WO2022201915A1 - Battery device - Google Patents

Battery device Download PDF

Info

Publication number
WO2022201915A1
WO2022201915A1 PCT/JP2022/004620 JP2022004620W WO2022201915A1 WO 2022201915 A1 WO2022201915 A1 WO 2022201915A1 JP 2022004620 W JP2022004620 W JP 2022004620W WO 2022201915 A1 WO2022201915 A1 WO 2022201915A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit voltage
closed circuit
voltage
battery
unit
Prior art date
Application number
PCT/JP2022/004620
Other languages
French (fr)
Japanese (ja)
Inventor
将且 堀口
正規 内山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022201915A1 publication Critical patent/WO2022201915A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the disclosure described in this specification relates to a battery device.
  • Patent Document 1 discloses a capacity adjustment device that equalizes the SOC of a plurality of lithium secondary batteries.
  • the closed-circuit voltage of lithium secondary batteries is used to equalize the SOCs of multiple lithium secondary batteries. Therefore, it is required to improve the detection accuracy of the closed circuit voltage.
  • An object of the present disclosure is to provide a battery device with improved detection accuracy of the closed circuit voltage.
  • a battery device includes a detection unit that detects closed circuit voltages of a plurality of electrically connected battery cells; a level shifter that adjusts the gain and offset of the closed circuit voltage detected by the detector; an AD converter that converts the closed-circuit voltage whose gain and offset are adjusted by the level shifter into a digital signal; a storage unit for storing battery information including closed-circuit voltage and conversion unit information related to actual characteristics and ideal characteristics as input/output characteristics of the input voltage and output voltage of the AD conversion unit; and an arithmetic unit that narrows the difference between the input voltage at the intersection of the actual characteristic and the ideal characteristic and the closed circuit voltage stored in the storage unit by adjusting at least one of the gain and the offset.
  • FIG. 1 is a block diagram showing a battery device and an assembled battery;
  • FIG. It is a graph chart which shows the characteristic of SOC and OCV.
  • FIG. 3 is a graph showing the relationship between actual characteristics and ideal characteristics;
  • FIG. 10 is a graph diagram showing the relationship between the ideal characteristics and the actual characteristics;
  • FIG. 5 is a graph showing offset adjustment;
  • FIG. 1 A first embodiment will be described with reference to FIGS. 1 to 7.
  • FIG. 1 A first embodiment will be described with reference to FIGS. 1 to 7.
  • FIG. 1 A first embodiment will be described with reference to FIGS. 1 to 7.
  • FIG. 1 A first embodiment will be described with reference to FIGS. 1 to 7.
  • FIG. 1 A first embodiment will be described with reference to FIGS. 1 to 7.
  • FIG. 1 A first embodiment will be described with reference to FIGS. 1 to 7.
  • a battery device 100 and an assembled battery 200 are shown in FIG.
  • the battery device 100 and the assembled battery 200 are mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle.
  • the electric vehicles include passenger cars, buses, construction vehicles, agricultural machinery vehicles, and the like.
  • the battery device 100 monitors and controls the state of the assembled battery 200 .
  • the assembled battery 200 supplies power to various in-vehicle devices such as an electric motor that provides propulsion to the electric vehicle.
  • the assembled battery 200 has a plurality of battery stacks 210 .
  • Each of the plurality of battery stacks 210 has a plurality of battery cells 220 electrically connected in series.
  • a secondary battery such as a lithium-ion secondary battery, a nickel-hydrogen secondary battery, or an organic radical battery can be employed.
  • the output voltage of the battery cells 220 connected in series is the output voltage of the battery stack 210 .
  • FIG. 1 a plurality of battery cells 220 included in one battery stack 210 are shown surrounded by dashed lines.
  • the plurality of battery stacks 210 are electrically connected in series or in parallel. In this embodiment, a plurality of battery stacks 210 are electrically connected in series.
  • the output voltage of the assembled battery 200 is the sum of the output voltages of the plurality of battery stacks 210 connected in series. Power supply power dependent on this output voltage is supplied to various vehicle-mounted devices.
  • a physical quantity sensor 230 that detects the physical quantity of the battery cell 220 is provided in each of the plurality of battery stacks 210 .
  • Physical quantities detected by the physical quantity sensor 230 include, for example, the temperature and current of the battery cell 220 .
  • the physical quantity detected by the physical quantity sensor 230 is used for estimating the SOC of each of the battery cells 220, the battery stack 210, and the assembled battery 200.
  • SOC is an abbreviation for state of charge. SOC corresponds to the amount of charge.
  • the SOC is reduced by supplying the above-mentioned power supply power to various on-vehicle devices. Also, the battery cell 220 self-discharges. Therefore, the SOC decreases even when the power supply is not supplied.
  • This reduction in SOC is improved by supplying charging power to the assembled battery 200 from a charging device such as a desk lamp provided outside the vehicle, for example.
  • the supply of charging power from this charging device to the assembled battery 200 is controlled by the battery device 100 .
  • the battery device 100 controls charging of the assembled battery 200 while transmitting/receiving a CPLT signal to/from a charging device via wiring (not shown).
  • the quality and environment of the plurality of battery cells 220 are not uniform. Therefore, the SOCs of the plurality of battery cells 220 vary. This variation is improved by an equalization process, which will be described later.
  • the battery cell 220 has internal resistance. Therefore, there is a difference between the actual cell voltage corresponding to the SOC of the battery cell 220 and the cell voltage detected by the monitoring unit 10 by this internal resistance and the voltage drop corresponding to the current flowing through the battery cell 220 .
  • the actual cell voltage corresponding to the SOC of the battery cell 220 is indicated as open circuit voltage OCV as necessary.
  • a cell voltage detected by the monitoring unit 10 is indicated as a closed circuit voltage CCV.
  • the internal resistance R is the resistance in the battery cell 220 and the actual current I is the current that actually flows through the battery cell 220 .
  • OCV is an abbreviation for Open Circuit Voltage.
  • CCV stands for Closed Circuit Voltage.
  • CCV closed circuit voltage
  • OCV open circuit voltage
  • the battery cell 220 has SOC and OCV characteristics.
  • FIG. 2 shows SOC and OCV characteristic data when the battery cell 220 is a lithium ion secondary battery.
  • the rate of change of OCV with respect to SOC is low.
  • Battery cell 220 is mainly used in this charge/discharge region.
  • SOC1 and OCV1 the values of SOC and OCV between the overdischarge region and the charge/discharge region are expressed as SOC1 and OCV1.
  • SOC and OCV values between the charge/discharge region and the overcharge region are denoted as SOC2 and OCV2.
  • the characteristic data shown in Fig. 2 depend on temperature. Therefore, the rate of change of OCV with respect to SOC changes depending on the temperature. Along with this, the values of SOC1, SOC2, OCV1 and OCV2 also change.
  • the battery device 100 has a monitoring section 10 and a control section 30 .
  • the battery device 100 has the same number of monitoring units 10 as the battery stacks 210 .
  • the plurality of monitoring units 10 detect battery information related to the state of each of the plurality of battery stacks 210 .
  • the control unit 30 acquires battery information detected by the multiple monitoring units 10 .
  • the control unit 30 also acquires vehicle information input from various other ECUs and various sensors (not shown).
  • the control unit 30 acquires charging information input from the charging device.
  • the input to the control unit 30 of the vehicle information and charging information, and the output of the processing results of the control unit 30 to various ECUs, charging equipment, etc. are indicated by white arrows in FIG.
  • the control unit 30 determines the state of the assembled battery 200 based on the acquired information. At the same time, the control unit 30 executes processing for the assembled battery 200 .
  • the processing for the assembled battery 200 includes, for example, charging and discharging of the assembled battery 200, equalization processing for equalizing the SOCs of the plurality of battery cells 220 included in the assembled battery 200, and the like.
  • Each of the plurality of monitoring units 10 is individually provided for each of the plurality of battery stacks 210 .
  • One monitoring unit 10 detects the inter-terminal voltage (closed-circuit voltage) between the positive and negative electrodes of each of the plurality of battery cells 220 included in one battery stack 210 . Also, the monitoring unit 10 acquires the physical quantity detected by the physical quantity sensor 230 . The monitoring unit 10 executes processing based on instruction signals input from the control unit 30 .
  • the monitoring unit 10 has a multiplexer 11, a level shifter 12, an AD conversion unit 13, a monitoring control unit 14, and a monitoring communication unit 15.
  • the multiplexer 11 is written as MUX.
  • the level shifter 12 is written as LS.
  • the AD converter 13 is written as AD.
  • the monitor control unit 14 is written as MCU.
  • the monitoring communication unit 15 is written as MCS.
  • the multiplexer 11 is connected to the positive and negative electrodes of each of the plurality of battery cells 220 included in one battery stack 210 . As a result, the multiplexer 11 receives the closed circuit voltages of the plurality of battery cells 220 .
  • the multiplexer 11 is connected to the physical quantity sensor 230 . Thereby, the physical quantity is input to the multiplexer 11 .
  • the multiplexer 11 sequentially selects and detects a plurality of input closed circuit voltages.
  • the multiplexer 11 sequentially outputs the detected closed circuit voltages to the level shifter 12 .
  • the multiplexer 11 also sequentially selects and detects a plurality of input physical quantities.
  • the multiplexer 11 also sequentially outputs the detected physical quantities to the level shifter 12 .
  • the multiplexer 11 corresponds to the detection section.
  • the level shifter 12 has an operational amplifier and a plurality of feedback circuits connected in parallel between the input terminal and the output terminal of the operational amplifier.
  • the feedback circuit includes a series connected switch and capacitor. Capacitances of capacitors included in a plurality of feedback circuits may be the same or different.
  • the switches of a plurality of feedback circuits of the level shifter 12 are selectively turned on and off by the monitor control unit 14 . This changes the number of capacitors connected between the input and output terminals of the operational amplifier. The capacitance between the input and output terminals of the operational amplifier changes. Also, the resistance between the input terminal and the output terminal of the operational amplifier changes. As a result, the gain and offset of the level shifter 12 are controlled.
  • the AD conversion unit 13 receives from the level shifter 12 an analog signal of a closed circuit voltage and a physical quantity whose gain and offset have been adjusted.
  • the AD converter 13 has a clamp circuit for limiting the input range. This clamp circuit is controlled by the monitor controller 14 . The input range of the AD converter 13 is thereby controlled.
  • the voltage range of the analog signal converted from analog to digital by the AD converter 13 is controlled.
  • the voltage range of the closed circuit voltage and the physical quantity that are analog-to-digital converted by the AD converter 13 are controlled. As a result, the acquisition range of the closed circuit voltage and the physical quantity is controlled.
  • the AD converter 13 intermittently samples continuous analog signals. Then, the AD converter 13 quantizes the sampled values and converts them into discrete digital signals. Due to such conversion, there is an error (quantization error) between the analog signal and the digital signal.
  • This quantization error becomes smaller as the number of quantization bits of the AD converter 13 increases.
  • the number of quantization bits is fixed. Therefore, for example, when the acquisition range of the closed circuit voltage is 0.0 V to 5.0 V, the resolution of the AD converter 13 is the value obtained by dividing this 0.0 V to 5.0 V by the number of quantization bits.
  • the resolution of the AD conversion unit 13 is 3.0 V to 3.5 V with the number of quantization bits. becomes the divided value.
  • the resolution of the AD converter 13 is increased by about ten times.
  • the monitoring control unit 14 has a processor and a non-transitional material storage medium that non-temporarily stores a program readable by this processor.
  • a digital signal input from the AD conversion unit 13 and an instruction signal input from the control unit 30 are stored in this non-transitional substantive storage medium.
  • the processor of the monitor controller 14 controls the multiplexer 11, the level shifter 12, and the AD converter 13 based on the instruction signal.
  • the instruction signal input to the monitoring control unit 14 includes the acquisition range of the closed circuit voltage of the battery cell 220 to be detected.
  • the monitor control unit 14 controls the gain and offset of the level shifter 12 when the multiplexer 11 selects the closed circuit voltage to be detected.
  • the monitor controller 14 limits the input range of the AD converter 13 . This controls the acquisition range of the closed circuit voltage. Note that the monitoring control unit 14 does not need to limit the acquisition range of the closed circuit voltage. Similarly, the monitoring control unit 14 does not have to limit the acquisition range of physical quantities.
  • the closed-circuit voltage of the digital signal and the physical quantity are input to the monitoring communication unit 15 .
  • the monitor communication unit 15 outputs this digital signal to the control unit 30 .
  • control unit 30 has a control communication unit 31 , a storage unit 32 and a calculation unit 33 .
  • control communication unit 31 is denoted as CCU.
  • storage unit 32 is written as MU.
  • calculation unit 33 is written as OP.
  • This information includes the closed circuit voltage and the physical quantity acquired by the monitoring unit 10 .
  • this information includes vehicle information and charging information.
  • the vehicle information includes the running state of the electric vehicle and the current time.
  • the charging information includes charging power.
  • vehicle information and charging information may be input to a communication unit (not shown). And when the control part 30 has RTC, the present time does not need to be contained in vehicle information.
  • RTC is an abbreviation for real time clock.
  • the storage unit 32 is a non-transitional material storage medium that non-temporarily stores programs readable by computers and processors.
  • the storage unit 32 has a volatile memory and a nonvolatile memory.
  • Various information input to the control communication unit 31 and processing results of the calculation unit 33 are stored in the storage unit 32 .
  • the storage unit 32 stores in advance programs and reference values for the operation unit 33 to carry out operation processing.
  • the reference values include, for example, the temperature dependence of SOC and OCV characteristic data of various secondary batteries, an equalization determination value for determining execution of equalization processing, manufacturing dates of the plurality of battery cells 220, and deterioration determination. including values.
  • the reference value includes converter information related to the input/output characteristics of the AD converter 13 .
  • the computing unit 33 includes a processor.
  • the calculation unit 33 stores various information input to the control communication unit 31 in the storage unit 32 .
  • the calculation unit 33 executes various calculation processes based on information stored in the storage unit 32 .
  • An electrical signal including the result of this arithmetic processing is output to the monitoring section 10 via the control communication section 31 .
  • An electrical signal including the result of this arithmetic processing is output to various ECUs via the control communication unit 31 or a communication unit (not shown).
  • the arithmetic unit 33 estimates the SOC of the battery cell 220 based on the information stored in the storage unit 32 .
  • the calculation unit 33 generates an instruction signal for instructing the operation of the monitoring unit 10 based on the estimated SOC and the information stored in the storage unit 32 .
  • This instruction signal includes gain and offset adjustments, which will be described later. Note that if the battery information for estimating the SOC is not stored in the storage unit 32, the calculation unit 33 sets the gain and offset of the level shifter 12 to initial values.
  • the calculation unit 33 may determine the acquisition range of the closed circuit voltage of the battery cell 220 to be detected.
  • the calculation unit 33 outputs an instruction signal including the acquisition range for each of the plurality of battery stacks 210 to the monitoring unit 10 . Note that if the battery information for estimating the SOC is not stored in the storage unit 32 , the calculation unit 33 sets the acquisition range of the closed circuit voltage to a possible range of the closed circuit voltage of the battery cell 220 .
  • the computing unit 33 may determine execution of an equalization process to reduce variations in the SOCs of the plurality of battery cells 220 .
  • the calculation unit 33 outputs an instruction signal including equalization processing for each of the plurality of battery stacks 210 to the monitoring unit 10 .
  • the computing unit 33 computes the difference between the maximum value and the minimum value of the closed circuit voltage input from the monitoring unit 10 . If this difference exceeds the equalization determination value, the calculation unit 33 decides to execute the equalization process. This equalization process may be performed, for example, only in the battery stack 210 in which at least one of the maximum value and the minimum value of the closed circuit voltage is detected. The equalization process may be performed on all battery stacks 210 .
  • the monitoring unit 10 has a plurality of switches that bridge a plurality of wires connecting the multiplexer 11 and the positive and negative electrodes of the plurality of battery cells 220, respectively.
  • the monitoring control unit 14 selectively controls the plurality of switches to the energized state and the cut-off state based on the instruction signal input from the arithmetic unit 33 .
  • the battery cell 220 with a relatively high SOC among the plurality of electrically connected battery cells 220 is discharged.
  • battery cells 220 with relatively low SOC are charged.
  • the SOCs of the plurality of battery cells 220 are equalized.
  • the AD converter 13 converts continuous analog signals into discrete digital signals. Therefore, there is a quantization error between the analog signal and the digital signal. Further, the AD converter 13 has an integral nonlinear error.
  • the input/output characteristics of the AD conversion unit 13 with respect to the analog signal input to the AD conversion unit 13 and the digital signal output from the AD conversion unit 13 are expected to exhibit linear behavior. .
  • the input/output characteristics of the AD converter 13 actually exhibit nonlinear behavior.
  • the integral non-linearity error corresponds to the difference between the digital signal output from the AD converter 13 having ideal input/output characteristics and the digital signal output from the AD converter 13 having actual input/output characteristics. .
  • the integral nonlinearity error increases or decreases depending on the value of the analog signal input to the AD converter 13 .
  • FIG. 3 to 6 show the relationship between the analog signal input to the AD converter 13 and the digital signal output from the AD converter 13.
  • FIG. The horizontal axis represents the voltage value of the analog signal input to the AD converter 13, which is indicated by AV.
  • the vertical axis represents the voltage value of the digital signal output from the AD converter 13, which is indicated by DV.
  • the units of the horizontal and vertical axes are volts.
  • the voltage of the analog signal input to the AD converter 13 will be referred to as an input voltage for the sake of simplicity.
  • the voltage of the digital signal output from the AD converter 13 is indicated as output voltage.
  • ideal input/output characteristics are indicated by a dashed line.
  • the solid line indicates the actual input/output characteristics.
  • the integral nonlinearity error is indicated by a two-dot chain line.
  • ideal input/output characteristics are referred to as ideal characteristics for the sake of simplicity. Actual input/output characteristics are indicated as actual characteristics.
  • the ideal characteristics and the actual characteristics have temperature dependence.
  • the conversion unit information of this embodiment includes the temperature dependence of the ideal characteristics and the actual characteristics. Note that the conversion unit information may include the temperature dependence of the integral nonlinearity error.
  • the ideal characteristic of the AD converter 13 exhibits linear behavior.
  • Real characteristics show nonlinear behavior.
  • ideal characteristics and actual characteristics are shown linearly.
  • the ideal characteristics and the actual characteristics intersect.
  • the input voltage at the intersection of these two characteristics is LST.
  • the minimum error point In the case of the relationship shown in FIG. 4, when the input voltage of LST is input to the AD converter 13, it is expected that the difference between the ideal characteristics and the actual characteristics will be the smallest. Minimal integral nonlinearity error is expected.
  • the input voltage at the intersection of the two characteristics is hereinafter referred to as the minimum error point.
  • the output voltage that is actually output from the AD converter 13 is OV1.
  • the output voltage expected to be ideally output from the AD converter 13 is OV0.
  • the integral nonlinearity error is the absolute value of the difference between OV1 and OV0.
  • the calculation unit 33 adjusts the gain and offset of the level shifter 12 . Adjusting the gain and offset changes the actual characteristics. The minimum error point changes.
