定されず、且つ、TCIフィールドのいずれのコードポイントも2つのTCI状態にマップされないこと、は互いに読み替えられてもよい。
 本開示において、マルチTRP、マルチTRPを用いるチャネル、複数のTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されること、複数のTCI状態/空間関係がRRC/DCIによって有効化されること、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとの少なくとも1つ、は互いに読み替えられてもよい。本開示において、マルチDCIに基づくマルチTRP、CORESETに対して1のCORESETプールインデックス(CORESETPoolIndex)値が設定されること、は互いに読み替えられてもよい。本開示において、シングルDCIに基づくマルチTRP、TCIフィールドの少なくとも1つのコードポイントが2つのTCI状態にマップされること、は互いに読み替えられてもよい。
 本開示において、TRP#1(第1TRP)は、CORESETプールインデックス=0に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの第1のTCI状態に対応してもよい。TRP#2(第2TRP)は、CORESETプールインデックス=1に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの第2のTCI状態に対応してもよい。
 本開示において、CORESET0、インデックス0を有するCORESET、共通CORESET、は互いに読み替えられてもよい。
(無線通信方法)
 本開示において、トータル/ファイナルBFD-RSセット数/NBI-RSセット数が、明示的な設定によって決定されてもよいし、暗示的な決定ルールによって決定されてもよい。
 0個のBFD-RSセットが明示的に設定されてもよい。すなわち、BFD-RSセットが設定されなくてもよい。
 BFD-RSセットが設定されないとき、暗示的なBFD-RSセットの決定ルールが適用されてもよい。
 例えば、トータルで1つのBFD-RSセットが決定されてもよい。当該BFD-RSセットに含まれるBFD-RSは、CORESETとQCLの関係にあるRSであってもよい。
 また、例えば、トータルで2つのBFD-RSセットが決定されてもよい。当該BFD-RSセットに含まれるBFD-RSは、マルチDCIに基づく複数TRPにおいて、各CORESETプールインデックスのCORESETとQCLの関係にある(QCLed with CORESET)RSであってもよい。
 また、BFD-RSセットが設定されないとき、暗示的なBFD-RSセットの決定の有効(enable)/無効(disable)を指示するための新規RRCパラメータが設定されてもよい。例えば、当該パラメータが無効(disable)であること(有効でないこと)を指示するとき、決定されるトータルBFD-RSセットは0個であってもよい。
 また、BFD-RSセットが設定されないとき、UEが導出する、トータル/暗示的BFD-RSセットの個数を指示するための新規RRCパラメータが設定されてもよい。例えば、当該パラメータは、0、1又は2を指示してもよい。当該パラメータが1又は2を指示するとき、それぞれトータルで1つ又は2つのBFD-RSセットが決定されてもよい。当該パラメータが0を指示するとき、決定されるトータルBFD-RSセットは0個であってもよい。
 1つのBFD-RSセットが明示的に設定されてもよい。設定されるBFD-RSセットは、セルごとのBFRに用いられてもよいし、もしTRPとBFD-RSとの関連付けが設定される場合、TRPごとのBFRにおける特定のTRPのBFRに用いられてもよい。
 1つのBFD-RSセットが明示的に設定されるとき、暗示的なBFD-RSセットの決定ルールが適用されなくてもよい。このとき、セルごとのBFRに対してトータルで1つのBFD-RSセットが設定されてもよい。また、このとき、TRPごとのBFRにおける特定のTRPに対して1つのBFD-RSセットが設定され、他のTRPに対してBFD-RSセットが決定されなくてもよい。
 1つのBFD-RSセットが明示的に設定されるとき、暗示的なBFD-RSセットの決定ルールが追加で適用されてもよい。このとき、TRPごとのBFRにおける特定のTRPに対して1つのBFD-RSセットが設定され、他のTRPに対して暗示的なBFD-RSセット決定ルールに基づく1つのBFD-RSセットが決定されなくてもよい。例えば、当該他のTRPに対するBFD-RSセットに含まれるBFD-RSは、マルチDCIに基づく複数TRPにおいて、特定のTRPのCORESETプールインデックスとは別のCORESETプールインデックスのCORESETとQCLの関係にあるRSであってもよい。
 また、1つのBFD-RSセットが明示的に設定されるとき、暗示的なBFD-RSセットの決定の有効(enable)/無効(disable)を指示するための新規RRCパラメータが設定されてもよい。例えば、当該パラメータが無効(disable)であること(有効でないこと)を指示するとき、決定されるトータルBFD-RSセットは0個であってもよい。
 また、1つのBFD-RSセットが明示的に設定されるとき、UEが導出する、トータル/暗示的BFD-RSセットの個数を指示するための新規RRCパラメータが設定されてもよい。例えば、当該パラメータは、0又は1を指示してもよい。当該パラメータが1を指示するとき、トータルで1つのBFD-RSセットが決定されてもよい。当該パラメータが0を指示するとき、決定されるトータルBFD-RSセットは0個であってもよい。
 新規RRCパラメータは、暗示的にBFD-RSセットを導出するTRPに関する情報(例えば、CORESETプールインデックスに関する情報)を指示してもよい。例えば、1つのBFD-RSセットを暗示的に導出することが指示される場合、新規RRCパラメータは、暗示的にBFD-RSセットを導出するTRPに関する情報(例えば、CORESETプールインデックスに関する情報)を指示してもよい。
