WO2022157819A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022157819A1
WO2022157819A1 PCT/JP2021/001609 JP2021001609W WO2022157819A1 WO 2022157819 A1 WO2022157819 A1 WO 2022157819A1 JP 2021001609 W JP2021001609 W JP 2021001609W WO 2022157819 A1 WO2022157819 A1 WO 2022157819A1
Authority
WO
WIPO (PCT)
Prior art keywords
bfd
tci
coreset
mac
trp
Prior art date
Application number
PCT/JP2021/001609
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022576246A priority Critical patent/JPWO2022157819A5/ja
Priority to CN202180095986.3A priority patent/CN117044266A/zh
Priority to PCT/JP2021/001609 priority patent/WO2022157819A1/ja
Publication of WO2022157819A1 publication Critical patent/WO2022157819A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • a procedure for a user terminal (user terminal, User Equipment (UE)) to detect a beam failure (Beam Failure Detection: BFD) and switch to another beam (Beam Failure Recovery (BFR) procedure , BFR, etc.) are being considered.
  • UE User Equipment
  • BFD Beam Failure Detection
  • BFR Beam Failure Recovery
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately detect beam failures.
  • a terminal receives a first configuration of a control resource set (CORESET) having a plurality of transmission configuration indication (TCI) states, for beam failure detection (BFD) or radio link monitoring (RLM)
  • CORESET control resource set
  • TCI transmission configuration indication
  • BFD beam failure detection
  • RLM radio link monitoring
  • a receiving unit that receives a second setting of one or more first reference signals and receives a medium access control-control element (MAC CE), and based on the first setting, the second setting, and the MAC CE, and a control unit that determines one or more second reference signals to be used for the BFD or the RLM, wherein the one or more first reference signals are associated with the plurality of TCI states, respectively.
  • MAC CE medium access control-control element
  • BFDRS can be determined appropriately.
  • FIG. 1 is a diagram showing an example of a beam recovery procedure.
  • FIG. 2 is a diagram showing an example of BFD-RS configuration for each cell.
  • FIG. 3 is a diagram showing another example of BFD-RS configuration for each cell.
  • FIG. 4 is a diagram showing an example of BFD-RS setting for each TRP.
  • FIG. 5 is a diagram showing another example of BFD-RS configuration for each TRP.
  • 6A and 6B are diagrams showing an example of MAC CE according to the second embodiment.
  • FIG. 7 is a diagram showing an example of MAC CE according to the modification of the second embodiment.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • the reception processing e.g., reception, demapping, demodulation, decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, encoding
  • the TCI state may represent those that apply to downlink signals/channels.
  • the equivalent of TCI conditions applied to uplink signals/channels may be expressed as spatial relations.
  • the TCI state is information about the pseudo-colocation (QCL) of signals/channels, and may be called spatial reception parameters, spatial relation information, or the like.
  • the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameters (e.g., spatial Rx parameter) are identical (QCL with respect to at least one of these). You may
  • the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types may be defined for the QCL.
  • QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be called QCL parameters) are shown below: QCL type A (QCL-A): Doppler shift, Doppler spread, mean delay and delay spread, QCL type B (QCL-B): Doppler shift and Doppler spread, QCL type C (QCL-C): Doppler shift and mean delay; • QCL Type D (QCL-D): Spatial reception parameters.
  • CORESET Control Resource Set
  • QCL QCL type D
  • a UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI conditions or QCL assumptions of that signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information about the QCL between the channel of interest (in other words, the reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by higher layer signaling, physical layer signaling or a combination thereof.
  • Physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel It may be at least one of a channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Uplink Control Channel
  • RSs that have a QCL relationship with the channel are, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SRS reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • An SSB may also be called an SS/PBCH block.
  • a QCL type X RS in a TCI state may mean an RS that has a QCL type X relationship with (the DMRS of) a certain channel/signal, and this RS is called a QCL type X QCL source in that TCI state.
  • QCL type A RS is always set for PDCCH and PDSCH, and QCL type D RS may be additionally set. Since it is difficult to estimate Doppler shift, delay, etc. by receiving DMRS one-shot, QCL type A RS is used to improve channel estimation accuracy. QCL type D RS is used for receive beam determination during DMRS reception.
  • TRS 1-1, 1-2, 1-3, 1-4 are transmitted, and TRS 1-1 is notified as QCL type C/D RS depending on the TCI status of PDSCH.
  • the UE can use the information obtained from the past periodic TRS1-1 reception/measurement results for PDSCH DMRS reception/channel estimation.
  • the PDSCH QCL source is TRS1-1 and the QCL target is the PDSCH DMRS.
  • Multi-TRP In NR, one or more transmission/reception points (Transmission/Reception Points (TRP)) (multi TRP (multi TRP (MTRP))) uses one or more panels (multi-panel) to the UE DL transmission is under consideration. It is also being considered that the UE uses one or more panels to perform UL transmissions for one or more TRPs.
  • TRP Transmission/Reception Points
  • MTRP multi TRP
  • a plurality of TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • Multi-TRPs may be connected by ideal/non-ideal backhauls to exchange information, data, and the like.
  • Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP.
  • Non-Coherent Joint Transmission NCJT may be used as one form of multi-TRP transmission.
  • TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) with a first precoding to transmit a first PDSCH.
  • TRP#2 also modulates and layer-maps a second codeword to transmit a second PDSCH with a second number of layers (eg, 2 layers) with a second precoding.
  • multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of time and frequency resources.
  • first PDSCH and second PDSCH are not quasi-co-located (QCL).
  • Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI, single PDCCH) (single master mode, based on single DCI Multi-TRP (single-DCI based multi-TRP)).
  • Multiple PDSCHs from multi-TRP may be scheduled using multiple DCIs (multi-DCI, multiple PDCCH) (multi-master mode, multi-DCI based multi-TRP (multiple PDCCH)). TRP)).
  • PDSCH transport block (TB) or codeword (CW) repetition across multi-TRPs.
  • repetition schemes URLLC schemes, eg schemes 1, 2a, 2b, 3, 4
  • SDM space division multiplexed
  • FDM frequency division multiplexed
  • RV redundancy version
  • the RVs may be the same or different for the multi-TRPs.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted within one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • one control resource set (CORESET) in PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
  • the UE may determine multi-TRP based on multi-DCI if at least one of the following conditions 1 and 2 is met: In this case, TRP may be read as a CORESET pool index.
  • TRP may be read as a CORESET pool index.
  • a CORESET pool index of 1 is set.
  • Two different values (eg, 0 and 1) of the CORESET pool index are set.
  • the UE may determine multi-TRP based on single DCI if the following conditions are met: In this case, two TRPs may be translated into two TCI states indicated by MAC CE/DCI. [conditions] "Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE)” is used.
  • DCI for common beam indication may be a UE-specific DCI format (e.g., DL DCI format (e.g., 1_1, 1_2), UL DCI format (e.g., 0_1, 0_2)), or a UE group common (UE-group common) DCI format.
  • DL DCI format e.g., 1_1, 1_2
  • UL DCI format e.g., 0_1, 0_2
  • UE group common UE-group common
  • the unified TCI framework allows UL and DL channels to be controlled by a common framework.
  • the unified TCI framework is Rel. Rather than defining TCI conditions or spatial relationships per channel as in 15, a common beam may be indicated and applied to all channels in the UL and DL, or a common beam for the UL may be used for the UL. It may be applied to all channels and the common beam for DL may be applied to all channels of DL.
  • One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are being considered.
  • the UE may assume the same TCI state (joint TCI state, joint TCI state pool, joint common TCI state pool) for UL and DL.
  • the RRC may configure multiple TCI states for both DL and UL (joint common TCI state pool).
  • Each of the multiple TCI states may be a QCL type A/D RS.
  • SSB, CSI-RS, or SRS may be set as QCL type A/D RS.
  • MAC CE may activate some of the configured TCI states.
  • a DCI may indicate at least one of a plurality of activated TCI states.
  • the UL and DL default beams may be aligned by MAC CE-based beam management (MAC CE level beam designation).
  • the PDSCH default TCI state may be updated to match the default UL beam (spatial relationship).
  • DCI-based beam management may indicate common beam/unified TCI state from the same TCI state pool for both UL and DL (joint common TCI state pool).
  • M (>1) TCI states may be activated by MAC CE.
  • the UL/DL DCI may select 1 out of M active TCI states.
  • the selected TCI state may apply to both UL and DL channels/RS.
  • the UE has different TCI states for each of UL and DL (separate TCI state, separate TCI state pool, UL separate TCI state pool and DL separate TCI state pool, separate common TCI state pool, UL common TCI state pool and DL common TCI state pool) may be envisaged.
  • the RRC may configure multiple TCI states (pools) for each of the UL and DL channels.
  • the MAC CE may select (activate) one or more (eg, multiple) TCI states (sets) for each of the UL and DL channels.
  • a MAC CE may activate two sets of TCI states.
  • the DL DCI may select (indicate) one or more (eg, one) TCI states. This TCI state may apply to one or more DL channels.
  • the DL channel may be PDCCH/PDSCH/CSI-RS.
  • the UE uses Rel.
  • a 16 TCI state operation (TCI framework) may be used to determine the TCI state for each channel/RS in the DL.
  • the UL DCI may select (indicate) one or more (eg, one) TCI states. This TCI state may apply to one or more UL channels.
  • the UL channel may be PUSCH/SRS/PUCCH.
  • the UL of panel #1 has an MPE problem, and the UE uses panel #2 for the UL.
  • the UE uses different UL beams depending on the UL signal strength.
  • the distance between UE and TRP (cell, base station) #1 is longer than the distance between UE and TRP #2.
  • the L1-RSRP of panel #1 is higher than the L1-RSRP of panel #2
  • the UL transmit power of panel #2 is higher than the UL transmit power of panel #1.
  • the UE uses panel #1 for DL from TRP#1 and panel #2 for UL to TRP#2.
  • the L1-RSRP of panel #1 is higher than the L1-RSRP of panel #2, and the UL load of panel #2 is lower than the UL load of panel #1.
  • the UE uses panel #1 for DL from TRP#1 and panel #2 for UL to TRP#2.
  • the UE may be equipped with a multi-panel for FR2.
  • the common beam for each UE panel may be different.
  • the UE uses Rel. Joint TCI based on the 15/16 DL TCI framework may be supported.
  • the TCI may include TCI states including at least one source RS that provides a reference (UE assumption) for determination of at least one of QCL and spatial filters.
  • the UE uses a joint TCI (joint TCI pool) containing references for both DL and UL beams and the UE has one separate TCI (pool) for DL and one separate TCI (pool) for UL is being considered.
  • joint TCI joint TCI pool
  • the UL TCI status is obtained from the same pool as the DL TCI status, and that the UL TCI status is obtained from a pool different from the DL TCI status.
  • active TCI pools for each of UL and DL may be set/activated by RRC/MAC CE.
  • a common active TCI pool for UL and DL may be configured/activated by RRC/MAC CE.
  • a TCI field within the DL DCI may be reused, or a new field within the DL DCI (for example, a unified TCI field) may be used for the DCI indication of the common beam (common TCI state).
  • DL DCI, DCI for PDSCH scheduling, and DCI formats 1_1 and 1_2 may be read interchangeably.
  • a new field in the UL DCI may be used for DCI indication of common beams (common TCI state).
  • UL DCI, DCI for PUSCH scheduling, and DCI formats 0_1 and 0_2 may be read interchangeably.
  • Common beam common TCI state DCI indication feedback is being considered. If the DCI indication of the common beam fails to be received, the base station misidentifies the common beam. Therefore, it is considered that the timing of updating the common beam is after the UE has sent the DCI indication feedback. For example, if DL DCI indicates common beam (TCI#2), common beam is updated (to TCI#2) after UE sends ACK/NACK (HARQ-ACK information) on PUCCH/PUSCH . For example, if the UL DCI indicates a common beam (TCI#2), the common beam will be updated (to TCI#2) after the UE sends PUSCH.
  • one MAC CE can update the beam index (TCI state) of multiple CCs.
  • a UE can be configured by RRC with up to two applicable CC lists (eg, applicable-CC-list). If two applicable CC lists are configured, the two applicable CC lists may correspond to intra-band CA in FR1 and intra-band CA in FR2, respectively.
  • PDCCH TCI state activation MAC CE activates the TCI state associated with the same CORESET ID on all BWP/CCs in the applicable CC list.
  • PDSCH TCI state activation MAC CE activates TCI state on all BWP/CCs in the applicable CC list.
  • A-SRS/SP-SRS spatial relationship activation MAC CE activates the spatial relationship associated with the same SRS resource ID on all BWP/CCs in the applicable CC list.
  • the UE is configured with an applicable CC list indicating CC #0, #1, #2, #3 and a list indicating 64 TCI states for each CC's CORESET or PDSCH.
  • CC#0 When one TCI state of CC#0 is activated by MAC CE, the corresponding TCI states are activated in CC#1, #2, and #3.
  • the UE may base procedure A below.
  • the UE issues an activation command to map up to 8 TCI states to codepoints in the DCI field (TCI field) within one CC/DL BWP or within one set of CC/BWPs. receive. If a set of TCI state IDs is activated for a set of CC/DL BWPs, where the applicable list of CCs is determined by the CCs indicated in the activation command, and the same The set applies to all DL BWPs within the indicated CC.
  • One set of TCI state IDs can be activated for one set of CC/DL BWPs.
  • the UE may base procedure B below.
  • the simultaneous TCI update list (simultaneousTCI-UpdateList-r16 and simultaneousTCI-UpdateListSecond-r16)
  • the simultaneous TCI cell list (simultaneousTCI- CellList)
  • the UE has an index p in all configured DL BWPs of all configured cells in one list determined from the serving cell index provided by the MAC CE command.
  • CORESET apply the antenna port quasi co-location (QCL) provided by the TCI state with the same activated TCI state ID value.
  • QCL quasi co-location
  • a concurrent TCI cell list may be provided for concurrent TCI state activation.
  • the UE may base procedure C below.
  • spatial relation information for SP or AP-SRS resource set by SRS resource information element (higher layer parameter SRS-Resource) is activated/updated by MAC CE.
  • the CC's applicable list is indicated by the simultaneous spatial update list (higher layer parameter simultaneousSpatial-UpdateList-r16 or simultaneousSpatial-UpdateListSecond-r16), and in all BWPs within the indicated CC, the same SRS resource
  • the spatial relationship information is applied to the SP or AP-SRS resource with ID.
  • a simultaneous TCI cell list (simultaneousTCI-CellList), a simultaneous TCI update list (at least one of simultaneousTCI-UpdateList1-r16 and simultaneousTCI-UpdateList2-r16) are serving cells whose TCI relationships can be updated simultaneously using MAC CE. is a list of simultaneousTCI-UpdateList1-r16 and simultaneousTCI-UpdateList2-r16 do not contain the same serving cell.
  • a simultaneous spatial update list (at least one of the upper layer parameters simultaneousSpatial-UpdatedList1-r16 and simultaneousSpatial-UpdatedList2-r16) is a list of serving cells whose spatial relationships can be updated simultaneously using MAC CE.
  • simultaneousSpatial-UpdatedList1-r16 and simultaneousSpatial-UpdatedList2-r16 do not contain the same serving cell.
  • the simultaneous TCI update list and the simultaneous spatial update list are set by RRC
  • the CORESET pool index of the CORESET is set by RRC
  • the TCI codepoints mapped to TCI states are indicated by MAC CE.
  • Radio Link Monitoring In NR, Radio Link Monitoring (RLM) is utilized.
  • the base station may set a radio link monitoring reference signal (Radio Link Monitoring RS (RLM-RS)) for each BWP to the UE using higher layer signaling.
  • RLM-RS Radio Link Monitoring RS
  • the UE may receive configuration information for RLM (eg, RRC "RadioLinkMonitoringConfig" information element).
  • the configuration information for the RLM may include failure detection resource configuration information (for example, "failureDetectionResourcesToAddModList” of the upper layer parameter).
  • the failure detection resource configuration information may include parameters related to RLM-RS (for example, "RadioLinkMonitoringRS" of higher layer parameters).
  • Parameters related to RLM-RS information indicating that it corresponds to the purpose of RLM, index corresponding to resource of RLM-RS (for example, index included in upper layer parameter "failureDetectionResources" (RadioLinkMonitoringRS in failureDetectionResourcesToAddModList) ), etc.
  • the index may be, for example, a CSI-RS resource configuration index (eg, non-zero power CSI-RS resource ID) or an SS/PBCH block index (SSB index).
  • the information of interest may indicate beam failure, (cell level) Radio Link Failure (RLF), or both.
  • the UE may identify the RLM-RS resource based on the index corresponding to the RLM-RS resource and perform RLM using the RLM-RS resource.
  • the UE If the UE is not provided with RLM-RS (RadioLink Monitoring RS) and the UE is provided with TCI status including one or more CSI-RSs for PDCCH reception, the UE follows steps 1 to 4 below.
  • RLM-RS RadioLink Monitoring RS
  • the UE uses that RS provided for the active TCI state for PDCCH reception in RLM.
  • the active TCI state for PDCCH reception includes two RSs, the UE assumes one RS has QCL type D, and the UE uses that RS with QCL type D for RLM. The UE does not assume that both RSs have QCL type D.
  • the UE is not required to use aperiodic or semi-persistent RSs for RLM.
  • L max 4
  • the UE is provided N Select RLM RSs. If more than one CORESET is associated with multiple search space sets with the same monitoring period, the UE determines the order of CORESETs from the highest CORESET index.
  • L max is the maximum number of SS/PBCH block indices in the cell.
  • the maximum number of SS/PBCH blocks transmitted in a half-frame is L max .
  • BFD Beam Failure Detection
  • BFR Beam Failure Recovery
  • the UE and the base station e.g., gNB (gNodeB)
  • the beam used for signal transmission transmission beam, Tx beam, etc.
  • the beam used for signal reception reception beam, Rx beam, etc.
  • Radio link failure may occur frequently due to deterioration of radio link quality. Since the occurrence of RLF requires cell reconnection, frequent occurrence of RLF causes degradation of system throughput.
  • BFR beam recovery
  • BFR beam failure recovery
  • L1/L2 Layer 1/Layer 2
  • a beam failure (BF) in the present disclosure may also be called a link failure.
  • Fig. 1 shows Rel. 15 A diagram showing an example of a beam recovery procedure in NR.
  • the number of beams, etc. is an example, and is not limited to this.
  • the UE performs measurements based on reference signal (RS) resources transmitted using two beams.
  • RS reference signal
  • the RS may be at least one of a synchronization signal block (SSB) and a channel state measurement RS (Channel State Information RS (CSI-RS)).
