WO2022248116A1 - Verfahren und vorrichtung - Google Patents

Verfahren und vorrichtung Download PDF

Info

Publication number
WO2022248116A1
WO2022248116A1 PCT/EP2022/059761 EP2022059761W WO2022248116A1 WO 2022248116 A1 WO2022248116 A1 WO 2022248116A1 EP 2022059761 W EP2022059761 W EP 2022059761W WO 2022248116 A1 WO2022248116 A1 WO 2022248116A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous web
web
cooling
convection
steam
Prior art date
Application number
PCT/EP2022/059761
Other languages
English (en)
French (fr)
Inventor
Julia SPENGLER
Original Assignee
Voith Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent Gmbh filed Critical Voith Patent Gmbh
Priority to EP22722488.8A priority Critical patent/EP4347949A1/de
Priority to CN202280036953.6A priority patent/CN117355647A/zh
Publication of WO2022248116A1 publication Critical patent/WO2022248116A1/de
Priority to US18/515,716 priority patent/US20240084509A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G1/00Calenders; Smoothing apparatus
    • D21G1/02Rolls; Their bearings
    • D21G1/0253Heating or cooling the rolls; Regulating the temperature
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F5/00Dryer section of machines for making continuous webs of paper
    • D21F5/02Drying on cylinders
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/02Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines of the Fourdrinier type
    • D21F11/04Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines of the Fourdrinier type paper or board consisting on two or more layers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F7/00Other details of machines for making continuous webs of paper
    • D21F7/008Steam showers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F9/00Complete machines for making continuous webs of paper
    • D21F9/02Complete machines for making continuous webs of paper of the Fourdrinier type
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G1/00Calenders; Smoothing apparatus
    • D21G1/006Calenders; Smoothing apparatus with extended nips
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G1/00Calenders; Smoothing apparatus
    • D21G1/0073Accessories for calenders
    • D21G1/0093Web conditioning devices
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G7/00Damping devices
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G9/00Other accessories for paper-making machines
    • D21G9/0009Paper-making control systems
    • D21G9/0045Paper-making control systems controlling the calendering or finishing

Definitions

  • the invention relates to a method for producing or treating a fibrous web according to claim 1 and a corresponding device according to claim 9.
  • fibrous webs In the production of fibrous webs, a large number of quality requirements are placed on the end product. For example, paper, cardboard or packaging webs need a sufficiently good surface smoothness to ensure good printability or stable application of coatings.
  • One or more calender nips are usually used for this purpose, in which the fibrous web is smoothed using pressure and heat
  • European patent specification EP 2,682,520 B1 proposes cooling the fibrous web.
  • a humidifier in conjunction with a Cooling means arranged to produce moisture evaporation from the fibrous web with a latent thermal cooling effect.
  • the colder web is less easily deformed, so that it is less compressed in the calender nip.
  • the object is achieved by a method for producing or treating a fibrous web, in particular a paper or cardboard web, which comprises the following steps: a. Drying the fibrous web in a drying section b. Subsequent cooling of at least a first side of the fibrous web by means of convection cooling, the fibrous web having a temperature of 65° C. and less, preferably 50° C. and less, after cooling on at least the first side. c. Application of steam to at least the first side of the fibrous web, in which case the temperature on the first side after the steam application is at least 70°C, preferably more than 80°C or 90°C. i.e. Treatment of the fibrous web in at least one calendering nip.
  • the fibrous web After the fibrous web has been dried in step a), the fibrous web is very hot. Temperatures of up to 120°C are possible, temperatures of 60°C and below are hardly ever measured directly after the dryer section. Values between 70°C and 110°C, in particular 80°C, 90°C or 100°C, are common.
  • the moist and warm surface is then sufficiently soft and deformable so that a good smoothness can easily be achieved in the calendering nip. Since the core of the web is comparatively cold, the compressibility in this area remains low, so that the thickness in the calendering nip is largely retained.
  • the moisture gradient i.e. the fact that the web is fed into the calendering nip very dry on the inside, also helps to maintain thickness.
  • the fibrous web is then guided into a calendering nip and treated there, in particular smoothed. As described above, the thickness of the web is largely retained during smoothing.
  • thermo rollers are generally heated by means of a heating fluid, specifically an oil.
  • a heating fluid specifically an oil.
  • the heating fluid of the heated roller is fed to the heated roller at a temperature of at least 240°C, preferably between 260°C and 310°C.
  • special thermal oils are required. However, these are usually difficult to handle and mostly poisonous.
  • a further advantage of the present invention is that good smoothing can be achieved through the temperature and moisture gradients in the web without requiring extremely high temperatures for the heating roller, which means that these toxic special oils can be dispensed with.
  • the effective surface temperatures that can be reached during operation with a heating fluid also depend on how much thermal energy is dissipated with the fibrous web. In general, more heat is dissipated at higher line loads in the calendering nip and at higher production speeds.
  • the heated roller has a large diameter.
  • the roller diameter can be more than 1 m, in particular also 1.50 m or 1.60 m. In most cases, surface temperatures of over 200°C, especially over 220°C, can be achieved via the heating fluid. However, it can be difficult to reach temperatures above 240°C.
  • the roll surface can be heated stably and reliably to temperatures above 220°C, preferably in the range between 230°C and 250°C.
  • the fibrous web can be any paper or cardboard web.
  • it can be a cardboard web that is made up of 2 or more layers and has a basis weight between 100 g/m 2 and 600 g/m 2 , in particular between 150 g/m 2 and 450 g/m 2 .
  • That heavy and also thick fibrous webs lend themselves particularly well to treatment according to an aspect of the present invention. Due to the high thickness or the large mass inside the web, the coolness and the dry content are retained particularly well in these webs when the surface is heated and moistened by condensation of the steam. The moisture and temperature gradients are therefore particularly pronounced in these thick and heavy varieties.
  • the fibrous web can be dewatered before the wet press by at least one, preferably two, double-felted shoe presses.
  • the wet press itself can be designed as a roller press or as a single-felted shoe press.
  • the calendering nip can be designed as a hard nip or as a soft nip.
  • One or both rolls of the calendering nip can in particular have a hardness of 60° ShoreD to 98° ShoreD, preferably between 88 and 92° ShoreD.
  • the calendering nip can consist of a roller nip.
  • the calendering nip can also be an extended nip, such as in a shoe calender or a belt calender.
  • a second steam blower box can also be provided for applying steam to the second side of the fibrous web.
  • this is advantageously arranged between the convection cooler and the calendering nip.
  • means 6 for convection cooling of the web 1 are provided after the drying section.
  • the web 1 is guided via guide rollers 8 to a convection cooler 6 in which it can be actively cooled.
  • a convection cooler 6 in which it can be actively cooled.
  • air is blown at least on the first side 1a of the web 1, in particular on both sides of the web 1.
  • a more stable web run can be achieved if the web 1 is blown with air from both sides at the same time or at a very small distance.
  • FIG. 3 schematically shows a section of a convection cooler 6 for actively cooling the fibrous web 1, as can be used, for example, in an embodiment according to FIG.
  • Two rows of nozzles 61 are provided, each of which blows an air stream 62 onto the fibrous web 1 .
  • the nozzles 61 in the upper row act on the first side 1a of the web 1 with an air stream 62, the nozzles 61 on the lower row act on the second side.
  • the nozzles 61 extend over the entire width of the web 1 (CD-cross direction) and are arranged one behind the other in the running direction (MD-machine direction).
  • FIG. 3 shows an example of two or three nozzles 61 per row.