 2つのBFD-RSセットが明示的に設定されてもよい。設定されるBFD-RSセットは、TRPごとのBFRにおける各TRPのBFD-RSに用いられてもよい。
 2つのBFD-RSセットが明示的に設定されるとき、暗示的なBFD-RSセットの決定ルールが適用されなくてもよい。
 なお、本開示において、CORESETに複数(例えば、2つ)のRSタイプがある場合、CORESETとQCLの関係にある(QCLed with CORESET)RSは、CORESETの特定のQCLタイプ(例えば、QCLタイプD)のRSを意味してもよい。
 なお、本開示において、シグナリング構成、シグナリング、設定、構成、設定情報、指示、指示情報、などは互いに読み替えられてもよい。
 本開示において、BFR、BFR設定、BFR手順、BFD、BFD手順、BFD-RS、BFD-RS設定、RLM、RLM設定、RLM手順、RLM-RS、RLM-RS設定、NBI、NBI設定、NBI-RS、NBI-RS設定、は互いに読み替えられてもよい。本開示において、セルごと(per cell)BFR、セル固有(cell-specific)BFR、Rel.15/16のBFR、は互いに読み替えられてもよい。本開示において、TRPごと(per TRP)BFR、TRP固有(TRP-specific)BFR、Rel.17/Rel.17以降のBFR、は互いに読み替えられてもよい。
 本開示において、あるパラメータ/数/組み合わせが設定されることは、あるパラメータ/数/組み合わせが明示的に設定されることを意味してもよい。また、あるパラメータ/数/組み合わせが決定されることは、あるパラメータ/数/組み合わせが暗示的なルールに基づいて決定されることを意味してもよい。
 以下本開示の各実施形態では、BFD-RSセット数及びNBI-RSセット数が最大2のケースを説明するが、これらの数は2以上であってもよく、「2つ」は「複数」と読み替えられてもよい。
<第1の実施形態>
 あるCCにおける、TRPごとのBFRに対する、トータルのBFD-RSセット数と、トータルのNBI-RSセット数と、の組み合わせが、設定/決定されてもよい。
 なお、1つのセットには、UE能力に依存して/基づいて、1以上のRS(RSリソース)が設定されてもよい。
 また、既存の(Rel.16以前の)仕様において、BFD-RSのセット及びNBI-RSのセットの概念は定義されていない。複数TRPを利用するケースにおいて、各セットは、TRPと関連付けられてもよい。
 本開示における、トータルのBFD-RSセットには、明示的に設定されるBFD-RSと、暗示的に決定されるBFD-RSと、の少なくとも一方を含んでもよい。
 図3は、トータルBFD-RSセット数と、トータルNBI-RSセット数と、の組み合わせの一例を示す図である。図3に示す例において、トータルBFD-RSセット数及びトータルNBI-RSセット数は、それぞれ0、1又は2をとりうる。
 トータルBFD-RSセット数をX、トータルNBI-RSセット数をYとするとき、それぞれの数に対応するケースを「ケースX-Y」と記載し、以下本開示の各実施形態において詳述する。
 BFD-RSセット数とNBI-RSセット数との組み合わせのうち、特定の組み合わせのみが(仕様上)許容されてもよい。
 BFD-RSセット数とNBI-RSセット数との組み合わせのうち、全ての組み合わせが許容されてもよい。
 例えば、トータルのBFD-RSセット数よりトータルのNBI-RSセット数が大きくなるケース(例えば、図3に示す、ケース0-1、ケース0-2及びケース1-2)は許容されなくてもよい。UEは、設定/決定されるトータルのBFD-RSセット数よりトータルのNBI-RSセット数が大きくなるケースを想定/期待しなくてもよい。以下では、図3に示す、ケース0-1、ケース0-2及びケース1-2については詳述しない。
 また、ケース2-2は許容されてもよい。ケース2-2において、BFD-RSセットのそれぞれと、NBI-RSセットのそれぞれとが1対1に対応してもよい。ケース2-2において、BFD-RSセットのそれぞれと、NBI-RSセットのそれぞれと、の対応関係/関連付けが規定されてもよい。以下では、図3に示す、ケース2-2についても詳述しない。
《ケース0-0》
 ケース0-0においては、以下のオプション1-1及びオプション1-2の少なくとも一方にしたがってもよい。
[オプション1-1]
 トータルBFD-RSセット数が0であることは許容されなくてもよい。明示的なBFD-RS(セット)の設定がない場合、暗示的な決定ルールが適用されるためである。
 この場合、特定の周波数レンジ(例えば、FR2)のあるCCにおける少なくとも1つのBFD-RS(セット)について、トータルBFD-RSセット数が0であることは許容されなくてもよい。UEは、特定の周波数レンジ(例えば、FR2)におけるあるCCにおいて、トータルBFD-RSセット数が0となることを想定/期待しなくてもよい。
[オプション1-2]
 特定の周波数レンジ(例えば、FR2)におけるあるCCに対して、BFD-RSセット数が0であることが許容されてもよい。UEは、特定の周波数レンジ(例えば、FR2)におけるあるCCにおいて、トータルBFD-RSセット数が0となることを想定/期待してもよい。
 このとき、あるCC(又は、ある周波数レンジにおけるあるUE)に対するBFD-RSセットの暗示的な決定を有効(enable)/無効(disable)を指示するための新規RRCパラメータが規定されてもよい。例えば、UEは、当該パラメータが無効(disable)であること(有効でないこと)を指示されるとき、決定されるトータルBFD-RSセットは0個であると判断してもよい。
