WO2022247859A1 - 一种无线充电系统、方法和装置 - Google Patents

一种无线充电系统、方法和装置 Download PDF

Info

Publication number
WO2022247859A1
WO2022247859A1 PCT/CN2022/094965 CN2022094965W WO2022247859A1 WO 2022247859 A1 WO2022247859 A1 WO 2022247859A1 CN 2022094965 W CN2022094965 W CN 2022094965W WO 2022247859 A1 WO2022247859 A1 WO 2022247859A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless charging
coil
electronic device
charging coil
charging
Prior art date
Application number
PCT/CN2022/094965
Other languages
English (en)
French (fr)
Inventor
于文超
高海振
赵瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022247859A1 publication Critical patent/WO2022247859A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the present application relates to the technical field of terminals, and in particular to a wireless charging system, method and device.
  • wireless charging has the advantages of portability and simple operation.
  • wireless charging technology has become more and more widely used in electronic devices such as mobile phones and tablet computers.
  • the existing wireless charging scheme is to set a coil (or wireless charging coil) on the mobile phone (that is, the charging device) and the wireless charger (that is, the power supply device).
  • the two coils are close to each other to generate electromagnetic induction, and the energy is transmitted from the wireless charger to the mobile phone.
  • the thicker the coil thickness of the mobile phone the higher the wireless charging power of the mobile phone, and the higher the charging efficiency (that is, the faster the charging speed).
  • the current market tends to reduce the thickness of the mobile phone as much as possible. Due to the limitation of the thickness of the mobile phone, it is difficult to improve the wireless charging efficiency.
  • the embodiments of the present application provide a wireless charging system, method and device, which can improve the wireless charging efficiency of the electronic device without increasing the thickness of the electronic device.
  • a wireless charging system including a first electronic device and a second electronic device; wherein the first electronic device includes at least a first wireless charging path and a second wireless charging path, and the first wireless charging path includes a first wireless charging path
  • the second wireless charging coil is configured to receive the wireless charging signal of the second electronic device, and charge the battery of the first electronic device through the second wireless charging circuit.
  • two charging coils are set in the first electronic device (that is, the charging device) and an independent wireless charging circuit is set for each charging coil, so as to realize two-way wireless charging through charging for the first electronic device.
  • the embodiment of the present application can improve the wireless charging efficiency of the charging device without increasing the thickness of the charging device; at the same time, due to the first electronic
  • the two coils in the device are respectively equipped with independent charging circuits, so it can also reduce or even avoid the risk of oversaturation of the power of the charging path caused by increasing the power of a single charging path in the prior art, thereby causing damage to the hardware of the device, and can extend the life of the first electronic circuit. The service life of the equipment.
  • the positional relationship between the two coils (that is, the first wireless charging coil and the second wireless charging coil) in the first electronic device may be a flat relationship, a stacked relationship, or other, This application is not limited.
  • the first wireless charging coil and the second wireless charging coil are stacked along a first direction, wherein the first direction is parallel to the axial direction of the first wireless charging coil and/or the first direction is parallel to the second The axial direction of the wireless charging coil; the second electronic device includes a third wireless charging coil.
  • the first wireless charging coil is configured to be coupled with the third wireless charging coil to receive the wireless charging signal of the second electronic device; the second wireless charging coil is configured to be coupled to the third wireless charging coil to receive the wireless charging signal of the second electronic device wireless charging signal.
  • the wireless charging power is improved by setting two stacked coils on the first electronic device.
  • the existing single coils can be thinned and then stacked, so as to ensure that the thickness of the first electronic device does not increase.
  • the second electronic device since the second electronic device only needs to be provided with one coil, hardware costs can be saved.
  • the first wireless charging coil and the second wireless charging coil are arranged coaxially.
  • the bottom surface of the first wireless charging coil is opposite to the top surface of the second wireless charging coil, and the distance between the top surface of the first wireless charging coil and the bottom surface of the second wireless charging coil is less than or equal to 0.25mm.
  • the overall thickness of the two coils does not exceed 0.25 mm, which can be applied to the industrial design of most models.
  • the first wireless charging coil and the second wireless charging coil are spaced apart on a first plane, and the first plane is perpendicular to the axial direction of the first wireless charging coil and/or the first plane is perpendicular to the second wireless charging coil.
  • the projection of the first wireless charging coil on the first plane does not intersect the projection of the second wireless charging coil on the first plane;
  • the second electronic device includes a third wireless charging coil and a fourth wireless charging coil Coils, the third wireless charging coil and the fourth wireless charging coil are arranged at intervals on the second plane, the second plane is perpendicular to the axial direction of the third wireless charging coil and/or the second plane is perpendicular to the axial direction of the fourth wireless charging coil direction, the projection of the third wireless charging coil on the second plane does not intersect the projection of the fourth wireless charging coil on the second plane.
  • the first wireless charging coil is coupled to the third wireless charging coil to receive the wireless charging signal of the second electronic device;
  • the second wireless charging coil is coupled to the fourth wireless charging coil to receive the wireless charging signal of the second electronic device.
  • the thickness of the first wireless charging coil is less than or equal to 0.25 mm, and the thickness of the second wireless charging coil is less than or equal to 0.25 mm.
  • the thickness of each coil does not exceed 0.25mm, which can be applied to the industrial design of most models.
  • existing coils can be reused to reduce process difficulty.
  • the number of coils in the first electronic device is not limited to two, and there may be more.
  • the first electronic device further includes a fifth wireless charging coil; the second wireless charging coil and the fifth wireless charging coil are stacked along a second direction, and the second direction is parallel to the axial direction of the second wireless charging coil direction and/or the second direction is parallel to the axial direction of the fifth wireless charging coil; the fifth wireless charging coil is coupled with the fourth wireless charging coil, receives the wireless charging signal of the second electronic device, and charges the battery of the first electronic device .
  • the wireless charging power of the first electronic device can be further increased.
  • the first electronic device may also adjust wireless charging power.
  • the first wireless charging circuit is further configured to send a first control signal to the second electronic device; in response to the first control signal, the second electronic device adjusts wireless charging power.
  • the first electronic device can control the power output of the second electronic device through the first wireless charging circuit, and then indirectly adjust the charging power of the two wireless charging paths of the first electronic device.
  • the first electronic device further includes a processor; the first wireless charging circuit is further configured to send the first monitoring information to the processor; the second wireless charging circuit is further configured to send the second monitoring information to the processor; The processor is configured to instruct the first wireless charging circuit to send a first control signal to the second electronic device according to the first monitoring information and the second monitoring information.
  • the first electronic device can more accurately adjust the charging power of each wireless charging channel.
  • the first electronic device may also switch between the single-channel charging mode and the dual-channel charging mode.
  • the second electronic device further includes a switch; the first wireless charging circuit is further configured to send a second control signal to the second electronic device; in response to the second control signal, the second electronic device at least performs: Controlling the conduction or disconnection of the third wireless charging coil and the wireless charging circuit of the second electronic device; or controlling the conduction or disconnection of the fourth wireless charging coil and the wireless charging circuit of the second electronic device through a switch.
  • the first electronic device can also control switching of other charging modes.
  • a charging method is provided, which is applied to a wireless charging system.
  • the wireless charging system includes a first electronic device and a second electronic device; the first electronic device includes at least a first wireless charging path and a second wireless charging path, and the first electronic device includes at least a first wireless charging path and a second wireless charging path.
  • a wireless charging path includes a first wireless charging coil and a first wireless charging circuit, a second wireless charging path includes a second wireless charging coil and a second wireless charging circuit, and the first wireless charging coil communicates with the first electronic charging circuit through the first wireless charging circuit.
  • the battery of the device is electrically connected, and the second wireless charging coil is electrically connected with the battery of the first electronic device through the second wireless charging circuit.
  • the method includes: the second electronic device sends a wireless charging signal; the first wireless charging coil receives the wireless charging signal from the second electronic device, and charges the battery of the first electronic device through the first wireless charging circuit; the second wireless charging coil receives the wireless charging signal from the second electronic device.
  • the wireless charging signal of the second electronic device charges the battery of the first electronic device through the second wireless charging circuit.
  • a charging device which is located in the first electronic device; the charging device includes at least a first wireless charging path and a second wireless charging path, and the first wireless charging path includes a first wireless charging coil and a first wireless charging coil.
  • the second wireless charging path includes a second wireless charging coil and a second wireless charging circuit, the first wireless charging coil is electrically connected to the battery of the first electronic device through the first wireless charging circuit, and the second wireless charging coil is electrically connected to the battery of the first electronic device through the second wireless charging circuit
  • the charging circuit is electrically connected to the battery of the first electronic device; the first wireless charging coil is configured to receive the wireless charging signal of the second electronic device, and charges the battery of the first electronic device through the first wireless charging circuit; the second wireless charging coil is It is configured to receive the wireless charging signal of the second electronic device, and charge the battery of the first electronic device through the second wireless charging circuit.