  • SSB may also be called an SS/PBCH (Physical Broadcast Channel) block.
  • PBCH Physical Broadcast Channel
  • RS is a primary synchronization signal (Primary SS (PSS)), a secondary synchronization signal (Secondary SS (SSS)), a mobility reference signal (Mobility RS (MRS)), a signal included in SSB, SSB, CSI-RS, for demodulation At least one of a reference signal (DeModulation Reference Signal (DMRS)), a beam-specific signal, etc., or a signal configured by extending or modifying these may be used.
  • the RS measured in step S101 is an RS for beam failure detection (Beam Failure Detection RS (BFD-RS), an RS for beam failure detection), an RS (BFR-RS) for use in a beam recovery procedure, or the like.
  • BFD-RS Beam Failure Detection RS
  • BFR-RS RS for use in a beam recovery procedure, or the like.
  • step S102 the UE cannot detect the BFD-RS (or the reception quality of the RS deteriorates) due to the radio waves from the base station being jammed.
  • Such disturbances can be caused, for example, by effects such as obstacles, fading, and interference between the UE and the base station.
  • the UE detects a beam failure when a predetermined condition is met.
  • the UE may detect the occurrence of a beam failure, for example, when BLER (Block Error Rate) is less than a threshold for all configured BFD-RSs (BFD-RS resource configuration).
  • BLER Block Error Rate
  • BFD-RS resource configuration a threshold for all configured BFD-RSs
  • the lower layer (physical (PHY) layer) of the UE may notify (indicate) the beam failure instance to the upper layer (MAC layer).
  • the criteria for determination are not limited to BLER, and may be the reference signal received power (Layer 1 Reference Signal Received Power (L1-RSRP)) in the physical layer.
  • L1-RSRP Layer 1 Reference Signal Received Power
  • beam failure detection may be performed based on a physical downlink control channel (PDCCH) or the like.
  • BFD-RS may be expected to be Quasi-Co-Location (QCL) with the DMRS of the PDCCH monitored by the UE.
  • QCL is an index that indicates the statistical properties of a channel. For example, if one signal/channel and another signal/channel have a QCL relationship, between these different signals/channels, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameter (e.g., spatial Rx Parameter) are the same (QCL with respect to at least one of these). You may
  • the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • Information on BFD-RS eg, RS index, resource, number, number of ports, precoding, etc.
  • BFD beam failure detection
  • Information on BFD-RS may be set (notified) to Information about BFD-RS may be called information about BFR resources.
  • a higher layer (eg, MAC layer) of the UE may start a predetermined timer (which may be referred to as a beam failure detection timer) when receiving a beam failure instance notification from the PHY layer of the UE.
  • a predetermined timer which may be referred to as a beam failure detection timer
  • the MAC layer of the UE receives beam failure instance notifications a certain number of times (for example, beamFailureInstanceMaxCount set by RRC) or more before the timer expires, it triggers BFR (for example, starts one of the random access procedures described later ).
  • the base station may determine that the UE has detected a beam failure when there is no notification from the UE or when a predetermined signal (beam recovery request in step S104) is received from the UE.
  • step S103 the UE starts searching for a new candidate beam to be newly used for communication for beam recovery.
  • the UE may select a new candidate beam corresponding to that RS.
  • the RS measured in step S103 is called a new candidate RS, an RS for new candidate beam identification (New Candidate Beam Identification RS (NCBI-RS)), CBI-RS, CB-RS (Candidate Beam RS), etc.
  • NCBI-RS may be the same as BFD-RS or may be different.
  • the new candidate beam may be simply called a candidate beam or a candidate RS.
  • a UE may determine a beam corresponding to an RS that satisfies a predetermined condition as a new candidate beam.
  • the UE may determine new candidate beams based on, for example, the configured NCBI-RSs whose L1-RSRP exceeds the threshold. Note that the criteria for judgment are not limited to L1-RSRP.
  • L1-RSRP for SSB may be referred to as SS-RSRP.
  • L1-RSRP for CSI-RS may be referred to as CSI-RSRP.
  • NCBI-RS e.g. resources, number of RSs, number of ports, precoding, etc.
  • NCBI New Candidate Beam Identification
  • NCBI-RS e.g., thresholds mentioned above
  • Information about new candidate RSs may be obtained based on information about BFD-RSs.
  • Information on NCBI-RS may be called information on resources for NBCI or the like.
  • BFD-RS may be read as radio link monitoring reference signals (Radio Link Monitoring RS (RLM-RS)).
  • RLM-RS Radio Link Monitoring RS
  • step S104 the UE that has identified the new candidate beam transmits a beam failure recovery request (BFRQ).
  • a beam recovery request may also be referred to as a beam recovery request signal, a beam failure recovery request signal, or the like.
  • BFRQ for example, physical uplink control channel (PUCCH), random access channel (PRACH), physical uplink shared channel (PUSCH), configured (setting) It may be transmitted using at least one of a configured grant (CG) PUSCH.
  • PUCCH physical uplink control channel
  • PRACH random access channel
  • PUSCH physical uplink shared channel
  • CG configured grant
  • the BFRQ may include information on the new candidate beam/new candidate RS identified in step S103.
  • Resources for BFRQ may be associated with the new candidate beam.
  • Beam information includes beam index (BI), port index of predetermined reference signal, RS index, resource index (for example, CSI-RS resource indicator (CRI)), SSB resource index (SSBRI)) or the like.
  • CB-BFR Contention-Based BFR
  • CF-BFR Contention-Free BFR
  • the UE may transmit a preamble (also called RA preamble, Physical Random Access Channel (PRACH), RACH preamble, etc.) as BFRQ using PRACH resources.
  • RA collision-type random access
  • PRACH Physical Random Access Channel
  • the UE may transmit a randomly selected preamble from one or more preambles.
  • the UE may transmit a UE-specific assigned preamble from the base station.
  • the base station may assign the same preamble to multiple UEs.
  • the base station may assign preambles for individual UEs.
  • CB-BFR and CF-BFR are respectively referred to as CB PRACH-based BFR (contention-based PRACH-based BFR (CBRA-BFR)) and CF PRACH-based BFR (contention-free PRACH-based BFR (CFRA-BFR)).
  • CBRA-BFR may be referred to as CBRA for BFR
  • CFRA-BFR may be referred to as CFRA for BFR.
  • information on PRACH resources may be notified by higher layer signaling (RRC signaling, etc.), for example.
  • RRC signaling may include information indicating the correspondence between detected DL-RSs (beams) and PRACH resources, and different PRACH resources may be associated with each DL-RS.
  • the base station that detected the BFRQ transmits a response signal (which may be called a gNB response or the like) to the BFRQ from the UE.
  • the response signal may include reconfiguration information (eg, DL-RS resource configuration information) for one or more beams.
  • the response signal may be transmitted, for example, in the UE common search space of PDCCH.
  • the response signal is reported using a cyclic redundancy check (CRC) scrambled PDCCH (DCI) by the UE identifier (eg, cell-radio RNTI (Cell-Radio RNTI (C-RNTI))) may be The UE may determine which transmit beam and/or receive beam to use based on the beam reconstruction information.
  • CRC cyclic redundancy check
  • DCI cell-radio RNTI
  • C-RNTI Cell-Radio RNTI
  • the UE may monitor the response signal based on at least one of the BFR control resource set (CControl Resource SET (CORESET)) and the BFR search space set.
  • CControl Resource SET CORESET
  • contention resolution may be determined to be successful when the UE receives the PDCCH corresponding to the C-RNTI for itself.
  • a period may be set for the UE to monitor the response from the base station (eg, gNB) to BFRQ.
  • the time period may be referred to, for example, as a gNB response window, a gNB window, a beam recovery request response window, and the like.
  • the UE may retransmit the BFRQ if no gNB response is detected within the window period.
  • the UE may send a message to the base station indicating that the beam reconstruction is complete.
  • the message may be transmitted by PUCCH or PUSCH, for example.
  • Beam recovery success may represent, for example, the case of reaching step S106.
  • a beam recovery failure may correspond, for example, to reaching a predetermined number of BFRQ transmissions or to expiring a beam failure recovery timer (Beam-failure-recovery-Timer).
  • Rel. 15 supports beam recovery procedures (eg, BFRQ notification) for beam failures detected in SpCells (PCell/PSCell) using random access procedures.
  • the beam recovery procedure for the beam failure detected in the SCell eg, notification of BFRQ
  • PUCCH for BFR eg, scheduling request (SR)
  • MAC CE for BFR eg, UL-SCH
  • the UE may transmit information about beam failures using MAC CE-based two-step.
  • the information about beam failure may include information about the cell that detected the beam failure and information about the new candidate beam (or new candidate RS index).
  • Step 1 When BF is detected, the UE may transmit a PUCCH-BFR (scheduling request (SR)) to the PCell/PSCell. A UL grant (DCI) for step 2 below may then be sent from the PCell/PSCell to the UE.
  • PUCCH-BFR scheduling request
  • DCI UL grant
  • Step 2 The UE then sends information about the cell in which the beam failure was detected (failed) (e.g., cell index) and information about the new candidate beam using MAC CE via an uplink channel (e.g., PUSCH) to You may transmit to a base station (PCell/PSCell).
  • a base station PCell/PSCell
  • the QCL of PDCCH/PUCCH/PDSCH/PUSCH may be updated to a new beam.
  • step numbers are merely numbers for explanation, and multiple steps may be grouped together or their order may be changed. Also, whether or not to implement BFR may be configured in the UE using higher layer signaling.
  • BFD-RS (BFD-RS) Rel.
  • the UE sets q 0 bar of periodic (P)-CSI-RS resource configuration index and candidate beam RS list ( candidateBeamRSList) or extended candidate beam RS list (candidateBeamRSListExt-r16) or candidate beam RS list for SCell (candidateBeamRSSCellList-r16) at least one set q 1 of P-CSI-RS resource configuration index and SS/PBCH block index , can be provided.
  • the q 0 bar is the overlined notation of “q 0 ”.
  • the q0 bar is simply denoted as q0 .
  • the q 1 bar is the notation with "q 1 " overlined.
  • the q 1 bar is simply denoted as q 1 .
  • the set q 0 of P-CSI-RS resources provided by failure detection resources may be referred to as explicit BFD-RS.
  • the UE may perform L1-RSRP measurements, etc., using RS resources corresponding to indices in at least one of set q 0 and set q 1 to detect beam failure.
  • providing the above-described upper layer parameter indicating the information of the index corresponding to the BFD resource can be interpreted as setting the BFD resource, setting the BFD-RS, etc.
  • BFD resource, periodic CSI-RS resource configuration index or SSB index set q 0 , BFD-RS, BFD-RS set, and RS set may be read interchangeably.
  • the UE If the UE is not provided with q 0 by failureDetectionResources for one BWP of its serving cell, indicated by the TCI-State for the corresponding CORESET that the UE uses for PDCCH monitoring. It decides to include in set q 0 a P-CSI-RS resource configuration index that has the same value as the RS index in the RS set. If there are two RS indices in one TCI state, set q 0 contains RS indices with QCL type D configuration for the corresponding TCI state. The UE assumes that set q 0 contains up to two RS indices. The UE assumes a single-port RS within its set q 0 .
  • This set q 0 may be called implicit BFD-RS.
  • the UE determines the BFD-RS (RS set) according to the PDCCH TCI state.
  • the UE assumes that its RS set contains up to two RSs.
  • the physical layer in the UE evaluates the radio link quality according to a set of resource configurations q 0 against a threshold Q out,LR .
  • the UE has a P-CSI-RS resource configuration quasi-colocated with DM-RS for PDCCH reception monitored by the UE or quasi-colocated with DM-RS for PDCCH reception monitored by the UE.
  • the radio link quality is evaluated according to the SS/PBCH block on the PCell or PSCell.
  • BFD-RS is QCLed with PDCCH.
  • the UE may follow at least one of the following actions 1 (BFR for SCell) and 2 (BFR for SpCell).
  • a UE may be configured for PUCCH transmission with a link recovery request (LRR) via schedulingRequestIDForBFR for BFR.
  • the UE may transmit at least one MAC CE (BFR MAC CE) on the first PUSCH that provides an index for at least one corresponding SCell with radio link quality worse than Q out,LR .
  • This index is the index q new for the P-CSI-RS configuration or SS/PBCH block provided by higher layers for the corresponding SCell, if configured.
  • the UE 28 symbols after the last symbol of a particular PDCCH reception, the UE may follow at least one of the following actions 1-1 and 1-2.
  • a specific PDCCH reception schedules a PUSCH transmission with the same HARQ process number as the first PUSCH transmission and has a DCI format with a toggled new data indicator (NDI) field value.
  • NDI toggled new data indicator
  • the UE monitors the PDCCH in all CORESETs on the SCell indicated by the MAC CE using the same antenna port QCL parameters, if any, as the antenna port QCL parameters associated with the corresponding index qnew .
  • the UE is provided with PUCCH spatial relation information (PUCCH-SpatialRelationInfo) for the PUCCH.
  • PUCCH-SpatialRelationInfo PUCCH spatial relation information for the PUCCH.
  • PUCCH-SpatialRelationInfo PUCCH spatial relation information
  • the subcarrier spacing (SCS) setting for the above 28 symbols is the minimum value of the SCS setting of the active DL BWP for PDCCH reception and the SCS setting of the active DL BWP of at least one SCell.
  • q new is the index of the new candidate beam (eg, SSB/CSI-RS) selected by the UE in the BFR procedure and reported to the network in the corresponding PRACH (or the index of the new beam discovered in the BFR procedure).
  • the new candidate beam eg, SSB/CSI-RS
  • qu may be a PUCCH P0 ID (p0-PUCCH-Id) indicating a PUCCH P0 (P0-PUCCH) in a PUCCH P0 set (p0-Set).
  • l may also be called a power control adjustment state index, a PUCCH power control adjustment state index, a closed loop index, and so on.
  • q d may be the index of the pathloss reference RS (eg, set by PUCCH-PathlossReferenceRS).
  • the UE may receive PRACH transmission configuration (PRACH-ResourceDedicatedBFR). For PRACH transmission according to antenna port QCL parameters associated with P-CSI-RS resource configuration or SS/PBCH block associated with index q new provided by higher layers in slot n, the UE shall monitor.
  • Specific PDCCH recovery search space ID for detection of DCI format with CRC scrambled by C-RNTI or MCS-C-RNTI starting from slot n+4 within the window configured by BeamFailureRecoveryConfig PDCCH in the search space set provided by (recoverySearchSpaceId).
  • the UE For PDCCH monitoring in the search space set provided by the Recovery Search Space ID and the corresponding PDSCH reception, the UE sets the TCI state or TCI State Add List for PDCCH (tci-StatesPDCCH-ToAddList) and The UE assumes the same antenna port QCL parameters as the antenna port QCL parameters associated with index q new until an activation is received by higher layers for at least one parameter of the TCI-States Release List (tci-StatesPDCCH-ToReleaseList). do.
  • the UE may follow the following action 2-1.
  • BFD-RS may or may not be explicitly configured by RRC. If BFD-RS is not configured, the UE assumes PDCCH and QCL type D periodic (P)-CSI-RS or SSB as BFD-RS. Rel. At 15/16, the UE can monitor up to two BFD-RS.
  • the UE continues to monitor the explicitly configured BFD-RS (explicit BFD-RS) until it is reconfigured or deactivated by RRC. If BFD-RS is explicitly configured by RRC, even after BFD occurs and BFR is completed, BFR may occur again when the UE performs BFD using the BFD-RS.
  • explicitly configured BFD-RS explicit BFD-RS
  • P-CSI-RS # 1 when P-CSI-RS # 1 is configured as BFD-RS by RRC, when BFR is performed, P-CSI-RS # 1 (P as QCL type D for PDCCH after BFR -CSI-RS#1 configured TCI state) is considered to use a different beam.
  • P-CSI-RS#1 set before BFR is used to measure BFD after BFR. That is, even when the actual communication quality is good, BFD is performed using the BFD-RS that has nothing to do with the communication quality, so BFR may be performed again (repeatedly).
  • an explicit BFD-RS is configured before the SCell's beam failure
  • the UE shall stop monitoring the explicit BFD-RS after receiving the SCell BFR response. is being considered. For example, when the UE performs at least one of the operations 1-1 and 1-2 described above, it performs the following operations 1-3.
  • the UE shall stop monitoring the explicit BFD-RS after receiving the SpCell BFR response. is being considered. For example, it is being considered that the UE performs the following action 2-2 instead of the action 2-1 described above.
  • the BFD-RS set k may be derived from the QCL type D RSs of the CORESET's TCI states set in the CORESET subset k. For example, k is 0,1. If the QCL type D RS is not configured, the BFD-RS set k may be derived from the QCL type A of the TCI state of the CORESET configured in the CORESET subset k. This option may apply to multi-TRP based on single DCI and multi-TRP based on multiple DCI.
  • the BFD-RS set k may be derived from the QCL type D RS of the CORESET's TCI state set in the CORESET pool index k. For example, k is 0,1. If the QCL type D RS is not configured, the BFD-RS set k may be derived from the QCL type A of the CORESET's TCI state configured in the CORESET pool index k. This option may be applied to multi-TRP based on multi-DCI.
  • Option 2 is preferable for multi-TRP based on multi-DCI.
  • CORESET subset setting would be similar to multi-TRP based on multi-DCI.
  • Option 1 will not work in this case.
  • BFD-RS is implicitly determined when per-TRP BFR is set by RRC and BFD-RS is not explicitly set.
  • BFR-RS/RLM-RS are set by RRC information elements and updated by RRC.
  • BFR-RS/RLM-RS are preferably the same as the CORESET TCI state RS (especially QCL type D RS) (QCLed with PDCCH (CORESET TCI state)). Otherwise, the UE cannot recover from CORESET beam failure/link failure.
  • BFR-RS/RLM-RS is not set by the RRC information element, there is a rule that the TCI status of CORESET (especially QCL type D RS) is used as BFR-RS/RLM-RS. In this case, the BFR-RS/RLM-RS will automatically be identical to the TCI state of the CORESET (especially the QCL type D RS).
  • BFR-RS/RLM-RS is not necessarily the same as the TCI state of CORESET (especially QCL type D RS).
  • PDCCH SFN scheme To improve the reliability of PDCCH, repetition of PDCCH in the time/space/frequency domain from multi-TRP is under study.
  • the PDCCH SFN scheme (PDCCH repetition using frequency division multiplexing (SDM)) sets/notifies multiple TCI states for one CORESET and transmits DCI (PDCCH) from multiple TRPs (at the same time/frequency Multiple TRPs transmit DCI).