 0個のBFD-RSが設定/決定される場合(つまり、BFD-RSが設定/決定されない場合)、0個のNBI-RSが設定/決定されてもよい(NBI-RSが設定/決定されなくてもよい)。UEは、0個のBFD-RSが設定/決定される場合(BFD-RSが設定/決定されない場合)、0個のNBI-RSが設定/決定される(NBI-RSが設定/決定されない)と判断してもよい。
 なお、本開示において、BFD-RSセットが設定/決定されないとき、UEは、個別のBFD-RSを利用してBFD/BFR手順を行ってもよい。当該個別のBFD-RSは、既存の(Rel.16までに規定される)仕様で設定されるBFD-RSであってもよい。
《ケース1-0》
 ケース1-0においては、以下のオプション2-1及びオプション2-2の少なくとも一方にしたがってもよい。
[オプション2-1]
 BFRに対し、1つのBFD-RSセットが設定され、NBI-RSセットが設定/決定されないことは許容されなくてもよい。
 あるCCにおいて1つのBFD-RSセットが設定/決定されるとき、UEは、当該CCにおいて1つのNBI-RSの設定/決定を想定/期待するからである。UEは、BFD-RSセットが設定/決定されるとき、NBI-RSのセットが設定/決定されないことを想定/期待しなくてもよい。
 オプション2-1において、1つのBFD-RSセットが設定/決定されるとき、追加の1つのNBI-RSセットが設定/決定されてもよい(オプション2-1-1)。オプション2-1-1では、オプション2-1-1-A及びオプション2-1-1-Bの少なくとも1つにしたがってもよい。
 オプション2-1-1において、1つのNBI-RSのセットは、複数TRPにおけるセルごとのBFRとして設定されてもよい。このとき、Rel.16までに規定されるBFR手順に従って、NBI-RSが設定されてもよい(オプション2-1-1-A)。
 また、オプション2-1-1において、1つのNBI-RSのセットは、複数TRPを利用する場合の、TRPごとの(1つのTRPのみに対する)BFRとして設定されてもよい(オプション2-1-1-B)。
 このとき、1つのBFD-RSセット/NBI-RSセットは、1つのTRP(例えば、CORESETプールインデックス/シングルDCIに基づく他のグループID)と関連付けられていてもよい。BFR手順及びビーム回復後のUE動作は、当該関連付けられたTRPに対して適用されてもよい。UEは、当該関連付けられたTRP以外のTRPに対して、BFD/BFRを行わないと想定/判断してもよい。
 オプション2-1-1-Bは、明示的にBFD-RS(セット)が設定されるケースのみに適用されてもよい。暗示的にBFD-RS(セット)が決定されるケースでは、1つのTRPのみに対して1つのセットを決定する方法が規定されていないためである。
 また、オプション2-1-1-Bは、明示的にBFD-RS(セット)が設定されるケースと、暗示的にBFD-RS(セット)が決定されるケースと、に適用されてもよい。マルチDCI用の暗示的なBFD-RSについては、新規RRCパラメータが規定されてもよい。当該RRCパラメータは、暗示的なBFD-RSセットを1つ又は2つ決定することを指示するためのパラメータであってもよい。当該RRCパラメータが1つのBFD-RSセットの決定を指示するとき、当該パラメータは、BFD-RSセットに対応するTRPに関する情報を指示してもよい。例えば、NEは、UEに対し、特定の値(例えば、0)のCORESETプールインデックスに関連付けられる1つのBFD-RSセットの決定を指示するRRCパラメータを通知してもよい。
[オプション2-2]
 1つのBFD-RSセットが設定/決定されるとき、NBI-RSは設定/決定されなくてもよい。
 オプション2-2において、あるCCにおいてBFRがトリガされるとき、BFR用MAC CEに当該CCのための新規ビーム識別に関する情報が含まれなくてもよい。
 なお、本開示において、「BFR用MAC CEに当該CCのための新規ビーム識別に関する情報が含まれない」は、「BFR用MAC CEに、どのCCでビーム障害が発生したかに関する情報が含まれるが、新規ビーム識別に関する情報(例えば、新規ビームインデックス)が含まれない」と読み替えられてもよい。「BFR用MAC CEに、どのCCでビーム障害が発生したかに関する情報が含まれるが、新規ビーム識別に関する情報(例えば、新規ビームインデックス)が含まれない」は、例えば、既存の(Rel.16で規定される)BFR用MAC CEと同様に、BFR用MAC CEの特定のフィールドが新規ビームを発見できなかったこと(no new beam found)を示すことを意味してもよい。
 また、本開示において、「BFR用MAC CEに当該CCのための新規ビーム識別に関する情報が含まれない」は、「BFR用MAC CEに、どのCCでビーム障害が発生したかに関する情報が含まれない」と読み替えられてもよい。「BFR用MAC CEに、どのCCでビーム障害が発生したかに関する情報が含まれない」は、例えば、UEに対しNBI-RS(セット)が設定されない場合、BFR用MAC CEは送信されないことを意味してもよい。
 オプション2-2では、リカバリのための新規ビームが決定/設定されないため、UEは、BFRがトリガされた後、BFR用MAC CEがトリガされた後、又は、NWからの応答を受信した後の特定期間後に、CC/TRPをディアクティベーションすると想定してもよい。また、UEは、BFRがトリガされた後、BFR用MAC CEがトリガされた後、又は、NWからの応答を受信した後の特定期間後に、CC/TRPをディアクティベーションするよう指示/通知されてもよい。
《ケース1-1》
 ケース1-1においては、上述のケース1-0における、オプション2-2-2に記載した方法に従ってもよい。オプション2-2-2については、すでに上述しているため、ここでは割愛する。
《ケース2-0》
 ケース2-0においては、以下のオプション3-1及びオプション3-2の少なくとも一方にしたがってもよい。
[オプション3-1]
 BFRに対し、2つのBFD-RSセットが設定され、NBI-RSセットが設定/決定されないことは許容されなくてもよい。