  • a charging method is provided, which is applied to a first electronic device; the first electronic device includes at least a first wireless charging path and a second wireless charging path, and the first wireless charging path includes a first wireless charging coil and a first wireless charging coil.
  • the charging circuit, the second wireless charging path includes a second wireless charging coil and a second wireless charging circuit
  • the first wireless charging coil is electrically connected to the battery of the first electronic device through the first wireless charging circuit
  • the second wireless charging coil is electrically connected to the battery of the first electronic device through the second wireless charging circuit
  • the wireless charging circuit is electrically connected to the battery of the first electronic device; the method includes: the first wireless charging coil receives a wireless charging signal from the second electronic device, and charges the battery of the first electronic device through the first wireless charging circuit; the second wireless charging coil The charging coil receives the wireless charging signal from the second electronic device, and charges the battery of the first electronic device through the second wireless charging circuit.
  • FIG. 1 is a schematic diagram of a wireless charging scenario applicable to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a wireless charging system
  • FIG. 3 is a schematic structural diagram of a coil of a charging device
  • FIG. 4 is a schematic structural diagram of a wireless charging system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another wireless charging system provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another wireless charging system provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another wireless charging system provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another wireless charging system provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another wireless charging system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another wireless charging system provided by an embodiment of the present application.
  • FIG. 11 is a flow chart of a wireless charging method provided by an embodiment of the present application.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • FIG. 1 it is a schematic diagram of a wireless charging scene applicable to the embodiment of the present application.
  • the charging device such as a mobile phone, tablet, smart wearable device, etc.
  • Electromagnetic induction occurs between the coil in the battery and the coil of the power supply device, and the energy (or electric energy, or wireless charging signal) is transmitted from the power supply device to the charging device.
  • FIG. 2 it is a schematic structural diagram of a wireless charging system.
  • a single coil is respectively set in the power supply device and the charging device, and wireless charging is realized through single-coil coupling.
  • the charging system in the charging device includes two parts: wireless charging and wired charging.
  • the energy received by the coil on the charging device is sequentially composed of a charging path composed of a power receiver (Power Receiver, RX), a high-voltage switched capacitor converter (HVSC), a switched capacitor converter (Switch Capacity, SC) and other devices Batteries transferred to charging devices.
  • a power receiver Power Receiver, RX
  • HVSC high-voltage switched capacitor converter
  • SC switched capacitor converter
  • the power supply device in Figure 2 is an example of a wireless charger, so the power supply device needs to be connected to a power source when charging the charging device. If the wireless charging device is a wireless power bank, the power supply device can be used when charging the charging device Not connected to power supply.
  • OVP Over Voltage Protection
  • wireless charging power of the charging device is to be continuously increased, it is necessary to increase the voltage and/or current on the coil of the charging device. To increase the voltage and/or current across the coil, the thickness of the coil needs to be increased.
  • the thickness of the mobile phone coil is at most about 0.25 mm, as shown in Figure 3, which is a schematic structural diagram of a coil of a charging device, including two coils A and B, each The thickness of each coil is about 0.125mm.
  • the A and B coils are stacked and connected through multiple via holes, so that the A and B coils are equivalent to a thickened coil, and the overall thickness is about 0.25mm.
  • the saturation current of the coil with a thickness of 0.25mm is at most 5A (AC), and the charging power is at most 50W.
  • the thickness of the coil which will increase the thickness of the whole machine and affect the industrial design (Industrial Design, ID) of the whole machine.
  • the saturation voltage of RX is 20V and the saturation current is 2.5A. If the charging power continues to be increased without increasing the specifications of RX, RX will be damaged and the product life will be affected.
  • the plan to continue to increase the charging power by increasing the thickness of the coil, regardless of the pressure or current increase, has a large bottleneck in the overall thickness, heat, and chip power of electronic equipment.
  • an embodiment of the present application provides a wireless charging solution.
  • the charging device is equipped with double coils or multi-coils
  • the power supply equipment is equipped with double coils or multi-coils or single coils
  • each coil in the charging device is set with an independent RX, which can be used without increasing the thickness of the charging device and the power of the chip.
  • RX independent radio access technology
  • This embodiment introduces a solution in which the charging device is provided with double coils or multiple coils, and the power supply device is provided with double coils or multiple coils.
  • FIG. 4 it is a schematic structural diagram of a wireless charging system provided by an embodiment of the present application, including: a charging device 01 and a power supply device 02 .
  • the charging device 01 may also be called a first electronic device
  • the power supply device 02 may also be called a second electronic device.
  • the charging device 01 includes two charging paths, wherein the first charging path (or called the first wireless charging path) includes coils 101A and RX102A, and the second charging path (or called the second wireless charging path) includes coils 101B and RX102B,
  • the two charging paths are connected in parallel with the battery 104 in the charging device 01 (it should be understood that "connected” or “connected” herein refers to electrical connection).
  • the first end of RX102A is connected to the coil 101A, the second end of RX102A is connected to the battery 104, and the coil 101A is used to receive electric energy (or wireless charging signal) to generate AC (Alternating Current, AC) power,
  • the RX102A is used to convert the AC power generated by the coil 101A into a DC (Direct Current, DC) power and send it to the battery 104.
  • the first end of RX102B is connected to coil 101B, and the second end of RX102B is connected to battery 104.
  • Coil 101B is used to receive electric energy (or wireless charging signal) to generate alternating current
  • RX102B is used to generate AC power from coil 101B.
  • the alternating current is converted to direct current and sent to the battery 104 .
  • the charging device 01 also includes a controller 103, which is connected to the two charging paths at the same time, and is used for monitoring and controlling the working status of each charging path.
  • the coil 101A in the first charging path can also be called the first wireless charging coil, and the circuit between the coil 101A and the battery 104 can be called the first wireless charging circuit; the coil 101B in the second charging path can also be called the first wireless charging circuit.
  • the second wireless charging coil, the circuit between the coil 101B and the battery 104 may be referred to as a second wireless charging circuit.
  • the coil 101A and the coil 101B can be laid flat on the same horizontal plane, and the projections of the coil 101A and the coil 101B on the first plane do not overlap, wherein the first plane is perpendicular to the coil 101A and the coil 101B. /or any plane in the axial direction of the coil 101A.
  • the coil 101A and the coil 101B are located on the same plane, for example, the coil 101A and the coil 101B are arranged at intervals on the first plane.
  • the coil 101A and the coil 101B are located on the same plane, including but not limited to: the top surface of the coil 101A and the top surface of the coil 101B are located on the same plane; or the bottom surface of the coil 101A and the bottom surface of the coil 101B are located on the same plane; or, the coil 101A
  • the top surface of the coil 101B and the bottom surface of the coil 101B are located on the same plane; or, the bottom surface of the coil 101A and the top surface of the coil 101B are located on the same plane; or other implementations are located on the same plane.
  • the power supply device 02 includes two power supply paths, wherein the first power supply path includes a coil 201A and a power transmitter (Power Transmitter, TX) 202, and the second power supply path includes a coil 201B and a TX202.
  • the coil 201A and the coil 201B are connected in parallel with the first end of the TX202, and the second end of the TX202 is connected with the power supply.
  • TX202 is used to convert direct current into alternating current and transmit the alternating current to coil 201A and coil 201B.
  • the coil 201A and the coil 201B are used to transmit electric energy.
  • the coil 201A can also be called the third wireless charging coil, and the coil 201B can also be called the fourth wireless charging coil.
  • the coil 201A and the coil 201B are laid flat on the same horizontal plane, and the projections of the coil 201A and the coil 201B on the second plane do not overlap, wherein the second plane is perpendicular to the coil 201A and/or Or any plane in the axial direction of the coil 201A.
  • the coil 201A and the coil 201B are located on the same plane, for example, the coil 201A and the coil 201B are arranged at intervals on a second plane.
  • the coil 201A and the coil 201B are located on the same plane, including but not limited to: the top surface of the coil 101A and the top surface of the coil 101B are located at 20°; or, the bottom surface of the coil 101A and the bottom surface of the coil 101B are located on the same plane; The top surface and the bottom surface of the coil 101B are located on the same plane; or, the bottom surface of the coil 101A and the top surface of the coil 101B are located on the same plane; or other implementations are located on the same plane.
  • the power supply device 02 and the charging device 01 approach each other in a preset posture, and the coil 201A and the coil 101A are coupled (for example, the coil 201A and the coil 101A are coaxial/approximately coaxial and the plane where the coil 201A is located is parallel/approximately parallel to the plane where the coil 101A is located , or the coil 201A is aligned with the coil 101A), the coil 201B is coupled to the coil 101B (for example, the coil 201B is coaxial/approximately coaxial with the coil 101B and the plane where the coil 201B is located is parallel/approximately parallel to the plane where the coil 101B is located, or the coil 201B is quasi-coil 101B), and then generate electromagnetic induction phenomenon to realize wireless charging.
