WO2022249270A1 - プロペラファン及び空気調和機 - Google Patents

プロペラファン及び空気調和機 Download PDF

Info

Publication number
WO2022249270A1
WO2022249270A1 PCT/JP2021/019737 JP2021019737W WO2022249270A1 WO 2022249270 A1 WO2022249270 A1 WO 2022249270A1 JP 2021019737 W JP2021019737 W JP 2021019737W WO 2022249270 A1 WO2022249270 A1 WO 2022249270A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
propeller
leading edge
trailing edge
see
Prior art date
Application number
PCT/JP2021/019737
Other languages
English (en)
French (fr)
Inventor
拓 岩瀬
哲志 岸谷
秀司 尾原
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to CN202180095228.1A priority Critical patent/CN116964333A/zh
Priority to PCT/JP2021/019737 priority patent/WO2022249270A1/ja
Priority to EP21942926.3A priority patent/EP4350151A1/en
Priority to JP2023523751A priority patent/JPWO2022249270A1/ja
Publication of WO2022249270A1 publication Critical patent/WO2022249270A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade

Definitions

  • the present invention relates to propeller fans and the like.
  • Patent Document 1 As a technique for thinning the propeller (shortening the dimension in the axial direction), for example, the technique described in Patent Document 1 is known. That is, in Patent Document 1, the cross-sectional shape along the rotational direction of the blade alternately has three protruding portions protruding toward the suction side of the blade and three protruding portions protruding toward the pressure side of the blade. An axial fan formed with more than one point is described.
  • an object of the present invention is to provide a low-noise, high-efficiency propeller fan or the like that can be made thinner.
  • the present invention provides a propeller having a boss portion that rotates integrally with a motor shaft, a plurality of blades installed on the boss portion, and a bell that is provided on the outer peripheral side of the propeller. a mouth, wherein a first position most suction side of the wing leading edge is provided between a wing tip leading edge and a wing root leading edge; 1 position, the front edge portion is curved toward the blowout side to form a concave shape, and the trailing edge portion of the blade is curved toward the blowout side to form a convex shape.
  • FIG. 1 is a configuration diagram including a refrigerant circuit of an air conditioner having a propeller fan according to a first embodiment
  • FIG. 1 is a cross-sectional view of an outdoor unit having a propeller fan according to a first embodiment
  • FIG. FIG. 3 is a perspective view of a propeller included in the propeller fan according to the first embodiment
  • FIG. 4 is a view of the propeller seen from the air intake side in the direction of the central axis of the propeller provided in the propeller fan according to the first embodiment
  • FIG. 5 is a cross-sectional view of the blade cut along a cylindrical surface including the arc AA in FIG. 4
  • FIG. 5 is a cross-sectional view when the blade is cut along a cylindrical surface including arc BB in FIG. 4;
  • FIG. 5 is a cross-sectional view when the blade is cut along a cylindrical surface including arc CC in FIG. 4;
  • FIG. 5 is a cross-sectional view when the blade is cut along the span line DD of FIG. 4;
  • FIG. 5 is a cross-sectional view when the blade is cut along the span line EE in FIG. 4;
  • FIG. 5 is a cross-sectional view when the blade is cut along the span line FF of FIG. 4;
  • FIG. 7 is a cross-sectional view of an outdoor unit having a propeller fan according to a second embodiment;
  • FIG. 11 is an explanatory diagram of a mounting angle of a blade section in a propeller fan according to a third embodiment;
  • FIG. 11 is an explanatory diagram of a mounting angle of a blade section in a propeller fan according to a fourth embodiment;
  • FIG. 11 is an explanatory diagram of blade chord length in a propeller fan according to a fifth embodiment;
  • FIG. 11 is an explanatory diagram relating to the blade chord length in the propeller fan according to the sixth embodiment;
  • FIG. 11 is a configuration diagram of an air conditioner provided with a propeller fan according to a seventh embodiment;
  • FIG. 14 is a cross-sectional view of an outdoor unit provided with a propeller fan according to a seventh embodiment;
  • FIG. 5 is a cross-sectional view of a propeller fan according to a first modified example;
  • FIG. 11 is a cross-sectional view of a propeller fan according to a second modified example;
  • FIG. 11 is a cross-sectional view of a propeller fan according to a third modified example
  • FIG. 2 is a cross-sectional view of a blade of a general propeller cut along a predetermined cylindrical surface
  • FIG. 3 is a cross-sectional view of an outdoor unit having a propeller according to a comparative example
  • It is a perspective view of a propeller according to a comparative example.
  • FIG. 1 is a configuration diagram including a refrigerant circuit Q of an air conditioner 100 having a propeller fan according to the first embodiment.
  • the solid arrows in FIG. 1 indicate the flow of refrigerant during heating operation.
  • dashed arrows in FIG. 1 indicate the flow of the refrigerant during the cooling operation.
  • the air conditioner 100 is a device that performs air conditioning such as heating operation and cooling operation. As shown in FIG. 1 , the air conditioner 100 includes a compressor 1 , an outdoor heat exchanger 2 , a propeller 3 (outdoor fan), and an expansion valve 4 .
  • the air conditioner 100 also includes an indoor heat exchanger 5, an indoor fan 6, and a four-way valve 7 in addition to the above-described configuration.
  • the compressor 1 is a device that compresses a low-temperature, low-pressure gas refrigerant and discharges it as a high-temperature, high-pressure gas refrigerant.
  • a compressor 1 for example, a scroll compressor or a rotary compressor is used.
  • the outdoor heat exchanger 2 is a heat exchanger in which heat is exchanged between a refrigerant flowing through its heat transfer tubes (not shown) and outside air sent from the propeller 3 .
  • the propeller 3 (outdoor fan) is an axial fan that sends outside air to the outdoor heat exchanger 2 .
  • the propeller 3 has a fan motor 31 as a drive source and is installed near the outdoor heat exchanger 2 .
  • the expansion valve 4 is a valve that decompresses the refrigerant condensed in the "condenser" (one of the outdoor heat exchanger 2 and the indoor heat exchanger 5). The refrigerant decompressed by the expansion valve 4 is guided to an "evaporator" (the other of the outdoor heat exchanger 2 and the indoor heat exchanger 5).
  • the indoor heat exchanger 5 is a heat exchanger in which heat is exchanged between the refrigerant flowing through the heat transfer tubes (not shown) and the indoor air (air-conditioned room air) sent from the indoor fan 6. be.
  • the indoor fan 6 is a fan that sends indoor air to the indoor heat exchanger 5 .
  • the indoor fan 6 has an indoor fan motor 61 as a drive source and is installed near the indoor heat exchanger 5 . As such an indoor fan 6, for example, a cross-flow fan is used.
  • the four-way valve 7 is a valve that switches the refrigerant flow path according to the operation mode of the air conditioner 100 .
  • the compressor 1 the outdoor heat exchanger 2 (condenser), the expansion valve 4, and the indoor heat exchanger 5 (evaporator)
  • the refrigerant circulates through sequentially.
  • the compressor 1 the indoor heat exchanger 5 (condenser), the expansion valve 4, and the outdoor heat exchanger 2 (evaporator)
  • the refrigerant circulates through sequentially.
  • the compressor 1, the outdoor heat exchanger 2, the propeller 3 (outdoor fan), the expansion valve 4, and the four-way valve 7 are installed in the outdoor unit 10.
  • the indoor heat exchanger 5 and the indoor fan 6 are installed in the indoor unit 20 .
  • devices such as the expansion valve 4, the indoor fan 6, the four-way valve 7, etc. are controlled in a predetermined manner by a control device (not shown).
  • FIG. 2 is a cross-sectional view of the outdoor unit 10 including the propeller fan U1.
  • FIG. 2 shows a schematic cross section of the side-blowing outdoor unit 10 taken along a predetermined horizontal plane including the central axis Y of the propeller 3 .
  • 2 shows the meridional plane of the blade 32 of the propeller 3 (see also FIG. 3).
  • the “meridian plane” of the blade 32 is a projection of the shape of the blade 32 with a predetermined rotational projection with the central axis Y of the propeller 3 as a reference.
  • the flow of air is indicated by a bold white arrow.
  • the propeller fan U1 includes a propeller 3 and a bell mouth 8 and is installed inside the outdoor unit 10 .
  • the propeller 3 is an axial fan that blows air in a substantially axial direction.
  • the propeller 3 includes a fan motor 31 that is a driving source, a boss 33 that rotates integrally with the motor shaft 31a of the fan motor 31, and three blades 32 that are installed on the peripheral wall of the boss 33. 3), and
  • the propeller fan U1 is installed such that the direction of the center axis Y (the axial direction of the motor shaft 31a) is parallel to the front-rear direction of the outdoor unit 10.
  • the direction of the center axis Y the axial direction of the motor shaft 31a
  • the bellmouth 8 is a rectifying member that guides the air drawn into the propeller 3 in a predetermined manner and guides the air blown out from the propeller 3 in a predetermined manner.
  • the bell mouth 8 has a cylindrical shape and is provided on the outer peripheral side (radial direction outside) of the propeller 3 .
  • the central axis of the bellmouth 8 substantially coincides with the central axis Y of the propeller 3. As shown in FIG.
  • the bell mouth 8 has a curved portion 81 and an enlarged diameter portion 82 .
  • the curved portion 81 has a thin cylindrical shape and is curved in a predetermined manner so that its diameter decreases toward the downstream side (blowing side) of the air flow.
  • the enlarged diameter portion 82 has a truncated cone shape and is continuous with the downstream side (blow-out side) of the curved portion 81 .
  • the enlarged diameter portion 82 is formed such that its diameter increases toward the downstream side (blowing side) of the air flow.
  • the outdoor heat exchanger 2 having an L-shape in a cross-sectional view is provided on the rear side and left side of the outdoor unit 10 .
  • a portion of the outdoor heat exchanger 2 on the rear side of the outdoor unit 10 is positioned upstream of the propeller 3 in the direction of air flow.
  • the air heat-exchanged by the outdoor heat exchanger 2 is sucked into the propeller 3 while being rectified by the bell mouth 8, and is further blown out from the propeller 3 in a predetermined manner.
  • a machine room R1 shown in FIG. 2 is a space in which the compressor 1 (see FIG. 1), an accumulator (not shown), an expansion valve 4 (see FIG. 1), etc. are accommodated, and is provided on the right side of the propeller fan U1. ing.
  • the fan chamber R2 in which the propeller fan U1 is accommodated and the machine chamber R1 are partitioned by a partition plate (not shown).
  • a partition plate not shown
  • FIG. 3 is a perspective view of the propeller 3 included in the propeller fan. 3 and the like indicate the direction in which the propeller 3 rotates. 3 and the like indicate the direction in which the air flows as the propeller 3 rotates.
  • the three blades 32 shown in FIG. 3 are provided at equal angular intervals on the peripheral wall of the boss portion 33 and extend radially from the boss portion 33 in a substantially radial direction. More specifically, each of the three blades 32 extends so as to be inclined forward in the rotational direction with respect to the radial direction with respect to the central axis Y (see also FIG. 4).
  • the number of blades 32 may be two, or four or more, in addition to the three shown in FIG.
  • FIG. 4 is a diagram of the propeller 3 viewed from the air intake side in the direction of the central axis Y of the propeller 3.
  • each of the plurality of blades 32 includes a leading edge portion 32a, a trailing edge portion 32b, a blade tip portion 32c, and a blade root portion 32d.
  • the front edge portion 32 a is an edge portion of the blade 32 located on the front side in the rotation direction of the propeller 3 .
  • the trailing edge portion 32 b is an edge portion of the blade 32 located on the rear side in the rotation direction of the propeller 3 .
  • the blade tip portion 32c is an edge portion of the blade 32 on the outer peripheral side.
  • the blade root portion 32 d is an edge portion on the inner peripheral side of the blade 32 .
  • the blade tip portion 32c and the leading edge portion 32a are adjacent to each other with the blade tip leading edge 321 interposed therebetween.
  • the blade tip portion 32 c and the trailing edge portion 32 b are adjacent to each other with a blade tip trailing edge 322 interposed therebetween.
  • the blade root portion 32 d and the leading edge portion 32 a are separated from each other via a blade root leading edge 323 .
  • the blade root portion 32 d and the trailing edge portion 32 b are adjacent to each other via the blade root trailing edge 324 .
  • the blade tip leading edge 321, the blade tip trailing edge 322, the blade root leading edge 323, and the blade root trailing edge 324 also appear on the meridional plane of the propeller 3 in FIG.
