WO2022249702A1 - Monitoring device and battery apparatus comprising same - Google Patents

Monitoring device and battery apparatus comprising same Download PDF

Info

Publication number
WO2022249702A1
WO2022249702A1 PCT/JP2022/013980 JP2022013980W WO2022249702A1 WO 2022249702 A1 WO2022249702 A1 WO 2022249702A1 JP 2022013980 W JP2022013980 W JP 2022013980W WO 2022249702 A1 WO2022249702 A1 WO 2022249702A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
closed circuit
circuit voltage
calculation unit
range
Prior art date
Application number
PCT/JP2022/013980
Other languages
French (fr)
Japanese (ja)
Inventor
真也 加藤
嘉洋 佐藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112022002810.6T priority Critical patent/DE112022002810T5/en
Publication of WO2022249702A1 publication Critical patent/WO2022249702A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the closed-circuit voltage of lithium secondary batteries is used to equalize the SOCs of multiple lithium secondary batteries. Therefore, it is required to improve the detection accuracy of the closed circuit voltage. In order to improve the detection accuracy of the closed circuit voltage, the number of components may increase. It is required to diagnose in which one of the plurality of components (range setting section) an abnormality has occurred.
  • a monitoring device includes a level shifter including a plurality of range setting units for changing acquisition ranges of closed circuit voltages of a plurality of electrically connected battery cells; an AD converter that converts the closed-circuit voltage output from the level shifter into a digital signal within the acquisition range set by the level shifter; and a reference signal unit for outputting a reference signal for diagnosing the state of each of the plurality of range setting units to the level shifter.
  • 10 is a circuit diagram showing a modification of the level shifter; 4 is a timing chart for explaining voltage detection; 4 is a timing chart for explaining voltage detection; 4 is a flowchart for explaining voltage detection processing; 4 is a flowchart for explaining voltage detection processing; 4 is a flowchart for explaining voltage detection processing; 4 is a timing chart for explaining ground fault detection; 4 is a timing chart for explaining power fault detection; 5 is a flowchart for explaining short-circuit determination processing; 4 is a timing chart for explaining ground fault detection; 4 is a timing chart for explaining power fault detection; 4 is a timing chart for explaining ground fault detection; 4 is a timing chart for explaining ground fault detection; 4 is a timing chart for explaining power fault detection; 4 is a timing chart for explaining ground fault detection; 4 is a timing chart for explaining power fault detection; 4 is a timing chart for explaining ground fault detection; 4 is a timing chart for explaining power fault detection; 4 is a timing chart for explaining ground fault detection; 4 is a timing chart for explaining power fault detection; 4 is a timing
  • a battery device 100 and an assembled battery 200 are shown in FIG.
  • the battery device 100 and the assembled battery 200 are mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle.
  • the electric vehicles include passenger cars, buses, construction vehicles, agricultural machinery vehicles, and the like.
  • the assembled battery 200 has a plurality of battery stacks 210 .
  • Each of the plurality of battery stacks 210 has a plurality of battery cells 220 electrically connected in series.
  • a secondary battery such as a lithium-ion secondary battery, a nickel-hydrogen secondary battery, or an organic radical battery can be employed.
  • the output voltage of the battery cells 220 connected in series is the output voltage of the battery stack 210 .
  • FIG. 1 a plurality of battery cells 220 included in one battery stack 210 are shown surrounded by dashed lines.
  • the plurality of battery stacks 210 are electrically connected in series or in parallel. In this embodiment, a plurality of battery stacks 210 are electrically connected in series.
  • the output voltage of the assembled battery 200 is the sum of the output voltages of the plurality of battery stacks 210 connected in series. Power supply power dependent on this output voltage is supplied to various vehicle-mounted devices.
  • a physical quantity sensor 230 that detects the physical quantity of the battery cell 220 is provided in each of the plurality of battery stacks 210 .
  • Physical quantities detected by the physical quantity sensor 230 include, for example, the temperature and current of the battery cell 220 .
  • the SOC is reduced by supplying the above-mentioned power supply power to various on-vehicle devices. Also, the battery cell 220 self-discharges. Therefore, the SOC decreases even when the power supply is not supplied.
  • the quality and environment of the plurality of battery cells 220 are not uniform. Therefore, the SOCs of the plurality of battery cells 220 vary. This variation is improved by an equalization process, which will be described later.
  • the battery cell 220 has SOC and OCV characteristics.
  • FIG. 2 shows SOC and OCV characteristic data when the battery cell 220 is a lithium ion secondary battery.
  • the change rate of OCV with respect to SOC is low.
  • Battery cell 220 is mainly used in this charge/discharge region.
  • SOC1 and OCV1 the values of SOC and OCV between the overdischarge region and the charge/discharge region are expressed as SOC1 and OCV1.
  • SOC and OCV values between the charge/discharge region and the overcharge region are denoted as SOC2 and OCV2.
  • the control unit 30 diagnoses a plurality of monitoring units 10. Also, the control unit 30 acquires battery information detected by the plurality of monitoring units 10 . The control unit 30 acquires vehicle information input from various ECUs and various sensors (not shown). When a charging device is connected to the electric vehicle, the control unit 30 acquires charging information input from the charging device. The input to the control unit 30 of the vehicle information and charging information, and the output of the processing results of the control unit 30 to various ECUs, charging equipment, etc. are indicated by white arrows in FIG.
  • the multiplexer 11 is connected to the physical quantity sensor 230 . Thereby, the physical quantity is input to the multiplexer 11 .
  • the multiplexer 11 sequentially selects and detects a plurality of input closed circuit voltages.
  • the multiplexer 11 sequentially outputs the detected closed circuit voltages to the level shifter 12 .
  • the multiplexer 11 also sequentially selects and detects a plurality of input physical quantities.
  • the multiplexer 11 also sequentially outputs the detected physical quantities to the level shifter 12 .
  • Each of the plurality of clamp circuits 122 includes at least one switch. This switch is controlled by the monitoring control unit 14 to be in an energized state and an interrupted state. The input range of the operational amplifier 121 is thereby controlled. The offset of operational amplifier 121 is controlled. Note that when all the switches included in each of the plurality of clamp circuits 122 are in the off state, the input range of the operational amplifier 121 is between the upper limit value and the lower limit value of the power supply voltage.
  • the clamp circuit 122 corresponds to the offset adjustment section.
  • the AD conversion unit 13 receives from the level shifter 12 an analog signal of a closed circuit voltage and a physical quantity whose gain and offset have been adjusted. By adjusting the gain and offset of the level shifter 12, the voltage range of the analog signal converted from analog to digital by the AD converter 13 is controlled. The voltage range of the closed circuit voltage and the physical quantity that are analog-to-digital converted by the AD converter 13 are controlled. As a result, the acquisition range of the closed circuit voltage and the physical quantity is controlled. Note that it is not necessary to particularly control the acquisition range of the physical quantity.
  • This quantization error becomes smaller as the number of quantization bits of the AD converter 13 increases.
  • the number of quantization bits is fixed. Therefore, for example, when the acquisition range of the closed circuit voltage is 0.0 V to 5.0 V, the resolution of the AD converter 13 is the value obtained by dividing this 0.0 V to 5.0 V by the number of quantization bits.
  • the instruction signal input from the control unit 30 to the monitoring control unit 14 includes the acquisition range of the closed circuit voltage of the battery cell 220 to be detected.
  • the monitor control unit 14 controls the gain and offset of the level shifter 12 when the multiplexer 11 selects the closed circuit voltage to be detected. This controls the acquisition range of the closed circuit voltage.
  • the reference voltage circuit 16 is connected to the multiplexer 11.
  • a reference voltage circuit 16 generates a reference voltage. This reference voltage is input to the AD converter 13 via the level shifter 12 . Note that the reference voltage circuit 16 may be connected to the level shifter 12 instead of the multiplexer 11 .
  • the reference voltage circuit 16 corresponds to the reference signal section.
  • a reference voltage corresponds to a reference signal.
  • the voltage input to the AD converter 13 via the level shifter 12 is expected to be the same as the reference voltage.
  • the level shifter 12 has an abnormality, it is assumed that the voltage input to the AD converter 13 via the level shifter 12 will be different from the reference voltage.
  • the reference voltage is used for diagnosis of the level shifter 12.
  • This information includes the closed circuit voltage and the physical quantity acquired by the monitoring unit 10 .
  • this information includes vehicle information and charging information.
  • the vehicle information includes the running state of the electric vehicle and the current time.
  • the charging information includes charging power.
  • vehicle information and charging information may be input to a communication unit (not shown). And when the control part 30 has RTC, the present time does not need to be contained in vehicle information.
  • RTC is an abbreviation for real time clock.
  • the computing unit 33 causes the monitoring unit 10 to self-diagnose.
  • the calculation unit 33 outputs an instruction signal including an instruction to execute this self-diagnosis to the monitoring unit 10 .
  • Self-diagnosis of the monitoring unit 10 will be described later.
  • the calculation unit 33 sets the acquisition range of the closed circuit voltage to the possible range of the closed circuit voltage of the battery cell 220 .
  • the above battery information includes, for example, the closed circuit voltage of the battery cell 220 detected in the past.
  • the computing unit 33 computes the difference between the maximum value and the minimum value of the closed circuit voltage input from the monitoring unit 10 . If this difference exceeds the equalization determination value, the calculation unit 33 decides to execute the equalization process. This equalization process may be performed, for example, only in the battery stack 210 in which at least one of the maximum value and the minimum value of the closed circuit voltage is detected. The equalization process may be performed on all battery stacks 210 .
  • the monitoring unit 10 has a plurality of switches that bridge a plurality of wires connecting the multiplexer 11 and the positive and negative electrodes of the plurality of battery cells 220, respectively.
  • the monitoring control unit 14 selectively controls the plurality of switches to the energized state and the cut-off state based on the instruction signal input from the arithmetic unit 33 .
  • monitor control unit 14 of the monitor unit 10 When the monitor control unit 14 of the monitor unit 10 receives the instruction signal including the self-diagnosis execution instruction, it causes the reference voltage circuit 16 to output the reference voltage to the multiplexer 11 . At the same time, the monitor control unit 14 causes the multiplexer 11 to output the reference voltage to the level shifter 12 .
  • the monitor control unit 14 appropriately selects the plurality of clamp circuits 122 and the plurality of feedback circuits 123 included in the level shifter 12 .
  • the acquisition range determined by the selected clamp circuit 122 and feedback circuit 123 and the reference voltage analog-to-digital converted by the AD converter 13 in this acquisition range are each input to the control unit 30 via the monitoring communication unit 15. be.
  • the calculation unit 33 of the control unit 30 determines that the acquisition range can be used. judge. That is, the calculation unit 33 determines that the clamp circuit 122 and the feedback circuit 123 that define the acquisition range, and the components other than these in the monitoring unit 10 are normal.
  • the calculation unit 33 corresponds to the determination unit.
  • the monitor control unit 14 combines a plurality of clamp circuits 122 and a plurality of feedback circuits 123, and outputs the reference voltage analog-to-digital converted by the AD conversion unit 13 to the control unit 30 within a plurality of acquisition ranges determined thereby.
  • the calculation unit 33 of the control unit 30 compares the analog-to-digital converted reference voltages in a plurality of acquisition ranges with the stored reference voltages. Based on the plurality of comparison results, the calculation unit 33 diagnoses which of the constituent elements included in the monitoring unit 10 has an abnormality.
  • the computing unit 33 diagnoses whether at least one of the clamp circuit 122 and the feedback circuit 123 is abnormal. The computing unit 33 diagnoses whether or not at least one of the clamp circuits 122 is abnormal. The computing unit 33 diagnoses whether or not at least one of the plurality of feedback circuits 123 is abnormal. The computing unit 33 diagnoses whether or not there is an abnormality in components other than the plurality of clamp circuits 122 and the plurality of feedback circuits 123 in the monitoring unit 10 .
  • the calculation unit 33 determines whether or not the closed circuit voltage can be obtained. The calculation unit 33 determines whether or not to limit the acquisition range of the closed circuit voltage.
  • the computing unit 33 executes this diagnostic processing as an event task when the electric vehicle starts up. Note that the calculation unit 33 may execute this diagnostic processing as a cycle task. However, when the diagnostic process is executed as a cycle task, the diagnostic cycle is set longer than the closed circuit voltage acquisition cycle.
  • step S10 the calculation unit 33 outputs a diagnosis signal to the monitoring unit 10 as an instruction signal including an instruction to execute self-diagnosis. After that, the calculation unit 33 proceeds to step S20.
  • the monitoring unit 10 Upon receiving the diagnostic signal, the monitoring unit 10 obtains a plurality of acquisition ranges determined by a combination of a plurality of clamp circuits 122 and a plurality of feedback circuits 123, and a plurality of reference voltages analog-to-digital converted in the plurality of acquisition ranges. , are output to the calculation unit 33 .
  • the calculation unit 33 stores the plurality of acquisition ranges and the plurality of reference voltages input from the monitoring unit 10 in the storage unit 32. Then, the calculation unit 33 diagnoses the state of the monitoring unit 10 based on the results of comparison between each of the plurality of input reference voltages and the reference voltages stored in the storage unit 32 and the plurality of acquisition ranges. As a result of the diagnosis, when it is determined that there is an abnormality in the monitoring unit 10, the calculation unit 33 proceeds to step S30. When determining that there is no abnormality in the monitoring unit 10, the calculation unit 33 proceeds to step S40.
  • the calculation unit 33 determines whether or not there is a usable clamp circuit 122 among the plurality of clamp circuits 122. At the same time, the calculation unit 33 determines whether or not there is any one of the plurality of feedback circuits 123 that can be used.
  • the calculation unit 33 determines whether or not the acquisition range can be determined using the available circuit elements. If it is determined that there is a usable acquisition range, the calculation unit 33 proceeds to step S60. If it is determined that there is no usable acquisition range, the calculation unit 33 proceeds to step S70.
  • the calculation unit 33 determines to set the acquisition range of the closed circuit voltage in the limited state because there is an abnormality in some of the plurality of clamp circuits 122 and the plurality of feedback circuits 123. Then, the calculation unit 33 terminates the diagnostic processing.
  • the calculation unit 33 When proceeding to step S70, the calculation unit 33 outputs an electrical signal (voltage prohibition signal) including prohibition of calculation processing using the voltage detected by the battery device 100 to various ECUs.
  • Various ECUs upon receiving the voltage prohibition signal, determine whether the electric vehicle should be driven in a limited manner, in an evacuation mode, or stopped.
  • step S40 the calculation unit 33 determines that there is no abnormality in the monitoring unit 10. Decide to set. Then, the calculation unit 33 terminates the diagnostic processing.
  • the closed circuit voltage acquisition range is determined by selecting at least one from the plurality of clamp circuits 122 and at least one from the plurality of feedback circuits 123 .
  • the number of clamp circuits 122 and feedback circuits 123 increases. As a result, it may be difficult to diagnose which of the plurality of clamp circuits 122 that determine the acquisition range and the plurality of feedback circuits 123 (the plurality of range setting units) has an abnormality.
  • the calculation unit 33 then compares the reference voltages stored in the storage unit 32 with the reference voltages analog-to-digital converted by the AD conversion unit 13 in these acquisition ranges. As a result, it is determined which one of the plurality of clamp circuits 122 and the plurality of feedback circuits 123 (the plurality of range setting units) has an abnormality.
  • the computing section 33 determines whether or not the usable acquisition range can be set. According to this, acquisition of the closed circuit voltage is likely to be continued. In addition, a decrease in detection accuracy of the closed circuit voltage is suppressed.
  • step S20 If it is determined in step S20 shown in FIG. 5 that there is an abnormality in the monitoring unit 10, the calculation unit 33 proceeds to step S110.
  • the calculation unit 33 determines whether or not the clamp circuit 122 is abnormal. If there is an abnormality in the clamp circuit 122, the calculation section 33 proceeds to step S130. If the clamp circuit 122 does not malfunction, the calculation unit 33 proceeds to step S140.
  • the calculation unit 33 determines whether or not the storage unit 32 stores the closed circuit voltage of the battery cell 220 to be detected. When the closed circuit voltage is stored, the calculation unit 33 determines whether the stored closed circuit voltage is included in the acquisition range of the closed circuit voltage that can be set by the plurality of clamp circuits 122 including the clamp circuit 122 in an abnormal state. determine whether
  • the calculation unit 33 determines that there is a limited range (limited range) of the available closed circuit voltage acquisition range. Then, the calculation unit 33 proceeds to step S150. When the closed circuit voltage is not included in this acquisition range, the calculation unit 33 determines that there is no usable limited range. Then, the calculation unit 33 proceeds to step S160. In the first place, if the storage unit 32 does not store the closed circuit voltage of the battery cell 220 to be detected, the operation unit 33 proceeds to step S160.
  • step S150 the calculation unit 33 determines to set the acquisition range of the closed circuit voltage in the restricted state in the same manner as in step S60.
  • step S ⁇ b>160 the calculation unit 33 determines not to use any of the plurality of clamp circuits 122 .
  • the calculation unit 33 determines to detect the closed circuit voltage in the acquisition range (entire range) of the possible range of the closed circuit voltage. After step S150 or step S160, the calculation unit 33 terminates the diagnosis process.
  • step S120 If it is determined in step S120 that the clamp circuit 122 is not abnormal and the process proceeds to step S140, the calculation unit 33 determines whether the feedback circuit 123 is abnormal. , the computing unit 33 proceeds to step S170. If the feedback circuit 123 does not malfunction, the calculation unit 33 proceeds to step S190. That is, if there is an abnormality in the constituent elements other than the clamp circuit 122 and the feedback circuit 123 in the monitoring section 10, the calculation section 33 proceeds to step S190.
  • An abnormality in the feedback circuit 123 is mainly a state in which a switch included in the feedback circuit 123 cannot be switched between an energized state and a cut-off state. If the switch is stuck in the conducting state or the blocking state, the gain of the operational amplifier 121 is limited. If all the switches included in the plurality of feedback circuits 123 are stuck, the gain of the operational amplifier 121 cannot be adjusted.
  • the computing section 33 determines whether or not the feedback circuit 123 can determine the gain. If the gain can be determined, the calculation unit 33 determines that there is a usable acquisition range. Then, the calculation unit 33 proceeds to step S180. If the gain cannot be determined, the calculation unit 33 determines that there is no usable acquisition range. Then, the calculation unit 33 proceeds to step S190.
  • the calculation unit 33 stores in the storage unit 32 a plurality of acquisition ranges input from the monitoring unit 10 and two reference voltages analog-to-digital converted in the plurality of acquisition ranges. Then, the calculation unit 33 compares the two reference voltages analog-to-digital converted in the plurality of acquisition ranges with the reference voltage stored in advance in the storage unit 32, and based on the plurality of acquisition ranges, the monitoring unit 10 Diagnose the condition.
  • the computing unit 33 prohibit the use of the other.
  • the level shifter 12 has one operational amplifier 121 as in the present embodiment, an abnormality occurs in a part of a plurality of current paths formed between two input terminals and two output terminals of the operational amplifier 121. If it occurs, the use of that current path may be prohibited.
  • the acquisition range of the closed circuit voltage is determined based on the closed circuit voltage stored in the storage unit 32 .
  • the acquisition range of the closed circuit voltage is determined based on the closed circuit voltage stored in the storage unit 32 and the amount of change in the closed circuit voltage.
  • the battery device 100 In the initial state at time 0, the battery device 100 is in a non-driving state.
  • the storage unit 32 does not store battery information such as closed circuit voltage and physical quantity.
  • a system main relay that controls electrical continuity between the assembled battery 200 and various vehicle-mounted devices is in a disconnected state. Therefore, substantially no current flows through the assembled battery 200 .
  • the closed circuit voltage of the battery cell 220 has a value in the charge/discharge region.
  • the battery device 100 changes from the non-driving state to the driving state.
  • the calculation unit 33 executes the above diagnostic processing. In order to simplify the explanation below, acquisition of the closed circuit voltage when no abnormality has occurred in the monitoring unit 10 as a result of the diagnostic processing will be explained.
  • the battery device 100 changes from the non-driven state to the driven state, and the system main relay changes from the cut-off state to the energized state.
  • supply of power supply power from the assembled battery 200 to various vehicle-mounted devices is started.
  • An actual current begins to flow in the assembled battery 200 .
  • the rate of decrease of the SOC of battery cell 220 increases.
  • the reduction rate of the closed circuit voltage of the battery cell 220 also increases.
  • the calculation unit 33 acquires the closed circuit voltage of the battery cell 220.
  • the battery information is not stored in the storage unit 32 . Therefore, the calculation unit 33 sets the acquisition range of the closed circuit voltage at the time t ⁇ b>1 to a range that the battery cell 220 can take. That is, the calculation unit 33 sets the acquisition range of the closed circuit voltage to 0.0V to 5.0V.
  • the calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 in the acquisition range at this time t1.
  • the calculation unit 33 acquires the closed circuit voltage of the battery cell 220 again.
  • the calculation unit 33 may determine the acquisition range of the closed circuit voltage at time t2 based on the closed circuit voltage of the battery cell 220 acquired at time t1. For example, if the closed circuit voltage at time t1 is 3.0V, it is conceivable to set the acquisition range of the closed circuit voltage around this 3.0V.
  • the SOC of the battery cell 220 changes while time elapses from time t1 to time t2.
  • the amount of power indicated by hatching is discharged. It is assumed that the closed circuit voltage at time t1 and the closed circuit voltage at time t2 are different due to this discharge.
  • the calculation unit 33 calculates the median value of the acquisition range of the closed circuit voltage at time t2 based on the closed circuit voltage acquired at time t1 and the amount of change in the closed circuit voltage from time t1 to time t2. That is, the calculation unit 33 estimates the closed circuit voltage at time t2. Estimation of the closed circuit voltage at time t2 will be described in detail later.
  • the median value of the acquisition range is a value between the upper limit value and the lower limit value of the acquisition range.
  • the tip of the dashed-dotted arrow indicates the median value of the acquisition range of the closed circuit voltage when set based only on the acquired closed circuit voltage.
  • the tip of the solid-line arrow indicates the median value of the acquisition range of the closed-circuit voltage when set based on the acquired closed-circuit voltage and the amount of change in the closed-circuit voltage.
  • the median value of the acquisition range approaches the actual value of the closed circuit voltage of the battery cell 220 at time t2 by the amount of change in the closed circuit voltage.
  • the closed circuit voltage of the battery cell 220 moves away from the upper limit value and the lower limit value of the acquisition range.
  • the closed circuit voltage is suppressed from being unintentionally outside the acquisition range.
  • the magnitude relationship between the upper limit range width ⁇ 1 and the lower limit range width ⁇ 2 can be determined, for example, based on the time change of the closed circuit voltage.
  • the lower limit range width ⁇ 2 can be set larger than the upper limit range width ⁇ 1.
  • the upper limit range width ⁇ 1 can be set larger than the lower limit range width ⁇ 2.
  • the magnitude of the difference between these two range widths can be set based on the time variation of the closed circuit voltage.
  • a correction value for providing a difference between these two range widths is stored in the storage unit 32 .
  • the calculation unit 33 sets a limited acquisition range based on the upper limit range width ⁇ 1, the lower limit range width ⁇ 2, and the median value of the acquisition range.
  • the calculation unit 33 sets the upper limit range width ⁇ 1 and the lower limit range width ⁇ 2 to be the same. Therefore, in order to simplify the notation, the upper limit range width ⁇ 1 and the lower limit range width ⁇ 2 are collectively referred to as the range width ⁇ . Note that when the upper limit range width ⁇ 1 and the lower limit range width ⁇ 2 are equal to each other in this way, the median value of the acquisition range described above becomes the center value of the acquisition range.
  • the calculation unit 33 determines the acquisition range at time t2 by the calculation processing described above.
  • the calculation unit 33 sets the acquisition range at time t2 to 2.65V to 2.93V, for example.
  • the calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 in the acquisition range at this time t2.
  • the calculation unit 33 determines the median value of the acquisition range based on the closed circuit voltage at time t2 and the amount of change in the closed circuit voltage from time t2 to time t3. . Further, the calculation unit 33 calculates the difference between the closed circuit voltage obtained at time t2 and the median value of the obtained range at time t2 as an estimation error.
  • the estimation error is a larger value than the detection error.
  • the calculation unit 33 calculates the range width ⁇ at time t3 based on this estimated error and the range width ⁇ stored in the storage unit 32 .
  • the range width ⁇ at time t3 is smaller than the range width ⁇ stored in the storage unit 32 or the range width ⁇ at time t2.
  • the range width ⁇ at time t3 is larger than the range width ⁇ stored in the storage unit 32 or the range width ⁇ at time t2.
  • the arithmetic unit 33 determines the acquisition range at time t3.
  • the calculation unit 33 sets the acquisition range at time t3 to 2.60V to 2.74V, for example.
  • the calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 in the acquisition range of this time t3.
  • the charging equipment is connected to the electric vehicle.
  • the charging equipment charges the assembled battery 200 with a constant current. This causes the actual current to rise sharply.
  • the calculation unit 33 acquires such information from vehicle information or charging information.
  • the calculation unit 33 calculates the closed circuit voltage at time t4, the amount of change in the closed circuit voltage from time t4 to time t5, and the range width ⁇ that takes into account the estimation error. Determine the acquisition range based on The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 in the acquisition range at this time t5.
  • the range width ⁇ at time t5 may be amplified and corrected more than the range width ⁇ at time t4.
  • the range width ⁇ during constant current charging may be stored in the storage unit 32 . This range width ⁇ may be used at time t5.
  • the calculation unit 33 sets the acquisition range at time t5 to 3.25V to 3.75V, for example.
  • Constant-current charging has a larger current supply than constant-voltage charging.
  • the above target voltage is a value based on the maximum output voltage of the assembled battery 200.
  • the calculation unit 33 determines that the closed circuit voltage of the assembled battery 200 has reached the target voltage, it causes the charging device to perform constant voltage charging. In constant-voltage charging, in order to avoid overcharging and bring the SOC of the assembled battery 200 closer to the full charge amount, the closed-circuit voltage detected by the assembled battery 200 is kept at the target voltage, and the charging power to the assembled battery 200 is reduced. supply takes place.
  • the target voltage and the maximum output voltage are pre-stored in the storage section 32 .
  • the calculation unit 33 calculates the number of battery cells 220 detected by the monitoring unit 10 in the acquisition range determined based on the target voltage and the range width ⁇ during constant voltage charging. Get the closed circuit voltage. The calculation unit 33 sets the acquisition range at time t6 to 4.23V to 4.26V, for example.
  • the calculation unit 33 continues to acquire the closed circuit voltage of the battery cell 220 within the acquisition range determined based on the target voltage and the range width ⁇ during constant voltage charging. Alternatively, the calculation unit 33 stops acquiring the closed circuit voltage.
  • the range width ⁇ during constant-voltage charging is, for example, a smaller value than the range width ⁇ used at time t2.
  • the range width ⁇ during constant voltage charging is stored in the storage unit 32 .
  • the range width ⁇ during constant voltage driving is a smaller value than the range width ⁇ during normal driving.
  • the range width ⁇ during constant voltage driving is stored in the storage unit 32 . Note that when the electric vehicle changes from a running state to a stopped state, there is a possibility that the closed circuit voltage may suddenly change in a short period of time.
  • the value of the range width ⁇ may be set so as to avoid the closed-circuit voltage falling outside the acquisition range due to such a sudden change.
  • the calculation unit 33 calculates the median value of the acquisition range when calculating the acquisition range of the closed circuit voltage. That is, the calculation unit 33 estimates the closed circuit voltage at the time of acquisition. For example, at time t2 shown in FIG. 7, the calculation unit 33 estimates the closed circuit voltage at time t2 based on the closed circuit voltage obtained at time t1 and the amount of change in the closed circuit voltage from time t1 to time t2.
  • the charge/discharge history between time t1 and time t2 is calculated, for example, based on the time between time t1 and time t2 and the current between time t1 and time t2.
  • a charge/discharge history between time t1 and time t2 is calculated as an integrated value of current between time t1 and time t2. Note that the current between time t1 and time t2 is estimated by, for example, the addition average value of the current at time t1 and the current at time t2.
  • the temperature between time t1 and time t2 is estimated, for example, by adding and averaging the temperature at time t1 and the temperature at time t2.
  • the calculation unit 33 reads the SOC and OCV characteristic data of this temperature from the storage unit 32 . Then, the calculation unit 33 calculates the amount of change in closed circuit voltage from time t1 to time t2 based on the read SOC and OCV characteristic data and the calculated charge/discharge history between time t1 and time t2. . Current, temperature, and characteristic data are included in the variation.
  • the calculation unit 33 reads the SOC and OCV characteristic data of the battery cell 220 from the storage unit 32 among the SOC and OCV characteristic data of various secondary batteries.
  • the calculation unit 33 reads the SOC and OCV characteristic data of the lithium-ion secondary battery from the storage unit 32 .
  • the calculation unit 33 estimates the aged deterioration of the battery cell 220 at the time t2, for example, based on the difference between the date of manufacture of the battery cell 220 and the time t2 stored in the storage unit 32 and the deterioration determination value. good.
  • the calculation unit 33 may estimate the internal resistance of the battery cell 220 at time t2 based on aging deterioration of the battery cell 220 and the temperature at time t2.
  • the calculation unit 33 may calculate the voltage drop occurring in the battery cell 220 at the time t2 based on the internal resistance and the current at the time t2.
  • the calculation unit 33 may also take this voltage drop into account to estimate the closed circuit voltage at time t2.
  • the range width ⁇ may be set in consideration of the internal resistance.
  • the calculation unit 33 may estimate the amount of change in the closed circuit voltage from time t1 to time t2 based on the equivalent circuit model or chemical reaction model of the battery cell 220 and the current and temperature of the battery cell 220.
  • the storage unit 32 may store a discharge value and a charge value for estimating the amount of change in the closed circuit voltage described above.
  • the amount of change in closed circuit voltage may be determined by multiplying the predetermined discharge value by the time between time t1 and time t2.
  • the amount of change in closed circuit voltage may be determined by multiplying the predetermined charge value by the time between time t1 and time t2.
  • the discharge value and the charge value are included in the charge/discharge amount.
  • the calculation unit 33 executes this voltage detection process as a cycle task.
  • the execution interval of this voltage detection process corresponds to the acquisition period described above.
  • step S210 the calculation unit 33 determines whether or not the closed circuit voltage is stored in the storage unit 32. When the closed circuit voltage is stored in the storage unit 32, the calculation unit 33 proceeds to step S220. If the closed circuit voltage is not stored in the storage unit 32, the calculation unit 33 proceeds to step S230.
  • the calculation unit 33 determines whether or not constant voltage charging is being performed. If constant voltage charging is being performed, the calculation unit 33 proceeds to step S240. If the constant voltage charging is not being performed, the calculation unit 33 proceeds to step S250.
  • the calculation unit 33 sets the closed circuit voltage (estimated voltage) expected to be detected by the monitoring unit 10 as the target voltage. In other words, the calculation unit 33 sets the closed circuit voltage used for the acquisition range of the closed circuit voltage as the target voltage. After this, the calculation unit 33 proceeds to step S260.
  • the calculation unit 33 calculates the difference value between the estimated voltage and the closed circuit voltage stored in the storage unit 32 .
  • the calculation unit 33 determines whether or not this difference value is greater than or equal to the change voltage stored in the storage unit 32 . If the difference value is greater than or equal to the change voltage, the calculation section 33 proceeds to step S270. If the difference value is smaller than the change voltage, the calculation unit 33 terminates the voltage detection process.
  • the calculation unit 33 sets a limited acquisition range of the closed circuit voltage based on the estimated voltage and various information stored in the storage unit 32. After that, the calculation unit 33 proceeds to step S280.
  • step S270 the calculation unit 33 reads the range width ⁇ during constant voltage charging from the storage unit 32.
  • the calculation unit 33 calculates the acquisition range of the closed circuit voltage based on the range width ⁇ and the target voltage.
  • the calculation unit 33 stores this acquisition range in the storage unit 32 . Then, the calculation unit 33 proceeds to step S280.
  • step S280 the calculation unit 33 transmits an instruction signal including the acquisition range calculated in step S270 to the monitoring unit 10 as a limited range signal. After this, the calculation unit 33 proceeds to step S290.
  • step S ⁇ b>290 the calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 . After that, the calculation unit 33 proceeds to step S300.
  • the calculation unit 33 stores the acquired closed circuit voltage in the storage unit 32 . Also, at this time, the calculation unit 33 stores the acquisition range in the storage unit 32 . Then, the calculation unit 33 terminates the voltage detection process.
  • step S220 determines whether or not the electric vehicle is in constant voltage drive. That is, the calculation unit 33 determines whether or not the closed circuit voltage of the battery cell 220 is the predetermined voltage. In the case of constant voltage drive, the calculation unit 33 proceeds to step S310. If it is not constant voltage drive, the calculation unit 33 proceeds to step S320.
  • the calculation unit 33 sets the estimated voltage to a predetermined voltage. In other words, the calculation unit 33 sets the closed circuit voltage used for calculating the acquisition range of the closed circuit voltage to a predetermined voltage. After this, the calculation unit 33 proceeds to step S260.
  • the calculation unit 33 reads the range width ⁇ during constant voltage driving from the storage unit 32.
  • the calculation unit 33 sets the acquisition range of the closed circuit voltage based on the range width ⁇ and the predetermined voltage.
  • step S320 the calculation unit 33 acquires various information for calculating the estimated voltage.
  • This information includes closed-circuit voltage, acquisition cycle, current, temperature, SOC and OCV characteristic data, and the like stored in the storage unit 32 . After that, the calculation unit 33 proceeds to step S330.
  • step S330 the calculation unit 33 calculates the estimated voltage based on the various information acquired in step S320. After this, the calculation unit 33 proceeds to step S260.
  • the calculation unit 33 reads the range width ⁇ from the storage unit 32.
  • the calculation unit 33 sets the acquisition range of the closed circuit voltage based on the range width ⁇ and the estimated voltage.
  • step S280 the calculation unit 33 calculates the estimated error by subtracting the closed circuit voltage stored in the storage unit 32 from the estimated voltage.
  • the calculation unit 33 sets the acquisition range of the closed circuit voltage based on the range width ⁇ and the estimated voltage.
  • step S230 has been executed in the previous voltage detection process
  • step S230 the calculation unit 33 stops calculating the estimation error.
  • the calculation unit 33 sets the acquisition range of the closed circuit voltage based on the range width ⁇ and the estimated voltage.
  • step S210 when it is determined in step S210 that the closed circuit voltage is not stored in the storage unit 32 and the process proceeds to step S230, the calculation unit 33 converts the instruction signal including the possible acquisition range of the closed circuit voltage into a full range signal. Send to the monitoring unit 10 . After that, the calculation unit 33 proceeds to step S290.
  • calculation unit 33 does not have to execute steps S220, S240, S250, and S310 shown in FIG. In this case, as shown in FIG. 10, when it is determined in step S210 that the closed circuit voltage is stored in the storage unit 32, the calculation unit 33 proceeds to step S320.
  • the calculation unit 33 calculates the closed circuit voltage based on the past closed circuit voltage stored in the storage unit 32 and the amount of change in the closed circuit voltage of the battery cell 220 until the closed circuit voltage is acquired again. Set the acquisition range of .
  • the calculation unit 33 changes the acquisition range of the closed circuit voltage from the possible acquisition range of 0.0V to 5.0V to the limited acquisition range of 2.65V to 2.93V.
  • the analog closed-circuit voltage is converted into a digital signal by the AD converter 13 . This reduces the quantization error of the AD converter 13 . As a result, the detection accuracy of the closed circuit voltage is improved.
  • the calculation unit 33 sets the acquisition range of the closed circuit voltage in consideration of the amount of change in the closed circuit voltage of the battery cell 220 until the closed circuit voltage is acquired again. Therefore, the closed circuit voltage is suppressed from being out of the acquisition range.
  • the range width ⁇ of the acquisition range is obtained by adding the difference (estimation error) between the past closed circuit voltage stored in the storage unit 32 and the median value of the acquisition range of the closed circuit voltage set when the closed circuit voltage is detected. have decided. According to this, it is effectively suppressed that the closed circuit voltage is out of the acquisition range.
  • the calculation unit 33 narrows the range width ⁇ . This narrows the acquisition range of the closed circuit voltage. Detection accuracy of the closed circuit voltage is improved.
  • the calculation unit 33 stops setting a new acquisition range. According to this, the arithmetic processing in the arithmetic unit 33 is simplified.
  • the battery device 100 described in this embodiment includes components equivalent to those of the battery device 100 described in the first embodiment. Therefore, it goes without saying that the battery device 100 of this embodiment has the same effect as the battery device 100 described in the first embodiment. Therefore, description thereof is omitted. Descriptions of effects that overlap with other embodiments described below will be omitted.
  • the calculation unit 33 sets the acquisition range of the closed circuit voltage at time t3 based on the closed circuit voltage acquired at time t2. However, if a ground fault occurs at time ta between time t2 and time t3, the closed circuit voltage detected by monitoring unit 10 at time t3 will be outside the acquisition range.
  • the closed circuit voltage acquired by the calculation unit 33 is the lower limit value of the acquisition range.
  • the calculation unit 33 resets the acquisition range of the closed circuit voltage to a range that the closed circuit voltage can take. By expanding the acquisition range in this way, it becomes possible to detect the closed circuit voltage at time t4.
  • 0.0 V is detected by the monitoring unit 10 at times t3, t4, t5, and t6 after time ta, as shown in FIG.
  • the calculation unit 33 acquires 0.0V multiple times. When the number of acquisitions of 0.0 V is equal to or greater than the short-circuit determination value, the calculation unit 33 determines that a ground fault has occurred.
  • This short circuit determination value is stored in the storage unit 32 as a reference value.
  • the value of the short circuit determination value is not particularly limited.
  • the short circuit determination value is set to 3 in this embodiment.
  • the calculation unit 33 sets the acquisition range of the closed circuit voltage at time t3 based on the closed circuit voltage acquired at time t2. However, if a power fault occurs at time ta between time t2 and time t3, the closed circuit voltage detected by monitoring unit 10 at time t3 is out of the acquisition range.
  • the closed circuit voltage acquired by the calculation unit 33 is the upper limit value of the acquisition range.
  • the calculation unit 33 resets the acquisition range of the closed circuit voltage to the possible range of the closed circuit voltage as described with reference to FIG.
  • the monitoring unit 10 detects 5.0 V at times t3, t4, t5, and t6 after time ta, as shown in FIG.
  • the calculation unit 33 acquires 5.0V multiple times. When the number of acquisitions of 5.0 V is equal to or greater than the short-circuit determination value, the calculation unit 33 determines that a power fault has occurred.
  • the calculation unit 33 executes this short-circuit determination process as a cycle task at an acquisition cycle.
  • the calculation unit 33 acquires the closed circuit voltage within a certain acquisition range before executing this short-circuit determination process.
  • the acquisition range and closed circuit voltage are stored in the storage unit 32 .
  • the calculation unit 33 determines whether the closed circuit voltage is the upper limit value or the lower limit value of the acquisition range. That is, the calculation unit 33 determines whether or not the closed circuit voltage is a value excluding the upper limit value and the lower limit value of the acquisition range. If the closed circuit voltage is the upper limit value or the lower limit value of the acquisition range, the calculation unit 33 proceeds to step S420. If the closed circuit voltage is a value excluding the upper limit value and the lower limit value of the acquisition range, the calculation unit 33 proceeds to step S430.
  • step S420 the calculation unit 33 increments its own counter by one. After that, the calculation unit 33 proceeds to step S440.
  • the calculation unit 33 transmits an instruction signal including an acquisition range different from the acquisition range stored in the storage unit 32 to the monitoring unit 10 as a range signal.
  • the calculation unit 33 causes the range signal to include the possible range of the closed circuit voltage. If the entire range is stored in the storage unit 32, an instruction signal including the entire range is transmitted to the monitoring unit 10 as a range signal. Alternatively, the calculation unit 33 stops outputting the range signal. After that, the calculation unit 33 proceeds to step S470.
  • step S470 the calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10. After this, the calculation unit 33 returns to step S410.
  • the calculation unit 33 repeats steps S410, S420, S440, S450, and S470. It is repeated that the closed circuit voltage becomes the upper limit value or the lower limit value of the acquisition range. As a result, the value of the counter becomes equal to or greater than the short circuit determination value.
  • the calculation unit 33 estimates the SOC based on the stored closed circuit voltage. Then, the calculation unit 33 executes calculation processing based on the estimation result.
  • step S440 When it is determined in step S440 that the counter value is equal to or greater than the short-circuit determination value and the process proceeds to step S4600, the calculation unit 33 determines that a short-circuit such as a ground fault or power fault has occurred. Then, the calculation unit 33 terminates the short-circuit determination process.
  • a short-circuit such as a ground fault or power fault
  • step S410 when it is determined in step S410 that the closed circuit voltage is neither the upper limit value nor the lower limit value of the acquisition range and the process proceeds to step S430, the calculation unit 33 clears the counter. The calculation unit 33 sets the value of the counter to zero. Then, the calculation unit 33 proceeds to step S480.
  • the calculation unit 33 stores the acquired closed circuit voltage in the storage unit 32. Then, the calculation unit 33 terminates the short-circuit determination process.
  • the calculation unit 33 changes the acquisition range of the closed circuit voltage.
  • the calculation unit 33 changes the acquisition range so that the closed circuit voltage is detected.
  • the calculation unit 33 of the present embodiment changes the acquisition range to a possible acquisition range of the closed circuit voltage.
  • the calculation unit 33 determines that a short circuit has occurred when the number of acquisitions of the lower limit value or the upper limit value of the acquisition range of the closed circuit voltage is greater than or equal to the short circuit determination value. Specifically, when the number of acquisitions of 0.0 V is 3 or more, the calculation unit 33 determines that a ground fault has occurred. When the number of acquisitions of 5.0 V is 3 or more, the calculation unit 33 determines that a power fault has occurred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A battery apparatus (100) comprises a monitoring unit (10) and a control unit (30). The monitoring unit comprises a level shifter (12), an AD conversion unit (13), and a reference voltage circuit (16). The level shifter is provided with a plurality of range setting units (122, 123) which are each for varying an acquisition range of a closed-circuit voltage for a plurality of electrically-connected battery cells (220). The AD conversion unit converts, into a digital signal, the closed-circuit voltage outputted from the level shifter within the acquisition ranges set by the range setting units. The reference voltage circuit outputs a reference voltage to the level shifter. The control unit (30) comprises an arithmetic unit (33). On the basis of a reference voltage outputted by the reference signal unit and a plurality of reference voltages that have been converted into digital signals by the AD conversion unit within the plurality of acquisition ranges set by the respective range setting units, the arithmetic unit determines which of the range setting units has an abnormality occurring therein.