 2つのBFD-RSセットが設定/決定されるとき、UEは、NBI-RSの設定/決定を想定/期待してもよい。UEは、BFD-RSセットが設定/決定されるとき、NBI-RSのセットが設定/決定されないことを想定/期待しなくてもよい。
 2つのBFD-RSセットが設定/決定されるとき、UEは、少なくとも1つのNBI-RSセットが設定/決定されることを想定/期待してもよい。
 また、2つのBFD-RSセットが設定/決定されるとき、1つのNBI-RSセットが設定/決定されてもよい(オプション3-1-1)。オプション3-1-1では、オプション3-1-1-A、3-1-1-B及び3-1-1-Cの少なくとも1つにしたがってもよい。
 オプション3-1-1において、1つのNBI-RSのセットは、1つのBFD-RSセットにのみ関連付けられるよう設定されてもよい(オプション3-1-1-A)。もう1つのBFD-RSに関連するNBI-RSはなくてもよい。
 オプション3-1-1-Aにおいて、BFD-RSセット及びNBI-RSセットの両方に対応するTRPについて、TRPごとのBFRが適用されてもよい。
 NBI-RSセットに対応しないTRPについて、BFR用MAC CEに当該TRPのための新規ビーム識別に関する情報が含まれなくてもよい。また、当該TRPについて、リカバリ用の新規ビームが設定/決定されないため、BFRがトリガされた後、TRPをディアクティベーションしてもよい。
 また、オプション3-1-1において、1つのNBI-RSのセットは、明示的にBFD-RSセットに関連付けられていなくてもよい(オプション3-1-1-B)。UEは、デフォルトで、第1のTRP(例えば、最小/最大のTRPインデックスに対応するTRP)に、1つのNBI-RSセットが関連付けられていると想定してもよい。
 また、オプション3-1-1において、1つのNBI-RSのセットは、いずれのBFD-RSセットにも関連付けられていないよう設定されてもよい(オプション3-1-1-C)。
 オプション3-1-1-Cにおいて、1つのTRPにおいてビーム障害が発生した場合、UEは、もしNBI-RSが発見できた場合には、BFR用MAC CEを用いてあるCCに対するNBI-RSを報告してもよい。
 このとき、新規ビームへのリカバリ時のUEの動作は、ビーム障害が検出されたTRPのみに適用されてもよい。また、このとき、新規ビームへのリカバリ時のUEの動作は、当該CC(複数の(例えば、2つの)TRP)に適用されてもよい。
 また、オプション3-1-1-Cにおいて、2つのTRPにおいてビーム障害が発生した場合、UEは、もしNBI-RSが発見できた場合には、BFR用MAC CEを用いてあるCCに対するNBI-RSを報告してもよい。このとき、新規ビームへのリカバリ時のUEの動作は、当該CC(複数の(例えば、2つの)TRP)に適用されてもよい。
 また、2つのBFD-RSセットが設定/決定されるとき、UEは、2つのNBI-RSセットが設定/決定されることを想定/期待してもよい。言い換えれば、2つのBFD-RSセットが設定/決定されるとき、2つのNBI-RSセットが設定/決定されてもよい(オプション3-1-2)。オプション3-1-2では、UEは、上述したケース2-2と同じBFR動作を行ってもよい。このとき、BFD-RSセットのそれぞれと、NBI-RSセットのそれぞれとが、1対1に関連付けられてもよい。
[オプション3-2]
 2つのBFD-RSセットが設定/決定されるとき、NBI-RSは設定/決定されなくてもよい。オプション3-2は、オプション2-2に記載した態様を流用してもよい。
《ケース2-1》
 ケース2-1においては、以下のオプション4-1及びオプション4-2の少なくとも一方にしたがってもよい。
[オプション4-1]
 BFRに対し、2つのBFD-RSセットが設定され、1つのNBI-RSセットが設定/決定されることは許容されなくてもよい。
 2つのBFD-RSセットが設定/決定されるとき、UEは、0又は1つのNBI-RSセットが設定/決定されることを想定/期待しなくてもよい。2つのBFD-RSセットが設定/決定されるとき、UEは、2つのNBI-RSセットが設定/決定されることを想定/期待してもよい。
 また、2つのBFD-RSセットが設定/決定されるとき、UEは、1つのNBI-RSセットが設定/決定されることを想定/期待しなくてもよい。2つのBFD-RSセットが設定/決定されるとき、UEは、0又は2つのNBI-RSセットが設定/決定されることを想定/期待してもよい。
[オプション4-2]
 2つのBFD-RSセットが設定/決定されるとき、1つのNBI-RSセットが設定/決定されてもよい。オプション4-2では、上述したオプション3-1-1における態様が流用されてもよい。
 以上第1の実施形態によれば、設定/決定されるBFD-RSセット数及びNBI-RSセット数に応じて、適切にBFR動作を制御することができる。
<第2の実施形態>
 第2の実施形態では、NBI-RSセットの暗示的な決定/導出方法について説明する。UEは、NBI-RSセットが明示的に設定されないとき、特定のルールに基づいてNBI-RSセットを導出/決定してもよい。
 UEは、セルごとのBFRにおいて、1以上のSSB/CSI-RSが、NBI-RSのセットであると想定してもよい。
 また、SSB/CSI-RSインデックスと、TRP/CORESETプールインデックスとの関連付けが設定されるとき、UEは、セルごとのBFRについて、第1のTRPに関連する複数のSSB/CSI-RSが第1のTRPのためのNBI-RSセットであり、第2のTRPに関連する複数のSSB/CSI-RSが第2のTRPのためのNBI-RSセットであると想定してもよい。
 なお、第1のTRPは、1番目のTRPインデックスに対応するTRPであってもよく、第2のTRPは、2番目のTRPインデックスに対応するTRPであってもよい。また、第1のTRPは、最小(又は、最大)のTRPインデックスに対応するTRPであってもよく、第2のTRPは、最大(又は、最小)のTRPインデックスに対応するTRPであってもよい。