  • the coil 201B is coupled to the coil 101B (for example, the coil 201B is coaxial/approximately coaxial with the coil 101B and the plane where the coil 201B is located is parallel/appro
  • the coil in the power supply device 02 transmits a wireless charging signal to the coil in the charging device 01, that is, when the alternating current passes through the coil 201A in the power supply device 02, the coil 201A is around A changing magnetic field is generated in the environment, and the coil 101A located in the surrounding environment generates an induced electromotive force to generate alternating current; when the alternating current passes through the coil 201B in the power supply device 02, the coil 201B generates a changing magnetic field in the surrounding environment, and the coil 101B located in the surrounding environment The induced electromotive force is generated to generate alternating current.
  • the first power supply path supplies power to the first charging path
  • the second power supply path supplies power to the second charging path as an example, that is, the coil 201A transmits electric energy to the coil 101A, and the coil 201B supplies power to the second charging path.
  • the coil 101B transmits electric energy (the dotted line with the arrow indicates the electric energy transmission direction), but it is not limited thereto.
  • the preset attitude is an example where the charging device 01 is placed flat above the power supply device 02 (that is, the bottom surface of the charging device 01 is close to the top surface of the power supply device 02 ), but in specific implementation , can also be other postures.
  • the power supply device 02 is placed on the top of the charging device 01 (the top surface of the charging device 01 is close to the bottom surface of the power supply device 02), or the power supply device 02 and the charging device 01 are located on the same horizontal plane (the side of the charging device 01 is close to the side surface of the power supply device 02). ), etc., this application is not limited.
  • the two coils that transmit electric energy to each other do not need to have a strict coaxial relationship and parallel relationship, and there may be a certain deviation.
  • the projection of the coil 201A on the third plane at least partially overlaps the projection of the coil 101A on the third plane, wherein the third plane is any plane perpendicular to the axial direction of the coil 201A and/or the coil 101A, and the coil 201A There may be a slight angle (for example, 0-30°) between the plane where the coil 101A is located and the plane where the coil 101A is located.
  • the projection of the coil 201B on the fourth plane at least partially overlaps the projection of the coil 101B on the fourth plane, wherein the fourth plane is any plane perpendicular to the axial direction of the coil 201B and/or the coil 101B, and the coil 201B There may be a slight angle (for example, 0-30°) between the plane where the coil 101B is located and the plane where the coil 101B is located. In other words, charging can be performed even if the alignment relationship between the coil of the charging device 01 and the coil of the power supply device 02 is slightly shifted during charging.
  • the inductance of the coil of the charging device 01 and the coil of the power supply device 02 may be the same or different, and the present application does not limit this; the inductance of the coil 101A and the coil 101B may be the same or may be It is different, and the present application does not limit this; the inductances of the coil 201A and the coil 201B may be the same or different, and the present application does not limit this.
  • the parameters affecting the inductance of the coil include, but are not limited to, the number of turns of the coil, the winding method of the coil, the material of the coil, the thickness of the coil, and the like.
  • the coils in the charging device 01 and the coils in the power supply device 02 may have various coupling relationships.
  • the coil 201A when charging, it can be: the coil 201A is coaxial/approximately coaxial with the coil 101A, the coil 201A transmits electric energy to the coil 101A, the coil 201B is coaxial/approximately coaxial with the coil 101B, and the coil 201B transmits electric energy to the coil 101B
  • the coil 201A is coaxial/approximately coaxial with the coil 101B, the coil 201A transmits electric energy to the coil 101B, the coil 201B is coaxial/approximately coaxial with the coil 101A, and the coil 201B transmits electric energy to the coil 101A.
  • the power transmission between the two coils that transmit electric energy to each other depends on the inductance of the two coils.
  • the controller 103 is the nerve center and command center of the entire charging system.
  • RX102A and RX102B can also have simple processing functions and communication functions.
  • RX102A and RX102B adopt the master-slave control mode, that is, one RX of RX102A and RX102B is the master RX, and the other is the slave RX.
  • Communication can adjust the working state of the charging path where the main RX is located (such as the output power of electric energy delivered to the battery 104), and the working state of the charging path where the slave RX is located (such as the output power of electric energy delivered to the battery 104) will also follow the main RX The adjustment of the working state of the charging path where it is located changes.
  • the controller 103 when the controller 103 needs to adjust the output power of the first charging channel and the second charging channel to deliver electric energy to the battery 104, the controller 103 sends a control command to RX102A; RX102A converts the control command to It is sent to TX202 as the first control signal.
  • TX202 adjusts the output power of TX202 after receiving the first control signal, and then the output power of coil 201A is adjusted correspondingly, and the received power of coil 101A also changes with the change of the output power of coil 201A; meanwhile, because coil 201A and coil 201B At the same time, it is connected in parallel to the power of TX202, so the output power of the coil 201B is also adjusted accordingly, and the received power of the coil 101B also changes with the change of the output power of the coil 201B. Since the power of the coil 101A and the coil 101B both change, the output powers of the first charging path and the second charging path to transmit electric energy to the battery 104 change accordingly. In this way, the effect of the controller 103 changing the working states of the two charging paths by controlling the first charging path can be realized.
  • TX202 since there is only one TX (i.e. TX202) in the power supply device 02, and the coil 201A and the coil 201B are connected to the TX202, when the power of the TX202 changes, the transmission power of the coil 201A and the coil 201B must change, but the coil 201A and the coil
  • the power value and change value of 201B can be the same or different. For example, if the inductances of the coils 201A and 201B are the same, the power and power change values of the coils 201A and 201B are the same; different.
  • RX102A and TX202 may communicate based on electromagnetic induction between coils.
  • the RX102A transmits an alternating current signal of a preset frequency and/or amplitude to the coil 101A, so that the coil 101A generates a magnetic field of a preset strength in the surrounding environment, and the coil 201A in the surrounding environment generates an induced electromotive force of a preset magnitude and then generates a preset frequency and/or amplitude AC signal, and then coil 201A transmits the preset frequency and/or amplitude electrical signal to TX202, and TX202 adjusts its own power output after receiving the preset frequency and/or amplitude electrical signal.
  • the meaning represented by the electrical signal of the preset frequency and/or amplitude may be stipulated in the agreement, or pre-agreed by the power supply device 02 and the charging device 01 , which is not limited in this application.
  • RX102A and TX202 can also be done in other ways, which is not limited in this application.
  • a Bluetooth module can also be set in RX102A and TX202, and RX102A and TX202 communicate based on Bluetooth.
  • RX102A can monitor the voltage, current, temperature and other information on the first charging path where it is located (that is, the path from the coil 101A to the battery 104), generate the first monitoring information, and report the first monitoring information to the controller RX102B monitors the voltage, current, temperature and other information on the second charging path where it is located (ie the path from the coil 101B to the battery 104), generates second monitoring information, and reports the second monitoring information to the controller 103. Furthermore, the controller 103 can adjust the working states of the two charging paths according to the monitoring information reported by the RX102A and RX102B.
  • At least one power supply path of the power supply device 02 is also provided with a switch, and RX102A can communicate with TX202 by controlling RX102A, for example, RX102A sends a second control signal to TX202, so that TX202 controls the on/off state of the switch to realize Switch between single charging and dual charging.
  • a switch 203A is provided between the coil 201A and the TX202
  • a switch 203B is provided between the coil 201B and the TX202
  • the controller 103 controls the communication between the RX102A and the TX202, so that the TX202 switches the on/off state of the switch 203A and the switch 203B, thereby realizing the switching between the single charging mode and the dual charging mode.
  • the switch 203A and the switch 103B are both on, it is a dual charging mode; when the switch 203A is on and the switch 203B is off or the switch 203B is on and the switch 203A is off, it is a single charging mode.
  • controller 103 can also realize switching between single-channel charging and dual-channel charging by controlling whether RX102A and RX102B work or not.
  • the switching between the single-channel charging mode and the dual-channel charging mode can be realized, which improves the flexibility of the charging scheme.
  • the two-way charging mode can be used to realize fast charging; when the power of the charging device 01 is about to be fully charged, the power demand is small, and the single-way charging mode can be used Charging mode to reduce or even avoid energy waste.
  • each charging path in the charging device 01 may further include other components.
  • the DC/DC can be a diode, a field effect transistor (MOS), a low dropout linear regulator (Low Dropout Regulator, LDO), a step-up DC, a step-down DC or a step-down DC, etc.
  • the N:1 circuit components may be 1:1, 2:1, 3:1 or 4:1 SC switched capacitors or DC converters.
  • the controller 103 can also directly adjust the power of each component on each charging path.
  • Working parameters such as output impedance
  • the controller 103 can further adjust by adjusting the frequency, duty cycle, resonant frequency, etc. of RX on each charging path, or adjusting the output impedance of DC/DC or N:1 circuit components on each charging path, etc. The output power of each charging channel.
  • the controller 103 can be any device with a control function, such as a system-on-a-chip system (SOC), a field-programmable gate array (Field-programmable Gate Array, FPGA), Application-specific integrated circuit (Application-specific Integrated Circuit, ASIC), application-specific standard product (Application-specific Standard Product, ASSP), complex programmable logic device (Complex Programmable Logic Device, CPLD), special-purpose computer, etc., this application does not limit.