  • the PDCCH DMRS in all resource element groups (REGs)/control channel elements (CCEs) of that PDCCH may be associated with two TCI states. In this case, multiple TCI states are set/notified for one CORESET by the RRC information element/MAC CE.
  • SDM and SFN may be read interchangeably.
  • A/B/C and “at least one of A, B and C” may be read interchangeably.
  • cell, serving cell, CC, carrier, BWP, DL BWP, UL BWP, active DL BWP, active UL BWP, band may be read interchangeably.
  • index, ID, indicator, and resource ID may be read interchangeably.
  • supporting, controlling, controllable, operating, and capable of operating may be read interchangeably.
  • configure, activate, update, indicate, enable, specify, and select may be read interchangeably.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • RRC, RRC signaling, RRC parameters, higher layers, higher layer parameters, RRC information elements (IEs), RRC messages may be read interchangeably.
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • MAC CE and activation/deactivation commands may be read interchangeably.
  • beams, spatial domain filters, spatial settings, TCI states, UL TCI states, unified TCI states, unified beams, common TCI states, common beams, TCI assumptions, QCL assumptions, QCL parameters, spatial Domain Receive Filter, UE Spatial Domain Receive Filter, UE Receive Beam, DL Beam, DL Receive Beam, DL Precoding, DL Precoder, DL-RS, TCI State/QCL Assumed QCL Type D RS, TCI State/QCL Assumed QCL type A RS, spatial relationship, spatial domain transmit filter, UE spatial domain transmit filter, UE transmit beam, UL beam, UL transmit beam, UL precoding, UL precoder, PL-RS may be read interchangeably.
  • QCL type X-RS, DL-RS associated with QCL type X, DL-RS with QCL type X, source of DL-RS, SSB, CSI-RS, SRS may be read interchangeably. good.
  • the panel Uplink (UL) transmitting entity, TRP, spatial relationship, control resource set (COntrol REsource SET (CORESET)), PDSCH, codeword, base station, antenna port of a signal (e.g., reference signal for demodulation (DeModulation Reference Signal (DMRS)) port), antenna port group for a signal (e.g. DMRS port group), group for multiplexing (e.g. Code Division Multiplexing (CDM) group, reference signal group, CORESET group), CORESET pool, CORESET subset, CW, redundancy version (RV), layers (MIMO layer, transmission layer, spatial layer) may be read interchangeably. Also, panel identifier (ID) and panel may be read interchangeably.
  • DMRS DeModulation Reference Signal
  • the TRP ID, the TRP related ID, the CORESET pool index, the position of one of the two TCI states corresponding to one codepoint of the field in the DCI (ordinal number, first TCI state or second TCI state ) and TRP may be read interchangeably.
  • TRP transmission point
  • panel DMRS port group
  • CORESET pool one of two TCI states associated with one codepoint of the TCI field may be read interchangeably.
  • single TRP, single TRP system, single TRP transmission, and single PDSCH may be read interchangeably.
  • multi-TRP, multi-TRP system, multi-TRP transmission, and multi-PDSCH may be read interchangeably.
  • a single DCI, a single PDCCH, multiple TRPs based on a single DCI, and activating two TCI states on at least one TCI codepoint may be read interchangeably.
  • single TRP single TRP
  • channels with single TRP channels with one TCI state/spatial relationship
  • multi-TRP not enabled by RRC/DCI multiple TCI states/spatial relations enabled by RRC/DCI shall not be set
  • neither CORESET Pool Index (CORESETPoolIndex) value of 1 shall be set for any CORESET
  • neither codepoint of the TCI field shall be mapped to two TCI states.
  • multi-TRP channels with multi-TRP, channels with multiple TCI state/spatial relationships, multi-TRP enabled by RRC/DCI, multiple TCI state/spatial relationships enabled by RRC/DCI and at least one of multi-TRP based on a single DCI and multi-TRP based on multiple DCIs
  • multi-TRPs based on multi-DCI setting a CORESET pool index (CORESETPoolIndex) value of 1 for a CORESET, may be read interchangeably.
  • multiple TRPs based on a single DCI, where at least one codepoint of a TCI field is mapped to two TCI states may be read interchangeably.
  • TRP#2 Secondary TRP
  • DMRS Downlink Reference Signal
  • DMRS port Downlink Reference Signal
  • antenna port may be read interchangeably.
  • the link direction, downlink (DL), uplink (UL), and one of UL and DL may be read interchangeably.
  • pools, sets, groups, and lists may be read interchangeably.
  • common beam common TCI, common TCI state, unified TCI, unified TCI state, TCI state applicable to DL and UL, TCI state applicable to multiple (multiple types) of channels/RS, multiple types of The TCI states applicable to the channel/RS, PL-RS, may be interchanged.
  • multiple TCI states set by RRC multiple TCI states activated by MAC CE, pool, TCI state pool, active TCI state pool, common TCI state pool, joint TCI state pool, separate TCI state pool , a common TCI state pool for UL, a common TCI state pool for DL, a common TCI state pool configured/activated by RRC/MAC CE, and TCI state information may be read interchangeably.
  • BFR, BFR setting, BFD-RS, BFD-RS set, BFD-RS setting, RLM-RS, RLM-RS set, and RLM-RS setting may be read interchangeably.
  • cell BFR cell-specific BFR, Rel. BFR of 15/16, may be read interchangeably.
  • TRP BFR TRP-specific BFR, Rel. 17/Rel. 17 and later BFRs may be read interchangeably.
  • BFD-RS BFD-RS
  • RLM-RS RLM-RS
  • NCBI-RS detection RS
  • monitoring RS monitoring RS
  • BFD-RS may be read as RLM-RS and the radio communication method may be applied to RLM-RS.
  • Two sets of BFD-RS may be configured. Two BFD-RS sets may be associated with two TRPs respectively. Two BFD-RS sets may be configured by RRC. Each BFD-RS set may include one or more BFD-RSs. When multiple CORESETs are set for one TRP, multiple BFD-RSs in the BFD-RS set corresponding to that TRP may be associated with each of the multiple CORESETs (or may be QCLed). good). If multiple CORESETs are configured for one TRP, one BFD-RS within one BFD-RS may be associated (QCLed) with those multiple CORESETs.
  • One or two TCI states may be set/activated for one CORESET.
  • Two BFD-RSs may be associated with one CORESET.
  • Two BFD-RSs may be associated with two TCI states of one CORESET, respectively.
  • the UE may receive a first configuration of CORESET with multiple TCI states, receive a second configuration of one or more first RSs for BFD or RLM, and receive MAC CE.
  • the UE may determine one or more second RSs used for the BFD or the RLM based on the first setting, the second setting, and the MAC CE (one or more first RSs may be one or more may be updated to the second RS).
  • the one or more first reference signals may be associated with each of the plurality of TCI states.
  • the MAC CE may be a UE-specific PDCCH TCI State Indication MAC CE (TCI State Indication for UE-specific PDCCH MAC CE), or may be a new MAC CE.
  • the UE and the MAC CE update the BFD-RS so that the BFD-RS/RLM-RS contains the RSs in both of the two TCI states in that CORESET. It would be beneficial to support explicit or implicit updating of /RLM-RS.
  • BFD-RS is set by RRC, QCLed with CORESET i, and one or more TCI states (one or two TCI states) among multiple TCI states set in CORESET i are updated by MAC CE (or one or more of the common TCI states associated with CORESET i are updated by the MAC CE), the BFD-RS within the updated one or more TCI states of CORESET i It may be automatically updated to the P-CSI-RS or SSB configured (or associated with the RS in one or more updated TCI states of CORESET i).
  • P-CSI-RS or SSB may correspond to RS with QCL type D if there are two RSs in each TCI state updated.
  • a rule (CORESET selection rule) may be defined for selecting which CORESET among the plurality of CORESETs is applied to the BFD-RS determination.
  • the CORESET that applies is the period of the RS within the TCI state of the CORESET (e.g., the CORESET corresponding to the minimum or maximum period is selected) and the CORESET ID (e.g., the CORESET with the minimum or maximum CORESET ID is selected). is determined based on at least one of:
  • a CORESET with multiple TCI states may be preferentially selected. In this case, the reliability of PDCCH SFN can be improved.
  • One or more TCI state set CORESETs may be selected preferentially (the TCI state set CORESETs may not be preferred).
  • the UE When the TCI state (or common TCI state) of one CORESET (CORESET i) selected according to the CORESET selection rule from among multiple CORESETs is updated by MAC CE, the UE is in the TCI state of the selected CORESET
  • the RS may be used as a BFD-RS (BFD-RS may be updated to the RS in the associated TCI state).
  • the UE selects the RS within the TCI state of one CORESET (CORESET i) from the multiple CORESETs according to the CORESET selection rule.
  • CORESET i the RS within the TCI state of one CORESET (CORESET i) from the multiple CORESETs according to the CORESET selection rule.
  • the BFD-RS may be updated to the RS in the associated TCI state).
  • This BFD-RS update is applied to both per-cell (cell-specific) BFD-RS configuration (per cell, Rel.15/16) and per-TRP BFD-RS configuration (per TRP, Rel.17 and later). It may be applied to both single DCI-based TRP-based BFR and multi-DCI-based TRP-based BFR.
  • FIG. 2 shows an example of BFD-RS configuration for each cell.
  • CORESET#1 is configured for cell #1 and TCI states #A and #B are indicated for CORESET#1. Further, TCI state #A of CORESET#1 and BFD-RS#a to be QCLed, and TCI state #B of CORESET#1 and BFD-RS#b to be QCLed are set.
  • the BFD-RSs for cell #1 are BFD-RSs #a and #b.
  • the BFD-RS corresponding to TCI state #A of CORESET #1 is updated to TCI state #C is automatically updated to BFD-RS#c, which is the RS included (associated) in the BFD-RS#c.
  • TCI state #B of CORESET#1 and BFD-RS#b to be QCLed are not updated, and BFD-RS for cell #1 are BFD-RS#c and #b.
  • FIG. 3 shows another example of BFD-RS configuration for each cell.
  • CORESET#1 is configured for cell #1 and TCI states #A and #B are indicated for CORESET#1. Further, TCI state #A of CORESET#1 and BFD-RS#a to be QCLed, and TCI state #B of CORESET#1 and BFD-RS#b to be QCLed are set.
  • the BFD-RSs for cell #1 are BFD-RSs #a and #b.
  • the BFD-RS corresponding to TCI state #A of CORESET #1 is included in TCI state #B. automatically updated to BFD-RS#b, which is the associated (associated) RS.
  • TCI state #B of CORESET#1 and BFD-RS#b to be QCLed are not updated, and the BFD-RS for cell #1 is BFD-RS#b.
  • BFD-RS may be updated to one BFD-RS.
  • FIG. 4 shows an example of BFD-RS configuration for each TRP.
  • This BFD-RS configuration may be applied to both single DCI-based multi-TRP and multi-DCI-based multi-TRP.
  • CORESET#1 is set for TRP#1
  • CORESET#2 is set for TRP#2
  • TCI state #A is indicated for CORESET#1
  • TCI state #A is indicated for CORESET#2.
  • TCI states #B and #C are indicated.
  • BFD-RS set #1 including TCI state #A of CORESET #1 and BFD-RS #a to be QCLed is set, TCI state #B of CORESET #2 and BFD-RS #b to be QCLed, BFD-RS set #2 is configured including TCI state #C of CORESET #2 and BFD-RS #c to be QCLed.
  • BFD-RS set #1 may be associated with TRP #1.
  • BFD-RS set #2 may be associated with TRP #2.
  • the BFD-RSs are BFD-RSs #a, #b, and #c.
  • TCI state #A of CORESET#1 is updated to TCI state #D by MAC CE
  • the BFD-RS corresponding to that CORESET#1 is the RS included (associated) in TCI state #D Automatically updated to BFD-RS#d.
  • TCI state #C of CORESET#2 is updated to TCI state #E by MAC CE
  • the BFD-RS corresponding to TCI state #C of CORESET#2 is included in TCI state #E (associated ) is automatically updated to BFD-RS#e, which is the RS.
  • BFD-RSs for TRP#1 and #2 are BFD-RSs #d, #b, and #e.
  • the number of BFD-RSs may exceed the Rel, 15/16 limit of 2.
  • the one or more updated TCI states and the one or more original (before update) TCI states are the same TRP (may be associated with the same new ID, or the same CORESET pool index, or the same TRP association ID).
  • the multiple TCI states may be any of options 1-1 and 1-2 below.
  • FIG. 5 shows another example of BFD-RS configuration for each TRP.
  • This BFD-RS configuration may be applied to both single DCI-based multi-TRP and multi-DCI-based multi-TRP.
  • CORESET#1 is set for TRP#1
  • CORESET#2 is set for TRP#2
  • TCI state #A is indicated for CORESET#1
  • TCI state #A is indicated for CORESET#2.
  • TCI states #B and #C are indicated.
  • BFD-RS set #1 including BFD-RS #a QCLed with TCI state #A of CORESET #1 is set, and BFD-RS # QCLed with TCI states #B and #C of CORESET #2.
  • BFD-RS set #2 containing b is configured.
  • BFD-RS set #1 may be associated with TRP #1.
  • BFD-RS set #2 may be associated with TRP #2.
  • the BFD-RSs are BFD-RSs #a and #b.
  • MACCE updates TCI states #B and #C of CORESET#2 to TCI state #E.
  • the BFD-RSs corresponding to TCI states #B and #C of CORESET#2 are automatically updated to BFD-RS#e, which is the RS included (associated) in TCI state #E.
  • the BFD-RSs for TRP#1 and #2 are BFD-RS#a in BFD-RS set #1 and BFD-RS#e in BFD-RS set #2.
  • MAC CE updates TCI state #B of CORESET #2 to TCI state #E
  • MAC CE updates TCI state #C of CORESET #2 to TCI state #F.
  • the BFD-RSs corresponding to TCI states #B and #C of CORESET#2 are the same RSs associated with TCI states #B and #C of CORESET#2 (the same RSs QCLed with those CORESETs). is automatically updated to BFD-RS#e.
  • the BFD-RSs for TRP#1 and #2 are BFD-RS#a in BFD-RS set #1 and BFD-RS#e in BFD-RS set #2.
  • the UE can properly determine the BFD-RS even when the TCI state of the CORESET QCLed with the BFD-RS is updated.
  • a new MAC CE for updating BFD-RS may be defined.
  • This MAC CE may have a new logical channel ID (LCID).
  • the new MAC CE may be applied in different cases than the UE-specific PDCCH TCI status indication MAC CE.
  • a new MAC CE may follow at least one of the following options 2-1 to 2-7.
  • the new MAC CE may follow any of options 2-1 to 2-3 below.
  • MAC CE includes one or two BFD-RS fields, one serving cell ID field, and one BWP ID field. This MAC CE applies to the indicated serving cell/BWP.
  • FIG. 6A shows an example of MAC CE according to option 2-1. This example assumes one BFD-RS per TRP.
  • MAC CE includes a T field, a serving cell ID field, a BWP ID field, a first R (reserved bit) field, a first BFD-RS ID (BFD-RS ID 1 ) field, and a first R and a second BFD-RS ID (BFD-RS ID 2 ) field.
  • the T field may indicate whether or not a second BFD-RS field is present.
  • Each BFD-RS field may be accompanied by a flag that identifies whether it indicates the CSI-RS resource ID or the SSB ID.
  • MAC CE includes one or two BFD-RS fields, one serving cell ID field, and one BWP ID field.
  • a CC list is configured by RRC, and this MAC CE applies to multiple CCs in the CC list that contain the indicated serving cell. This means that this MAC CE performs simultaneous BFD-RS updates for multiple CCs, and multiple CCs use the same BFD-RS.
  • a MAC CE contains one or more sets. Each set includes one or two BFD-RS fields, one serving cell ID field, and one BWP ID field. One or more sets indicate different serving cell IDs. This means that this MAC CE can update different BFD-RS for multiple CCs.
  • the new MAC CE may follow any of options 2-4 to 2-6 below.
  • the MAC CE includes one or two BFD-RS fields, one serving cell ID field, and one BWP ID field per TRP. This MAC CE may or may not include the TRP-ID/New ID/CORESET pool index fields associated with the TRP. This MAC CE applies to the indicated serving cell/BWP.
  • FIG. 6B shows an example of MAC CE according to Option 2-4. This example assumes one BFD-RS per TRP.
  • the MAC CE includes a T field, a serving cell ID field, a BWP ID field, an A field, a first BFD-RS ID field, an R field, and a second BFD-RS ID field.
  • Each BFD-RS field may be accompanied by a flag that identifies whether it indicates the CSI-RS resource ID or the SSB ID.
  • the MAC CE includes one or two BFD-RS fields, one serving cell ID field, and one BWP ID field per TRP.
  • This MAC CE may or may not include the TRP-ID/New ID/CORESET pool index fields associated with the TRP.
  • a CC list is configured by RRC, and this MAC CE applies to multiple CCs in the CC list that contain the indicated serving cell. This means that this MAC CE performs simultaneous BFD-RS updates for multiple CCs, and multiple CCs use the same BFD-RS.
  • all CCs set in the CC list may be set with BFR per TRP.
  • a MAC CE contains one or more sets. Each set includes one or two BFD-RS fields, one serving cell ID field, and one BWP ID field per TRP. Each set may or may not include the TRP-ID/New ID/CORESET pool index fields associated with the TRP. One or more sets indicate different serving cell IDs. This means that this MAC CE can update different BFD-RS for multiple CCs with per-TRP BFR configured.
  • a new MAC CE may follow options 2-7 below.
  • the MAC CE may include a BFD-RS for a cell configured with per-cell BFR, or may include a BFD-RS for a cell configured with per-TRP BFR.
  • This MAC CE may be a combination of options 2-3 and 2-6.
  • each BFD-RS field is applied to which TRP of which cell. It becomes clear whether This means that this MAC CE can update the BFD-RS for only one TRP for that cell and maintain the BFD-RS for other TRPs for that cell.
  • TRP-ID/New ID/CORESET pool index field associated with the TRP in the MAC CE for a cell with per-TRP BFR set. This means that this MAC CE will simultaneously It means that the BFD-RS for the two TRPs should be updated, and this MAC CE may follow options 2-7-1 and 2-7-2 below.
  • New flag in the MAC CE for each cell/BWP to indicate whether this MAC CE is for per cell BFD-RS or per TRP BFD-RS (has two sets of BFD-RS fields) may be required.
  • BFD-RS may be set/notified for each CORESET.
  • the CORESET selection rule in the first embodiment may be applied.
  • the BFD-RS for the selected CORESET (BFD-RS notified by MAC CE for the selected CORESET) is used for BFD.
  • FIG. 7 shows an example of MAC CE according to a modification of the second embodiment.