Description

監視装置、および、それを含む電池装置Monitoring device and battery device including same 関連出願の相互参照Cross-reference to related applications
 この出願は、2021年5月28日に日本に出願された特許出願第2021-90409号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2021-90409 filed in Japan on May 28, 2021, and the content of the underlying application is incorporated by reference in its entirety.
 本明細書に記載の開示は、監視装置、および、それを含む電池装置に関する。 The disclosure described in this specification relates to a monitoring device and a battery device including the same.
 特許文献1には、複数のリチウム2次電池のSOCを均等化する容量調整装置が開示されている。 Patent Document 1 discloses a capacity adjustment device that equalizes the SOC of a plurality of lithium secondary batteries.
特開2010-141957号公報JP 2010-141957 A
 複数のリチウム2次電池のSOCを均等化するためにリチウム2次電池の閉路電圧が用いられる。そのために閉路電圧の検出精度の向上が求められる。閉路電圧の検出精度を向上するために、構成要素が増大する虞がある。複数の構成要素(範囲設定部)のいずれで異常が生じているのかを診断することが求められる。 The closed-circuit voltage of lithium secondary batteries is used to equalize the SOCs of multiple lithium secondary batteries. Therefore, it is required to improve the detection accuracy of the closed circuit voltage. In order to improve the detection accuracy of the closed circuit voltage, the number of components may increase. It is required to diagnose in which one of the plurality of components (range setting section) an abnormality has occurred.
 本開示の目的は、複数の範囲設定部の異常診断を行うことのできる監視装置、および、それを含む電池装置を提供することである。 An object of the present disclosure is to provide a monitoring device capable of diagnosing a plurality of range setting units for abnormality, and a battery device including the monitoring device.
 本開示の一態様による監視装置は、電気的に接続された複数の電池セルの閉路電圧の取得範囲を変化させるための複数の範囲設定部を備えるレベルシフタと、
 レベルシフタで設定された取得範囲で、レベルシフタから出力された閉路電圧をデジタル信号に変換するAD変換部と、
 複数の範囲設定部それぞれの状態の診断を実施するための基準信号をレベルシフタに出力する基準信号部と、を有する。
A monitoring device according to one aspect of the present disclosure includes a level shifter including a plurality of range setting units for changing acquisition ranges of closed circuit voltages of a plurality of electrically connected battery cells;
an AD converter that converts the closed-circuit voltage output from the level shifter into a digital signal within the acquisition range set by the level shifter;
and a reference signal unit for outputting a reference signal for diagnosing the state of each of the plurality of range setting units to the level shifter.
 本開示の一態様による電池装置は、電気的に接続された複数の電池セルの閉路電圧の取得範囲を変化させるための複数の範囲設定部を備えるレベルシフタと、
 範囲設定部で設定された取得範囲で、レベルシフタから出力された閉路電圧をデジタル信号に変換するAD変換部と、
 複数の範囲設定部それぞれの状態の診断を実施するための基準信号をレベルシフタに出力する基準信号部と、
 複数の範囲設定部それぞれによって設定される複数の取得範囲それぞれにおいてAD変換部でデジタル信号に変換された複数の基準信号と、基準信号部から出力される基準信号の電圧レベルとに基づいて、複数の範囲設定部のいずれに異常が生じているのかを判定する判定部と、を有する。
A battery device according to an aspect of the present disclosure includes a level shifter including a plurality of range setting units for changing acquisition ranges of closed circuit voltages of a plurality of electrically connected battery cells;
an AD conversion unit that converts the closed circuit voltage output from the level shifter into a digital signal within the acquisition range set by the range setting unit;
a reference signal unit for outputting to the level shifter a reference signal for diagnosing the state of each of the plurality of range setting units;
A plurality of and a judgment unit for judging which of the range setting units has an abnormality.
 これによれば、複数の範囲設定部の異常を診断することができる。 According to this, it is possible to diagnose an abnormality in a plurality of range setting units.
 なお、上記の括弧内の参照番号は、後述の実施形態に記載の構成との対応関係を示すものに過ぎず、技術的範囲を何ら限定するものではない。 It should be noted that the reference numbers in parentheses above merely indicate the correspondence with the configurations described in the embodiments described later, and do not limit the technical scope in any way.
電池装置と組電池を示すブロック図である。1 is a block diagram showing a battery device and an assembled battery; FIG. SOCとOCVの特性を示すグラフ図である。It is a graph chart which shows the characteristic of SOC and OCV. レベルシフタを示す回路図である。4 is a circuit diagram showing a level shifter; FIG. 診断処理を説明するためのフローチャートである。4 is a flowchart for explaining diagnostic processing; 診断処理の変形例を説明するためのフローチャートである。9 is a flowchart for explaining a modified example of diagnostic processing; レベルシフタの変形例を示す回路図である。FIG. 10 is a circuit diagram showing a modification of the level shifter; 電圧検出を説明するためのタイミングチャートである。4 is a timing chart for explaining voltage detection; 電圧検出を説明するためのタイミングチャートである。4 is a timing chart for explaining voltage detection; 電圧検出処理を説明するためのフローチャートである。4 is a flowchart for explaining voltage detection processing; 電圧検出処理を説明するためのフローチャートである。4 is a flowchart for explaining voltage detection processing; 地絡検出を説明するためのタイミングチャートである。4 is a timing chart for explaining ground fault detection; 天絡検出を説明するためのタイミングチャートである。4 is a timing chart for explaining power fault detection; 短絡判定処理を説明するためのフローチャートである。5 is a flowchart for explaining short-circuit determination processing; 地絡検出を説明するためのタイミングチャートである。4 is a timing chart for explaining ground fault detection; 天絡検出を説明するためのタイミングチャートである。4 is a timing chart for explaining power fault detection; 地絡検出を説明するためのタイミングチャートである。4 is a timing chart for explaining ground fault detection; 地絡検出を説明するためのタイミングチャートである。4 is a timing chart for explaining ground fault detection; 天絡検出を説明するためのタイミングチャートである。4 is a timing chart for explaining power fault detection; 地絡検出を説明するためのタイミングチャートである。4 is a timing chart for explaining ground fault detection; 天絡検出を説明するためのタイミングチャートである。4 is a timing chart for explaining power fault detection;
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。 A plurality of modes for carrying out the present disclosure will be described below with reference to the drawings. In each form, the same reference numerals may be given to the parts corresponding to the matters described in the preceding form, and overlapping explanations may be omitted. When only a part of the configuration is described in each form, the previously described other forms can be applied to other parts of the configuration.
 各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせが可能である。また、特に組み合わせに支障が生じなければ、組み合わせが可能であることを明示していなくても、実施形態同士、実施形態と変形例、および、変形例同士を部分的に組み合せることも可能である。 It is possible to combine parts that are specifically stated to be combinable in each embodiment. In addition, if there is no particular problem with the combination, it is possible to partially combine the embodiments, the embodiments and the modified examples, and the modified examples even if it is not explicitly stated that the combination is possible. be.
 <第1実施形態>
 第1実施形態を図1~図6に基づいて説明する。
<First Embodiment>
A first embodiment will be described with reference to FIGS. 1 to 6. FIG.
 図1に電池装置100と組電池200を示す。電池装置100と組電池200はハイブリッド自動車や電気自動車などの電動車両に搭載される。この電動車両には、乗用車、バス、建設作業車、および、農業機械車両などが含まれる。 A battery device 100 and an assembled battery 200 are shown in FIG. The battery device 100 and the assembled battery 200 are mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle. The electric vehicles include passenger cars, buses, construction vehicles, agricultural machinery vehicles, and the like.
 電池装置100は組電池200の状態を監視するとともに制御する。組電池200は電動車両に推進力を提供する電動機などの各種車載機器に電源電力を供給する。 The battery device 100 monitors and controls the state of the assembled battery 200 . The assembled battery 200 supplies power to various in-vehicle devices such as an electric motor that provides propulsion to the electric vehicle.
 <組電池>
 組電池200は複数の電池スタック210を有する。複数の電池スタック210それぞれは電気的に直列接続された複数の電池セル220を有する。この電池セル220としてはリチウムイオン2次電池、ニッケル水素2次電池、および、有機ラジカル電池などの2次電池を採用することができる。直列接続された複数の電池セル220の出力電圧が電池スタック210の出力電圧になっている。図1では1つの電池スタック210に含まれる複数の電池セル220を破線で囲って示している。
<Battery pack>
The assembled battery 200 has a plurality of battery stacks 210 . Each of the plurality of battery stacks 210 has a plurality of battery cells 220 electrically connected in series. As the battery cell 220, a secondary battery such as a lithium-ion secondary battery, a nickel-hydrogen secondary battery, or an organic radical battery can be employed. The output voltage of the battery cells 220 connected in series is the output voltage of the battery stack 210 . In FIG. 1, a plurality of battery cells 220 included in one battery stack 210 are shown surrounded by dashed lines.
 複数の電池スタック210は電気的に直列接続若しくは並列接続される。本実施形態では、複数の電池スタック210が電気的に直列接続されている。これら直列接続された複数の電池スタック210の出力電圧の総和が組電池200の出力電圧になっている。この出力電圧に依存する電源電力が各種車載機器に供給される。 The plurality of battery stacks 210 are electrically connected in series or in parallel. In this embodiment, a plurality of battery stacks 210 are electrically connected in series. The output voltage of the assembled battery 200 is the sum of the output voltages of the plurality of battery stacks 210 connected in series. Power supply power dependent on this output voltage is supplied to various vehicle-mounted devices.
 複数の電池スタック210それぞれには、電池セル220の物理量を検出する物理量センサ230が設けられている。物理量センサ230の検出する物理量としては、例えば、電池セル220の温度や電流がある。 A physical quantity sensor 230 that detects the physical quantity of the battery cell 220 is provided in each of the plurality of battery stacks 210 . Physical quantities detected by the physical quantity sensor 230 include, for example, the temperature and current of the battery cell 220 .
 物理量センサ230で検出される物理量は、電池セル220、電池スタック210、および、組電池200それぞれのSOCの推定などに用いられる。SOCはstate of chargeの略である。 The physical quantity detected by the physical quantity sensor 230 is used for estimating the SOC of each of the battery cells 220, the battery stack 210, and the assembled battery 200. SOC is an abbreviation for state of charge.
 SOCは上記した電源電力の各種車載機器への供給によって減少する。また、電池セル220は自己放電する。そのためにSOCは電源電力の非供給時においても減少する。 The SOC is reduced by supplying the above-mentioned power supply power to various on-vehicle devices. Also, the battery cell 220 self-discharges. Therefore, the SOC decreases even when the power supply is not supplied.
 このSOCの減少は、例えば、車外に設けられた電気スタンドなどの充電機器から組電池200への充電電力の供給によって改善される。この充電機器から組電池200への充電電力の供給は、電池装置100によって制御される。電池装置100は図示しない配線を介してCPLT信号を充電機器と送受信しながら、組電池200の充電を制御する。 This reduction in SOC is improved by supplying charging power to the assembled battery 200 from a charging device such as a desk lamp provided outside the vehicle, for example. The supply of charging power from this charging device to the assembled battery 200 is controlled by the battery device 100 . The battery device 100 controls charging of the assembled battery 200 while transmitting/receiving a CPLT signal to/from a charging device via wiring (not shown).
 なお、複数の電池セル220の品質や環境などは均一ではない。そのために複数の電池セル220のSOCにばらつきが生じる。このばらつきは、後述の均等化処理によって改善される。 It should be noted that the quality and environment of the plurality of battery cells 220 are not uniform. Therefore, the SOCs of the plurality of battery cells 220 vary. This variation is improved by an equalization process, which will be described later.
 <OCV、CCV、SOC>
 電池セル220には内部抵抗がある。そのために電池セル220のSOCに応じた実際のセル電圧と、監視部10で検出されるセル電圧とには、この内部抵抗と電池セル220を流れる電流に応じた電圧降下分の差がある。
<OCV, CCV, SOC>
The battery cell 220 has internal resistance. Therefore, there is a difference between the actual cell voltage corresponding to the SOC of the battery cell 220 and the cell voltage detected by the monitoring unit 10 by this internal resistance and the voltage drop corresponding to the current flowing through the battery cell 220 .
 以下においては、必要に応じて、電池セル220のSOCに応じた実際のセル電圧を開路電圧OCVと示す。監視部10で検出されるセル電圧を閉路電圧CCVと示す。電池セル220内の抵抗を内部抵抗R、電池セル220を実際に流れる電流を実電流Iとする。OCVはOpen Circuit Voltageの略である。CCVはClosed Circuit Voltageの略である。 In the following, the actual cell voltage corresponding to the SOC of the battery cell 220 is indicated as open circuit voltage OCV as necessary. A cell voltage detected by the monitoring unit 10 is indicated as a closed circuit voltage CCV. Assume that the internal resistance R is the resistance in the battery cell 220 and the actual current I is the current that actually flows through the battery cell 220 . OCV is an abbreviation for Open Circuit Voltage. CCV stands for Closed Circuit Voltage.
 閉路電圧CCVと開路電圧OCVの関係は、CCV=OCV±I×Rとあらわされる。電池セル220の放電時では、CCV=OCV-I×Rとなる。電池セル220の充電時では、CCV=OCV+I×Rとなる。 The relationship between the closed circuit voltage CCV and the open circuit voltage OCV is expressed as CCV=OCV±I×R. When the battery cell 220 is discharged, CCV=OCV-I×R. When charging the battery cell 220, CCV=OCV+I×R.
 <SOCとOCVの特性>
 電池セル220はSOCとOCVの特性を有している。電池セル220がリチウムイオン2次電池である場合のSOCとOCVの特性データを図2に示す。
<Characteristics of SOC and OCV>
The battery cell 220 has SOC and OCV characteristics. FIG. 2 shows SOC and OCV characteristic data when the battery cell 220 is a lithium ion secondary battery.
 図2に示すように、SOCが0%に近い過放電領域では、SOCに対するOCVの変化率が高くなっている。SOCが100%に近い過充電領域では、SOCに対するOCVの変化率が高くなっている。 As shown in FIG. 2, in the overdischarge region where the SOC is close to 0%, the rate of change of OCV with respect to SOC is high. In the overcharge region where the SOC is close to 100%, the rate of change of OCV with respect to SOC is high.
 これらに対して、過放電領域と過充電領域との間の充放電領域では、SOCに対するOCVの変化率が低くなっている。電池セル220は主としてこの充放電領域で使用される。図2では、一例として、過放電領域と充放電領域との間のSOCとOCVの値をSOC1,OCV1と表記している。充放電領域と過充電領域との間のSOCとOCVの値をSOC2,OCV2と表記している。 On the other hand, in the charge/discharge region between the overdischarge region and the overcharge region, the change rate of OCV with respect to SOC is low. Battery cell 220 is mainly used in this charge/discharge region. In FIG. 2, as an example, the values of SOC and OCV between the overdischarge region and the charge/discharge region are expressed as SOC1 and OCV1. SOC and OCV values between the charge/discharge region and the overcharge region are denoted as SOC2 and OCV2.
 図2に示す特性データは温度に依存している。そのため、温度によってSOCに対するOCVの変化率が変わる。それとともにSOC1,SOC2,OCV1,OCV2の値も変わる。 The characteristic data shown in Fig. 2 depend on temperature. Therefore, the rate of change of OCV with respect to SOC changes depending on the temperature. Along with this, the values of SOC1, SOC2, OCV1 and OCV2 also change.
 <電池装置>
 電池装置100は監視部10と制御部30を有する。電池装置100は監視部10を電池スタック210と同数有している。複数の監視部10は複数の電池スタック210それぞれの状態にかかわる電池情報を検出する。なお、電池装置100は監視部10を電池スタック210よりも多く有してもよい。この場合、1つの電池スタック210に複数の監視部10が設けられる。この監視部10は1つの電池スタック210に含まれる複数の電池セル220の一部を監視する。
<Battery device>
The battery device 100 has a monitoring section 10 and a control section 30 . The battery device 100 has the same number of monitoring units 10 as the battery stacks 210 . The plurality of monitoring units 10 detect battery information related to the state of each of the plurality of battery stacks 210 . Note that the battery device 100 may have more monitoring units 10 than the battery stacks 210 . In this case, one battery stack 210 is provided with a plurality of monitoring units 10 . This monitoring unit 10 monitors some of the plurality of battery cells 220 included in one battery stack 210 .
 制御部30は複数の監視部10の診断を実施する。また、制御部30は複数の監視部10で検出された電池情報を取得する。制御部30は他の図示しない各種ECUと各種センサから入力される車両情報を取得する。電動車両に充電機器が接続されている場合、制御部30は充電機器から入力される充電情報を取得する。これら車両情報と充電情報の制御部30への入力と、制御部30の処理結果の各種ECUと充電機器などへの出力は図1において白抜き矢印で示している。 The control unit 30 diagnoses a plurality of monitoring units 10. Also, the control unit 30 acquires battery information detected by the plurality of monitoring units 10 . The control unit 30 acquires vehicle information input from various ECUs and various sensors (not shown). When a charging device is connected to the electric vehicle, the control unit 30 acquires charging information input from the charging device. The input to the control unit 30 of the vehicle information and charging information, and the output of the processing results of the control unit 30 to various ECUs, charging equipment, etc. are indicated by white arrows in FIG.
 制御部30は取得した諸情報に基づいて組電池200の状態を判定する。それとともに制御部30は組電池200に対する処理を実行する。組電池200に対する処理としては、例えば、組電池200の充放電、組電池200に含まれる複数の電池セル220のSOCを均等化する均等化処理などがある。 The control unit 30 determines the state of the assembled battery 200 based on the acquired information. At the same time, the control unit 30 executes processing for the assembled battery 200 . The processing for the assembled battery 200 includes, for example, charging and discharging of the assembled battery 200, equalization processing for equalizing the SOCs of the plurality of battery cells 220 included in the assembled battery 200, and the like.
 <監視部>
 複数の監視部10それぞれは複数の電池スタック210それぞれに個別に設けられる。1つの監視部10は1つの電池スタック210に含まれる複数の電池セル220それぞれの正極と負極との間の端子間電圧(閉路電圧)を検出する。また、監視部10は物理量センサ230で検出された物理量を取得する。監視部10は制御部30から入力される指示信号に基づいて処理を実行する。
<Monitoring part>
Each of the plurality of monitoring units 10 is individually provided for each of the plurality of battery stacks 210 . One monitoring unit 10 detects the inter-terminal voltage (closed-circuit voltage) between the positive and negative electrodes of each of the plurality of battery cells 220 included in one battery stack 210 . Also, the monitoring unit 10 acquires the physical quantity detected by the physical quantity sensor 230 . The monitoring unit 10 executes processing based on instruction signals input from the control unit 30 .
 図1に示すように監視部10は、マルチプレクサ11、レベルシフタ12、AD変換部13、監視制御部14、監視通信部15、および、基準電圧回路16を有している。図面ではマルチプレクサ11をMUXと表記している。レベルシフタ12をLSと表記している。AD変換部13をADと表記している。監視制御部14をMCUと表記している。監視通信部15をMCSと表記している。基準電圧回路16をVRCと表記している。 As shown in FIG. 1, the monitoring section 10 has a multiplexer 11, a level shifter 12, an AD conversion section 13, a monitoring control section 14, a monitoring communication section 15, and a reference voltage circuit 16. In the drawing, the multiplexer 11 is written as MUX. The level shifter 12 is written as LS. The AD converter 13 is written as AD. The monitor control unit 14 is written as MCU. The monitoring communication unit 15 is written as MCS. The reference voltage circuit 16 is written as VRC.
 マルチプレクサ11は1つの電池スタック210に含まれる複数の電池セル220それぞれの正極と負極とに接続されている。これにより、マルチプレクサ11には複数の電池セル220の閉路電圧が入力される。 The multiplexer 11 is connected to the positive and negative electrodes of each of the plurality of battery cells 220 included in one battery stack 210 . As a result, the multiplexer 11 receives the closed circuit voltages of the plurality of battery cells 220 .
 また、マルチプレクサ11は物理量センサ230に接続されている。これにより、マルチプレクサ11には物理量が入力される。 Also, the multiplexer 11 is connected to the physical quantity sensor 230 . Thereby, the physical quantity is input to the multiplexer 11 .
 マルチプレクサ11は入力された複数の閉路電圧を順次選択して検出する。そしてマルチプレクサ11は検出した閉路電圧をレベルシフタ12に順次出力する。また、マルチプレクサ11は入力された複数の物理量も順次選択して検出する。マルチプレクサ11は検出した物理量もレベルシフタ12に順次出力する。 The multiplexer 11 sequentially selects and detects a plurality of input closed circuit voltages. The multiplexer 11 sequentially outputs the detected closed circuit voltages to the level shifter 12 . The multiplexer 11 also sequentially selects and detects a plurality of input physical quantities. The multiplexer 11 also sequentially outputs the detected physical quantities to the level shifter 12 .
 図3に示すようにレベルシフタ12は、オペアンプ121と、複数のクランプ回路122と、複数の帰還回路123と、を有する。図面ではクランプ回路122をCCと表記している。帰還回路123をFCと表記している。 As shown in FIG. 3, the level shifter 12 has an operational amplifier 121, a plurality of clamp circuits 122, and a plurality of feedback circuits 123. In the drawing, the clamp circuit 122 is denoted as CC. The feedback circuit 123 is denoted by FC.
 オペアンプ121は入力端子と出力端子それぞれを2つ有する。オペアンプ121の2つの入力端子がマルチプレクサ11に接続されている。オペアンプ121の2つの出力端子がAD変換部13に接続されている。複数のクランプ回路122はオペアンプ121の2つの入力端子に接続されている。複数の帰還回路123はオペアンプ121の2つの入力端子と2つの出力端子との間それぞれに設けられている。これら複数の帰還回路123は並列接続されている。 The operational amplifier 121 has two input terminals and two output terminals. Two input terminals of operational amplifier 121 are connected to multiplexer 11 . Two output terminals of the operational amplifier 121 are connected to the AD converter 13 . A plurality of clamp circuits 122 are connected to two input terminals of the operational amplifier 121 . A plurality of feedback circuits 123 are provided between two input terminals and two output terminals of the operational amplifier 121, respectively. These multiple feedback circuits 123 are connected in parallel.
 複数のクランプ回路122それぞれには少なくとも1つのスイッチが含まれている。このスイッチが、監視制御部14によって通電状態と遮断状態とに制御される。これによりオペアンプ121の入力レンジが制御される。オペアンプ121のオフセットが制御される。なお、複数のクランプ回路122それぞれに含まれるスイッチが全て遮断状態の場合、オペアンプ121の入力レンジは電源電圧の上限値と下限値との間になる。クランプ回路122がオフセット調整部に相当する。 Each of the plurality of clamp circuits 122 includes at least one switch. This switch is controlled by the monitoring control unit 14 to be in an energized state and an interrupted state. The input range of the operational amplifier 121 is thereby controlled. The offset of operational amplifier 121 is controlled. Note that when all the switches included in each of the plurality of clamp circuits 122 are in the off state, the input range of the operational amplifier 121 is between the upper limit value and the lower limit value of the power supply voltage. The clamp circuit 122 corresponds to the offset adjustment section.
 複数の帰還回路123それぞれには少なくとも1つの直列回路が含まれている。この直列回路は、直列接続されたスイッチとコンデンサを有する。このスイッチが、監視制御部14によって通電状態と遮断状態とに制御される。これによりオペアンプ121の入力端子と出力端子との間で接続されるコンデンサの数が変化する。オペアンプ121の入力端子と出力端子との間の静電容量が変化する。また、オペアンプ121の入力端子と出力端子との間の抵抗が変化する。この結果、オペアンプ121のゲインが制御される。なお、複数の帰還回路123に含まれるコンデンサの静電容量は同一でも不同でもよい。帰還回路123がゲイン調整部に相当する。 Each of the plurality of feedback circuits 123 includes at least one series circuit. The series circuit has a switch and a capacitor connected in series. This switch is controlled by the monitoring control unit 14 to be in an energized state and an interrupted state. This changes the number of capacitors connected between the input terminal and the output terminal of the operational amplifier 121 . A capacitance between the input terminal and the output terminal of the operational amplifier 121 changes. Also, the resistance between the input terminal and the output terminal of the operational amplifier 121 changes. As a result, the gain of the operational amplifier 121 is controlled. Note that the capacitance of the capacitors included in the plurality of feedback circuits 123 may be the same or different. The feedback circuit 123 corresponds to the gain adjustment section.
 AD変換部13にはレベルシフタ12からゲインとオフセットの調整された閉路電圧と物理量のアナログ信号が入力される。レベルシフタ12のゲインとオフセットの調整により、AD変換部13でアナログデジタル変換されるアナログ信号の電圧レンジが制御される。AD変換部13でアナログデジタル変換される閉路電圧と物理量の電圧レンジが制御される。この結果、閉路電圧と物理量の取得範囲が制御される。なお、物理量の取得範囲は特に制御しなくともよい。 The AD conversion unit 13 receives from the level shifter 12 an analog signal of a closed circuit voltage and a physical quantity whose gain and offset have been adjusted. By adjusting the gain and offset of the level shifter 12, the voltage range of the analog signal converted from analog to digital by the AD converter 13 is controlled. The voltage range of the closed circuit voltage and the physical quantity that are analog-to-digital converted by the AD converter 13 are controlled. As a result, the acquisition range of the closed circuit voltage and the physical quantity is controlled. Note that it is not necessary to particularly control the acquisition range of the physical quantity.
 AD変換部13は連続的なアナログ信号を断続的にサンプリングする。そしてAD変換部13はサンプリングした値を量子化して、離散したデジタル信号に変換する。係る変換を行うため、アナログ信号とデジタル信号とには誤差(量子化誤差)がある。 The AD converter 13 intermittently samples continuous analog signals. Then, the AD converter 13 quantizes the sampled values and converts them into discrete digital signals. Due to such conversion, there is an error (quantization error) between the analog signal and the digital signal.
 この量子化誤差は、AD変換部13の量子化ビット数が大きいほどに小さくなる。しかしながら、量子化ビット数は固定値になっている。そのため、例えば、閉路電圧の取得範囲が0.0V~5.0Vの場合、AD変換部13の分解能は、この0.0V~5.0Vを量子化ビット数で割った値になる。 This quantization error becomes smaller as the number of quantization bits of the AD converter 13 increases. However, the number of quantization bits is fixed. Therefore, for example, when the acquisition range of the closed circuit voltage is 0.0 V to 5.0 V, the resolution of the AD converter 13 is the value obtained by dividing this 0.0 V to 5.0 V by the number of quantization bits.
 これに対して、例えば、閉路電圧の取得範囲が10分の1の3.0V~3.5Vの場合、AD変換部13の分解能は、この3.0V~3.5Vを量子化ビット数で割った値になる。この場合、AD変換部13の分解能は10倍程度に高まる。このように、取得範囲を制限することで、閉路電圧の検出精度が向上される。 On the other hand, for example, when the acquisition range of the closed circuit voltage is 3.0 V to 3.5 V, which is 1/10, the resolution of the AD conversion unit 13 is 3.0 V to 3.5 V with the number of quantization bits. becomes the divided value. In this case, the resolution of the AD converter 13 is increased by about ten times. By limiting the acquisition range in this way, the detection accuracy of the closed circuit voltage is improved.
 監視制御部14はプロセッサとこのプロセッサによって読み取り可能なプログラムとデータを非一時的に記憶する非遷移的実体的記憶媒体を有する。この非遷移的実体的記憶媒体にAD変換部13から入力されるデジタル信号や制御部30から入力される指示信号が保存される。監視制御部14のプロセッサは指示信号に基づいてマルチプレクサ11、レベルシフタ12、AD変換部13、および、基準電圧回路16を制御する。 The monitoring control unit 14 has a processor and a non-transitional physical storage medium that non-temporarily stores programs and data readable by this processor. A digital signal input from the AD conversion unit 13 and an instruction signal input from the control unit 30 are stored in this non-transitional substantive storage medium. The processor of the monitor controller 14 controls the multiplexer 11, the level shifter 12, the AD converter 13, and the reference voltage circuit 16 based on the instruction signal.
 なお、AD変換部13と監視制御部14とはデジタルフィルタを介して接続されてもよい。係る構成の場合、AD変換部13から出力されたデジタル信号に含まれるノイズがこのデジタルフィルタで除去される。このノイズの除去されたデジタル信号が監視制御部14に入力される。 Note that the AD conversion unit 13 and the monitoring control unit 14 may be connected via a digital filter. With such a configuration, the digital filter removes noise contained in the digital signal output from the AD converter 13 . The noise-removed digital signal is input to the monitor control unit 14 .
 監視制御部14に制御部30から入力される指示信号には、検出対象の電池セル220の閉路電圧の取得範囲が含まれている。監視制御部14は検出対象の閉路電圧をマルチプレクサ11が選択する際に、レベルシフタ12のゲインとオフセットを制御する。これにより閉路電圧の取得範囲が制御される。 The instruction signal input from the control unit 30 to the monitoring control unit 14 includes the acquisition range of the closed circuit voltage of the battery cell 220 to be detected. The monitor control unit 14 controls the gain and offset of the level shifter 12 when the multiplexer 11 selects the closed circuit voltage to be detected. This controls the acquisition range of the closed circuit voltage.