  • the front edge portion 32a has a concave shape curved rearward in the rotational direction.
  • the rear edge portion 32b has a convex shape so as to curve rearward in the rotational direction.
  • the wing tip portion 32c has an arcuate shape so that a predetermined gap is provided between the wing tip portion 32c and the inner peripheral surface of the bell mouth 8 (see FIG. 2).
  • the blade root portion 32 d is formed in an arc shape along the outer peripheral surface of the boss portion 33 .
  • Each blade 32 has a pressure surface 32e (see FIG. 3) and a suction surface 32f.
  • the pressure surface 32e is the surface on the front side in the direction of the center axis Y (the blowout side, the back side of the paper surface of FIG. 4).
  • the negative pressure surface 32f is the surface on the rear side (suction side, front side of the paper surface of FIG. 4) in the direction of the central axis Y. That is, the negative pressure surface 32f is a surface on the back side of the pressure surface 32e (see FIG. 3).
  • FIG. 4 is a view of the propeller 3 viewed from the suction side, the negative pressure surface 32f is visible, but the pressure surface 32e (see FIG. 3) on the back side is not visible.
  • FIG. 5A is a cross-sectional view of the blade 32 cut along a cylindrical plane including the arc AA in FIG. Arc AA indicated by a dashed line in FIG. 4 is an imaginary arc passing through the vicinity of the blade tip portion 32c with the center axis Y of the propeller 3 as a reference (the center of the arc). 4 indicate the direction of the blade 32 when viewed in cross section.
  • a thick hatched arrow shown in FIG. 5A and the like indicates the direction in which the blade 32 moves as the propeller 3 rotates.
  • 5A and the like indicate the direction in which the air flows as the propeller 3 rotates.
  • FIG. 5B is a cross-sectional view of the blade 32 cut along a cylindrical plane including the arc BB in FIG. 4 is an imaginary arc passing through an intermediate portion between the blade tip portion 32c and the blade root portion 32d with the center axis Y of the propeller 3 as a reference (the center of the arc). be. That is, the distance from the central axis Y to the arc BB shown in FIG. 4 is obtained by dividing the sum of the distance from the central axis Y to the blade tip 32c and the distance from the central axis Y to the blade root 32d by 2. is the value As shown in FIG.
  • the intermediate portions of the blades 32 are also arranged such that the more forward in the direction of rotation of the propeller 3 (the right side of the paper in FIG. 5B), the closer to the air intake side (the upper side of the paper in FIG. 5B). , with a predetermined inclination.
  • FIG. 5C is a cross-sectional view of the blade 32 cut along a cylindrical plane including arc CC in FIG. Arc CC indicated by a broken line in FIG. 4 is an imaginary arc that passes through the vicinity of the blade root portion 32d with the center axis Y of the propeller 3 as a reference (the center of the arc).
  • the more forward in the rotational direction of the propeller 3 to the right side of the paper surface of FIG. 5C
  • the air is sucked in (upper side of the paper surface of FIG. 5C). It is slanted in a predetermined manner so that it is positioned at
  • the circumferential length of the blade 32 is shorter as it is closer to the blade root 32d (see FIG. 4) in the radial direction.
  • the blade 32 is It is curved in a gentle convex shape. This makes it easier for the pressure surface 32e of the blade 32 to pressurize the air.
  • FIG. 6A is a cross-sectional view of the blade 32 cut along the span line DD in FIG.
  • the “span line” refers to the distance from the front edge 32a (see FIG. 4) and 32b (see FIG. 4) is a line connecting the points where the ratio of the distance from 32b (see FIG. 4) is constant from the blade tip portion 32c (see FIG. 4) to the blade root portion 32d (see FIG. 4). It is assumed that the distance from the leading edge 32a to the span line DD and the distance from the trailing edge 32b to the span line DD are measured along the warp line of the blade 32 in a predetermined manner. A direction along the span line is called a "span direction".
  • a span line DD shown in FIG. 4 is a span line passing near the front edge 32a of the blade 32.
  • the front edge portion 32a (see FIG. 2) of the blade 32 also has the same shape as in FIG. 6A. Therefore, in order to make the explanation easier to understand, reference numerals for the blade tip leading edge 321, the blade root leading edge 323, etc. are also shown for convenience in FIG.
  • the cross section of the span line DD in the vicinity of the front edge portion 32a has an inverted S shape as shown in FIG. 6A. Further, as shown in FIG. 2, the front edge portion 32a also has a similar inverted S shape. Then, as shown in FIG. 2, the first position ⁇ , which is positioned closest to the suction side in the leading edge portion 32a of the blade 32, is provided between the tip leading edge 321 and the blade root leading edge 323. . Further, between the tip leading edge 321 and the first position ⁇ , the leading edge portion 32a has a concave shape curved toward the blowout side.
  • the “concave shape” curved toward the blowout side means that the leading edge portion 32a is located closer to the third position ⁇ between the leading edge 321 of the wing tip and the first position ⁇ . shape.
  • the blade tip leading edge 321 is located on the blowout side of the first position ⁇ .
  • the propeller height HP dimension in the axial direction of the propeller 3 is shorter than when the blade tip leading edge 321 is located on the suction side with respect to the first position ⁇ . Therefore, the thickness of the propeller 3 can be reduced.
  • FIG. 6B is a cross-sectional view of the blade 32 taken along the span line EE in FIG.
  • the span line EE in FIG. 4 is a span line passing through an intermediate position in the circumferential direction between the front edge portion 32a and the rear edge portion 32b.
  • the cross section along the span line EE also exhibits an inverted S shape as in FIG. 6A.
  • the degree of curvature is gentle. That is, in the span direction, the degree of curvature of the reverse S-shape becomes gradually gentler from the front edge portion 32a (see FIG. 2) toward the intermediate position in the span direction (see FIG. 6B).
  • FIG. 6C is a cross-sectional view of the blade 32 cut along the span line FF in FIG.
  • the span line FF in FIG. 4 is a span line that passes through the vicinity of the trailing edge portion 32b of the blade 32.
  • the trailing edge 32b has the same shape as in FIG. 6C. Therefore, in order to make the explanation easier to understand, reference numerals for the blade tip trailing edge 322, the blade root trailing edge 324, etc. are also shown in FIG.
  • the trailing edge 32b of the blade 32 has a convex shape curved toward the blowout side (it has a concave shape when viewed from the suction side).
  • the second position ⁇ located on the most blowout side of the trailing edge portion 32 b is provided between the blade tip trailing edge 322 and the blade root trailing edge 324 .
  • the closer to the second position ⁇ in the trailing edge portion 32b the closer to the blowout side.
  • the air blown out from the propeller 3 is pushed out obliquely by the pressure surface 32e in the region radially outside the second position ⁇ so as to include a radially outward velocity component. (see arrows W3 and W4 in FIG. 2).
  • the air blown out from the propeller 3 flows along the enlarged diameter portion 82 of the bell mouth 8 . Therefore, it is possible to reduce the air pressure loss in the bell mouth 8 and, in turn, suppress the reduction in the increase of the static pressure.
  • the degree of curvature of the blade 32 toward the blowout side gradually increases from the intermediate position in FIG. 6B toward the trailing edge portion 32b (see FIG. 2). Further, the trailing edge portion 32b is convexly curved toward the blowout side in its entirety.
  • a second position ⁇ may be provided at a second intermediate portion 326 (see FIG. 6C) between the tip trailing edge 322 and the root trailing edge 324 in the spanwise direction along the trailing edge 32b of FIG. preferable.
  • the first intermediate portion 325 for example, an intermediate portion obtained by dividing the leading edge portion 32a into three equal parts in the span direction into three parts, ie, the blade tip side, the intermediate portion, and the blade root side, is used.
  • the second intermediate portion 326 an intermediate portion obtained by dividing the trailing edge portion 32b into three equal parts in the spanwise direction may be used.
  • a sufficient range can be secured between the first position ⁇ and the leading edge 321 of the blade tip in the span direction. Therefore, an oblique air flow having a radially inward velocity component tends to flow along the blades 32 .
  • FIG. 15 is a cross-sectional view of a general propeller blade 34 cut along a predetermined cylindrical surface.
  • the chord length L shown in FIG. 15 is the length of the chord line S.
  • a chord line S is a line segment that connects the leading edge 34 a and the trailing edge 34 b in the blade section of the blade 34 .
  • the mounting angle ⁇ is the angle formed by the chord line S and the plane of rotation X. It should be noted that the plane of rotation X is assumed to be perpendicular to the central axis of the propeller (not shown).
  • the blade chord length L shown in FIG. 15 The longer the blade chord length L shown in FIG. 15, the greater the increase in static pressure and the greater the air volume. Moreover, the greater the mounting angle ⁇ , the greater the increase in static pressure and the greater the air volume. Therefore, the blade chord length L and the mounting angle ⁇ are important design values for securing the static pressure rise width and the air volume.
  • FIG. 16 is a cross-sectional view of an outdoor unit 10G provided with a propeller 3G according to a comparative example.
  • the blade 32G see also FIG. 17
  • FIG. 16 shows the meridional plane of the blade 32G.
  • the leading edge portion 32Ga is positioned closer to the suction side as it approaches the tip leading edge 321G.
  • the trailing edge portion 32Gb is positioned closer to the blowout side as it is closer to the tip trailing edge 322G.
  • the propeller 3G is formed so that the blade chord length L (see FIG. 15) and the mounting angle ⁇ (see FIG. 15) are maximized at the blade tip portion 32Gc. In such a configuration, propeller height HP is determined by blade chord length L and mounting angle ⁇ at blade tip 32Gc.
  • FIG. 17 is a perspective view of a propeller 3G according to a comparative example.
  • the propeller 3G shown in FIG. 17 corresponds to the configuration shown in FIG.
  • the blade chord length L (see FIG. 15) at the blade tip 32Gc or the mounting angle ⁇ (see FIG. 15 reference) was adopted.
  • such a design reduces the amount of increase in the static pressure of the propeller 3G and also reduces the air volume. Further, if the rotation speed of the propeller 3G is increased to compensate for the increase in static pressure and the decrease in air volume, noise will increase.
  • the leading edge portion 32a between the tip leading edge 321 and the first position ⁇ has a concave shape curved toward the blowout side.
  • a trailing edge portion 32b of the blade 32 has a convex shape curved toward the blowout side.
  • the first position ⁇ and the second position ⁇ that define the propeller height HP are set at a predetermined position between the blade tip portion 32c and the blade root portion 32d (for example, an intermediate portion in the span direction). near).
  • the chord length L (see FIG. 15) and the mounting angle ⁇ (see FIG. 15) can be made relatively large near the first position ⁇ and the second position ⁇ .
  • the propeller height HP is determined by a first position ⁇ at the leading edge 32a of the blade 32 and a second position ⁇ at the trailing edge 32b of the blade 32. is configured as Therefore, by appropriately adjusting the first position ⁇ and the second position ⁇ at the stage of designing the propeller 3, it is possible to make the propeller 3 thinner and to ensure sufficient static pressure rise and air volume. In addition, by reducing the thickness of the propeller 3, the longitudinal length of the lateral blowing type outdoor unit 10 can be shortened.
  • the leading edge portion 32a has a concave shape toward the blowout side.
  • the trailing edge portion 32b of the blade 32 is convex on the blowout side, the air blown out from the propeller 3 is inclined in an oblique direction so as to include a radially outward velocity component. (see arrows W3 and W4 in FIG. 2), and then flows along the enlarged diameter portion 82 of the bell mouth 8. As shown in FIG. As a result, air pressure loss in the bell mouth 8 can be suppressed, and efficiency can be improved. Further, since the trailing edge 32b of the blade 32 does not have a concave portion when viewed from the blowing side, separation of the air flow on the negative pressure surface 32f (see FIG. 3) of the blade 32 hardly occurs. Therefore, it is possible to suppress the decrease in the increase width of the static pressure.
  • the radial distance RD from the central axis Y of the propeller 3A (see FIG. 7) to the first position ⁇ is equal to the radial distance RD from the central axis Y to the second position ⁇ .