  • This MAC CE signals one or two BFD-RSs for CORESET.
  • the MAC CE includes a serving cell ID field, a CORESET ID field, a first BFD-RS ID (BFD-RS ID 1 ) field, a first R field, an R field, and a second BFD-RS ID ( BFD-RS ID 2 ) field.
  • the serving cell ID field indicates the serving cell to which this MAC CE is applied.
  • the CORESET ID field indicates the CORESET to which this MAC CE is applied.
  • the first BFD-RS ID field indicates the first BFD-RS.
  • the first BFD-RS ID field may be accompanied by a flag indicating whether the first BFD-RS is the CSI-RS resource ID or the SSB ID.
  • the second BFD-RS ID field indicates the second BFD-RS.
  • the second BFD-RS ID field may be accompanied by a flag indicating whether the first BFD-RS is the CSI-RS resource ID or the SSB ID.
  • the UE can appropriately determine the BFD RS even if the BFD RS is not explicitly configured.
  • the UE selects BFD-RS/RLM-RS according to rules (RS selection rules).
  • the RS selection rule may select a CORESET according to the CORESET selection rule in the first embodiment, and select RSs in one or more TCI states set for that CORESET as BFD-RS/RLM-RS. good.
  • the UE may select the QCL type D RS as the BFD-RS/RLM-RS.
  • the RS selection rule is that RSs in one or more TCI states set for all CORESETs are candidates for BFD-RS/RLM-RS, and according to the CORESET selection rule in the first embodiment, CORESET is selected, A certain number of RSs may be selected as BFD-RS/RLM-RS from the RSs in the TCI state configured for that CORESET.
  • the UE may select BFD-RS/RLM-RS according to the RS selection rule. good.
  • the UE can appropriately determine the BFD RS even if the BFD RS is not explicitly configured.
  • a higher layer parameter (RRC information element)/UE capability corresponding to at least one function (feature) in the first to third embodiments may be defined.
  • UE capabilities may indicate support for this feature.
  • a UE for which a higher layer parameter corresponding to that function is set may perform that function. It may also be defined that "UEs for which upper layer parameters corresponding to the function are not set shall not perform the function".
  • a UE reporting UE capabilities indicating that it supports that function may perform that function. It may be specified that "a UE that does not report UE capabilities indicating that it supports the feature shall not perform the feature".
  • a UE may perform a function if it reports a UE capability indicating that it supports the function, and the higher layer parameters corresponding to the function are configured. "If the UE does not report the UE capability indicating that it supports the function, or if the higher layer parameters corresponding to the function are not set, the UE shall not perform the function" may be defined.
  • the UE capability may indicate whether the UE supports this function.
  • the UE capability may indicate whether the PDCCH repetition/PDCCH SFN scheme is supported.
  • UE capability is Rel. 15/16 BFR (per cell BFR) and Rel. 17 or later BFR (eg per TRP BFR) and/or indicate whether to support automatic BFD-RS update for a given serving cell based on TCI state update for CORESET via MAC CE .
  • UE capability is Rel. 15/16 BFR (per cell BFR) and Rel. 17 and later BFRs (e.g. per-TRP BFR), indicate whether to support automatic BFD-RS update for multiple serving cells at the same time based on TCI state update for CORESET via MAC CE good.
  • UE capability is Rel. 15/16 BFR (per cell BFR) and Rel. 17 and later BFRs (eg, per TRP BFR) may indicate whether to support BFD-RS update for a given serving cell based on the new MAC CE.
  • UE capability is Rel. 15/16 BFR (per cell BFR) and Rel. 17 and later BFR (eg per TRP BFR), it may indicate whether to support BFD-RS update for multiple serving cells at the same time based on the new MAC CE.
  • the UE can implement the above functions while maintaining compatibility with existing specifications.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data or the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
  • Transmitting/receiving unit 120 transmits a first setting of a control resource set (CORESET) having a plurality of transmission configuration indication (TCI) states, and one or more first settings for beam failure detection (BFD) or radio link monitoring (RLM).
  • CORESET control resource set
  • BFD beam failure detection
  • RLM radio link monitoring
  • a second set of reference signals may be transmitted.
  • the control unit 110 may determine one or more second reference signals to be used for the BFD or the RLM.
  • the one or more first reference signals may be associated with each of the plurality of TCI states.
  • the transmitting/receiving unit 120 may transmit a medium access control-control element (MAC CE) regarding the one or more second reference signals.
  • MAC CE medium access control-control element
  • FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220, the transmitter/receiver antenna 230, and the transmission line interface 240.
  • Transmitter/receiver 220 receives a first configuration of a control resource set (CORESET) having multiple transmission configuration indication (TCI) states, and one or more first settings for beam failure detection (BFD) or radio link monitoring (RLM).
  • CORESET control resource set
  • TCI transmission configuration indication
  • BFD beam failure detection
  • RLM radio link monitoring
  • a second set of reference signals may be received and a medium access control-control element (MAC CE) may be received.
  • the control unit 210 may determine one or more second reference signals to be used for the BFD or the RLM based on the first setting, the second setting, and the MAC CE.
  • the one or more first reference signals may be associated with each of the plurality of TCI states.
  • the MAC CE may indicate one or more TCI states among the plurality of TCI states.
  • the one or more second reference signals may include a third reference signal within the one or more TCI states (first embodiment).
  • the first setting may indicate a plurality of CORESETs.
  • the plurality of CORESETs may include the CORESET.
  • the control unit 210 may select the CORESET from the plurality of CORESETs (first embodiment).
  • the MAC CE may indicate the one or more second reference signals (second embodiment).
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by the processor 1001 by loading predetermined software (program) onto hardware such as the processor 1001 and the memory 1002, and communication via the communication device 1004. and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be read as sidelink channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a decimal number)
  • Future Radio Access FAA
  • RAT New - Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied to systems using communication methods, next-generation systems extended based on these, and the like
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • Maximum transmit power described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、複数のtransmission configuration indication(TCI)状態を有するcontrol resource set(CORESET)の第1設定を受信し、beam failure detection(BFD)又はradio link monitoring(RLM)用の1以上の第1参照信号の第2設定を受信し、medium access control-control element(MAC CE)を受信する受信部と、前記第1設定、前記第2設定、及び前記MAC CEに基づいて、前記BFD又は前記RLMに用いられる1以上の第2参照信号を決定する制御部と、を有し、前記1以上の第1参照信号は、前記複数のTCI状態にそれぞれ関連付けられる。本開示の一態様によれば、BFD RSを適切に決定できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 NRでは、ユーザ端末(user terminal、User Equipment(UE))がビーム障害を検出(Beam Failure Detection:BFD)して他のビームに切り替えるための手順(ビーム障害回復(Beam Failure Recovery(BFR))手順、BFRなどと呼ばれてもよい)を実施することが検討されている。
 しかしながら、BFD reference signal(RS)の決定方法が明らかでない。BFD RSが適切に決定されなければ、スループットが低下又は通信品質が劣化するおそれがある。
 そこで、本開示は、ビーム障害を適切に検出する端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、複数のtransmission configuration indication(TCI)状態を有するcontrol resource set(CORESET)の第1設定を受信し、beam failure detection(BFD)又はradio link monitoring(RLM)用の1以上の第1参照信号の第2設定を受信し、medium access control-control element(MAC CE)を受信する受信部と、前記第1設定、前記第2設定、及び前記MAC CEに基づいて、前記BFD又は前記RLMに用いられる1以上の第2参照信号を決定する制御部と、を有し、前記1以上の第1参照信号は、前記複数のTCI状態にそれぞれ関連付けられる。
 本開示の一態様によれば、BFD RSを適切に決定できる。
図1は、ビーム回復手順の一例を示す図である。 図2は、セル毎BFD-RS設定の一例を示す図である。 図3は、セル毎BFD-RS設定の別の一例を示す図である。 図4は、TRP毎BFD-RS設定の一例を示す図である。 図5は、TRP毎BFD-RS設定の別の一例を示す図である。 図6A及び6Bは、第2の実施形態に係るMAC CEの一例を示す図である。 図7は、第2の実施形態の変形例に係るMAC CEの一例を示す図である。 図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図9は、一実施形態に係る基地局の構成の一例を示す図である。 図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図11は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
 PDCCH及びPDSCHに対してQCLタイプA RSは必ず設定され、QCLタイプD RSは追加で設定されてもよい。DMRSのワンショットの受信によってドップラーシフト、遅延などを推定することが難しいため、チャネル推定精度の向上にQCLタイプA RSが使用される。QCLタイプD RSは、DMRS受信時の受信ビーム決定に使用される。
 例えば、TRS1-1、1-2、1-3、1-4が送信され、PDSCHのTCI状態によってQCLタイプC/D RSとしてTRS1-1が通知される。TCI状態が通知されることによって、UEは、過去の周期的なTRS1-1の受信/測定の結果から得た情報を、PDSCH用DMRSの受信/チャネル推定に利用できる。この場合、PDSCHのQCLソースはTRS1-1であり、QCLターゲットはPDSCH用DMRSである。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
 マルチTRP(例えば、TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード、シングルDCIに基づくマルチTRP(single-DCI based multi-TRP))。マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード、マルチDCIに基づくマルチTRP(multi-DCI based multi-TRP))。
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 複数PDCCHに基づくセル内の(intra-cell、同じセルIDを有する)及びセル間の(inter-cell、異なるセルIDを有する)マルチTRP送信をサポートするために、複数TRPを有するPDCCH及びPDSCHの複数のペアをリンクするためのRRC設定情報において、PDCCH設定情報(PDCCH-Config)内の1つのcontrol resource set(CORESET)が1つのTRPに対応してもよい。
 次の条件1及び2の少なくとも1つが満たされた場合、UEは、マルチDCIに基づくマルチTRPと判定してもよい。この場合、TRPは、CORESETプールインデックスに読み替えられてもよい。
[条件1]
 1のCORESETプールインデックスが設定される。
[条件2]
 CORESETプールインデックスの2つの異なる値(例えば、0及び1)が設定される。
 次の条件が満たされた場合、UEは、シングルDCIに基づくマルチTRPと判定してもよい。この場合、2つのTRPは、MAC CE/DCIによって指示される2つのTCI状態に読み替えられてもよい。
[条件]
 DCI内のTCIフィールドの1つのコードポイントに対する1つ又は2つのTCI状態を指示するために、「UE固有PDSCH用拡張TCI状態アクティベーション/ディアクティベーションMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)」が用いられる。
 共通ビーム指示用DCIは、UE固有DCIフォーマット(例えば、DL DCIフォーマット(例えば、1_1、1_2)、UL DCIフォーマット(例えば、0_1、0_2))であってもよいし、UEグループ共通(UE-group common)DCIフォーマットであってもよい。
(統一(unified)/共通(common)TCIフレームワーク)
 統一TCIフレームワークによれば、UL及びDLのチャネルを共通のフレームワークによって制御できる。統一TCIフレームワークは、Rel.15のようにTCI状態又は空間関係をチャネル毎に規定するのではなく、共通ビームを指示し、それをUL及びDLの全てのチャネルへ適用してもよいし、UL用の共通ビームをULの全てのチャネルに適用し、DL用の共通ビームをDLの全てのチャネルに適用してもよい。
 DL及びULの両方のための1つの共通ビーム、又は、DL用の共通ビームとUL用の共通ビーム(全体で2つの共通ビーム)が検討されている。
 UEは、UL及びDLに対して同じTCI状態(ジョイントTCI状態、ジョイントTCI状態プール、ジョイント共通TCI状態プール)を想定してもよい。