 なお、複数のSSB/CSI-RSは、上位レイヤで(各TRPに対して)設定されるSSB/CSI―RSのうちの全てのSSB/CSI―RSであってもよいし、一部のSSB/CSI―RSであってもよい。また、当該CSI-RSは、周期的(P-)CSI-RSであってもよい。
 UEは、上位レイヤシグナリング(RRCシグナリング)を利用して、暗示的NBI-RS(セット)の決定を有効/無効にするか否かを設定されてもよい。暗示的NBI-RS(セット)の決定は、CCごとに行われてもよいし、TRPごとに行われてもよいし、周波数レンジごとに行われてもよい。
 以上第2の実施形態によれば、UEに対し明示的にNBI-RS(セット)が設定されない場合であっても、NBI-RS(セット)を適切に導出することができる。
<第3の実施形態>
 第3の実施形態では、明示的に設定されるBFD-RSセットの数/暗示的に決定されるBFD-RSセットの数/NBI-RSセット数について説明する。
 本開示において、明示的に設定されるBFD-RS(NBI-RS)セット(NBI-RS)の数は、明示的BFD-RS(NBI-RS)セット数と呼ばれてもよい。また、暗示的に決定されるBFD-RS(NBI-RS)セットの数は、暗示的BFD-RS(NBI-RS)セット数と呼ばれてもよい。明示的BFD-RS(NBI-RS)セット数と、明示的BFD-RS(NBI-RS)セット数と、の合計は、トータルBFD-RS(NBI-RS)セット数と呼ばれてもよい。
 トータル/明示的NBI-RSセット数は、明示的BFD-RSセット数と同じでなければならないと規定されてもよい。UEは、トータル/明示的NBI-RSセット数は、明示的BFD-RSセット数と同じであると想定/期待してもよい(態様3-1)。
 また、トータル/明示的NBI-RSセット数は、明示的BFD-RSセット数以下でなければならないと規定されてもよい。UEは、トータル/明示的NBI-RSセット数は、明示的BFD-RSセット数以下であると想定/期待してもよい(態様3-2)。
 また、トータル/明示的NBI-RSセット数は、トータルBFD-RSセット数と同じでなければならないと規定されてもよい。UEは、トータル/明示的NBI-RSセット数は、トータルBFD-RSセット数と同じであると想定/期待してもよい(態様3-3)。
 また、トータル/明示的NBI-RSセット数は、トータルBFD-RSセット数以下でなければならないと規定されてもよい。UEは、トータル/明示的NBI-RSセット数は、トータルBFD-RSセット数以下であると想定/期待してもよい(態様3-4)。
 図4は、第3の実施形態に係るBFD-RSセット数及びNBI-RSセット数の一例を示す図である。図4に示す例において、トータルBFD-RSセット数及びトータルNBI-RSセット数は、それぞれ0、1又は2をとりうる。さらに、トータルBFD-RSセット数Xは、明示的に設定されるBFD-RSセット数Xと、明示的に決定されるBFD-RSセット数Xとに分けられる。
 図4において、明示的に設定されるBFD-RSセット数をX、明示的に決定されるBFD-RSセット数X、トータルNBI-RSセット数をYとするとき、それぞれの数に対応するケースを「ケース(X,X)-Y」と記載する。
 図4の例に示される、ケース(0,0)-0、ケース(0,0)-1及びケース(0,0)-2におけるBFD-RSセット数及びNBI-RSセット数の組み合わせが許容されるかについては、それぞれ図3のケース0-0、ケース0-1及びケース0-2と同じであってもよい。
 上記態様3-1又は態様3-3によれば、ケース(1,0)-0は許容されなくてもよい。また、上記態様3-2又は態様3-4によれば、ケース(1,0)-0は設定可能であってもよい。
 上記態様3-1から3-4によれば、ケース(1,0)-1は設定可能であってもよい。
 上記態様3-1から3-4によれば、ケース(1,0)-2は許容されなくてもよい。
 上記態様3-3によれば、ケース(0,1)-0は許容されなくてもよい。また、上記態様3-1、態様3-2又は態様3-4によれば、ケース(0,1)-0は設定可能であってもよい。
 上記態様3-1又は3-2によれば、ケース(0,1)-1は許容されなくてもよい。また、上記態様3-3又は態様3-4によれば、ケース(0,1)-1は設定可能であってもよい。
 上記態様3-1から3-4によれば、ケース(0,1)-2は許容されなくてもよい。
 上記態様3-1又は態様3-3によれば、ケース(2,0)-0は許容されなくてもよい。また、上記態様3-2又は態様3-4によれば、ケース(2,0)-0は設定可能であってもよい。
 上記態様3-1又は態様3-3によれば、ケース(2,0)-1は許容されなくてもよい。また、上記態様3-2又は態様3-4によれば、ケース(2,0)-1は設定可能であってもよい。ケース(2,0)-1が設定可能である場合、NBI-RSと1つのBFD-RSセットとの関連付けが規定されてもよい。当該関連付けは、上位レイヤシグナリング/物理レイヤシグナリングを用いてUEに設定/指示されてもよいし、関連付けのルールが予め仕様で規定されてもよい。当該ルールは、例えば、NBI-RSセットが、デフォルトで最小の(又は、最大の)TRPインデックスに対応するTRPに関連付けられることであってもよい。
 上記態様3-1から3-4によれば、ケース(2,0)-2は設定可能であってもよい。
 上記態様3-1又は態様3-3によれば、ケース(1,1)-0は許容されなくてもよい。また、上記態様3-2又は態様3-4によれば、ケース(1,1)-0は設定可能であってもよい。
 上記態様3-3によれば、ケース(1,1)-1は許容されなくてもよい。また、上記態様3-1、態様3-2又は態様3-4によれば、ケース(1,1)-1は設定可能であってもよい。ケース(1,1)-1が設定可能である場合、NBI-RSと1つのBFD-RSセットとの関連付けが規定されてもよい。当該関連付けは、上位レイヤシグナリング/物理レイヤシグナリングを用いてUEに設定/指示されてもよいし、関連付けのルールが予め仕様で規定されてもよい。当該ルールは、例えば、NBI-RSセットが、明示的に設定されるBFD-RSセットに関連付けられることであってもよい。