 監視通信部15にはデジタル信号の閉路電圧と物理量が入力される。監視通信部15はこのデジタル信号を制御部30に出力する。また、監視通信部15には指示信号が入力される。この指示信号が監視制御部14に入力される。 The closed-circuit voltage of the digital signal and the physical quantity are input to the monitoring communication unit 15 . The monitor communication unit 15 outputs this digital signal to the control unit 30 . Also, an instruction signal is input to the monitoring communication unit 15 . This instruction signal is input to the monitor control unit 14 .
 基準電圧回路16はマルチプレクサ11に接続されている。基準電圧回路16は基準電圧を生成する。この基準電圧がレベルシフタ12を介してAD変換部13に入力される。なお、基準電圧回路16はマルチプレクサ11ではなくレベルシフタ12に接続されてもよい。基準電圧回路16が基準信号部に相当する。基準電圧が基準信号に相当する。 The reference voltage circuit 16 is connected to the multiplexer 11. A reference voltage circuit 16 generates a reference voltage. This reference voltage is input to the AD converter 13 via the level shifter 12 . Note that the reference voltage circuit 16 may be connected to the level shifter 12 instead of the multiplexer 11 . The reference voltage circuit 16 corresponds to the reference signal section. A reference voltage corresponds to a reference signal.
 レベルシフタ12が正常の場合、レベルシフタ12を介してAD変換部13に入力される電圧は、基準電圧と同一になることが期待される。レベルシフタ12に異常が生じている場合、レベルシフタ12を介してAD変換部13に入力される電圧は、基準電圧と不同になることが想定される。このように、基準電圧はレベルシフタ12の診断に用いられる。 When the level shifter 12 is normal, the voltage input to the AD converter 13 via the level shifter 12 is expected to be the same as the reference voltage. When the level shifter 12 has an abnormality, it is assumed that the voltage input to the AD converter 13 via the level shifter 12 will be different from the reference voltage. Thus, the reference voltage is used for diagnosis of the level shifter 12. FIG.
 <制御部>
 図1に示すように制御部30は、制御通信部31、記憶部32、および、演算部33を有する。図面では制御通信部31をCCUと表記している。記憶部32をMUと表記している。演算部33をOPと表記している。
<Control section>
As shown in FIG. 1 , the control unit 30 has a control communication unit 31 , a storage unit 32 and a calculation unit 33 . In the drawing, the control communication unit 31 is denoted as CCU. The storage unit 32 is written as MU. The calculation unit 33 is written as OP.
 制御通信部31には諸情報が入力される。この諸情報には監視部10で取得された閉路電圧と物理量が含まれる。また、この諸情報には車両情報と充電情報が含まれる。車両情報には電動車両の走行状態や現在時刻が含まれている。充電情報には充電電力が含まれている。 Various information is input to the control communication unit 31 . This information includes the closed circuit voltage and the physical quantity acquired by the monitoring unit 10 . In addition, this information includes vehicle information and charging information. The vehicle information includes the running state of the electric vehicle and the current time. The charging information includes charging power.
 なお、図示しない通信部に車両情報と充電情報が入力されてもよい。そして、制御部30がRTCを有する場合、現在時刻が車両情報に含まれていなくともよい。RTCはreal time clockの略である。 Note that vehicle information and charging information may be input to a communication unit (not shown). And when the control part 30 has RTC, the present time does not need to be contained in vehicle information. RTC is an abbreviation for real time clock.
 記憶部32はコンピュータやプロセッサによって読み取り可能なプログラムを非一時的に記憶する非遷移的実体的記憶媒体である。記憶部32は揮発性メモリと不揮発性メモリとを有している。この記憶部32に制御通信部31に入力された諸情報や演算部33の処理結果が記憶される。 The storage unit 32 is a non-transitional material storage medium that non-temporarily stores programs readable by computers and processors. The storage unit 32 has a volatile memory and a nonvolatile memory. Various information input to the control communication unit 31 and processing results of the calculation unit 33 are stored in the storage unit 32 .
 また、記憶部32には演算部33が演算処理するためのプログラムや参照値があらかじめ記憶されている。この参照値には、例えば、基準電圧の電圧レベル、各種2次電池のSOCとOCVの特性データの温度依存性、均等化処理の実行を判定する均等化判定値、複数の電池セル220の製造日、および、劣化判定値などがある。 In addition, the storage unit 32 stores in advance programs and reference values for the operation unit 33 to carry out operation processing. The reference values include, for example, the voltage level of the reference voltage, the temperature dependence of the SOC and OCV characteristic data of various secondary batteries, the equalization determination value for determining execution of the equalization process, and the manufacturing data of the plurality of battery cells 220. date, deterioration judgment value, and the like.
 演算部33にはプロセッサが含まれている。演算部33は制御通信部31に入力された諸情報を記憶部32に記憶する。演算部33は記憶部32に記憶された情報に基づいて各種演算処理を実行する。この演算処理された結果を含む電気信号は、制御通信部31を介して監視部10に出力される。この演算処理された結果を含む電気信号は、制御通信部31若しくは図示しない通信部を介して各種ECUに出力される。 The computing unit 33 includes a processor. The calculation unit 33 stores various information input to the control communication unit 31 in the storage unit 32 . The calculation unit 33 executes various calculation processes based on information stored in the storage unit 32 . An electrical signal including the result of this arithmetic processing is output to the monitoring section 10 via the control communication section 31 . An electrical signal including the result of this arithmetic processing is output to various ECUs via the control communication unit 31 or a communication unit (not shown).
 演算処理を具体的に例示すると、演算部33は記憶部32に記憶された情報に基づいて電池セル220のSOCの推定を行う。演算部33は推定したSOCと記憶部32に記憶された情報に基づいて監視部10の動作を指示する指示信号の生成を行う。 To give a specific example of the arithmetic processing, the arithmetic unit 33 estimates the SOC of the battery cell 220 based on the information stored in the storage unit 32 . The calculation unit 33 generates an instruction signal for instructing the operation of the monitoring unit 10 based on the estimated SOC and the information stored in the storage unit 32 .
 演算部33は監視部10に自己診断させる。演算部33はこの自己診断の実行指示を含む指示信号を監視部10に出力する。監視部10の自己診断については後述する。 The computing unit 33 causes the monitoring unit 10 to self-diagnose. The calculation unit 33 outputs an instruction signal including an instruction to execute this self-diagnosis to the monitoring unit 10 . Self-diagnosis of the monitoring unit 10 will be described later.
 演算部33は検出対象の電池セル220の閉路電圧の取得範囲を決定する。演算部33はこの取得範囲を含む指示信号を監視部10に出力する。演算部33は検出対象の電池セル220のSOCの推定に係わる電池情報に基づいて、閉路電圧の取得範囲を決定する。 The calculation unit 33 determines the acquisition range of the closed circuit voltage of the battery cell 220 to be detected. The calculation unit 33 outputs an instruction signal including this acquisition range to the monitoring unit 10 . The calculation unit 33 determines the acquisition range of the closed circuit voltage based on the battery information related to the estimation of the SOC of the battery cell 220 to be detected.
 なお、記憶部32にSOCを推定するための電池情報が記憶されていない場合、演算部33は閉路電圧の取得範囲を、電池セル220の閉路電圧の取りうる範囲に設定する。上記の電池情報には、例えば、過去に検出した電池セル220の閉路電圧が含まれている。 If the storage unit 32 does not store the battery information for estimating the SOC, the calculation unit 33 sets the acquisition range of the closed circuit voltage to the possible range of the closed circuit voltage of the battery cell 220 . The above battery information includes, for example, the closed circuit voltage of the battery cell 220 detected in the past.
 演算部33は複数の電池セル220のSOCのばらつきを低減する均等化処理の実行を決定する。演算部33は複数の電池スタック210それぞれに対する均等化処理を含む指示信号を監視部10に出力する。 The calculation unit 33 determines execution of equalization processing for reducing variations in the SOCs of the plurality of battery cells 220 . The calculation unit 33 outputs an instruction signal including equalization processing for each of the plurality of battery stacks 210 to the monitoring unit 10 .
 演算部33は監視部10から入力された閉路電圧の最大値と最小値の差を演算する。この差が均等化判定値を上回る場合、演算部33は均等化処理の実行を決定する。この均等化処理は、例えば、上記した閉路電圧の最大値と最小値のうちの少なくとも一方が検出された電池スタック210だけで行われてもよい。均等化処理は、すべての電池スタック210で行われてもよい。 The computing unit 33 computes the difference between the maximum value and the minimum value of the closed circuit voltage input from the monitoring unit 10 . If this difference exceeds the equalization determination value, the calculation unit 33 decides to execute the equalization process. This equalization process may be performed, for example, only in the battery stack 210 in which at least one of the maximum value and the minimum value of the closed circuit voltage is detected. The equalization process may be performed on all battery stacks 210 .
 図面では明記していないが、監視部10は、マルチプレクサ11と複数の電池セル220の正極および負極それぞれとを接続する複数の配線を架橋する複数のスイッチを有する。監視制御部14は演算部33から入力される指示信号に基づいて、これら複数のスイッチを選択的に通電状態と遮断状態とに制御する。 Although not clearly shown in the drawing, the monitoring unit 10 has a plurality of switches that bridge a plurality of wires connecting the multiplexer 11 and the positive and negative electrodes of the plurality of battery cells 220, respectively. The monitoring control unit 14 selectively controls the plurality of switches to the energized state and the cut-off state based on the instruction signal input from the arithmetic unit 33 .
 スイッチが通電状態に制御されると、複数の電池セル220の正極同士、負極同士が接続される。これにより、これら電気的に接続された複数の電池セル220のうちの相対的にSOCの高い電池セル220が放電される。これとは逆に、相対的にSOCの低い電池セル220が充電される。この結果、複数の電池セル220のSOCが均等化される。 When the switches are controlled to be energized, the positive electrodes and the negative electrodes of the plurality of battery cells 220 are connected. As a result, among the plurality of electrically connected battery cells 220, the battery cell 220 with a relatively high SOC is discharged. Conversely, battery cells 220 with relatively low SOC are charged. As a result, the SOCs of the plurality of battery cells 220 are equalized.
 <自己診断>
 監視部10の監視制御部14は、上記した自己診断の実行指示を含む指示信号を受信すると、基準電圧回路16からマルチプレクサ11に基準電圧を出力させる。それとともに、監視制御部14はマルチプレクサ11からレベルシフタ12に基準電圧を出力させる。
<Self-diagnosis>
When the monitor control unit 14 of the monitor unit 10 receives the instruction signal including the self-diagnosis execution instruction, it causes the reference voltage circuit 16 to output the reference voltage to the multiplexer 11 . At the same time, the monitor control unit 14 causes the multiplexer 11 to output the reference voltage to the level shifter 12 .
 また、監視制御部14はレベルシフタ12に含まれる複数のクランプ回路122と複数の帰還回路123とを適宜選択する。この選択されたクランプ回路122と帰還回路123とによって定められる取得範囲と、この取得範囲においてAD変換部13でアナログデジタル変換された基準電圧それぞれが監視通信部15を介して制御部30に入力される。 Also, the monitor control unit 14 appropriately selects the plurality of clamp circuits 122 and the plurality of feedback circuits 123 included in the level shifter 12 . The acquisition range determined by the selected clamp circuit 122 and feedback circuit 123 and the reference voltage analog-to-digital converted by the AD converter 13 in this acquisition range are each input to the control unit 30 via the monitoring communication unit 15. be.
 制御部30の演算部33は、ある取得範囲でアナログデジタル変換された基準電圧と、記憶部32に記憶されている基準電圧の電圧レベルとが同一の場合、その取得範囲は使用可能であると判定する。すなわち、演算部33は、その取得範囲を定めるクランプ回路122と帰還回路123、および、監視部10におけるこれら以外の構成要素が正常であると判定する。演算部33は判定部に相当する。 When the analog-to-digital converted reference voltage in a certain acquisition range and the voltage level of the reference voltage stored in the storage unit 32 are the same, the calculation unit 33 of the control unit 30 determines that the acquisition range can be used. judge. That is, the calculation unit 33 determines that the clamp circuit 122 and the feedback circuit 123 that define the acquisition range, and the components other than these in the monitoring unit 10 are normal. The calculation unit 33 corresponds to the determination unit.
 これとは逆に、ある取得範囲でアナログデジタル変換された基準電圧と、記憶部32に記憶されている基準電圧とが不同の場合、演算部33はその取得範囲は使用不可能であると判定する。すなわち、演算部33は、その取得範囲を定めるクランプ回路122と帰還回路123のうちの少なくとも一方、若しくは、監視部10におけるこれら以外の構成要素に異常があると判定する。 Conversely, if the analog-to-digital converted reference voltage in a certain acquisition range is different from the reference voltage stored in the storage unit 32, the calculation unit 33 determines that the acquisition range is unusable. do. That is, the calculation unit 33 determines that at least one of the clamp circuit 122 and the feedback circuit 123 that define the acquisition range, or other constituent elements of the monitoring unit 10 is abnormal.
 監視制御部14は複数のクランプ回路122と複数の帰還回路123とを組み合わせ、それによって定められる複数の取得範囲においてAD変換部13でアナログデジタル変換された基準電圧を制御部30に出力する。制御部30の演算部33は、複数の取得範囲においてアナログデジタル変換された基準電圧と、記憶されている基準電圧とを比較する。演算部33はこれら複数の比較結果に基づいて、監視部10に含まれる構成要素のどこに異常が生じているのかを診断する。 The monitor control unit 14 combines a plurality of clamp circuits 122 and a plurality of feedback circuits 123, and outputs the reference voltage analog-to-digital converted by the AD conversion unit 13 to the control unit 30 within a plurality of acquisition ranges determined thereby. The calculation unit 33 of the control unit 30 compares the analog-to-digital converted reference voltages in a plurality of acquisition ranges with the stored reference voltages. Based on the plurality of comparison results, the calculation unit 33 diagnoses which of the constituent elements included in the monitoring unit 10 has an abnormality.
 演算部33はクランプ回路122と帰還回路123の少なくとも一方に異常が生じているのかを診断する。演算部33は複数のクランプ回路122の少なくとも1つに異常が生じているのかを診断する。演算部33は複数の帰還回路123の少なくとも1つに異常が生じているのかを診断する。演算部33は監視部10における複数のクランプ回路122と複数の帰還回路123以外の構成要素に異常が生じているのかを診断する。 The computing unit 33 diagnoses whether at least one of the clamp circuit 122 and the feedback circuit 123 is abnormal. The computing unit 33 diagnoses whether or not at least one of the clamp circuits 122 is abnormal. The computing unit 33 diagnoses whether or not at least one of the plurality of feedback circuits 123 is abnormal. The computing unit 33 diagnoses whether or not there is an abnormality in components other than the plurality of clamp circuits 122 and the plurality of feedback circuits 123 in the monitoring unit 10 .
 この診断結果に基づいて、演算部33は閉路電圧の取得が可能か否かを判定する。演算部33は閉路電圧の取得範囲の設定の制限と非制限とを決定する。 Based on this diagnostic result, the calculation unit 33 determines whether or not the closed circuit voltage can be obtained. The calculation unit 33 determines whether or not to limit the acquisition range of the closed circuit voltage.
 <診断処理>
 次に、演算部33の診断処理を図4に基づいて説明する。演算部33はこの診断処理を電動車両の立ち上がり時などにイベントタスクとして実行している。なお、演算部33はこの診断処理をサイクルタスクとして実行してもよい。ただし、診断処理をサイクルタスクとして実行する場合、その診断周期は、閉路電圧の取得周期よりも長く設定される。
<Diagnostic processing>
Next, the diagnostic processing of the computing unit 33 will be described with reference to FIG. The computing unit 33 executes this diagnostic processing as an event task when the electric vehicle starts up. Note that the calculation unit 33 may execute this diagnostic processing as a cycle task. However, when the diagnostic process is executed as a cycle task, the diagnostic cycle is set longer than the closed circuit voltage acquisition cycle.
 ステップS10で演算部33は、監視部10に自己診断の実行指示を含む指示信号として、診断信号を出力する。この後に演算部33はステップS20へ進む。 In step S10, the calculation unit 33 outputs a diagnosis signal to the monitoring unit 10 as an instruction signal including an instruction to execute self-diagnosis. After that, the calculation unit 33 proceeds to step S20.
 監視部10は、診断信号を受信すると、複数のクランプ回路122と複数の帰還回路123との組み合わせによって定められる複数の取得範囲と、それら複数の取得範囲でアナログデジタル変換された複数の基準電圧と、を演算部33に出力する。 Upon receiving the diagnostic signal, the monitoring unit 10 obtains a plurality of acquisition ranges determined by a combination of a plurality of clamp circuits 122 and a plurality of feedback circuits 123, and a plurality of reference voltages analog-to-digital converted in the plurality of acquisition ranges. , are output to the calculation unit 33 .
 ステップS20へ進むと演算部33は、監視部10から入力される複数の取得範囲と複数の基準電圧を記憶部32に記憶する。そして演算部33は入力された複数の基準電圧それぞれと記憶部32に記憶されている基準電圧との比較結果、および、複数の取得範囲に基づいて、監視部10の状態を診断する。その診断の結果、監視部10に異常があると判断した場合、演算部33はステップS30へ進む。監視部10に異常がないと判断した場合、演算部33はステップS40へ進む。 When proceeding to step S20, the calculation unit 33 stores the plurality of acquisition ranges and the plurality of reference voltages input from the monitoring unit 10 in the storage unit 32. Then, the calculation unit 33 diagnoses the state of the monitoring unit 10 based on the results of comparison between each of the plurality of input reference voltages and the reference voltages stored in the storage unit 32 and the plurality of acquisition ranges. As a result of the diagnosis, when it is determined that there is an abnormality in the monitoring unit 10, the calculation unit 33 proceeds to step S30. When determining that there is no abnormality in the monitoring unit 10, the calculation unit 33 proceeds to step S40.
 ステップS30へ進むと演算部33は、監視部10に含まれるレベルシフタ12に異常があるか否かを判定する。より具体的に言えば、演算部33はレベルシフタ12に含まれる複数のクランプ回路122と複数の帰還回路123に異常が生じているか否かを判定する。これらの少なくとも1つに異常が生じていると判定すると、演算部33はステップS50へ進む。これらに異常がないと判断すると、演算部33はステップS70へ進む。すなわち、監視部10における複数のクランプ回路122と複数の帰還回路123以外の構成要素に異常が生じていると判断すると、演算部33はステップS70へ進む。 When proceeding to step S30, the calculation unit 33 determines whether or not the level shifter 12 included in the monitoring unit 10 has an abnormality. More specifically, the computing unit 33 determines whether or not the plurality of clamp circuits 122 and the plurality of feedback circuits 123 included in the level shifter 12 are abnormal. If it is determined that at least one of these is abnormal, the calculation unit 33 proceeds to step S50. When determining that there is no abnormality in these, the calculation unit 33 proceeds to step S70. That is, if it is determined that there is an abnormality in the components other than the plurality of clamp circuits 122 and the plurality of feedback circuits 123 in the monitoring section 10, the calculation section 33 proceeds to step S70.
 ステップS50へ進むと演算部33は、複数のクランプ回路122の中で使用可能なものがあるか否かを判定する。それとともに演算部33は、複数の帰還回路123のうちで使用可能なものがあるか否かを判定する。 When proceeding to step S50, the calculation unit 33 determines whether or not there is a usable clamp circuit 122 among the plurality of clamp circuits 122. At the same time, the calculation unit 33 determines whether or not there is any one of the plurality of feedback circuits 123 that can be used.
 そして演算部33は、使用可能な回路要素を用いて、取得範囲を定めることができるか否かを判定する。使用可能な取得範囲があると判定すると演算部33はステップS60へ進む。使用可能な取得範囲がないと判定すると演算部33はステップS70へ進む。 Then, the calculation unit 33 determines whether or not the acquisition range can be determined using the available circuit elements. If it is determined that there is a usable acquisition range, the calculation unit 33 proceeds to step S60. If it is determined that there is no usable acquisition range, the calculation unit 33 proceeds to step S70.
 ステップS60へ進むと演算部33は、複数のクランプ回路122と複数の帰還回路123のうちの一部に異常があるので、制限状態で閉路電圧の取得範囲を設定することを決定する。そして演算部33は診断処理を終了する。 When proceeding to step S60, the calculation unit 33 determines to set the acquisition range of the closed circuit voltage in the limited state because there is an abnormality in some of the plurality of clamp circuits 122 and the plurality of feedback circuits 123. Then, the calculation unit 33 terminates the diagnostic processing.
 ステップS70へ進むと演算部33は、電池装置100で検出された電圧を用いた演算処理の禁止を含む電気信号(電圧禁止信号)を各種ECUに出力する。各種ECUは、電圧禁止信号を受け取ると、電動車両の制限走行、退避走行、若しくは、停車などを決定する。 When proceeding to step S70, the calculation unit 33 outputs an electrical signal (voltage prohibition signal) including prohibition of calculation processing using the voltage detected by the battery device 100 to various ECUs. Various ECUs, upon receiving the voltage prohibition signal, determine whether the electric vehicle should be driven in a limited manner, in an evacuation mode, or stopped.
 フローを遡って、ステップS20において監視部10に異常が生じていないと判断してステップS40へ進むと演算部33は、監視部10に異常がないので、非制限状態で閉路電圧の取得範囲を設定することを決定する。そして演算部33は診断処理を終了する。 Going back in the flow, when it is determined in step S20 that there is no abnormality in the monitoring unit 10 and the process proceeds to step S40, the calculation unit 33 determines that there is no abnormality in the monitoring unit 10. Decide to set. Then, the calculation unit 33 terminates the diagnostic processing.
 <課題>
 これまでに説明したように、閉路電圧の取得範囲は、複数のクランプ回路122から少なくとも1つ、複数の帰還回路123から少なくとも1つを選択することで決定される。取得範囲を細かく設定するために、クランプ回路122と帰還回路123それぞれの数が増大する。この結果、取得範囲を決定する複数のクランプ回路122と複数の帰還回路123(複数の範囲設定部)のいずれで異常が生じているのかを診断することが困難になる虞がある。
<Challenge>
As described above, the closed circuit voltage acquisition range is determined by selecting at least one from the plurality of clamp circuits 122 and at least one from the plurality of feedback circuits 123 . In order to finely set the acquisition range, the number of clamp circuits 122 and feedback circuits 123 increases. As a result, it may be difficult to diagnose which of the plurality of clamp circuits 122 that determine the acquisition range and the plurality of feedback circuits 123 (the plurality of range setting units) has an abnormality.
 <作用効果>
 係る課題を解決するため、演算部33は複数のクランプ回路122から少なくとも1つを選択し、複数の帰還回路123から少なくとも1つを選択する。そして演算部33は選択したクランプ回路122と帰還回路123を組み合わせて取得範囲を設定する。演算部33はこの選択と組み合わせを切り換えて行うことで、複数の取得範囲を設定する。
<Effect>
To solve this problem, the computing section 33 selects at least one from the plurality of clamp circuits 122 and selects at least one from the plurality of feedback circuits 123 . Then, the calculation unit 33 sets the acquisition range by combining the selected clamp circuit 122 and feedback circuit 123 . The calculation unit 33 sets a plurality of acquisition ranges by switching between these selections and combinations.
 そして演算部33は、これら複数の取得範囲においてAD変換部13でアナログデジタル変換された複数の基準電圧、および、記憶部32に記憶されている基準電圧を比較する。これにより、複数のクランプ回路122と複数の帰還回路123(複数の範囲設定部)のいずれに異常が生じているのかが判定される。 The calculation unit 33 then compares the reference voltages stored in the storage unit 32 with the reference voltages analog-to-digital converted by the AD conversion unit 13 in these acquisition ranges. As a result, it is determined which one of the plurality of clamp circuits 122 and the plurality of feedback circuits 123 (the plurality of range setting units) has an abnormality.
 複数のクランプ回路122と複数の帰還回路123のうちのどれかに異常が生じた場合、演算部33は使用可能な取得範囲を設定することができるか否かを判定する。これによれば、閉路電圧の取得が継続されやすくなる。また、閉路電圧の検出精度の低下が抑制される。 When an abnormality occurs in one of the plurality of clamp circuits 122 and the plurality of feedback circuits 123, the computing section 33 determines whether or not the usable acquisition range can be set. According to this, acquisition of the closed circuit voltage is likely to be continued. In addition, a decrease in detection accuracy of the closed circuit voltage is suppressed.
 (第1変形例)
 本実施形態では、演算部33が図4に示す診断処理を実行する例を示した。しかしながら、演算部33は図5に示す診断処理を実行してもよい。
(First modification)
In this embodiment, the example in which the calculation unit 33 executes the diagnostic processing shown in FIG. 4 has been described. However, the calculation unit 33 may execute the diagnostic processing shown in FIG.
 図5に示すステップS20において監視部10に異常があると判断した場合、演算部33はステップS110へ進む。 If it is determined in step S20 shown in FIG. 5 that there is an abnormality in the monitoring unit 10, the calculation unit 33 proceeds to step S110.
 ステップS110へ進むと演算部33は、クランプ回路122と帰還回路123の両方に異常が生じているのか否かを判定する。クランプ回路122と帰還回路123の両方に異常が生じている場合、演算部33はステップS50へ進む。ステップS50以降のステップS50~ステップS70はすでに説明済みなので、その説明を省略する。クランプ回路122と帰還回路123の両方に異常が生じていない場合、演算部33はステップS120へ進む。 When proceeding to step S110, the calculation unit 33 determines whether or not both the clamp circuit 122 and the feedback circuit 123 are abnormal. If both the clamp circuit 122 and the feedback circuit 123 are abnormal, the operation section 33 proceeds to step S50. Steps S50 to S70 after step S50 have already been explained, so the explanation thereof will be omitted. If both the clamp circuit 122 and the feedback circuit 123 are normal, the operation section 33 proceeds to step S120.
 ステップS120へ進むと演算部33は、クランプ回路122に異常が生じているか否かを判定する。クランプ回路122に異常が生じている場合、演算部33はステップS130へ進む。クランプ回路122に異常が生じていない場合、演算部33はステップS140へ進む。 When proceeding to step S120, the calculation unit 33 determines whether or not the clamp circuit 122 is abnormal. If there is an abnormality in the clamp circuit 122, the calculation section 33 proceeds to step S130. If the clamp circuit 122 does not malfunction, the calculation unit 33 proceeds to step S140.
 クランプ回路122の異常とは、主として、クランプ回路122に含まれるスイッチの通電状態と遮断状態との切り換え不可の状態である。スイッチが通電状態に固着される場合、オペアンプ121のオフセットが固着することになる。スイッチが遮断状態に固着される場合、オペアンプ121のオフセット調整に制限が生じる。複数のクランプ回路122に含まれるスイッチの全てが遮断状態に固着した場合、オペアンプ121のオフセット調整ができなくなる。 An abnormality in the clamp circuit 122 is mainly a state in which a switch included in the clamp circuit 122 cannot be switched between an energized state and a cut-off state. If the switch is stuck in the energized state, the offset of the op amp 121 will be stuck. If the switch is stuck in the cut-off state, the offset adjustment of the operational amplifier 121 will be limited. If all the switches included in the plurality of clamp circuits 122 are stuck in the cut-off state, the offset of the operational amplifier 121 cannot be adjusted.
 ステップS130へ進むと演算部33は、記憶部32に検出対象の電池セル220の閉路電圧が記憶されているか否かを判定する。閉路電圧が記憶されている場合、演算部33はその記憶されている閉路電圧が、異常状態のクランプ回路122を含む複数のクランプ回路122によって設定されうる、閉路電圧の取得範囲に含まれるか否かを判定する。 When proceeding to step S130, the calculation unit 33 determines whether or not the storage unit 32 stores the closed circuit voltage of the battery cell 220 to be detected. When the closed circuit voltage is stored, the calculation unit 33 determines whether the stored closed circuit voltage is included in the acquisition range of the closed circuit voltage that can be set by the plurality of clamp circuits 122 including the clamp circuit 122 in an abnormal state. determine whether
 この取得範囲に閉路電圧が含まれる場合、演算部33は、使用可能な、閉路電圧の取得範囲の限定された範囲(限定範囲)があると判定する。そして演算部33はステップS150へ進む。この取得範囲に閉路電圧が含まれない場合、演算部33は使用可能な限定範囲がないと判定する。そして演算部33はステップS160へ進む。なお、そもそも、記憶部32に検出対象の電池セル220の閉路電圧が記憶されていない場合、演算部33はステップS160へ進む。 When the closed circuit voltage is included in this acquisition range, the calculation unit 33 determines that there is a limited range (limited range) of the available closed circuit voltage acquisition range. Then, the calculation unit 33 proceeds to step S150. When the closed circuit voltage is not included in this acquisition range, the calculation unit 33 determines that there is no usable limited range. Then, the calculation unit 33 proceeds to step S160. In the first place, if the storage unit 32 does not store the closed circuit voltage of the battery cell 220 to be detected, the operation unit 33 proceeds to step S160.