 RRCは、DL及びULの両方用の複数のTCI状態(ジョイント共通TCI状態プール)を設定してもよい。複数のTCI状態のそれぞれは、QCLタイプA/D RSであってもよい。QCLタイプA/D RSとしてSSB、CSI-RS、又はSRSが設定されてもよい。MAC CEは、設定された複数のTCI状態の一部をアクティベートしてもよい。DCIは、アクティベートされた複数のTCI状態の少なくとも1つを指示してもよい。
 MAC CEに基づくビーム管理(MAC CEレベルビーム指示)によって、UL及びDLのデフォルトビームを揃えてもよい。PDSCHのデフォルトTCI状態を更新し、デフォルトULビーム(空間関係)に合わせてもよい。
 DCIに基づくビーム管理(DCIレベルビーム指示)によって、UL及びDLの両方用の同じTCI状態プール(ジョイント共通TCI状態プール)から共通ビーム/統一TCI状態が指示されてもよい。M(>1)個のTCI状態がMAC CEによってアクティベートされてもよい。UL/DL DCIは、M個のアクティブTCI状態から1つを選択してもよい。選択されたTCI状態は、UL及びDLの両方のチャネル/RSに適用されてもよい。
 UEは、UL及びDLのそれぞれに対して異なるTCI状態(セパレートTCI状態、セパレートTCI状態プール、ULセパレートTCI状態プール及びDLセパレートTCI状態プール、セパレート共通TCI状態プール、UL共通TCI状態プール及びDL共通TCI状態プール)を想定してもよい。
 RRC(パラメータ、情報要素)は、UL及びDLチャネルのそれぞれに対して複数のTCI状態(プール)を設定してもよい。
 MAC CEは、UL及びDLチャネルのそれぞれに対して1以上(例えば、複数)のTCI状態(セット)を選択(アクティベート)してもよい。MAC CEは、TCI状態の2つのセットをアクティベートしてもよい。
 DL DCIは、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。このTCI状態は、1以上のDLチャネルに適用されてもよい。DLチャネルは、PDCCH/PDSCH/CSI-RSであってもよい。UEは、Rel.16のTCI状態の動作(TCIフレームワーク)を用いて、DLの各チャネル/RSのTCI状態を決定してもよい。
 UL DCIは、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。このTCI状態は、1以上のULチャネルに適用されてもよい。ULチャネルは、PUSCH/SRS/PUCCHであってもよい。
 セパレート共通TCI状態プールのユースケースとして、次のユースケース0、1、2が検討されている。
[ユースケース0]
 UEは、最大許容曝露(Maximum Permitted Exposure(MPE))に起因する異なるULビームを用いる。
 パネル#1のULがMPE問題を受け、UEは、ULにパネル#2を用いる。
[ユースケース1]
 UEは、UL信号強度に起因する異なるULビームを用いる。
 UE及びTRP(セル、基地局)#1の間の距離は、UE及びTRP#2の間の距離より長い。ここで、パネル#1のL1-RSRPはパネル#2のL1-RSRPよりも高く、パネル#2のUL送信電力はパネル#1のUL送信電力より高い。UEは、TRP#1からのDLにパネル#1を用い、TRP#2へのULにパネル#2を用いる。
[ユースケース2]
 UEは、ULロードバランスに起因する異なるULビームを用いる。
 パネル#1のL1-RSRPはパネル#2のL1-RSRPよりも高く、パネル#2のUL負荷はパネル#1のUL負荷よりも低い。UEは、TRP#1からのDLにパネル#1を用い、TRP#2へのULにパネル#2を用いる。
 異なる要件を有するより多くのシナリオが検討されると考えられる。例えば、マルチTRP送信、高速鉄道(high speed train(HST))送信、UEが2つのセルに接続する可能性がある期間におけるセル間(inter-cell)モビリティ、などにおいて、各TRP、セル、に対する共通ビームは、異なってもよい。
 この場合、UEは、FR2用のマルチパネルを備えてもよい。この場合、各UEパネルに対する共通ビームが異なってもよい。
 統一TCIフレームワークにおいて、UEは、Rel.15/16のDL TCIフレームワークに基づくジョイントTCIをサポートしてもよい。TCIは、QCL及び空間フィルタの少なくとも1つの決定のための参照(UE想定)を提供する少なくとも1つのソースRSを含むTCI状態を含んでもよい。
 UEが、DLビーム及びULビームの両方に対する参照を含むジョイントTCI(ジョイントTCIプール)を用いることと、UEが、DL用の1つのセパレートTCI(プール)及びUL用の1つのセパレートTCI(プール)を用いることと、が検討されている。
 セパレートTCIプールにおいて、UL TCI状態が、DL TCI状態と同じプールから得られることと、UL TCI状態が、DL TCI状態とは別のプールから得られることと、が検討されている。
 セパレートTCIプールにおいて、UL及びDLのそれぞれにのアクティブTCIプールが、RRC/MAC CEによって設定/アクティベートされてもよい。UL及びDLに共通のアクティブTCIプールが、RRC/MAC CEによって設定/アクティベートされてもよい。
 共通ビーム(共通TCI状態)のDCI指示に、DL DCI内のTCIフィールドが再利用されてもよいし、DL DCI内の新規フィールド(例えば、統一TCIフィールド)が利用されてもよい。DL DCI、PDSCHスケジューリング用DCI、DCIフォーマット1_1、1_2、は互いに読み替えられてもよい。
 共通ビーム(共通TCI状態)のDCI指示に、UL DCI内の新規フィールド(例えば、統一TCIフィールド)が利用されてもよい。UL DCI、PUSCHスケジューリング用DCI、DCIフォーマット0_1、0_2、は互いに読み替えられてもよい。
 共通ビーム(共通TCI状態)のDCI指示のフィードバックが検討されている。もし共通ビームのDCI指示の受信が失敗した場合、基地局は、共通ビームを誤認識する。そこで、共通ビームの更新のタイミングは、UEがDCI指示のフィードバックを送信した後であることが検討されている。例えば、DL DCIが共通ビーム(TCI#2)を指示する場合、UEがPUCCH/PUSCH上でACK/NACK(HARQ-ACK情報)を送信した後に、共通ビームが(TCI#2へ)更新される。例えば、UL DCIが共通ビーム(TCI#2)を指示する場合、UEがPUSCHを送信した後に、共通ビームが(TCI#2へ)更新される。
(複数CCの同時ビーム更新)
 Rel.16において、1つのMAC CEが複数のCCのビームインデックス(TCI状態)を更新できる。
 UEは、2つまでの適用可能CCリスト(例えば、applicable-CC-list)をRRCによって設定されることができる。2つの適用可能CCリストが設定される場合、2つの適用可能CCリストは、FR1におけるバンド内CAと、FR2におけるバンド内CAと、にそれぞれ対応してもよい。
 PDCCHのTCI状態のアクティベーションMAC CEは、適用可能CCリスト内の全てのBWP/CC上の同じCORESET IDに関連付けられたTCI状態をアクティベートする。
 PDSCHのTCI状態のアクティベーションMAC CEは、適用可能CCリスト内の全てのBWP/CC上のTCI状態をアクティベートする。
 A-SRS/SP-SRSの空間関係のアクティベーションMAC CEは、適用可能CCリスト内の全てのBWP/CC上の同じSRSリソースIDに関連付けられた空間関係をアクティベートする。
 UEは、CC#0、#1、#2、#3を示す適用可能CCリストと、各CCのCORESET又はPDSCHに対して64個のTCI状態を示すリストを設定される。MAC CEによってCC#0の1つのTCI状態がアクティベートされる場合、CC#1、#2、#3において、対応するTCI状態がアクティベートされる。
 同時ビーム更新は、シングルTRPケースにのみ適用可能であることが検討されている。
 PDSCHに対し、UEは、次の手順Aに基づいてもよい。
[手順A]
 UEは、1つのCC/DL BWP内において、又はCC/BWPの1つのセット内において、DCIフィールド(TCIフィールド)のコードポイントに、8個までのTCI状態をマップするための、アクティベーションコマンドを受信する。CC/DL BWPの1つのセットに対してTCI状態IDの1つのセットがアクティベートされる場合、そこで、CCの適用可能リストが、アクティベーションコマンド内において指示されたCCによって決定され、TCI状態の同じセットが、指示されたCC内の全てのDL BWPに対して適用される。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、TCI状態IDの1つのセットは、CC/DL BWPの1つのセットに対してアクティベートされることができる。
 PDCCHに対し、UEは、次の手順Bに基づいてもよい。
[手順B]
 もしUEが、同時TCI更新リスト(simultaneousTCI-UpdateList-r16及びsimultaneousTCI-UpdateListSecond-r16の少なくとも1つ)による同時TCI状態アクティベーションのためのセルの2つまでのリストを、同時TCIセルリスト(simultaneousTCI-CellList)によって提供される場合、UEは、MAC CEコマンドによって提供されるサービングセルインデックスから決定される1つのリスト内の全ての設定されたセルの全ての設定されたDL BWP内の、インデックスpを有するCORESETに対して、同じアクティベートされたTCI状態ID値を有するTCI状態によって提供されるアンテナポートquasi co-location(QCL)を適用する。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、同時TCI状態アクティベーション用に、同時TCIセルリストが提供されることができる。
 セミパーシステント(semi-persistent(SP))/非周期的(aperiodic(AP))-SRSに対し、UEは、次の手順Cに基づいてもよい。
[手順C]
 CC/BWPの1つのセットに対し、SRSリソース情報要素(上位レイヤパラメータSRS-Resource)によって設定されるSP又はAP-SRSリソースのための空間関係情報(spatialRelationInfo)が、MAC CEによってアクティベート/アップデートされる場合、そこで、CCの適用可能リストが、同時空間更新リスト(上位レイヤパラメータsimultaneousSpatial-UpdateList-r16又はsimultaneousSpatial-UpdateListSecond-r16)によって指示され、指示されたCC内の全てのBWPにおいて、同じSRSリソースIDを有するSP又はAP-SRSリソースに対して、その空間関係情報が適用される。もしUEが、CORESET情報要素(ControlResourceSet)内のCORESETプールインデックス(CORESETPoolIndex)の異なる複数の値を提供されず、且つ、2つのTCI状態にマップされる少なくとも1つのTCIコードポイントを提供されない場合のみ、CC/BWPの1つのセットに対し、SRSリソース情報要素(上位レイヤパラメータSRS-Resource)によって設定されるSP又はAP-SRSリソースのための空間関係情報(spatialRelationInfo)が、MAC CEによってアクティベート/アップデートされる。
 同時TCIセルリスト(simultaneousTCI-CellList)、同時TCI更新リスト(simultaneousTCI-UpdateList1-r16及びsimultaneousTCI-UpdateList2-r16の少なくとも1つ)は、MAC CEを用いて、TCI関係を同時に更新されることができるサービングセルのリストである。simultaneousTCI-UpdateList1-r16とsimultaneousTCI-UpdateList2-r16とは、同じサービングセルを含まない。
 同時空間更新リスト(上位レイヤパラメータsimultaneousSpatial-UpdatedList1-r16及びsimultaneousSpatial-UpdatedList2-r16の少なくとも1つ)は、MAC CEを用いて、空間関係を同時に更新されることができるサービングセルのリストである。simultaneousSpatial-UpdatedList1-r16とsimultaneousSpatial-UpdatedList2-r16とは、同じサービングセルを含まない。
 ここで、同時TCI更新リスト、同時空間更新リストは、RRCによって設定され、CORESETのCORESETプールインデックスは、RRCによって設定され、TCI状態にマップされるTCIコードポイントは、MAC CEによって指示される。
(Radio Link Monitoring(RLM))
 NRにおいて、無線リンクモニタリング(Radio Link Monitoring(RLM))が利用される。
 NRでは、基地局がUEに対して、BWPごとに無線リンクモニタリング参照信号(Radio Link Monitoring RS(RLM-RS))を、上位レイヤシグナリングを用いて設定してもよい。UEは、RLM用の設定情報(例えば、RRCの「RadioLinkMonitoringConfig」情報要素)を受信してもよい。
 当該RLM用の設定情報は、障害検出リソース設定情報(例えば、上位レイヤパラメータの「failureDetectionResourcesToAddModList」)を含んでもよい。障害検出リソース設定情報は、RLM-RSに関するパラメータ(例えば、上位レイヤパラメータの「RadioLinkMonitoringRS」)を含んでもよい。
 RLM-RSに関するパラメータは、RLMの目的(purpose)に対応することを示す情報、RLM-RSのリソースに対応するインデックス(例えば、上位レイヤパラメータの「failureDetectionResources」(failureDetectionResourcesToAddModList内のRadioLinkMonitoringRS)に含まれるインデックス)などを含んでもよい。当該インデックスは、例えば、CSI-RSリソースの設定のインデックス(例えば、ノンゼロパワーCSI-RSリソースID)であってもよいし、SS/PBCHブロックインデックス(SSBインデックス)であってもよい。目的の情報は、ビーム障害、(セルレベル)Radio Link Failure(RLF)、又はそれらの両方、を示してもよい。
 UEは、RLM-RSのリソースに対応するインデックスに基づいてRLM-RSリソースを特定し、当該RLM-RSリソースを用いてRLMを実施してもよい。
 Rel.16のRLMにおいて、UEは、以下の手順に従う。
[手順]
 もし、UEがRLM-RS(RadioLinkMonitoringRS)を提供されず、且つUEがPDCCH受信用に1以上のCSI-RSを含むTCI状態を提供された場合、UEは、以下の手順1から4に従う。
[[手順1]]
 もしPDCCH受信用のアクティブTCI状態が1つのRSのみを含む場合、UEは、PDCCH受信用のアクティブTCI状態用に提供されたそのRSをRLMに用いる。
[[手順2]]
 もしPDCCH受信用のアクティブTCI状態が2つのRSを含む場合、UEは、1つのRSがQCLタイプDを有すると想定し、UEは、QCLタイプDを有するそのRSをRLMに用いる。UEは、両方のRSがQCLタイプDを有すると想定しない。
[[手順3]]
 UEは、非周期的(aperiodic)又はセミパーシステント(semi-persistent)のRSをRLMに用いることを必要とされない。
[[手順4]]
 Lmax=4に対して、UEは、最小のモニタリング周期(periodicity)からの順に、複数のサーチスペースセットに関連付けられた複数のCORESET内において、PDCCH受信用のアクティブTCI状態用に提供されたNRLM個のRSを選択する。もし1より多いCORESETが、同じモニタリング周期を有する複数のサーチスペースセットに関連付けられている場合、UEは、最高のCORESETインデックスからのCORESETの順を決定する。
 ここで、Lmaxは、セル内のSS/PBCHブロックインデックスの最大数である。ハーフフレーム内において送信されるSS/PBCHブロックの最大数は、Lmaxである。
 このように、UEがRLM-RSを提供されない場合、UEは、暗示的RLM-RS決定を行い、PDCCH受信用のアクティブTCI状態をRLMに用いる。Lmax=4の場合、UEは、まずサーチスペースセットのモニタリング周期の昇順に、次にCORESETインデックスの降順に、NRLM個のRSを選択する。CORESETを選択する。
 UEは、リンク回復手順及びRLMのためにNLR-RLM個までのRLM-RSを設定されることができる。NLR-RLM個のRLM-RSから、Lmaxに依存してNRLM個までのRLM-RSがRLMに用いられる。Rel.16においては、Lmax=4の場合にNRLM=2であり、Lmax=8の場合にNRLM=4であり、Lmax=64の場合にNRLM=8である。
(Beam Failure Detection(BFD)/Beam Failure Recovery(BFR))
 NRでは、ビームフォーミングを利用して通信を行う。例えば、UE及び基地局(例えば、gNB(gNodeB))は、信号の送信に用いられるビーム(送信ビーム、Txビームなどともいう)、信号の受信に用いられるビーム(受信ビーム、Rxビームなどともいう)を用いてもよい。
 ビームフォーミングを用いる場合、障害物による妨害の影響を受けやすくなるため、無線リンク品質が悪化することが想定される。無線リンク品質の悪化によって、無線リンク障害(Radio Link Failure(RLF))が頻繁に発生するおそれがある。RLFが発生するとセルの再接続が必要となるため、頻繁なRLFの発生は、システムスループットの劣化を招く。
 NRにおいては、RLFの発生を抑制するために、特定のビームの品質が悪化する場合、他のビームへの切り替え(ビーム回復(Beam Recovery(BR))、ビーム障害回復(Beam Failure Recovery(BFR))、L1/L2(Layer 1/Layer 2)ビームリカバリなどと呼ばれてもよい)手順を実施する。なお、BFR手順は単にBFRと呼ばれてもよい。
 なお、本開示におけるビーム障害(beam failure(BF))は、リンク障害(link failure)と呼ばれてもよい。
 図1は、Rel.15 NRにおけるビーム回復手順の一例を示す図である。ビームの数などは一例であって、これに限られない。初期状態(ステップS101)において、UEは、2つのビームを用いて送信される参照信号(Reference Signal(RS))リソースに基づく測定を実施する。
 当該RSは、同期信号ブロック(Synchronization Signal Block(SSB))及びチャネル状態測定用RS(Channel State Information RS(CSI-RS))の少なくとも1つであってもよい。なお、SSBは、SS/PBCH(Physical Broadcast Channel)ブロックなどと呼ばれてもよい。
 RSは、プライマリ同期信号(Primary SS(PSS))、セカンダリ同期信号(Secondary SS(SSS))、モビリティ参照信号(Mobility RS(MRS))、SSBに含まれる信号、SSB、CSI-RS、復調用参照信号(DeModulation Reference Signal(DMRS))、ビーム固有信号などの少なくとも1つ、又はこれらを拡張、変更などして構成される信号であってもよい。ステップS101において測定されるRSは、ビーム障害検出のためのRS(Beam Failure Detection RS(BFD-RS)、ビーム障害検出用RS)、又はビーム回復手順に利用するためのRS(BFR-RS)などと呼ばれてもよい。
 ステップS102において、基地局からの電波が妨害されたことによって、UEはBFD-RSを検出できない(又はRSの受信品質が劣化する)。このような妨害は、例えばUE及び基地局間の障害物、フェージング、干渉などの影響によって発生し得る。
 UEは、所定の条件が満たされると、ビーム障害を検出する。UEは、例えば、設定されたBFD-RS(BFD-RSリソース設定)の全てについて、BLER(Block Error Rate)が閾値未満である場合、ビーム障害の発生を検出してもよい。ビーム障害の発生が検出されると、UEの下位レイヤ(物理(PHY)レイヤ)は、上位レイヤ(MACレイヤ)に対してビーム障害インスタンスを通知(指示)してもよい。
 なお、判断の基準(クライテリア)は、BLERに限られず、物理レイヤにおける参照信号受信電力(Layer 1 Reference Signal Received Power(L1-RSRP))であってもよい。また、RS測定の代わりに又はRS測定に加えて、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などに基づいてビーム障害検出が実施されてもよい。BFD-RSは、UEによってモニタされるPDCCHのDMRSと擬似コロケーション(Quasi-Co-Location(QCL))であると期待されてもよい。
 ここで、QCLとは、チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 BFD-RSに関する情報(例えば、RSのインデックス、リソース、数、ポート数、プリコーディングなど)、ビーム障害検出(BFD)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。BFD-RSに関する情報は、BFR用リソースに関する情報などと呼ばれてもよい。
 UEの上位レイヤ(例えば、MACレイヤ)は、UEのPHYレイヤからビーム障害インスタンス通知を受信した場合に、所定のタイマ(ビーム障害検出タイマと呼ばれてもよい)を開始してもよい。UEのMACレイヤは、当該タイマが満了するまでにビーム障害インスタンス通知を一定回数(例えば、RRCで設定されるbeamFailureInstanceMaxCount)以上受信したら、BFRをトリガ(例えば、後述のランダムアクセス手順のいずれかを開始)してもよい。
 基地局は、UEからの通知がない場合、又はUEから所定の信号(ステップS104におけるビーム回復要求)を受信した場合に、当該UEがビーム障害を検出したと判断してもよい。
 ステップS103において、UEはビーム回復のため、新たに通信に用いるための新候補ビーム(new candidate beam)のサーチを開始する。UEは、所定のRSを測定することによって、当該RSに対応する新候補ビームを選択してもよい。ステップS103において測定されるRSは、新候補RS、新候補ビーム識別のためのRS(New Candidate Beam Identification RS(NCBI-RS))、CBI-RS、CB-RS(Candidate Beam RS)などと呼ばれてもよい。NCBI-RSは、BFD-RSと同じであってもよいし、異なってもよい。なお、新候補ビームは、単に候補ビーム又は候補RSと呼ばれてもよい。
 UEは、所定の条件を満たすRSに対応するビームを、新候補ビームとして決定してもよい。UEは、例えば、設定されたNCBI-RSのうち、L1-RSRPが閾値を超えるRSに基づいて、新候補ビームを決定してもよい。なお、判断の基準(クライテリア)は、L1-RSRPに限られない。SSBに関するL1-RSRPは、SS-RSRPと呼ばれてもよい。CSI-RSに関するL1-RSRPは、CSI-RSRPと呼ばれてもよい。
 NCBI-RSに関する情報(例えば、RSのリソース、数、ポート数、プリコーディングなど)、新候補ビーム識別(NCBI)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。新候補RS(又は、NCBI-RS)に関する情報は、BFD-RSに関する情報に基づいて取得されてもよい。NCBI-RSに関する情報は、NBCI用リソースに関する情報などと呼ばれてもよい。