Landscapes

  • Paper (AREA)

Abstract

Verfahren sowie zugehörige Vorrichtung zur Herstellung oder Behandlung einer Faserstoffbahn, insbesondere einer Papier- oder Kartonbahn, umfassend die folgenden Schritte: a) Trocknen der Faserstoffbahn in einer Trockenpartie. b) Anschließendes Kühlen zumindest einer ersten Seite der Faserstoffbahn mittels Konvektionskühlung, wobei die Faserstoffbahn nach der Kühlung auf zumindest der ersten Seite eine Temperatur von 65°C und weniger, insbesondere 50°C und weniger aufweist. c) Auftragen von Dampf auf zumindest die erste Seite der Faserstoffbahn, wobei insbesondere die Temperatur an der ersten Seite nach dem Dampfauftrag mindestens 70°C, bevorzugt mehr als 80°C oder 90°C beträgt. d) Behandlung der Faserstoffbahn in zumindest einem Kalandriernip.

Description

Verfahren und Vorrichtung
Die Erfindung betrifft ein Verfahren zur Herstellung oder Behandlung einer Faserstoffbahn gemäß Anspruch 1 sowie eine entsprechende Vorrichtung gemäß Anspruch 9.
Bei der Herstellung von Faserstoffbahnen wird an das Endprodukt eine Vielzahl von Qualitätsanforderungen gestellt. So benötigen beispielsweise Papier-, Karton- oder Verpackungsbahnen eine ausreichend gute Oberflächenglätte, und eine gute Bedruckbarkeit oder eine stabiles Aufbringen von Beschichtungen zu gewährleisten. Hierzu kommen üblicherweise ein oder mehrere Kalandernips zum Einsatz, in denen die Faserstoffbahn unter Einsatz von Druck und Wärme geglättet wird
Andererseits benötigen diese Produkte auch eine vergleichsweise hohe mechanische Stabilität um eine sichere Verarbeitung zu ermöglichen bzw. um dem fertigen Endprodukt -z.B. einer Verpackung- die nötige Festigkeit zu verleihen. Diese Festigkeit erhöht sich mit der Dicke der Faserstoffbahn.
Man erkennt, dass diese beiden Zielvorgaben insofern gegenläufig sind, dass ein Verbessern der Glätte durch stärkeres Kalandrieren mit einer Komprimierung der Bahn einhergeht, und dadurch mit einer Reduktion der Festigkeit.
Die einfachste Möglichkeit zur Erhöhung des Volumens oder der Dicke der Faserstoffbahn wäre es, mehr Faserstoffmaterial zu verwenden. Da Fasern, insbesondere Zellstofffasern, einen großen Kostenfaktor darstellen, scheidet dies meist aus ökonomischen Gründen aus.
Daher wäre es sehr vorteilhaft, eine Möglichkeit zur volumenschonenden Glättung der Faserstoffbahn zur Verfügung zu haben.
Die Europäische Patentschrift EP 2.682.520 B1 schlägt zu diesem Zweck vor, die Faserstoffbahn zu kühlen. Hierzu wird ein Befeuchtungsgerät in Verbindung mit einer Kühleinrichtung zum Erzeugen einer Feuchtigkeitsverdampfung von der Faserbahn mit einer latenten thermischen Kühlwirkung angeordnet. Die kältere Bahn ist weniger leicht verformbar, so dass sie im Kalandernip weniger stark komprimiert wird.
Nachteilig an der in EP 2.682.520 B1 beschriebenen Lösung ist jedoch, dass das Kühlen der Bahn das Glätten erschwert. Im Extremfall ist vorstellbar, dass zum Erzielen der gewünschten Glätte die Kalanderlast so erhöht werden muss, dass dadurch der durch die Kühlung gewonnene Stabilitätsvorteil ganz oder teilweise wieder verloren geht. Es ist daher eine Aufgabe der vorliegenden Erfindung, den Stand der Technik so weiter zu entwickeln, dass eine einfache Glättung der Bahn bei weitgehender Schonung der Dicke möglich ist.
Es ist eine weitere Aufgabe der Erfindung, eine volumenschonende Glättung mit einfachen und kostengünstigen Mitteln zu ermöglichen.
Die Aufgaben werden vollständig gelöst durch ein Verfahren gemäß Anspruch 1 sowie eine Vorrichtung gemäß Anspruch 9. Weitere vorteilhafte Ausführungsformen der vorliegenden Erfindung finden sich in den Unteransprüchen. Zur Erläuterung:
Falls nicht explizit anders beschrieben, werden im Folgenden die Begriffe .Faserstoffbahn' und .Bahn' synonym verwendet.
Im Folgenden wird der Begriff der Konvektionskühlung verwendet. Unter Konvektionskühlung soll im Rahmen dieser Anmeldung die Kühlung mittels einer Luftströmung verstanden werden. Dabei ist sowohl eine passive Kühlung als auch eine aktive Kühlung vorstellbar.
Bei der passiven Kühlung wird die Faserstoffbahn über eine gewisse Distanz frei oder gelegentlich durch Walzen gestützt durch die Umgebungsluft geführt, und dadurch gekühlt. Diese Form der Kühlung ist günstig, jedoch ist die Kühlwirkung eher gering und zum Erzielen eines ausreichenden Kühleffekts erfordert eine passive Kühlung vergleichsweise viel Platz. Bei der aktiven Kühlung wird Luft aus geeigneten Düsenvorrichtungen auf eine oder beide Seiten der Bahn geblasen. Für einen aktiven Konvektionskühler sind zwar im Vergleich zur passiven Kühlung höhere Investitionen notwendig, jedoch ist die Kühlleistung deutlich höher und präziser einstellbar und die Anlage kann deutlich kompakter gebaut werden.
Hinsichtlich des Verfahrens wird die Aufgabe gelöst durch ein Verfahren zur Herstellung oder Behandlung einer Faserstoffbahn, insbesondere einer Papier- oder Kartonbahn, das die folgenden Schritte umfasst: a. Trocknen der Faserstoffbahn in einer Trockenpartie b. Anschließendes Kühlen zumindest einer ersten Seite der Faserstoffbahn mittels Konvektionskühlung, wobei die Faserstoffbahn nach der Kühlung auf zumindest der ersten Seite eine Temperatur von 65°C und weniger, bevorzugt 50°C und weniger aufweist. c. Aufträgen von Dampf auf zumindest die erste Seite der Faserstoffbahn, wobei insbesondere die Temperatur an der ersten Seite nach dem Dampfauftrag mindestens 70°C, bevorzugt mehr als 80°C oder 90°C beträgt. d. Behandlung der Faserstoffbahn in zumindest einem Kalandriernip.
Nach dem Trocknen der Faserstoffbahn Schritt a) ist die Faserstoffbahn sehr heiß. Temperaturen von bis zu 120°C sind möglich, Temperaturen von 60°C und weniger werden direkt nach der Trockenpartie so gut wie nicht gemessen. Häufig sind Werte zwischen 70°C und 110°C, insbesondere 80°C, 90°C oder 100°C.
Dabei kann die Faserstoffbahn beim Verlassen der Trockenpartie eine Bahnfeuchte zwischen 6% und 12 %, insbesondere zwischen 7% und 8% aufweisen. Durch die hohe Bahntemperatur ist die Bahn aber relativ weich, so dass es beim direkten Durchlaufen eines Kalandriernips zu einer deutlichen Komprimierung der Bahn kommen würde. Daher wird in dem hier vorliegenden Verfahren die Faserstoffbahn im Anschluss an die Trockenpartie ebenfalls gekühlt.
Im Unterschied zum Stand der Technik ist die zentrale Idee der vorliegenden Erfindung dabei eine kombinierte Temperaturgradienten- und Feuchtegradienten-Glättung. Die nach der Trockenpartie sehr heiße und sehr trockene Bahn soll vor dem Einlauf in der Kalandriernip derartig konditioniert werden, dass die Bahn in ihrem Inneren möglichst kalt und trocken ist, während sie an zumindest ihrer ersten Seite, bzw. an beiden Seiten im Bereich der Oberfläche feucht und warm ist.