  • the point is different from the first embodiment. Others are the same as those of the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 7 is a cross-sectional view of an outdoor unit 10A including a propeller fan UA1 according to the second embodiment.
  • FIG. 7 shows the meridional plane of the blade 32A.
  • the radial distance RD from the central axis Y of the propeller 3A to the first position ⁇ is equal to the radial distance RD from the central axis Y to the second position ⁇ .
  • the first position ⁇ and the second position are obtained based on one blade cross section (the cross section when the blade 32A is cut along a predetermined cylindrical surface) including the first position ⁇ and the second position ⁇ .
  • can be appropriately adjusted at the design stage. Therefore, it becomes easier to design the propeller 3A, so that the work load in the design stage can be reduced.
  • the first position ⁇ and the second position ⁇ can be appropriately adjusted in the design stage in a predetermined blade section (one blade section) obtained by cutting the propeller 3A along a predetermined cylindrical surface. 3A designs can be easily made.
  • the third embodiment differs from the first embodiment in that the mounting angle of the blade cross section is maximized at the first position ⁇ (see FIG. 2), but otherwise is the same as the first embodiment. . Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 8 is an explanatory diagram relating to the mounting angle ⁇ of the blade section in the propeller fan according to the third embodiment.
  • the horizontal axis of FIG. 8 is the radius R of the propeller 3 (see FIG. 2) (that is, the radial distance from the center axis Y).
  • the vertical axis in FIG. 8 is the mounting angle ⁇ in the blade section corresponding to each radius.
  • blade cross section refers to a cross section obtained by cutting the blade 32 along a predetermined cylindrical surface.
  • '0' on the horizontal axis of FIG. 8 indicates the radius of the boss portion 33 (see FIG. 2).
  • '1' on the horizontal axis of FIG. 8 indicates the radius of the blade tip 32c (see FIG. 2).
  • the solid line in FIG. 8 indicates the mounting angle ⁇ of the blade section at each radius of the propeller 3 according to the third embodiment.
  • the dashed-dotted line in FIG. 8 indicates the mounting angle ⁇ of the blade section at each radius of the propeller 3G according to the comparative example (see FIGS. 16 and 17).
  • the mounting angle ⁇ of the blade section is maximized at the radius R ⁇ of the first position ⁇ (see FIG. 2). .
  • the second position ⁇ (see FIG. 2) is not particularly shown in FIG. may be
  • the fourth embodiment differs from the first embodiment in that the mounting angle of the blade cross section is maximized at the second position ⁇ (see FIG. 2), but otherwise is the same as the first embodiment. . Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 9 is an explanatory diagram regarding the mounting angle ⁇ of the blade section in the propeller fan according to the fourth embodiment.
  • the horizontal axis of FIG. 9 is the radius R of the propeller 3 (see FIG. 2) (that is, the radial distance from the central axis Y), and the vertical axis is the mounting angle ⁇ .
  • R of the propeller 3 that is, the radial distance from the central axis Y
  • the vertical axis is the mounting angle ⁇ .
  • FIG. 9 in the fourth embodiment (solid line in FIG. 9)
  • mounting angle ⁇ of the blade section is maximized. ing.
  • the first position ⁇ (see FIG. 2) is not particularly shown in FIG. 9, but the first position ⁇ is provided on either the blade tip side or the blade root side with respect to the second position ⁇ . may be
  • the fifth embodiment differs from the first embodiment in that the chord length is maximized at the first position ⁇ (see FIG. 2), but otherwise is the same as the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 10 is an explanatory diagram regarding the blade chord length L in the propeller fan according to the fifth embodiment.
  • the horizontal axis of FIG. 10 is the radius R of the propeller 3 (see FIG. 2) (that is, the radial distance from the central axis Y).
  • the vertical axis in FIG. 10 is the blade chord length L in the blade cross section corresponding to each radius.
  • a solid line in FIG. 10 indicates the blade chord length L at each radius of the propeller 3 according to the fifth embodiment.
  • the dashed-dotted line in FIG. 10 indicates the blade chord length L at each radius of the propeller 3G according to the comparative example (see FIGS. 16 and 17). As shown in FIG. 10, in the comparative example (one-dot chain line in FIG. 10), the closer the blade tip ('1' on the horizontal axis), the longer the blade chord length.
  • the chord length L is maximized at the radius R ⁇ of the first position ⁇ (see FIG. 2), as indicated by the point P ⁇ .
  • the length of the blade chord length L can be sufficiently secured in the vicinity of the first position ⁇ , so that the amount of increase in static pressure and the air volume can be increased.
  • the second position ⁇ is not particularly shown in FIG. may be
  • ⁇ Sixth embodiment>> The sixth embodiment differs from the first embodiment in that the chord length is maximized at the second position ⁇ (see FIG. 2), but otherwise is the same as the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 11 is an explanatory diagram regarding the blade chord length L in the propeller fan according to the sixth embodiment.
  • the horizontal axis of FIG. 11 is the radius R (that is, the radial distance from the center axis Y) of the propeller 3 (see FIG. 2), and the vertical axis is the blade chord length L.
  • R radius
  • the vertical axis is the blade chord length L.
  • chord length L is maximized at radius R ⁇ at second position ⁇ (see FIG. 2).
  • the first position ⁇ is not particularly shown in FIG. may be
  • the seventh embodiment differs from the first embodiment in that a propeller fan UB1 (see FIG. 13) is provided in a top-blowing outdoor unit 10B (see FIG. 13). Further, the seventh embodiment differs from the first embodiment in that the air conditioner 100B is a multi-type air conditioner having a plurality of indoor units 21 to 24 (see FIG. 12). Others (structure of propeller 3, etc.: see FIG. 13) are the same as those of the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 12 is a configuration diagram of an air conditioner 100B having a propeller fan according to the seventh embodiment.
  • the illustration of the refrigerant pipe K1 is simplified, and the refrigerant pipe that guides the refrigerant from the outdoor unit 10B to the indoor unit 21 and the like and the refrigerant pipe that guides the refrigerant from the indoor unit 21 and the like to the outdoor unit 10B are shared. It is illustrated with a solid line.
  • a multi-type air conditioner 100B shown in FIG. 12 includes a top-blown outdoor unit 10B and four ceiling-embedded indoor units 21 to 24 .
  • the refrigerant circulates in a predetermined manner.
  • the number of indoor units connected to the outdoor unit 10B may be three or less, or may be five or more.
  • FIG. 13 is a cross-sectional view of an outdoor unit 10B having a propeller fan UB1.
  • a propeller fan UB1 is provided near the upper end of the housing 11 of the outdoor unit 10B.
  • the compressor 1 and the accumulator 12, as well as the outdoor heat exchanger 2 and the electric component box 13 are installed.
  • the propeller fan UB1 has a propeller 3 (outdoor fan) and a bellmouth 8B.
  • a fan motor 31 is installed on a boss portion 33 of the propeller 3 .
  • the fan motor 31 is fixed to the motor clamp 14 so that the motor shaft 31a is oriented vertically.
  • the configuration of the propeller 3 is the same as that of the first embodiment (see FIG. 2), so detailed description thereof will be omitted.
  • the bell mouth 8B is provided on the outer peripheral side (radial outer side) of the propeller 3. As shown in FIG. 13, the bell mouth 8B includes a curved portion 81B and an enlarged diameter portion 82. As shown in FIG. The curved portion 81B has a thin cylindrical shape and is curved in a predetermined manner so that its diameter decreases toward the downstream side (blowing side) of the air flow. The expanded diameter portion 82 has a truncated conical side surface and is continuous with the downstream side (blowing side) of the curved portion 81B.
  • air is blown upward through the bell mouth 8B. Specifically, as indicated by arrows W5 and W6, air having a radially inward velocity component flows into the propeller 3 from diagonally below.
  • the propeller 3 can be made thinner, and the increased width of the static pressure and the air volume can be ensured. Further, by reducing the thickness of the propeller 3, the dimension of the outdoor unit 10B in the height direction can be shortened.
  • the outdoor heat exchanger 2 is relatively distant from the propeller 3, while the distance between the wall near the upper end of the housing 11 and the bell mouth 8B is relatively short.
  • the propeller 3 has a concave shape in which the front edge portion 32a is curved toward the blowout side between the blade tip leading edge 321 and the first position ⁇ . be able to. As a result, it is possible to secure the amount of increase in static pressure and the air volume. In addition, it is possible to suppress a decrease in efficiency while reducing the thickness of the propeller 3 .
  • FIG. 14A is a cross-sectional view of propeller fan UC1 according to the first modification. 14A, illustration of the fan motor 31 of the propeller 3 is omitted.
  • the diameter of the expanded diameter portion 82C of the bell mouth 8C increases stepwise toward the downstream side (blowing side) of the air flow in the axial direction.
  • the trailing edge 32b of the blade 32 is curved toward the blowout side to form a convex shape, so that the flow of air blown out from the propeller 3 can flow along the bellmouth 8C. Therefore, it is possible to reduce air pressure loss in the propeller fan UC1 and achieve high efficiency.
  • FIG. 14B is a cross-sectional view of a propeller fan UD1 according to a second modification.
  • the diameter of the enlarged diameter portion 82D of the bell mouth 8D monotonously increases toward the downstream side (blowout side) of the air flow in the axial direction, and the enlarged diameter portion 82D protrudes radially inward.
  • FIG. 14C is a cross-sectional view of propeller fan UE1 according to the third modification.
  • the diameter of the enlarged diameter portion 82E of the bell mouth 8E monotonically increases toward the downstream side (blowout side) of the air flow in the axial direction, and the enlarged diameter portion 82E protrudes radially outward. has the shape of Even with such a configuration, the trailing edge 32b of the blade 32 has a convex shape curved toward the blowout side, so that the flow of air blown out from the propeller 3 can be made to flow along the bell mouth 8E.
  • the configuration in which the second position ⁇ is provided between the first position ⁇ (see FIG. 2) and the third position ⁇ (see FIG. 2) in the span direction has been described. Not exclusively.
  • the configuration may be such that the second position ⁇ is provided on the blade root side of the first position ⁇ in the span direction. Even with such a configuration, the same effects as those of the first embodiment can be obtained.
  • the first position ⁇ is provided in the first intermediate portion 325 (see FIG. 6A) between the blade tip leading edge 321 (see FIG. 2) and the blade root leading edge 323 (see FIG. 2).
  • the first position ⁇ may be provided on the blade tip side or the blade root side of the first intermediate portion 325 .
  • the second position ⁇ is provided at the second intermediate portion 326 (see FIG. 6C) between the blade tip trailing edge 322 (see FIG. 2) and the blade root trailing edge 324 (see FIG. 2).
  • the configuration has been described, it is not limited to this. That is, the second position ⁇ may be provided on the blade tip side or the blade root side of the second intermediate portion 326 . The same can be said for the second to seventh embodiments.
  • the present invention is not limited to this. That is, the blade tip leading edge 321 and the first position ⁇ may be positioned substantially at the same axial position, or the blade tip leading edge 321 may be positioned closer to the suction side than the first position ⁇ . good. Even with such a configuration, the same effects as those of each embodiment can be obtained.
  • the front edge portion 32a has a convex shape on the suction side in the range from the blade root front edge 323 to the first position ⁇ , but the present invention is not limited to this.
  • it is configured to change from a convex shape on the blowout side to a convex shape on the suction side via a predetermined inflection point (not shown).
  • propeller fan U1 and the like described in each embodiment can be applied not only to room air conditioners, but also to various types of air conditioners such as package air conditioners and multi air conditioners for buildings. Also, the propeller fan U1 and the like described in each embodiment can be applied to various devices other than air conditioners.
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration. Further, the mechanisms and configurations described above show those considered necessary for explanation, and do not necessarily show all the mechanisms and configurations on the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