 なお、BFD-RS、NCBI-RSなどは、無線リンクモニタリング参照信号(Radio Link Monitoring RS(RLM-RS))で読み替えられてもよい。
 ステップS104において、新候補ビームを特定したUEは、ビーム回復要求(Beam Failure Recovery reQuest(BFRQ))を送信する。ビーム回復要求は、ビーム回復要求信号、ビーム障害回復要求信号などと呼ばれてもよい。
 BFRQは、例えば、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、コンフィギュアド(設定)グラント(configured grant(CG))PUSCHの少なくとも1つを用いて送信されてもよい。
 BFRQは、ステップS103において特定された新候補ビーム/新候補RSの情報を含んでもよい。BFRQのためのリソースが、当該新候補ビームに関連付けられてもよい。ビームの情報は、ビームインデックス(Beam Index(BI))、所定の参照信号のポートインデックス、RSインデックス、リソースインデックス(例えば、CSI-RSリソース指標(CSI-RS Resource Indicator(CRI))、SSBリソース指標(SSBRI))などを用いて通知されてもよい。
 Rel.15 NRでは、衝突型ランダムアクセス(Random Access(RA))手順に基づくBFRであるCB-BFR(Contention-Based BFR)及び非衝突型ランダムアクセス手順に基づくBFRであるCF-BFR(Contention-Free BFR)が検討されている。CB-BFR及びCF-BFRでは、UEは、PRACHリソースを用いてプリアンブル(RAプリアンブル、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、RACHプリアンブルなどともいう)をBFRQとして送信してもよい。
 CB-BFRでは、UEは、1つ又は複数のプリアンブルからランダムに選択したプリアンブルを送信してもよい。一方、CF-BFRでは、UEは、基地局からUE固有に割り当てられたプリアンブルを送信してもよい。CB-BFRでは、基地局は、複数UEに対して同一のプリアンブルを割り当ててもよい。CF-BFRでは、基地局は、UE個別にプリアンブルを割り当ててもよい。
 なお、CB-BFR及びCF-BFRは、それぞれCB PRACHベースBFR(contention-based PRACH-based BFR(CBRA-BFR))及びCF PRACHベースBFR(contention-free PRACH-based BFR(CFRA-BFR))と呼ばれてもよい。CBRA-BFRは、BFR用CBRAと呼ばれてもよい。CFRA-BFRは、BFR用CFRAと呼ばれてもよい。
 CB-BFR、CF-BFRのいずれであっても、PRACHリソース(RAプリアンブル)に関する情報は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によって通知されてもよい。例えば、当該情報は、検出したDL-RS(ビーム)とPRACHリソースとの対応関係を示す情報を含んでもよく、DL-RSごとに異なるPRACHリソースが関連付けられてもよい。
 ステップS105において、BFRQを検出した基地局は、UEからのBFRQに対する応答信号(gNBレスポンスなどと呼ばれてもよい)を送信する。当該応答信号には、1つ又は複数のビームについての再構成情報(例えば、DL-RSリソースの構成情報)が含まれてもよい。
 当該応答信号は、例えばPDCCHのUE共通サーチスペースにおいて送信されてもよい。当該応答信号は、UEの識別子(例えば、セル-無線RNTI(Cell-Radio RNTI(C-RNTI)))によって巡回冗長検査(Cyclic Redundancy Check(CRC))スクランブルされたPDCCH(DCI)を用いて通知されてもよい。UEは、ビーム再構成情報に基づいて、使用する送信ビーム及び受信ビームの少なくとも一方を判断してもよい。
 UEは、当該応答信号を、BFR用の制御リソースセット(COntrol REsource SET(CORESET))及びBFR用のサーチスペースセットの少なくとも一方に基づいてモニタしてもよい。
 CB-BFRに関しては、UEが自身に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断されてもよい。
 ステップS105の処理に関して、BFRQに対する基地局(例えば、gNB)からの応答(レスポンス)をUEがモニタするための期間が設定されてもよい。当該期間は、例えばgNB応答ウィンドウ、gNBウィンドウ、ビーム回復要求応答ウィンドウなどと呼ばれてもよい。UEは、当該ウィンドウ期間内において検出されるgNB応答がない場合、BFRQの再送を行ってもよい。
 ステップS106において、UEは、基地局に対してビーム再構成が完了した旨を示すメッセージを送信してもよい。当該メッセージは、例えば、PUCCHによって送信されてもよいし、PUSCHによって送信されてもよい。
 ビーム回復成功(BR success)は、例えばステップS106まで到達した場合を表してもよい。一方で、ビーム回復失敗(BR failure)は、例えばBFRQ送信が所定の回数に達した、又はビーム障害回復タイマ(Beam-failure-recovery-Timer)が満了したことに該当してもよい。
 Rel.15では、SpCell(PCell/PSCell)で検出されたビーム障害に対するビーム回復手順(例えば、BFRQの通知)を、ランダムアクセス手順を利用して行うことがサポートされている。一方で、Rel.16では、SCellで検出されたビーム障害に対するビーム回復手順(例えば、BFRQの通知)を、BFR用のPUCCH(例えば、スケジューリングリクエスト(SR))送信と、BFR用のMAC CE(例えば、UL-SCH)送信の少なくとも一つを利用して行うことがサポートされる。
 例えば、UEは、MAC CEベースの2ステップを利用して、ビーム障害に関する情報を送信してもよい。ビーム障害に関する情報は、ビーム障害を検出したセルに関する情報、新候補ビーム(又は、新候補RSインデックス)に関する情報が含まれていてもよい。
[ステップ1]
 BFが検出された場合、UEから、PCell/PSCellに対して、PUCCH-BFR(スケジューリング要求(SR))が送信されてもよい。次いで、PCell/PSCellから、UEに対して、下記ステップ2のためのULグラント(DCI)が送信されてもよい。ビーム障害が検出された場合に、新候補ビームに関する情報を送信するためのMAC CE(又は、UL-SCH)が存在する場合には、ステップ1(例えば、PUCCH送信)を省略して、ステップ2(例えば、MAC CE送信)を行ってもよい。
[ステップ2]
 次いで、UEは、ビーム障害が検出された(失敗した)セルに関する情報(例えば、セルインデックス)及び新候補ビームに関する情報を、MAC CEを用いて、上りリンクチャネル(例えば、PUSCH)を介して、基地局(PCell/PSCell)に送信してもよい。その後、BFR手順を経て、基地局からの応答信号を受信してから所定期間(例えば、28シンボル)後に、PDCCH/PUCCH/PDSCH/PUSCHのQCLが、新たなビームに更新されてもよい。
 なお、これらのステップの番号は説明のための番号に過ぎず、複数のステップがまとめられてもよいし、順番が入れ替わってもよい。また、BFRを実施するか否かは、上位レイヤシグナリングを用いてUEに設定されてもよい。
(BFD-RS)
 Rel.16において、1つのサービングセルの各BWPに対し、UEは、障害検出リソース(failureDetectionResources、failureDetectionResourcesToAddModList、RadioLinkMonitoringConfig)によって周期的(P)-CSI-RSリソース設定インデックスのセットq0バーと、候補ビームRSリスト(candidateBeamRSList)又は拡張候補ビームRSリスト(candidateBeamRSListExt-r16)又はSCell用候補ビームRSリスト(candidateBeamRSSCellList-r16)によって、P-CSI-RSリソース設定インデックス及びSS/PBCHブロックインデックスの少なくとも1つのセットq1バーと、を提供されることができる。
 ここで、q0バーは、「q0」にオーバーラインを付した表記である。以下、q0バーは、単にq0と表記される。q1バーは、「q1」にオーバーラインを付した表記である。以下、q1バーは、単にq1と表記される。
 障害検出リソースによって提供されるP-CSI-RSリソースのセットq0は、明示的BFD-RSと呼ばれてもよい。
 UEは、セットq0及びセットq1の少なくとも1つのセットに含まれるインデックスに対応するRSリソースを用いてL1-RSRP測定などを実施し、ビーム障害を検出してもよい。
 なお、本開示において、BFD用リソースに対応するインデックスの情報を示す上述の上位レイヤパラメータを提供されることは、BFD用リソースを設定されること、BFD-RSを設定されることなどと互いに読み替えられてもよい。本開示において、BFD用リソース、周期的CSI-RSリソース設定インデックス又はSSBインデックスのセットq0、BFD-RS、BFD-RSセット、RSセット、は互いに読み替えられてもよい。
 もしUEが、そのサービングセルの1つのBWPに対し、障害検出リソース(failureDetectionResources)によってq0を提供されない場合、UEがPDCCHのモニタリングに用いる、対応するCORESETに対するTCI状態(TCI-State)によって指示されるRSセット内のRSインデックスと同じ値を有するP-CSI-RSリソース設定インデックスを、セットq0に含めることを決定する。もし1つのTCI状態内に2つのRSインデックスがある場合、セットq0が、対応するTCI状態に対してQCLタイプD設定を有するRSインデックスを含む。UEは、そのセットq0が2つまでのRSインデックスを含むと想定する。UEは、そのセットq0内においてシングルポートRSを想定する。
 このセットq0は、暗示的BFD-RSと呼ばれてもよい。
 このように、UEは、PDCCH用TCI状態によってBFD-RS(RSセット)を決定する。UEは、そのRSセットが2つまでのRSを含むと想定する。
(明示的BFD-RS/暗示的BFD-RS)
 UE内の物理レイヤは、閾値Qout,LRに対し、リソース設定のセットq0に従って無線リンク品質を評価する。セットq0に対し、UEは、UEによってモニタされるPDCCH受信のDM-RSと疑似コロケートされたP-CSI-RSリソース設定、又は、UEによってモニタされるPDCCH受信のDM-RSと疑似コロケートされたPCell又はPSCell上のSS/PBCHブロック、に従って、無線リンク品質を評価する。
 言い換えれば、暗示的BFD-RSか明示的BFD-RSかに関わらず、BFD-RSはPDCCHとQCLされる。
 BFRに関し、UEは、次の動作1(SCellに対するBFR)及び2(SpCellに対するBFR)の少なくとも1つに従ってもよい。
[動作1]
 UEは、リンク回復要求(link recovery request(LRR))を有するPUCCH送信用の設定を、BFR用スケジューリングリクエストID(schedulingRequestIDForBFR)によって提供されてもよい。UEは、Qout,LRよりも悪い無線リンク品質を有する少なくとも1つの対応するSCellに対して1つのインデックスを提供する少なくとも1つのMAC CE(BFR MAC CE)を、第1PUSCHにおいて送信できる。このインデックスは、もし設定されていれば、対応するSCellに対して上位レイヤによって提供される、P-CSI-RS設定又はSS/PBCHブロックに対するインデックスqnewである。特定PDCCH受信の最後のシンボルから28シンボル後において、UEは、次の動作1-1及び1-2の少なくとも1つに従ってもよい。特定PDCCH受信は、第1PUSCHの送信と同じHARQプロセス番号を有するPUSCH送信をスケジュールし、トグルされたnew data indicator(NDI)フィールド値を有する、DCIフォーマットを有する。
[[動作1-1]]
 UEは、もしあれば、対応するインデックスqnewに関連付けられたアンテナポートQCLパラメータと同じアンテナポートQCLパラメータを用いて、MAC CEによって指示されたSCell上の全てのCORESET内のPDCCHをモニタする。
[[動作1-2]]
 もし次の条件1から3が満たされる場合、UEは、インデックスqnewに対応する空間ドメインフィルタと同じ空間ドメインフィルタを用い、送信電力の式においてqu=0、qd=qnew、及びl=0とする電力を用いて、PUCCH-SCell上のPUCCHを送信する。
[[[条件1]]]UEが、PUCCHに対するPUCCH空間関係情報(PUCCH-SpatialRelationInfo)を提供される。
[[[条件2]]]LRRを有するPUCCHが、PCell又はPSCell上で送信されなかった又は送信された。
[[[条件3]]]PUCCH-SCellがMAC CEによって指示されたSCellに含まれている。
 ここで、上記の28シンボルに対するサブキャリア間隔(SCS)設定は、PDCCH受信用のアクティブDL BWPのSCS設定と、少なくとも1つのSCellのアクティブDL BWPのSCS設定と、の最小値である。
 qnewは、BFR手順においてUEが選択し、対応するPRACHでネットワークに報告する新候補ビーム(例えば、SSB/CSI-RS)のインデックス(又は、BFR手順で発見された新ビームのインデックス)であってもよい。
 通常の場合、qは、PUCCH用P0セット(p0-Set)内のPUCCH用P0(P0-PUCCH)を示すPUCCH用P0 ID(p0-PUCCH-Id)であってもよい。lは、電力制御調整状態(power control adjustment state)のインデックス、PUCCH電力制御調整状態のインデックス、クローズドループインデックスなどと呼ばれてもよい。qは、パスロス参照RSのインデックス(例えば、PUCCH-PathlossReferenceRSによって設定される)であってもよい。
[動作2]
 UEは、PRACH送信用設定(PRACH-ResourceDedicatedBFR)を受信してもよい。スロットnにおける、上位レイヤによって提供されたインデックスqnewに関連付けられた、P-CSI-RSリソース設定又はSS/PBCHブロックと関連付けられたアンテナポートQCLパラメータに従う、PRACH送信に対し、UEは、特定PDCCHをモニタする。特定PDCCHは、ビーム障害回復設定(BeamFailureRecoveryConfig)によって設定されるウィンドウ内のスロットn+4から始まるC-RNTI又はMCS-C-RNTIによってスクランブルされたCRCを有するDCIフォーマットの検出用の回復サーチスペースID(recoverySearchSpaceId)によって提供されたサーチスペースセット内のPDCCHである。回復サーチスペースIDによって提供されたサーチスペースセット内のPDCCHモニタリングと、対応するPDSCH受信と、に対し、UEが、TCI状態、又は、PDCCH用TCI状態追加リスト(tci-StatesPDCCH-ToAddList)及びPDCCH用TCI状態解放リスト(tci-StatesPDCCH-ToReleaseList)の少なくとも1つのパラメータに対する、アクティベーションを上位レイヤによって受信するまで、UEは、インデックスqnewに関連付けられたアンテナポートQCLパラメータと同じアンテナポートQCLパラメータを想定する。
 UEは、次の動作2-1に従ってもよい。
[[動作2-1]]
 UEが回復サーチスペースIDによって提供されたサーチスペースセット内においてC-RNTI又はMCS-C-RNTIによってスクランブルされたCRCを有するDCIフォーマットを検出した後、UEが、TCI状態、又は、PDCCH用TCI状態追加リスト及びPDCCH用TCI状態解放リストの少なくとも1つに対する、MAC CEアクティベーションコマンドを受信するまで、UEは、回復サーチスペースIDによって提供されるサーチスペースセット内においてPDCCH候補をモニタし続ける。
 CBRA/CFRA手順に基づくPCell/SCell(SpCell/SCell)に対するBFRに対し、BFD-RSはRRCによって明示的に設定されてもよいし、設定されなくてもよい。BFD-RSが設定されない場合、UEは、PDCCHとQCLタイプDである周期的(P)-CSI-RS又はSSBをBFD-RSとして想定する。Rel.15/16において、UEは、2つまでのBFD-RSをモニタできる。
 Rel.15/16において、UEは、明示的に設定されたBFD-RS(明示的BFD-RS)がRRCによって再設定されるか無効化されるまで、当該BFD-RSをモニタし続ける。BFD-RSがRRCによって明示的に設定された場合、BFDが発生しBFRが完了した後においても、UEは、当該BFD-RSを用いてBFDを行うと、再度BFRが生ずる場合がある。
 例えば、P-CSI-RS#1がRRCによってBFD-RSとして設定された場合において、BFRが実行された場合、BFR後のPDCCHに対して、P-CSI-RS#1(QCLタイプDとしてP-CSI-RS#1を設定されたTCI状態)とは異なるビームが用いられると考えられる。現状の仕様によれば、BFR前に設定されたP-CSI-RS#1を用いて、BFR後のBFDの測定を行う。つまり、実際の通信の品質が良い場合であっても、通信の品質と関係のないBFD-RSを用いてBFDを行うため、再度(繰り返し)BFRが実行される場合がある。
 そこで、動作1に対し、SCellのビーム障害の前に明示的なBFD-RSが設定される場合、UEは、SCell BFRレスポンスを受信した後、当該明示的なBFD-RSのモニタリングを停止することが検討されている。例えば、UEは、前述の動作1-1及び1-2の少なくとも1つを行う場合、次の動作1-3を行う。
[[動作1-3]]
 もしセットq0が、上位レイヤパラメータの障害検出リソース(failureDetectionResource)又はビーム障害検出リソースリスト(BeamFailureDetectionResourceList、failureDetectionResourcesToAddModList)によって提供される場合、UEが、セットq0のモニタリングを停止する。
 また、動作2に対し、SpCellのビーム障害の前に明示的なBFD-RSが設定される場合、UEは、SpCell BFRレスポンスを受信した後、当該明示的なBFD-RSのモニタリングを停止することが検討されている。例えば、UEが、前述の動作2-1に代えて次の動作2-2を行うことが検討されている。
[[動作2-2]]
 UEが回復サーチスペースIDによって提供されたサーチスペースセット内においてC-RNTI又はMCS-C-RNTIによってスクランブルされたCRCを有するDCIフォーマットを検出した後、UEが、TCI状態、又は、PDCCH用TCI状態追加リスト及びPDCCH用TCI状態解放リストの少なくとも1つに対する、MAC CEアクティベーションコマンドを受信するまで、UEは、回復サーチスペースIDによって提供されるサーチスペースセット内においてPDCCH候補をモニタし続け、もしセットq0が障害検出リソース(failureDetectionResource)によって提供される場合、UEは、セットq0のモニタリングを停止する。
 マルチパネル受信を用いる同時マルチTRP送信のためのビーム管理に関する拡張が検討されている。
 暗示的BFD-RS設定を用いる場合、次のオプション1及び2が検討されている。
[オプション1]
 BFD-RSセットkは、CORESETサブセットk内に設定されるCORESETのTCI状態のQCLタイプD RSから導出されてもよい。例えば、kは0,1である。QCLタイプD RSが設定されない場合、BFD-RSセットkは、CORESETサブセットk内に設定されるCORESETのTCI状態のQCLタイプAから導出されてもよい。このオプションは、シングルDCIに基づくマルチTRPと、マルチDCIに基づくマルチTRPと、に適用されてもよい。
[オプション2]
 BFD-RSセットkは、CORESETプールインデックスk内に設定されるCORESETのTCI状態のQCLタイプD RSから導出されてもよい。例えば、kは0,1である。QCLタイプD RSが設定されない場合、BFD-RSセットkは、CORESETプールインデックスk内に設定されるCORESETのTCI状態のQCLタイプAから導出されてもよい。このオプションは、マルチDCIに基づくマルチTRPに適用されてもよい。
 マルチDCIに基づくマルチTRPに対しては、オプション2が好ましい。しかしながら、シングルDCIに基づくマルチTRPに対し、CORESETサブセット設定がない(CORESETサブセット設定がマルチDCIに基づくマルチTRPと同様になる)可能性がある。この場合、オプション1は動作しない。
 マルチパネル受信を用いる同時マルチTRP送信のためのビーム管理に関する拡張が検討されている。
 シングルDCI/マルチDCIに基づくマルチTRPに対するTRP毎のBFR(per-TRP BFR、per-TRP based beam failure recovery)をサポートするか否かが検討されている。TRP毎のBFRを可能にするために、基地局(例えば、gNB)応答の拡張、基地局応答の受信後の、DL及びULのチャネル/RSに対するQCL/空間関係想定/UL電力制御のUE動作などが問題となる。
 マルチパネル/マルチTRPにおけるBFR手順において、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとに対し、BFD-RSの複数のセット(設定)が検討されている。
 シングルDCIに基づくマルチTRPに対して、RRCによってTRP毎BFRが設定され、且つBFD-RSが明示的に設定されない場合、BFD-RSが暗示的に決定されることが検討されている。
 Rel.15/16において、BFR-RS/RLM-RSは、RRC情報要素によって設定され、RRCによって更新される。BFR-RS/RLM-RSは、CORESETのTCI状態のRS(特にQCLタイプD RS)と同一にすること(PDCCH(CORESETのTCI状態)とQCLされること)が好ましい。そうでなければ、UEは、CORESETのビーム障害/リンク障害を回復できない。
 BFR-RS/RLM-RSがRRC情報要素によって設定されない場合、CORESETのTCI状態(特にQCLタイプD RS)がBFR-RS/RLM-RSとして用いられるルールがある。この場合、BFR-RS/RLM-RSは、自動的にCORESETのTCI状態(特にQCLタイプD RS)と同一になる。
 BFR-RS/RLM-RSがRRC情報要素によって設定される場合、BFR-RS/RLM-RSは、CORESETのTCI状態(特にQCLタイプD RS)と同一とは限らない。
 明示的BFD-RSに対し、既存の規格に基づいて、もしCORESETのTCI状態がMAC CE(UE固有PDCCH用TCI状態指示MAC CE、TCI State Indication for UE-specific PDCCH MAC CE)によって更新される場合、ネットワーク(NW)は、RRCによってBFD-RSを再設定する必要があり、それはレイテンシ及びオーバーヘッドを引き起こす。
(PDCCH SFNスキーム)
 PDCCHの信頼性向上のため、マルチTRPからの時間/空間/周波数ドメインにおけるPDCCHの繰り返しが検討されている。