  • SOC system-on-a-chip system
  • FPGA field-programmable gate array
  • ASIC Application-specific Integrated Circuit
  • ASSP application-specific Standard Product
  • ASSP Application-specific Standard Product
  • CPLD Complex Programmable Logic Device
  • special-purpose computer etc.
  • the thickness of the coil 101A may be less than or equal to 0.25mm, and the thickness of the coil 101B may be less than or equal to 0.25mm.
  • the charging power of the charging device is increased by increasing the voltage or current of the single coil in the prior art.
  • two independent coils are set in the charging device 01 and the power supply device 02 respectively.
  • the thickness of the charging device 01 will not be increased; at the same time, since each coil in the charging device 01 is independently equipped with an RX chip, the RX can be avoided.
  • the power of the chip is oversaturated; in addition, the two coils in the power supply device 02 share one TX chip, which also saves hardware costs.
  • the wireless charging system provided by the embodiment of the present application can increase the charging power without increasing the overall thickness, heat, and chip power of the charging device.
  • Figures 4 to 6 above are examples of dual coils set up in charging equipment and power supply equipment.
  • the wireless charging system can be expanded to a larger number of coils to further increase the charging power. For example, referring to FIG.
  • the charging device includes three coils (ie, coil 101A, coil 101B, and coil 101C), and each coil has an independent RX chip ( Namely RX102A, RX102B, RX102C), the power supply equipment includes three coils (namely coil 201A, coil 201B, coil 201C), the three coils share one TX (namely TX202), RX102A can communicate with TX202.
  • the specific charging implementation of the system can refer to the relevant introduction of the wireless charging system shown in Figure 4 to Figure 6 above, and will not be repeated here.
  • This embodiment introduces a solution in which the charging device is provided with double coils or multiple coils, and the power supply device is provided with a single coil.
  • FIG. 8 it is a schematic structural diagram of another wireless charging system provided by an embodiment of the present application, including: a charging device 03 and a power supply device 04 .
  • the charging device 03 may also be called a first electronic device
  • the power supply device 04 may also be called a second electronic device.
  • the charging device 01 includes two charging paths (in order to distinguish from the "first charging path” and “second charging path” in Embodiment 1, the two charging paths here are respectively named “third charging path”, “second charging path” Four charging paths"), wherein the third charging path includes coils 301A and RX302A, the fourth charging path includes coils 301B and RX302B, and the two charging paths are connected to the battery 304 in the charging device 03 in parallel.
  • the first end of RX302A is connected to coil 301A
  • the second end of RX302A is connected to battery 304.
  • Coil 301A is used to receive electric energy (or wireless charging signal) to generate alternating current
  • RX302A is used to generate AC power from coil 301A.
  • the alternating current is converted to direct current and sent to the battery 304 .
  • the first end of RX302B is connected to coil 301B, and the second end of RX302B is connected to battery 304.
  • Coil 301B is used to receive electric energy (or wireless charging signal) to generate alternating current
  • RX302B is used to generate AC power from coil 301B.
  • the alternating current is converted to direct current and sent to the battery 304 .
  • the charging device 03 also includes a controller 303, which is connected to the two charging paths at the same time, and is used for monitoring and controlling the working status of each charging path.
  • the third charging path may also be called a first wireless charging path
  • the fourth charging path may also be called a second wireless charging path.
  • the coil 301A in the third charging path can also be called the first wireless charging coil
  • the circuit between the coil 301A and the battery 304 can be called the first wireless charging circuit
  • the coil 301B in the fourth charging path can also be called the second wireless charging circuit.
  • the wireless charging coil, the circuit between the coil 301B and the battery 304 may be referred to as a second wireless charging circuit.
  • the coil 301A and the coil 301B are stacked on the same horizontal plane, and the projections of the coil 301A and the coil 301B on the fifth plane overlap, wherein the fifth plane is perpendicular to the coil 301A and the coil 301B. /or any plane in the axial direction of the coil 301A.
  • the projections of the coil 301A and the coil 301B on the fifth plane are concentric circles, that is, the coil 301A and the coil 301B are coaxially arranged.
  • the power supply device 04 includes a power supply path, the power supply path includes a coil 401 and a TX402, the coil 401 is connected to the first end of the TX402, and the second end of the TX402 is connected to the power supply.
  • TX402 is used to convert the DC power received from the power supply into AC power and deliver the AC power to the coil 401 .
  • the coil 401 is used to send electric energy (or wireless charging signal). Wherein, the coil 401 may also be referred to as a third wireless charging coil.
  • the power supply device 04 and the charging device 03 approach each other in a preset posture, and the coil 401 is coupled with the coil 301A and the coil 301B at the same time (for example, the coil 401, the coil 301A, and the coil 301B are coaxial/approximately coaxial, and the plane where the coil 401 is located , the plane where the coil 301A is located, and the plane where the coil 301B is located are parallel/approximately parallel to each other, or the coil 401 is aligned with the coil 301A and the coil 301B at the same time), the coil 301A and the coil 301B in the charging device 03 are respectively connected to the coil 401 in the power supply device 04 Electromagnetic induction realizes wireless charging.
  • the coil in the power supply device 04 transmits a wireless charging signal to the coil in the charging device 03, that is, when the alternating current passes through the coil 401 in the power supply device 04, a changing magnetic field is generated in the surrounding environment.
  • the coil 301A and the coil 301B respectively generate induced electromotive force and then generate alternating current.
  • the default posture is that the charging device 03 is placed flat above the power supply device 04 (that is, the bottom surface of the charging device 03 is close to the top surface of the power supply device 04 ), but in specific implementation , can also be other postures.
  • the power supply device 04 is placed on the top of the charging device 03 (the top surface of the charging device 03 is close to the bottom surface of the power supply device 04), or the power supply device 04 and the charging device 03 are located on the same horizontal plane (the side of the charging device 03 is close to the side surface of the power supply device 04). ), etc., this application is not limited.
  • the coil 301A, the coil 301B, and the coil 401 may not necessarily have a strict coaxial relationship or a parallel relationship, and there may be a certain deviation.
  • any two coils in coil 301A, coil 301B, and coil 401 partially overlap on the sixth plane, where the sixth plane is any plane perpendicular to the axial direction of coil 301A, coil 301B, or coil 401, and the coil
  • the planes where any two coils of 301A, coil 301B, and coil 401 are located may have a slight angle (for example, 0-30°). In other words, during charging, when the alignment relationship between the charging device 04 and the power supply device 03 deviates slightly, charging can also be performed.
  • the inductance of the coil of the charging device 03 and the coil of the power supply device 04 may be the same or different, and this application does not limit this; the inductance of the coil 301A and the coil 301B may be the same , may also be different, which is not limited in this application.
  • the parameters affecting the inductance of the coil include, but are not limited to, the number of turns of the coil, the winding method of the coil, the material of the coil, the thickness of the coil, and the like.
  • RX302A and RX302B can also have simple processing functions and communication functions.
  • RX302A and RX302B adopt the master-slave control mode, that is, one RX of RX302A and RX302B is the master RX, and the other is the slave RX, where the master RX is used to communicate with the TX402 in the power supply device 04, and the controller 303 communicates with the TX402 by controlling the master RX Communication, the working state of the charging path where the main RX is located (such as the output power of electric energy delivered to the battery 304), and the working state of the charging path where the slave RX is located (such as the output power of electric energy delivered to the battery 304) will also follow the main RX The adjustment of the working state of the charging path where it is located changes.
  • the controller 303 when the controller 303 needs to adjust the output power of the third charging path and the fourth charging path to deliver electric energy to the battery 304, the controller 303 sends a control command to RX302A; RX302A converts the control command into the first
  • the control signal is sent to TX402.
  • TX402 adjusts the output power of TX402 after receiving the first control signal, and then the output power of coil 401 is adjusted correspondingly, so that the received power of coil 301A and coil 301B also changes with the output power of coil 401 .
  • the effect of the controller 303 changing the working states of the two charging paths by controlling the third charging path can be realized.
  • both the coil 301A and the coil 301B of the charging device 03 are coupled to the coil 401 in the power supply device 04, once the transmission power of the coil 401 changes, both the coil 301A and the coil 301B will change, but the coil 301A and the coil 301B
  • the power value and the variation value can be the same or different. For example, if the inductances of the coils 301A and 301B are the same, the power and power change values of the coils 301A and 301B are the same; if the inductances of the coils 301A and 301B are different, the power and/or power change values of the coils 301A and 301B may be different .
  • RX302A and TX402 can communicate based on electromagnetic induction between coils, or can communicate based on other methods (such as Bluetooth), which is not limited in this application.
  • RX302A and TX402 reference may be made to the specific implementation manner of communication between RX102A and TX202 in Embodiment 1 above, which will not be repeated here.