薄型化が可能な低騒音で高効率のプロペラファン等を提供する。プロペラファンU1は、ボス部(33)と、複数の翼(32)と、を有するプロペラ(3)と、プロペラ(3)の外周側に設けられるベルマウス(8)と、を備え、翼(32)の前縁部(32a)において最も吸込側に位置している第1位置(α)が、翼端前縁(321)と翼根前縁(323)との間に設けられ、翼端前縁(321)と第1位置(α)との間では、前縁部(32a)が吹出側に湾曲してなる凹状を呈し、翼(32)の後縁部(32b)は、吹出側に湾曲してなる凸状を呈している。

Description

プロペラファン及び空気調和機
 本発明は、プロペラファン等に関する。
 プロペラの薄型化を図る(軸方向の寸法を短くする)技術として、例えば、特許文献1に記載の技術が知られている。すなわち、特許文献1には、翼の回転方向に沿う断面形状が、翼の負圧面側に膨出する膨出部と、翼の正圧面側に膨出する膨出部と、を交互に3箇所以上有するように形成された軸流ファンについて記載されている。
特開2010-150945号公報
 しかしながら、特許文献1に記載の技術では、正圧面側に膨出している膨出部の負圧面側で空気流れの剥離が生ずる可能性がある。このような空気流れの剥離に伴う圧力変動が生じると、空力騒音が大きくなる。したがって、特許文献1に記載の技術は、騒音の低減において改善の余地がある。
 また、プロペラの薄型化を図るために、例えば、翼端部での翼弦長や取付角を小さくすると、静圧の上昇幅(静圧上昇ともいう)が小さくなる他、風量も小さくなる。このような場合において、静圧の上昇幅や風量を確保するためにプロペラの回転速度を上昇させると、騒音の増加を招いてしまう。
 そこで、本発明は、薄型化が可能な低騒音で高効率のプロペラファン等を提供することを課題とする。
 前記した課題を解決するために、本発明は、モータ軸と一体で回転するボス部と、前記ボス部に設置される複数の翼と、を有するプロペラと、前記プロペラの外周側に設けられるベルマウスと、を備え、前記翼の前縁部において最も吸込側に位置している第1位置が、翼端前縁と翼根前縁との間に設けられ、前記翼端前縁と前記第1位置との間では、前記前縁部が吹出側に湾曲してなる凹状を呈し、前記翼の後縁部は、吹出側に湾曲してなる凸状を呈していることとした。
 本発明によれば、薄型化が可能な低騒音で高効率のプロペラファン等を提供できる。
第1実施形態に係るプロペラファンを備える空気調和機の冷媒回路を含む構成図である。 第1実施形態に係るプロペラファンを備える室外機の断面図である。 第1実施形態に係るプロペラファンが備えるプロペラの斜視図である。 第1実施形態に係るプロペラファンが備えるプロペラの中心軸線の方向において、空気の吸込側からプロペラを見た図である。 図4の円弧A-Aを含む円筒面で翼を切断した場合の断面図である。 図4の円弧B-Bを含む円筒面で翼を切断した場合の断面図である。 図4の円弧C-Cを含む円筒面で翼を切断した場合の断面図である。 図4のスパン線D-Dで翼を切断した場合の断面図である。 図4のスパン線E-Eで翼を切断した場合の断面図である。 図4のスパン線F-Fで翼を切断した場合の断面図である。 第2実施形態に係るプロペラファンを備える室外機の断面図である。 第3実施形態に係るプロペラファンにおける翼断面の取付角に関する説明図である。 第4実施形態に係るプロペラファンにおける翼断面の取付角に関する説明図である。 第5実施形態に係るプロペラファンにおける翼弦長に関する説明図である。 第6実施形態に係るプロペラファンにおける翼弦長に関する説明図である。 第7実施形態に係るプロペラファンを備える空気調和機の構成図である。 第7実施形態に係るプロペラファンを備える室外機の断面図である。 第1の変形例に係るプロペラファンの断面図である。 第2の変形例に係るプロペラファンの断面図である。 第3の変形例に係るプロペラファンの断面図である。 一般的なプロペラの翼を所定の円筒面で切断した場合の断面図である。 比較例に係るプロペラを備える室外機の断面図である。 比較例に係るプロペラの斜視図である。
≪第1実施形態≫
<空気調和機の構成>
 図1は、第1実施形態に係るプロペラファンを備える空気調和機100の冷媒回路Qを含む構成図である。
 なお、図1の実線矢印は、暖房運転時の冷媒の流れを示している。
 一方、図1の破線矢印は、冷房運転時の冷媒の流れを示している。
 空気調和機100は、暖房運転や冷房運転等の空調を行う機器である。図1に示すように、空気調和機100は、圧縮機1と、室外熱交換器2と、プロペラ3(室外ファン)と、膨張弁4と、を備えている。また、空気調和機100は、前記した構成の他に、室内熱交換器5と、室内ファン6と、四方弁7と、を備えている。
 圧縮機1は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器である。このような圧縮機1として、例えば、スクロール圧縮機やロータリ圧縮機が用いられる。
 室外熱交換器2は、その伝熱管(図示せず)を通流する冷媒と、プロペラ3から送り込まれる外気と、の間で熱交換が行われる熱交換器である。
 プロペラ3(室外ファン)は、室外熱交換器2に外気を送り込む軸流ファンである。プロペラ3は、駆動源であるファンモータ31を備え、室外熱交換器2の付近に設置されている。
 膨張弁4は、「凝縮器」(室外熱交換器2及び室内熱交換器5の一方)で凝縮した冷媒を減圧する弁である。なお、膨張弁4で減圧された冷媒は、「蒸発器」(室外熱交換器2及び室内熱交換器5の他方)に導かれる。
 室内熱交換器5は、その伝熱管(図示せず)を通流する冷媒と、室内ファン6から送り込まれる室内空気(空調室の空気)と、の間で熱交換が行われる熱交換器である。
 室内ファン6は、室内熱交換器5に室内空気を送り込むファンである。室内ファン6は、駆動源である室内ファンモータ61を備え、室内熱交換器5の付近に設置されている。このような室内ファン6として、例えば、クロスフローファンが用いられる。
 四方弁7は、空気調和機100の運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房運転時(図1の破線矢印を参照)には、冷媒回路Qにおいて、圧縮機1、室外熱交換器2(凝縮器)、膨張弁4、及び室内熱交換器5(蒸発器)を順次に介して、冷媒が循環する。一方、暖房運転時(図1の実線矢印を参照)には、冷媒回路Qにおいて、圧縮機1、室内熱交換器5(凝縮器)、膨張弁4、及び室外熱交換器2(蒸発器)を順次に介して、冷媒が循環する。
 なお、図1の例では、圧縮機1、室外熱交換器2、プロペラ3(室外ファン)、膨張弁4、及び四方弁7が、室外機10に設置されている。一方、室内熱交換器5や室内ファン6は、室内機20に設置されている。圧縮機1やプロペラ3の他、膨張弁4や室内ファン6、四方弁7等の機器は、制御装置(図示せず)によって、所定に制御される。
 図2は、プロペラファンU1を備える室外機10の断面図である。
 なお、図2では、プロペラ3の中心軸線Yを含む所定の水平面で、横吹型の室外機10を切断した場合の模式的な断面を図示している。また、プロペラ3の翼32(図3も参照)については、図2では、この翼32の子午面を示している。ここで、翼32の「子午面」とは、プロペラ3の中心軸線Yを基準として、翼32の形状を所定に回転投影したものである。また、図2では、空気の流れを白抜きの太矢印で示している。
 図2に示すように、プロペラファンU1は、プロペラ3と、ベルマウス8と、を備え、室外機10の内部に設置されている。
 プロペラ3は、概ね軸方向に空気を送風する軸流ファンである。プロペラ3は、駆動源であるファンモータ31と、ファンモータ31のモータ軸31aと一体で回転する外形円柱状のボス部33と、ボス部33の周壁に設置される3枚の翼32(図3も参照)と、を備えている。図2の例では、中心軸線Yの方向(モータ軸31aの軸方向)が室外機10の前後方向と平行になるように、プロペラファンU1が設置されている。
 ベルマウス8は、プロペラ3に吸い込まれる空気を所定に導き、また、プロペラ3から吹き出される空気を所定に導く整流部材である。ベルマウス8は、円筒状を呈し、プロペラ3の外周側(径方向外側)に設けられている。なお、ベルマウス8の中心軸線は、プロペラ3の中心軸線Yに略一致している。
 図2に示すように、ベルマウス8は、湾曲部81と、拡径部82と、を備えている。湾曲部81は、肉薄の円筒状を呈し、空気流れの下流側(吹出側)に向かうにつれて、その径が小さくなるように、所定に湾曲している。拡径部82は、円錐台の側面状を呈し、湾曲部81の下流側(吹出側)に連なっている。拡径部82は、空気流れの下流側(吹出側)に向かうにつれて、その径が大きくなるように形成されている。
 また、図2の例では、横断面視でL字状を呈する室外熱交換器2が、室外機10の背面側・左側に設けられている。室外熱交換器2において室外機10の背面側の部分は、空気の流れ方向で、プロペラ3の上流側に位置している。そして、室外熱交換器2で熱交換した空気が、ベルマウス8で整流されつつプロペラ3に吸い込まれ、さらに、プロペラ3から所定に吹き出されるようになっている。
 図2に示す機械室R1は、圧縮機1(図1参照)やアキュムレータ(図示せず)、膨張弁4(図1参照)等が収容される空間であり、プロペラファンU1の右側に設けられている。なお、プロペラファンU1が収容されるファン室R2と、前記した機械室R1と、は仕切板(図示せず)で所定に仕切られている。また、図2に示す翼32の翼端前縁321、翼端後縁322、翼根前縁323、及び翼根後縁324の他、第1位置α、第2位置β、及び第3位置γについては後記する。
 図3は、プロペラファンが備えるプロペラ3の斜視図である。
 なお、図3等に示す斜線入りの太矢印は、プロペラ3の回転する向きを示している。また、図3等に示す白抜きの太矢印は、プロペラ3の回転に伴って空気が流れる向きを示している。
 図3に示す3枚の翼32は、ボス部33の周壁に等角度間隔で設けられ、ボス部33から概ね径方向に放射状に延びている。より詳しく説明すると、3枚の翼32は、それぞれ、中心軸線Yを基準とする径方向に対して、回転方向の前方に傾くように延在している(図4も参照)。なお、翼32の枚数は、図3に示す3枚の他、2枚であってもよいし、また、4枚以上であってもよい。