  • the calculation unit 33 adjusts the offset of the level shifter 12 . By doing so, for example, as simply shown in FIG. 5, the calculation unit 33 changes the offset of the actual characteristic.
  • the calculation unit 33 sets the minimum error point LST to the input voltage IV. As a result, it is expected that the actual output voltage OV1 becomes the ideal output voltage OV0. As a result, less integral nonlinearity error is expected.
  • the calculation unit 33 adjusts the gain of the level shifter 12 . By doing so, the calculation unit 33 changes the slope of the actual characteristic, as simply shown in FIG. 6, for example.
  • the calculation unit 33 sets the minimum error point LST to the input voltage IV. As a result, the output voltage OV1 is expected to become the output voltage OV0. Less integral nonlinearity error is expected.
  • the original real characteristics exhibit nonlinearity. Therefore, as shown in FIGS. 5 and 6, it is difficult to set the minimum error point LST to the input voltage IV by changing only one of the gain and the offset.
  • the calculation unit 33 narrows the difference between the minimum error point LST and the input voltage IV by changing at least one of the gain and the offset.
  • the computing section 33 changes at least one of the gain and the offset so that either one of the first minimum error point LST1 and the second minimum error point LST2 becomes the input voltage IV.
  • the calculation unit 33 selects, for example, the first minimum error point LST1 or the second minimum error point LST2, whichever has the smaller difference from the input voltage IV.
  • the calculation unit 33 reduces the integral nonlinearity in the vicinity of the minimum error point. Choose the one with the least error. Then, the calculation unit 33 changes at least one of the gain and the offset so that the selected minimum error point becomes the input voltage IV.
  • the neighborhood corresponds to the width centered on the minimum error point.
  • the neighboring values correspond to the difference between the minimum error point and the upper and lower limits of the width.
  • the value in the neighborhood can be determined, for example, based on the amount of voltage change that the closed circuit voltage is expected to change during the time of the acquisition period described later.
  • the voltage detection process is executed at the acquisition cycle.
  • the acquisition period is a time interval at which the SOC of the battery cell 220 is expected not to change suddenly unless the charge/discharge state of the battery cell 220 changes suddenly due to rapid charging or the like.
  • step S10 the calculation unit 33 determines whether or not the closed circuit voltage is stored in the storage unit 32. When the closed circuit voltage is stored in the storage unit 32, the calculation unit 33 proceeds to step S20. If the closed circuit voltage is not stored in the storage unit 32, the calculation unit 33 proceeds to step S60.
  • the calculation unit 33 acquires the temperature detected by the physical quantity sensor 230. Then, the calculation unit 33 reads from the storage unit 32 the temperature dependence of the ideal characteristics and the actual characteristics corresponding to the temperature. The calculation unit 33 calculates the minimum error point based on these ideal characteristics and actual characteristics. If the storage unit 32 stores the temperature dependence of the integral nonlinearity error, the calculation unit 33 reads the minimum error point corresponding to the temperature detected by the physical quantity sensor 230 in step S20. After that, the calculation unit 33 proceeds to step S30.
  • step S ⁇ b>30 the calculation unit 33 calculates the difference value between the calculated minimum error point and the closed circuit voltage stored in the storage unit 32 . After that, the calculation unit 33 proceeds to step S40.
  • step S40 the calculation unit 33 calculates a gain and an offset for bringing the difference value calculated in step S40 closer to zero. After this, the calculation unit 33 proceeds to step S50.
  • the calculation unit 33 transmits an instruction signal including the gain and offset calculated in step S40 to the monitoring unit 10 as an adjustment signal. After this, the calculation unit 33 proceeds to step S60.
  • step S60 the calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10. After that, the calculation unit 33 proceeds to step S70.
  • the calculation unit 33 stores the acquired closed circuit voltage in the storage unit 32. Then, the calculation unit 33 terminates the voltage detection process.
  • the calculation unit 33 adjusts at least one of the gain and offset of the level shifter 12 to narrow the difference between the past closed circuit voltage stored in the storage unit 32 and the minimum error point. . Then, the calculation unit 33 acquires a new closed circuit voltage.
  • the calculation unit 33 adjusts at least one of the gain and offset of the level shifter 12 so that the difference between the past closed circuit voltage stored in the storage unit 32 and the minimum error point is narrowed.
  • the calculation unit 33 estimates the new closed circuit voltage based on the past closed circuit voltage stored in the storage unit 32 and the information stored in the storage unit 32 . Then, the calculation unit 33 adjusts at least one of the gain and offset of the level shifter 12 so that the difference between the estimated closed circuit voltage (estimated voltage) and the minimum error point is narrowed. After this, the calculation unit 33 newly acquires the closed circuit voltage.
  • Fig. 8 shows the time change of the closed circuit voltage.
  • the vertical axis is in arbitrary units.
  • the horizontal axis is time.
  • Arbitrary units are a.d. u. is indicated.
  • Time is denoted by T.
  • FIG. 8 shows the driving state of the battery device 100, the actual current flowing through the assembled battery 200, and the closed circuit voltage of one battery cell 220.
  • FIG. The drive state of the battery device 100 is denoted as DS.
  • the behavior of the closed circuit voltage of the battery cell 220 and the behavior of the closed circuit voltage of the assembled battery 200 shown in the drawings are assumed to be the same. In order to clarify the behavior, the drawing shows that the closed circuit voltage of the battery cell 220 changes greatly in a short period of time.
  • the battery device 100 In the initial state at time 0, the battery device 100 is in a non-driving state.
  • the storage unit 32 does not store battery information such as closed circuit voltage and physical quantity.
  • a system main relay that controls electrical continuity between the assembled battery 200 and various vehicle-mounted devices is in a disconnected state. Therefore, substantially no current flows through the assembled battery 200 .
  • the closed circuit voltage of the battery cell 220 has a value in the charge/discharge region.
  • the SOC of the battery cell 220 decreases due to self-discharge even if the current does not substantially flow through the battery cell 220 . Therefore, in the initial state at time 0, the closed circuit voltage of the battery cell 220 tends to decrease, albeit slightly.
  • the battery device 100 changes from the non-driving state to the driving state.
  • the system main relay changes from the cut-off state to the energized state.
  • supply of power supply power from the assembled battery 200 to various vehicle-mounted devices is started.
  • An actual current begins to flow in the assembled battery 200 .
  • the rate of decrease of the SOC of battery cell 220 increases.
  • the reduction rate of the closed circuit voltage of the battery cell 220 also increases.
  • the calculation unit 33 acquires the closed circuit voltage of the battery cell 220. At this time, the battery information is not stored in the storage unit 32 . Therefore, the calculation unit 33 sets the gain and offset of the level shifter 12 at time t1 to initial values. The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 at this time t1. Note that there is practically no time difference between time t1 and time t0. When the battery device 100 shifts from the non-driving state to the driving state, the process of detecting the closed circuit voltage is substantially started.
  • the calculation unit 33 acquires the closed circuit voltage of the battery cell 220 again.
  • the SOC of battery cell 220 changes while time elapses from time t1 to time t2.
  • the amount of power indicated by hatching is discharged. It is assumed that the closed circuit voltage at time t1 and the closed circuit voltage at time t2 are different due to this discharge.
  • the calculation unit 33 estimates the closed circuit voltage at time t2 based on the closed circuit voltage obtained at time t1 and the amount of change in the closed circuit voltage from time t1 to time t2. Then, the calculation unit 33 calculates a gain and an offset for zeroing the difference between the estimated voltage and the minimum error point. The calculation unit 33 outputs an instruction signal including changes to the calculated gain and offset to the monitoring unit 10 . The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 whose gain and offset have been adjusted at this time t2. When time t1 corresponds to the first detection timing, time t2 corresponds to the second detection timing. The estimated voltage corresponds to the estimated value.
  • the gain and offset adjustment timing and the closed circuit voltage acquisition timing at time t2 are not the same.
  • the adjustment timing is before the acquisition timing.
  • the difference between these two timings is minute. Therefore, these two timings are considered to be the same and described.
  • the calculation unit 33 calculates the estimated voltage based on the closed circuit voltage at time t2 and the amount of change in the closed circuit voltage from time t2 to time t3. Then, the calculation unit 33 calculates gain and offset based on the estimated voltage and the minimum error point. The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 whose gain and offset have been adjusted at this time t3. When time t2 corresponds to the first detection timing, time t3 corresponds to the second detection timing.
  • the calculation unit 33 calculates the estimated voltage based on the closed circuit voltage at time t3 and the amount of change in the closed circuit voltage from time t3 to time t4. Then, the calculation unit 33 calculates gain and offset based on the estimated voltage and the minimum error point. The calculation unit 33 acquires the closed-circuit voltage detected by the monitoring unit 10 whose gain and offset have been adjusted at this time t4.
  • the charging equipment is connected to the electric vehicle.
  • the battery pack 200 is rapidly charged by the charging equipment. This causes the actual current to rise sharply.
  • the calculation unit 33 acquires such information from vehicle information or charging information.
  • the calculation unit 33 calculates the estimated voltage based on the closed circuit voltage at time t4 and the amount of change in the closed circuit voltage from time t4 to time t5.
  • the calculation unit 33 calculates gain and offset based on the estimated voltage and the minimum error point.
  • the calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 with the gain and offset adjusted at this time t5.
  • the calculation unit 33 terminates the rapid charging by the charging equipment.
  • the calculation unit 33 causes the charging equipment to perform full charging.
  • the amount of supplied current differs between the above-mentioned rapid charging and full charging.
  • the amount of supplied current is larger in quick charge than in full charge.
  • the above target voltage is a value based on the maximum output voltage of the assembled battery 200.
  • the calculation unit 33 determines that the closed circuit voltage of the assembled battery 200 has reached the target voltage, it causes the charging device to perform full charging. In full charging, charging power is supplied to the assembled battery 200 while maintaining the closed circuit voltage detected by the assembled battery 200 at the target voltage in order to avoid overcharging and bring the SOC of the assembled battery 200 closer to the full charge amount. is done.
  • the target voltage and the maximum output voltage are pre-stored in the storage section 32 .
  • the estimated voltage is calculated based on the target voltage and the amount of change in the closed circuit voltage from time t5 to time t6.
  • the calculator 33 calculates gain and offset based on the estimated voltage and the minimum error point.
  • the calculation unit 33 acquires the closed-circuit voltage detected by the monitoring unit 10 with the gain and offset adjusted at time t6.
  • the calculator 33 calculates the gain and offset based on the target voltage and the minimum error point.
  • the calculation unit 33 continues to acquire the closed-circuit voltage detected by the monitoring unit 10 whose gain and offset have been adjusted. Alternatively, the calculation unit 33 stops acquiring the closed circuit voltage.
  • the electric vehicle performs constant voltage drive with limited driving. At this time, the voltage of the power supply power output from the assembled battery 200 is limited. The voltage of the power supply is kept at a constant value, for example. Therefore, it is expected that the closed circuit voltage of the battery cell 220 is maintained at a predetermined voltage.
  • the calculation unit 33 calculates the gain and offset based on the predetermined voltage and the minimum error point.
  • the calculation unit 33 continues to acquire the closed-circuit voltage detected by the monitoring unit 10 whose gain and offset have been adjusted. Alternatively, the calculation unit 33 stops acquiring the closed circuit voltage.
  • the calculation unit 33 estimates the closed circuit voltage to be newly acquired when calculating the gain and the offset. For example, at time t2 shown in FIG. 8, the calculation unit 33 estimates the closed circuit voltage at time t2 based on the closed circuit voltage acquired at time t1 and the amount of change in the closed circuit voltage from time t1 to time t2.
  • the amount of change in closed circuit voltage from time t1 to time t2 depends on the charge/discharge history between time t1 and time t2, the temperature between time t1 and time t2, and the temperature dependence of the SOC and OCV characteristic data. calculated based on gender.
  • the charge/discharge history corresponds to the charge/discharge amount.
  • the charge/discharge history between time t1 and time t2 is calculated, for example, based on the time between time t1 and time t2 and the current between time t1 and time t2.
  • a charge/discharge history between time t1 and time t2 is calculated as an integrated value of current between time t1 and time t2. Note that the current between time t1 and time t2 is estimated by, for example, the addition average value of the current at time t1 and the current at time t2.
  • the temperature between time t1 and time t2 is estimated, for example, by adding and averaging the temperature at time t1 and the temperature at time t2.
  • the calculation unit 33 reads the SOC and OCV characteristic data of this temperature from the storage unit 32 . Then, the calculation unit 33 calculates the amount of change in closed circuit voltage from time t1 to time t2 based on the read SOC and OCV characteristic data and the calculated charge/discharge history between time t1 and time t2. .
  • the calculation unit 33 reads the SOC and OCV characteristic data of the battery cell 220 from the storage unit 32 among the SOC and OCV characteristic data of various secondary batteries.
  • the calculation unit 33 reads the SOC and OCV characteristic data of the lithium ion secondary battery from the storage unit 32 .
  • the calculation unit 33 estimates the aged deterioration of the battery cell 220 at the time t2, for example, based on the difference between the date of manufacture of the battery cell 220 and the time t2 stored in the storage unit 32 and the deterioration determination value. good.
  • the calculation unit 33 may estimate the internal resistance of the battery cell 220 at time t2 based on aging deterioration of the battery cell 220 and the temperature at time t2.
  • the calculation unit 33 may calculate the voltage drop occurring in the battery cell 220 at the time t2 based on the internal resistance and the current at the time t2.
  • the calculation unit 33 may also take this voltage drop into account to estimate the closed circuit voltage at time t2.
  • the calculation unit 33 may estimate the amount of change in the closed circuit voltage from time t1 to time t2 based on the equivalent circuit model or chemical reaction model of the battery cell 220 and the current and temperature of the battery cell 220.
  • the storage unit 32 may store a discharge value and a charge value for estimating the amount of change in the closed circuit voltage described above.
  • the amount of change in closed circuit voltage may be determined by multiplying the predetermined discharge value by the time between time t1 and time t2.
  • the amount of change in closed circuit voltage may be determined by multiplying the predetermined charge value by the time between time t1 and time t2.
  • the calculation unit 33 executes the voltage detection process shown in FIG.
  • the voltage detection process shown in FIG. 9 has steps S110 and S120 added to the voltage detection process shown in FIG. 7 described in the first embodiment.
  • step S10 When it is determined in step S10 that the closed circuit voltage is stored in the storage unit 32, the calculation unit 33 proceeds to step S110.
  • the calculation unit 33 acquires various information for calculating the estimated voltage. This information includes closed-circuit voltage, acquisition cycle, current, temperature, SOC and OCV characteristic data, and the like stored in the storage unit 32 . After that, the calculation unit 33 proceeds to step S120.
  • step S120 the calculation unit 33 calculates the estimated voltage based on the various information acquired in step S110. After that, the calculation unit 33 proceeds to step S20.
  • the calculation unit 33 calculates the minimum error point.
  • the calculation unit 33 reads the minimum error point from the storage unit 32 . After that, the calculation unit 33 proceeds to step S30.
  • the calculation unit 33 calculates the difference value between the minimum error point and the estimated closed circuit voltage (estimated voltage). After that, the calculation unit 33 proceeds to step S40. Henceforth, the calculating part 33 performs the process equivalent to having demonstrated in 1st Embodiment.
  • the calculation unit 33 may determine the acquisition range of the closed circuit voltage of the battery cell 220 to be detected.
  • the center value of the acquisition range at time t2 can be determined based on the closed circuit voltage at time t1.
  • the center value of the acquisition range at time t2 can also be determined based on the closed circuit voltage at time t1 and the amount of change in the closed circuit voltage from time t1 to time t2.
  • the width of the acquisition range can be set to a value larger than the detection error of the closed circuit voltage.
  • the width of the acquisition range at time t2 can also be determined based on the temperature and current of the battery cell 220 at time t2.
  • the width of the acquisition range at time t3 can also be determined based on the difference (estimation error) between the center value of the acquisition range at time t2 and the closed circuit voltage acquired at time t2. Note that the difference between the center value and the upper limit value of the acquisition range and the difference between the center value and the lower limit value may be the same or different.
  • the calculation unit 33 executes the voltage detection process shown in FIG.
  • the voltage detection process shown in FIG. 10 has steps S210 and S220 added to the voltage detection process shown in FIG.
  • step S50 the calculation unit 33 proceeds to step S210.
  • the calculation unit 33 calculates the acquisition range based on the estimated voltage and the like. Then, the calculation unit 33 transmits an instruction signal including the acquisition range to the monitoring unit 10 as a limited range signal.
  • step S10 When the closed circuit voltage is not stored in the storage unit 32, the calculation unit 33 proceeds from step S10 to step S220.
  • step S220 the calculation unit 33 sets the entire range of possible closed-circuit voltages as the acquisition range. Then, the calculation unit 33 transmits an instruction signal including the acquisition range to the monitoring unit 10 as a full range signal.
  • control unit 30 is provided for a plurality of monitoring units 10 .
  • a configuration in which a plurality of controllers 30 are provided individually for a plurality of monitoring units 10 can also be adopted.
  • the computing unit 33 adjusts the gain and offset of the level shifter 12 when detecting the closed circuit voltage of each of the plurality of battery cells 220 .
  • the calculation unit 33 adjusts the gain and offset of the level shifter 12 when detecting the closed circuit voltage of each of the plurality of battery stacks 210 .
  • the calculation unit 33 adjusts the level shifter 12 to a common gain and offset when detecting the closed circuit voltages of the plurality of battery cells 220 included in one battery stack 210 .
  • the assembled battery 200 has at least two battery stacks 210 .
  • each of the plurality of battery cells 220 is the same type of secondary battery.
  • a secondary battery in which some of the plurality of battery cells 220 are different may be used.
  • some battery stacks 210 among the plurality of battery stacks 210 include first type battery cells 220, and the remaining battery stacks 210 include second type battery cells 220 different from the first type.
  • the battery cells 220 of different types for example, battery cells 220 having the same internal configuration and external configuration but different composition materials for the positive and negative electrodes can be employed.
  • the calculation unit 33 uses the SOC and OCV characteristic data of the first type battery cell 220 and the SOC and OCV characteristic data of the second type battery cell 220 Data is read from the storage unit 32 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This battery device comprises: a detection unit; a level shifter; an AD conversion unit; a storage unit; and a calculation unit. The detection unit detects the closed circuit voltage of a plurality of electrically-connected battery cells. The level shifter adjusts a gain and an offset of the detected closed circuit voltage. The AD conversion unit converts the closed circuit voltage, of which the gain and offset were adjusted, to a digital signal. The storage unit stores: battery information including a closed circuit voltage; and conversion unit information related to ideal characteristics and actual characteristics which serve as input/output characteristics of an input voltage and an output voltage of the AD conversion unit. The calculation unit adjusts at least the gain and/or the offset so as to narrow a difference between the closed circuit voltage stored in the storage unit and an input voltage at an intersection of the actual characteristics and the ideal characteristics.