  • RX302A can monitor the voltage, current, temperature and other information on the third charging path where it is located (that is, the path from the coil 301A to the battery 304), generate first monitoring information, and report the first monitoring information to the controller 303;
  • RX 302B monitors the voltage, current, temperature and other information on the fourth charging path where it is located (ie the path from coil 301B to battery 304 ), generates second monitoring information, and reports the second monitoring information to controller 303 .
  • the controller 303 can adjust the working states of the two charging paths according to the monitoring information reported by the RX302A and RX302B. In this way, the working state of each charging channel can be controlled more precisely.
  • the controller 303 can switch between single charging and dual charging by controlling RX302A and RX302B to enable/disable. In this way, the switching between the single-channel charging mode and the dual-channel charging mode can be realized, which improves the flexibility of the charging scheme.
  • each charging path in the charging device 03 may also include other components.
  • the third charging path between RX302A and battery 304, there may also be DC/DC, N:1 circuit components, etc.
  • the fourth charging path between RX302B and battery 304, there may also be DC/DC , N:1 circuit components, etc.
  • controller 303 adjusts the working status of each charging channel, in addition to the above-mentioned control of the main RX to communicate with the power supply device 04 to adjust the transmission power of the coil on the power supply device 04 and then achieve the effect of adjusting the receiving power of the coil on the charging device 03
  • the controller 303 can also directly adjust the working parameters (such as output impedance) of each component on each path to adjust the working state power on the path.
  • working parameters such as output impedance
  • controller 303 may be any device with a control function.
  • controller 103 may be any device with a control function.
  • the overall thickness of coil 301A and coil 301B is less than or equal to 0.25mm.
  • the bottom surface of the coil 301B is opposite to the top surface of the coil 301A, and the distance between the top surface of the coil 301B and the bottom surface of the coil 301A is less than or equal to 0.25mm.
  • the upper and lower parts A and B of the coil shown in Figure 3 can be split, and then the two parts A and B are used as the coil 301A and the coil 301B. In this way, the difficulty of the process can be reduced, and at the same time, the coil 301A and the coil 301A can be guaranteed.
  • the thickness of the coil 301B is the same as that of the original coil (that is, the coil shown in FIG. 3 ), so as to reduce the impact on the ID of the charging device as much as possible. It should be understood that the design of the two stacked coils in the embodiment of the application based on a single coil with a thickness of 0.25mm is taken as an example. Put the coil.
  • the charging power of the charging device is increased by increasing the voltage or current of the single coil in the embodiment of the present application.
  • the existing single coil can be thinned and then stacked to ensure that the thickness of the charging device 03 does not increase; since the two coils stacked in the charging device 03 are independently equipped with RX chips, it is possible to avoid RX
  • the power of the chip is oversaturated; in addition, only one coil and one TX chip are needed in the power supply device 04, so the existing power supply device can be reused (that is, the power supply device can not be changed), further saving hardware costs. It can be seen that the wireless charging system provided by the embodiment of the present application can effectively increase the charging power without increasing the thickness, heat, and chip power of the charging device.
  • the above Figure 8 is an example of stacking double coils on the charging device.
  • the wireless charging system can be expanded to a larger number of coils to further increase the charging power.
  • FIG. 9 an example of setting three stacked coils for a charging device, wherein the charging device includes three coils (ie, coil 301A, coil 301B, and coil 301C), and each coil has an independent RX chip (ie, RX302A , RX302B, RX302C), the power supply equipment contains a single coil and a single TX remains unchanged, RX302A can communicate with TX402.
  • the relevant introduction of the wireless charging system shown in FIG. 8 above which will not be repeated here.
  • FIG. 10 it is a schematic structural diagram of another wireless charging system provided by an embodiment of the present application, including: a charging device 05 and a power supply device 06 .
  • the charging device 05 may also be called a first electronic device
  • the power supply device 06 may also be called a second electronic device.
  • the charging device 05 includes a battery 504 and three charging paths respectively connected to the battery 504, wherein the first charging path (or called the first wireless charging path) sequentially includes a coil 501A, RX502A, and the second charging path (or called the second wireless charging path)
  • the wireless charging path) includes coils 501B and RX502B in sequence
  • the third charging path (or referred to as the third wireless charging path) includes coils 501C and RX502C in sequence.
  • the coils 501B and 501C are in a stacked relationship
  • the coil 501A and the stacked coils (ie 501B and 501C) are in a flat relationship as a whole.
  • the charging device 05 also includes a controller 503 which is respectively connected to the three power supply paths for monitoring and controlling the working status of the three power supply paths.
  • the power supply device 06 includes two power supply paths, wherein the first power supply path includes coil 601A and TX602 in turn, and the second power supply path includes coil 601B and TX602 in turn, that is, coil 601A and coil 601B are connected to TX602 in parallel.
  • the coil 501A can also be called the first wireless charging coil
  • the coil 501B can also be called the second wireless charging coil
  • the coil 601A can also be called the third wireless charging coil
  • the coil 601B can also be called the fourth wireless charging coil
  • the coil 501C can also be referred to as a fifth wireless charging coil.
  • the circuit between the coil 501A and the battery 504 may be called a first wireless charging circuit
  • the circuit between the coil 501B and the battery 504 may be called a second wireless charging circuit
  • the circuit between the coil 501C and the battery 504 may be called a third wireless charging circuit.
  • Wireless charging circuit may be called a first wireless charging circuit
  • the circuit between the coil 501B and the battery 504 may be called a second wireless charging circuit
  • the circuit between the coil 501C and the battery 504 may be called a third wireless charging circuit. Wireless charging circuit.
  • the coil 601A When charging, the coil 601A is coupled with the coil 501A, that is, the coil 501A receives the wireless charging signal from the coil 601A; the coils 501B and 501C are both coupled with the coil 601B, that is, the coil 501B receives the wireless charging signal from 601B wireless charging signal.
  • the controller 503 can adjust the output power of coil 601A and coil 601B by controlling the main RX (such as RX502A) among RX502A, RX502B and RX502C to communicate with TX602, thereby changing the received power of coil 501A, coil 501B and coil 501C.
  • the effect of the controller 503 changing the working states of multiple charging paths by controlling one charging path is realized.
  • the embodiment of the present application also provides a wireless charging method, which can be applied to any wireless charging system shown in FIG. 4 to FIG. 10 .
  • the method includes:
  • the second electronic device sends a wireless charging signal
  • the first wireless charging coil in the first electronic device receives a wireless charging signal from the second electronic device, and charges the battery of the first electronic device through the first wireless charging circuit; the second wireless charging coil in the first electronic device Receive the wireless charging signal from the second electronic device, and charge the battery of the first electronic device through the second wireless charging circuit.