 図4は、プロペラ3の中心軸線Yの方向において、空気の吸込側からプロペラ3を見た図である。
 図4に示すように、複数の翼32は、それぞれ、前縁部32aと、後縁部32bと、翼端部32cと、翼根部32dと、を備えている。前縁部32aは、翼32において、プロペラ3の回転方向で前方側に位置する縁部である。後縁部32bは、翼32において、プロペラ3の回転方向で後方側に位置する縁部である。翼端部32cは、翼32の外周側の縁部である。翼根部32dは、翼32の内周側の縁部である。
 図4に示すように、翼端部32cと前縁部32aとは、翼端前縁321を介して隣接している。翼端部32cと後縁部32bとは、翼端後縁322を介して隣接している。翼根部32dと前縁部32aとは、翼根前縁323を介して離接している。翼根部32dと後縁部32bとは、翼根後縁324を介して隣接している。なお、翼端前縁321、翼端後縁322、翼根前縁323、及び翼根後縁324については、図2におけるプロペラ3の子午面にも表れている。
 図4に示すように、空気の吸込側からプロペラ3を見た場合、前縁部32aは、回転方向の後側に湾曲するように凹状を呈している。一方、後縁部32bは、回転方向の後側に湾曲するように凸状を呈している。翼端部32cは、ベルマウス8(図2参照)の内周面との間に所定の隙間が設けられるように、円弧状を呈している。翼根部32dは、ボス部33の外周面に沿うように、円弧状に形成されている。
 それぞれの翼32は、圧力面32e(図3参照)と、負圧面32fと、を備えている。圧力面32eは、翼32が有する2つの面のうち、中心軸線Yの方向で前方側(吹出側、図4の紙面奥側)の面である。プロペラ3が回転しているときには、翼32の移動に伴い、圧力面32eによって空気が所定に押し出される。
 負圧面32fは、翼32が有する2つの面のうち、中心軸線Yの方向で後方側(吸込側、図4の紙面手前側)の面である。つまり、負圧面32fは、圧力面32e(図3参照)の裏側の面である。プロペラ3が回転しているときには、翼32の移動に伴い、負圧面32fに向かうように空気が吸い込まれる。なお、図4は、プロペラ3の吸込側から見た図であるため、負圧面32fが見えている一方、裏側の圧力面32e(図3参照)は見えていない。
 図5Aは、図4の円弧A-Aを含む円筒面で翼32を切断した場合の断面図である。
 なお、図4の破線で示す円弧A-Aは、プロペラ3の中心軸線Yを基準(円弧の中心)として、翼端部32cの付近を通る仮想的な円弧である。また、図4の円弧A-A等の符号付近の各矢印は、翼32を断面視する際の方向を示している。図5A等に示す斜線入りの太矢印は、プロペラ3の回転に伴って、翼32が移動する向きを示している。また、図5A等に示す白抜きの太矢印は、プロペラ3の回転に伴って空気が流れる向きを示している。
 翼端部32c(図4参照)の付近では、図5Aに示すように、プロペラ3の回転方向の前方(図5Aの紙面右側)に位置する箇所ほど、空気の吸込側(図5Aの紙面上側)に位置するように、所定に傾斜している。
 図5Bは、図4の円弧B-Bを含む円筒面で翼32を切断した場合の断面図である。
 なお、図4の破線で示す円弧B-Bは、プロペラ3の中心軸線Yを基準(円弧の中心)として、翼端部32cと翼根部32dとの間の中間部を通る仮想的な円弧である。つまり、図4に示す中心軸線Yから円弧B-Bまでの距離は、中心軸線Yから翼端部32cまでの距離と、中心軸線Yから翼根部32dまでの距離と、の和を2で除算した値になっている。図5Bに示すように、翼32の中間部も、プロペラ3の回転方向の前方(図5Bの紙面右側)に位置する箇所ほど、空気の吸込側(図5Bの紙面上側)に位置するように、所定に傾斜している。
 図5Cは、図4の円弧C-Cを含む円筒面で翼32を切断した場合の断面図である。
 なお、図4の破線で示す円弧C-Cは、プロペラ3の中心軸線Yを基準(円弧の中心)として、翼根部32dの付近を通る仮想的な円弧である。翼根部32d(図4参照)の付近でも、図5Cに示すように、プロペラ3の回転方向の前方(図5Cの紙面右側)に位置する箇所ほど、空気の吸込側(図5Cの紙面上側)に位置するように、所定に傾斜している。
 図5A、図5B、及び図5Cに示すように、径方向で翼根部32d(図4参照)に近いほど、翼32の周方向の長さが短くなっている。また、翼端部32cの付近(図5A参照)や中間部(図5B参照)の他、翼根部32dの付近(図5C参照)のいずれにおいても、空気の吸込側から見て、翼32が緩やかな凸状に湾曲している。これによって、翼32の圧力面32eで空気が昇圧されやすくなる。
 図6Aは、図4のスパン線D-Dで翼32を切断した場合の断面図である。
 ここで、「スパン線」とは、中心軸線Y(図4参照)を基準(中心)とする複数の円筒断面のそれぞれにおいて、前縁部32a(図4参照)からの距離と、後縁部32b(図4参照)からの距離と、の比が一定になる点を、翼端部32c(図4参照)から翼根部32d(図4参照)まで結んだ線である。なお、前縁部32aからスパン線D-Dまでの距離や、後縁部32bからスパン線D-Dまでの距離は、翼32の反り線に沿って所定に測定されるものとする。また、スパン線に沿う方向を「スパン方向」という。
 図4に示すスパン線D-D(図6Aの断面に対応)は、翼32の前縁部32aの付近を通るスパン線である。なお、翼32の前縁部32a(図2参照)も図6Aと同様の形状を呈している。したがって、説明を分かりやすくするために、前縁部32aの付近のスパン方向の断面を示す図6Aにも、翼端前縁321や翼根前縁323等の符号を便宜的に示している。
 前縁部32a(図4参照)の付近のスパン線D-Dの断面は、図6Aに示すように、逆S字状を呈している。また、図2に示すように、前縁部32aも同様の逆S字状を呈している。そして、図2に示すように、翼32の前縁部32aにおいて最も吸込側に位置している第1位置αが、翼端前縁321と翼根前縁323との間に設けられている。また、翼端前縁321と第1位置αとの間では、前縁部32aが吹出側に湾曲してなる凹状を呈している。ここで、吹出側に湾曲してなる「凹状」とは、前縁部32aにおいて、翼端前縁321と第1位置αとの間の第3位置γに近い箇所ほど吹出側に位置するような形状をいう。
 このような構成によれば、径方向内向きの速度成分を有する斜め方向の空気(図2の矢印W1,W2を参照)が翼32に流入した場合でも、翼端前縁321と第1位置αとの間に凹状の部分が設けられているため、空気の流れを翼32に沿わせることができる。したがって、空気の流れが翼32から剥離することを抑制し、高効率化を図ることができる。このような構成は、プロペラ3の側方に室外熱交換器2や機械室R1が設けられている影響で空気が翼32に対して斜め方向に流入しやすい横吹型の室外機10に特に適している。
 また、図2の例では、プロペラ3の中心軸線Yの方向において、翼端前縁321が第1位置αよりも吹出側に位置している。このような構成によれば、翼端前縁321が第1位置αよりも吸込側に位置している場合に比べて、プロペラ3のプロペラ高さHP(軸方向の寸法)が短くなる。したがって、プロペラ3の薄型化を図ることができる。
 図6Bは、図4のスパン線E-Eで翼32を切断した場合の断面図である。
 なお、図4のスパン線E-Eは、前縁部32aと後縁部32bとの間の周方向の中間位置を通るスパン線である。スパン線E-Eにおける断面も、図6Aと同様に逆S字状を呈しているが、スパン線D-D(図4参照)における断面(図6A参照)に比べて、逆S字状の湾曲度合いが緩やかになっている。つまり、スパン方向で、前縁部32a(図2参照)からスパン方向の中間位置(図6B参照)に向かうにつれて、前記した逆S字状の湾曲度合いが次第に緩やかになっている。
 図6Cは、図4のスパン線F-Fで翼32を切断した場合の断面図である。
 なお、図4のスパン線F-Fは、翼32の後縁部32bの付近を通るスパン線である。また、図2に示すように、後縁部32bも図6Cと同様の形状を呈している。したがって、説明を分かりやすくするために、後縁部32bの付近のスパン方向の断面を示す図6Cにも、翼端後縁322や翼根後縁324等の符号を便宜的に示している。
 図2に示すように、翼32の後縁部32bは、吹出側に湾曲してなる凸状を呈している(吸込側から見ると、凹状を呈している)。具体的には、後縁部32bにおいて最も吹出側に位置している第2位置βが、翼端後縁322と翼根後縁324との間に設けられている。また、後縁部32bにおいて第2位置βに近い箇所ほど吹出側に位置している。
 このような構成によれば、プロペラ3から吹き出される空気が、第2位置βよりも径方向外側の領域の圧力面32eによって、径方向外向きの速度成分を含むように、斜め方向に押し出される(図2の矢印W3,W4を参照)。その結果、プロペラ3から吹き出された空気が、ベルマウス8の拡径部82に沿うように流れる。したがって、ベルマウス8における空気の圧力損失を低減し、ひいては、静圧の上昇幅の低下を抑制できる。
 なお、スパン方向で、図6Bの中間位置から後縁部32b(図2参照)に向かうにつれて、翼32の吹出側への湾曲度合いが次第に大きくなっている。また、後縁部32bでは、その全域において吹出側に凸状に湾曲している。
 また、図2の前縁部32aに沿うスパン方向において、翼端前縁321と翼根前縁323との間の第1中間部325(図6A参照)に第1位置αが設けられることが好ましい。さらに、図2の後縁部32bに沿うスパン方向において、翼端後縁322と翼根後縁324との間の第2中間部326(図6C参照)に第2位置βが設けられることが好ましい。前記した第1中間部325として、例えば、スパン方向で前縁部32aを三等分して、翼端側・中間部・翼根側の3つの部分に分けた場合の中間部を用いるようにしてもよい。第2中間部326についても同様に、スパン方向で後縁部32bを三等分した場合の中間部を用いるようにしてもよい。
 このような構成によれば、スパン方向において、第1位置αと翼端前縁321との間の範囲を十分に確保できる。したがって、径方向内向きの速度成分を有する斜め方向の空気の流れが翼32に沿いやすくなる。また、プロペラ3の軸方向において、第1位置αと第2位置βとの間の長さが確保しやくなる。その結果、プロペラ3の薄型化を図りつつ、静圧の上昇幅や風量の低下を抑制できる。