 ステップS150へ進むと演算部33は、ステップS60と同様にして、制限状態で閉路電圧の取得範囲を設定することを決定する。ステップS160へ進むと演算部33は、複数のクランプ回路122の一切を用いないことを決定する。演算部33は閉路電圧の取りうる範囲の取得範囲(全範囲)で閉路電圧を検出することを決定する。これらステップS150若しくはステップS160の後に演算部33は診断処理を終了する。 When proceeding to step S150, the calculation unit 33 determines to set the acquisition range of the closed circuit voltage in the restricted state in the same manner as in step S60. When proceeding to step S<b>160 , the calculation unit 33 determines not to use any of the plurality of clamp circuits 122 . The calculation unit 33 determines to detect the closed circuit voltage in the acquisition range (entire range) of the possible range of the closed circuit voltage. After step S150 or step S160, the calculation unit 33 terminates the diagnosis process.
 ステップS120においてクランプ回路122に異常が生じていないと判定してステップS140へ進むと演算部33は、帰還回路123に異常が生じているか否かを判定する帰還回路123に異常が生じている場合、演算部33はステップS170へ進む。帰還回路123に異常が生じていない場合、演算部33はステップS190へ進む。すなわち、監視部10におけるクランプ回路122と帰還回路123以外の構成要素に異常が生じている場合、演算部33はステップS190へ進む。 If it is determined in step S120 that the clamp circuit 122 is not abnormal and the process proceeds to step S140, the calculation unit 33 determines whether the feedback circuit 123 is abnormal. , the computing unit 33 proceeds to step S170. If the feedback circuit 123 does not malfunction, the calculation unit 33 proceeds to step S190. That is, if there is an abnormality in the constituent elements other than the clamp circuit 122 and the feedback circuit 123 in the monitoring section 10, the calculation section 33 proceeds to step S190.
 帰還回路123の異常とは、主として、帰還回路123に含まれるスイッチの通電状態と遮断状態との切り換え不可の状態である。スイッチが通電状態若しくは遮断状態に固着される場合、オペアンプ121のゲインに制限が生じる。複数の帰還回路123に含まれるスイッチの全てが固着した場合、オペアンプ121のゲイン調整ができなくなる。 An abnormality in the feedback circuit 123 is mainly a state in which a switch included in the feedback circuit 123 cannot be switched between an energized state and a cut-off state. If the switch is stuck in the conducting state or the blocking state, the gain of the operational amplifier 121 is limited. If all the switches included in the plurality of feedback circuits 123 are stuck, the gain of the operational amplifier 121 cannot be adjusted.
 ステップS170へ進むと演算部33は、演算部33は帰還回路123によってゲインを定めることができるか否かを判定する。ゲインを定めることができる場合、演算部33は、使用可能な取得範囲があると判定する。そして演算部33はステップS180へ進む。ゲインを定めることができない場合、演算部33は使用可能な取得範囲がないと判定する。そして演算部33はステップS190へ進む。 When proceeding to step S170, the computing section 33 determines whether or not the feedback circuit 123 can determine the gain. If the gain can be determined, the calculation unit 33 determines that there is a usable acquisition range. Then, the calculation unit 33 proceeds to step S180. If the gain cannot be determined, the calculation unit 33 determines that there is no usable acquisition range. Then, the calculation unit 33 proceeds to step S190.
 ステップS180へ進むと演算部33は、ステップS60と同様にして、制限状態で閉路電圧の取得範囲を設定することを決定する。ステップS190へ進むと演算部33は、ステップS70と同様にして、電圧禁止信号を各種ECUに出力する。これらステップS180若しくはステップS190の後に演算部33は診断処理を終了する。 When proceeding to step S180, the calculation unit 33 determines to set the acquisition range of the closed circuit voltage in the restricted state in the same manner as in step S60. When proceeding to step S190, the calculation unit 33 outputs a voltage prohibition signal to various ECUs in the same manner as in step S70. After step S180 or step S190, the calculation unit 33 terminates the diagnosis process.
 (第2変形例)
 本実施形態では監視部10がマルチプレクサ11とオペアンプ121それぞれを1つずつ有する例を示した。しかしながら、監視部10はマルチプレクサ11とオペアンプ121それぞれを複数有してもよい。例えば図6に示すように監視部10はマルチプレクサ11とオペアンプ121それぞれを2つ有してもよい。2つのオペアンプ121それぞれに複数のクランプ回路122と複数の帰還回路123が接続される。なお、監視部10はオペアンプ121を複数有するとともに、マルチプレクサ11を単数有してもよい。
(Second modification)
In this embodiment, an example in which the monitoring unit 10 has one multiplexer 11 and one operational amplifier 121 is shown. However, the monitoring unit 10 may have multiple multiplexers 11 and multiple operational amplifiers 121 . For example, as shown in FIG. 6, the monitoring unit 10 may have two multiplexers 11 and two operational amplifiers 121 . A plurality of clamp circuits 122 and a plurality of feedback circuits 123 are connected to each of the two operational amplifiers 121 . Note that the monitoring unit 10 may have a plurality of operational amplifiers 121 and a single multiplexer 11 .
 係る変形例において監視部10は、診断信号を受信すると、クランプ回路122と帰還回路123との組み合わせによって定められる取得範囲を、2つのオペアンプ121において同一にする。監視部10は、複数の取得範囲と、これら複数の取得範囲でアナログデジタル変換された2つ基準電圧と、を演算部33に出力する。 In this modified example, when the monitoring unit 10 receives the diagnostic signal, the acquisition range determined by the combination of the clamp circuit 122 and the feedback circuit 123 is the same for the two operational amplifiers 121 . The monitoring unit 10 outputs a plurality of acquisition ranges and two reference voltages analog-to-digital converted in the plurality of acquisition ranges to the calculation unit 33 .
 演算部33は、監視部10から入力される複数の取得範囲と、これら複数の取得範囲でアナログデジタル変換された2つの基準電圧を記憶部32に記憶する。そして演算部33は複数の取得範囲でアナログデジタル変換された2つの基準電圧と記憶部32にあらかじめ記憶されていた基準電圧との比較結果、および、複数の取得範囲に基づいて、監視部10の状態を診断する。 The calculation unit 33 stores in the storage unit 32 a plurality of acquisition ranges input from the monitoring unit 10 and two reference voltages analog-to-digital converted in the plurality of acquisition ranges. Then, the calculation unit 33 compares the two reference voltages analog-to-digital converted in the plurality of acquisition ranges with the reference voltage stored in advance in the storage unit 32, and based on the plurality of acquisition ranges, the monitoring unit 10 Diagnose the condition.
 演算部33は、これら2つのオペアンプ121のうちの一方に接続されるクランプ回路122と帰還回路123が正常であり、他方に接続されるクランプ回路122と帰還回路123に異常が生じている場合、他方の使用を禁止する。また、本実施形態のようにレベルシフタ12が1つのオペアンプ121を有する場合、このオペアンプ121の備える2つの入力端子と2つの出力端子との間で構成される複数の通電経路の一部で異常が生じた場合、その通電経路の使用を禁止してもよい。 When the clamp circuit 122 and the feedback circuit 123 connected to one of the two operational amplifiers 121 are normal, and the clamp circuit 122 and the feedback circuit 123 connected to the other are abnormal, the computing unit 33 prohibit the use of the other. Further, when the level shifter 12 has one operational amplifier 121 as in the present embodiment, an abnormality occurs in a part of a plurality of current paths formed between two input terminals and two output terminals of the operational amplifier 121. If it occurs, the use of that current path may be prohibited.
 (第2実施形態)
 次に、第2実施形態を図7~図10に基づいて説明する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIGS. 7 to 10. FIG.
 第1実施形態では、記憶部32に記憶された閉路電圧に基づいて、閉路電圧の取得範囲が定められる例を示した。これに対して本実施形態では、記憶部32に記憶された閉路電圧と閉路電圧の変化量とに基づいて、閉路電圧の取得範囲が定められる。 In the first embodiment, an example was shown in which the acquisition range of the closed circuit voltage is determined based on the closed circuit voltage stored in the storage unit 32 . In contrast, in the present embodiment, the acquisition range of the closed circuit voltage is determined based on the closed circuit voltage stored in the storage unit 32 and the amount of change in the closed circuit voltage.
 <閉路電圧の取得>
 図2に示す電池セル220のSOCとOCVの特性のため、放電によってSOCが低下するとOCVも低下する。それにともなって電池セル220の閉路電圧CCVも減少する。これとは逆に、充電機器からの充電電力の供給によってSOCが増大すると、閉路電圧CCVも増大する。
<Acquisition of closed circuit voltage>
Due to the SOC and OCV characteristics of the battery cell 220 shown in FIG. 2, when the SOC drops due to discharge, the OCV also drops. Accordingly, the closed circuit voltage CCV of the battery cell 220 also decreases. Conversely, when the SOC increases due to the supply of charging power from the charging equipment, the closed circuit voltage CCV also increases.
 図7に閉路電圧の時間変化を示す。縦軸は任意単位である。横軸は時間である。任意単位はa.u.で表記している。時間はTで表記している。 Fig. 7 shows the time change of the closed circuit voltage. The vertical axis is in arbitrary units. The horizontal axis is time. Arbitrary units are a.d. u. is indicated. Time is denoted by T.
 図7には、閉路電圧のほかに、電池装置100の駆動状態、組電池200を流れる実電流、ある一つの電池セル220の閉路電圧を示している。電池装置100の駆動状態はDSと表記している。説明を簡便とするため、図面に示す電池セル220の閉路電圧の挙動と組電池200の閉路電圧の挙動は同等とする。挙動を明示するため、図面では電池セル220の閉路電圧が短時間で大きく変化するように図示している。 In addition to the closed circuit voltage, FIG. 7 also shows the driving state of the battery device 100, the actual current flowing through the assembled battery 200, and the closed circuit voltage of one battery cell 220. FIG. The drive state of the battery device 100 is denoted as DS. For simplicity of explanation, the behavior of the closed circuit voltage of the battery cell 220 and the behavior of the closed circuit voltage of the assembled battery 200 shown in the drawings are assumed to be the same. In order to clarify the behavior, the drawing shows that the closed circuit voltage of the battery cell 220 changes greatly in a short period of time.
 時間0の初期状態において、電池装置100は非駆動状態になっている。記憶部32には閉路電圧や物理量などの電池情報が記憶されていない。組電池200と各種車載機器との間の導通状態を制御するシステムメインリレーが遮断状態になっている。そのために組電池200に電流が実質的に流れていない。電池セル220の閉路電圧は充放電領域の値になっている。 In the initial state at time 0, the battery device 100 is in a non-driving state. The storage unit 32 does not store battery information such as closed circuit voltage and physical quantity. A system main relay that controls electrical continuity between the assembled battery 200 and various vehicle-mounted devices is in a disconnected state. Therefore, substantially no current flows through the assembled battery 200 . The closed circuit voltage of the battery cell 220 has a value in the charge/discharge region.
 電池セル220に電流が実質的に流れていなくとも、自己放電のために電池セル220のSOCは減少する。そのために時間0の初期状態において、電池セル220の閉路電圧は微量ながら減少傾向にある。 The SOC of the battery cell 220 decreases due to self-discharge even if the current does not substantially flow through the battery cell 220 . Therefore, in the initial state at time 0, the closed circuit voltage of the battery cell 220 tends to decrease, albeit slightly.
 時間t0になると、電池装置100は非駆動状態から駆動状態になる。この際に、演算部33は上記の診断処理を実行する。以下においては説明を簡便とするため、診断処理の結果、監視部10に異常が生じていない場合の閉路電圧の取得を説明する。 At time t0, the battery device 100 changes from the non-driving state to the driving state. At this time, the calculation unit 33 executes the above diagnostic processing. In order to simplify the explanation below, acquisition of the closed circuit voltage when no abnormality has occurred in the monitoring unit 10 as a result of the diagnostic processing will be explained.
 時間t0になると、電池装置100が非駆動状態から駆動状態になるとともに、システムメインリレーが遮断状態から通電状態になる。これにより組電池200から各種車載機器への電源電力の供給が開始する。組電池200に実電流が流れはじめる。電池セル220のSOCの減少率が増大する。それにともなって、電池セル220の閉路電圧の減少率も増大する。 At time t0, the battery device 100 changes from the non-driven state to the driven state, and the system main relay changes from the cut-off state to the energized state. As a result, supply of power supply power from the assembled battery 200 to various vehicle-mounted devices is started. An actual current begins to flow in the assembled battery 200 . The rate of decrease of the SOC of battery cell 220 increases. Along with this, the reduction rate of the closed circuit voltage of the battery cell 220 also increases.
 時間t1になると演算部33は、電池セル220の閉路電圧を取得する。この際、記憶部32には電池情報が記憶されていない。そのため、演算部33は時間t1での閉路電圧の取得範囲を、電池セル220の取りうる範囲に設定する。すなわち、演算部33は閉路電圧の取得範囲を0.0V~5.0Vに設定する。演算部33はこの時間t1での取得範囲において監視部10で検出された閉路電圧を取得する。 At time t1, the calculation unit 33 acquires the closed circuit voltage of the battery cell 220. At this time, the battery information is not stored in the storage unit 32 . Therefore, the calculation unit 33 sets the acquisition range of the closed circuit voltage at the time t<b>1 to a range that the battery cell 220 can take. That is, the calculation unit 33 sets the acquisition range of the closed circuit voltage to 0.0V to 5.0V. The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 in the acquisition range at this time t1.
 時間t2になると演算部33は、再び電池セル220の閉路電圧を取得する。この際、第1実施形態で示したように、演算部33は時間t1で取得した電池セル220の閉路電圧に基づいて、時間t2での閉路電圧の取得範囲を決定することが考えられる。例えば、時間t1の閉路電圧が3.0Vの場合、この3.0Vを中心とした閉路電圧の取得範囲を設定することが考えられる。 At time t2, the calculation unit 33 acquires the closed circuit voltage of the battery cell 220 again. At this time, as shown in the first embodiment, the calculation unit 33 may determine the acquisition range of the closed circuit voltage at time t2 based on the closed circuit voltage of the battery cell 220 acquired at time t1. For example, if the closed circuit voltage at time t1 is 3.0V, it is conceivable to set the acquisition range of the closed circuit voltage around this 3.0V.
 しかしながら、時間t1から時間t2へと時間経過する間に、電池セル220のSOCが変化する。図3に示す例で言えば、ハッチングで示す分の電力の放電が行われる。この放電のために時間t1での閉路電圧と時間t2での閉路電圧とが異なることが想定される。 However, the SOC of the battery cell 220 changes while time elapses from time t1 to time t2. In the example shown in FIG. 3, the amount of power indicated by hatching is discharged. It is assumed that the closed circuit voltage at time t1 and the closed circuit voltage at time t2 are different due to this discharge.
 そこで演算部33は、時間t1で取得した閉路電圧と、時間t1から時間t2までの閉路電圧の変化量とに基づいて、時間t2での閉路電圧の取得範囲の中央値を算出する。すなわち、演算部33は時間t2での閉路電圧を推定する。時間t2での閉路電圧の推定については、後で詳説する。取得範囲の中央値は、取得範囲の上限値と下限値との間の値である。 Therefore, the calculation unit 33 calculates the median value of the acquisition range of the closed circuit voltage at time t2 based on the closed circuit voltage acquired at time t1 and the amount of change in the closed circuit voltage from time t1 to time t2. That is, the calculation unit 33 estimates the closed circuit voltage at time t2. Estimation of the closed circuit voltage at time t2 will be described in detail later. The median value of the acquisition range is a value between the upper limit value and the lower limit value of the acquisition range.
 図面では、取得した閉路電圧のみに基づいて設定した場合の閉路電圧の取得範囲の中央値を一点鎖線矢印の先端で示している。取得した閉路電圧と閉路電圧の変化量とに基づいて設定した場合の閉路電圧の取得範囲の中央値を実線矢印の先端で示している。 In the drawing, the tip of the dashed-dotted arrow indicates the median value of the acquisition range of the closed circuit voltage when set based only on the acquired closed circuit voltage. The tip of the solid-line arrow indicates the median value of the acquisition range of the closed-circuit voltage when set based on the acquired closed-circuit voltage and the amount of change in the closed-circuit voltage.
 これら2種類の矢印の先端の位置の差で示されるように、閉路電圧の変化量を加味した分、取得範囲の中央値が時間t2での実際の電池セル220の閉路電圧の値に近づく。これにより、電池セル220の閉路電圧が取得範囲の上限値と下限値それぞれから遠ざかる。取得範囲を狭めた結果、意図せずして閉路電圧が取得範囲外になることが抑制される。 As indicated by the difference in the positions of the tips of these two types of arrows, the median value of the acquisition range approaches the actual value of the closed circuit voltage of the battery cell 220 at time t2 by the amount of change in the closed circuit voltage. As a result, the closed circuit voltage of the battery cell 220 moves away from the upper limit value and the lower limit value of the acquisition range. As a result of narrowing the acquisition range, the closed circuit voltage is suppressed from being unintentionally outside the acquisition range.
 閉路電圧の取得範囲は図7に示す実線の両端矢印の幅で示される。限定された取得範囲の中央値と上限値との差は上限範囲幅α1に設定される。限定された取得範囲の中央値と下限値との差は下限範囲幅α2に設定される。これら上限範囲幅α1と下限範囲幅α2とは同一でも不同でもよい。上限範囲幅α1と下限範囲幅α2は閉路電圧の検出誤差よりも大きな値である。上限範囲幅α1と下限範囲幅α2は図2に示すOCV1とOCV2の差の半分よりも小さい値である。 The acquisition range of the closed circuit voltage is indicated by the width of the solid double-ended arrow shown in FIG. The difference between the median value and the upper limit value of the limited acquisition range is set as the upper limit range width α1. The difference between the median value and the lower limit value of the limited acquisition range is set to the lower limit range width α2. These upper limit range width α1 and lower limit range width α2 may be the same or different. The upper limit range width α1 and the lower limit range width α2 are values larger than the closed circuit voltage detection error. The upper limit range width α1 and the lower limit range width α2 are values smaller than half the difference between OCV1 and OCV2 shown in FIG.
 上限範囲幅α1と下限範囲幅α2の大小関係は、例えば、閉路電圧の時間変化に基づいて決定することができる。閉路電圧が減少傾向の場合、上限範囲幅α1よりも下限範囲幅α2を大きく設定することができる。逆に、閉路電圧が増大傾向の場合、下限範囲幅α2よりも上限範囲幅α1を大きく設定することができる。これら2つの範囲幅の差の大きさは、閉路電圧の時間変化量に基づいて設定することができる。これら2つの範囲幅に差を設けるための補正値が記憶部32に記憶されている。 The magnitude relationship between the upper limit range width α1 and the lower limit range width α2 can be determined, for example, based on the time change of the closed circuit voltage. When the closed circuit voltage tends to decrease, the lower limit range width α2 can be set larger than the upper limit range width α1. Conversely, when the closed circuit voltage tends to increase, the upper limit range width α1 can be set larger than the lower limit range width α2. The magnitude of the difference between these two range widths can be set based on the time variation of the closed circuit voltage. A correction value for providing a difference between these two range widths is stored in the storage unit 32 .
 演算部33はこれら上限範囲幅α1と下限範囲幅α2、および、取得範囲の中央値に基づいて、限定された取得範囲を設定する。本実施形態では、演算部33は上限範囲幅α1と下限範囲幅α2を同一に設定する。そのため、以下においては表記を簡明とするため、上限範囲幅α1と下限範囲幅α2を合わせて範囲幅αと表記する。なお、このように上限範囲幅α1と下限範囲幅α2とが等しい場合、上記した取得範囲の中央値は、取得範囲の中心値になる。 The calculation unit 33 sets a limited acquisition range based on the upper limit range width α1, the lower limit range width α2, and the median value of the acquisition range. In this embodiment, the calculation unit 33 sets the upper limit range width α1 and the lower limit range width α2 to be the same. Therefore, in order to simplify the notation, the upper limit range width α1 and the lower limit range width α2 are collectively referred to as the range width α. Note that when the upper limit range width α1 and the lower limit range width α2 are equal to each other in this way, the median value of the acquisition range described above becomes the center value of the acquisition range.
 範囲幅αは記憶部32に予め記憶されている。範囲幅αは電池セル220の温度と電流などに依存する値である。時間t2での取得範囲の幅はこの記憶部32に記憶された範囲幅αが用いられる。 The range width α is stored in the storage unit 32 in advance. The range width α is a value that depends on the temperature and current of the battery cell 220 . The range width α stored in the storage unit 32 is used as the width of the acquisition range at time t2.
 演算部33は以上に示した演算処理によって時間t2での取得範囲を決定する。演算部33は、例えば、時間t2での取得範囲を2.65V~2.93Vに設定する。演算部33はこの時間t2での取得範囲において監視部10で検出された閉路電圧を取得する。 The calculation unit 33 determines the acquisition range at time t2 by the calculation processing described above. The calculation unit 33 sets the acquisition range at time t2 to 2.65V to 2.93V, for example. The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 in the acquisition range at this time t2.
 なお、厳密に言えば、電池装置100での演算処理があるため、時間t2における、取得範囲の決定タイミングと、閉路電圧の検出タイミングとは同一にならない。決定タイミングは検出タイミングの手前である。しかしながら、これら2つのタイミングの差は微小である。そのためにこれら2つのタイミングを同一とみなして記載している。 Strictly speaking, since there is arithmetic processing in the battery device 100, the determination timing of the acquisition range and the detection timing of the closed circuit voltage at time t2 are not the same. The decision timing is before the detection timing. However, the difference between these two timings is minute. Therefore, these two timings are considered to be the same and described.
 演算部33は閉路電圧を取得周期で取得している。時間t1と時間t2との間の時間が取得周期に相当する。この取得周期は、定電流充電などによって電池セル220の充放電状態が急変しない限り、電池セル220のSOCが急変しないことの期待される時間間隔である。時間t1から取得周期が経過すると時間t2になる。 The calculation unit 33 acquires the closed circuit voltage at an acquisition cycle. The time between time t1 and time t2 corresponds to the acquisition period. This acquisition period is a time interval at which the SOC of the battery cell 220 is expected not to change suddenly unless the charge/discharge state of the battery cell 220 changes suddenly due to constant current charging or the like. When the acquisition cycle has passed from time t1, it becomes time t2.
 時間t2から取得周期が経過して時間t3になると演算部33は、時間t2の閉路電圧と、時間t2から時間t3までの閉路電圧の変化量と、に基づいて取得範囲の中央値を決定する。また演算部33は時間t2で取得した閉路電圧と、時間t2での取得範囲の中央値との差を推定誤差として算出する。推定誤差は検出誤差よりも大きな値である。 At time t3 after the acquisition cycle has elapsed from time t2, the calculation unit 33 determines the median value of the acquisition range based on the closed circuit voltage at time t2 and the amount of change in the closed circuit voltage from time t2 to time t3. . Further, the calculation unit 33 calculates the difference between the closed circuit voltage obtained at time t2 and the median value of the obtained range at time t2 as an estimation error. The estimation error is a larger value than the detection error.
 演算部33はこの推定誤差と記憶部32に記憶された範囲幅αとに基づいて時間t3での範囲幅αを算出する。推定誤差が所定値よりも小さい場合、時間t3での範囲幅αは記憶部32に記憶された範囲幅α若しくは時間t2での範囲幅αよりも小さくなる。推定誤差が所定値よりも大きい場合、時間t3での範囲幅αは記憶部32に記憶された範囲幅α若しくは時間t2での範囲幅αよりも大きくなる。 The calculation unit 33 calculates the range width α at time t3 based on this estimated error and the range width α stored in the storage unit 32 . When the estimation error is smaller than the predetermined value, the range width α at time t3 is smaller than the range width α stored in the storage unit 32 or the range width α at time t2. When the estimation error is larger than the predetermined value, the range width α at time t3 is larger than the range width α stored in the storage unit 32 or the range width α at time t2.
 以上に示した演算処理を行うことで、演算部33は時間t3での取得範囲を決定する。演算部33は、例えば、時間t3の取得範囲を2.60V~2.74Vに設定する。演算部33はこの時間t3の取得範囲において監視部10で検出された閉路電圧を取得する。 By performing the arithmetic processing described above, the arithmetic unit 33 determines the acquisition range at time t3. The calculation unit 33 sets the acquisition range at time t3 to 2.60V to 2.74V, for example. The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 in the acquisition range of this time t3.
 時間t3から時間tc1になると、実電流が低減する。これに伴って、閉路電圧の減少率も低減する。 From time t3 to time tc1, the actual current decreases. Along with this, the reduction rate of the closed circuit voltage is also reduced.
 時間t3から取得周期が経過して時間t4になると演算部33は、時間t3の閉路電圧と、時間t3から時間t4までの閉路電圧の変化量と、推定誤差を加味した範囲幅αと、に基づいて取得範囲を決定する。演算部33は、例えば、時間t4の取得範囲を2.62V~2.70Vに設定する。演算部33はこの時間t4での取得範囲において監視部10で検出された閉路電圧を取得する。 When the acquisition cycle has passed from time t3 to time t4, the calculation unit 33 calculates the closed circuit voltage at time t3, the amount of change in the closed circuit voltage from time t3 to time t4, and the range width α that takes into account the estimation error. Determine the acquisition range based on The calculation unit 33 sets the acquisition range at time t4 to 2.62V to 2.70V, for example. The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 in the acquisition range at time t4.
 このように時間t3と時間t4との間の閉路電圧の変化量を加味しているため、例え時間t3と時間t4との間の時間tc1で閉路電圧の減少率が低減し始めたとしても、時間t4において演算部33で取得される閉路電圧が取得範囲に収まる。 Since the amount of change in closed circuit voltage between time t3 and time t4 is taken into account in this way, even if the rate of decrease in closed circuit voltage begins to decrease at time tc1 between time t3 and time t4, The closed circuit voltage acquired by the calculation unit 33 at time t4 falls within the acquisition range.
 時間t4から時間tc2になると、電動車両に充電機器が接続される。充電機器により組電池200が定電流充電される。これにより実電流が急上昇する。演算部33は係る情報を車両情報若しくは充電情報から取得する。 From time t4 to time tc2, the charging equipment is connected to the electric vehicle. The charging equipment charges the assembled battery 200 with a constant current. This causes the actual current to rise sharply. The calculation unit 33 acquires such information from vehicle information or charging information.
 時間t4から取得周期が経過して時間t5になると演算部33は、時間t4の閉路電圧と、時間t4から時間t5までの閉路電圧の変化量と、推定誤差を加味した範囲幅αと、に基づいて取得範囲を決定する。演算部33はこの時間t5での取得範囲において監視部10で検出された閉路電圧を取得する。 At time t5 after the acquisition cycle has passed from time t4, the calculation unit 33 calculates the closed circuit voltage at time t4, the amount of change in the closed circuit voltage from time t4 to time t5, and the range width α that takes into account the estimation error. Determine the acquisition range based on The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 in the acquisition range at this time t5.
 このように時間t4と時間t5の間の閉路電圧の変化量を加味しているため、例え時間t4と時間t5との間の時間tc2で閉路電圧が急上昇し始めたとしても、時間t5において演算部33で取得される閉路電圧が取得範囲に収まる。 Since the amount of change in the closed circuit voltage between time t4 and time t5 is taken into account in this way, even if the closed circuit voltage begins to rise sharply at time tc2 between time t4 and time t5, the calculation at time t5 The closed circuit voltage acquired by the unit 33 falls within the acquisition range.
 なお、このように定電流充電が行われると、閉路電圧の単位時間当たりの変化率が大きくなる。そのため、時間t5での範囲幅αを時間t4での範囲幅αよりも増幅補正してもよい。若しくは、定電流充電時の範囲幅αが記憶部32に記憶されていてもよい。時間t5においてこの範囲幅αが用いられてもよい。演算部33は、例えば、時間t5の取得範囲を3.25V~3.75Vに設定する。 It should be noted that when constant-current charging is performed in this manner, the rate of change of the closed circuit voltage per unit time increases. Therefore, the range width α at time t5 may be amplified and corrected more than the range width α at time t4. Alternatively, the range width α during constant current charging may be stored in the storage unit 32 . This range width α may be used at time t5. The calculation unit 33 sets the acquisition range at time t5 to 3.25V to 3.75V, for example.
 時間t5から時間tc3になると、組電池200の出力電圧が目標電圧に到達する。これを検出すると、演算部33は充電機器による定電流充電を終了させる。演算部33は充電機器に定電圧充電を実行させる。なお、演算部33は定電流充電の終了後、定電圧充電に代わって、押し込み充電を実行してもよい。 From time t5 to time tc3, the output voltage of the assembled battery 200 reaches the target voltage. When this is detected, the calculation unit 33 terminates the constant current charging by the charging equipment. The calculation unit 33 causes the charging device to perform constant voltage charging. Note that the calculation unit 33 may perform forced charging instead of constant voltage charging after completion of constant current charging.
 上記した定電流充電と定電圧充電とでは、供給電流量が異なる。定電流充電は定電圧充電よりも供給電流量が大きくなっている。 The amount of supplied current differs between the constant-current charging and the constant-voltage charging described above. Constant-current charging has a larger current supply than constant-voltage charging.
 上記したように閉路電圧CCVと開路電圧OCVとには電圧降下I×R分の差がある。充電時では、CCV=OCV+I×Rとなる。したがって、例えば組電池200の最高出力電圧が閉路電圧CCVとして検出されたとしても、開路電圧OCVは最高出力電圧に達していないことになる。組電池200のSOCは満充電量に達していないことになる。 As described above, there is a difference of the voltage drop I×R between the closed circuit voltage CCV and the open circuit voltage OCV. During charging, CCV=OCV+I×R. Therefore, even if the maximum output voltage of the assembled battery 200 is detected as the closed circuit voltage CCV, the open circuit voltage OCV does not reach the maximum output voltage. This means that the SOC of the assembled battery 200 has not reached the full charge amount.