  • the specific implementation method of the above-mentioned first electronic device execution method steps can be Refer to the specific implementation manner when the charging device 01 or the charging device 03 or the charging device 05 executes the corresponding method steps above, which will not be repeated here.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to the embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, for example, from a website, computer, server, or data center via Wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • Wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital versatile disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) ))Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital versatile disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供一种无线充电系统、方法和装置,用以提升充电功率。系统包括第一电子设备(01)和第二电子设备(02);第一电子设备(01)至少包括第一无线充电通路和第二无线充电通路,第一无线充电通路包括第一无线充电线圈(101A)和第一无线充电电路,第二无线充电通路包括第二无线充电线圈(101B)和第二无线充电电路,第一无线充电线圈(101A)通过第一无线充电电路与第一电子设备(01)的电池(104)电连接,第二无线充电线圈(101B)通过第二无线充电电路与第一电子设备(01)的电池(104)电连接;第一无线充电线圈(101A)被配置接收第二电子设备(02)的无线充电信号,通过第一无线充电电路为第一电子设备(01)的电池(104)充电;第二无线充电线圈(101B)被配置接收第二电子设备(02)的无线充电信号,通过第二无线充电电路为第一电子设备(01)的电池(104)充电。

Description

一种无线充电系统、方法和装置
相关申请的交叉引用
本申请要求在2021年05月27日提交中国专利局、申请号为202110587412.X、申请名称为“一种无线充电系统、方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种无线充电系统、方法和装置。
背景技术
无线充电相比有线充电而言,有着便于携带、操作简单等优点。近几年,无线充电的技术在手机、平板电脑等电子设备上的应用越来越广泛。以手机为例,现有的无线充电方案是在手机(即充电设备)和无线充电器(即供电设备)上分别设置一个线圈(或称之为无线充电线圈),当手机与无线充电器靠近后,两线圈相互靠近,产生电磁感应,能量由无线充电器传送至手机。其中,手机的线圈厚度越厚,手机的无线充电功率越高,充电效率越高(即充电速度越快)。但是,目前市场倾向于将手机的整机厚度尽可能地降低,受限于手机整机厚度的限制,无线充电效率难以得到提升。
因此,如何兼顾终端设备的厚度和无线充电效率,是亟需解决的技术问题。
发明内容
本申请实施例提供一种无线充电系统、方法和装置,可以在不增加电子设备的厚度的基础上,提升电子设备的无线充电效率。
第一方面,提供一种无线充电系统,包括第一电子设备和第二电子设备;其中第一电子设备至少包括第一无线充电通路和第二无线充电通路,第一无线充电通路包括第一无线充电线圈和第一无线充电电路,第二无线充电通路包括第二无线充电线圈和第二无线充电电路,第一无线充电线圈通过第一无线充电电路与第一电子设备的电池电连接,第二无线充电线圈通过第二无线充电电路与第一电子设备的电池电连接;第一无线充电线圈被配置接收第二电子设备的无线充电信号,通过第一无线充电电路为第一电子设备的电池充电;第二无线充电线圈被配置接收第二电子设备的无线充电信号,通过第二无线充电电路为第一电子设备的电池充电。
本申请实施例提供的无线充电系统,在第一电子设备(即充电设备)中设置两个充电线圈且为每个充电线圈设置独立的无线充电电路,进而实现两路无线充电通过为第一电子设备的电池充电,相比现有技术依靠提升单线圈厚度提升充电设备的充电功率,本申请实施例可以在不增加充电设备的厚度的基础上提升充电设备的无线充电效率;同时由于第一电子设备中的两个线圈分别设置独立的充电电路,所以还可以减小甚至避免现有技术中通过提升单个充电通路的功率导致充电通路功率过饱和进而导致设备硬件损坏的风险,可以延长第一电子设备的使用寿命。
在本申请实施例中,第一电子设备中的两个线圈(即第一无线充电线圈和第二无线充电线圈)的位置关系的可以是平放关系,也可以叠放关系,或者是其它,本申请不做限制。
以下介绍叠放两个线圈的具体实现方案:
一种可能的设计中,第一无线充电线圈和第二无线充电线圈沿第一方向层叠设置,其中第一方向平行于第一无线充电线圈的轴向方向和/或第一方向平行于第二无线充电线圈的轴向方向;第二电子设备包括第三无线充电线圈。相应的,第一无线充电线圈被配置为与第三无线充电线圈耦合,接收第二电子设备的无线充电信号;第二无线充电线圈被配置为与第三无线充电线圈耦合,接收第二电子设备的无线充电信号。
如此,通过在第一电子设备设置两个叠放的线圈来提升无线充电功率。在制作工艺上,可以将现有的单线圈做薄后进行叠放,进而保证第一电子设备的厚度不增加。与此同时,由于第二电子设备仅需要设置一个线圈,可以节省硬件成本。
一种可能的设计中,第一无线充电线圈与第二无线充电线圈同轴设置。
一种可能的设计中,第一无线充电线圈的底面与第二无线充电线圈的顶面相对设置,第一无线充电线圈的顶面至第二无线充电线圈的底面的距离小于或等于0.25mm。
如此,两个线圈的整体厚度不超过0.25mm,可以适用于大部分机型的工业设计。
以下介绍平放两个线圈的具体实现方案:
一种可能的设计中,第一无线充电线圈与第二无线充电线圈间隔设置于第一平面,第一平面垂直于第一无线充电线圈的轴向方向和/或第一平面垂直于第二无线充电线圈的轴向方向,第一无线充电线圈在第一平面上的投影与第二无线充电线圈在第一平面上的投影不相交;第二电子设备包括第三无线充电线圈和第四无线充电线圈,第三无线充电线圈和第四无线充电线圈间隔设置于第二平面,第二平面垂直于第三无线充电线圈的轴向方向和/或第二平面垂直于第四无线充电线圈的轴向方向,第三无线充电线圈在第二平面上的投影与第四无线充电线圈在第二平面上的投影不相交。相应的,第一无线充电线圈与第三无线充电线圈耦合,接收第二电子设备的无线充电信号;第二无线充电线圈与第四无线充电线圈耦合,接收第二电子设备的无线充电信号。
如此,通过在第一电子设备设置两个平放的线圈来提升无线充电功率,可以保证第一电子设备的厚度不增加。
一种可能的设计中,第一无线充电线圈的厚度小于或等于0.25mm,第二无线充电线圈的厚度小于或等于0.25mm。
如此,每个线圈的厚度都不超过0.25mm,可以适用于大部分机型的工业设计。并且,可以复用现有的线圈,减低工艺难度。
在本申请实施例中,第一电子设备中的线圈不只限于是两个,还可以有更多。
一种可能的设计中,第一电子设备还包括第五无线充电线圈;第二无线充电线圈与第五无线充电线圈沿第二方向层叠设置,第二方向平行于第二无线充电线圈的轴向方向和/或第二方向平行于第五无线充电线圈的轴向方向;第五无线充电线圈与第四无线充电线圈耦合,接收第二电子设备的无线充电信号,为第一电子设备的电池充电。
如此,可以进一步提升第一电子设备的无线充电功率。
在本申请实施例中,第一电子设备还可以调整无线充电功率。
一种可能的设计中,第一无线充电电路还用于向第二电子设备发送第一控制信号;响应于第一控制信号,第二电子设备调整无线充电功率。
如此,第一电子设备可通过第一无线充电电路控制第二电子设备的功率输出,进而间接调整第一电子设备二种各路无线充电通路的充电功率。
一种可能的设计中,第一电子设备还包括处理器;第一无线充电电路还用于向处理器发送第一监控信息;第二无线充电电路还用于向处理器发送第二监控信息;处理器用于根据第一监控信息和第二监控信息,指示第一无线充电电路向第二电子设备发送第一控制信号。
如此,第一电子设备可以更加精准地调整各路无线充电通路的充电功率。
在本申请实施例中,第一电子设备还可以在单路充电模式与双路充电模式之间进行切换。
一种可能的设计中,第二电子设备还包括开关;第一无线充电电路还用于向第二电子设备发送第二控制信号;响应于第二控制信号,第二电子设备至少执行:通过开关控制第三无线充电线圈与第二电子设备的无线充电电路的导通或断开;或,通过开关控制第四无线充电线圈与第二电子设备的无线充电电路的导通或断开。
如此,可以实现单路充电模式与双路充电模式的切换,提高了充电方案的灵活性。
当然,如果第一电子设备以及第二电子设备中还设置有更多的无线充电线圈,则第一电子设备还可以控制切换其它充电模式。
第二方面,提供一种充电方法,应用于无线充电系统,该无线充电系统包括第一电子设备和第二电子设备;第一电子设备至少包括第一无线充电通路和第二无线充电通路,第一无线充电通路包括第一无线充电线圈和第一无线充电电路,第二无线充电通路包括第二无线充电线圈和第二无线充电电路,第一无线充电线圈通过第一无线充电电路与第一电子设备的电池电连接,第二无线充电线圈通过第二无线充电电路与第一电子设备的电池电连接。方法包括:第二电子设备发送无线充电信号;第一无线充电线圈接收来自第二电子设备的无线充电信号,通过第一无线充电电路为第一电子设备的电池充电;第二无线充电线圈接收来自第二电子设备的无线充电信号,通过第二无线充电电路为第一电子设备的电池充电。