Die feuchte und warme Oberfläche ist dann ausreichend weich und verformbar, so dass im Kalandriernip einfach eine gute Glätte erzeugt werden kann. Da die Bahn im Kern vergleichsweise kalt ist, bleibt aber die Komprimierbarkeit in diesem Bereich gering, so dass die Dicke im Kalandriernip weitgehend erhalten bleibt. Der Feuchtegradient, also die Tatsache, dass die Bahn im Inneren auch sehr trocken in den Kalandriernip geführt wird, unterstützt zum einen ebenfalls den Erhalt der Dicke. Zudem ist es natürlich auch vorteilhaft, der bereits trockenen Bahn nicht zu viel neue Feuchtigkeit wieder zuzuführen, da diese nach dem Kalandriernip wieder aufwändig aus der Bahn entfernt werden müsste.
Realisiert wird die notwendige Konditionierung der Bahn durch zwei überraschend einfache und günstige Prozessschritte.
Zuerst wird die Bahn nach der Trockenpartie mittels Konvektionskühlung gekühlt, und zwar auf zumindest einer ersten Seite -vorzugsweise auf beiden Seiten. Durch die Kühlung mit Luft wird die Bahntemperatur reduziert, und die Bahn bleibt -im Gegensatz zum Kühlen durch Wasserauftrag- trocken.
Es ist hierbei sehr vorteilhaft, wenn zwischen dem Verlassen der Trockenpartie und dem Kühlen in Schritt b) keine Befeuchtung der Faserstoffbahn erfolgt. Anschließend wird die Bahn auf zumindest einer Seite - insbesondere beiden Seiten- mit Dampf beaufschlagt. Dabei kann es sich bei dem Dampf auch um ein Dampf-Luft Gemisch handeln. Der Dampf kondensiert an der kühlen Oberfläche der Faserstoffbahn, wodurch die Bahn an der Oberfläche sowohl erwärmt, als auch befeuchtet wird. Im Inneren bleibt die Bahn aber relativ kühl und trocken.
Um eine gute Kondensation des Dampfes zu ermöglichen ist eine relativ niedrige Oberflächentemperatur der Faserstoffbahn wichtig. Je niedriger die Temperatur, desto besser, bzw. desto mehr Dampf kondensiert an der Oberfläche, und desto stärker bildet sich der Feuchte- bzw. Temperaturgradient aus. Selbst wenn die Bahn nach der Trockenpartie sehr heiß ist, ist es daher empfehlenswert, dass die Bahn, bzw. die Oberfläche nach der Konvektionskühlung zumindest auf 65°C oder weniger abgekühlt ist. In vorteilhaften Ausführungen wird die Bahn auf eine Temperatur von unter 60°C, insbesondere unter 55°C oder unter 50°C und bevorzugt unter 45°C abgekühlt.
Durch das Beaufschlagen der Bahn mit Dampf erhöht sich die Temperatur der Oberfläche wieder. Hierbei ist es vorteilhaft, wenn die Temperatur der Faserstoffbahn an zumindest der ersten Seite nach der Beaufschlagung mit Dampf mindestens 70°C, bevorzugt mehr als 80°C oder 90°C beträgt. Auch die Feuchte an der Oberfläche steigt dadurch an. Nach der Kondensation des Dampfes an der Papierbahn kann die Feuchtigkeit oberflächlich 15 % und mehr betragen.
Mit diesem Temperaturgradienten und Feuchtigkeitsgradienten wird die Faserstoffbahn dann in einen Kalandriernip geführt und dort behandelt, insbesondere geglättet. Wie oben beschrieben bleibt die Dicke der Bahn bei der Glättung weitgehend erhalten.
Ist nur eine einseitige Glättung erwünscht ist es gegebenenfalls ausreichend, die Bahn nur auf der ersten Seite zu kühlen. Häufig wird es aber vorteilhaft sein, die Bahn von beiden Seiten zu kühlen. Insbesondere bei beidseitiger Glättung der Bahn ist es auch vorteilhaft, wenn beide Seiten der Bahn mit Dampf beaufschlagt werden. Insbesondere in diesem Fall ist auch eine beidseitige Kühlung der Bahn mittels Konvektionskühlung vorteilhaft. Da die Temperatur der Bahn nach dem Dampfauftrag langsam wieder abnimmt, und da die Feuchte sich mit der Zeit innerhalb der Bahn wieder ausgleicht, sollte der Durchgang durch den Kalandriernip nicht allzu lange nach dem Dampfauftrag erfolgen. Bevorzugt sollte die Oberflächentemperatur der ersten Seite der Faserstoffbahn bei Einlauf in den Kalandriernip mindestens 60°C, insbesondere mindestens 70°C, bevorzugt zwischen 80°C und 90°C betragen. Flierzu ist es vorteilhaft, wenn der Abstand zwischen dem Ende des Dampfauftrags und dem Kalandriernip nicht mehr als 1m beträgt, insbesondere 80 cm oder weniger bzw. 50 cm oder weniger. Eine noch kürzere Distanz von z.B. 30 cm oder weniger wäre wünschenswert, wird aber häufig aufgrund von baulichen Randbedingungen nur schwer realisierbar sein.
Insbesondere zum Erzielen eines guten Glätterfolges ist es vorteilhaft, wenn der zumindest eine Kalandriernip aus einer beheizten Walze und einem Gegenelement gebildet wird, wobei die beheizte Walze eine Oberflächentemperatur von 220°C oder mehr aufweist und mit der ersten Seite der Faserstoffbahn in Kontakt tritt.
Derartige beheizte Walzen („Thermowalzen“) werden in der Regel mittels eines Heizfluids, speziell eines Öls, erwärmt. Zum Erzielen der erwünschten Oberflächentemperaturen ist es dabei sinnvoll, wenn das Heizfluid der beheizten Walze mit einer Temperatur von mindestens 240°C, bevorzugt zwischen 260°C und 310°C der Heizwalze zugeführt wird. Um Temperaturen von deutlich über310°C zu realisieren sind spezielle Thermoöle notwendig. Diese sind aber in der Regel schwierig zu handhaben und meist giftig. Ein weiterer Vorteil der vorliegenden Erfindung ist es, dass durch die Temperatur- und Feuchtegradienten in der Bahn eine gute Glättung erzielt werden kann, ohne extrem hohe Temperaturen bei der Heizwalze zu benötigen, wodurch auf diese giftigen Spezialöle verzichtet werden kann. Die effektiven Oberflächentemperaturen, die sich mit einem Heizfluid, speziell mit Fluidtemperaturen bis 310°C, im Betrieb erreichen lassen, hängen auch davon ab, wie viel Wärmeenergie mit der Faserstoffbahn abgeführt wird. Dabei wird generell bei höherer Linienlast im Kalandriernip und höherer Produktionsgeschwindigkeit mehr Wärme abgeführt. Um auch bei solchen Anwendungen noch ausreichend hohe Oberflächentemperaturen an der beheizten Walze zu ermöglichen, ist es vorteilhaft, wenn die beheizte Walze einen großen Durchmesser aufweist. Dabei kann der Walzendurchmesser über 1m, insbesondere auch 1,50m oder 1,60m betragen. In den meisten Fällen können über das Heizfluid Oberflächentemperaturen von über 200°C, speziell über 220°C erzielt werden. Es kann jedoch schwierig werden, Temperaturen von über 240°C zu erzielen.
Daher kann die beheizte Walze durch einen Heizbalken, der von außen gegen die Thermowalze gerichtet wird und die Walze mittels Induktion oder eines temperierten Luftstroms aufheizt, zusätzlich erwärmt werden.
Dadurch kann die Walzenoberfläche stabil und zuverlässig auf Temperaturen über 220°C, bevorzugt im Bereich zwischen 230°C und 250°C aufgeheizt werden.
Der zumindest eine Kalandriernip kann vorteilhafterweise mit einer Linienlast von maximal 150 N/mm, insbesondere weniger als 100 N/mm, bevorzugt mit einer Linienlast zwischen 10 N/mm und 40 N/mm betrieben werden. Auch hier hat sich gezeigt, dass durch die Temperatur- und Feuchtegradienten in der Bahn eine gute Glättung auch bei niedrigen Linienlasten erzielt werden kann. Durch eine Reduzierung der Linienlast werden auch die Komprimierung der Bahn und dadurch der Dickenverlust reduziert.