 上記の目標電圧は、組電池200の最高出力電圧に基づく値である。演算部33は組電池200の閉路電圧が目標電圧に到達したと判定すると、定電圧充電を充電機器に実行させる。定電圧充電では、過充電を避けつつ、組電池200のSOCを満充電量に近づけるため、組電池200で検出される閉路電圧を目標電圧に保った状態で、組電池200への充電電力の供給が行われる。目標電圧と最高出力電圧は記憶部32に予め記憶されている。 The above target voltage is a value based on the maximum output voltage of the assembled battery 200. When the calculation unit 33 determines that the closed circuit voltage of the assembled battery 200 has reached the target voltage, it causes the charging device to perform constant voltage charging. In constant-voltage charging, in order to avoid overcharging and bring the SOC of the assembled battery 200 closer to the full charge amount, the closed-circuit voltage detected by the assembled battery 200 is kept at the target voltage, and the charging power to the assembled battery 200 is reduced. supply takes place. The target voltage and the maximum output voltage are pre-stored in the storage section 32 .
 時間t5から取得周期が経過して時間t6になると、演算部33は、目標電圧と定電圧充電時の範囲幅αに基づいて決定された取得範囲において監視部10で検出された電池セル220の閉路電圧を取得する。演算部33は、例えば、時間t6の取得範囲を4.23V~4.26Vに設定する。 At time t6 after the acquisition cycle has elapsed from time t5, the calculation unit 33 calculates the number of battery cells 220 detected by the monitoring unit 10 in the acquisition range determined based on the target voltage and the range width α during constant voltage charging. Get the closed circuit voltage. The calculation unit 33 sets the acquisition range at time t6 to 4.23V to 4.26V, for example.
 時間t6以降、定電圧充電が実行され続ける限り、目標電圧が取得されることが期待される。この場合、演算部33は目標電圧と定電圧充電時の範囲幅αに基づいて決定された取得範囲で電池セル220の閉路電圧を取得し続ける。若しくは、演算部33は閉路電圧の取得をやめる。定電圧充電時の範囲幅αは例えば時間t2で用いた範囲幅αよりも小さい値である。定電圧充電時の範囲幅αは記憶部32に記憶されている。 After time t6, it is expected that the target voltage will be obtained as long as constant voltage charging continues. In this case, the calculation unit 33 continues to acquire the closed circuit voltage of the battery cell 220 within the acquisition range determined based on the target voltage and the range width α during constant voltage charging. Alternatively, the calculation unit 33 stops acquiring the closed circuit voltage. The range width α during constant-voltage charging is, for example, a smaller value than the range width α used at time t2. The range width α during constant voltage charging is stored in the storage unit 32 .
 <定電圧駆動>
 組電池200のSOCが過度に低減したり、電動車両の電動機が不調だったりした場合、電動車両は駆動を制限した定電圧駆動を実行する。この際に組電池200から出力される電源電力の電圧が制限される。電源電力の電圧が例えば一定値に保たれる。このため、電池セル220の閉路電圧が所定電圧に保たれることが期待される。
<Constant voltage drive>
When the SOC of the assembled battery 200 is excessively reduced or the electric motor of the electric vehicle malfunctions, the electric vehicle performs constant voltage drive with limited driving. At this time, the voltage of the power supply power output from the assembled battery 200 is limited. The voltage of the power supply is kept at a constant value, for example. Therefore, it is expected that the closed circuit voltage of the battery cell 220 is maintained at a predetermined voltage.
 図8に示す一例では、時間t3と時間t4との間の時間tc1で、電動車両が制限のない通常駆動から制限のある定電圧駆動に移行している。この場合、演算部33は、時間t4において、所定電圧と定電圧駆動時の範囲幅αに基づいて決定された取得範囲で電池セル220の閉路電圧を取得する。演算部33は、例えば、時間t4の取得範囲を2.47V~2.53Vに設定する。 In the example shown in FIG. 8, at time tc1 between time t3 and time t4, the electric vehicle transitions from unrestricted normal drive to restricted constant voltage drive. In this case, the calculation unit 33 acquires the closed circuit voltage of the battery cell 220 in the acquisition range determined based on the predetermined voltage and the range width α during constant voltage driving at time t4. The calculation unit 33 sets the acquisition range at time t4 to 2.47V to 2.53V, for example.
 時間t4以降、定電圧駆動が実行され続ける限り、所定電圧が取得されることが期待される。この場合、演算部33は所定電圧と定電圧駆動時の範囲幅αに基づいて決定された取得範囲で電池セル220の閉路電圧を取得し続ける。若しくは、演算部33は閉路電圧の取得をやめる。 After time t4, it is expected that the predetermined voltage will be obtained as long as constant voltage driving continues. In this case, the calculation unit 33 continues to acquire the closed circuit voltage of the battery cell 220 within the acquisition range determined based on the predetermined voltage and the range width α during constant voltage driving. Alternatively, the calculation unit 33 stops acquiring the closed circuit voltage.
 定電圧駆動時の範囲幅αは通常駆動時の範囲幅αよりも小さい値である。定電圧駆動時の範囲幅αは記憶部32に記憶されている。なお、電動車両が走行状態から停車状態に変化すると、閉路電圧が短時間で急変する虞がある。係る急変によって閉路電圧が取得範囲外になることが避けられるように、範囲幅αの値が設定されるとよい。 The range width α during constant voltage driving is a smaller value than the range width α during normal driving. The range width α during constant voltage driving is stored in the storage unit 32 . Note that when the electric vehicle changes from a running state to a stopped state, there is a possibility that the closed circuit voltage may suddenly change in a short period of time. The value of the range width α may be set so as to avoid the closed-circuit voltage falling outside the acquisition range due to such a sudden change.
 <閉路電圧の推定>
 上記したように演算部33は、閉路電圧の取得範囲を算出するにあたって、取得範囲の中央値を算出する。すなわち、演算部33は取得時の閉路電圧を推定する。例えば図7に示す時間t2において演算部33は、時間t1で取得した閉路電圧と、時間t1から時間t2までの閉路電圧の変化量と、に基づいて時間t2での閉路電圧を推定する。
<Estimation of closed circuit voltage>
As described above, the calculation unit 33 calculates the median value of the acquisition range when calculating the acquisition range of the closed circuit voltage. That is, the calculation unit 33 estimates the closed circuit voltage at the time of acquisition. For example, at time t2 shown in FIG. 7, the calculation unit 33 estimates the closed circuit voltage at time t2 based on the closed circuit voltage obtained at time t1 and the amount of change in the closed circuit voltage from time t1 to time t2.
 時間t1から時間t2までの閉路電圧の変化量は、時間t1と時間t2との間の充放電履歴(充放電量)と、時間t1と時間t2との間の温度、および、SOCとOCVの特性データの温度依存性に基づいて算出される。 The amount of change in closed circuit voltage from time t1 to time t2 is the charge/discharge history (charge/discharge amount) between time t1 and time t2, the temperature between time t1 and time t2, and the SOC and OCV. It is calculated based on the temperature dependence of the characteristic data.
 時間t1と時間t2との間の充放電履歴は、例えば、時間t1と時間t2との間の時間と、時間t1と時間t2との間の電流と、に基づいて算出される。時間t1と時間t2との間の充放電履歴は、時間t1と時間t2との間の電流の積算値として算出される。なお、時間t1と時間t2との間の電流は、例えば、時間t1の電流と時間t2の電流の加算平均値で推定される。 The charge/discharge history between time t1 and time t2 is calculated, for example, based on the time between time t1 and time t2 and the current between time t1 and time t2. A charge/discharge history between time t1 and time t2 is calculated as an integrated value of current between time t1 and time t2. Note that the current between time t1 and time t2 is estimated by, for example, the addition average value of the current at time t1 and the current at time t2.
 時間t1と時間t2との間の温度は、例えば、時間t1の温度と時間t2の温度の加算平均値で推定される。演算部33はこの温度のSOCとOCVの特性データを記憶部32から読み出す。そして演算部33は読みだしたSOCとOCVの特性データと、算出した時間t1と時間t2との間の充放電履歴とに基づいて、時間t1から時間t2までの閉路電圧の変化量を算出する。電流、温度、および、特性データが変化量に含まれている。 The temperature between time t1 and time t2 is estimated, for example, by adding and averaging the temperature at time t1 and the temperature at time t2. The calculation unit 33 reads the SOC and OCV characteristic data of this temperature from the storage unit 32 . Then, the calculation unit 33 calculates the amount of change in closed circuit voltage from time t1 to time t2 based on the read SOC and OCV characteristic data and the calculated charge/discharge history between time t1 and time t2. . Current, temperature, and characteristic data are included in the variation.
 なお、当然ながら、演算部33は各種2次電池のSOCとOCVの特性データのうち、電池セル220のSOCとOCVの特性データを記憶部32から読みだす。電池セル220がリチウムイオン2次電池の場合、演算部33はリチウムイオン2次電池のSOCとOCVの特性データを記憶部32から読みだす。 Of course, the calculation unit 33 reads the SOC and OCV characteristic data of the battery cell 220 from the storage unit 32 among the SOC and OCV characteristic data of various secondary batteries. When the battery cell 220 is a lithium-ion secondary battery, the calculation unit 33 reads the SOC and OCV characteristic data of the lithium-ion secondary battery from the storage unit 32 .
 演算部33は、例えば記憶部32に記憶された電池セル220の製造日と時間t2との差、および、劣化判定値に基づいて、時間t2での電池セル220の経年劣化を推定してもよい。演算部33は電池セル220の経年劣化と、時間t2の温度に基づいて、時間t2での電池セル220の内部抵抗を推定してもよい。演算部33はこの時間t2での内部抵抗と電流とに基づいて、時間t2での電池セル220で生じる電圧降下を算出してもよい。演算部33はこの電圧降下も加味して、時間t2での閉路電圧を推定してもよい。このように内部抵抗を推定する場合、内部抵抗を加味して範囲幅αを設定してもよい。 The calculation unit 33 estimates the aged deterioration of the battery cell 220 at the time t2, for example, based on the difference between the date of manufacture of the battery cell 220 and the time t2 stored in the storage unit 32 and the deterioration determination value. good. The calculation unit 33 may estimate the internal resistance of the battery cell 220 at time t2 based on aging deterioration of the battery cell 220 and the temperature at time t2. The calculation unit 33 may calculate the voltage drop occurring in the battery cell 220 at the time t2 based on the internal resistance and the current at the time t2. The calculation unit 33 may also take this voltage drop into account to estimate the closed circuit voltage at time t2. When estimating the internal resistance in this way, the range width α may be set in consideration of the internal resistance.
 また、演算部33は、電池セル220の等価回路モデル若しくは化学反応モデルと、電池セル220の電流および温度に基づいて、時間t1から時間t2までの閉路電圧の変化量を推定してもよい。 Further, the calculation unit 33 may estimate the amount of change in the closed circuit voltage from time t1 to time t2 based on the equivalent circuit model or chemical reaction model of the battery cell 220 and the current and temperature of the battery cell 220.
 さらに例示すれば、上記した閉路電圧の変化量を概算するための放電値と充電値が記憶部32に記憶されていてもよい。閉路電圧の変化量を、所定の放電値に時間t1と時間t2との間の時間を乗算して決定してもよい。閉路電圧の変化量を、所定の充電値に時間t1と時間t2との間の時間を乗算して決定してもよい。この変形例では、放電値と充電値が充放電量に含まれている。 As a further example, the storage unit 32 may store a discharge value and a charge value for estimating the amount of change in the closed circuit voltage described above. The amount of change in closed circuit voltage may be determined by multiplying the predetermined discharge value by the time between time t1 and time t2. The amount of change in closed circuit voltage may be determined by multiplying the predetermined charge value by the time between time t1 and time t2. In this modification, the discharge value and the charge value are included in the charge/discharge amount.
 <電圧検出処理>
 次に、演算部33の電圧検出処理を図9に基づいて説明する。演算部33はこの電圧検出処理をサイクルタスクとして実行している。この電圧検出処理の実行間隔は上記した取得周期に相当する。
<Voltage detection processing>
Next, the voltage detection processing of the calculation unit 33 will be described with reference to FIG. The calculation unit 33 executes this voltage detection process as a cycle task. The execution interval of this voltage detection process corresponds to the acquisition period described above.
 ステップS210で演算部33は、閉路電圧が記憶部32に記憶されているか否かを判定する。閉路電圧が記憶部32に記憶されている場合、演算部33はステップS220へ進む。閉路電圧が記憶部32に記憶されていない場合、演算部33はステップS230へ進む。 In step S210, the calculation unit 33 determines whether or not the closed circuit voltage is stored in the storage unit 32. When the closed circuit voltage is stored in the storage unit 32, the calculation unit 33 proceeds to step S220. If the closed circuit voltage is not stored in the storage unit 32, the calculation unit 33 proceeds to step S230.
 ステップS220へ進むと演算部33は、定電圧充電が実行されているか否かを判定する。定電圧充電が実行されている場合、演算部33はステップS240へ進む。定電圧充電が実行されていない場合、演算部33はステップS250へ進む。 When proceeding to step S220, the calculation unit 33 determines whether or not constant voltage charging is being performed. If constant voltage charging is being performed, the calculation unit 33 proceeds to step S240. If the constant voltage charging is not being performed, the calculation unit 33 proceeds to step S250.
 ステップS240へ進むと演算部33は、監視部10で検出されることの期待される閉路電圧(推定電圧)を目標電圧に設定する。換言すれば、演算部33は閉路電圧の取得範囲に用いる閉路電圧を目標電圧に設定する。この後に演算部33はステップS260へ進む。 When proceeding to step S240, the calculation unit 33 sets the closed circuit voltage (estimated voltage) expected to be detected by the monitoring unit 10 as the target voltage. In other words, the calculation unit 33 sets the closed circuit voltage used for the acquisition range of the closed circuit voltage as the target voltage. After this, the calculation unit 33 proceeds to step S260.
 ステップS260へ進むと演算部33は、推定電圧と記憶部32に記憶されている閉路電圧との差分値を算出する。演算部33はこの差分値が記憶部32に記憶されている変化電圧以上であるか否かを判定する。差分値が変化電圧以上の場合、演算部33はステップS270へ進む。差分値が変化電圧より小さい場合、演算部33は電圧検出処理を終了する。 When proceeding to step S<b>260 , the calculation unit 33 calculates the difference value between the estimated voltage and the closed circuit voltage stored in the storage unit 32 . The calculation unit 33 determines whether or not this difference value is greater than or equal to the change voltage stored in the storage unit 32 . If the difference value is greater than or equal to the change voltage, the calculation section 33 proceeds to step S270. If the difference value is smaller than the change voltage, the calculation unit 33 terminates the voltage detection process.
 ステップS270へ進むと、演算部33は推定電圧と記憶部32に記憶されている諸情報に基づいて、限定された閉路電圧の取得範囲を設定する。この後に演算部33はステップS280へ進む。 When proceeding to step S270, the calculation unit 33 sets a limited acquisition range of the closed circuit voltage based on the estimated voltage and various information stored in the storage unit 32. After that, the calculation unit 33 proceeds to step S280.
 ステップS240を経てステップS270へ進んだ場合、演算部33は記憶部32から定電圧充電時の範囲幅αを読み出す。演算部33はこの範囲幅αと目標電圧とに基づいて閉路電圧の取得範囲を算出する。演算部33はこの取得範囲を記憶部32に記憶する。そして演算部33はステップS280へ進む。 When the process proceeds to step S270 through step S240, the calculation unit 33 reads the range width α during constant voltage charging from the storage unit 32. The calculation unit 33 calculates the acquisition range of the closed circuit voltage based on the range width α and the target voltage. The calculation unit 33 stores this acquisition range in the storage unit 32 . Then, the calculation unit 33 proceeds to step S280.
 ステップS280へ進むと演算部33は、ステップS270で算出した取得範囲を含む指示信号を、限定範囲信号として監視部10に送信する。この後に演算部33はステップS290へ進む。 When proceeding to step S280, the calculation unit 33 transmits an instruction signal including the acquisition range calculated in step S270 to the monitoring unit 10 as a limited range signal. After this, the calculation unit 33 proceeds to step S290.
 ステップS290へ進むと演算部33は、監視部10で検出された閉路電圧を取得する。この後に演算部33はステップS300へ進む。 When proceeding to step S<b>290 , the calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 . After that, the calculation unit 33 proceeds to step S300.
 ステップS300へ進むと演算部33は、取得した閉路電圧を記憶部32に記憶する。またこの際に演算部33は、取得範囲を記憶部32に記憶する。そして演算部33は電圧検出処理を終了する。 When proceeding to step S<b>300 , the calculation unit 33 stores the acquired closed circuit voltage in the storage unit 32 . Also, at this time, the calculation unit 33 stores the acquisition range in the storage unit 32 . Then, the calculation unit 33 terminates the voltage detection process.
 フローをさかのぼって、ステップS220で定電圧充電が実行されていないと判定してステップS250へ進むと、演算部33は電動車両が定電圧駆動であるか否かを判定する。すなわち演算部33は、電池セル220の閉路電圧が所定電圧であるか否かを判定する。定電圧駆動である場合、演算部33はステップS310へ進む。定電圧駆動ではない場合、演算部33はステップS320へ進む。 Retracing the flow, when it is determined in step S220 that constant voltage charging is not being performed and the process proceeds to step S250, the calculation unit 33 determines whether or not the electric vehicle is in constant voltage drive. That is, the calculation unit 33 determines whether or not the closed circuit voltage of the battery cell 220 is the predetermined voltage. In the case of constant voltage drive, the calculation unit 33 proceeds to step S310. If it is not constant voltage drive, the calculation unit 33 proceeds to step S320.
 ステップS310へ進むと演算部33は、推定電圧を所定電圧に設定する。換言すれば、演算部33は閉路電圧の取得範囲の算出に用いる閉路電圧を所定電圧に設定する。この後に演算部33はステップS260へ進む。 When proceeding to step S310, the calculation unit 33 sets the estimated voltage to a predetermined voltage. In other words, the calculation unit 33 sets the closed circuit voltage used for calculating the acquisition range of the closed circuit voltage to a predetermined voltage. After this, the calculation unit 33 proceeds to step S260.
 ステップS310を経てステップS270へ進んだ場合、演算部33は記憶部32から定電圧駆動時の範囲幅αを読み出す。演算部33はこの範囲幅αと所定電圧とに基づいて閉路電圧の取得範囲を設定する。 When the process proceeds to step S270 through step S310, the calculation unit 33 reads the range width α during constant voltage driving from the storage unit 32. The calculation unit 33 sets the acquisition range of the closed circuit voltage based on the range width α and the predetermined voltage.
 フローをさかのぼって、ステップS250で定電圧駆動ではないと判定してステップS320へ進むと、演算部33は推定電圧を算出するための諸情報を取得する。この諸情報には、記憶部32に記憶されている閉路電圧、取得周期、電流、温度、SOCとOCVの特性データなどが含まれている。この後に演算部33はステップS330へ進む。 Retracing the flow, when it is determined in step S250 that the constant voltage drive is not performed and the process proceeds to step S320, the calculation unit 33 acquires various information for calculating the estimated voltage. This information includes closed-circuit voltage, acquisition cycle, current, temperature, SOC and OCV characteristic data, and the like stored in the storage unit 32 . After that, the calculation unit 33 proceeds to step S330.
 ステップS330へ進むと演算部33は、ステップS320で取得した諸情報に基づいて、推定電圧を算出する。この後に演算部33はステップS260へ進む。 When proceeding to step S330, the calculation unit 33 calculates the estimated voltage based on the various information acquired in step S320. After this, the calculation unit 33 proceeds to step S260.
 ステップS330を経てステップS270へ進んだ場合、演算部33は記憶部32から範囲幅αを読み出す。演算部33は範囲幅αと推定電圧に基づいて閉路電圧の取得範囲を設定する。 When proceeding to step S270 through step S330, the calculation unit 33 reads the range width α from the storage unit 32. The calculation unit 33 sets the acquisition range of the closed circuit voltage based on the range width α and the estimated voltage.
 上記したように電圧検出処理はサイクルタスクである。前の電圧検出処理においてステップS280を実行している場合、ステップS270において演算部33は、記憶部32に記憶されている閉路電圧と推定電圧とを差分して、推定誤差を算出する。演算部33は範囲幅αと推定電圧に基づいて閉路電圧の取得範囲を設定する。これとは異なり、前の電圧検出処理においてステップS230を実行している場合、演算部33は推定誤差の算出をやめる。この場合、演算部33は範囲幅αと推定電圧に基づいて閉路電圧の取得範囲を設定する。 As mentioned above, the voltage detection process is a cycle task. If step S280 has been performed in the previous voltage detection process, in step S270 the calculation unit 33 calculates the estimated error by subtracting the closed circuit voltage stored in the storage unit 32 from the estimated voltage. The calculation unit 33 sets the acquisition range of the closed circuit voltage based on the range width α and the estimated voltage. Unlike this, when step S230 has been executed in the previous voltage detection process, the calculation unit 33 stops calculating the estimation error. In this case, the calculation unit 33 sets the acquisition range of the closed circuit voltage based on the range width α and the estimated voltage.
 フローをさかのぼって、ステップS210において閉路電圧が記憶部32に記憶されていないと判定してステップS230へ進むと、演算部33は閉路電圧の取りうる取得範囲を含む指示信号を、全範囲信号として監視部10に送信する。この後に演算部33はステップS290へ進む。 Retracing the flow, when it is determined in step S210 that the closed circuit voltage is not stored in the storage unit 32 and the process proceeds to step S230, the calculation unit 33 converts the instruction signal including the possible acquisition range of the closed circuit voltage into a full range signal. Send to the monitoring unit 10 . After that, the calculation unit 33 proceeds to step S290.
 なお、演算部33は、図9に示すステップS220,S240,S250,S310を実行しなくともよい。この場合、図10に示すように、ステップS210で閉路電圧が記憶部32に記憶されていると判定した場合、演算部33はステップS320へ進む。 Note that the calculation unit 33 does not have to execute steps S220, S240, S250, and S310 shown in FIG. In this case, as shown in FIG. 10, when it is determined in step S210 that the closed circuit voltage is stored in the storage unit 32, the calculation unit 33 proceeds to step S320.
 <作用効果>
 これまでに説明したように演算部33は、記憶部32に記憶された過去の閉路電圧と、閉路電圧を再度取得するまでの間の電池セル220の閉路電圧の変化量とに基づいて閉路電圧の取得範囲を設定する。
<Effect>
As described above, the calculation unit 33 calculates the closed circuit voltage based on the past closed circuit voltage stored in the storage unit 32 and the amount of change in the closed circuit voltage of the battery cell 220 until the closed circuit voltage is acquired again. Set the acquisition range of .
 演算部33は、例えば、閉路電圧の取得範囲を0.0V~5.0Vの取りうる取得範囲から、2.65V~2.93Vの制限された取得範囲に変更する。この限定的な取得範囲において、アナログの閉路電圧がAD変換部13でデジタル信号に変換される。これによりAD変換部13の量子化誤差が低減される。この結果、閉路電圧の検出精度が向上される。 For example, the calculation unit 33 changes the acquisition range of the closed circuit voltage from the possible acquisition range of 0.0V to 5.0V to the limited acquisition range of 2.65V to 2.93V. In this limited acquisition range, the analog closed-circuit voltage is converted into a digital signal by the AD converter 13 . This reduces the quantization error of the AD converter 13 . As a result, the detection accuracy of the closed circuit voltage is improved.
 また、上記したように演算部33は、閉路電圧を再度取得するまでの間の電池セル220の閉路電圧の変化量を加味して閉路電圧の取得範囲を設定している。そのため、閉路電圧が取得範囲外になることが抑制される。 In addition, as described above, the calculation unit 33 sets the acquisition range of the closed circuit voltage in consideration of the amount of change in the closed circuit voltage of the battery cell 220 until the closed circuit voltage is acquired again. Therefore, the closed circuit voltage is suppressed from being out of the acquisition range.
 取得範囲の範囲幅αを、記憶部32に記憶された過去の閉路電圧と、その閉路電圧を検出した際に設定した閉路電圧の取得範囲の中央値との差(推定誤差)を加味して決定している。これによれば、閉路電圧が取得範囲外になることが効果的に抑制される。 The range width α of the acquisition range is obtained by adding the difference (estimation error) between the past closed circuit voltage stored in the storage unit 32 and the median value of the acquisition range of the closed circuit voltage set when the closed circuit voltage is detected. have decided. According to this, it is effectively suppressed that the closed circuit voltage is out of the acquisition range.
 推定誤差が所定値よりも小さい場合、演算部33は範囲幅αを狭める。これにより、閉路電圧の取得範囲が狭まる。閉路電圧の検出精度が向上される。 When the estimated error is smaller than a predetermined value, the calculation unit 33 narrows the range width α. This narrows the acquisition range of the closed circuit voltage. Detection accuracy of the closed circuit voltage is improved.
 演算部33は、推定電圧と記憶部32に記憶されている閉路電圧との差分値が変化電圧よりも小さい場合、新たな取得範囲の設定をやめる。これによれば、演算部33での演算処理が簡素化される。 When the difference value between the estimated voltage and the closed circuit voltage stored in the storage unit 32 is smaller than the change voltage, the calculation unit 33 stops setting a new acquisition range. According to this, the arithmetic processing in the arithmetic unit 33 is simplified.
 なお本実施形態に記載の電池装置100には、第1実施形態に記載の電池装置100と同等の構成要素が含まれている。そのために本実施形態の電池装置100が第1実施形態に記載の電池装置100と同等の作用効果を奏することは言うまでもない。そのためにその記載を省略する。以下に示す他の実施形態でも重複する作用効果の記載を省略する。 Note that the battery device 100 described in this embodiment includes components equivalent to those of the battery device 100 described in the first embodiment. Therefore, it goes without saying that the battery device 100 of this embodiment has the same effect as the battery device 100 described in the first embodiment. Therefore, description thereof is omitted. Descriptions of effects that overlap with other embodiments described below will be omitted.
 (第3実施形態)
 次に、第3実施形態を図11~図13に基づいて説明する。
(Third Embodiment)
Next, a third embodiment will be described with reference to FIGS. 11 to 13. FIG.
 これまでの実施形態では、取得範囲内で閉路電圧が検出される例を示した。これに対して本実施形態では、取得範囲内で閉路電圧が検出されない場合の処理を説明する。 In the previous embodiments, an example was shown in which the closed circuit voltage was detected within the acquisition range. On the other hand, in the present embodiment, processing when the closed circuit voltage is not detected within the acquisition range will be described.
 図11に示す一例では、演算部33は、時間t3での閉路電圧の取得範囲を、時間t2で取得した閉路電圧に基づいて設定している。しかしながら、時間t2と時間t3との間の時間taで地絡が生じると、時間t3において監視部10で検出される閉路電圧が取得範囲外になる。演算部33で取得される閉路電圧は取得範囲の下限値になる。 In the example shown in FIG. 11, the calculation unit 33 sets the acquisition range of the closed circuit voltage at time t3 based on the closed circuit voltage acquired at time t2. However, if a ground fault occurs at time ta between time t2 and time t3, the closed circuit voltage detected by monitoring unit 10 at time t3 will be outside the acquisition range. The closed circuit voltage acquired by the calculation unit 33 is the lower limit value of the acquisition range.
 このように取得範囲の下限値を取得した場合、演算部33は閉路電圧の取得範囲を閉路電圧の取りうる範囲に再設定する。このように取得範囲を拡大することで、時間t4での閉路電圧の検出が可能になる。 When the lower limit value of the acquisition range is acquired in this way, the calculation unit 33 resets the acquisition range of the closed circuit voltage to a range that the closed circuit voltage can take. By expanding the acquisition range in this way, it becomes possible to detect the closed circuit voltage at time t4.
 一時的な地絡ではなく、永続的な地絡の場合、図11に示すように、時間ta以降の時間t3,t4,t5,t6において監視部10で0.0Vが検出される。演算部33は0.0Vを複数回取得する。0.0Vの取得回数が短絡判定値以上になった場合、演算部33は地絡が発生していると判定する。 In the case of a permanent ground fault rather than a temporary ground fault, 0.0 V is detected by the monitoring unit 10 at times t3, t4, t5, and t6 after time ta, as shown in FIG. The calculation unit 33 acquires 0.0V multiple times. When the number of acquisitions of 0.0 V is equal to or greater than the short-circuit determination value, the calculation unit 33 determines that a ground fault has occurred.
 この短絡判定値は記憶部32に参照値として記憶されている。短絡判定値の値は特に限定されない。本実施形態では短絡判定値が3に設定されている。 This short circuit determination value is stored in the storage unit 32 as a reference value. The value of the short circuit determination value is not particularly limited. The short circuit determination value is set to 3 in this embodiment.
 図12に示す一例では、演算部33は、時間t3での閉路電圧の取得範囲を、時間t2で取得した閉路電圧に基づいて設定している。しかしながら、時間t2と時間t3との間の時間taで天絡が生じると、時間t3において監視部10で検出される閉路電圧が取得範囲外になる。演算部33で取得される閉路電圧は取得範囲の上限値になる。 In the example shown in FIG. 12, the calculation unit 33 sets the acquisition range of the closed circuit voltage at time t3 based on the closed circuit voltage acquired at time t2. However, if a power fault occurs at time ta between time t2 and time t3, the closed circuit voltage detected by monitoring unit 10 at time t3 is out of the acquisition range. The closed circuit voltage acquired by the calculation unit 33 is the upper limit value of the acquisition range.