该方法的具体实现方式可以参考第一方面或第一方面任一种可能的设计中第一电子设备、第二电子设备的功能描述,在此不再赘述。
第三方面,提供一种充电装置,该装置位于第一电子设备;充电装置至少包括第一无线充电通路和第二无线充电通路,第一无线充电通路包括第一无线充电线圈和第一无线充电电路,第二无线充电通路包括第二无线充电线圈和第二无线充电电路,第一无线充电线圈通过第一无线充电电路与第一电子设备的电池电连接,第二无线充电线圈通过第二无线充电电路与第一电子设备的电池电连接;第一无线充电线圈被配置接收第二电子设备的无线充电信号,通过第一无线充电电路为第一电子设备的电池充电;第二无线充电线圈被配置接收第二电子设备的无线充电信号,通过第二无线充电电路为第一电子设备的电池充电。
该充电装置的具体实现方式可以参考第一方面或第一方面任一种可能的设计中第一电子设备的相关描述,在此不再赘述。
第四方面,提供一种充电方法,应用于第一电子设备;第一电子设备至少包括第一无线充电通路和第二无线充电通路,第一无线充电通路包括第一无线充电线圈和第一无线充电电路,第二无线充电通路包括第二无线充电线圈和第二无线充电电路,第一无线充电线圈通过第一无线充电电路与第一电子设备的电池电连接,第二无线充电线圈通过第二无线 充电电路与第一电子设备的电池电连接;方法包括:第一无线充电线圈接收来自第二电子设备的无线充电信号,通过第一无线充电电路为第一电子设备的电池充电;第二无线充电线圈接收来自第二电子设备的无线充电信号,通过第二无线充电电路为第一电子设备的电池充电。
该方法的具体实现方式可以参考第一方面或第一方面任一种可能的设计中第一电子设备的功能描述,在此不再赘述。
附图说明
图1为本申请实施例适用的一种无线充电场景的示意图;
图2为一种无线充电系统的结构示意图;
图3为一种充电设备的线圈的结构示意图;
图4为本申请实施例提供的一种无线充电系统的结构示意图;
图5为本申请实施例提供的另一种无线充电系统的结构示意图;
图6为本申请实施例提供的另一种无线充电系统的结构示意图;
图7为本申请实施例提供的另一种无线充电系统的结构示意图;
图8为本申请实施例提供的另一种无线充电系统的结构示意图;
图9为本申请实施例提供的另一种无线充电系统的结构示意图;
图10为本申请实施例提供的另一种无线充电系统的结构示意图;
图11为本申请实施例提供的一种无线充电方法的流程图。
具体实施方式
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参见图1,为本申请实施例适用的一种无线充电场景的示意图,充电设备(如手机、平板、智能穿戴设备等)靠近供电设备(如无线充电器、无线充电宝等)后,充电设备中的线圈与供电设备的线圈发生电磁感应,能量(或者说电能,或者说无线充电信号)由供电设备传送至充电设备。
如图2所示,为一种无线充电系统的结构示意图。供电设备和充电设备中分别设置单个线圈,通过单线圈耦合实现无线充电。其中,充电设备中的充电系统包括无线充电和有线充电两部分。在采用无线充电时,充电设备上线圈接收的能量依次由功率接收器(Power Receiver,RX)、高压开关电容转换器(HVSC)、开关电容转换器(Switch Capacity,SC) 等器件构成的充电通路传输到充电设备的电池。在采用有线充电时,充电设备上从电源接收的能量依次由过压保护(Over Voltage Protection,OVP)电路、SC等器件构成的充电通路传输到充电设备的电池。应理解,图2中的供电设备是以无线充电器为例,所以在为充电设备充电时供电设备需要连接至电源,如果无线充电设备是无线充电宝,则在为充电设备充电时供电设备可以不连接至电源。
目前,无线充电功率的提升已经成为手机、平板、智能穿戴设备等电子产品的重点竞争力。如果要持续提升充电设备的无线充电功率,则需要提升充电设备线圈上的电压和/或电流。若要提升线圈上的电压和/或电流,则需要增加线圈的厚度。
但由于手机、平板、智能穿戴设备等整机厚度的限制,线圈的厚度不可能无限增加。例如,根据当前市场上一种手机的厚度规格,手机线圈的厚度最多做到约0.25mm,如图3所示,为一种充电设备的线圈的结构示意图,包括A、B两个线圈,每个线圈的厚度约0.125mm,A、B两线圈层叠设置,通过多个过孔打通相连,使得A、B两部分线圈等效为一个加厚的线圈,整体厚度在0.25mm左右。0.25mm厚度下的线圈的饱和电流最多做到5A(交流),充电功率最多做到50W。若继续提升充电功率,则需要增加线圈的厚度,会导致整机厚度增加,影响整机工业设计(Industrial Design,ID)。另外,如果继续提升充电功率,还可能导致RX的功率过高而被损坏。例如,在0.25mm厚度的线圈下,RX的饱和电压为20V、饱和电流为2.5A,如果继续提升充电功率,而不提升RX的规格,则RX会受损,影响产品寿命。
因此,通过增加线圈厚度来继续提升充电功率的方案,无论提压还是提流,电子设备的整机厚度、热量、芯片功率等方面均有较大瓶颈。
为了解决上述一个或多个技术问题,本申请实施例提供一种无线充电方案。充电设备中设置双线圈或多线圈,供电设备中设置双线圈或多线圈或单线圈,充电设备中的每个线圈设置独立的RX,能够在不增加充电设备整机厚度、芯片功率的前提下,实现双线圈或多线圈并联无线充电,进而提升无线充电功率。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例技术方案作进一步地详细描述。应理解,本文中的附图仅用于示意各部件之间的相对位置关系或连接关系,某些部件采用了夸张的绘图方式以便于理解,附图中各部件的形状和大小并不反应真实的比例关系。
实施例1
本实施例介绍充电设备设置双线圈或多线圈,供电设备设置双线圈或多线圈的方案。
参见图4,为本申请实施例提供的一种无线充电系统的结构示意图,包括:充电设备01和供电设备02。其中,充电设备01还可以称为第一电子设备,供电设备02还可以称为第二电子设备。
充电设备01包括两路充电通路,其中第一充电通路(或者称为第一无线充电通路)包括线圈101A、RX102A,第二充电通路(或者称为第二无线充电通路)包括线圈101B、RX102B,两路充电通路以并联的方式与充电设备01中的电池104相连(应理解,本文中的“相连”或“连接”指电连接)。在第一充电通路中,RX102A的第一端与线圈101A相连,RX102A的第二端与电池104相连,线圈101A用于接收电能(或者说无线充电信号)产生交流(Alternating Current,AC)电,RX102A用于将线圈101A产生的交流电转换为直流(Direct Current,DC)电并输送至电池104。在第二充电通路中,RX102B的第一端 与线圈101B相连,RX102B的第二端与电池104相连,线圈101B用于接收电能(或者说无线充电信号)产生交流电,RX102B用于将线圈101B产生的交流电转换为直流电并输送至电池104。充电设备01还包括控制器103,同时与两路充电通路相连,用于监控和控制各路充电通路的工作状态。
其中,第一充电通路中的线圈101A还可以称为第一无线充电线圈,线圈101A与电池104之间的电路可以称为第一无线充电电路;第二充电通路中的线圈101B还可以称为第二无线充电线圈,线圈101B与电池104之间的电路可以称为第二无线充电电路。
当充电设备01在水平面上平放时,线圈101A和线圈101B可以在同一水平面上平放,线圈101A和线圈101B在第一平面上的投影不交叠,其中第一平面是垂直于线圈101A和/或线圈101A的轴向方向的任一平面。可选的,线圈101A和线圈101B位于同一平面上,例如线圈101A和线圈101B间隔设置在第一平面。应理解,线圈101A和线圈101B位于同一平面包括但不限于:线圈101A的顶面和线圈101B的顶面位于同一平面;或者,线圈101A的底面和线圈101B的底面位于同一平面;或者,线圈101A的顶面和线圈101B的底面位于同一平面;或者,线圈101A的底面和线圈101B的顶面位于同一平面;或者其它位于同一平面的实现方式。
供电设备02包括两路供电通路,其中第一供电通路包括线圈201A和功率发射器(Power Transmitter,TX)202,第二供电通路包括线圈201B和TX202。线圈201A、线圈201B以并联的方式与TX202的第一端相连,TX202的第二端与电源连接。TX202用于将直流电转化为交流电并将交流电输送至线圈201A、线圈201B。线圈201A、线圈201B用于发送电能。
其中,线圈201A还可以称为第三无线充电线圈,线圈201B还可以称为第四无线充电线圈。
当供设备02在水平面上平放时,线圈201A和线圈201B在同一水平面上平放,线圈201A和线圈201B在第二平面上的投影不交叠,其中第二平面为垂直于线圈201A和/或线圈201A的轴向方向的任一平面。可选的,线圈201A和线圈201B位于同一平面上,例如,线圈201A和线圈201B间隔设置在第二平面。应理解,线圈201A和线圈201B位于同一平面包括但不限于:线圈101A的顶面和线圈101B的顶面位于20;或者,线圈101A的底面和线圈101B的底面位于同一平面;或者,线圈101A的顶面和线圈101B的底面位于同一平面;或者,线圈101A的底面和线圈101B的顶面位于同一平面;或者其它位于同一平面的实现方式。
充电时,供电设备02和充电设备01以预设姿态相互靠近,线圈201A和线圈101A耦合(例如线圈201A和线圈101A同轴/近似同轴且线圈201A所在平面与线圈101A所在平面平行/近似平行,或者说线圈201A对准线圈101A),线圈201B与线圈101B耦合(例如线圈201B与线圈101B同轴/近似同轴且线圈201B所在平面与线圈101B所在平面平行/近似平行,或者说线圈201B对准线圈101B),进而产生电磁感应现象,实现无线充电,供电设备02中的线圈向充电设备01中的线圈传输无线充电信号,即:交流电通过供电设备02中的线圈201A时,线圈201A在周围环境中产生变化的磁场,位于周围环境中的线圈101A生成感应电动势进而产生交流电;交流电通过供电设备02中的线圈201B时,线圈201B在周围环境中产生变化的磁场,位于周围环境中的线圈101B生成感应电动势进而产生交流电。