 PDCCH SFNスキーム(frequency division multiplexing(SDM)を用いるPDCCH繰り返し)は、1つのCORESETに対して複数のTCI状態を設定/通知し、マルチTRPからDCI(PDCCH)を送信する(同一の時間/周波数において複数のTRPがDCIを送信する)。PDCCH SFNスキームにおいては、そのPDCCHの全resource element group(REG)/control channel element(CCE)におけるPDCCH DMRSが2つのTCI状態に関連付けられてもよい。この場合、RRC情報要素/MAC CEによって、1つのCORESETに対して複数のTCI状態が設定/通知される。
 本開示において、SDM、SFN、は互いに読み替えられてもよい。
 しかしながら、1つのCORESETに対して複数のTCI状態が設定/通知される場合の、BFR-RS/RLM-RSの更新方法が明らかでない。この更新方法が明らかでなければ、通信品質の低下、スループットの低下などを引き起こすおそれがある。
 そこで、本発明者らは、BFD-RS/RLM-RSの更新方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B/C」、「A、B及びCの少なくとも1つ」、は互いに読み替えられてもよい。本開示において、セル、サービングセル、CC、キャリア、BWP、DL BWP、UL BWP、アクティブDL BWP、アクティブUL BWP、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。
 本開示において、設定(configure)、アクティベート(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。本開示において、RRC、RRCシグナリング、RRCパラメータ、上位レイヤ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、は互いに読み替えられてもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、MAC CE、アクティベーション/ディアクティベーションコマンド、は互いに読み替えられてもよい。
 本開示において、ビーム、空間ドメインフィルタ、空間セッティング、TCI状態、UL TCI状態、統一(unified)TCI状態、統一ビーム、共通(common)TCI状態、共通ビーム、TCI想定、QCL想定、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DLビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態/QCL想定のQCLタイプDのRS、TCI状態/QCL想定のQCLタイプAのRS、空間関係、空間ドメイン送信フィルタ、UE空間ドメイン送信フィルタ、UE送信ビーム、ULビーム、UL送信ビーム、ULプリコーディング、ULプリコーダ、PL-RS、は互いに読み替えられてもよい。本開示において、QCLタイプX-RS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、SRS、は互いに読み替えられてもよい。
 本開示において、パネル、Uplink(UL)送信エンティティ、TRP、空間関係、制御リソースセット(COntrol REsource SET(CORESET))、PDSCH、コードワード、基地局、ある信号のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、ある信号のアンテナポートグループ(例えば、DMRSポートグループ)、多重のためのグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ)、CORESETプール、CORESETサブセット、CW、冗長バージョン(redundancy version(RV))、レイヤ(MIMOレイヤ、送信レイヤ、空間レイヤ)、は、互いに読み替えられてもよい。また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。本開示において、TRP ID、TRP関連ID、CORESETプールインデックス、DCI内のフィールドの1つのコードポイントに対応する2つのTCI状態のうちの1つのTCI状態の位置(序数、第1TCI状態又は第2TCI状態)、TRPは、互いに読み替えられてもよい。
 本開示において、TRP、送信ポイント、パネル、DMRSポートグループ、CORESETプール、TCIフィールドの1つのコードポイントに関連付けられた2つのTCI状態の1つ、は互いに読み替えられてもよい。
 本開示において、シングルTRP、シングルTRPシステム、シングルTRP送信、シングルPDSCH、は互いに読み替えられてもよい。本開示において、マルチTRP、マルチTRPシステム、マルチTRP送信、マルチPDSCH、は互いに読み替えられてもよい。本開示において、シングルDCI、シングルPDCCH、シングルDCIに基づくマルチTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。
 本開示において、シングルTRP、シングルTRPを用いるチャネル、1つのTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されないこと、複数のTCI状態/空間関係がRRC/DCIによって有効化されないこと、いずれのCORESETに対しても1のCORESETプールインデックス(CORESETPoolIndex)値が設定されず、且つ、TCIフィールドのいずれのコードポイントも2つのTCI状態にマップされないこと、は互いに読み替えられてもよい。
 本開示において、マルチTRP、マルチTRPを用いるチャネル、複数のTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されること、複数のTCI状態/空間関係がRRC/DCIによって有効化されること、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとの少なくとも1つ、は互いに読み替えられてもよい。本開示において、マルチDCIに基づくマルチTRP、CORESETに対して1のCORESETプールインデックス(CORESETPoolIndex)値が設定されること、は互いに読み替えられてもよい。本開示において、シングルDCIに基づくマルチTRP、TCIフィールドの少なくとも1つのコードポイントが2つのTCI状態にマップされること、は互いに読み替えられてもよい。
 本開示において、TRP#1(第1TRP)は、CORESETプールインデックス=0に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの1番目のTCI状態に対応してもよい。TRP#2(第2TRP)TRP#1(第1TRP)は、CORESETプールインデックス=1に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの2番目のTCI状態に対応してもよい。
 本開示において、DMRS、DMRSポート、アンテナポート、は互いに読み替えられてもよい。
 UL DCI、ULチャネル(例えば、PUSCH)をスケジュールするDCI、DCIフォーマット0_x(x=0,1,2,…)、は互いに読み替えられてもよい。DL DCI、DLチャネル(PDSCH)をスケジュールするDCI、DCIフォーマット1_x(x=0,1,2,…)、は互いに読み替えられてもよい。
 本開示において、リンク方向、下りリンク(DL)、上りリンク(UL)、UL及びDLの一方、は互いに読み替えられてもよい。
 本開示において、プール、セット、グループ、リスト、は互いに読み替えられてもよい。
 本開示において、共通ビーム、共通TCI、共通TCI状態、統一TCI、統一TCI状態、DL及びULに適用可能なTCI状態、複数(複数種類)のチャネル/RSに適用されるTCI状態、複数種類のチャネル/RSに適用可能なTCI状態、PL-RS、は互いに読み替えられてもよい。
 本開示において、RRCによって設定された複数のTCI状態、MAC CEによってアクティベートされた複数のTCI状態、プール、TCI状態プール、アクティブTCI状態プール、共通TCI状態プール、ジョイントTCI状態プール、セパレートTCI状態プール、UL用共通TCI状態プール、DL用共通TCI状態プール、RRC/MAC CEによって設定/アクティベートされる共通TCI状態プール、TCI状態情報、は互いに読み替えられてもよい。
 本開示において、CCリスト、サービングセルリスト、セルグループ設定(CellGroupConfig)内のCCリスト、適用可能リスト、同時TCI更新リスト/第2同時TCI更新リスト、simultaneousTCI-UpdateList1-r16/simultaneousTCI-UpdateList2-r16、同時TCIセルリスト、simultaneousTCI-CellList、同時空間更新リスト/第2同時空間更新リスト、simultaneousSpatial-UpdatedList1-r16/simultaneousSpatial-UpdatedList2-r16、設定されたCC、設定されたリスト、設定されたリスト内のBWP/CC、設定されたリスト内の全てのBWP/CC、アクティベーションコマンドによって指示されたCC、指示されたCC、MAC CEを受信したCC、TCI状態及び空間関係の少なくとも1つの更新のための複数のセルを示す情報、は互いに読み替えられてもよい。
 本開示において、BFR、BFR設定、BFD-RS、BFD-RSセット、BFD-RS設定、RLM-RS、RLM-RSセット、RLM-RS設定は互いに読み替えられてもよい。本開示において、セル毎(per cell)BFR、セル固有(cell-specific)BFR、Rel.15/16のBFR、は互いに読み替えられてもよい。本開示において、TRP毎(per TRP)BFR、TRP固有(TRP-specific)BFR、Rel.17/Rel.17以降のBFR、は互いに読み替えられてもよい。
 本開示において、BFD-RS、RLM-RS、NCBI-RS、検出RS、モニタリングRS、は互いに読み替えられてもよい。
(無線通信方法)
 以下、無線通信方法がBFD-RSに適用される例について説明するが、BFD-RSがRLM-RSに読み替えられ、無線通信方法がRLM-RSに適用されてもよい。
 BFD-RSの2つのセット(BFD-RSセット)が設定されてもよい。2つのBFD-RSセットは、2つのTRPにそれぞれ関連付けられてもよい。2つのBFD-RSセットは、RRCによって設定されてもよい。各BFD-RSセットは、1以上のBFD-RSを含んでもよい。1つのTRPに対して複数のCORESETが設定される場合、そのTRPに対応するBFD-RSセット内の複数のBFD-RSが、それらの複数のCORESETにそれぞれ関連付けられてもよい(QCLされてもよい)。1つのTRPに対して複数のCORESETが設定される場合、1つのBFD-RS内の1つのBFD-RSが、それらの複数のCORESETに関連付けられてもよい(QCLされてもよい)。
 1つのCORESETに対して1つ又は2つのTCI状態が設定/アクティベートされてもよい。1つのCORESETに対して2つのBFD-RSが関連付けられてもよい。2つのBFD-RSが、1つのCORESETの2つのTCI状態にそれぞれ関連付けられてもよい。
 UEは、複数のTCI状態を有するCORESETの第1設定を受信し、BFD又はRLM用の1以上の第1RSの第2設定を受信し、MAC CEを受信してもよい。UEは、前記第1設定、前記第2設定、及び前記MAC CEに基づいて、前記BFD又は前記RLMに用いられる1以上の第2RSを決定してもよい(1以上の第1RSを1以上の第2RSへ更新してもよい)。前記1以上の第1参照信号は、前記複数のTCI状態にそれぞれ関連付けられてもよい。そのMAC CEは、UE固有PDCCH用TCI状態指示MAC CE(TCI State Indication for UE-specific PDCCH MAC CE)であってもよいし、新規MAC CEであってもよい。
 CORESET内の2つのTCI状態がMAC CEによって更新されるため、BFD-RS/RLM-RSがそのCORESETの2つのTCI状態の両方内のRSを含むように、UEが、MAC CEがBFD-RS/RLM-RSを明示的又は暗示的に更新することをサポートすることが有益である。
<第1の実施形態>
 BFD-RSがRRCによって設定され、CORESET iとQCLされ、且つCORESET iに設定された複数のTCI状態のうちの1以上のTCI状態(1つ又は2つのTCI状態)がMAC CEによって更新される(又は、CORESET iに関連付けられた複数の共通TCI状態のうちの1以上のTCI状態がMAC CEによって更新される)場合、BFD-RSは、CORESET iの更新された1以上のTCI状態内において設定された(又は、CORESET iの更新された1以上のTCI状態内のRSに関連付けられた)P-CSI-RS又はSSBへ自動的に更新されてもよい。もし更新された各TCI状態内に2つのRSがある場合、P-CSI-RS又はSSBが、QCLタイプDを有するRSに対応してもよい。
 この場合、複数のCORESETのうちのどのCORESETがBFD-RS決定に適用されるかを選択するルール(CORESET選択ルール)が規定されてもよい。適用されるCORESETは、CORESETのTCI状態内のRSの周期(例えば、最小又は最大の周期に対応するCORESETが選択される)と、CORESET ID(例えば、最小又は最大のCORESET IDを有するCORESETが選択される)と、の少なくとも1つに基づいて決定されてもよい。複数のTCI状態を設定されたCORESETが優先して選択されてもよい。この場合、PDCCH SFNの信頼性を向上できる。1つの複数のTCI状態を設定されたCORESETが優先して選択されてもよい(TCI状態を設定されたCORESETが優先されなくてもよい)。
 複数のCORESETのうち、CORESET選択ルールに従って選択される1つのCORESET(CORESET i)のTCI状態(又は共通TCI状態)がMAC CEによって更新された場合、UEは、選択されたCORESETのTCI状態内のRSをBFD-RSとして用いてもよい(BFD-RSを、関連付けられたTCI状態内のRSへ更新してもよい)。
 複数のCORESETのいずれかのCORESETのTCI状態(又は共通TCI状態)がMAC CEによって更新された場合、UEは、CORESET選択ルールに従って複数のCORESETから1つのCORESET(CORESET i)のTCI状態内のRSをBFD-RSとして用いてもよい(BFD-RSを、関連付けられたTCI状態内のRSへ更新してもよい)。
 このBFD-RS更新は、セル毎(セル固有の)BFD-RS設定(per cell、Rel.15/16)と、TRP毎BFD-RS設定(per TRP、Rel.17以降)と、の両方に適用されてもよいし、シングルDCIに基づくTRP毎BFRと、及びマルチDCIに基づくTRP毎BFRと、の両方に適用されてもよい。
 図2は、セル毎BFD-RS設定の一例を示す。この例において、セル#1に対してCORESET#1が設定され、CORESET#1に対してTCI状態#A及び#Bが指示される。さらに、CORESET#1のTCI状態#AとQCLされるBFD-RS#aと、CORESET#1のTCI状態#BとQCLされるBFD-RS#bと、が設定される。このとき、セル#1に対するBFD-RSは、BFD-RS#a及び#bである。
 MAC CEによってセル#1のCORESET#1のTCI状態#AがTCI状態#Cへ更新される場合、そのCORESET#1のTCI状態#Aに対応するBFD-RSは、更新されたTCI状態#Cに含まれた(関連付けられた)RSであるBFD-RS#cへ自動的に更新される。このとき、CORESET#1のTCI状態#BとQCLされるBFD-RS#bは更新されず、セル#1に対するBFD-RSは、BFD-RS#c及び#bである。
 図3は、セル毎BFD-RS設定の別の一例を示す。この例において、セル#1に対してCORESET#1が設定され、CORESET#1に対してTCI状態#A及び#Bが指示される。さらに、CORESET#1のTCI状態#AとQCLされるBFD-RS#aと、CORESET#1のTCI状態#BとQCLされるBFD-RS#bと、が設定される。このとき、セル#1に対するBFD-RSは、BFD-RS#a及び#bである。
 MAC CEによってセル#1のCORESET#1のTCI状態#AがTCI状態#Bへ更新される場合、そのCORESET#1のTCI状態#Aに対応するBFD-RSは、TCI状態#Bに含まれた(関連付けられた)RSであるBFD-RS#bへ自動的に更新される。このとき、CORESET#1のTCI状態#BとQCLされるBFD-RS#bは更新されず、セル#1に対するBFD-RSは、BFD-RS#bである。このように、BFD-RSは、1つのBFD-RSへ更新されてもよい。
 図4は、TRP毎BFD-RS設定の一例を示す。このBFD-RS設定は、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPと、の両方に適用されてもよい。この例において、TRP#1に対してCORESET#1が設定され、TRP#2に対してCORESET#2が設定され、CORESET#1に対してTCI状態#Aが指示され、CORESET#2に対してTCI状態#B及び#Cが指示される。TRP#2は、新規ID又はCORESETプールインデックス=1に関連付けられてもよい。さらに、CORESET#1のTCI状態#AとQCLされるBFD-RS#aを含むBFD-RSセット#1が設定され、CORESET#2のTCI状態#BとQCLされるBFD-RS#bと、CORESET#2のTCI状態#CとQCLされるBFD-RS#cと、を含むBFD-RSセット#2が設定される。BFD-RSセット#1は、TRP#1に関連付けられてもよい。BFD-RSセット#2は、TRP#2に関連付けられてもよい。このとき、BFD-RSは、BFD-RS#a、#b、#cである。
 MAC CEによってCORESET#1のTCI状態#AがTCI状態#Dへ更新される場合、そのCORESET#1に対応するBFD-RSは、TCI状態#Dに含まれた(関連付けられた)RSであるBFD-RS#dへ自動的に更新される。MAC CEによってCORESET#2のTCI状態#CがTCI状態#Eへ更新される場合、そのCORESET#2のTCI状態#Cに対応するBFD-RSは、TCI状態#Eに含まれた(関連付けられた)RSであるBFD-RS#eへ自動的に更新される。このとき、TRP#1及び#2に対するBFD-RSは、BFD-RS#d、#b、#eである。BFD-RSの数は、Rel,15/16の制限である2を超えてもよい。
 CORESET iの複数のTCI状態のうちの1以上のTCI状態がMAC CEによって更新される場合、更新された1以上のTCI状態と、元(更新前)の1以上のTCI状態とは、同じTRPに属してもよい(同じ新規ID、又は同じCORESETプールインデックス、又は同じTRP関連ID、に関連付けられてもよい)。
 もしBFD-RSセット当たりのBFD-RSの数が制限され、同じBFD-RSセット内の同じBFD-RSに対応する複数のCORESETのTCI状態が更新される場合、それらのCORESETに対して更新された複数のTCI状態は、以下のオプション1-1及び1-2のいずれかであってもよい。
[オプション1-1]
 それらの複数のTCI状態は、同じTCI状態を有する。
 図5は、TRP毎BFD-RS設定の別の一例を示す。このBFD-RS設定は、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPと、の両方に適用されてもよい。この例において、TRP#1に対してCORESET#1が設定され、TRP#2に対してCORESET#2が設定され、CORESET#1に対してTCI状態#Aが指示され、CORESET#2に対してTCI状態#B及び#Cが指示される。TRP#2は、新規ID又はCORESETプールインデックス=1に関連付けられてもよい。さらに、CORESET#1のTCI状態#AとQCLされるBFD-RS#aを含むBFD-RSセット#1が設定され、CORESET#2のTCI状態#B及び#CとQCLされるBFD-RS#bを含むBFD-RSセット#2が設定される。BFD-RSセット#1は、TRP#1に関連付けられてもよい。BFD-RSセット#2は、TRP#2に関連付けられてもよい。このとき、BFD-RSは、BFD-RS#a、#bである。
 図5のオプション1-1の例において、MAC CEによってCORESET#2のTCI状態#B及び#CがTCI状態#Eへ更新される。この場合、CORESET#2のTCI状態#B及び#Cに対応するBFD-RSは、TCI状態#Eに含まれた(関連付けられた)RSであるBFD-RS#eへ自動的に更新される。このとき、TRP#1及び#2に対するBFD-RSは、BFD-RSセット#1内のBFD-RS#aと、BFD-RSセット#2内のBFD-RS#eと、である。
[オプション1-2]
 それらの複数のTCI状態は、同じBFD-RSに関連付けられる/QCLされる。
 図5のオプション1-2の例において、MAC CEによってCORESET#2のTCI状態#BがTCI状態#Eへ更新され、MAC CEによってCORESET#2のTCI状態#CがTCI状態#Fへ更新される。この場合、CORESET#2のTCI状態#B及び#Cに対応するBFD-RSは、CORESET#2のTCI状態#B及び#Cに関連付けられた同じRS(それらのCORESETとQCLされる同じRS)であるBFD-RS#eへ自動的に更新される。このとき、TRP#1及び#2に対するBFD-RSは、BFD-RSセット#1内のBFD-RS#aと、BFD-RSセット#2内のBFD-RS#eと、である。
 この実施形態によれば、BFD-RSとQCLされるCORESETのTCI状態が更新される場合であっても、UEは、適切にBFD-RSを決定できる。
<第2の実施形態>
 BFD-RSの更新のための新規MAC CEが規定されてもよい。このMAC CEは、新規logical channel ID(LCID)を有してもよい。新規MAC CEは、UE固有PDCCH用TCI状態指示MAC CEと異なるケースに適用されてもよい。
 新規MAC CEは、以下のオプション2-1から2-7の少なくとも1つに従ってもよい。
 セル毎BFRに対し、新規MAC CEは、以下のオプション2-1から2-3のいずれかに従ってもよい。
[オプション2-1]
 MAC CEは、1つ又は2つのBFD-RSフィールドと、1つのサービングセルIDフィールドと、1つのBWP IDフィールドと、を含む。このMAC CEは、指示されたサービングセル/BWPに適用される。
 図6Aは、オプション2-1に係るMAC CEの一例を示す。この例は、TRP毎に1つのBFD-RSを想定する。MAC CEは、Tフィールドと、サービングセルIDフィールドと、BWP IDフィールドと、第1のR(reserved bit)フィールドと、第1のBFD-RS ID(BFD-RS ID)フィールドと、第1のRフィールドと、第2のBFD-RS ID(BFD-RS ID)フィールドと、を含む。
 Tフィールドは、第2のBFD-RSフィールドが存在するか否か、を示してもよい。
 各BFD-RSフィールドは、CSI-RSリソースIDを示すかSSB IDを示すかを識別するフラグを伴ってもよい。
[オプション2-2]