 なお、図2の例では、プロペラ3の中心軸線Yから第1位置αまでの径方向の距離よりも、中心軸線Yから第2位置βまでの径方向の距離の方が長くなっているが、これらの距離の大小関係が逆であってもよい。
 次に、「翼弦長」及び「取付角」の定義について、図15を用いて簡単に説明する。
 図15は、一般的なプロペラの翼34を所定の円筒面で切断した場合の断面図である。
 図15に示す翼弦長Lは、翼弦線Sの長さである。翼弦線Sは、翼34の翼断面における前縁34aと後縁34bとを結ぶ線分である。また、取付角ξとは、翼弦線Sと回転面Xとのなす角である。なお、回転面Xは、プロペラの中心軸線(図示せず)に対して垂直であるものとする。
 図15に示す翼弦長Lが長いほど、静圧の上昇幅が大きくなる他、風量も大きくなる。また、取付角ξが大きいほど、静圧の上昇幅が大きくなる他、風量も大きくなる。したがって、翼弦長Lや取付角ξは、静圧の上昇幅や風量を確保するための重要な設計値である。
 図16は、比較例に係るプロペラ3Gを備える室外機10Gの断面図である。
 なお、プロペラ3Gの翼32G(図17も参照)については、図16では、翼32Gの子午面を示している。図16の比較例では、前縁部32Gaは、翼端前縁321Gに近いほど吸込側に位置している。一方、後縁部32Gbは、翼端後縁322Gに近いほど吹出側に位置している。そして、翼端部32Gcにおいて、翼弦長L(図15参照)や取付角ξ(図15参照)が最大となるようにプロペラ3Gが形成されている。このような構成では、プロペラ高さHPが、翼端部32Gcでの翼弦長L及び取付角ξで決まることになる。
 図17は、比較例に係るプロペラ3Gの斜視図である。
 なお、図17に示すプロペラ3Gは、図16の構成に対応している。これまでのプロペラ3Gの設計では、プロペラ高さHP(図16参照)を短くするために、翼端部32Gcでの翼弦長L(図15参照)を小さくしたり、取付角ξ(図15参照)を小さくしたりする方法が採られていた。しかしながら、このような設計では、プロペラ3Gの静圧の上昇幅が低下する他、風量も低下する。また、静圧の上昇幅や風量の低下を補うためにプロペラ3Gの回転速度を上昇させると、騒音の増加を招いてしまう。
 これに対して第1実施形態では、図2に示すように、翼端前縁321と第1位置αとの間では、前縁部32aが吹出側に湾曲してなる凹状を呈している。また、翼32の後縁部32bは、吹出側に湾曲してなる凸状を呈している。このような構成にすると、プロペラ高さHP(図2参照)が、第1位置α及び第2位置βの軸方向の位置で決まることになる。具体的には、第1位置αと第2位置βとの間の軸方向の距離が、プロペラ高さHPになる。
 このように、第1実施形態では、プロペラ高さHPを規定する第1位置αや第2位置βが、翼端部32cと翼根部32dとの間の所定箇所(例えば、スパン方向の中間部の付近)に設けられている。これによって、第1位置αや第2位置βの付近で、翼弦長L(図15参照)や取付角ξ(図15参照)を比較的大きくすることができる。
<効果>
 第1実施形態によれば、図2に示すように、翼32の前縁部32aにおける第1位置αと、翼32の後縁部32bにおける第2位置βと、でプロペラ高さHPが決まるように構成されている。したがって、プロペラ3の設計段階で第1位置αや第2位置βを適宜に調整することで、プロペラ3の薄型化を図りつつ、静圧の上昇幅や風量を十分に確保できる。また、プロペラ3の薄型化を図ることで、横吹型の室外機10の前後方向の長さを短くすることができる。
 また、翼端前縁321と第1位置αとの間では、前縁部32aが吹出側に凹状を呈している。これによって、横方向で室外熱交換器2や機械室R1がプロペラファンU1に対して比較的近い位置に設けられた場合でも、斜め方向の空気(図2の矢印W1,W2を参照)が翼32に沿うように流れる。つまり、径方向内向きの速度成分を有する空気の流れが、プロペラ3の外周側から誘引されやすくなる。その結果、翼32における空気の■離を抑制し、ひいては、静圧の上昇幅や風量を確保できる。
 また、図2に示すように、翼32の後縁部32bが吹出側に凸状を呈しているため、プロペラ3から吹き出される空気が、径方向外向きの速度成分を含むように斜め方向に導かれ(図2の矢印W3,W4を参照)、さらに、ベルマウス8の拡径部82に沿って流れる。これによって、ベルマウス8における空気の圧力損失を抑制し、ひいては、効率を高めることができる。また、翼32の後縁部32bでは、吹出側から見て凹状の部分が特にないため、翼32の負圧面32f(図3参照)で空気の流れの剥離が生ずることもほとんどない。したがって、静圧の上昇幅の低下を抑制できる。
 例えば、図16、図17の比較例に対して、第1実施形態におけるプロペラ3のプロペラ高さHPを26%薄型にした場合でも、静圧の上昇幅や風量の他、プロペラ3の効率が、比較例と同等になるという結果が得られた。このように、第1実施形態によれば、薄型化が可能な低騒音で高効率のプロペラファンU1等を提供できる。
≪第2実施形態≫
 第2実施形態は、プロペラ3A(図7参照)の中心軸線Yから第1位置αまでの径方向の距離RDと、中心軸線Yから第2位置βまでの径方向の距離RDと、が等しい点が、第1実施形態とは異なっている。なお、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図7は、第2実施形態に係るプロペラファンUA1を備える室外機10Aの断面図である。
 なお、プロペラ3Aの翼32Aについては、図7では、翼32Aの子午面を示している。図7の例では、プロペラ3Aの中心軸線Yから第1位置αまでの径方向の距離RDと、中心軸線Yから第2位置βまでの径方向の距離RDと、が等しくなっている。このような構成によれば、第1位置α及び第2位置βを含む一つの翼断面(翼32Aを所定の円筒面で切断した場合の断面)に基づいて、第1位置αや第2位置βを設計段階で適宜に調整できる。したがって、プロペラ3Aを設計しやすくなるため、設計段階での作業負担を軽減できる。
<効果>
 第2実施形態によれば、所定の円筒面でプロペラ3Aを切断した所定の翼断面(一つの翼断面)において、第1位置αや第2位置βを設計段階で適宜に調整できるため、プロペラ3Aの設計を容易に行うことができる。
≪第3実施形態≫
 第3実施形態は、第1位置α(図2参照)において翼断面の取付角が最大になる点が、第1実施形態とは異なっているが、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図8は、第3実施形態に係るプロペラファンにおける翼断面の取付角ξに関する説明図である。
 なお、図8の横軸は、プロペラ3(図2参照)の半径R(つまり、中心軸線Yとの間の径方向の距離)である。また、図8の縦軸は、各半径に対応する翼断面での取付角ξである。なお、「翼断面」とは、所定の円筒面で翼32を切断した場合の断面である。
 図8の横軸における‘0’は、ボス部33(図2参照)の半径を示している。一方、図8の横軸における‘1’は、翼端部32c(図2参照)の半径を示している。
 図8の実線は、第3実施形態に係るプロペラ3の各半径における翼断面の取付角ξを示している。一方、図8の一点鎖線は、比較例(図16、図17参照)に係るプロペラ3Gの各半径おける翼断面の取付角ξを示している。
 図8に示すように、比較例(図8の一点鎖線)では、翼端部(横軸の‘1’)に近いほど、取付角ξが小さくなっている。これに対して、第3実施形態(図8の実線)では、点Pαで示すように、第1位置α(図2参照)の半径Rαにおいて、翼断面の取付角ξが最大になっている。これによって、第1位置αの付近において取付角ξの大きさを十分に確保できるため、静圧の上昇幅や風量を大きくすることができる。なお、第2位置β(図2参照)については、図8には特に示していないが、第2位置βは、第1位置αに対して翼端側・翼根側のうちいずれに設けられていてもよい。
<効果>
 第3実施形態によれば、第1位置α(図2参照)において翼断面の取付角ξが最大になるため、第1位置αの付近でのプロペラ3の仕事量が比較的大きくなる。これによって、静圧の上昇幅や風量を十分に確保できる。
≪第4実施形態≫
 第4実施形態は、第2位置β(図2参照)において翼断面の取付角が最大になる点が、第1実施形態とは異なっているが、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図9は、第4実施形態に係るプロペラファンにおける翼断面の取付角ξに関する説明図である。
 なお、図9の横軸はプロペラ3(図2参照)の半径R(つまり、中心軸線Yとの間の径方向の距離)であり、縦軸は取付角ξである。図9に示すように、第4実施形態(図9の実線)では、点Pβで示すように、第2位置β(図2参照)の半径Rβにおいて、翼断面の取付角ξが最大になっている。これによって、第2位置βの付近で取付角ξの大きさを十分に確保できるため、静圧の上昇幅や風量を大きくすることができる。なお、第1位置α(図2参照)については、図9には特に示していないが、第1位置αは、第2位置βに対して翼端側・翼根側のうちいずれに設けられていてもよい。
<効果>
 第4実施形態によれば、第2位置β(図2参照)において翼断面の取付角ξが最大になるため、第2位置βの付近でのプロペラ3の仕事量が比較的大きくなる。これによって、静圧の上昇幅や風量を十分に確保できる。
≪第5実施形態≫
 第5実施形態は、第1位置α(図2参照)において翼弦長が最大になる点が、第1実施形態とは異なっているが、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図10は、第5実施形態に係るプロペラファンにおける翼弦長Lに関する説明図である。
 なお、図10の横軸は、プロペラ3(図2参照)の半径R(つまり、中心軸線Yとの間の径方向の距離)である。また、図10の縦軸は、各半径に対応する翼断面での翼弦長Lである。また、図10の実線は、第5実施形態に係るプロペラ3の各半径における翼弦長Lを示している。一方、図10の一点鎖線は、比較例(図16、図17参照)に係るプロペラ3Gの各半径における翼弦長Lを示している。図10に示すように、比較例(図10の一点鎖線)では、翼端部(横軸の‘1’)に近いほど、翼弦長が長くなっている。