Bei der Faserstoffbahn kann es sich prinzipiell um eine beliebige Papier- oder Kartonbahn handeln. Insbesondere kann es sich um eine Kartonbahn handeln, die aus 2 oder mehr Lagen aufgebaut ist und die ein Flächengewicht zwischen 100 g/m2 und 600 g/m2, insbesondere zwischen 150 g/m2 und 450 g/m2 aufweist. Derartig schwere und auch dicke Faserstoffbahnen eignen sich besonders gut für eine Behandlung gemäß einem Aspekt der vorliegenden Erfindung. Bei diesen Bahnen bleibt aufgrund der hohen Dicke bzw. der großen Masse im Inneren der Bahn besonders gut die Kühle und der Trockengehalt erhalten, wenn die Oberfläche durch Kondensation des Dampfes erwärmt und befeuchtet wird. Die Feuchte- und Temperaturgradienten sind daher bei diesen dicken bzw. schweren Sorten besonders ausgeprägt.
Das Verfahren kann in einem breiten Geschwindigkeitsbereich durchgeführt werden. So kann vorgesehen sein, dass sich die Faserstoffbahn mit einer Geschwindigkeit zwischen 600 m/min und 1600 m/min, insbesondere zwischen 800 m/min und 1400 m/min bewegt. Insbesondere bei langsameren Geschwindigkeiten von 800 m/min oder weniger, kann eine passive Konvektionskühlung vorteilhaft sein, da die aufgrund der niedrigeren Geschwindigkeit die zur Kühlung benötigte Distanz nicht allzu groß sein wird. Insbesondere bei Geschwindigkeiten von 800 m/min und höher ist dagegen das Vorsehen eines aktiven Konvektionskühlers vorteilhaft, um zu große Baugrößen zu vermeiden. Es kann aus diesem Grund auch vorteilhaft sein, bei einer bestehenden passiven Konvektionskühlung den Bauraum der freien Distanz zu verwenden, um dort einen aktiven Konvektionskühler vorzusehen, wodurch sich die Möglichkeit zu höheren Betriebsgeschwindigkeiten eröffnen kann.
Üblicherweise ist bei Papier- oder Kartonmaschinen vor der Trockenpartie eine Pressenpartie vorgesehen. In der Pressenpartie wird die Faserstoffbahn durch mechanisches Pressen entwässert. Meist wird die Bahn dabei zwischen zwei Filzen durch einen oder mehrere Pressnips geführt. Für Anwendungen im Rahmen der vorliegenden Erfindung hat es sich als vorteilhaft erwiesen, wenn zumindest der letzte Pressnip vor der Trockenpartie als Nasspresse ausgeführt ist. Dabei läuft die Faserstoffbahn entweder nur auf einen Filz gestützt („Legepresse“), oder völlig ohne Filz („Offsetpresse“) durch den Pressnip. Somit hat im Pressnip zumindest eine Seite der Faserstoffbahn (oder beide Seiten, wie bei der Offsetpresse) direkten Kontakt mit der glatten Presswalze. Dabei ist es insbesondere vorteilhaft, wenn zumindest die erste Seite der Faserstoffbahn direkten Kontakt mit der glatten Presswalze hat, auf welche später Dampf aufgetragen wird. Es hat sich gezeigt, dass durch das Vorsehen einer solchen Nasspresse eine volumenschonendere Glättung erzielt werden kann, da dir Faserstoffbahn glatter aus der Trockenpartie herauskommt, und im Kalander weniger Glättung erzielt werden muss.
Häufig wird durch die Nasspresse nur noch eine geringe Entwässerung der Bahn erzielt. Der Trockengehalt erhöht sich beispielsweise nur um weniger als 2%-Punkte, insbesondere um 1%-Punkt oder weniger.
Um nach der Pressenpartie trotzdem eine ausreichend trockene Faserstoffbahn zu gewährleisten kann vorgesehen sein, dass die Faserstoffbahn vor der Nasspresse durch zumindest eine, bevorzugt zwei doppelt befilzte Schuhpressen entwässert wird Die Nasspresse selbst kann als Walzenpresse oder auch als einfach -befilzte Schuhpresse ausgeführt sein.
Alternativ oder zusätzlich kann vorgesehen sein, dass der Kalander bei dem zumindest einem Kalandriernip Mittel zur Dickenkalibrierung aufweist, um die Dicke der Faserstoffbahn über die Bahnbreite anzupassen.
Bei den Kalibriermitteln kann es sich beispielsweise um eine thermische Kalibrierung handeln. Dabei wird eine Kalanderwalze, die Thermowalze oder die Gegenwalze, über ihre Breite von außen mit einem Temperaturprofil beaufschlagt. Stellen mit höherer Temperatur dehnen sich dabei stärker aus, wodurch sich der Radius der Walze an dieser Stelle etwas vergrößert, und dadurch der Druck im Kalandriernip gesteigert wird. Somit kann durch das Temperaturprofil ein Druckprofil im Kalandriernip eingestellt werden, wodurch wiederum das Dickenprofil der Faserstoffbahn beeinflusst wird. Insbesondere bei vergleichsweise hohen Oberflächentemperaturen im Kalander, beispielsweise 220°C oder mehr, hat es sich aber gezeigt, dass die thermische Kalibrierung weniger effizient ist.
Daher kann es insbesondere bei hohen Oberflächentemperaturen im Kalander vorteilhaft sein, wenn die Kalibrierung mittels einer sogenannten Biegeeinstellwalze erfolgt. Bei diesen Walzen, die von der Anmelderin unter dem Namen ,NipCo‘-Walze vertrieben werden, befinden sich im Inneren der Walze eine Reihe von Stempeln, welche den Walzenmantel gezielt verformen, und damit ein Druckprofil einstellen können.
Die Biegeeinstellwalze ist üblicherweise nicht als Thermowalze ausgeführt. Ein bevorzugter Kalandrienip kann dann aufgebaut sein aus einer Thermowalze und einer Biegeeinstellwalze als Gegenwalze.
Hinsichtlich der Vorrichtung wird die Aufgabe gelöst durch eine Vorrichtung zur Herstellung oder Behandlung einer Faserstoffbahn, insbesondere einer Papier- oder Kartonbahn, wobei die Vorrichtung eine Trockenpartie zum Trocknen der Faserstoffbahn umfasst, sowie einen Kalander mit zumindest einem Kalandriernip zum Behandeln, insbesondere Glätten der Faserstoffbahn. Erfindungsgemäß ist dabei vorgesehen, dass die Vorrichtung in Bahnlaufrichtung vor dem Kalander einen Dampfblaskasten zum Aufträgen von Dampf auf eine erste Seite der Faserstoffbahn aufweist und zwischen der Trockenpartie und dem Dampfblaskasten Mittel zur Konvektionskühlung vorgesehen sind, die dazu geeignet sind, zumindest die erste Seite der Faserstoffbahn mittels Konvektion auf eine Temperatur von 65°C und weniger, insbesondere auf 50°C und weniger zu kühlen.
In vorteilhaften Ausführungen kann vorgesehen sein, dass die Mittel zur Konvektionskühlung als passive Kühlung durch eine freie Strecke der Faserstoffbahn realisiert sind, wobei die freie Strecke mindestens 5m, bevorzugt mindestens 7m, insbesondere 10m oder mehr lang ist.
Alternativ oder zusätzlich kann vorgesehen sein, dass die Mittel zur Konvektionskühlung eine aktive Kühlung durch zumindest einen Konvektionskühler umfassen oder daraus bestehen, wobei der Konvektionskühler dazu eingerichtet ist, Luft auf zumindest die erste Seite, insbesondere auf beide Seiten der Faserstoffbahn zu blasen. Bevorzugt wird vor und/oder nach dem Konvektionskühler eine gewisse freie Strecke vorgesehen sein. Diese kann dann aber meist nach den Kriterien der günstigen Bahnführung ausgelegt sein, und muss keinen wesentlichen Beitrag zur Konvektionskühlung leisten. Auch wenn nur eine Seite der Bahn geglättet werden soll kann es vorteilhaft sein, den Konvektionskühler so zu gestalten, dass auf beide Seiten der Bahn Luft geblasen wird. Zum einen führt dies zu einer effizienteren Kühlung der Bahn. Zum anderen kann ein stabilerer Bahnlauf erzielt werden, wenn die Bahn gleichzeitig oder in sehr geringem Abstand von beiden Seiten mit Luft beblasen wird.