 MAC CEは、1つ又は2つのBFD-RSフィールドと、1つのサービングセルIDフィールドと、1つのBWP IDフィールドと、を含む。CCリストがRRCによって設定され、このMAC CEは、指示されたサービングセルを含むCCリスト内の複数CCに適用される。これは、このMAC CEが、複数CCに対して同時BFD-RS更新を行うこと、複数CCが同じBFD-RSを用いること、を意味する。
[オプション2-3]
 MAC CEは、1以上のセットを含む。各セットは、1つ又は2つのBFD-RSフィールドと、1つのサービングセルIDフィールドと、1つのBWP IDフィールドと、を含む。1以上のセットは、異なるサービングセルIDを示す。これは、このMAC CEが、複数CCに対して異なるBFD-RSを更新できることを意味する。
 TRP毎BFRに対し、新規MAC CEは、以下のオプション2-4から2-6のいずれかに従ってもよい。
[オプション2-4]
 MAC CEは、TRP毎に1つ又は2つのBFD-RSフィールドと、1つのサービングセルIDフィールドと、1つのBWP IDフィールドと、を含む。このMAC CEは、TRPに関連付けられたTRP-ID/新規ID/CORESETプールインデックスのフィールドを含んでもよいし、含まなくてもよい。このMAC CEは、指示されたサービングセル/BWPに適用される。
 図6Bは、オプション2-4に係るMAC CEの一例を示す。この例は、TRP毎に1つのBFD-RSを想定する。MAC CEは、Tフィールドと、サービングセルIDフィールドと、BWP IDフィールドと、Aフィールドと、第1のBFD-RS IDフィールドと、Rフィールドと、第2のBFD-RS IDフィールドと、を含む。
 Tフィールドは、1つのBFD-RSフィールドが存在する(T=0)か、2つのBFD-RSフィールドが存在する(T=1)か、を示してもよいし、このMAC CEが1つのTRP用(T=0)か2つのMAC CE用(T=1)かを示してもよい。
 各BFD-RSフィールドは、CSI-RSリソースIDを示すかSSB IDを示すかを識別するフラグを伴ってもよい。
 Aフィールドは、このMAC CE内に1つのBFD-RSフィールドが存在する(T=0)場合にBFD-RSのTRPに関する情報を示してもよい。例えば、このMAC CE内に1つのみのBFD-RSフィールドが存在する場合、Aフィールドは、そのBFD-RSフィールドに対応するTRP-ID/新規ID/CORESETプールインデックスを示してもよい。
[オプション2-5]
 MAC CEは、TRP毎に1つ又は2つのBFD-RSフィールドと、1つのサービングセルIDフィールドと、1つのBWP IDフィールドと、を含む。このMAC CEは、TRPに関連付けられたTRP-ID/新規ID/CORESETプールインデックスのフィールドを含んでもよいし、含まなくてもよい。CCリストがRRCによって設定され、このMAC CEは、指示されたサービングセルを含むCCリスト内の複数CCに適用される。これは、このMAC CEが、複数CCに対して同時BFD-RS更新を行うこと、複数CCが同じBFD-RSを用いること、を意味する。
 この場合、CCリスト内において設定された全てのCCは、TRP毎BFRを設定されてもよい。
[オプション2-6]
 MAC CEは、1以上のセットを含む。各セットは、TRP毎に1つ又は2つのBFD-RSフィールドと、1つのサービングセルIDフィールドと、1つのBWP IDフィールドと、を含む。各セットは、TRPに関連付けられたTRP-ID/新規ID/CORESETプールインデックスのフィールドを含んでもよいし、含まなくてもよい。1以上のセットは、異なるサービングセルIDを示す。これは、このMAC CEが、TRP毎BFRを設定された複数CCに対して異なるBFD-RSを更新できることを意味する。
 新規MAC CEは、以下のオプション2-7に従ってもよい。
[オプション2-7]
 MAC CEは、セル毎BFRを設定されたセルに対するBFD-RSを含んでもよいし、TRP毎BFRを設定されたセルに対するBFD-RSを含んでもよい。このMAC CEは、オプション2-3及び2-6の組み合わせであってもよい。
 もしTRP毎BFRを設定されたセルに対するMAC CE内にTRPに関連付けられたTRP-ID/新規ID/CORESETプールインデックスのフィールドが存在する場合、各BFD-RSフィールドがどのセルのどのTRPに適用されるかが明確になる。これは、このMAC CEが、そのセルに対する1つのTRPのみに対するBFD-RSを更新でき、そのセルに対する他のTRPのBFD-RSを維持できる、ことを意味する。
 もしTRP毎BFRを設定されたセルに対するMAC CE内にTRPに関連付けられたTRP-ID/新規ID/CORESETプールインデックスのフィールドが存在しない場合、これは、このMAC CEが、そのセルに対して同時に2つのTRP用のBFD-RSを更新すべきであることを意味し、このMAC CEは、以下のオプション2-7-1及び2-7-2に従ってもよい。
[[オプション2-7-1]]
 各セル/BWPに対するMAC CE内において、このMAC CEがセル毎BFD-RS用であるかTRP毎BFD-RS用である(BFD-RSフィールドの2つのセットを有する)かを示すための新規フラグが必要とされてもよい。
[[オプション2-7-2]]
 各セル/BWPに対するMAC CE内において、新規フラグが必要とされなくてもよい。このMAC CEがセル毎BFD-RS用であるかTRP毎BFD-RS用であるかは、セルに対するBFR設定に依存してもよい、BFR設定用のRRCによって暗示的に指示されてもよい。
《変形例》
 CORESET毎に、BFD-RSが設定/通知されてもよい。
 第1の実施形態におけるCORESET選択ルールが適用されてもよい。CORESET選択ルールに従ってCORESETが選択された場合、選択されたCORESETに対するBFD-RS(選択されたCORESETに対してMAC CEによって通知されたBFD-RS)が、BFDに用いられる。
 図7は、第2の実施形態の変形例に係るMAC CEの一例を示す。このMAC CEは、CORESETに対する1つ又は2つのBFD-RSを通知する。MAC CEは、サービングセルIDフィールドと、CORESET IDフィールドと、第1のBFD-RS ID(BFD-RS ID)フィールドと、第1のRフィールドと、Rフィールドと、第2のBFD-RS ID(BFD-RS ID)フィールドと、を含む。
 サービングセルIDフィールドは、このMAC CEが適用されるサービングセルを示す。CORESET IDフィールドは、このMAC CEが適用されるCORESETを示す。第1のBFD-RS IDフィールドは、第1のBFDーRSを示す。第1のBFD-RS IDフィールドは、第1のBFDーRSがCSI-RSリソースIDであるかSSB IDであるかを示すフラグを伴ってもよい。第2のBFD-RS IDフィールドは、第2のBFDーRSを示す。第2のBFD-RS IDフィールドは、第1のBFDーRSがCSI-RSリソースIDであるかSSB IDであるかを示すフラグを伴ってもよい。
 この実施形態によれば、BFD RSが明示的に設定されない場合であっても、UEは、BFD RSを適切に決定できる。
<第3の実施形態>
 BFD-RS/RLM-RSが設定されない場合、UEは、ルール(RS選択ルール)に従って、BFD-RS/RLM-RSを選択する。
 RS選択ルールは、第1の実施形態におけるCORESET選択ルールに従って、CORESETを選択し、そのCORESETに対して設定された1以上のTCI状態内のRSをBFD-RS/RLM-RSとして選択してもよい。ここで、各TCI状態内にQCLタイプA RS及びQCLタイプD RSがある場合、UEはQCLタイプD RSをBFD-RS/RLM-RSとして選択してもよい。
 RS選択ルールは、全てのCORESETに対して設定された1以上のTCI状態内のRSをBFD-RS/RLM-RSの候補とし、第1の実施形態におけるCORESET選択ルールに従って、CORESETを選択し、そのCORESETに対して設定されたTCI状態内のRSから、特定数のRSを、BFD-RS/RLM-RSとして選択してもよい。
 少なくとも1つのCORESETのそれぞれに対して、複数のTCI状態が設定され、BFD-RS/RLM-RSが設定されない場合、UEは、RS選択ルールに従って、BFD-RS/RLM-RSを選択してもよい。
 この実施形態によれば、BFD RSが明示的に設定されない場合であっても、UEは、BFD RSを適切に決定できる。
<第4の実施形態>
 第1から第3の実施形態における少なくとも1つの機能(特徴、feature)に対応する上位レイヤパラメータ(RRC情報要素)/UE能力(capability)が規定されてもよい。UE能力は、この機能をサポートすることを示してもよい。
 その機能に対応する上位レイヤパラメータが設定されたUEは、その機能を行ってもよい。「その機能に対応する上位レイヤパラメータが設定されないUEは、その機能を行わないこと」が規定されてもよい。
 その機能をサポートすることを示すUE能力を報告したUEは、その機能を行ってもよい。「その機能をサポートすることを示すUE能力を報告していないUEは、その機能を行わないこと」が規定されてもよい。
 UEがその機能をサポートすることを示すUE能力を報告し、且つその機能に対応する上位レイヤパラメータが設定された場合、UEは、その機能を行ってもよい。「UEがその機能をサポートすることを示すUE能力を報告しない場合、又はその機能に対応する上位レイヤパラメータが設定されない場合に、UEは、その機能を行わないこと」が規定されてもよい。
 UE能力は、UEがこの機能をサポートするか否かを示してもよい。
 UE能力は、PDCCH繰り返し/PDCCH SFNスキームがサポートされるか否かを示してもよい。
 UE能力は、Rel.15/16 BFR(セル毎BFR)とRel.17以降のBFR(例えばTRP毎BFR)との少なくとも1つに対し、MAC CEを介したCORESETに対するTCI状態更新に基づく、あるサービングセルに対する自動BFD-RS更新をサポートするか否かを示してもよい。
 UE能力は、Rel.15/16 BFR(セル毎BFR)とRel.17以降のBFR(例えばTRP毎BFR)との少なくとも1つに対し、MAC CEを介したCORESETに対するTCI状態更新に基づく、同時に複数サービングセルに対する自動BFD-RS更新をサポートするか否かを示してもよい。
 UE能力は、Rel.15/16 BFR(セル毎BFR)とRel.17以降のBFR(例えばTRP毎BFR)との少なくとも1つに対し、新規MAC CEに基づく、あるサービングセルに対するBFD-RS更新をサポートするか否かを示してもよい。
 UE能力は、Rel.15/16 BFR(セル毎BFR)とRel.17以降のBFR(例えばTRP毎BFR)との少なくとも1つに対し、新規MAC CEに基づく、同時に複数サービングセルに対するBFD-RS更新をサポートするか否かを示してもよい。
 この実施形態によれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図9は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、複数のtransmission configuration indication(TCI)状態を有するcontrol resource set(CORESET)の第1設定を送信し、beam failure detection(BFD)又はradio link monitoring(RLM)用の1以上の第1参照信号の第2設定を送信してもよい。制御部110は、前記BFD又は前記RLMに用いられる1以上の第2参照信号を決定してもよい。前記1以上の第1参照信号は、前記複数のTCI状態にそれぞれ関連付けられてもよい。前記送受信部120は、前記1以上の第2参照信号に関するmedium access control-control element(MAC CE)を送信してもよい。
(ユーザ端末)
 図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。
 送受信部220は、複数のtransmission configuration indication(TCI)状態を有するcontrol resource set(CORESET)の第1設定を受信し、beam failure detection(BFD)又はradio link monitoring(RLM)用の1以上の第1参照信号の第2設定を受信し、medium access control-control element(MAC CE)を受信してもよい。制御部210は、前記第1設定、前記第2設定、及び前記MAC CEに基づいて、前記BFD又は前記RLMに用いられる1以上の第2参照信号を決定してもよい。前記1以上の第1参照信号は、前記複数のTCI状態にそれぞれ関連付けられてもよい。
 前記MAC CEは、前記複数のTCI状態のうちの1以上のTCI状態を示してもよい。前記1以上の第2参照信号は、前記1以上のTCI状態内の第3参照信号を含んでもよい(第1の実施形態)。
 前記第1設定は、複数のCORESETを示してもよい。前記複数のCORESETは、前記CORESETを含んでもよい。前記制御部210は、前記複数のCORESETから前記CORESETを選択してもよい(第1の実施形態)。
 前記MAC CEは、前記1以上の第2参照信号を示してもよい(第2の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  複数のtransmission configuration indication(TCI)状態を有するcontrol resource set(CORESET)の第1設定を受信し、beam failure detection(BFD)又はradio link monitoring(RLM)用の1以上の第1参照信号の第2設定を受信し、medium access control-control element(MAC CE)を受信する受信部と、
     前記第1設定、前記第2設定、及び前記MAC CEに基づいて、前記BFD又は前記RLMに用いられる1以上の第2参照信号を決定する制御部と、を有し、
     前記1以上の第1参照信号は、前記複数のTCI状態にそれぞれ関連付けられる、端末。
  2.  前記MAC CEは、前記複数のTCI状態のうちの1以上のTCI状態を示し、
     前記1以上の第2参照信号は、前記1以上のTCI状態内の第3参照信号を含む、請求項1に記載の端末。
  3.  前記第1設定は、複数のCORESETを示し、
     前記複数のCORESETは、前記CORESETを含み、
     前記制御部は、前記複数のCORESETから前記CORESETを選択する、請求項2に記載の端末。
  4.  前記MAC CEは、前記1以上の第2参照信号を示す、請求項1に記載の端末。
  5.  複数のtransmission configuration indication(TCI)状態を有するcontrol resource set(CORESET)の第1設定を受信し、beam failure detection(BFD)又はradio link monitoring(RLM)用の1以上の第1参照信号の第2設定を受信し、medium access control-control element(MAC CE)を受信するステップと、
     前記第1設定、前記第2設定、及び前記MAC CEに基づいて、前記BFD又は前記RLMに用いられる1以上の第2参照信号を決定するステップと、を有し、
     前記1以上の第1参照信号は、前記複数のTCI状態にそれぞれ関連付けられる、端末の無線通信方法。
  6.  複数のtransmission configuration indication(TCI)状態を有するcontrol resource set(CORESET)の第1設定を送信し、beam failure detection(BFD)又はradio link monitoring(RLM)用の1以上の第1参照信号の第2設定を送信する送信部と、
     前記BFD又は前記RLMに用いられる1以上の第2参照信号を決定する制御部と、を有し、
     前記1以上の第1参照信号は、前記複数のTCI状態にそれぞれ関連付けられ、
     前記送信部は、前記1以上の第2参照信号に関するmedium access control-control element(MAC CE)を送信する、基地局。
PCT/JP2021/001609 2021-01-19 2021-01-19 端末、無線通信方法及び基地局 WO2022157819A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022576246A JPWO2022157819A5 (ja) 2021-01-19 端末、無線通信方法、基地局及びシステム
CN202180095986.3A CN117044266A (zh) 2021-01-19 2021-01-19 终端、无线通信方法以及基站
PCT/JP2021/001609 WO2022157819A1 (ja) 2021-01-19 2021-01-19 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001609 WO2022157819A1 (ja) 2021-01-19 2021-01-19 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022157819A1 true WO2022157819A1 (ja) 2022-07-28

Family

ID=82549578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001609 WO2022157819A1 (ja) 2021-01-19 2021-01-19 端末、無線通信方法及び基地局

Country Status (2)

Country Link
CN (1) CN117044266A (ja)
WO (1) WO2022157819A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069810A1 (ja) * 2022-09-28 2024-04-04 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2024067748A1 (zh) * 2022-09-30 2024-04-04 华为技术有限公司 通信方法及装置
WO2024073425A1 (en) * 2022-09-30 2024-04-04 Qualcomm Incorporated Beam failure detection reference signal set update

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138531A1 (ja) * 2018-01-12 2019-07-18 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2020523959A (ja) * 2018-02-21 2020-08-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムでbwp又はビーム切り替えによって制御チャネルを構成する方法及び装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138531A1 (ja) * 2018-01-12 2019-07-18 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2020523959A (ja) * 2018-02-21 2020-08-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムでbwp又はビーム切り替えによって制御チャネルを構成する方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Enhancement on multi-beam operation", 3GPP DRAFT; R1-2008956, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946744 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069810A1 (ja) * 2022-09-28 2024-04-04 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2024067748A1 (zh) * 2022-09-30 2024-04-04 华为技术有限公司 通信方法及装置
WO2024073425A1 (en) * 2022-09-30 2024-04-04 Qualcomm Incorporated Beam failure detection reference signal set update

Also Published As

Publication number Publication date
CN117044266A (zh) 2023-11-10
JPWO2022157819A1 (ja) 2022-07-28

Similar Documents

Publication Publication Date Title
JP7320762B2 (ja) 端末、無線通信方法及びシステム
JP7323612B2 (ja) 端末、無線通信方法及びシステム
JP7216113B2 (ja) 端末及び無線通信方法
WO2022097619A1 (ja) 端末、無線通信方法及び基地局
WO2022157819A1 (ja) 端末、無線通信方法及び基地局
WO2022176091A1 (ja) 端末、無線通信方法及び基地局
WO2021090507A1 (ja) 端末及び無線通信方法
JP7313369B2 (ja) 端末、無線通信方法及びシステム
WO2022220109A1 (ja) 端末、無線通信方法及び基地局
WO2022190349A1 (ja) 端末、無線通信方法及び基地局
WO2022259543A1 (ja) 端末、無線通信方法及び基地局
WO2022024358A1 (ja) 端末、無線通信方法及び基地局
WO2022024357A1 (ja) 端末、無線通信方法及び基地局
JP7480176B2 (ja) 端末、無線通信方法及びシステム
WO2022249742A1 (ja) 端末、無線通信方法及び基地局
WO2022208872A1 (ja) 端末、無線通信方法及び基地局
WO2022113284A1 (ja) 端末、無線通信方法及び基地局
WO2022149275A1 (ja) 端末、無線通信方法及び基地局
WO2022059072A1 (ja) 端末、無線通信方法及び基地局
WO2022034655A1 (ja) 端末、無線通信方法及び基地局
WO2021090506A1 (ja) 端末及び無線通信方法
WO2023007659A1 (ja) 端末、無線通信方法及び基地局
WO2022259524A1 (ja) 端末、無線通信方法及び基地局
WO2023022146A1 (ja) 端末、無線通信方法及び基地局
WO2022230141A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180095986.3

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21920936

Country of ref document: EP

Kind code of ref document: A1