 これに対して、第5実施形態(図10の実線)では、点Pαで示すように、第1位置α(図2参照)の半径Rαにおいて、翼弦長Lが最大になっている。これによって、第1位置αの付近で翼弦長Lの長さを十分に確保できるため、静圧の上昇幅や風量を大きくすることができる。なお、第2位置β(図2参照)については、図10には特に示していないが、第2位置βは、第1位置αに対して翼端側・翼根側のうちいずれに設けられていてもよい。
<効果>
 第5実施形態によれば、第1位置α(図2参照)において翼弦長Lが最大になるため、第1位置αの付近でのプロペラ3の仕事量が比較的大きくなる。これによって、静圧の上昇幅や風量を十分に確保できる。
≪第6実施形態≫
 第6実施形態は、第2位置β(図2参照)において翼弦長が最大になる点が、第1実施形態とは異なっているが、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図11は、第6実施形態に係るプロペラファンにおける翼弦長Lに関する説明図である。
 なお、図11の横軸はプロペラ3(図2参照)の半径R(つまり、中心軸線Yとの間の径方向の距離)であり、縦軸は翼弦長Lである。第6実施形態(図11の実線)では、点Pβで示すように、第2位置β(図2参照)の半径Rβにおいて、翼弦長Lが最大になっている。これによって、第2位置βの付近で翼弦長Lの長さを十分に確保できるため、静圧の上昇幅や風量を大きくすることができる。なお、第1位置α(図2参照)については、図11には特に示していないが、第1位置αは、第2位置βに対して翼端側・翼根側のうちいずれに設けられていてもよい。
<効果>
 第6実施形態によれば、第2位置β(図2参照)において翼弦長Lが最大になるため、第2位置βの付近でのプロペラ3の仕事量が比較的大きくなる。これによって、静圧の上昇幅や風量を十分に確保できる。
≪第7実施形態≫
 第7実施形態は、プロペラファンUB1(図13参照)が上吹型の室外機10B(図13参照)に設けられる点が、第1実施形態とは異なっている。また、第7実施形態は、空気調和機100Bが複数の室内機21~24(図12参照)を備えるマルチ型の空気調和機である点が、第1実施形態とは異なっている。なお、その他(プロペラ3の構成等:図13参照)については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図12は、第7実施形態に係るプロペラファンを備える空気調和機100Bの構成図である。
 なお、図12では、冷媒配管K1の図示を簡略化し、室外機10Bから室内機21等に冷媒を導く冷媒配管と、室内機21等から室外機10Bに冷媒を導く冷媒配管と、を共通の実線で図示している。図12に示すマルチ型の空気調和機100Bは、上吹型の室外機10Bと、天井埋込型の4台の室内機21~24と、を備えている。そして、冷媒配管K1を介して並列接続された冷媒回路QBにおいて、冷媒が所定に循環するようになっている。なお、室外機10Bに接続される室内機の台数は、3台以下であってもよいし、また、5台以上であってもよい。
 図13は、プロペラファンUB1を備える室外機10Bの断面図である。
 図13に示すように、室外機10Bの筐体11の上端付近には、プロペラファンUB1が設けられている。筐体11の内部において、プロペラ3の空気流れの上流側(吸込側)の空間には、圧縮機1やアキュムレータ12の他、室外熱交換器2や電気品箱13が設置されている。
 プロペラファンUB1は、プロペラ3(室外ファン)と、ベルマウス8Bと、を備えている。プロペラ3のボス部33には、ファンモータ31が設置されている。ファンモータ31は、モータ軸31aが鉛直方向となるようにモータクランプ14に固定されている。なお、プロペラ3の構成については、第1実施形態(図2参照)と同様であるから、詳細な説明を省略する。
 ベルマウス8Bは、プロペラ3の外周側(径方向外側)に設けられている。図13に示すように、ベルマウス8Bは、湾曲部81Bと、拡径部82と、を備えている。湾曲部81Bは、肉薄の円筒状を呈し、空気流れの下流側(吹出側)に向かうにつれて、その径が小さくなるように所定に湾曲している。拡径部82は、円錐台の側面状を呈し、湾曲部81Bの下流側(吹出側)に連なっている。そして、プロペラ3が回転することで、ベルマウス8Bを介して、上向きに空気が吹き上がるようになっている。具体的には、矢印W5,W6で示すように、径方向内向きの速度成分を有する空気が斜め下からプロペラ3に流入する。
<効果>
 第7実施形態によれば、プロペラ3の薄型化を図りつつ、静圧の上昇幅や風量を確保できる。また、プロペラ3の薄型化を図ることで、室外機10Bの高さ方向の寸法を短くすることができる。図13の例では、室外熱交換器2がプロペラ3から比較的離れているが、その一方で、筐体11の上端付近の壁とベルマウス8Bとの間の距離が比較的短くなっている。ここで、プロペラ3は、翼端前縁321と第1位置αとの間では、前縁部32aが吹出側に湾曲してなる凹状を呈しているため、空気の流れを翼32に沿わせることができる。これによって、静圧の上昇幅や風量を確保できる。また、プロペラ3の薄型化を図りつつ、効率の低下を抑制できる。
≪変形例≫
 以上、本発明に係るプロペラファンU1等について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、各実施形態では、ベルマウス8(図2参照)が備える拡径部82の構成として、軸方向で空気流れの下流側(吹出側)に向かうにつれて、拡径部82の径が直線的に単調増加する構成を示したが、これに限らない。例えば、ベルマウス8は、次に説明する図14A~図14Cのような構成であってもよい。
 図14Aは、第1の変形例に係るプロペラファンUC1の断面図である。
 なお、図14Aでは、プロペラ3のファンモータ31の図示を省略している。
 図14Aの変形例では、軸方向で空気流れの下流側(吹出側)に向かうにつれて、ベルマウス8Cの拡径部82Cの径が階段状に増加している。このような構成でも、翼32の後縁部32bが吹出側に湾曲してなる凸状を呈しているため、プロペラ3から吹き出される空気の流れをベルマウス8Cに沿わせることができる。したがって、プロペラファンUC1おいて空気の圧力損失を低減し、高効率化を図ることができる。
 図14Bは、第2の変形例に係るプロペラファンUD1の断面図である。
 図14Bの変形例では、軸方向で空気流れの下流側(吹出側)に向かうにつれて、ベルマウス8Dの拡径部82Dの径が単調増加し、さらに、拡径部82Dは径方向内側に凸の形状になっている。このような構成でも、翼32の後縁部32bが吹出側に湾曲してなる凸状を呈しているため、プロペラ3から吹き出される空気の流れをベルマウス8Dに沿わせることができる。
 図14Cは、第3の変形例に係るプロペラファンUE1の断面図である。
 図14Cの変形例では、軸方向で空気流れの下流側(吹出側)に向かうにつれて、ベルマウス8Eの拡径部82Eの径が単調増加し、さらに、拡径部82Eは径方向外側に凸の形状になっている。このような構成でも、翼32の後縁部32bが吹出側に湾曲してなる凸状を呈しているため、プロペラ3から吹き出される空気の流れをベルマウス8Eに沿わせることができる。
 また、第1実施形態では、スパン方向において、第1位置α(図2参照)と第3位置γ(図2参照)との間に第2位置βが設けられる構成について説明したが、これに限らない。例えば、スパン方向において、第1位置αよりも翼根側に第2位置βが設けられる構成であってもよい。このような構成でも、第1実施形態と同様の効果が奏される。
 また、第1実施形態では、翼端前縁321(図2参照)と翼根前縁323(図2参照)との間の第1中間部325(図6A参照)に第1位置αが設けられる構成について説明したが、これに限らない。すなわち、第1中間部325よりも翼端側又は翼根側に第1位置αが設けられてもよい。なお、第2~第7実施形態についても同様のことがいえる。
 また、第1実施形態では、翼端後縁322(図2参照)と翼根後縁324(図2参照)との間の第2中間部326(図6C参照)に第2位置βが設けられる構成について説明したが、これに限らない。すなわち、第2中間部326よりも翼端側又は翼根側に第2位置βが設けられてもよい。なお、第2~第7実施形態についても同様のことがいえる。
 また、各実施形態では、翼端前縁321(図2参照)が第1位置αよりも吹出側に位置する構成について説明したが、これに限らない。すなわち、翼端前縁321及び第1位置αの軸方向の位置が略等しい構成であってもよいし、また、翼端前縁321が第1位置αよりも吸込側に位置していてもよい。このような構成でも、各実施形態と同様の効果が奏される。
 また、第1実施形態では、翼根前縁323から第1位置αまでの範囲では、前縁部32aが吸込側に凸の形状である場合について説明したが、これに限らない。例えば、翼根前縁323から第1位置αに近づくにつれて、吹出側に凸の形状から、所定の変曲点(図示せず)を経て、吸込側に凸の形状になるように構成されていてもよい。
 また、各実施形態で説明したプロペラファンU1等は、ルームエアコンの他、パッケージエアコンやビル用マルチエアコンといった様々な種類の空気調和機にも適用できる。また、各実施形態で説明したプロペラファンU1等は、空気調和機以外のさまざまな機器に適用することも可能である。
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
 1 圧縮機
 2 室外熱交換器
 3,3A プロペラ(室外ファン)
 4 膨張弁
 5 室内熱交換器
 6 室内ファン
 7 四方弁
 31 ファンモータ
 31a モータ軸
 32,32A 翼
 33 ボス部
 321 翼端前縁
 322 翼端後縁
 323 翼根前縁
 324 翼根後縁
 325 第1中間部
 326 第2中間部
 32a 前縁部
 32b 後縁部
 32c 翼端部
 32d 翼根部
 8,8B,8C,8D,8E ベルマウス
 100,100B 空気調和機
 α 第1位置
 β 第2位置
 γ 第3位置
 Q,QB 冷媒回路
 U1,UA1,UB1,UC1,UD1,UE1 プロペラファン
 Y 中心軸線