 このように取得範囲の上限値を取得した場合、演算部33は閉路電圧の取得範囲を、図11に基づいて説明したように、閉路電圧の取りうる範囲に再設定する。 When the upper limit value of the acquisition range is acquired in this way, the calculation unit 33 resets the acquisition range of the closed circuit voltage to the possible range of the closed circuit voltage as described with reference to FIG.
 一時的な天絡ではなく、永続的な天絡の場合、図12に示すように、時間ta以降の時間t3,t4,t5,t6において監視部10で5.0Vが検出される。演算部33は5.0Vを複数回取得する。5.0Vの取得回数が短絡判定値以上になった場合、演算部33は天絡が発生していると判定する。 In the case of a permanent power fault rather than a temporary power fault, the monitoring unit 10 detects 5.0 V at times t3, t4, t5, and t6 after time ta, as shown in FIG. The calculation unit 33 acquires 5.0V multiple times. When the number of acquisitions of 5.0 V is equal to or greater than the short-circuit determination value, the calculation unit 33 determines that a power fault has occurred.
 <短絡判定処理>
 次に、演算部33の短絡判定処理を図13に基づいて説明する。演算部33はこの短絡判定処理を取得周期でサイクルタスクとして実行している。演算部33はこの短絡判定処理を実行する前に、ある取得範囲で閉路電圧を取得している。この取得範囲と閉路電圧は記憶部32に記憶されている。
<Short Circuit Determination Processing>
Next, the short-circuit determination processing of the calculation unit 33 will be described with reference to FIG. 13 . The calculation unit 33 executes this short-circuit determination process as a cycle task at an acquisition cycle. The calculation unit 33 acquires the closed circuit voltage within a certain acquisition range before executing this short-circuit determination process. The acquisition range and closed circuit voltage are stored in the storage unit 32 .
 ステップS410で演算部33は、閉路電圧が取得範囲の上限値、若しくは、下限値であるか否かを判定する。すなわち、演算部33は閉路電圧が取得範囲の上限値と下限値を除く値であるか否かを判定する。閉路電圧が取得範囲の上限値、若しくは、下限値である場合、演算部33はステップS420へ進む。閉路電圧が取得範囲の上限値と下限値を除く値である場合、演算部33はステップS430へ進む。 At step S410, the calculation unit 33 determines whether the closed circuit voltage is the upper limit value or the lower limit value of the acquisition range. That is, the calculation unit 33 determines whether or not the closed circuit voltage is a value excluding the upper limit value and the lower limit value of the acquisition range. If the closed circuit voltage is the upper limit value or the lower limit value of the acquisition range, the calculation unit 33 proceeds to step S420. If the closed circuit voltage is a value excluding the upper limit value and the lower limit value of the acquisition range, the calculation unit 33 proceeds to step S430.
 ステップS420へ進むと演算部33は、自身の保有するカウンタを1だけインクリメントする。この後に演算部33はステップS440へ進む。 When proceeding to step S420, the calculation unit 33 increments its own counter by one. After that, the calculation unit 33 proceeds to step S440.
 ステップS440へ進むと演算部33は、カウンタの値が短絡判定値よりも小さいか否かを判定する。カウンタの値が短絡判定値よりも小さい場合、演算部33はステップS450へ進む。カウンタの値が短絡判定値以上の場合、演算部33はステップS460へ進む。 When proceeding to step S440, the calculation unit 33 determines whether or not the value of the counter is smaller than the short-circuit determination value. When the value of the counter is smaller than the short-circuit determination value, the operation section 33 proceeds to step S450. When the value of the counter is equal to or greater than the short-circuit determination value, the operation section 33 proceeds to step S460.
 ステップS450へ進むと演算部33は、記憶部32に記憶されている取得範囲とは異なる取得範囲を含む指示信号を、範囲信号として監視部10に送信する。本実施形態の場合、演算部33は閉路電圧の取りうる範囲を範囲信号に含ませる。記憶部32に全範囲が記憶されていた場合、その全範囲を含む指示信号を、範囲信号として監視部10に送信する。若しくは、演算部33は範囲信号の出力をやめる。この後に演算部33はステップS470へ進む。 When proceeding to step S450, the calculation unit 33 transmits an instruction signal including an acquisition range different from the acquisition range stored in the storage unit 32 to the monitoring unit 10 as a range signal. In the case of this embodiment, the calculation unit 33 causes the range signal to include the possible range of the closed circuit voltage. If the entire range is stored in the storage unit 32, an instruction signal including the entire range is transmitted to the monitoring unit 10 as a range signal. Alternatively, the calculation unit 33 stops outputting the range signal. After that, the calculation unit 33 proceeds to step S470.
 ステップS470へ進むと演算部33は、監視部10で検出された閉路電圧を取得する。この後に演算部33はステップS410へ戻る。 When proceeding to step S470, the calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10. After this, the calculation unit 33 returns to step S410.
 図11と図12に示すように地絡や天絡が生じた場合、演算部33はステップS410,S420,S440,S450,S470を繰り返す。閉路電圧が取得範囲の上限値、若しくは、下限値になることが繰り返される。この結果、カウンタの値が短絡判定値以上になる。 When a ground fault or power fault occurs as shown in FIGS. 11 and 12, the calculation unit 33 repeats steps S410, S420, S440, S450, and S470. It is repeated that the closed circuit voltage becomes the upper limit value or the lower limit value of the acquisition range. As a result, the value of the counter becomes equal to or greater than the short circuit determination value.
 なお、カウンタの値が短絡判定値以上になっておらず、記憶部32に閉路電圧が記憶されている場合、演算部33はその記憶されている閉路電圧に基づいてSOCの推定などを行う。そして演算部33はその推定結果に基づいた演算処理を実行する。 When the value of the counter is not equal to or greater than the short-circuit determination value and the closed circuit voltage is stored in the storage unit 32, the calculation unit 33 estimates the SOC based on the stored closed circuit voltage. Then, the calculation unit 33 executes calculation processing based on the estimation result.
 ステップS440においてカウンタの値が短絡判定値以上と判定してステップS4600へ進むと、演算部33は地絡や天絡などの短絡が生じていると判定する。そして演算部33は短絡判定処理を終了する。 When it is determined in step S440 that the counter value is equal to or greater than the short-circuit determination value and the process proceeds to step S4600, the calculation unit 33 determines that a short-circuit such as a ground fault or power fault has occurred. Then, the calculation unit 33 terminates the short-circuit determination process.
 フローをさかのぼって、ステップS410において閉路電圧が取得範囲の上限値、若しくは、下限値ではないと判定してステップS430へ進むと、演算部33はカウンタをクリアする。演算部33はカウンタの値をゼロにする。そして演算部33はステップS480へ進む。 Retracing the flow, when it is determined in step S410 that the closed circuit voltage is neither the upper limit value nor the lower limit value of the acquisition range and the process proceeds to step S430, the calculation unit 33 clears the counter. The calculation unit 33 sets the value of the counter to zero. Then, the calculation unit 33 proceeds to step S480.
 ステップS480へ進むと演算部33は、短絡は発生していないと判定する。そして演算部33はステップS490へ進む。 When proceeding to step S480, the calculation unit 33 determines that a short circuit has not occurred. Then, the calculation unit 33 proceeds to step S490.
 ステップS490へ進むと演算部33は、取得した閉路電圧を記憶部32に記憶する。そして演算部33は短絡判定処理を終了する。 When proceeding to step S490, the calculation unit 33 stores the acquired closed circuit voltage in the storage unit 32. Then, the calculation unit 33 terminates the short-circuit determination process.
 <作用効果>
 これまでに説明したように、閉路電圧が取得範囲外である場合、演算部33は閉路電圧の取得範囲を変更する。演算部33は閉路電圧が検出されるように取得範囲を変更する。本実施形態の演算部33は取得範囲を閉路電圧の取りうる取得範囲に変更する。
<Effect>
As described above, when the closed circuit voltage is outside the acquisition range, the calculation unit 33 changes the acquisition range of the closed circuit voltage. The calculation unit 33 changes the acquisition range so that the closed circuit voltage is detected. The calculation unit 33 of the present embodiment changes the acquisition range to a possible acquisition range of the closed circuit voltage.
 これによれば、取得範囲を狭めた結果、閉路電圧が検出できなくなることが抑制される。 According to this, as a result of narrowing the acquisition range, it is suppressed that the closed circuit voltage cannot be detected.
 演算部33は閉路電圧の取得範囲の下限値若しくは上限値の取得回数が短絡判定値以上になった場合、短絡が発生していると判定する。具体的に言えば、演算部33は0.0Vの取得回数が3以上になった場合、地絡が発生していると判定する。演算部33は5.0Vの取得回数が3以上になった場合、天絡が発生していると判定する。 The calculation unit 33 determines that a short circuit has occurred when the number of acquisitions of the lower limit value or the upper limit value of the acquisition range of the closed circuit voltage is greater than or equal to the short circuit determination value. Specifically, when the number of acquisitions of 0.0 V is 3 or more, the calculation unit 33 determines that a ground fault has occurred. When the number of acquisitions of 5.0 V is 3 or more, the calculation unit 33 determines that a power fault has occurred.
 これにより短絡の誤判定が抑制される。地絡と天絡とを区別して検出することができる。 This suppresses erroneous judgment of short circuits. A ground fault and a power fault can be detected separately.
 (第4実施形態)
 次に、第4実施形態を図14と図15に基づいて説明する。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. 14 and 15. FIG.
 第3実施形態では、取得範囲の上限値、若しくは、下限値の閉路電圧を取得した場合、演算部33は閉路電圧の取得範囲を閉路電圧の取りうる範囲に再設定する例を示した。そして、取りうる範囲で閉路電圧の取得を継続する例を示した。これに対して本実施形態では、取りうる範囲で上限値、若しくは、下限値の閉路電圧を取得した場合、演算部33は取得範囲をその取得した閉路電圧の近傍に狭める。 In the third embodiment, when the closed circuit voltage of the upper limit value or the lower limit value of the acquisition range is acquired, the calculation unit 33 resets the acquisition range of the closed circuit voltage to the possible range of the closed circuit voltage. Then, an example of continuing to acquire the closed circuit voltage within a possible range was shown. On the other hand, in this embodiment, when the closed circuit voltage of the upper limit value or the lower limit value is acquired in the range that can be taken, the calculation unit 33 narrows the acquisition range to the vicinity of the acquired closed circuit voltage.
 演算部33は、図14に示すように、閉路電圧の取りうる範囲で下限値の閉路電圧を取得した場合、閉路電圧の取得範囲を、その閉路電圧を含む近傍に設定する。演算部33は取得範囲を0.0Vの近傍に設定する。演算部33は取得範囲の幅を記憶部32に記憶されている範囲幅αよりも小さい値に設定する。これにより地絡を高精度に検出することができる。 As shown in FIG. 14, when the operating unit 33 acquires the lower limit value of the closed circuit voltage within the possible range of the closed circuit voltage, the calculation unit 33 sets the acquisition range of the closed circuit voltage to include the closed circuit voltage. The calculation unit 33 sets the acquisition range to around 0.0V. The calculation unit 33 sets the width of the acquisition range to a value smaller than the range width α stored in the storage unit 32 . Thereby, a ground fault can be detected with high accuracy.
 演算部33は、図15に示すように、閉路電圧の取りうる範囲で上限値の閉路電圧を取得した場合、閉路電圧の取得範囲を、その閉路電圧を含む近傍に設定する。演算部33は取得範囲を5.0Vの近傍に設定する。演算部33は取得範囲の幅を範囲幅αよりも小さい値に設定する。これにより天絡を高精度に検出することができる。 As shown in FIG. 15, when the operating unit 33 acquires the upper limit value of the closed circuit voltage within the possible range of the closed circuit voltage, the calculation unit 33 sets the acquisition range of the closed circuit voltage to include the closed circuit voltage. The calculation unit 33 sets the acquisition range to around 5.0V. The calculation unit 33 sets the width of the acquisition range to a value smaller than the range width α. This makes it possible to detect power faults with high accuracy.
 (第5実施形態)
 次に、第5実施形態を図16に基づいて説明する。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG.
 第3実施形態では、取得範囲の上限値、若しくは、下限値の閉路電圧を検出した場合、演算部33は閉路電圧の取得範囲を閉路電圧の取りうる範囲に再設定する例を示した。これに対して本実施形態では、取得範囲の上限値、若しくは、下限値の閉路電圧を取得する度に、演算部33は図16に示すように閉路電圧の取得範囲を徐々に拡大する。 In the third embodiment, when the closed circuit voltage of the upper limit value or the lower limit value of the acquisition range is detected, the calculation unit 33 resets the acquisition range of the closed circuit voltage to a range that the closed circuit voltage can take. On the other hand, in the present embodiment, each time the closed circuit voltage of the upper limit value or the lower limit value of the acquisition range is acquired, the calculation unit 33 gradually expands the acquisition range of the closed circuit voltage as shown in FIG. 16 .
 (第6実施形態)
 次に、第6実施形態を図17と図18に基づいて説明する。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIGS. 17 and 18. FIG.
 第4実施形態では、取得範囲の上限値、若しくは、下限値の閉路電圧を取得する度に、演算部33は閉路電圧の取得範囲を徐々に拡大する例を示した。これに対して本実施形態では、取得範囲の下限値の閉路電圧を取得する度に、演算部33は図17に示すように閉路電圧の取得範囲を徐々に0.0Vにシフトさせる。取得範囲の上限値の閉路電圧を取得する度に、演算部33は図18に示すように閉路電圧の取得範囲を徐々に5.0Vにシフトさせる。 In the fourth embodiment, the calculation unit 33 gradually expands the acquisition range of the closed circuit voltage each time the closed circuit voltage of the upper limit value or the lower limit value of the acquisition range is acquired. In contrast, in the present embodiment, each time the closed circuit voltage at the lower limit of the acquisition range is acquired, the calculation unit 33 gradually shifts the acquisition range of the closed circuit voltage to 0.0 V as shown in FIG. Each time the closed circuit voltage of the upper limit value of the acquisition range is acquired, the calculation unit 33 gradually shifts the acquisition range of the closed circuit voltage to 5.0 V as shown in FIG. 18 .
 演算部33は0.0Vを含む取得範囲で0.0Vを取得した場合、地絡が発生していると判定する。演算部33は5.0Vを含む取得範囲で5.0Vを取得した場合、天絡が発生していると判定する。 When the calculation unit 33 acquires 0.0V in the acquisition range including 0.0V, it determines that a ground fault has occurred. When the calculation unit 33 obtains 5.0V in the acquisition range including 5.0V, it determines that a power fault has occurred.
 (第7実施形態)
 次に、第7実施形態を図19と図20に基づいて説明する。
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIGS. 19 and 20. FIG.
 第3実施形態では、閉路電圧が取得範囲の上限値、若しくは、下限値の場合、演算部33は閉路電圧の取得範囲を閉路電圧の取りうる範囲に再設定する例を示した。これに対して本実施形態では、閉路電圧が取得範囲の上限値、若しくは、下限値の場合、演算部33は取得した閉路電圧を新たな取得範囲の下限値、若しくは、上限値にする。 In the third embodiment, when the closed circuit voltage is the upper limit value or the lower limit value of the acquisition range, the calculation unit 33 resets the acquisition range of the closed circuit voltage to a possible range of the closed circuit voltage. On the other hand, in this embodiment, when the closed circuit voltage is the upper limit value or the lower limit value of the acquisition range, the calculation unit 33 sets the acquired closed circuit voltage to the new lower limit value or upper limit value of the acquisition range.
 閉路電圧が取得範囲の下限値の場合、図19において一点鎖線で示すように、演算部33は新たな取得範囲の上限値を取得した閉路電圧にする。そして演算部33は新たな取得範囲の下限値を取りうる範囲の下限値に設定する。 When the closed circuit voltage is the lower limit of the acquisition range, the calculation unit 33 sets the upper limit of the new acquisition range to the acquired closed circuit voltage, as indicated by the dashed line in FIG. Then, the calculation unit 33 sets the lower limit value of the new acquisition range to the lower limit value of the possible range.
 閉路電圧が取得範囲の上限値の場合、図20において一点鎖線で示すように、演算部33は新たな取得範囲の下限値を取得した閉路電圧にする。そして演算部33は新たな取得範囲の上限値を取りうる範囲の上限値に設定する。 When the closed circuit voltage is the upper limit value of the acquisition range, the calculation unit 33 sets the lower limit value of the new acquisition range to the acquired closed circuit voltage, as indicated by the dashed line in FIG. Then, the calculation unit 33 sets the upper limit value of the possible range as the upper limit value of the new acquisition range.
 これによれば、取得範囲の再設定による閉路電圧の検出精度の低下が抑制される。 According to this, the deterioration of the detection accuracy of the closed circuit voltage due to the resetting of the acquisition range is suppressed.
 (その他の変形例)
 本実施形態では、複数の監視部10に1つの制御部30が設けられる例を示した。しかしながら、複数の監視部10に複数の制御部30が個別に設けられる構成を採用することもできる。
(Other modifications)
In this embodiment, an example is shown in which one control unit 30 is provided for a plurality of monitoring units 10 . However, a configuration in which a plurality of controllers 30 are provided individually for a plurality of monitoring units 10 can also be adopted.
 本実施形態では、複数の電池セル220それぞれの閉路電圧の取得範囲を設定する例を示した。しかしながら、複数の電池スタック210それぞれの閉路電圧の取得範囲を設定する構成を採用することもできる。1つの電池スタック210に含まれる複数の電池セル220それぞれに共通する閉路電圧の取得範囲を設定する構成を採用することもできる。係る変形例では、組電池200は少なくとも2つの電池スタック210を有する。 In this embodiment, an example of setting the acquisition range of the closed circuit voltage of each of the plurality of battery cells 220 has been shown. However, it is also possible to employ a configuration in which the acquisition range of the closed circuit voltage of each of the plurality of battery stacks 210 is set. It is also possible to employ a configuration in which a common closed-circuit voltage acquisition range is set for each of the plurality of battery cells 220 included in one battery stack 210 . In such a modification, the assembled battery 200 has at least two battery stacks 210 .
 本実施形態では、複数の電池セル220それぞれが同一種類の2次電池である例を示した。しかしながら、複数の電池セル220のうちの一部が異なる2次電池でもよい。例えば、複数の電池スタック210のうちの一部の電池スタック210に第1種類の電池セル220が含まれ、残りの電池スタック210に第1種類とは異なる第2種類の電池セル220が含まれてもよい。種類の異なる電池セル220としては、例えば、電池セル220の内部構成や外観構成が同一であるものの、正極や負極の組成材料が異なるものを採用することができる。 In this embodiment, an example is shown in which each of the plurality of battery cells 220 is the same type of secondary battery. However, a secondary battery in which some of the plurality of battery cells 220 are different may be used. For example, some battery stacks 210 among the plurality of battery stacks 210 include first type battery cells 220, and the remaining battery stacks 210 include second type battery cells 220 different from the first type. may As the battery cells 220 of different types, for example, battery cells 220 having the same internal configuration and external configuration but different composition materials for the positive and negative electrodes can be employed.
 係る変形例の場合、閉路電圧の変化量を推定する際に演算部33は、第1種類の電池セル220のSOCとOCVの特性データと、第2種類の電池セル220のSOCとOCVの特性データを記憶部32から読み出す。 In the case of such a modification, when estimating the amount of change in the closed circuit voltage, the calculation unit 33 uses the SOC and OCV characteristic data of the first type battery cell 220 and the SOC and OCV characteristic data of the second type battery cell 220 Data is read from the storage unit 32 .
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, while various combinations and configurations are shown in this disclosure, other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure. is to enter.
 (技術的思想)
 本明細書には、以下に示す種々の技術的思想が含まれている。
(Technical idea)
This specification includes various technical ideas described below.
 <取得範囲の設定>
[技術的思想1]
 電気的に接続された複数の電池セル(220)の閉路電圧と前記閉路電圧の変化量を含む電池情報を記憶する記憶部(32)と、
 前記電池情報に基づいて前記閉路電圧の取得範囲を設定する設定部(33)と、
 前記閉路電圧を検出する検出部(11)と、
 前記設定部で設定される前記取得範囲で、前記検出部で検出された前記閉路電圧をデジタル信号に変換する変換部(12,13)と、を有する電池装置。
[技術的思想2]
 前記変化量には、前記記憶部に記憶された前記閉路電圧が前記検出部で検出される第1検出タイミングから、新たに前記閉路電圧が前記検出部で検出される第2検出タイミングの手前までの間の前記電池セルの充放電量が含まれている技術的思想1に記載の電池装置。
[技術的思想3]
 前記設定部は、前記記憶部に記憶された前記閉路電圧と前記変化量とに基づいて前記第2検出タイミングの前記取得範囲の中央値を設定する技術的思想2に記載の電池装置。
[技術的思想4]
 前記設定部は、前記記憶部に記憶されている前記閉路電圧と前記第1検出タイミングの前記取得範囲の中央値との差に基づいて、前記第2検出タイミングの前記取得範囲の幅を設定する技術的思想3に記載の電池装置。
[技術的思想5]
 前記設定部は、前記第2検出タイミングの前記取得範囲の中央値と前記第2検出タイミングの前記取得範囲の上限値との差の上限範囲幅と、前記第2検出タイミングの前記取得範囲の中央値と前記第2検出タイミングの前記取得範囲の下限値との差の下限範囲幅の大小関係を、前記変化量に基づいて設定する技術的思想3または技術的思想4に記載の電池装置。
[技術的思想6]
 前記設定部は、前記変化量が減少傾向の場合、前記上限範囲幅よりも前記下限範囲幅を大きく設定し、前記変化量が増大傾向の場合、前記下限範囲幅よりも前記上限範囲幅を大きく設定する技術的思想5に記載の電池装置。
[技術的思想7]
 前記設定部は、前記第2検出タイミングの前記取得範囲の中央値と、前記記憶部に記憶された前記閉路電圧との差分値が変化電圧以上の場合に前記第2検出タイミングでの前記取得範囲の新たな設定を決定し、前記差分値が前記変化電圧よりも低い場合に前記第2検出タイミングでの前記取得範囲の新たな設定をやめる技術的思想3~6のいずれか1項に記載の電池装置。
[技術的思想8]
 前記閉路電圧が所定電圧の場合、前記設定部は前記第2検出タイミングの前記取得範囲の中央値を前記所定電圧に設定する技術的思想2~7のいずれか1項に記載の電池装置。
<Set acquisition range>
[Technical thought 1]
a storage unit (32) for storing battery information including the closed circuit voltages of the plurality of electrically connected battery cells (220) and the amount of change in the closed circuit voltage;
a setting unit (33) for setting an acquisition range of the closed circuit voltage based on the battery information;
a detection unit (11) for detecting the closed circuit voltage;
a conversion unit (12, 13) that converts the closed circuit voltage detected by the detection unit into a digital signal within the acquisition range set by the setting unit.
[Technical thought 2]
The amount of change includes a period from a first detection timing at which the closed-circuit voltage stored in the storage unit is detected by the detection unit to just before a second detection timing at which the closed-circuit voltage is newly detected by the detection unit. The battery device according to Technical Idea 1, wherein the charge/discharge amount of the battery cell is included between.
[Technical thought 3]
The battery device according to technical idea 2, wherein the setting unit sets the median value of the acquisition range of the second detection timing based on the closed circuit voltage and the amount of change stored in the storage unit.
[Technical Thought 4]
The setting unit sets the width of the acquisition range at the second detection timing based on a difference between the closed-circuit voltage stored in the storage unit and a median value of the acquisition range at the first detection timing. The battery device according to technical idea 3.
[Technical Thought 5]
The setting unit sets an upper limit range width of a difference between a median value of the acquisition range at the second detection timing and an upper limit value of the acquisition range at the second detection timing, and a center of the acquisition range at the second detection timing. The battery device according to technical idea 3 or 4, wherein a magnitude relationship of a lower limit range width of a difference between the value and the lower limit value of the acquisition range of the second detection timing is set based on the change amount.
[Technical thought 6]
The setting unit sets the lower limit range width larger than the upper limit range width when the amount of change tends to decrease, and sets the upper limit range width larger than the lower limit range width when the amount of change tends to increase. The battery device according to technical idea 5 to be set.
[Technical Thought 7]
The setting unit configures the acquisition range at the second detection timing when a difference value between the median value of the acquisition range at the second detection timing and the closed circuit voltage stored in the storage unit is equal to or greater than the change voltage. 7. Technical ideas according to any one of 3 to 6, wherein a new setting is determined and the new setting of the acquisition range at the second detection timing is stopped when the difference value is lower than the change voltage battery device.
[Technical Thought 8]
8. The battery device according to any one of technical ideas 2 to 7, wherein when the closed circuit voltage is a predetermined voltage, the setting unit sets the median value of the acquisition range of the second detection timing to the predetermined voltage.
 <取得範囲の変更>
[技術的思想1]
 電気的に接続された複数の電池セル(220)の閉路電圧を含む電池情報を記憶する記憶部(32)と、
 前記電池情報に基づいて前記閉路電圧の取得範囲を設定する設定部(33)と、
 前記設定部で設定される前記取得範囲で、前記閉路電圧をデジタル信号に変換する変換部(12,13)と、を有し、
 前記設定部は、前記閉路電圧が前記取得範囲の上限値と下限値の一方である場合、前記取得範囲を変更する電池装置。
[技術的思想2]
 前記設定部は、前記閉路電圧が前記取得範囲の上限値と下限値の一方である場合、前記取得範囲を拡大する技術的思想1に記載の電池装置。
[技術的思想3]
 前記設定部は、前記閉路電圧が前記取得範囲の上限値と下限値の一方である場合、前記取得範囲を前記閉路電圧の取りうる範囲に変更する技術的思想2に記載の電池装置。
[技術的思想4]
 前記設定部は、前記取得範囲が前記取りうる範囲の際に、前記閉路電圧が前記取りうる範囲の上限値と下限値の一方である場合、前記取得範囲を、前記取りうる範囲の上限値と下限値の一方を含む、制限された範囲に変更する技術的思想3に記載の電池装置。
[技術的思想5]
 前記設定部は、前記閉路電圧が前記取得範囲の上限値と下限値の一方である場合、新たな前記取得範囲を、前記閉路電圧側に遷移させた範囲に変更する技術的思想1または技術的思想2に記載の電池装置。
[技術的思想6]
 前記設定部は、
 前記閉路電圧が前記取得範囲の上限値である場合、新たな前記取得範囲の下限値を前記閉路電圧にし、
 前記閉路電圧が前記取得範囲の下限値である場合、新たな前記取得範囲の上限値を前記閉路電圧にする技術的思想1または技術的思想2に記載の電池装置。
[技術的思想7]
 前記設定部は、前記閉路電圧が前記取得範囲の上限値と下限値の一方であることが複数回起きると、短絡が生じていると判定する技術的思想1~6のいずれか1項に記載の電池装置。
<Change of acquisition range>
[Technical thought 1]
a storage unit (32) for storing battery information including closed circuit voltages of a plurality of electrically connected battery cells (220);
a setting unit (33) for setting an acquisition range of the closed circuit voltage based on the battery information;
a conversion unit (12, 13) that converts the closed circuit voltage into a digital signal within the acquisition range set by the setting unit;
The battery device, wherein the setting unit changes the acquisition range when the closed circuit voltage is one of an upper limit value and a lower limit value of the acquisition range.
[Technical thought 2]
The battery device according to Technical Idea 1, wherein the setting unit expands the acquisition range when the closed circuit voltage is one of an upper limit value and a lower limit value of the acquisition range.
[Technical thought 3]
The battery device according to technical idea 2, wherein, when the closed circuit voltage is one of the upper limit value and the lower limit value of the obtained range, the setting unit changes the acquisition range to a range that the closed circuit voltage can take.
[Technical Thought 4]
When the acquisition range is the possible range, and the closed circuit voltage is one of the upper limit value and the lower limit value of the possible range, the setting unit sets the acquisition range to the upper limit value of the possible range. The battery device according to technical idea 3, which is changed to a limited range including one of the lower limits.
[Technical Thought 5]
Technical idea 1 or technical idea 1 for changing the new acquisition range to a range transitioned to the closed circuit voltage side when the closed circuit voltage is one of the upper limit value and the lower limit value of the acquisition range. The battery device according to Thought 2.
[Technical thought 6]
The setting unit
if the closed circuit voltage is the upper limit of the acquisition range, the new lower limit of the acquisition range is set to the closed circuit voltage;
The battery device according to technical idea 1 or technical idea 2, wherein, when the closed circuit voltage is the lower limit of the acquisition range, the closed circuit voltage is set as the new upper limit of the acquisition range.
[Technical Thought 7]
7. Technical ideas according to any one of technical ideas 1 to 6, wherein the setting unit determines that a short circuit occurs when the closed circuit voltage is one of the upper limit value and the lower limit value of the acquisition range multiple times. battery device.