Description

電池装置battery device 関連出願の相互参照Cross-reference to related applications
 この出願は、2021年3月23日に日本に出願された特許出願第2021-49207号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2021-49207 filed in Japan on March 23, 2021, and the content of the underlying application is incorporated by reference in its entirety.
 本明細書に記載の開示は、電池装置に関する。 The disclosure described in this specification relates to a battery device.
 特許文献1には、複数のリチウム2次電池のSOCを均等化する容量調整装置が開示されている。 Patent Document 1 discloses a capacity adjustment device that equalizes the SOC of a plurality of lithium secondary batteries.
特開2010-141957号公報JP 2010-141957 A
 複数のリチウム2次電池のSOCを均等化するためにリチウム2次電池の閉路電圧が用いられる。そのために閉路電圧の検出精度の向上が求められる。 The closed-circuit voltage of lithium secondary batteries is used to equalize the SOCs of multiple lithium secondary batteries. Therefore, it is required to improve the detection accuracy of the closed circuit voltage.
 本開示の目的は、閉路電圧の検出精度の向上が図られた電池装置を提供することである。 An object of the present disclosure is to provide a battery device with improved detection accuracy of the closed circuit voltage.
 本開示の一態様による電池装置は、電気的に接続された複数の電池セルの閉路電圧を検出する検出部と、
 検出部で検出された閉路電圧のゲインとオフセットを調整するレベルシフタと、
 レベルシフタによってゲインとオフセットの調整された閉路電圧をデジタル信号に変換するAD変換部と、
 閉路電圧を含む電池情報、および、AD変換部の入力電圧と出力電圧の入出力特性としての実際の実特性と理想とする理想特性に関連する変換部情報を記憶する記憶部と、
 ゲインとオフセットの少なくとも一方を調整することで、実特性と理想特性の交点の入力電圧と、記憶部に記憶された閉路電圧との差を狭める演算部と、を有する。
A battery device according to an aspect of the present disclosure includes a detection unit that detects closed circuit voltages of a plurality of electrically connected battery cells;
a level shifter that adjusts the gain and offset of the closed circuit voltage detected by the detector;
an AD converter that converts the closed-circuit voltage whose gain and offset are adjusted by the level shifter into a digital signal;
a storage unit for storing battery information including closed-circuit voltage and conversion unit information related to actual characteristics and ideal characteristics as input/output characteristics of the input voltage and output voltage of the AD conversion unit;
and an arithmetic unit that narrows the difference between the input voltage at the intersection of the actual characteristic and the ideal characteristic and the closed circuit voltage stored in the storage unit by adjusting at least one of the gain and the offset.
 これによれば、閉路電圧の検出精度の向上が期待される。 According to this, it is expected that the detection accuracy of the closed circuit voltage will be improved.
 なお、上記の括弧内の参照番号は、後述の実施形態に記載の構成との対応関係を示すものに過ぎず、技術的範囲を何ら限定するものではない。 It should be noted that the reference numbers in parentheses above merely indicate the correspondence with the configurations described in the embodiments described later, and do not limit the technical scope in any way.
電池装置と組電池を示すブロック図である。1 is a block diagram showing a battery device and an assembled battery; FIG. SOCとOCVの特性を示すグラフ図である。It is a graph chart which shows the characteristic of SOC and OCV. 実特性と理想特性の関係性を示すグラフ図である。FIG. 3 is a graph showing the relationship between actual characteristics and ideal characteristics; 実特性の理想特性の関係性を示すグラフ図である。FIG. 10 is a graph diagram showing the relationship between the ideal characteristics and the actual characteristics; オフセット調整を示すグラフ図である。FIG. 5 is a graph showing offset adjustment; ゲイン調整を示すグラフ図である。FIG. 5 is a graph diagram showing gain adjustment; 電圧検出を説明するためのフローチャートである。4 is a flowchart for explaining voltage detection; 電圧検出を説明するためのタイミングチャートである。4 is a timing chart for explaining voltage detection; 電圧検出を説明するためのフローチャートである。4 is a flowchart for explaining voltage detection; 電圧検出を説明するためのフローチャートである。4 is a flowchart for explaining voltage detection;
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。 A plurality of modes for carrying out the present disclosure will be described below with reference to the drawings. In each form, the same reference numerals may be given to the parts corresponding to the matters described in the preceding form, and overlapping explanations may be omitted. When only a part of the configuration is described in each form, the previously described other forms can be applied to other parts of the configuration.
 各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせが可能である。また、特に組み合わせに支障が生じなければ、組み合わせが可能であることを明示していなくても、実施形態同士、実施形態と変形例、および、変形例同士を部分的に組み合せることも可能である。 It is possible to combine parts that are specifically stated to be combinable in each embodiment. In addition, if there is no particular problem with the combination, it is possible to partially combine the embodiments, the embodiments and the modified examples, and the modified examples even if it is not explicitly stated that the combination is possible. be.
 <第1実施形態>
 第1実施形態を図1~図7に基づいて説明する。
<First Embodiment>
A first embodiment will be described with reference to FIGS. 1 to 7. FIG.
 図1に電池装置100と組電池200を示す。電池装置100と組電池200はハイブリッド自動車や電気自動車などの電動車両に搭載される。この電動車両には、乗用車、バス、建設作業車、および、農業機械車両などが含まれる。 A battery device 100 and an assembled battery 200 are shown in FIG. The battery device 100 and the assembled battery 200 are mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle. The electric vehicles include passenger cars, buses, construction vehicles, agricultural machinery vehicles, and the like.
 電池装置100は組電池200の状態を監視するとともに制御する。組電池200は電動車両に推進力を提供する電動機などの各種車載機器に電源電力を供給する。 The battery device 100 monitors and controls the state of the assembled battery 200 . The assembled battery 200 supplies power to various in-vehicle devices such as an electric motor that provides propulsion to the electric vehicle.
 <組電池>
 組電池200は複数の電池スタック210を有する。複数の電池スタック210それぞれは電気的に直列接続された複数の電池セル220を有する。この電池セル220としてはリチウムイオン2次電池、ニッケル水素2次電池、および、有機ラジカル電池などの2次電池を採用することができる。直列接続された複数の電池セル220の出力電圧が電池スタック210の出力電圧になっている。図1では1つの電池スタック210に含まれる複数の電池セル220を破線で囲って示している。
<Battery pack>
The assembled battery 200 has a plurality of battery stacks 210 . Each of the plurality of battery stacks 210 has a plurality of battery cells 220 electrically connected in series. As the battery cell 220, a secondary battery such as a lithium-ion secondary battery, a nickel-hydrogen secondary battery, or an organic radical battery can be employed. The output voltage of the battery cells 220 connected in series is the output voltage of the battery stack 210 . In FIG. 1, a plurality of battery cells 220 included in one battery stack 210 are shown surrounded by dashed lines.
 複数の電池スタック210は電気的に直列接続若しくは並列接続される。本実施形態では、複数の電池スタック210が電気的に直列接続されている。これら直列接続された複数の電池スタック210の出力電圧の総和が組電池200の出力電圧になっている。この出力電圧に依存する電源電力が各種車載機器に供給される。 The plurality of battery stacks 210 are electrically connected in series or in parallel. In this embodiment, a plurality of battery stacks 210 are electrically connected in series. The output voltage of the assembled battery 200 is the sum of the output voltages of the plurality of battery stacks 210 connected in series. Power supply power dependent on this output voltage is supplied to various vehicle-mounted devices.
 複数の電池スタック210それぞれには、電池セル220の物理量を検出する物理量センサ230が設けられている。物理量センサ230の検出する物理量としては、例えば、電池セル220の温度や電流がある。 A physical quantity sensor 230 that detects the physical quantity of the battery cell 220 is provided in each of the plurality of battery stacks 210 . Physical quantities detected by the physical quantity sensor 230 include, for example, the temperature and current of the battery cell 220 .
 物理量センサ230で検出される物理量は、電池セル220、電池スタック210、および、組電池200それぞれのSOCの推定などに用いられる。SOCはstate of chargeの略である。SOCは充電量に相当する。 The physical quantity detected by the physical quantity sensor 230 is used for estimating the SOC of each of the battery cells 220, the battery stack 210, and the assembled battery 200. SOC is an abbreviation for state of charge. SOC corresponds to the amount of charge.
 SOCは上記した電源電力の各種車載機器への供給によって減少する。また、電池セル220は自己放電する。そのためにSOCは電源電力の非供給時においても減少する。 The SOC is reduced by supplying the above-mentioned power supply power to various on-vehicle devices. Also, the battery cell 220 self-discharges. Therefore, the SOC decreases even when the power supply is not supplied.
 このSOCの減少は、例えば、車外に設けられた電気スタンドなどの充電機器から組電池200への充電電力の供給によって改善される。この充電機器から組電池200への充電電力の供給は、電池装置100によって制御される。電池装置100は図示しない配線を介してCPLT信号を充電機器と送受信しながら、組電池200の充電を制御する。 This reduction in SOC is improved by supplying charging power to the assembled battery 200 from a charging device such as a desk lamp provided outside the vehicle, for example. The supply of charging power from this charging device to the assembled battery 200 is controlled by the battery device 100 . The battery device 100 controls charging of the assembled battery 200 while transmitting/receiving a CPLT signal to/from a charging device via wiring (not shown).
 なお、複数の電池セル220の品質や環境などは均一ではない。そのために複数の電池セル220のSOCにばらつきが生じる。このばらつきは、後述の均等化処理によって改善される。 It should be noted that the quality and environment of the plurality of battery cells 220 are not uniform. Therefore, the SOCs of the plurality of battery cells 220 vary. This variation is improved by an equalization process, which will be described later.
 <OCV、CCV、SOC>
 電池セル220には内部抵抗がある。そのために電池セル220のSOCに応じた実際のセル電圧と、監視部10で検出されるセル電圧とには、この内部抵抗と電池セル220を流れる電流に応じた電圧降下分の差がある。
<OCV, CCV, SOC>
The battery cell 220 has internal resistance. Therefore, there is a difference between the actual cell voltage corresponding to the SOC of the battery cell 220 and the cell voltage detected by the monitoring unit 10 by this internal resistance and the voltage drop corresponding to the current flowing through the battery cell 220 .
 以下においては、必要に応じて、電池セル220のSOCに応じた実際のセル電圧を開路電圧OCVと示す。監視部10で検出されるセル電圧を閉路電圧CCVと示す。電池セル220内の抵抗を内部抵抗R、電池セル220を実際に流れる電流を実電流Iとする。OCVはOpen Circuit Voltageの略である。CCVはClosed Circuit Voltageの略である。 In the following, the actual cell voltage corresponding to the SOC of the battery cell 220 is indicated as open circuit voltage OCV as necessary. A cell voltage detected by the monitoring unit 10 is indicated as a closed circuit voltage CCV. Assume that the internal resistance R is the resistance in the battery cell 220 and the actual current I is the current that actually flows through the battery cell 220 . OCV is an abbreviation for Open Circuit Voltage. CCV stands for Closed Circuit Voltage.
 閉路電圧CCVと開路電圧OCVの関係は、CCV=OCV±I×Rとあらわされる。電池セル220の放電時では、CCV=OCV-I×Rとなる。電池セル220の充電時では、CCV=OCV+I×Rとなる。 The relationship between the closed circuit voltage CCV and the open circuit voltage OCV is expressed as CCV=OCV±I×R. When the battery cell 220 is discharged, CCV=OCV-I×R. When charging the battery cell 220, CCV=OCV+I×R.
 <SOCとOCVの特性>
 電池セル220はSOCとOCVの特性を有している。電池セル220がリチウムイオン2次電池である場合のSOCとOCVの特性データを図2に示す。
<Characteristics of SOC and OCV>
The battery cell 220 has SOC and OCV characteristics. FIG. 2 shows SOC and OCV characteristic data when the battery cell 220 is a lithium ion secondary battery.
 図2に示すように、SOCが0%に近い過放電領域では、SOCに対するOCVの変化率が高くなっている。SOCが100%に近い過充電領域では、SOCに対するOCVの変化率が高くなっている。 As shown in FIG. 2, in the overdischarge region where the SOC is close to 0%, the rate of change of OCV with respect to SOC is high. In the overcharge region where the SOC is close to 100%, the rate of change of OCV with respect to SOC is high.
 これに対して、過放電領域と過充電領域との間の充放電領域では、SOCに対するOCVの変化率が低くなっている。電池セル220は主としてこの充放電領域で使用される。図2では、一例として、過放電領域と充放電領域との間のSOCとOCVの値をSOC1,OCV1と表記している。充放電領域と過充電領域との間のSOCとOCVの値をSOC2,OCV2と表記している。 On the other hand, in the charge/discharge region between the overdischarge region and the overcharge region, the rate of change of OCV with respect to SOC is low. Battery cell 220 is mainly used in this charge/discharge region. In FIG. 2, as an example, the values of SOC and OCV between the overdischarge region and the charge/discharge region are expressed as SOC1 and OCV1. SOC and OCV values between the charge/discharge region and the overcharge region are denoted as SOC2 and OCV2.
 図2に示す特性データは温度に依存している。そのため、温度によってSOCに対するOCVの変化率が変わる。それとともにSOC1,SOC2,OCV1,OCV2の値もわる。 The characteristic data shown in Fig. 2 depend on temperature. Therefore, the rate of change of OCV with respect to SOC changes depending on the temperature. Along with this, the values of SOC1, SOC2, OCV1 and OCV2 also change.
 <電池装置>
 電池装置100は監視部10と制御部30を有する。電池装置100は監視部10を電池スタック210と同数有している。複数の監視部10は複数の電池スタック210それぞれの状態にかかわる電池情報を検出する。
<Battery device>
The battery device 100 has a monitoring section 10 and a control section 30 . The battery device 100 has the same number of monitoring units 10 as the battery stacks 210 . The plurality of monitoring units 10 detect battery information related to the state of each of the plurality of battery stacks 210 .
 制御部30は複数の監視部10で検出された電池情報を取得する。また制御部30は他の図示しない各種ECUと各種センサから入力される車両情報を取得する。電動車両に充電機器が接続されている場合、制御部30は充電機器から入力される充電情報を取得する。これら車両情報と充電情報の制御部30への入力と、制御部30の処理結果の各種ECUと充電機器などへの出力は図1において白抜き矢印で示している。 The control unit 30 acquires battery information detected by the multiple monitoring units 10 . The control unit 30 also acquires vehicle information input from various other ECUs and various sensors (not shown). When a charging device is connected to the electric vehicle, the control unit 30 acquires charging information input from the charging device. The input to the control unit 30 of the vehicle information and charging information, and the output of the processing results of the control unit 30 to various ECUs, charging equipment, etc. are indicated by white arrows in FIG.
 制御部30は取得した諸情報に基づいて組電池200の状態を判定する。それとともに制御部30は組電池200に対する処理を実行する。組電池200に対する処理としては、例えば、組電池200の充放電、組電池200に含まれる複数の電池セル220のSOCを均等化する均等化処理などがある。 The control unit 30 determines the state of the assembled battery 200 based on the acquired information. At the same time, the control unit 30 executes processing for the assembled battery 200 . The processing for the assembled battery 200 includes, for example, charging and discharging of the assembled battery 200, equalization processing for equalizing the SOCs of the plurality of battery cells 220 included in the assembled battery 200, and the like.
 <監視部>
 複数の監視部10それぞれは複数の電池スタック210それぞれに個別に設けられる。1つの監視部10は1つの電池スタック210に含まれる複数の電池セル220それぞれの正極と負極との間の端子間電圧(閉路電圧)を検出する。また、監視部10は物理量センサ230で検出された物理量を取得する。監視部10は制御部30から入力される指示信号に基づいて処理を実行する。
<Monitoring part>
Each of the plurality of monitoring units 10 is individually provided for each of the plurality of battery stacks 210 . One monitoring unit 10 detects the inter-terminal voltage (closed-circuit voltage) between the positive and negative electrodes of each of the plurality of battery cells 220 included in one battery stack 210 . Also, the monitoring unit 10 acquires the physical quantity detected by the physical quantity sensor 230 . The monitoring unit 10 executes processing based on instruction signals input from the control unit 30 .
 図1に示すように監視部10は、マルチプレクサ11、レベルシフタ12、AD変換部13、監視制御部14、および、監視通信部15を有している。図面ではマルチプレクサ11をMUXと表記している。レベルシフタ12をLSと表記している。AD変換部13をADと表記している。監視制御部14をMCUと表記している。監視通信部15をMCSと表記している。 As shown in FIG. 1, the monitoring unit 10 has a multiplexer 11, a level shifter 12, an AD conversion unit 13, a monitoring control unit 14, and a monitoring communication unit 15. In the drawing, the multiplexer 11 is written as MUX. The level shifter 12 is written as LS. The AD converter 13 is written as AD. The monitor control unit 14 is written as MCU. The monitoring communication unit 15 is written as MCS.
 マルチプレクサ11は1つの電池スタック210に含まれる複数の電池セル220それぞれの正極と負極とに接続されている。これにより、マルチプレクサ11には複数の電池セル220の閉路電圧が入力される。 The multiplexer 11 is connected to the positive and negative electrodes of each of the plurality of battery cells 220 included in one battery stack 210 . As a result, the multiplexer 11 receives the closed circuit voltages of the plurality of battery cells 220 .
 また、マルチプレクサ11は物理量センサ230に接続されている。これにより、マルチプレクサ11には物理量が入力される。 Also, the multiplexer 11 is connected to the physical quantity sensor 230 . Thereby, the physical quantity is input to the multiplexer 11 .
 マルチプレクサ11は入力された複数の閉路電圧を順次選択して検出する。そしてマルチプレクサ11は検出した閉路電圧をレベルシフタ12に順次出力する。また、マルチプレクサ11は入力された複数の物理量も順次選択して検出する。マルチプレクサ11は検出した物理量もレベルシフタ12に順次出力する。マルチプレクサ11が検出部に相当する。 The multiplexer 11 sequentially selects and detects a plurality of input closed circuit voltages. The multiplexer 11 sequentially outputs the detected closed circuit voltages to the level shifter 12 . The multiplexer 11 also sequentially selects and detects a plurality of input physical quantities. The multiplexer 11 also sequentially outputs the detected physical quantities to the level shifter 12 . The multiplexer 11 corresponds to the detection section.
 レベルシフタ12は、オペアンプと、オペアンプの入力端子と出力端子との間で並列接続された複数の帰還回路と、を有する。この帰還回路には直列接続されたスイッチとコンデンサが含まれている。複数の帰還回路に含まれるコンデンサの静電容量は同一でも不同でもよい。 The level shifter 12 has an operational amplifier and a plurality of feedback circuits connected in parallel between the input terminal and the output terminal of the operational amplifier. The feedback circuit includes a series connected switch and capacitor. Capacitances of capacitors included in a plurality of feedback circuits may be the same or different.
 レベルシフタ12の有する複数の帰還回路のスイッチが、監視制御部14によって選択的に通電状態と遮断状態とに制御される。これによりオペアンプの入力端子と出力端子との間で接続されるコンデンサの数が変化する。オペアンプの入力端子と出力端子との間の静電容量が変化する。また、オペアンプの入力端子と出力端子との間の抵抗が変化する。この結果、レベルシフタ12のゲインとオフセットが制御される。 The switches of a plurality of feedback circuits of the level shifter 12 are selectively turned on and off by the monitor control unit 14 . This changes the number of capacitors connected between the input and output terminals of the operational amplifier. The capacitance between the input and output terminals of the operational amplifier changes. Also, the resistance between the input terminal and the output terminal of the operational amplifier changes. As a result, the gain and offset of the level shifter 12 are controlled.
 AD変換部13にはレベルシフタ12からゲインとオフセットの調整された閉路電圧と物理量のアナログ信号が入力される。AD変換部13は入力レンジを制限するためのクランプ回路を有する。このクランプ回路が監視制御部14によって制御される。これによってAD変換部13の入力レンジが制御される。 The AD conversion unit 13 receives from the level shifter 12 an analog signal of a closed circuit voltage and a physical quantity whose gain and offset have been adjusted. The AD converter 13 has a clamp circuit for limiting the input range. This clamp circuit is controlled by the monitor controller 14 . The input range of the AD converter 13 is thereby controlled.