Zudem ist ein solcher Konvektionskühler sehr kompakt. Bereits mit einer MD Ausdehnung zwischen 1m und 2m, z.B. 1,5m kann eine sehr gute Kühlung der Bahn erzielt werden. In herausfordernden Anwendungen, z.B. bei hoher Bahngeschwindigkeit und/oder hohen Flächengewichten der Bahn, kann der Konvektionskühler aber auch eine MD Ausdehnung von über 4m, insbesondere bis zu 6m aufweisen. Bei solchen Anwendungen ist dann eine passive Kühlung kaum noch sinnvoll realisierbar, da hierzu eine extrem lange freie Strecke benötigt würde. Es ist prinzipiell auch möglich, den Kühleffekt anstatt mittels Konvektionskühlung auch mittels Kontaktkühlung zu erzielen. In diesem Fall kann beispielsweise anstatt eines Konvektionskühlers ein oder mehrere Kühlzylinder vorgesehen sein. Die Faserstoffbahn kann dann über diese Kühlzylinder geführt werden, so dass sie mit einer oder beiden Seiten in Kontakt mit den gekühlten Zylinderoberflächen steht. Diese Zylinderoberflächen können auf Temperaturen von unter 40°C, speziell unter 30°C oder 25°C gekühlt sein. Bei dieser Art der Kühlung erfolgt aber kein stofflicher Austausch und kein Durchbrechen er Luftgrenzschicht an der Faserstoffbahn. Daher ist die Effizienz einer solchen Kühlung vergleichsweise gering. Zudem benötigen Kühlzylinder einen vergleichsweise großen Bauraum und sind relativ teuer. Daher wird insbesondere bei neu gebauten Anlagen die Konvektionskühlung bevorzugt.
Allerdings kann es durchaus vorteilhaft sein -z.B. beim Umbau einer Anlage, die bereits einen Kühlzylinder umfasst - die Konvektionskühlung mit einer Kontaktkühlung zu kombinieren. Insbesondere bei einer passiven Kühlung kann vor und/oder nach einer freien Strecke eine zusätzliche Kontaktkühlung von einer oder beiden Seiten der Bahn vorgesehen sein. In bevorzugten Ausführungen kann ein Konvektionskühler Mittel zum Konditionieren der Luft aufweisen. Das Konditionieren kann dabei durch Temperieren, bevorzugt durch Kühlen der Luft erfolgen. Alternativ oder zusätzlich kann das Konditionieren auch durch Befeuchten und/oder Entfeuchten der Luft erfolgen. Durch eine geeignete Konditionierung der Luft, die auf die Bahn geblasen wird, kann die Wirkung des Konvektionskühlers stark beeinflusst werden.
In Tests der Anmelderin konnte gezeigt werden, dass bei einer Kühlung mittels Umgebungsluft mit Temperaturen zwischen 30°C und 45°C Oberflächentemperaturen zwischen 50°C und 65°C erzielt werden konnten. Wurde in denselben Versuchsanordnungen die Umgebungsluft auf Temperaturen unter 30°C - insbesondere auf 25°C und weniger - gekühlt, konnten Oberflächentemperaturen von 50°C und weniger, insbesondere 45°C und weniger nach der Kühleinrichtung erzielt werden. Auch Temperaturen von 40°C sind möglich. Üblicherweise kann nach dem Kalander noch eine Messvorrichtung wie z.B. ein Scanner vorgesehen sein. Damit ist es beispielsweise möglich, Eigenschaften der Faserstoffbahn wie die Dicke oder den Glanz zu messen. Unter Verwendung dieser Messwerte ist es dann möglich, beim aktiven Konvektionskühler die Menge und/oder die Temperatur und/oder den Feuchtegehalt der aufgebrachten Luft zu steuern oder zu regeln.
Nach dem Kalander, insbesondere nach dem Scanner kann dann die Bahn aufgewickelt werden. Alternativ kann aber auch vorgesehen sein, dass sich nach dem Kalander noch weitere Prozessschritte anschließen. Beispielsweise können noch ein oder mehrere Beschichtungsaggregate vorgesehen sein.
Häufig wird vorgesehen sein, dass der zumindest eine Kalandriernip aus einer beheizten Walze und einem Gegenelement gebildet wird, wobei die beheizte Walze auf eine Oberflächentemperatur von 220°C oder mehr erwärmt werden kann und so angeordnet ist, dass sie mit der ersten Seite der Faserstoffbahn in Kontakt tritt. Das Gegenelement kann vorteilhafterweise durch eine Biegeausgleichswalze gebildet sein. Dadurch ist beispielsweise eine Profilierung des Kalandriernips möglich.
Der Durchmesser der beheizten Walze und/oder der Biegeausgleichswalze können jeweils zwischen 400 mm und 1600mm betragen.
Die Durchmesser der beiden Walzen können gleich sein. Es kann aber auch vorgesehen sein, dass der Durchmesser der Biegeausgleichswalze maximal 50%, bevorzugt maximal 40% vom Durchmesser der beheizten Walze abweicht. Meist hat die Biegeausgleichswalze dann einen kleineren Durchmesser, als die beheizte Walze.
Der Kalandriernip kann als harter Nip oder als weicher Nip ausgebildet sein. Eine oder beide Walzen des Kalandriernips können insbesondere eine Härte von 60 ° ShoreD bis 98° ShoreD , bevorzugt zwischen 88 und 92 °ShoreD aufweisen.
Eine oder beide Walzen des Kalanders können beispielsweise Kompositwalzensein.
Der Kalandriernip kann aus einem Walzennip bestehen. Alternativ kann der Kalandriernip auch ein verlängerter Nip sein, wie beispielsweise in einem Schuhkalander oder einem Bandkalander.
Es kann auch noch ein zweiter Dampfblaskasten zum Aufträgen von Dampf auf die zweite Seite der Faserstoffbahn vorgesehen sein. Dieser ist beim Einsatz eines aktiven Konvektionskühlers vorteilhafterweise zwischen dem Konvektionskühler und dem Kalandriernip angeordnet.
Wie bereits im Rahmen des Verfahrens beschrieben, ist es vorteilhaft, wenn der Abstand zwischen dem Ende des Dampfauftrag im Dampfblaskasten und/oder dem zweiten Dampfblaskasten und dem Kalandriernip nicht mehr als 1 m beträgt, insbesondere 80 cm oder weniger bzw. 50 cm oder weniger. Eine noch kürzere Distanz von z.B. 30 cm oder weniger wäre wünschenswert, wird aber häufig aufgrund von baulichen Randbedingungen nur schwer realisierbar sein. lm Folgenden wird die Erfindung anhand von Figuren erläutert. Die Erfindung ist dabei nicht auf die in den Figuren darstellten Ausführungen beschränkt. Die Figuren zeigen im Einzelnen: Figur 1 zeigt eine Vorrichtung gemäß einem Aspekt der vorliegenden Erfindung
Figur 2 zeigt eine Vorrichtung gemäß einem weiteren Aspekt der vorliegenden Erfindung
Figur 3 zeigt einen Konvektionskühler zur Verwendung in einer Vorrichtung gemäß einem weiteren Aspekt der Erfindung
Figur 1 zeigt eine Vorrichtung gemäß einem Aspekt der Erfindung, die zur Durchführung eines erfindungsgemäßen Verfahrens geeignet ist. Es ist eine Trockenpartie 10 vorgesehen, in der eine Faserstoffbahn 1 , beispielsweise eine Papier oder Kartonbahn 1 getrocknet wird. Die Bahn 1 verlässt die Trockenpartie 10 mit einer niedrigen Restfeucht von üblicherweise unter 12%, z.B. 7% oder 8% und einer hohen Temperatur, beispielsweise zwischen 75°C und 90°C.
Zur weiteren Bearbeitung der Bahn 1 ist in Figur 1 ein Kalander 2 vorgesehen. Der Kalander 2 ist hier exemplarisch als Walzenkalander 2 dargestellt, der eine Fleizwalze 4 und eine Gegenwalze 5 aufweist, welche zusammen den Kalandriernip 3 ausbilden.