Claims (9)

  1.  モータ軸と一体で回転するボス部と、前記ボス部に設置される複数の翼と、を有するプロペラと、
     前記プロペラの外周側に設けられるベルマウスと、を備え、
     前記翼の前縁部において最も吸込側に位置している第1位置が、翼端前縁と翼根前縁との間に設けられ、
     前記翼端前縁と前記第1位置との間では、前記前縁部が吹出側に湾曲してなる凹状を呈し、
     前記翼の後縁部は、吹出側に湾曲してなる凸状を呈しているプロペラファン。
  2.  前記後縁部において最も吹出側に位置している第2位置が、翼端後縁と翼根後縁との間に設けられ、
     前記後縁部において前記第2位置に近い箇所ほど吹出側に位置していること
     を特徴とする請求項1に記載のプロペラファン。
  3.  前記前縁部に沿うスパン方向において、前記翼端前縁と前記翼根前縁との間の第1中間部に前記第1位置が設けられ、
     前記後縁部に沿うスパン方向において、前記翼端後縁と前記翼根後縁との間の第2中間部に前記第2位置が設けられること
     を特徴とする請求項2に記載のプロペラファン。
  4.  前記プロペラの中心軸線から前記第1位置までの径方向の距離と、前記中心軸線から前記第2位置までの径方向の距離と、が等しいこと
     を特徴とする請求項2に記載のプロペラファン。
  5.  前記翼は、前記第1位置において翼断面の取付角が最大となること
     を特徴とする請求項2に記載のプロペラファン。
  6.  前記翼は、前記第2位置において翼断面の取付角が最大となること
     を特徴とする請求項2に記載のプロペラファン。
  7.  前記翼は、前記第1位置において翼弦長が最大となること
     を特徴とする請求項2に記載のプロペラファン。
  8.  前記翼は、前記第2位置において翼弦長が最大となること
     を特徴とする請求項2に記載のプロペラファン。
  9.  圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器と、を備えるとともに、
     モータ軸と一体で回転するボス部と、前記ボス部に設置される複数の翼と、を有する室外ファンと、
     前記室外ファンの外周側に設けられるベルマウスと、を備え、
     前記翼の前縁部において最も吸込側に位置している第1位置が、翼端前縁と翼根前縁との間に設けられ、
     前記翼端前縁と前記第1位置との間では、前記前縁部が吹出側に湾曲してなる凹状を呈し、
     前記翼の後縁部は、吹出側に湾曲してなる凸状を呈している空気調和機。
     
PCT/JP2021/019737 2021-05-25 2021-05-25 プロペラファン及び空気調和機 WO2022249270A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180095228.1A CN116964333A (zh) 2021-05-25 2021-05-25 螺旋桨式风扇和空调机
PCT/JP2021/019737 WO2022249270A1 (ja) 2021-05-25 2021-05-25 プロペラファン及び空気調和機
EP21942926.3A EP4350151A1 (en) 2021-05-25 2021-05-25 Propeller fan and air conditioner
JP2023523751A JPWO2022249270A1 (ja) 2021-05-25 2021-05-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019737 WO2022249270A1 (ja) 2021-05-25 2021-05-25 プロペラファン及び空気調和機

Publications (1)

Publication Number Publication Date
WO2022249270A1 true WO2022249270A1 (ja) 2022-12-01

Family

ID=84229550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019737 WO2022249270A1 (ja) 2021-05-25 2021-05-25 プロペラファン及び空気調和機

Country Status (4)

Country Link
EP (1) EP4350151A1 (ja)
JP (1) JPWO2022249270A1 (ja)
CN (1) CN116964333A (ja)
WO (1) WO2022249270A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128908A1 (ja) * 2013-02-22 2014-08-28 日立アプライアンス株式会社 プロペラファン及びこれを備えた空気調和機
WO2020234997A1 (ja) * 2019-05-21 2020-11-26 三菱電機株式会社 軸流ファン、送風装置、及び、冷凍サイクル装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128908A1 (ja) * 2013-02-22 2014-08-28 日立アプライアンス株式会社 プロペラファン及びこれを備えた空気調和機
WO2020234997A1 (ja) * 2019-05-21 2020-11-26 三菱電機株式会社 軸流ファン、送風装置、及び、冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2022249270A1 (ja) 2022-12-01
CN116964333A (zh) 2023-10-27
EP4350151A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
AU2009237152B2 (en) Turbofan and air conditioner
WO2014125710A1 (ja) 車両用空気調和装置の室外冷却ユニット
JP6755331B2 (ja) プロペラファン及び冷凍サイクル装置
WO2022249270A1 (ja) プロペラファン及び空気調和機
WO2019021468A1 (ja) プロペラファン及び冷凍サイクル装置
JP7113819B2 (ja) プロペラファン及び冷凍サイクル装置
JP2009281215A (ja) 空気調和機用室内機
JP4720203B2 (ja) 遠心送風機、空気調和機
WO2019012578A1 (ja) 空気調和機の室内機
CN110892201B (zh) 空气调节机
WO2015064617A1 (ja) 貫流ファン及び空気調和機
CN115516211A (zh) 轴流风扇、送风装置以及制冷循环装置
JP7483171B1 (ja) 羽根車、送風機及び空気調和機
JP7360823B2 (ja) 空気調和機
JP7337308B1 (ja) 羽根車、送風機及び空気調和機
WO2022234630A1 (ja) 送風機、空気調和装置および冷凍サイクル装置
WO2024084537A1 (ja) 送風装置
JP7378505B2 (ja) 遠心送風機及びそれを備えた空気調和機
WO2018002987A1 (ja) 多翼ファン及び空気調和機
WO2024214237A1 (ja) 遠心送風機、空気調和機及び冷凍サイクル装置
US20220214052A1 (en) Cross flow fan blade, cross flow fan, and air conditioner indoor unit
WO2023286208A1 (ja) 室内機及び空気調和機
WO2024214327A1 (ja) 遠心送風機、空気調和機及び冷凍サイクル装置
WO2017085889A1 (ja) 遠心ファン、空気調和装置および冷凍サイクル装置
WO2023112077A1 (ja) 軸流ファン、送風機、および、冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523751

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180095228.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021942926

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021942926

Country of ref document: EP

Effective date: 20240102