 AD変換部13の入力レンジの制限とレベルシフタ12のゲインとオフセットの調整により、AD変換部13でアナログデジタル変換されるアナログ信号の電圧レンジが制御される。AD変換部13でアナログデジタル変換される閉路電圧と物理量の電圧レンジが制御される。この結果、閉路電圧と物理量の取得範囲が制御される。 By limiting the input range of the AD converter 13 and adjusting the gain and offset of the level shifter 12, the voltage range of the analog signal converted from analog to digital by the AD converter 13 is controlled. The voltage range of the closed circuit voltage and the physical quantity that are analog-to-digital converted by the AD converter 13 are controlled. As a result, the acquisition range of the closed circuit voltage and the physical quantity is controlled.
 AD変換部13は連続的なアナログ信号を断続的にサンプリングする。そしてAD変換部13はサンプリングした値を量子化して、離散したデジタル信号に変換する。係る変換を行うため、アナログ信号とデジタル信号とには誤差(量子化誤差)がある。 The AD converter 13 intermittently samples continuous analog signals. Then, the AD converter 13 quantizes the sampled values and converts them into discrete digital signals. Due to such conversion, there is an error (quantization error) between the analog signal and the digital signal.
 この量子化誤差は、AD変換部13の量子化ビット数が大きいほどに小さくなる。しかしながら、量子化ビット数は固定値になっている。そのため、例えば、閉路電圧の取得範囲が0.0V~5.0Vの場合、AD変換部13の分解能は、この0.0V~5.0Vを量子化ビット数で割った値になる。 This quantization error becomes smaller as the number of quantization bits of the AD converter 13 increases. However, the number of quantization bits is fixed. Therefore, for example, when the acquisition range of the closed circuit voltage is 0.0 V to 5.0 V, the resolution of the AD converter 13 is the value obtained by dividing this 0.0 V to 5.0 V by the number of quantization bits.
 これに対して、例えば、閉路電圧の取得範囲が10分の1の3.0V~3.5Vの場合、AD変換部13の分解能は、この3.0V~3.5Vを量子化ビット数で割った値になる。この場合、AD変換部13の分解能は10倍程度に高まる。このように、取得範囲を制限することで、閉路電圧の検出精度が向上される。 On the other hand, for example, when the acquisition range of the closed circuit voltage is 3.0 V to 3.5 V, which is 1/10, the resolution of the AD conversion unit 13 is 3.0 V to 3.5 V with the number of quantization bits. becomes the divided value. In this case, the resolution of the AD converter 13 is increased by about ten times. By limiting the acquisition range in this way, the detection accuracy of the closed circuit voltage is improved.
 監視制御部14はプロセッサとこのプロセッサによって読み取り可能なプログラムを非一時的に記憶する非遷移的実体的記憶媒体を有する。この非遷移的実体的記憶媒体にAD変換部13から入力されるデジタル信号や制御部30から入力される指示信号が保存される。監視制御部14のプロセッサは指示信号に基づいてマルチプレクサ11、レベルシフタ12、および、AD変換部13を制御する。 The monitoring control unit 14 has a processor and a non-transitional material storage medium that non-temporarily stores a program readable by this processor. A digital signal input from the AD conversion unit 13 and an instruction signal input from the control unit 30 are stored in this non-transitional substantive storage medium. The processor of the monitor controller 14 controls the multiplexer 11, the level shifter 12, and the AD converter 13 based on the instruction signal.
 監視制御部14に入力される指示信号には、検出対象の電池セル220の閉路電圧の取得範囲が含まれている。監視制御部14は検出対象の閉路電圧をマルチプレクサ11が選択する際に、レベルシフタ12のゲインとオフセットを制御する。監視制御部14はAD変換部13の入力レンジを制限する。これにより閉路電圧の取得範囲が制御される。なお、監視制御部14は係る閉路電圧の取得範囲の制限を実施しなくともよい。同様にして、監視制御部14は物理量の取得範囲の制限を実施しなくともよい。 The instruction signal input to the monitoring control unit 14 includes the acquisition range of the closed circuit voltage of the battery cell 220 to be detected. The monitor control unit 14 controls the gain and offset of the level shifter 12 when the multiplexer 11 selects the closed circuit voltage to be detected. The monitor controller 14 limits the input range of the AD converter 13 . This controls the acquisition range of the closed circuit voltage. Note that the monitoring control unit 14 does not need to limit the acquisition range of the closed circuit voltage. Similarly, the monitoring control unit 14 does not have to limit the acquisition range of physical quantities.
 監視通信部15にはデジタル信号の閉路電圧と物理量が入力される。監視通信部15はこのデジタル信号を制御部30に出力する。 The closed-circuit voltage of the digital signal and the physical quantity are input to the monitoring communication unit 15 . The monitor communication unit 15 outputs this digital signal to the control unit 30 .
 <制御部>
 図1に示すように制御部30は、制御通信部31、記憶部32、および、演算部33を有する。図面では制御通信部31をCCUと表記している。記憶部32をMUと表記している。演算部33をOPと表記している。
<Control unit>
As shown in FIG. 1 , the control unit 30 has a control communication unit 31 , a storage unit 32 and a calculation unit 33 . In the drawing, the control communication unit 31 is denoted as CCU. The storage unit 32 is written as MU. The calculation unit 33 is written as OP.
 制御通信部31には諸情報が入力される。この諸情報には監視部10で取得された閉路電圧と物理量が含まれる。また、この諸情報には車両情報と充電情報が含まれる。車両情報には電動車両の走行状態や現在時刻が含まれている。充電情報には充電電力が含まれている。 Various information is input to the control communication unit 31 . This information includes the closed circuit voltage and the physical quantity acquired by the monitoring unit 10 . In addition, this information includes vehicle information and charging information. The vehicle information includes the running state of the electric vehicle and the current time. The charging information includes charging power.
 なお、図示しない通信部に車両情報と充電情報が入力されてもよい。そして、制御部30がRTCを有する場合、現在時刻が車両情報に含まれていなくともよい。RTCはreal time clockの略である。 Note that vehicle information and charging information may be input to a communication unit (not shown). And when the control part 30 has RTC, the present time does not need to be contained in vehicle information. RTC is an abbreviation for real time clock.
 記憶部32はコンピュータやプロセッサによって読み取り可能なプログラムを非一時的に記憶する非遷移的実体的記憶媒体である。記憶部32は揮発性メモリと不揮発性メモリとを有している。この記憶部32に制御通信部31に入力された諸情報や演算部33の処理結果が記憶される。 The storage unit 32 is a non-transitional material storage medium that non-temporarily stores programs readable by computers and processors. The storage unit 32 has a volatile memory and a nonvolatile memory. Various information input to the control communication unit 31 and processing results of the calculation unit 33 are stored in the storage unit 32 .
 また、記憶部32には演算部33が演算処理するためのプログラムや参照値があらかじめ記憶されている。この参照値には、例えば、各種2次電池のSOCとOCVの特性データの温度依存性、均等化処理の実行を判定する均等化判定値、複数の電池セル220の製造日、および、劣化判定値などが含まれている。また、参照値には、AD変換部13の入出力特性に関連する変換部情報が含まれている。 In addition, the storage unit 32 stores in advance programs and reference values for the operation unit 33 to carry out operation processing. The reference values include, for example, the temperature dependence of SOC and OCV characteristic data of various secondary batteries, an equalization determination value for determining execution of equalization processing, manufacturing dates of the plurality of battery cells 220, and deterioration determination. including values. Further, the reference value includes converter information related to the input/output characteristics of the AD converter 13 .
 演算部33にはプロセッサが含まれている。演算部33は制御通信部31に入力された諸情報を記憶部32に記憶する。演算部33は記憶部32に記憶された情報に基づいて各種演算処理を実行する。この演算処理された結果を含む電気信号は、制御通信部31を介して監視部10に出力される。この演算処理された結果を含む電気信号は、制御通信部31若しくは図示しない通信部を介して各種ECUに出力される。 The computing unit 33 includes a processor. The calculation unit 33 stores various information input to the control communication unit 31 in the storage unit 32 . The calculation unit 33 executes various calculation processes based on information stored in the storage unit 32 . An electrical signal including the result of this arithmetic processing is output to the monitoring section 10 via the control communication section 31 . An electrical signal including the result of this arithmetic processing is output to various ECUs via the control communication unit 31 or a communication unit (not shown).
 演算処理を具体的に例示すると、演算部33は記憶部32に記憶された情報に基づいて電池セル220のSOCの推定を行う。演算部33は推定したSOCと記憶部32に記憶された情報に基づいて監視部10の動作を指示する指示信号の生成を行う。この指示信号には、後述のゲインとオフセットの調整が含まれている。なお、記憶部32にSOCを推定するための電池情報が記憶されていない場合、演算部33はレベルシフタ12のゲインとオフセットを初期値に設定する。 To give a specific example of the arithmetic processing, the arithmetic unit 33 estimates the SOC of the battery cell 220 based on the information stored in the storage unit 32 . The calculation unit 33 generates an instruction signal for instructing the operation of the monitoring unit 10 based on the estimated SOC and the information stored in the storage unit 32 . This instruction signal includes gain and offset adjustments, which will be described later. Note that if the battery information for estimating the SOC is not stored in the storage unit 32, the calculation unit 33 sets the gain and offset of the level shifter 12 to initial values.
 ゲインとオフセットの調整のほかに、演算部33は検出対象の電池セル220の閉路電圧の取得範囲を定めてもよい。演算部33は複数の電池スタック210それぞれに対する取得範囲を含む指示信号を監視部10に出力する。なお、記憶部32にSOCを推定するための電池情報が記憶されていない場合、演算部33は閉路電圧の取得範囲を、電池セル220の閉路電圧の取りうる範囲に設定する。 In addition to adjusting the gain and offset, the calculation unit 33 may determine the acquisition range of the closed circuit voltage of the battery cell 220 to be detected. The calculation unit 33 outputs an instruction signal including the acquisition range for each of the plurality of battery stacks 210 to the monitoring unit 10 . Note that if the battery information for estimating the SOC is not stored in the storage unit 32 , the calculation unit 33 sets the acquisition range of the closed circuit voltage to a possible range of the closed circuit voltage of the battery cell 220 .
 ゲインとオフセットの調整、および、閉路電圧の取得範囲の決定のほかに、演算部33は複数の電池セル220のSOCのばらつきを低減する均等化処理の実行を決定してもよい。演算部33は複数の電池スタック210それぞれに対する均等化処理を含む指示信号を監視部10に出力する。 In addition to adjusting the gain and offset and determining the acquisition range of the closed circuit voltage, the computing unit 33 may determine execution of an equalization process to reduce variations in the SOCs of the plurality of battery cells 220 . The calculation unit 33 outputs an instruction signal including equalization processing for each of the plurality of battery stacks 210 to the monitoring unit 10 .
 演算部33は監視部10から入力された閉路電圧の最大値と最小値の差を演算する。この差が均等化判定値を上回る場合、演算部33は均等化処理の実行を決定する。この均等化処理は、例えば、上記した閉路電圧の最大値と最小値のうちの少なくとも一方が検出された電池スタック210だけで行われてもよい。均等化処理は、すべての電池スタック210で行われてもよい。 The computing unit 33 computes the difference between the maximum value and the minimum value of the closed circuit voltage input from the monitoring unit 10 . If this difference exceeds the equalization determination value, the calculation unit 33 decides to execute the equalization process. This equalization process may be performed, for example, only in the battery stack 210 in which at least one of the maximum value and the minimum value of the closed circuit voltage is detected. The equalization process may be performed on all battery stacks 210 .
 図面では明記していないが、監視部10は、マルチプレクサ11と複数の電池セル220の正極および負極それぞれとを接続する複数の配線を架橋する複数のスイッチを有する。監視制御部14は演算部33から入力される指示信号に基づいて、これら複数のスイッチを選択的に通電状態と遮断状態とに制御する。これにより、電気的に接続された複数の電池セル220のうちの相対的にSOCの高い電池セル220が放電される。これとは逆に、相対的にSOCの低い電池セル220が充電される。この結果、複数の電池セル220のSOCが均等化される。 Although not clearly shown in the drawing, the monitoring unit 10 has a plurality of switches that bridge a plurality of wires connecting the multiplexer 11 and the positive and negative electrodes of the plurality of battery cells 220, respectively. The monitoring control unit 14 selectively controls the plurality of switches to the energized state and the cut-off state based on the instruction signal input from the arithmetic unit 33 . As a result, the battery cell 220 with a relatively high SOC among the plurality of electrically connected battery cells 220 is discharged. Conversely, battery cells 220 with relatively low SOC are charged. As a result, the SOCs of the plurality of battery cells 220 are equalized.
 <積分非直線性誤差>
 上記したように、AD変換部13は連続的なアナログ信号を離散したデジタル信号に変換する。そのためにアナログ信号とデジタル信号とには量子化誤差がある。また、AD変換部13には積分非直線性誤差がある。
<Integral nonlinearity error>
As described above, the AD converter 13 converts continuous analog signals into discrete digital signals. Therefore, there is a quantization error between the analog signal and the digital signal. Further, the AD converter 13 has an integral nonlinear error.
 AD変換部13に入力されるアナログ信号と、AD変換部13から出力されるデジタル信号とに対するAD変換部13の入出力特性は、理想的には、線形的な振る舞いを示すことが期待される。しかしながら、AD変換部13の入出力特性は、実際には、非線形的な振る舞いを示す。 Ideally, the input/output characteristics of the AD conversion unit 13 with respect to the analog signal input to the AD conversion unit 13 and the digital signal output from the AD conversion unit 13 are expected to exhibit linear behavior. . However, the input/output characteristics of the AD converter 13 actually exhibit nonlinear behavior.
 積分非直線性誤差は、理想とする入出力特性を備えるAD変換部13から出力されるデジタル信号と、実際の入出力特性を備えるAD変換部13から出力されるデジタル信号との差に相当する。積分非直線性誤差は、AD変換部13に入力されるアナログ信号の値によって、大きくなったり小さくなったりする。 The integral non-linearity error corresponds to the difference between the digital signal output from the AD converter 13 having ideal input/output characteristics and the digital signal output from the AD converter 13 having actual input/output characteristics. . The integral nonlinearity error increases or decreases depending on the value of the analog signal input to the AD converter 13 .
 図3~図6に、AD変換部13に入力されるアナログ信号とAD変換部13から出力されるデジタル信号の関係性を示す。横軸はAD変換部13に入力されるアナログ信号の電圧値であり、AVで示している。縦軸はAD変換部13から出力されるデジタル信号の電圧値であり、DVで示している。横軸と縦軸それぞれの単位はボルトである。以下においては、表記を簡明とするため、AD変換部13に入力されるアナログ信号の電圧を入力電圧と示す。AD変換部13から出力されるデジタル信号の電圧を出力電圧と示す。 3 to 6 show the relationship between the analog signal input to the AD converter 13 and the digital signal output from the AD converter 13. FIG. The horizontal axis represents the voltage value of the analog signal input to the AD converter 13, which is indicated by AV. The vertical axis represents the voltage value of the digital signal output from the AD converter 13, which is indicated by DV. The units of the horizontal and vertical axes are volts. In the following description, the voltage of the analog signal input to the AD converter 13 will be referred to as an input voltage for the sake of simplicity. The voltage of the digital signal output from the AD converter 13 is indicated as output voltage.
 図面では、理想的な入出力特性を一点鎖線で示している。実際の入出力特性を実線で示している。そして、積分非直線性誤差を二点鎖線で示している。以下においては表記を簡明とするため、理想的な入出力特性を理想特性と示す。実際の入出力特性を実特性と示す。 In the drawing, the ideal input/output characteristics are indicated by a dashed line. The solid line indicates the actual input/output characteristics. The integral nonlinearity error is indicated by a two-dot chain line. In the following description, ideal input/output characteristics are referred to as ideal characteristics for the sake of simplicity. Actual input/output characteristics are indicated as actual characteristics.
 理想特性と実特性は温度依存性を有する。本実施形態の変換部情報には、理想特性と実特性の温度依存性が含まれている。なお、変換部情報に積分非直線性誤差の温度依存性が含まれてもよい。  The ideal characteristics and the actual characteristics have temperature dependence. The conversion unit information of this embodiment includes the temperature dependence of the ideal characteristics and the actual characteristics. Note that the conversion unit information may include the temperature dependence of the integral nonlinearity error.
 例えば図3において模式的に示すように、AD変換部13の理想特性は線形的な振る舞いを示す。実特性は非線形的な振る舞いを示す。しかしながら、以下においては説明を簡便とするため、図4~図6に示すように、理想特性と実特性それぞれを線形で示す。 For example, as schematically shown in FIG. 3, the ideal characteristic of the AD converter 13 exhibits linear behavior. Real characteristics show nonlinear behavior. However, in order to simplify the explanation below, as shown in FIGS. 4 to 6, ideal characteristics and actual characteristics are shown linearly.
 図4に示すように、理想特性と実特性とは交差している。これら2つの特性の交点の入力電圧がLSTになっている。図4に示す関係性の場合、LSTの入力電圧がAD変換部13に入力される場合、理想特性と実特性との差が最も小さくなることが期待される。積分非直線性誤差が最も小さくなることが期待される。以下においては2つの特性の交点の入力電圧を誤差最小点と示す。 As shown in Fig. 4, the ideal characteristics and the actual characteristics intersect. The input voltage at the intersection of these two characteristics is LST. In the case of the relationship shown in FIG. 4, when the input voltage of LST is input to the AD converter 13, it is expected that the difference between the ideal characteristics and the actual characteristics will be the smallest. Minimal integral nonlinearity error is expected. The input voltage at the intersection of the two characteristics is hereinafter referred to as the minimum error point.
 しかしながら、実際に入力される入力電圧がIVの場合、AD変換部13から実際に出力される出力電圧はOV1になる。AD変換部13から理想的に出力されることの期待される出力電圧はOV0になる。積分非直線性誤差がOV1とOV0の差の絶対値になる。 However, when the input voltage that is actually input is IV, the output voltage that is actually output from the AD converter 13 is OV1. The output voltage expected to be ideally output from the AD converter 13 is OV0. The integral nonlinearity error is the absolute value of the difference between OV1 and OV0.
 積分非直線性誤差を少なくするために、演算部33はレベルシフタ12のゲインとオフセットを調整する。ゲインとオフセットの調整により、実特性が変化する。誤差最小点が変化する。  In order to reduce the integral non-linearity error, the calculation unit 33 adjusts the gain and offset of the level shifter 12 . Adjusting the gain and offset changes the actual characteristics. The minimum error point changes.
 演算部33はレベルシフタ12のオフセットを調整する。こうすることで、例えば図5で簡易的に示すように、演算部33は実特性のオフセットを変化させる。演算部33は誤差最小点LSTを入力電圧IVにする。これにより、実際の出力電圧OV1が理想の出力電圧OV0になることが期待される。この結果、積分非直線性誤差が少なくなることが期待される。 The calculation unit 33 adjusts the offset of the level shifter 12 . By doing so, for example, as simply shown in FIG. 5, the calculation unit 33 changes the offset of the actual characteristic. The calculation unit 33 sets the minimum error point LST to the input voltage IV. As a result, it is expected that the actual output voltage OV1 becomes the ideal output voltage OV0. As a result, less integral nonlinearity error is expected.
 演算部33はレベルシフタ12のゲインを調整する。こうすることで、例えば図6で簡易的に示すように、演算部33は実特性の傾きを変化させる。演算部33は誤差最小点LSTを入力電圧IVにする。これにより、出力電圧OV1が出力電圧OV0になることが期待される。積分非直線性誤差が少なくなることが期待される。 The calculation unit 33 adjusts the gain of the level shifter 12 . By doing so, the calculation unit 33 changes the slope of the actual characteristic, as simply shown in FIG. 6, for example. The calculation unit 33 sets the minimum error point LST to the input voltage IV. As a result, the output voltage OV1 is expected to become the output voltage OV0. Less integral nonlinearity error is expected.
 なお、図3に示すように、本来の実特性は非線形性を示す。そのため、図5と図6に示すように、ゲインとオフセットの一方だけを変化させるだけで、誤差最小点LSTを入力電圧IVにするのは難しい。演算部33は、ゲインとオフセットの少なくとも一方を変化させることで、誤差最小点LSTと入力電圧IVとの差を狭める。 It should be noted that, as shown in FIG. 3, the original real characteristics exhibit nonlinearity. Therefore, as shown in FIGS. 5 and 6, it is difficult to set the minimum error point LST to the input voltage IV by changing only one of the gain and the offset. The calculation unit 33 narrows the difference between the minimum error point LST and the input voltage IV by changing at least one of the gain and the offset.