Die Fleizwalze 4 kann eine Oberflächentemperatur von 220° C oder mehr aufweisen, und steht mit der ersten Seite 1a der Faserstoffbahn 1 in Kontakt. Die Gegenwalze 5 kann dabei als Biegeausgleichswalze ausgeführt sein. Es können aber auch beliebige andere Kalandertypen vorgesehen sein, beispielsweise Schuh- oder Bandkalander, die einen verlängerten Kalandriernip 3 aufweisen. Üblicherweise kann nach dem Kalander 2 noch eine Messvorrichtung wie z.B. ein Scanner vorgesehen sein. Nach dem Kalander 2, insbesondere nach dem Scanner kann dann die Bahn 1 aufgewickelt werden. Alternativ kann aber auch vorgesehen sein, dass sich nach dem Kalander 2 noch weitere Prozessschritte anschließen. Beispielsweise können noch ein oder mehrere Beschichtungsaggregate vorgesehen sein. Um die gewünschte volumenschonende Glättung zu erreichen, sind nach dem Trockenpartie Mittel 6 zur Konvektionskühlung der Bahn 1 vorgesehen. In der Ausführung gemäß Figur 1 wird die Bahn 1 dazu über Leitwalzen 8 zu einem Konvektionskühler6 geführt, in dem sie aktiv gekühlt werden kann. Dazu wir zumindest auf die ersten Seite 1a der Bahn 1, insbesondere auf beide Seiten der Bahn 1 Luft geblasen. Auch wenn nur eine Seite der Bahn 1 geglättet werden soll kann es vorteilhaft sein, den Konvektionskühler 6 so zu gestalten, dass auf beide Seiten der Bahn 1 Luft geblasen wird. Zum einen führt dies zu einer effizienteren Kühlung der Bahn 1. Zum anderen kann ein stabilerer Bahnlauf erzielt werden, wenn die Bahn 1 gleichzeitig oder in sehr geringem Abstand von beiden Seiten mit Luft beblasen wird.
Diese Luft kann direkt der Umgebung entnommen sein - beispielsweise aus einem kühleren Bereich der Fertigungsanlage wie dem Maschinenkeller- oder vor dem Aufbringen auf die Faserstoffbahn 1 noch konditioniert werden. Insbesondere eine Kühlung der Luft, z.B. mittels eines geeigneten Wärmetauschers ist vorteilhaft, da hierdurch die Kühlwirkung des Konvektionskühlers 6 deutlich verbessert werden kann, so dass nach dem Konvektionskühler 6 eine wesentlich niedrigere Bahntemperatur erzielt werden kann. Im Anschluss an die Konvektionskühlung wird die Bahn 1 auf zumindest der ersten Seite 1a mit Dampf beaufschlagt. Dazu ist in der gezeigten Vorrichtung ein Dampfblaskasten 7 vorgesehen. Der Dampf soll dabei an der Bahn 1 kondensieren, und die Region nahe der Oberfläche sowohl befeuchten, als auch erwärmen. Um den Dampf möglichst gut kondensieren zu lassen ist es vorteilhaft, wenn die Bahntemperatur nach den Mitteln zur Konvektionskühlung bzw.- vor Einlauf in den Dampfblaskasten 50°C oder weniger beträgt. Mit den aktiven Konvektionskühlern 6 kann die Temperatur auch noch deutlich weiter gesenkt werden, z.B. auf 45°C oder 40°C. Wenn beide Seiten der Faserstoffbahn 1 behandelt, insbesondere geglättet werden sollen, kann auch ein zweiter Dampfblaskasten vorgesehen sein, der so angeordnet ist, dass der die zweite Seite der Faserstoffbahn mit Dampf beaufschlagt. Nach dem Verlassen des Dampfblaskastens 7 weist die Bahn 1 zumindest an der ersten Seite 1a die Temperatur- und Feuchtgradienten auf, die zum Erzielen einer volumenschonenden Glättung erwünscht sind. Da die Faserstoffbahn 1 dazu tendiert, solche Gradienten über die Zeit wieder anzugleichen, ist es vorteilhaft, die Bahn 1 möglichst schnell nach dem Dampfblaskasten 7 in den Kalandriernip 3 zu führen. Bevorzugt ist der Dampfblaskasten 7 daher sehr kurz vor dem Kalandriernip 3 angeordnet, so dass der Abstand zwischen dem Dampfblaskasten7 und dem Kalanderiernip 7 maximal 1000 mm, insbesondere maximal 500 mm beträgt
Die in Figur 2 gezeigte Ausführung unterscheidet sich von der in Figur 1 lediglich durch die Ausgestaltung der Mittel zu Konvektionskühlung. Statt einer aktiven Kühlung durch einen Konvektionskühler 6 ist in Figur 2 die Konvektionskühlung als passive Kühlung durch eine freie Strecke der Faserstoffbahn 1 realisiert sind. Um die Kühlung wobei der Bahn 1 zu verbessern ist es vorteilhaft, wenn die freie Strecke mindestens 5m, bevorzugt mindestens 7m lang ist. Um eine möglichst lange freie Strecke zu erzielen wird bei der Ausführung gemäß Figur 2 die Bahn 1 zwischen der Trockenpartie 10 und dem Dampfblaskasten 7 mehrfach -z.B. zweimal, dreimal, viermal oder mehr- durch Leitwalzen 8 umgeleitet, so dass auch bei einer begrenzten baulichen Länge der Vorrichtung eine ausreichende freie Strecke für die Kühlung der Bahn 1 zur Verfügung gestellt werden kann.
Figur 3 zeigt schematisch einen Ausschnitt aus einem Konvektionskühler 6 zur aktiven Kühlung der Faserstoffbahn 1 , wie er beispielsweise in einer Ausführung gemäß Figur 1 zum Einsatz kommen kann. Dabei sind zwei Reihen von Düsen 61 vorgesehen, die jeweils einen Luftstrom 62 auf die Faserstoffbahn 1 blasen. Die Düsen 61 der oberen Reihe beaufschlagen dabei die erste Seite 1a der Bahn 1 mit einem Luftstrom 62, die Düsen 61 der unteren Reihe beaufschlagen die zweite Seite. Die Düsen 61 erstrecken sich dabei über die gesamte Breite der Bahn 1 (CD-Cross Direction) und sind in Laufrichtung (MD - Maschine Direction) hintereinander angeordnet. Figur 3 zeigt exemplarisch zwei bzw. drei Düsen 61 je Reihe. In praktischen Anwendungen können es aber auch deutlich mehr, z.B. 10, 12, 15 oder mehr Düsen pro Reihe sein, um die gewünschte Kühlung der Bahn 1 zu erreichen. Zwischen den Düsen 61 jeder Reihe kann vorteilhafterweise ein Abstand in MD Richtung vorgesehen sein. Der Abstand, der insbesondere der MD Ausdehnung einer Düse 61 entsprechen kann, erlaubt ein störungsfreies Abführen des Luftstroms 62 nach dem Auftreffen auf die Bahn 1. Trotzdem ist ein solcher Konvektionskühler 6 sehr kompakt. Bereits mit einer MD Ausdehnung zwischen 1m und 2m, z.B. 1,5m kann eine sehr gute Kühlung der Bahn erzielt werden. Es sind aber auch größere MD Ausdehnungen von bis zu 4m, 5m oder 6m möglich. Ein aktiver Konvektionskühler 6 mit zwei Düsenreihen, wie hier dargestellt, hat den Vorteil, dass die Bahn 1 von beiden Seiten gekühlt wird, was eine schnellere Kühlung ermöglicht. Zudem wird auch der Bahnlauf der Bahn 1 stabilisiert. Durch das Beaufschlagen der ersten Seite 1a mit einem Luftstrom 62 weicht die Bahn nämlich nach unten aus. Die Luftströme 62 von den untern Düsen 61 wirken dagegen, und leiten die Bahn 1 wieder nach oben zurück. Durch das abwechselnde Drücken und Heben läuft die Bahn 1 in einer leichten Wellenbewegung, aber im Wesentlichen stabil und gerade durch den Konvektionskühler 6.
Bei der Luft für die Luftströme 62 kann es sich einfach um Umgebungsluft handeln, die im Umfeld einer Papiermaschine üblicherweise 30° und mehr aufweist, und auch recht feucht ein kann. Alternativ kann die Luft auch konditioniert sein, und z.B. auf 25° oder 20°C abgekühlt und ggf. auch entfeuchtet werden.
Bezugszeichenliste
1 Faserstoffbahn
1 a erste Seite 2 Kalander
3 Kalandriernip
4 Heizwalze
5 Gegenwalze
6 Konvektionskühler 7 Dampfblaskasten
8 Leitwalze
10 Trockenpartie
61 Düse
62 Luftstrom