Claims (9)

  1.  電気的に接続された複数の電池セル(220)の閉路電圧の取得範囲を変化させるための複数の範囲設定部(122,123)を備えるレベルシフタ(12)と、
     前記レベルシフタで設定された前記取得範囲で、前記レベルシフタから出力された前記閉路電圧をデジタル信号に変換するAD変換部(13)と、
     複数の前記範囲設定部それぞれの状態の診断を実施するための基準信号を前記レベルシフタに出力する基準信号部(16)と、を有する監視装置。
    a level shifter (12) comprising a plurality of range setting units (122, 123) for changing an acquisition range of closed circuit voltages of a plurality of electrically connected battery cells (220);
    an AD converter (13) that converts the closed-circuit voltage output from the level shifter into a digital signal within the acquisition range set by the level shifter;
    a reference signal unit (16) for outputting to the level shifter a reference signal for diagnosing the state of each of the plurality of range setting units.
  2.  前記レベルシフタは、複数の前記範囲設定部の他にオペアンプ(121)を有し、
     複数の前記範囲設定部それぞれは、前記オペアンプのオフセットを調整するオフセット調整部(122)と、前記オペアンプのゲインを調整するゲイン調整部(123)と、を有する請求項1に記載の監視装置。
    The level shifter has an operational amplifier (121) in addition to the plurality of range setting units,
    2. The monitoring device according to claim 1, wherein each of the plurality of range setting units has an offset adjustment unit (122) that adjusts the offset of the operational amplifier and a gain adjustment unit (123) that adjusts the gain of the operational amplifier.
  3.  前記オペアンプは入力端子と出力端子を複数有し、
     複数の前記入力端子それぞれに前記オフセット調整部が接続され、複数の前記入力端子と複数の前記出力端子との間に複数の前記ゲイン調整部が設けられている請求項2に記載の監視装置。
    The operational amplifier has a plurality of input terminals and output terminals,
    3. The monitoring apparatus according to claim 2, wherein said offset adjustment section is connected to each of said plurality of input terminals, and said plurality of gain adjustment sections are provided between said plurality of input terminals and said plurality of output terminals.
  4.  電気的に接続された複数の電池セル(220)の閉路電圧の取得範囲を変化させるための複数の範囲設定部(122,123)を備えるレベルシフタ(12)と、
     前記範囲設定部で設定された前記取得範囲で、前記レベルシフタから出力された前記閉路電圧をデジタル信号に変換するAD変換部(13)と、
     複数の前記範囲設定部それぞれの状態の診断を実施するための基準信号を前記レベルシフタに出力する基準信号部(16)と、
     複数の前記範囲設定部それぞれによって設定される複数の前記取得範囲それぞれにおいて前記AD変換部でデジタル信号に変換された複数の前記基準信号と、前記基準信号部から出力される前記基準信号の電圧レベルとに基づいて、複数の前記範囲設定部のいずれに異常が生じているのかを判定する判定部(33)と、を有する電池装置。
    a level shifter (12) comprising a plurality of range setting units (122, 123) for changing an acquisition range of closed circuit voltages of a plurality of electrically connected battery cells (220);
    an AD conversion unit (13) that converts the closed circuit voltage output from the level shifter into a digital signal within the acquisition range set by the range setting unit;
    a reference signal unit (16) for outputting a reference signal for diagnosing the state of each of the plurality of range setting units to the level shifter;
    a plurality of the reference signals converted into digital signals by the AD converter in each of the plurality of acquisition ranges set by each of the plurality of range setting units; and a voltage level of the reference signal output from the reference signal unit. and a determination unit (33) that determines which of the plurality of range setting units has an abnormality based on the above.
  5.  前記判定部は、異常が生じている前記範囲設定部を含む複数の前記範囲設定部のうちの少なくとも1つを用いて、前記取得範囲を設定できるのかを判定する請求項4に記載の電池装置。 5. The battery device according to claim 4, wherein the determination unit determines whether the acquisition range can be set using at least one of the plurality of range setting units including the range setting unit in which an abnormality has occurred. .
  6.  前記レベルシフタは、複数の前記範囲設定部の他にオペアンプ(121)を有し、
     複数の前記範囲設定部それぞれは、前記オペアンプのオフセットを調整するオフセット調整部(122)と、前記オペアンプのゲインを調整するゲイン調整部(123)と、を有し、
     前記判定部は、複数の前記オフセット調整部と複数の前記ゲイン調整部の組み合わせによって設定される複数の前記取得範囲それぞれにおいて前記AD変換部でデジタル信号に変換された複数の前記基準信号と、前記電圧レベルとに基づいて、複数の前記オフセット調整部と複数の前記ゲイン調整部のいずれに異常が生じているのかを判定する請求項4に記載の電池装置。
    The level shifter has an operational amplifier (121) in addition to the plurality of range setting units,
    Each of the plurality of range setting units has an offset adjustment unit (122) that adjusts the offset of the operational amplifier and a gain adjustment unit (123) that adjusts the gain of the operational amplifier,
    The determination unit includes a plurality of the reference signals converted into digital signals by the AD conversion unit in each of the plurality of acquisition ranges set by a combination of the plurality of offset adjustment units and the plurality of gain adjustment units; 5. The battery device according to claim 4, wherein it is determined which of the plurality of offset adjustment units and the plurality of gain adjustment units has an abnormality based on the voltage level.
  7.  前記判定部は、異常が生じている前記オフセット調整部および異常が生じている前記ゲイン調整部の少なくとも一方を含む複数の前記オフセット調整部と複数の前記ゲイン調整部のうちの少なくとも1つを用いて、前記取得範囲を設定できるかを判定する請求項6に記載の電池装置。 The determination unit uses at least one of a plurality of offset adjustment units and a plurality of gain adjustment units including at least one of the abnormal offset adjustment unit and the abnormal gain adjustment unit. 7. The battery device according to claim 6, wherein it is determined whether the acquisition range can be set.
  8.  前記オペアンプは入力端子と出力端子を複数有し、
     前記判定部は、複数の前記入力端子それぞれに接続された複数の前記オフセット調整部と複数の前記入力端子と複数の前記出力端子との間に設けられた複数の前記ゲイン調整部の組み合わせによって設定される複数の前記取得範囲それぞれにおいて前記AD変換部でデジタル信号に変換された複数の前記基準信号と、前記電圧レベルとに基づいて、複数の前記オフセット調整部と複数の前記ゲイン調整部のいずれに異常が生じているのかを判定する請求項6または請求項7に記載の電池装置。
    The operational amplifier has a plurality of input terminals and output terminals,
    The determination unit is set by a combination of a plurality of the offset adjustment units connected to the plurality of input terminals respectively and a plurality of the gain adjustment units provided between the plurality of the input terminals and the plurality of the output terminals. any one of the plurality of offset adjustment units and the plurality of gain adjustment units based on the plurality of reference signals converted into digital signals by the AD conversion unit and the voltage level in each of the plurality of acquisition ranges obtained by 8. The battery device according to claim 6 or 7, wherein it is determined whether there is an abnormality in the battery.
  9.  前記判定部は、異常が生じている前記オフセット調整部および異常が生じている前記ゲイン調整部の少なくとも一方が接続されている前記入力端子と前記出力端子との間の通電経路の使用を禁止する請求項8に記載の電池装置。 The determination unit prohibits the use of the current path between the input terminal and the output terminal to which at least one of the offset adjustment unit with the abnormality and the gain adjustment unit with the abnormality is connected. The battery device according to claim 8.
PCT/JP2022/013980 2021-05-28 2022-03-24 Monitoring device and battery apparatus comprising same WO2022249702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022002810.6T DE112022002810T5 (en) 2021-05-28 2022-03-24 Monitoring device and battery device comprising it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021090409A JP2022182707A (en) 2021-05-28 2021-05-28 Monitoring device and battery apparatus including the same
JP2021-090409 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022249702A1 true WO2022249702A1 (en) 2022-12-01