 また、上記したように本来の実特性は非線形性を示すため、理想特性と実特性との交点は複数になることが想定される。図3に示す例の場合、交点は2つになる。2つの交点のアナログ信号の電圧値が、第1誤差最小点LST1と第2誤差最小点LST2になる。 In addition, since the original real characteristics show nonlinearity as described above, it is assumed that there will be multiple intersections between the ideal characteristics and the real characteristics. In the example shown in FIG. 3, there are two intersections. The voltage values of the analog signals at the two intersections are the first error minimum point LST1 and the second error minimum point LST2.
 この場合、演算部33は、第1誤差最小点LST1と第2誤差最小点LST2のいずれか一方が入力電圧IVになるようにゲインとオフセットの少なくとも一方を変化させる。演算部33は、例えば、第1誤差最小点LST1と第2誤差最小点LST2のうち、入力電圧IVとの差の少ないほうを選択する。若しくは、演算部33は、第1誤差最小点LST1と第2誤差最小点LST2のうち、誤差最小点と入力電圧IVとの差を極力狭めた場合に、誤差最小点の近傍における積分非直線性誤差が少ないほうを選択する。そして演算部33は選択した誤差最小点が入力電圧IVになるようにゲインとオフセットの少なくとも一方を変化させる。 In this case, the computing section 33 changes at least one of the gain and the offset so that either one of the first minimum error point LST1 and the second minimum error point LST2 becomes the input voltage IV. The calculation unit 33 selects, for example, the first minimum error point LST1 or the second minimum error point LST2, whichever has the smaller difference from the input voltage IV. Alternatively, when the difference between the input voltage IV and the first minimum error point LST1 or the second minimum error point LST2 is narrowed as much as possible, the calculation unit 33 reduces the integral nonlinearity in the vicinity of the minimum error point. Choose the one with the least error. Then, the calculation unit 33 changes at least one of the gain and the offset so that the selected minimum error point becomes the input voltage IV.
 なお、上記の近傍とは、誤差最小点を中心とする幅に相当する。近傍の値は誤差最小点と幅の上下限値との差に相当する。近傍の値は、例えば、後述の取得周期の時間が経過する間に、閉路電圧が変化することの想定される電圧変化量に基づいて決定することができる。 It should be noted that the neighborhood corresponds to the width centered on the minimum error point. The neighboring values correspond to the difference between the minimum error point and the upper and lower limits of the width. The value in the neighborhood can be determined, for example, based on the amount of voltage change that the closed circuit voltage is expected to change during the time of the acquisition period described later.
 <電圧検出処理>
 次に、演算部33の電圧検出処理を図7に基づいて説明する。演算部33はこの電圧検出処理をサイクルタスクとして実行している。
<Voltage detection processing>
Next, the voltage detection processing of the computing section 33 will be described with reference to FIG. The calculation unit 33 executes this voltage detection process as a cycle task.
 電圧検出処理は取得周期で実行される。取得周期は、急速充電などによって電池セル220の充放電状態が急変しない限り、電池セル220のSOCが急変しないことの期待される時間間隔である。  The voltage detection process is executed at the acquisition cycle. The acquisition period is a time interval at which the SOC of the battery cell 220 is expected not to change suddenly unless the charge/discharge state of the battery cell 220 changes suddenly due to rapid charging or the like.
 ステップS10で演算部33は、閉路電圧が記憶部32に記憶されているか否かを判定する。閉路電圧が記憶部32に記憶されている場合、演算部33はステップS20へ進む。閉路電圧が記憶部32に記憶されていない場合、演算部33はステップS60へ進む。 In step S10, the calculation unit 33 determines whether or not the closed circuit voltage is stored in the storage unit 32. When the closed circuit voltage is stored in the storage unit 32, the calculation unit 33 proceeds to step S20. If the closed circuit voltage is not stored in the storage unit 32, the calculation unit 33 proceeds to step S60.
 ステップS20へ進むと演算部33は、物理量センサ230で検出された温度を取得する。そして演算部33はその温度に対応する理想特性と実特性の温度依存性を記憶部32から読み出す。演算部33はこれら理想特性と実特性とに基づいて、誤差最小点を算出する。なお、記憶部32に積分非直線性誤差の温度依存性が記憶されている場合、ステップS20において演算部33は、物理量センサ230で検出された温度に対応する誤差最小点を読み出す。この後に演算部33はステップS30へ進む。 When proceeding to step S20, the calculation unit 33 acquires the temperature detected by the physical quantity sensor 230. Then, the calculation unit 33 reads from the storage unit 32 the temperature dependence of the ideal characteristics and the actual characteristics corresponding to the temperature. The calculation unit 33 calculates the minimum error point based on these ideal characteristics and actual characteristics. If the storage unit 32 stores the temperature dependence of the integral nonlinearity error, the calculation unit 33 reads the minimum error point corresponding to the temperature detected by the physical quantity sensor 230 in step S20. After that, the calculation unit 33 proceeds to step S30.
 ステップS30へ進むと演算部33は、算出した誤差最小点と、記憶部32に記憶されている閉路電圧との差分値を算出する。この後に演算部33はステップS40へ進む。 When proceeding to step S<b>30 , the calculation unit 33 calculates the difference value between the calculated minimum error point and the closed circuit voltage stored in the storage unit 32 . After that, the calculation unit 33 proceeds to step S40.
 ステップS40へ進むと演算部33は、ステップS40で算出した差分値をゼロに近づけるためのゲインとオフセットを算出する。この後に演算部33はステップS50へ進む。 When proceeding to step S40, the calculation unit 33 calculates a gain and an offset for bringing the difference value calculated in step S40 closer to zero. After this, the calculation unit 33 proceeds to step S50.
 ステップS50へ進むと演算部33は、ステップS40で算出したゲインとオフセットを含む指示信号を、調整信号として監視部10に送信する。この後に演算部33はステップS60へ進む。 When proceeding to step S50, the calculation unit 33 transmits an instruction signal including the gain and offset calculated in step S40 to the monitoring unit 10 as an adjustment signal. After this, the calculation unit 33 proceeds to step S60.
 ステップS60へ進むと演算部33は、監視部10で検出された閉路電圧を取得する。この後に演算部33はステップS70へ進む。 When proceeding to step S60, the calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10. After that, the calculation unit 33 proceeds to step S70.
 ステップS70へ進むと演算部33は、取得した閉路電圧を記憶部32に記憶する。そして演算部33は電圧検出処理を終了する。 When proceeding to step S70, the calculation unit 33 stores the acquired closed circuit voltage in the storage unit 32. Then, the calculation unit 33 terminates the voltage detection process.
 <作用効果>
 これまでに説明したように演算部33は、レベルシフタ12のゲインとオフセットの少なくとも一方を調整することで、記憶部32に記憶された過去の閉路電圧と、誤差最小点との差を狭めている。そして、演算部33は新たな閉路電圧を取得している。
<Effect>
As described above, the calculation unit 33 adjusts at least one of the gain and offset of the level shifter 12 to narrow the difference between the past closed circuit voltage stored in the storage unit 32 and the minimum error point. . Then, the calculation unit 33 acquires a new closed circuit voltage.
 これによれば、新たに取得される閉路電圧と誤差最小点との差が小さくなることが期待される。AD変換部13の積分非直線性誤差が低減されることが期待される。この結果、閉路電圧の検出精度の向上が期待される。 According to this, it is expected that the difference between the newly acquired closed-circuit voltage and the minimum error point will become smaller. It is expected that the integral nonlinearity error of the AD converter 13 will be reduced. As a result, an improvement in detection accuracy of the closed circuit voltage is expected.
 (第2実施形態)
 次に、第2実施形態を図8~図10に基づいて説明する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIGS. 8 to 10. FIG.
 第1実施形態では、演算部33が記憶部32に記憶された過去の閉路電圧と誤差最小点と差が狭まるように、レベルシフタ12のゲインとオフセットの少なくとも一方を調整する例を示した。 In the first embodiment, an example was shown in which the calculation unit 33 adjusts at least one of the gain and offset of the level shifter 12 so that the difference between the past closed circuit voltage stored in the storage unit 32 and the minimum error point is narrowed.
 これに対して本実施形態では、演算部33が記憶部32に記憶された過去の閉路電圧と記憶部32に記憶された情報とに基づいて、新たに取得する際の閉路電圧を推定する。そして演算部33は、この推定した閉路電圧(推定電圧)と誤差最小点との差が狭まるように、レベルシフタ12のゲインとオフセットの少なくとも一方を調整する。この後に演算部33は閉路電圧を新たに取得する。 On the other hand, in the present embodiment, the calculation unit 33 estimates the new closed circuit voltage based on the past closed circuit voltage stored in the storage unit 32 and the information stored in the storage unit 32 . Then, the calculation unit 33 adjusts at least one of the gain and offset of the level shifter 12 so that the difference between the estimated closed circuit voltage (estimated voltage) and the minimum error point is narrowed. After this, the calculation unit 33 newly acquires the closed circuit voltage.
 これにより、AD変換部13の積分非直線性誤差が効果的に低減されることが期待される。閉路電圧の検出精度が効果的に向上されることが期待される。 As a result, it is expected that the integral nonlinearity error of the AD converter 13 will be effectively reduced. It is expected that the detection accuracy of the closed circuit voltage will be effectively improved.
 <閉路電圧の時間変化>
 図2に示す電池セル220のSOCとOCVの特性のため、放電によってSOCが低下するとOCVも低下する。それにともなって電池セル220の閉路電圧CCVも減少する。これとは逆に、充電機器からの充電電力の供給によってSOCが増大すると、閉路電圧CCVも増大する。このように、閉路電圧CCVは時間変化する。
<Time change of closed circuit voltage>
Due to the SOC and OCV characteristics of the battery cell 220 shown in FIG. 2, when the SOC drops due to discharge, the OCV also drops. Accordingly, the closed circuit voltage CCV of the battery cell 220 also decreases. Conversely, when the SOC increases due to the supply of charging power from the charging equipment, the closed circuit voltage CCV also increases. Thus, the closing voltage CCV changes with time.
 図8に閉路電圧の時間変化を示す。縦軸は任意単位である。横軸は時間である。任意単位はa.u.で表記している。時間はTで表記している。 Fig. 8 shows the time change of the closed circuit voltage. The vertical axis is in arbitrary units. The horizontal axis is time. Arbitrary units are a.d. u. is indicated. Time is denoted by T.
 図8には、閉路電圧のほかに、電池装置100の駆動状態、組電池200を流れる実電流、ある一つの電池セル220の閉路電圧を示している。電池装置100の駆動状態はDSと表記している。説明を簡便とするため、図面に示す電池セル220の閉路電圧の挙動と組電池200の閉路電圧の挙動は同等とする。挙動を明示するため、図面では電池セル220の閉路電圧が短時間で大きく変化するように図示している。 In addition to the closed circuit voltage, FIG. 8 shows the driving state of the battery device 100, the actual current flowing through the assembled battery 200, and the closed circuit voltage of one battery cell 220. FIG. The drive state of the battery device 100 is denoted as DS. For simplicity of explanation, the behavior of the closed circuit voltage of the battery cell 220 and the behavior of the closed circuit voltage of the assembled battery 200 shown in the drawings are assumed to be the same. In order to clarify the behavior, the drawing shows that the closed circuit voltage of the battery cell 220 changes greatly in a short period of time.
 時間0の初期状態において、電池装置100は非駆動状態になっている。記憶部32には閉路電圧や物理量などの電池情報が記憶されていない。組電池200と各種車載機器との間の導通状態を制御するシステムメインリレーが遮断状態になっている。そのために組電池200に電流が実質的に流れていない。電池セル220の閉路電圧は充放電領域の値になっている。 In the initial state at time 0, the battery device 100 is in a non-driving state. The storage unit 32 does not store battery information such as closed circuit voltage and physical quantity. A system main relay that controls electrical continuity between the assembled battery 200 and various vehicle-mounted devices is in a disconnected state. Therefore, substantially no current flows through the assembled battery 200 . The closed circuit voltage of the battery cell 220 has a value in the charge/discharge region.
 電池セル220に電流が実質的に流れていなくとも、自己放電のために電池セル220のSOCは減少する。そのために時間0の初期状態において、電池セル220の閉路電圧は微量ながら減少傾向にある。 The SOC of the battery cell 220 decreases due to self-discharge even if the current does not substantially flow through the battery cell 220 . Therefore, in the initial state at time 0, the closed circuit voltage of the battery cell 220 tends to decrease, albeit slightly.
 時間t0になると、電池装置100は非駆動状態から駆動状態になる。システムメインリレーが遮断状態から通電状態になる。これにより組電池200から各種車載機器への電源電力の供給が開始する。組電池200に実電流が流れはじめる。電池セル220のSOCの減少率が増大する。それにともなって、電池セル220の閉路電圧の減少率も増大する。 At time t0, the battery device 100 changes from the non-driving state to the driving state. The system main relay changes from the cut-off state to the energized state. As a result, supply of power supply power from the assembled battery 200 to various vehicle-mounted devices is started. An actual current begins to flow in the assembled battery 200 . The rate of decrease of the SOC of battery cell 220 increases. Along with this, the reduction rate of the closed circuit voltage of the battery cell 220 also increases.
 時間t1になると演算部33は、電池セル220の閉路電圧を取得する。この際、記憶部32には電池情報が記憶されていない。そのため、演算部33は時間t1でのレベルシフタ12のゲインとオフセットを初期値に設定している。演算部33はこの時間t1において監視部10で検出された閉路電圧を取得する。なお、時間t1と時間t0の時間差は実質的にはほとんどない。電池装置100が非駆動状態から駆動状態に移行した際に、閉路電圧の検出処理が実質的に行われ始める。 At time t1, the calculation unit 33 acquires the closed circuit voltage of the battery cell 220. At this time, the battery information is not stored in the storage unit 32 . Therefore, the calculation unit 33 sets the gain and offset of the level shifter 12 at time t1 to initial values. The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 at this time t1. Note that there is practically no time difference between time t1 and time t0. When the battery device 100 shifts from the non-driving state to the driving state, the process of detecting the closed circuit voltage is substantially started.
 時間t1から取得周期が経過して時間t2になると演算部33は、再び電池セル220の閉路電圧を取得する。時間t1から時間t2へと時間経過する間に、電池セル220のSOCが変化する。図8に示す例でいえば、ハッチングで示す分の電力の放電が行われる。この放電のために時間t1での閉路電圧と時間t2での閉路電圧とが異なることが想定される。 At time t2 after the acquisition cycle has elapsed from time t1, the calculation unit 33 acquires the closed circuit voltage of the battery cell 220 again. The SOC of battery cell 220 changes while time elapses from time t1 to time t2. In the example shown in FIG. 8, the amount of power indicated by hatching is discharged. It is assumed that the closed circuit voltage at time t1 and the closed circuit voltage at time t2 are different due to this discharge.
 そこで演算部33は、時間t1で取得した閉路電圧と、時間t1から時間t2までの閉路電圧の変化量とに基づいて、時間t2での閉路電圧を推定する。そして演算部33はその推定電圧と誤差最小点との差をゼロとするためのゲインとオフセットを算出する。演算部33は算出したゲインとオフセットへの変更を含む指示信号を監視部10に出力する。演算部33はこの時間t2でのゲインとオフセットの調整された監視部10で検出された閉路電圧を取得する。時間t1が第1検出タイミングに相当する場合、時間t2が第2検出タイミングに相当する。推定電圧が推定値に相当する。 Therefore, the calculation unit 33 estimates the closed circuit voltage at time t2 based on the closed circuit voltage obtained at time t1 and the amount of change in the closed circuit voltage from time t1 to time t2. Then, the calculation unit 33 calculates a gain and an offset for zeroing the difference between the estimated voltage and the minimum error point. The calculation unit 33 outputs an instruction signal including changes to the calculated gain and offset to the monitoring unit 10 . The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 whose gain and offset have been adjusted at this time t2. When time t1 corresponds to the first detection timing, time t2 corresponds to the second detection timing. The estimated voltage corresponds to the estimated value.
 なお、厳密にいえば、電池装置100での演算処理があるため、時間t2における、ゲインとオフセットの調整タイミングと、閉路電圧の取得タイミングとは同一にならない。調整タイミングは取得タイミングの手前である。しかしながら、これら2つのタイミングの差は微小である。そのためにこれら2つのタイミングを同一とみなして記載している。 Strictly speaking, since there is arithmetic processing in the battery device 100, the gain and offset adjustment timing and the closed circuit voltage acquisition timing at time t2 are not the same. The adjustment timing is before the acquisition timing. However, the difference between these two timings is minute. Therefore, these two timings are considered to be the same and described.
 時間t2から取得周期が経過して時間t3になると演算部33は、時間t2の閉路電圧と、時間t2から時間t3までの閉路電圧の変化量と、に基づいて推定電圧を算出する。そして演算部33は推定電圧と誤差最小点とに基づいてゲインとオフセットを算出する。演算部33はこの時間t3でのゲインとオフセットの調整された監視部10で検出された閉路電圧を取得する。時間t2が第1検出タイミングに相当する場合、時間t3が第2検出タイミングに相当する。 At time t3 after the acquisition cycle has elapsed from time t2, the calculation unit 33 calculates the estimated voltage based on the closed circuit voltage at time t2 and the amount of change in the closed circuit voltage from time t2 to time t3. Then, the calculation unit 33 calculates gain and offset based on the estimated voltage and the minimum error point. The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 whose gain and offset have been adjusted at this time t3. When time t2 corresponds to the first detection timing, time t3 corresponds to the second detection timing.
 時間t3から時間tc1になると、実電流が低減する。これに伴って、閉路電圧の減少率も低減する。 From time t3 to time tc1, the actual current decreases. Along with this, the reduction rate of the closed circuit voltage is also reduced.
 時間t3から取得周期が経過して時間t4になると演算部33は、時間t3の閉路電圧と、時間t3から時間t4までの閉路電圧の変化量と、に基づいて推定電圧を算出する。そして演算部33は推定電圧と誤差最小点とに基づいてゲインとオフセットを算出する。演算部33はこの時間t4でのゲインとオフセットの調整された監視部10で検出された閉路電圧を取得する。 When the acquisition cycle has passed from time t3 to time t4, the calculation unit 33 calculates the estimated voltage based on the closed circuit voltage at time t3 and the amount of change in the closed circuit voltage from time t3 to time t4. Then, the calculation unit 33 calculates gain and offset based on the estimated voltage and the minimum error point. The calculation unit 33 acquires the closed-circuit voltage detected by the monitoring unit 10 whose gain and offset have been adjusted at this time t4.
 このように時間t3と時間t4との間の閉路電圧の変化量を加味しているため、例え時間t3と時間t4との間の時間tc1で閉路電圧の減少率が低減し始めたとしても、時間t4において積分非直線性誤差が効果的に低減されなくなることが抑制される。 Since the amount of change in closed circuit voltage between time t3 and time t4 is taken into account in this way, even if the rate of decrease in closed circuit voltage begins to decrease at time tc1 between time t3 and time t4, This prevents the integral nonlinearity error from being effectively reduced at time t4.
 時間t4から時間tc2になると、電動車両に充電機器が接続される。充電機器により組電池200が急速充電される。これにより実電流が急上昇する。演算部33は係る情報を車両情報若しくは充電情報から取得する。 From time t4 to time tc2, the charging equipment is connected to the electric vehicle. The battery pack 200 is rapidly charged by the charging equipment. This causes the actual current to rise sharply. The calculation unit 33 acquires such information from vehicle information or charging information.
 時間t4から取得周期が経過して時間t5になると演算部33は、時間t4の閉路電圧と、時間t4から時間t5までの閉路電圧の変化量と、に基づいて推定電圧を算出する。演算部33は推定電圧と誤差最小点とに基づいてゲインとオフセットを算出する。演算部33はこの時間t5でのゲインとオフセットの調整された監視部10で検出された閉路電圧を取得する。 At time t5 after the acquisition cycle has elapsed from time t4, the calculation unit 33 calculates the estimated voltage based on the closed circuit voltage at time t4 and the amount of change in the closed circuit voltage from time t4 to time t5. The calculation unit 33 calculates gain and offset based on the estimated voltage and the minimum error point. The calculation unit 33 acquires the closed circuit voltage detected by the monitoring unit 10 with the gain and offset adjusted at this time t5.