Claims

Patentansprüche
1. Verfahren zur Fierstellung oder Behandlung einer Faserstoffbahn (1), insbesondere einer Papier- oder Kartonbahn (1), umfassend die folgenden Schritte a. Trocknen der Faserstoffbahn (1) in einer Trockenpartie (10) b. Anschließendes Kühlen zumindest einer ersten Seite (1a) der Faserstoffbahn (1) mittels Konvektionskühlung, wobei die Faserstoffbahn (1) nach der Kühlung auf zumindest der ersten Seite (1a) eine Temperatur von 65°C und weniger, insbesondere 50°C und weniger aufweist. c. Aufträgen von Dampf auf zumindest die erste Seite (1a) der Faserstoffbahn (1), wobei insbesondere die Temperatur an der ersten Seite nach dem Dampfauftrag mindestens 70°C, bevorzugt mehr als 80°C oder 90°C beträgt. d. Behandlung der Faserstoffbahn (1 ) in zumindest einem Kalandriernip (3).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Faserstoffbahn (1) vor der Trockenpartie (10) mittels einer Nasspresse geglättet wird.
3. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Oberflächentemperatur der ersten Seite (1a) der Faserstoffbahn (1) bei Einlauf in den Kalandriernip (3) mindestens 60°C, bevorzugt zwischen 80°C und 90°C beträgt.
4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der zumindest eine Kalandriernip (3) aus einer beheizten Walze (4) und einem Gegenelement (5) gebildet wird, wobei die beheizte Walze (4) eine Oberflächentemperatur von 220°C oder mehr aufweist und mit der ersten Seite (1a) der Faserstoffbahn (1) in Kontakt tritt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die beheizte Walze (4) mittels eines Heizfluids erwärmt wird, wobei das Heizfluid der beheizten Walze (4) mit einer Temperatur von mindestens 240°C, bevorzugt zwischen 260°C und 310°C der Heizwalze (4) zugeführt wird.
6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der zumindest eine Kalandriernip (3) mit einer Linienlast von maximal 150 N/mm, vorzugsweise mit einer Linienlast zwischen 10 N/mm und 40 N/mm betrieben wird.
7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zwischen dem Verlassen der Trockenpartie (10) und dem Kühlen in Schritt b) keine Befeuchtung der Faserstoffbahn (1) erfolgt.
8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass es sich bei der Faserstoffbahn um eine Kartonbahn handelt, die aus 2 oder mehr Lagen aufgebaut ist und ein Flächengewicht zwischen 100 g/m2 und 600 g/m2, insbesondere zwischen 150 g/m2 und 450 g/m2 aufweist.
9. Vorrichtung zur Herstellung oder Behandlung einer Faserstoffbahn (1), insbesondere einer Papier- oder Kartonbahn (1), wobei die Vorrichtung eine Trockenpartie (10) zum Trocknen der Faserstoffbahn (1) umfasst, sowie einen Kalander (2) mit zumindest einem Kalandriernip (3) zum Behandeln, insbesondere Glätten der Faserstoffbahn (1), dadurch gekennzeichnet, dass die Vorrichtung in Bahnlaufrichtung vor dem Kalander (2) einen Dampfblaskasten (7) zum Aufträgen von Dampf auf eine erste Seite (1a) der Faserstoffbahn (1) aufweist und zwischen der Trockenpartie (10) und dem Dampfblaskasten (7) Mittel zur Konvektionskühlung vorgesehen sind, die dazu geeignet ist, zumindest die erste Seite (1a) der Faserstoffbahn (1) mittels Konvektion auf eine Temperatur von 65°C und weniger, insbesondere auf 50°C und weniger zu kühlen.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Mittel zur Konvektionskühlung als passive Kühlung durch eine freie Strecke der
Faserstoffbahn (1) realisiert sind, wobei die freie Strecke mindestens 5m, bevorzugt mindestens 7m lang ist.
11. Vorrichtung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass die Mittel zur Konvektionskühlung eine aktive Kühlung durch zumindest einen Konvektionskühler (6) umfassen oder daraus bestehen, wobei der Konvektionskühler (6) dazu eingerichtet ist, Luft (62) auf zumindest die erste Seite (1a), insbesondere auf beide Seiten der Faserstoffbahn (1) zu blasen.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der Konvektionskühler (6) Mittel zum Konditionieren der Luft, insbesondere zum Temperieren und/oder Be- bzw. Entfeuchten der Luft aufweist.
13. Vorrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass der zumindest eine Kalandriernip (3) aus einer beheizten Walze (4) und einem Gegenelement (5) gebildet wird, wobei die beheizte Walze (4) auf eine Oberflächentemperatur von 220°C oder mehr erwärmt werden kann und mit der ersten Seite (1a) der Faserstoffbahn (1) in Kontakt tritt.
14. Vorrichtung nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass der Kalander (2) Mittel zur Dickenkalibrierung aufweist, wobei die Mittel zur Dickenkalibrierung insbesondere mittels thermischer Kalibrierung und/oder über eine Biegeeinstellwalze realisiert sind.
15. Vorrichtung nach nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass der Abstand zwischen dem Dampfblaskasten (7) und/oder dem zweiten Dampfblaskasten und dem Kalanderiernip (3) maximal 1000 mm beträgt
PCT/EP2022/059761 2021-05-28 2022-04-12 Verfahren und vorrichtung WO2022248116A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22722488.8A EP4347949A1 (de) 2021-05-28 2022-04-12 Verfahren und vorrichtung
CN202280036953.6A CN117355647A (zh) 2021-05-28 2022-04-12 方法和设备
US18/515,716 US20240084509A1 (en) 2021-05-28 2023-11-21 Method and device for producing or treating a web of fibrous material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021113813.2A DE102021113813A1 (de) 2021-05-28 2021-05-28 Verfahren und Vorrichtung
DE102021113813.2 2021-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/515,716 Continuation US20240084509A1 (en) 2021-05-28 2023-11-21 Method and device for producing or treating a web of fibrous material