 上記態様3-1又は3-2によれば、ケース(1,1)-2は許容されなくてもよい。また、上記態様3-3又は態様3-4によれば、ケース(1,1)-2は設定可能であってもよい。ケース(1,1)-2が設定可能である場合、NBI-RSと1つのBFD-RSセットとの関連付けが規定されてもよい。当該関連付けは、上位レイヤシグナリング/物理レイヤシグナリングを用いてUEに設定/指示されてもよいし、関連付けのルールが予め仕様で規定されてもよい。当該ルールは、例えば、NBI-RSセットのそれぞれが、同じTRPに対応するBFD-RSセットのそれぞれに関連付けられることであってもよい。
 上記態様3-3によれば、ケース(0,2)-0は許容されなくてもよい。また、上記態様3-1、態様3-2又は態様3-4によれば、ケース(0,2)-0は設定可能であってもよい。
 上記態様3-1、態様3-2又は態様3-3によれば、ケース(0,2)-1は許容されなくてもよい。また、上記態様3-4によれば、ケース(0,2)-1は設定可能であってもよい。ケース(0,2)-1が設定可能である場合、NBI-RSと1つのBFD-RSセットとの関連付けが規定されてもよい。当該関連付けは、上位レイヤシグナリング/物理レイヤシグナリングを用いてUEに設定/指示されてもよいし、関連付けのルールが予め仕様で規定されてもよい。当該ルールは、例えば、NBI-RSセットが、デフォルトで最小の(又は、最大の)TRPインデックスに対応するTRPに関連付けられることであってもよい。
 上記態様3-1又は3-2によれば、ケース(0,2)-2は許容されなくてもよい。また、上記態様3-3又は態様3-4によれば、ケース(0,2)-2は設定可能であってもよい。ケース(0,2)-2が設定可能である場合、NBI-RSと1つのBFD-RSセットとの関連付けが規定されてもよい。当該関連付けは、上位レイヤシグナリング/物理レイヤシグナリングを用いてUEに設定/指示されてもよいし、関連付けのルールが予め仕様で規定されてもよい。当該ルールは、例えば、NBI-RSセットのそれぞれが、同じTRPに対応するBFD-RSセットのそれぞれに関連付けられることであってもよい。
 以上第3の実施形態によれば、設定/決定されるBFD-RSセット数及びNBI-RSセット数に応じて、さらに柔軟にBFR動作を制御することができる。
<第4の実施形態>
 以上の複数の実施形態の少なくとも1つにおける機能(特徴、feature)に対応する上位レイヤパラメータ(RRC IE)/UE能力(capability)が規定されてもよい。UE能力は、この機能をサポートすることを示してもよい。
 その機能に対応する(その機能を有効化する)上位レイヤパラメータが設定されたUEは、その機能を行ってもよい。「その機能に対応する上位レイヤパラメータが設定されないUEは、その機能を行わない(例えば、Rel.15/16に従う)こと」が規定されてもよい。
 その機能をサポートすることを示すUE能力を報告したUEは、その機能を行ってもよい。「その機能をサポートすることを示すUE能力を報告していないUEは、その機能を行わない(例えば、Rel.15/16に従う)こと」が規定されてもよい。
 UEがその機能をサポートすることを示すUE能力を報告し、且つその機能に対応する上位レイヤパラメータが設定された場合、UEは、その機能を行ってもよい。「UEがその機能をサポートすることを示すUE能力を報告しない場合、又はその機能に対応する上位レイヤパラメータが設定されない場合に、UEは、その機能を行わない(例えば、Rel.15/16に従う)こと」が規定されてもよい。
 UE能力は、UEがこの機能をサポートするか否かを示してもよい。
 機能は、明示的なBFD-RSセットの設定/暗示的なBFD-RSセットの決定であってもよい。
 機能は、明示的なNBI-RSセットの設定/暗示的なNBI-RSセットの決定であってもよい。
 UE能力は、シングルDCI/マルチDCIに基づく複数TRPに対するTRPごとのBFRにおいて、1つ/2つ/最大2つのBFD-RSセットの設定をUEがサポートするか否かで定義されてもよい。UE能力は、BFD-RSセット内のRSリソース数で定義されてもよい。
 UE能力は、シングルDCI/マルチDCIに基づく複数TRPに対するTRPごとのBFRにおいて、1つ/2つ/最大2つのNBI-RSセットの設定をUEがサポートするか否かで定義されてもよい。UE能力は、NBI-RSセット内のRSリソース数で定義されてもよい。
 UE能力は、TRPごとのBFRにおいて1つ/2つのBFD-RSセットが設定されるとき、1つ/2つのNBI-RSセットの設定をUEがサポートするか否かで定義されてもよい。
 UE能力は、2つのBFD-RSセット及び1つのNBI-RSセットの設定をUEがサポートするか否かで定義されてもよい。
 UE能力は、1つのNBI-RSセットと、2つのBFD-RSセットのうちの1つのBFD-RSセットと、の関連付けをUEがサポートするか否かで定義されてもよい。
 UE能力は、1つのNBI-RSセットと、2つのBFD-RSセットと、の関連付けをUEがサポートするか否かで定義されてもよい。
 UE能力は、NBI-RS(セット)なしでTRP/CCにおけるBFRを行うケースにおいて、TRP/CCのディアクティベーションをUEがサポートするか否かで定義されてもよい。当該ディアクティベーションは、UEが想定するディアクティベーションであってもよい。
 UE能力は、暗示的なBFD-RS(セット)の決定の有効/無効をUEがサポートするか否かで定義されてもよい。当該暗示的なBFD-RS(セット)の決定の有効/無効は、CCごと/複数のCCごとに行われてもよいし、TRPごとに行われてもよいし、周波数レンジごとに行われてもよい。また、当該暗示的なBFD-RS(セット)の決定の有効/無効は、1セットで行われてもよいし、2セットで行われてもよい。