 このように時間t4と時間t5の間の閉路電圧の変化量を加味しているため、例え時間t4と時間t5との間の時間tc2で閉路電圧が急上昇し始めたとしても、時間t5において積分非直線性誤差が効果的に低減されなくなることが抑制される。 Since the amount of change in the closed-circuit voltage between time t4 and time t5 is taken into account in this way, even if the closed-circuit voltage begins to rise sharply at time tc2 between time t4 and time t5, the integration at time t5 It is suppressed that the non-linearity error is no longer effectively reduced.
 時間t5から時間tc3になると、組電池200の出力電圧が目標電圧に到達する。これを検出すると、演算部33は充電機器による急速充電を終了させる。演算部33は充電機器に満充電を実行させる。 From time t5 to time tc3, the output voltage of the assembled battery 200 reaches the target voltage. When detecting this, the calculation unit 33 terminates the rapid charging by the charging equipment. The calculation unit 33 causes the charging equipment to perform full charging.
 上記した急速充電と満充電とでは、供給電流量が異なる。急速充電は満充電よりも供給電流量が大きくなっている。 The amount of supplied current differs between the above-mentioned rapid charging and full charging. The amount of supplied current is larger in quick charge than in full charge.
 上記したように閉路電圧CCVと開路電圧OCVとには電圧降下I×R分の差がある。充電時では、CCV=OCV+I×Rとなる。したがって、例えば組電池200の最高出力電圧が閉路電圧CCVとして検出されたとしても、開路電圧OCVは最高出力電圧に達していないことになる。組電池200のSOCは満充電量に達していないことになる。 As described above, there is a difference of the voltage drop I×R between the closed circuit voltage CCV and the open circuit voltage OCV. During charging, CCV=OCV+I×R. Therefore, even if the maximum output voltage of the assembled battery 200 is detected as the closed circuit voltage CCV, the open circuit voltage OCV does not reach the maximum output voltage. This means that the SOC of the assembled battery 200 has not reached the full charge amount.
 上記の目標電圧は、組電池200の最高出力電圧に基づく値である。演算部33は組電池200の閉路電圧が目標電圧に到達したと判定すると、満充電を充電機器に実行させる。満充電では、過充電を避けつつ、組電池200のSOCを満充電量に近づけるため、組電池200で検出される閉路電圧を目標電圧に保った状態で、組電池200への充電電力の供給が行われる。目標電圧と最高出力電圧は記憶部32に予め記憶されている。 The above target voltage is a value based on the maximum output voltage of the assembled battery 200. When the calculation unit 33 determines that the closed circuit voltage of the assembled battery 200 has reached the target voltage, it causes the charging device to perform full charging. In full charging, charging power is supplied to the assembled battery 200 while maintaining the closed circuit voltage detected by the assembled battery 200 at the target voltage in order to avoid overcharging and bring the SOC of the assembled battery 200 closer to the full charge amount. is done. The target voltage and the maximum output voltage are pre-stored in the storage section 32 .
 時間t5から取得周期が経過して時間t6になると、目標電圧と、時間t5から時間t6までの閉路電圧の変化量と、に基づいて推定電圧を算出する。演算部33はこの推定電圧と誤差最小点とに基づいてゲインとオフセットを算出する。演算部33は時間t6でのゲインとオフセットの調整された監視部10で検出された閉路電圧を取得する。 At time t6 after the acquisition cycle has elapsed from time t5, the estimated voltage is calculated based on the target voltage and the amount of change in the closed circuit voltage from time t5 to time t6. The calculator 33 calculates gain and offset based on the estimated voltage and the minimum error point. The calculation unit 33 acquires the closed-circuit voltage detected by the monitoring unit 10 with the gain and offset adjusted at time t6.
 時間t6以降、満充電が実行され続ける限り、目標電圧が取得されることが期待される。この場合、演算部33は目標電圧と誤差最小点とに基づいてゲインとオフセットを算出する。そして演算部33はこのゲインとオフセットの調整された監視部10で検出された閉路電圧を取得し続ける。若しくは、演算部33は閉路電圧の取得をやめる。 After time t6, it is expected that the target voltage will be obtained as long as full charging continues. In this case, the calculator 33 calculates the gain and offset based on the target voltage and the minimum error point. The calculation unit 33 continues to acquire the closed-circuit voltage detected by the monitoring unit 10 whose gain and offset have been adjusted. Alternatively, the calculation unit 33 stops acquiring the closed circuit voltage.
 なお、図示しないが、組電池200のSOCが過度に低減したり、電動車両の電動機が不調だったりした場合、電動車両は駆動を制限した定電圧駆動を実行する。この際に組電池200から出力される電源電力の電圧が制限される。電源電力の電圧が例えば一定値に保たれる。このため、電池セル220の閉路電圧が所定電圧に保たれることが期待される。 Although not shown, when the SOC of the assembled battery 200 is excessively reduced or the electric motor of the electric vehicle malfunctions, the electric vehicle performs constant voltage drive with limited driving. At this time, the voltage of the power supply power output from the assembled battery 200 is limited. The voltage of the power supply is kept at a constant value, for example. Therefore, it is expected that the closed circuit voltage of the battery cell 220 is maintained at a predetermined voltage.
 この場合、演算部33は所定電圧と誤差最小点とに基づいてゲインとオフセットを算出する。演算部33はこのゲインとオフセットの調整された監視部10で検出された閉路電圧を取得し続ける。若しくは、演算部33は閉路電圧の取得をやめる。 In this case, the calculation unit 33 calculates the gain and offset based on the predetermined voltage and the minimum error point. The calculation unit 33 continues to acquire the closed-circuit voltage detected by the monitoring unit 10 whose gain and offset have been adjusted. Alternatively, the calculation unit 33 stops acquiring the closed circuit voltage.
 <閉路電圧の推定>
 上記したように演算部33は、ゲインとオフセットを算出するにあたって、新たに取得する際の閉路電圧を推定する。例えば図8に示す時間t2において演算部33は、時間t1で取得した閉路電圧と、時間t1から時間t2までの閉路電圧の変化量と、に基づいて時間t2での閉路電圧を推定する。
<Estimation of closed circuit voltage>
As described above, the calculation unit 33 estimates the closed circuit voltage to be newly acquired when calculating the gain and the offset. For example, at time t2 shown in FIG. 8, the calculation unit 33 estimates the closed circuit voltage at time t2 based on the closed circuit voltage acquired at time t1 and the amount of change in the closed circuit voltage from time t1 to time t2.
 時間t1から時間t2までの閉路電圧の変化量は、時間t1と時間t2との間の充放電履歴と、時間t1と時間t2との間の温度、および、SOCとOCVの特性データの温度依存性に基づいて算出される。充放電履歴が充放電量に相当する。 The amount of change in closed circuit voltage from time t1 to time t2 depends on the charge/discharge history between time t1 and time t2, the temperature between time t1 and time t2, and the temperature dependence of the SOC and OCV characteristic data. calculated based on gender. The charge/discharge history corresponds to the charge/discharge amount.
 時間t1と時間t2との間の充放電履歴は、例えば、時間t1と時間t2との間の時間と、時間t1と時間t2との間の電流と、に基づいて算出される。時間t1と時間t2との間の充放電履歴は、時間t1と時間t2との間の電流の積算値として算出される。なお、時間t1と時間t2との間の電流は、例えば、時間t1の電流と時間t2の電流の加算平均値で推定される。 The charge/discharge history between time t1 and time t2 is calculated, for example, based on the time between time t1 and time t2 and the current between time t1 and time t2. A charge/discharge history between time t1 and time t2 is calculated as an integrated value of current between time t1 and time t2. Note that the current between time t1 and time t2 is estimated by, for example, the addition average value of the current at time t1 and the current at time t2.
 時間t1と時間t2との間の温度は、例えば、時間t1の温度と時間t2の温度の加算平均値で推定される。演算部33はこの温度のSOCとOCVの特性データを記憶部32から読み出す。そして演算部33は読みだしたSOCとOCVの特性データと、算出した時間t1と時間t2との間の充放電履歴とに基づいて、時間t1から時間t2までの閉路電圧の変化量を算出する。 The temperature between time t1 and time t2 is estimated, for example, by adding and averaging the temperature at time t1 and the temperature at time t2. The calculation unit 33 reads the SOC and OCV characteristic data of this temperature from the storage unit 32 . Then, the calculation unit 33 calculates the amount of change in closed circuit voltage from time t1 to time t2 based on the read SOC and OCV characteristic data and the calculated charge/discharge history between time t1 and time t2. .
 なお、当然ながら、演算部33は各種2次電池のSOCとOCVの特性データのうち、電池セル220のSOCとOCVの特性データを記憶部32から読み出す。電池セル220がリチウムイオン2次電池の場合、演算部33はリチウムイオン2次電池のSOCとOCVの特性データを記憶部32から読み出す。 Of course, the calculation unit 33 reads the SOC and OCV characteristic data of the battery cell 220 from the storage unit 32 among the SOC and OCV characteristic data of various secondary batteries. When the battery cell 220 is a lithium ion secondary battery, the calculation unit 33 reads the SOC and OCV characteristic data of the lithium ion secondary battery from the storage unit 32 .
 演算部33は、例えば記憶部32に記憶された電池セル220の製造日と時間t2との差、および、劣化判定値に基づいて、時間t2での電池セル220の経年劣化を推定してもよい。演算部33は電池セル220の経年劣化と、時間t2の温度に基づいて、時間t2での電池セル220の内部抵抗を推定してもよい。演算部33はこの時間t2での内部抵抗と電流とに基づいて、時間t2での電池セル220で生じる電圧降下を算出してもよい。演算部33はこの電圧降下も加味して、時間t2での閉路電圧を推定してもよい。 The calculation unit 33 estimates the aged deterioration of the battery cell 220 at the time t2, for example, based on the difference between the date of manufacture of the battery cell 220 and the time t2 stored in the storage unit 32 and the deterioration determination value. good. The calculation unit 33 may estimate the internal resistance of the battery cell 220 at time t2 based on aging deterioration of the battery cell 220 and the temperature at time t2. The calculation unit 33 may calculate the voltage drop occurring in the battery cell 220 at the time t2 based on the internal resistance and the current at the time t2. The calculation unit 33 may also take this voltage drop into account to estimate the closed circuit voltage at time t2.
 また、演算部33は、電池セル220の等価回路モデル若しくは化学反応モデルと、電池セル220の電流および温度に基づいて、時間t1から時間t2までの閉路電圧の変化量を推定してもよい。 Further, the calculation unit 33 may estimate the amount of change in the closed circuit voltage from time t1 to time t2 based on the equivalent circuit model or chemical reaction model of the battery cell 220 and the current and temperature of the battery cell 220.
 さらに例示すれば、上記した閉路電圧の変化量を概算するための放電値と充電値が記憶部32に記憶されていてもよい。閉路電圧の変化量を、所定の放電値に時間t1と時間t2との間の時間を乗算して決定してもよい。閉路電圧の変化量を、所定の充電値に時間t1と時間t2との間の時間を乗算して決定してもよい。 As a further example, the storage unit 32 may store a discharge value and a charge value for estimating the amount of change in the closed circuit voltage described above. The amount of change in closed circuit voltage may be determined by multiplying the predetermined discharge value by the time between time t1 and time t2. The amount of change in closed circuit voltage may be determined by multiplying the predetermined charge value by the time between time t1 and time t2.
 <電圧検出処理>
 本実施形態の場合、演算部33は図9に示す電圧検出処理を実行する。図9に示す電圧検出処理は、第1実施形態で説明した図7に示す電圧検出処理に対して、ステップS110とステップS120が追加されている。
<Voltage detection processing>
In the case of this embodiment, the calculation unit 33 executes the voltage detection process shown in FIG. The voltage detection process shown in FIG. 9 has steps S110 and S120 added to the voltage detection process shown in FIG. 7 described in the first embodiment.
 ステップS10において閉路電圧が記憶部32に記憶されていると判断すると、演算部33はステップS110へ進む。 When it is determined in step S10 that the closed circuit voltage is stored in the storage unit 32, the calculation unit 33 proceeds to step S110.
 ステップS110へ進むと演算部33は、推定電圧を算出するための諸情報を取得する。この諸情報には、記憶部32に記憶されている閉路電圧、取得周期、電流、温度、SOCとOCVの特性データなどが含まれている。この後に演算部33はステップS120へ進む。 When proceeding to step S110, the calculation unit 33 acquires various information for calculating the estimated voltage. This information includes closed-circuit voltage, acquisition cycle, current, temperature, SOC and OCV characteristic data, and the like stored in the storage unit 32 . After that, the calculation unit 33 proceeds to step S120.
 ステップS120へ進むと演算部33は、ステップS110で取得した諸情報に基づいて、推定電圧を算出する。この後に演算部33はステップS20へ進む。 When proceeding to step S120, the calculation unit 33 calculates the estimated voltage based on the various information acquired in step S110. After that, the calculation unit 33 proceeds to step S20.
 ステップS20へ進むと演算部33は誤差最小点を算出する。若しくは、演算部33は誤差最小点を記憶部32から読み出す。この後に演算部33はステップS30へ進む。 When proceeding to step S20, the calculation unit 33 calculates the minimum error point. Alternatively, the calculation unit 33 reads the minimum error point from the storage unit 32 . After that, the calculation unit 33 proceeds to step S30.
 ステップS30へ進むと演算部33は、誤差最小点と推定した閉路電圧(推定電圧)との差分値を算出する。この後に演算部33はステップS40へ進む。以降、第1実施形態で説明したのと同等の処理を演算部33は実行する。 When proceeding to step S30, the calculation unit 33 calculates the difference value between the minimum error point and the estimated closed circuit voltage (estimated voltage). After that, the calculation unit 33 proceeds to step S40. Henceforth, the calculating part 33 performs the process equivalent to having demonstrated in 1st Embodiment.
 <取得範囲>
 第1実施形態で説明したように、演算部33は検出対象の電池セル220の閉路電圧の取得範囲を定めてもよい。例えば、時間t2での取得範囲の中心値は、時間t1での閉路電圧に基づいて決定することができる。時間t2での取得範囲の中心値は、時間t1での閉路電圧と、時間t1から時間t2までの閉路電圧の変化量とに基づいて決定することもできる。
<Acquisition range>
As described in the first embodiment, the calculation unit 33 may determine the acquisition range of the closed circuit voltage of the battery cell 220 to be detected. For example, the center value of the acquisition range at time t2 can be determined based on the closed circuit voltage at time t1. The center value of the acquisition range at time t2 can also be determined based on the closed circuit voltage at time t1 and the amount of change in the closed circuit voltage from time t1 to time t2.
 そして、取得範囲の幅は、閉路電圧の検出誤差よりも大きな値に定めることができる。また、時間t2での取得範囲の幅は、時間t2での電池セル220の温度と電流に基づいて決定することもできる。時間t3での取得範囲の幅は、時間t2での取得範囲の中心値と、時間t2で取得された閉路電圧との差(推定誤差)に基づいて決定することもできる。なお、取得範囲の中心値とその上限値との差、および、中心値と下限値との差は、同一でも不同でもよい。 Then, the width of the acquisition range can be set to a value larger than the detection error of the closed circuit voltage. The width of the acquisition range at time t2 can also be determined based on the temperature and current of the battery cell 220 at time t2. The width of the acquisition range at time t3 can also be determined based on the difference (estimation error) between the center value of the acquisition range at time t2 and the closed circuit voltage acquired at time t2. Note that the difference between the center value and the upper limit value of the acquisition range and the difference between the center value and the lower limit value may be the same or different.
 閉路電圧の取得範囲を定める処理を実行する場合、演算部33は図10に示す電圧検出処理を実行する。図10に示す電圧検出処理は、図9に示す電圧検出処理に対して、ステップS210とステップS220が追加されている。 When executing the process of determining the acquisition range of the closed circuit voltage, the calculation unit 33 executes the voltage detection process shown in FIG. The voltage detection process shown in FIG. 10 has steps S210 and S220 added to the voltage detection process shown in FIG.
 ステップS50の後に演算部33はステップS210へ進む。ステップS210へ進むと演算部33は、推定電圧などに基づいて取得範囲を算出する。そして演算部33はその取得範囲を含む指示信号を、限定範囲信号として監視部10に送信する。 After step S50, the calculation unit 33 proceeds to step S210. When proceeding to step S210, the calculation unit 33 calculates the acquisition range based on the estimated voltage and the like. Then, the calculation unit 33 transmits an instruction signal including the acquisition range to the monitoring unit 10 as a limited range signal.
 記憶部32に閉路電圧が記憶されていない場合、演算部33はステップS10からステップS220へ進む。ステップS220へ進むと演算部33は、閉路電圧の取りうる全範囲を取得範囲に設定する。そして演算部33はその取得範囲を含む指示信号を、全範囲信号として監視部10に送信する。 When the closed circuit voltage is not stored in the storage unit 32, the calculation unit 33 proceeds from step S10 to step S220. When proceeding to step S220, the calculation unit 33 sets the entire range of possible closed-circuit voltages as the acquisition range. Then, the calculation unit 33 transmits an instruction signal including the acquisition range to the monitoring unit 10 as a full range signal.
 (その他の変形例)
 本実施形態では、複数の監視部10に1つの制御部30が設けられる例を示した。しかしながら、複数の監視部10に複数の制御部30が個別に設けられる構成を採用することもできる。
(Other modifications)
In this embodiment, an example is shown in which one control unit 30 is provided for a plurality of monitoring units 10 . However, a configuration in which a plurality of controllers 30 are provided individually for a plurality of monitoring units 10 can also be adopted.
 本実施形態では、複数の電池セル220それぞれの閉路電圧を検出する際に、演算部33がレベルシフタ12のゲインとオフセットを調整する例を示した。しかしながら、複数の電池スタック210それぞれの閉路電圧を検出する際に、演算部33がレベルシフタ12のゲインとオフセットを調整する構成を採用することもできる。1つの電池スタック210に含まれる複数の電池セル220の閉路電圧を検出する際に、演算部33がレベルシフタ12を共通のゲインとオフセットに調整する構成を採用することもできる。係る変形例では、組電池200は少なくとも2つの電池スタック210を有する。 In the present embodiment, an example is shown in which the computing unit 33 adjusts the gain and offset of the level shifter 12 when detecting the closed circuit voltage of each of the plurality of battery cells 220 . However, it is also possible to employ a configuration in which the calculation unit 33 adjusts the gain and offset of the level shifter 12 when detecting the closed circuit voltage of each of the plurality of battery stacks 210 . It is also possible to employ a configuration in which the calculation unit 33 adjusts the level shifter 12 to a common gain and offset when detecting the closed circuit voltages of the plurality of battery cells 220 included in one battery stack 210 . In such a modification, the assembled battery 200 has at least two battery stacks 210 .
 本実施形態では、複数の電池セル220それぞれが同一種類の2次電池である例を示した。しかしながら、複数の電池セル220のうちの一部が異なる2次電池でもよい。例えば、複数の電池スタック210のうちの一部の電池スタック210に第1種類の電池セル220が含まれ、残りの電池スタック210に第1種類とは異なる第2種類の電池セル220が含まれてもよい。種類の異なる電池セル220としては、例えば、電池セル220の内部構成や外観構成が同一であるものの、正極や負極の組成材料が異なるものを採用することができる。 In this embodiment, an example is shown in which each of the plurality of battery cells 220 is the same type of secondary battery. However, a secondary battery in which some of the plurality of battery cells 220 are different may be used. For example, some battery stacks 210 among the plurality of battery stacks 210 include first type battery cells 220, and the remaining battery stacks 210 include second type battery cells 220 different from the first type. may As the battery cells 220 of different types, for example, battery cells 220 having the same internal configuration and external configuration but different composition materials for the positive and negative electrodes can be employed.
 係る変形例の場合、閉路電圧の変化量を推定する際に演算部33は、第1種類の電池セル220のSOCとOCVの特性データと、第2種類の電池セル220のSOCとOCVの特性データを記憶部32から読み出す。 In the case of such a modification, when estimating the amount of change in the closed circuit voltage, the calculation unit 33 uses the SOC and OCV characteristic data of the first type battery cell 220 and the SOC and OCV characteristic data of the second type battery cell 220 Data is read from the storage unit 32 .
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, while various combinations and configurations are shown in this disclosure, other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure. is to enter.