Publications (1)

Publication Number Publication Date
WO2022248116A1 true WO2022248116A1 (de) 2022-12-01

Family

ID=81597744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/059761 WO2022248116A1 (de) 2021-05-28 2022-04-12 Verfahren und vorrichtung

Country Status (5)

Country Link
US (1) US20240084509A1 (de)
EP (1) EP4347949A1 (de)
CN (1) CN117355647A (de)
DE (1) DE102021113813A1 (de)
WO (1) WO2022248116A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29813663U1 (de) * 1998-05-08 1998-11-26 Vib Apparatebau Gmbh Vorrichtung zur Online-Herstellung von SC-A-Papier
DE29818437U1 (de) * 1998-10-16 1998-12-17 Valmet Corp Hebe- und Belastungsvorrichtung eines Kalanderwalzenstapels
EP2682520B1 (de) 2012-07-03 2016-06-22 Valmet Technologies, Inc. Verfahren zur Herstellung von Faserstoffbahnen und Anlage zur Herstellung von Faserstoffbahnen
WO2018141727A1 (de) * 2017-02-03 2018-08-09 Voith Patent Gmbh Bahnbehandlung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0957202B1 (de) 1998-05-08 2004-03-31 V.I.B. Systems GmbH Verfahren und Vorrichtung zur Online-Herstellung von SC-A-Papier
DE102017106047A1 (de) 2017-03-21 2018-03-01 Voith Patent Gmbh Bahnbehandlung
EP3601666B1 (de) 2017-03-21 2024-01-17 Voith Patent GmbH Bahnbehandlung
DE102018106322A1 (de) 2018-03-19 2019-09-19 Voith Patent Gmbh Kühl-Behandlung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29813663U1 (de) * 1998-05-08 1998-11-26 Vib Apparatebau Gmbh Vorrichtung zur Online-Herstellung von SC-A-Papier
DE29818437U1 (de) * 1998-10-16 1998-12-17 Valmet Corp Hebe- und Belastungsvorrichtung eines Kalanderwalzenstapels
EP2682520B1 (de) 2012-07-03 2016-06-22 Valmet Technologies, Inc. Verfahren zur Herstellung von Faserstoffbahnen und Anlage zur Herstellung von Faserstoffbahnen
WO2018141727A1 (de) * 2017-02-03 2018-08-09 Voith Patent Gmbh Bahnbehandlung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEEL J D ET AL: "KALANDRIEREN BEI HOHEN TEMPERATUREN", IPW INTERNATIONAL PAPER WORLD, DPW VERLAGSGESELLSCHAFT MBH, HEUSENSTAMM, DE, vol. 44, no. 10A, 1 October 1990 (1990-10-01), pages V186 - V193, XP000164656, ISSN: 0031-1340 *

Also Published As

Publication number Publication date
DE102021113813A1 (de) 2022-12-01
EP4347949A1 (de) 2024-04-10
CN117355647A (zh) 2024-01-05
US20240084509A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
DE69716634T3 (de) Verfahren zur trocknung von papier und trockenpartie einer papiermaschine
DE69915647T2 (de) Verfahren zur herstellung von kalandriertem papier
DE19826899A1 (de) Verfahren und Vorrichtung zur Online-Herstellung von SC-A-Papier
EP0979897B1 (de) Verfahren und Vorrichtung zur Online-Herstellung von Papier
DE69828812T2 (de) Verfahren zur herstellung vom kalandrierten papier
DE102006003910A1 (de) Pressenpartie einer Materialbahn-Herstellungsmaschine
DE69922041T2 (de) Verfahren und vorrichtung zur behandlung von papier oder pappebahnen
EP0957202B1 (de) Verfahren und Vorrichtung zur Online-Herstellung von SC-A-Papier
EP1586697B1 (de) Papiermaschine
EP2295632B1 (de) Kalander
EP4347949A1 (de) Verfahren und vorrichtung
EP4110989B1 (de) Vorrichtung und verfahren zum herstellen einer faserstoffbahn
EP1357225B1 (de) Verfahren zum Behandeln einer Materialbahn und Kalander
DE102004017808A1 (de) Maschine und Verfahren zur Herstellung einer Faserstoffbahn
DE10358185B4 (de) Verfahren zum Behandeln einer Papierbahn
EP3601666A1 (de) Bahnbehandlung
EP3577272A1 (de) Bahnbehandlung
DE10358189B4 (de) Verfahren und Vorrichtung zum Behandeln einer Bahn aus Papier oder Karton
EP1527232A1 (de) Trockenpartie
EP1541757B1 (de) Verfahren zum Satinieren einer Bahn aus gestrichenem Papier oder Karton und Kalander
DE102004017809A1 (de) Trockenanordnung
DE102006051537A1 (de) Vorrichtung zum Bearbeiten einer Bahn aus Papier oder Karton
EP1746203B1 (de) Trockenpartie
DE102004039913A1 (de) Verfahren zur Herstellung einer Papierbahn und eine Papiermaschinenlinie
EP2006443B1 (de) Feuchtequerprofilkorrektur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22722488

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 202280036953.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022722488

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022722488

Country of ref document: EP

Effective date: 20240102