 UE能力は、暗示的なNBI-RS(セット)の決定をUEがサポートするか否かで定義されてもよい。当該暗示的なNBI-RS(セット)の決定は、CCごと/複数のCCごとに行われてもよいし、TRPごとに行われてもよいし、周波数レンジごとに行われてもよい。また、当該暗示的なNBI-RS(セット)の決定は、1セットで行われてもよいし、2セットで行われてもよい。
 以上第4の実施形態によれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図6は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 制御部110は、0以上のビーム障害検出用参照信号(BFD-RS)セットの設定及び0以上のBFD-RSセットの決定の少なくとも一方と、0以上の新規ビーム識別用参照信号(NBI-RS)セットの設定及び0以上のNBI-RSセットの決定の少なくとも一方と、を想定してもよい。送受信部120は、前記想定に基づいて決定される、前記BFD-RSセットに含まれる1以上のBFD-RSと、前記NBI-RSセットに含まれる1以上のNBI-RSと、の少なくとも1つを送信してもよい(第1、第3の実施形態)。
(ユーザ端末)
 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。
 制御部210は、0以上のビーム障害検出用参照信号(BFD-RS)セットの設定及び0以上のBFD-RSセットの決定の少なくとも一方と、0以上の新規ビーム識別用参照信号(NBI-RS)セットの設定及び0以上のNBI-RSセットの決定の少なくとも一方と、を想定してもよい。送受信部220は、前記想定に基づいて決定される、前記BFD-RSセットに含まれる1以上のBFD-RSと、前記NBI-RSセットに含まれる1以上のNBI-RSと、の少なくとも1つを受信してもよい(第1、第3の実施形態)。
 制御部210は、設定されるBFD-RSセットの数と決定するBFD-RSセットの数との合計数が、設定されるNBI-RSセットの数と決定するNBI-RSセットの数との合計数以上であることを想定してもよい(第1の実施形態)。
 送受信部220は、前記BFD-RSセットの決定及び前記NBI-RSセットの決定の少なくとも一方を有効にする上位レイヤパラメータを受信してもよい(第1、第2の実施形態)。
 制御部210は、上位レイヤシグナリングで設定される同期信号ブロックに関するインデックス及びチャネル状態情報参照信号に関するインデックスの少なくとも1つに基づいて、前記NBI-RSセットの決定を行ってもよい(第2の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  0以上のビーム障害検出用参照信号(BFD-RS)セットの設定及び0以上のBFD-RSセットの決定の少なくとも一方と、0以上の新規ビーム識別用参照信号(NBI-RS)セットの設定及び0以上のNBI-RSセットの決定の少なくとも一方と、を想定する制御部と、
     前記想定に基づいて決定される、前記BFD-RSセットに含まれる1以上のBFD-RSと、前記NBI-RSセットに含まれる1以上のNBI-RSと、の少なくとも1つを受信する受信部と、を有する端末。
  2.  前記制御部は、設定されるBFD-RSセットの数と決定するBFD-RSセットの数との合計数が、設定されるNBI-RSセットの数と決定するNBI-RSセットの数との合計数以上であることを想定する、請求項1に記載の端末。
  3.  前記受信部は、前記BFD-RSセットの決定及び前記NBI-RSセットの決定の少なくとも一方を有効にする上位レイヤパラメータを受信する、請求項1に記載の端末。
  4.  前記制御部は、上位レイヤシグナリングで設定される同期信号ブロックに関するインデックス及びチャネル状態情報参照信号に関するインデックスの少なくとも1つに基づいて、前記NBI-RSセットの決定を行う請求項1に記載の端末。
  5.  0以上のビーム障害検出用参照信号(BFD-RS)セットの設定及び0以上のBFD-RSセットの決定の少なくとも一方と、0以上の新規ビーム識別用参照信号(NBI-RS)セットの設定及び0以上のNBI-RSセットの決定の少なくとも一方と、を想定するステップと、
     前記想定に基づいて決定される、前記BFD-RSセットに含まれる1以上のBFD-RSと、前記NBI-RSセットに含まれる1以上のNBI-RSと、の少なくとも1つを受信するステップと、を有する端末の無線通信方法。
  6.  0以上のビーム障害検出用参照信号(BFD-RS)セットの設定及び0以上のBFD-RSセットの決定の少なくとも一方と、0以上の新規ビーム識別用参照信号(NBI-RS)セットの設定及び0以上のNBI-RSセットの決定の少なくとも一方と、を想定する制御部と、
     前記想定に基づいて決定される、前記BFD-RSセットに含まれる1以上のBFD-RSと、前記NBI-RSセットに含まれる1以上のNBI-RSと、の少なくとも1つを送信する送信部と、を有する基地局。
PCT/JP2021/017070 2021-04-28 2021-04-28 端末、無線通信方法及び基地局 WO2022230141A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023516977A JPWO2022230141A1 (ja) 2021-04-28 2021-04-28
PCT/JP2021/017070 WO2022230141A1 (ja) 2021-04-28 2021-04-28 端末、無線通信方法及び基地局
EP21939300.6A EP4333524A1 (en) 2021-04-28 2021-04-28 Terminal, wireless communication method, and base station