Family

ID=84228646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013980 WO2022249702A1 (en) 2021-05-28 2022-03-24 Monitoring device and battery apparatus comprising same

Country Status (3)

Country Link
JP (1) JP2022182707A (en)
DE (1) DE112022002810T5 (en)
WO (1) WO2022249702A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189845A (en) * 1995-01-09 1996-07-23 Yokogawa Electric Corp Digital measuring instrument
JP2006284538A (en) * 2005-04-05 2006-10-19 Nissan Motor Co Ltd Voltage-detecting device
JP2011112504A (en) * 2009-11-26 2011-06-09 Kyocera Corp Portable terminal device
JP2012215558A (en) * 2011-03-30 2012-11-08 Denso Corp Voltage detector and coupling circuit
WO2013161067A1 (en) * 2012-04-27 2013-10-31 日立ビークルエナジー株式会社 Battery monitoring device and battery system monitoring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195375B2 (en) 2008-12-09 2013-05-08 株式会社デンソー Battery pack capacity adjustment device
JP6987408B2 (en) 2019-12-02 2022-01-05 株式会社みすずコーポレーション How to make mushroom medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189845A (en) * 1995-01-09 1996-07-23 Yokogawa Electric Corp Digital measuring instrument
JP2006284538A (en) * 2005-04-05 2006-10-19 Nissan Motor Co Ltd Voltage-detecting device
JP2011112504A (en) * 2009-11-26 2011-06-09 Kyocera Corp Portable terminal device
JP2012215558A (en) * 2011-03-30 2012-11-08 Denso Corp Voltage detector and coupling circuit
WO2013161067A1 (en) * 2012-04-27 2013-10-31 日立ビークルエナジー株式会社 Battery monitoring device and battery system monitoring device

Also Published As

Publication number Publication date
JP2022182707A (en) 2022-12-08
DE112022002810T5 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
JP5221468B2 (en) Battery monitoring device
JP4186916B2 (en) Battery pack management device
JP6172176B2 (en) Battery monitoring device
EP3032695B1 (en) Battery control system and vehicle control system
WO2010109990A1 (en) Battery system for vehicle
JP5092812B2 (en) Battery monitoring device and failure diagnosis method
US9931959B2 (en) Battery control system and vehicle control system
US20120153961A1 (en) Apparatus for monitoring operation state of battery pack composed of plurality of cells mutually connected in series
CN107889526B (en) Battery system monitoring device
WO2013094214A1 (en) Monitor system and vehicle
JP2011076778A (en) Battery monitoring device
JP2013108991A (en) Battery monitoring device
WO2019193973A1 (en) Diagnostic apparatus and diagnostic method
JP2023511169A (en) RELAY DIAGNOSTIC DEVICE, RELAY DIAGNOSTIC METHOD, BATTERY SYSTEM AND ELECTRIC VEHICLE
JP7078293B2 (en) Current sensor diagnostic device and method
WO2022249702A1 (en) Monitoring device and battery apparatus comprising same
KR20210051809A (en) Method for estimating of battery&#39;s state of charge and Battery Management System
JP2019184577A (en) Diagnostic device and method for diagnosis
JP2014102076A (en) Battery system
WO2022201914A1 (en) Battery device
WO2022201913A1 (en) Battery device
JP6742471B2 (en) Battery system monitoring device
WO2022201915A1 (en) Battery device
JP5316343B2 (en) Battery monitoring device
US20220131389A1 (en) Battery management device and battery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022002810

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810978

Country of ref document: EP

Kind code of ref document: A1