Claims (4)

  1.  電気的に接続された複数の電池セル(220)の閉路電圧を検出する検出部(11)と、
     前記検出部で検出された前記閉路電圧のゲインとオフセットを調整するレベルシフタ(12)と、
     前記レベルシフタによって前記ゲインと前記オフセットの調整された前記閉路電圧をデジタル信号に変換するAD変換部(13)と、
     前記閉路電圧を含む電池情報、および、前記AD変換部の入力電圧と出力電圧の入出力特性としての実際の実特性と理想とする理想特性に関連する変換部情報を記憶する記憶部(32)と、
     前記ゲインと前記オフセットの少なくとも一方を調整することで、前記実特性と前記理想特性の交点の前記入力電圧と、前記記憶部に記憶された前記閉路電圧との差を狭める演算部(33)と、を有する電池装置。
    a detection unit (11) for detecting closed circuit voltages of a plurality of electrically connected battery cells (220);
    a level shifter (12) that adjusts the gain and offset of the closed circuit voltage detected by the detector;
    an AD converter (13) that converts the closed-circuit voltage, the gain and the offset of which are adjusted by the level shifter, into a digital signal;
    A storage unit (32) for storing battery information including the closed circuit voltage and conversion unit information related to actual characteristics and ideal characteristics as input/output characteristics of the input voltage and the output voltage of the AD conversion unit. When,
    a computing unit (33) for narrowing the difference between the input voltage at the intersection of the actual characteristic and the ideal characteristic and the closed circuit voltage stored in the storage unit by adjusting at least one of the gain and the offset; A battery device comprising:
  2.  前記電池情報には、前記閉路電圧の他に、前記閉路電圧の変化量が含まれており、
     前記変化量には、前記記憶部に記憶された前記閉路電圧が前記検出部で検出される第1検出タイミングから、新たに前記閉路電圧が前記検出部で検出される第2検出タイミングの手前までの間の前記電池セルの充放電量が含まれている請求項1に記載の電池装置。
    The battery information includes an amount of change in the closed circuit voltage in addition to the closed circuit voltage,
    The amount of change includes a period from a first detection timing at which the closed-circuit voltage stored in the storage unit is detected by the detection unit to just before a second detection timing at which the closed-circuit voltage is newly detected by the detection unit. 2. The battery device according to claim 1, wherein the charge/discharge amount of the battery cell during the period is included.
  3.  前記演算部は、
     前記電池情報に基づいて前記第2検出タイミングの前記閉路電圧を推定して前記記憶部に記憶し、
     前記ゲインと前記オフセットの少なくとも一方を調整することで、前記交点の前記入力電圧と、前記記憶部に記憶された、前記第2検出タイミングの前記閉路電圧の推定値との差を狭める請求項2に記載の電池装置。
    The calculation unit is
    estimating the closed circuit voltage at the second detection timing based on the battery information and storing it in the storage unit;
    Adjusting at least one of the gain and the offset narrows a difference between the input voltage at the intersection and the estimated value of the closed circuit voltage at the second detection timing stored in the storage unit. The battery device according to .
  4.  前記演算部は、前記電池情報に基づいて前記閉路電圧の取得範囲を設定し、
     前記AD変換部は、前記演算部で設定される前記取得範囲で、前記検出部で検出された前記閉路電圧を前記デジタル信号に変換する請求項1~3のいずれか1項に記載の電池装置。
    The calculation unit sets an acquisition range of the closed circuit voltage based on the battery information,
    The battery device according to any one of claims 1 to 3, wherein the AD conversion unit converts the closed circuit voltage detected by the detection unit into the digital signal within the acquisition range set by the calculation unit. .
PCT/JP2022/004620 2021-03-23 2022-02-07 Battery device WO2022201915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021049207A JP7468420B2 (en) 2021-03-23 2021-03-23 Battery device
JP2021-049207 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022201915A1 true WO2022201915A1 (en) 2022-09-29