CN202180099394.9A CN117461371A (zh) 2021-04-28 2021-04-28 终端、无线通信方法以及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017070 WO2022230141A1 (ja) 2021-04-28 2021-04-28 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022230141A1 true WO2022230141A1 (ja) 2022-11-03

Family

ID=83848081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017070 WO2022230141A1 (ja) 2021-04-28 2021-04-28 端末、無線通信方法及び基地局

Country Status (4)

Country Link
EP (1) EP4333524A1 (ja)
JP (1) JPWO2022230141A1 (ja)
CN (1) CN117461371A (ja)
WO (1) WO2022230141A1 (ja)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
INTERDIGITAL, INC.: "Discussion on M-TRP Beam Management Enhancements", 3GPP DRAFT; R1-2100066, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 17 January 2021 (2021-01-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051968874 *
MODERATOR (CATT): "Moderator summary #1 on M-TRP simultaneous transmission with multiple Rx panels", 3GPP DRAFT; R1-2103858, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 13 April 2021 (2021-04-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051995274 *

Also Published As

Publication number Publication date
EP4333524A1 (en) 2024-03-06
CN117461371A (zh) 2024-01-26
JPWO2022230141A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
JP7320762B2 (ja) 端末、無線通信方法及びシステム
JP7323612B2 (ja) 端末、無線通信方法及びシステム
JP7284175B2 (ja) 端末、無線通信方法及びシステム
JP7201699B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7284174B2 (ja) 端末、無線通信方法及びシステム
JP7252258B2 (ja) 端末、無線通信方法及びシステム
WO2022097619A1 (ja) 端末、無線通信方法及び基地局
WO2022157819A1 (ja) 端末、無線通信方法及び基地局
JP7244637B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7279087B2 (ja) 端末、無線通信方法、及びシステム
WO2022259543A1 (ja) 端末、無線通信方法及び基地局
WO2022190349A1 (ja) 端末、無線通信方法及び基地局
WO2022113284A1 (ja) 端末、無線通信方法及び基地局
WO2022220105A1 (ja) 端末、無線通信方法及び基地局
WO2022208872A1 (ja) 端末、無線通信方法及び基地局
WO2022149275A1 (ja) 端末、無線通信方法及び基地局
JP7320859B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7320860B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7362745B2 (ja) 端末、無線通信方法及びシステム
WO2022230141A1 (ja) 端末、無線通信方法及び基地局
WO2023007659A1 (ja) 端末、無線通信方法及び基地局
WO2022259524A1 (ja) 端末、無線通信方法及び基地局
WO2022249739A1 (ja) 端末、無線通信方法及び基地局
WO2023022146A1 (ja) 端末、無線通信方法及び基地局
WO2022220107A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516977

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021939300

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021939300

Country of ref document: EP

Effective date: 20231128

WWE Wipo information: entry into national phase

Ref document number: 202180099394.9

Country of ref document: CN