Family

ID=83395484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004620 WO2022201915A1 (en) 2021-03-23 2022-02-07 Battery device

Country Status (2)

Country Link
JP (1) JP7468420B2 (en)
WO (1) WO2022201915A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323580A (en) * 1991-04-23 1992-11-12 Matsushita Electric Works Ltd Battery capacity display device
JP2002325362A (en) * 2001-04-26 2002-11-08 Tokyo R & D Co Ltd Secondary battery capacity measurement system, secondary battery full capacity compensating method, charging efficiency compensating method and discharge efficiency compensating method
JP2010141957A (en) * 2008-12-09 2010-06-24 Denso Corp Capacity regulator for battery pack
WO2019077707A1 (en) * 2017-10-18 2019-04-25 日本たばこ産業株式会社 Inhalation component generation device, method for controlling inhalation component generation device, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4323580B2 (en) 1998-04-03 2009-09-02 キヤノン株式会社 Printing apparatus and head driving method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323580A (en) * 1991-04-23 1992-11-12 Matsushita Electric Works Ltd Battery capacity display device
JP2002325362A (en) * 2001-04-26 2002-11-08 Tokyo R & D Co Ltd Secondary battery capacity measurement system, secondary battery full capacity compensating method, charging efficiency compensating method and discharge efficiency compensating method
JP2010141957A (en) * 2008-12-09 2010-06-24 Denso Corp Capacity regulator for battery pack
WO2019077707A1 (en) * 2017-10-18 2019-04-25 日本たばこ産業株式会社 Inhalation component generation device, method for controlling inhalation component generation device, and program

Also Published As

Publication number Publication date
JP7468420B2 (en) 2024-04-16
JP2022147801A (en) 2022-10-06

Similar Documents

Publication Publication Date Title
KR102066702B1 (en) Battery management apparatus and soc calibrating method using the same
US9843069B2 (en) Battery capacity degradation resolution methods and systems
US11214168B2 (en) Deterioration state computation method and deterioration state computation device
JP6172176B2 (en) Battery monitoring device
WO2014156265A1 (en) Battery control device
EP3002597A1 (en) Battery control device
CN106662620B (en) Battery state detection device, secondary battery system, storage medium, and battery state detection method
US11143710B2 (en) Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell
WO2010010662A1 (en) Imbalance determination circuit, power supply device, and imbalance determination method
US8441262B2 (en) Optimization of electrical component parameters in energy storage system models
CN115336084A (en) Battery control device and battery system
JP6279442B2 (en) Fault detection system
WO2022201915A1 (en) Battery device
US12119683B2 (en) Battery management device and battery device
KR20210051809A (en) Method for estimating of battery&#39;s state of charge and Battery Management System
WO2022201913A1 (en) Battery device
WO2022201914A1 (en) Battery device
JP7481147B2 (en) Battery voltage equalizer
WO2022249702A1 (en) Monitoring device and battery apparatus comprising same
KR20190102814A (en) Apparatus and method for managing battery
JP7552467B2 (en) Battery management device and battery device
WO2022030355A1 (en) Electric storage device, electric storage system, internal resistance estimation method, and computer program
US20240264238A1 (en) Battery diagnosis method based on degree of resistance degradation and battery system applying the same
CN118330478A (en) Power battery electric quantity estimation method, device, vehicle and storage medium
CN114252778A (en) Method and device for individually determining the state of charge of a battery-operated machine as a function of the state of aging of the battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774716

Country of ref document: EP

Kind code of ref document: A1