应理解,在图4所示的场景中,是以第一供电通路向第一充电通路供电、第二供电通路向第二充电通路供电为例,即线圈201A向线圈101A传输电能,线圈201B向线圈101B传输电能(带箭头虚线表示电能传输方向),但实际不限于此。
应理解,在图4所示的场景中,预设姿态是以充电设备01平放在供电设备02上方(即充电设备01底面与供电设备02的顶面靠近)为例,但在具体实现时,也可以是其它姿态。例如,供电设备02平放在充电设备01上方(充电设备01顶面与供电设备02的底面靠近)、或者供电设备02、充电设备01位于同一水平面(充电设备01侧面与供电设备02的侧面靠近)等,本申请不做限制。
在具体实现时,相互传输电能的两个线圈之间可以不必具有严格的同轴关系和平行关系,可以存在一定偏差。例如,线圈201A在第三平面上投影与线圈101A在第三平面上的投影至少部分交叠,其中第三平面为垂直于线圈201A和/或线圈101A的轴向方向的任一平面,线圈201A所在的平面和线圈101A所在的平面可以存在微小夹角(例如0~30°)。例如,线圈201B在第四平面上投影与线圈101B在第四平面上的投影至少部分交叠,其中第四平面为垂直于线圈201B和/或线圈101B的轴向方向的任一平面,线圈201B所在的平面和线圈101B所在的平面可以存在微小夹角(例如0~30°)。换而言之,在充电时,充电设备01的线圈与供电设备02的线圈的对准关系稍微偏移时,也可以进行充电。
在具体实现时,充电设备01的线圈的电感量和供电设备02的线圈的电感量可以相同,也可以不同,本申请对此不做限制;线圈101A与线圈101B的电感量可以相同,也可以不同,本申请对此不做限制;线圈201A与线圈201B的电感量可以相同,也可以不同,本申请对此不做限制。其中,影响线圈的电感量的参数例如包括但不限于是:线圈的匝数、线圈的绕线方式、线圈的材料、线圈的厚度等。
在具体实现时,充电设备01中线圈与供电设备02中线圈可以有多种耦合关系。换而言之,充电时,可以是:线圈201A与线圈101A同轴/近似同轴,线圈201A向线圈101A传输电能,线圈201B与线圈101B同轴/近似同轴,线圈201B向线圈101B传输电能,也可以是:线圈201A与线圈101B同轴/近似同轴,线圈201A向线圈101B传输电能,线圈201B与线圈101A同轴/近似同轴,线圈201B向线圈101A传输电能。相互传输电能的两个线圈(如线圈201A与线圈101A,或者,线圈201B与线圈101B)之间传输功率,依据两个线圈的电感量而定。
在本申请实施例中,控制器103是整个充电系统的神经中枢和指挥中心。RX102A和RX102B除了具有AC/DC转换功能之外,还可以有简单的处理功能和通讯功能。RX102A和RX102B采用主从控制模式,即RX102A和RX102B中的一个RX为主RX,另一个为从RX,其中主RX用于与供电设备02中的TX202通信,控制器103通过控制主RX与TX通讯,可调整主RX所在充电通路的工作状态(例如向电池104输送电能的输出功率),而从RX所在充电通路的工作状态(例如向电池104输送电能的输出功率)也会随着主RX所在充电通路的工作状态的调整而变化。
具体的,以主RX是RX102A为例,当控制器103需要调整第一充电通路和第二充电通路向电池104输送电能的输出功率时,控制器103向RX102A发送控制指令;RX102A将控制指令转换为第一控制信号发送给TX202。TX202收到第一控制信号后调整TX202的输出功率,进而线圈201A的输出功率相应被调整,而线圈101A的接收功率也随线圈201A的输出功率的变化而变化;同时,由于线圈201A和线圈201B同时并联至TX202的 功率,所以线圈201B的输出功率也相应被调整,而线圈101B的接收功率也随线圈201B的输出功率的变化而变化。由于线圈101A、线圈101B的功率均发生变化,所以第一充电通路和第二充电通路向电池104输送电能的输出功率均相应变化。如此,可以实现控制器103通过控制第一充电通路改变两路充电通路的工作状态的效果。
应理解,由于供电设备02中只有一个TX(即TX202),且线圈201A、线圈201B均与TX202相连,所以TX202功率改变时,线圈201A、线圈201B的发送功率都要改变,但线圈201A和线圈201B的功率数值和变化数值可以相同,也可以不同。例如,如果线圈201A和201B的电感量相同,则线圈201A和201B的功率和功率变化值均相同;如果线圈201A和201B的电感量不同,那么线圈201A和201B的功率和/或功率变化值可以不同。
在一些实施例中,RX102A与TX202可以基于线圈之间的电磁感应来通信。例如,RX102A向线圈101A传输预设频率和/或振幅的交流电信号,使得线圈101A在周围环境中产生预设强度的磁场,周围环境中的线圈201A生成预设大小的感应电动势进而产生预设频率和/或振幅的交流电信号,然后线圈201A将该预设频率和/或振幅的电信号传递给TX202,TX202收到该预设频率和/或振幅的电信号后调整自身的功率输出。其中,该预设频率和/或振幅的电信号代表的含义(如需要调整的功率值)可以是协议规定,也可以是供电设备02和充电设备01预先约定,本申请不做限制。
当然,RX102A与TX202之间还可以通过其他方式通信,本申请不做限制。例如,还可以在RX102A与TX202中设置蓝牙模块,RX102A与TX202基于蓝牙进行通信。
在一些实施例中,RX102A可以监控自身所在第一充电通路(即线圈101A至电池104的通路)上的电压、电流、温度等信息,生成第一监控信息,并将第一监控信息上报给控制器103;RX102B监控自身所在第二充电通路(即线圈101B至电池104的通路)上的电压、电流、温度等信息,生成第二监控信息,并将第二监控信息上报给控制器103。进而控制器103可以根据RX102A、RX102B上报的监控信息调整两路充电通路的工作状态。
如此,可以更加精准地控制各路充电通路的工作状态。
在一些实施例中,供电设备02的至少一路供电通路上还设置有开关,RX102A可以通过控制RX102A与TX202通讯,比如RX102A向TX202发送第二控制信号,使得TX202控制开关的开/合状态,实现单路充电与双路充电的切换。
例如,参见图5,线圈201A和TX202之间设置有开关203A,线圈201B和TX202之间设置有开关203B。控制器103通过控制RX102A与TX202通讯,使得TX202切换开关203A、开关203B的开/合状态,进而实现单路充电模式与双路充电模式的切换。例如,开关203A、开关103B都导通时,为双路充电模式;当开关203A导通且开关203B断开或者开关203B导通且开关203A断开时,为单路充电模式。
另外,控制器103也可以通过控制RX102A和RX102B是/否工作实现单路充电与双路充电的切换。
如此,可以实现单路充电模式与双路充电模式的切换,提高了充电方案的灵活性。比如,在充电初始阶段,充电设备01电量较少时,电量需求量大,可以采用双路充电模式,实现快速充电;在充电设备01的电量快要充满时,电量需求量小,可以采用单路充电模式,以减少甚至避免能源的浪费。
在一些实施例中,充电设备01中各路充电通路上还可以包括其它组件。
示例性的,参见图6,在第一充电通路上,RX102A和电池104之间,还可以有电压 变化组件,如DC/DC105A、N:1电路组件106A等;在第二充电通路上,RX102B和电池104之间,还可以有电压变化组件,如DC/DC105B、N:1电路组件106B等。其中,DC/DC可以为二极管、场效应管(MOS)、低压差线性稳压器(Low Dropout Regulator,LDO)、升压DC、降压DC或者升降压DC等。可选的,N:1电路组件可以为1:1、2:1、3:1或4:1等SC开关电容或者DC转换器。
控制器103在调整各路充电通路的工作状态时,除了控制主RX向供电设备02通讯以调整供电设备02中TX202的功率之外,控制器103还可以直接调整各充电通路上的各组件的工作参数(如输出阻抗),进而来调整该充电通路的工作状态。例如,控制器103可以通过调整各充电通路上的RX的频率、占空比、谐振频率等,或者调整各充电通路上的DC/DC或N:1电路组件等的输出阻抗等方式,进一步调整各充电通路的输出功率。
如此,可以更加精准地控制各路充电通路的工作状态。
在一些实施例中,控制器103可以是任何具有控制功能的器件,例如是片上系统(System-on-a-chip system,SOC)、现场可编程门阵列(Field-programmable Gate Array,FPGA)、专用集成电路(Application-specific Integrated Circuit,ASIC)、专用标准产品(Application-specific Standard Product,ASSP)、复杂可编程逻辑设备(Complex Programmable Logic Device,CPLD)、专用计算机等,本申请不做限制。
在一些实施例中,线圈101A的厚度可以小于或等于0.25mm,线圈101B可以小于或等于0.25mm。
基于上述可知,本申请实施例中与现有技术通过提升单线圈的电压或电流提升充电设备充电功率不同,本申请实施例是通过在充电设备01和供电设备02中分别设置两个独立的线圈来提升无线充电功率。由于充电设备中的两和线圈是以平放的方式放置在充电设备01中,所以不会增加充电设备01的厚度;同时,由于充电设备01中每个线圈独立设置RX芯片,所以可以避免RX芯片的功率过饱和;另外,供电设备02中两个线圈共用一个TX芯片,还节省了硬件成本。可见,本申请实施例提供的无线充电系统,可以在不增加充电设备整机厚度、热量、芯片功率的前提下,实现充电功率的提升。
以上图4~图6是以充电设备和供电设备设置双线圈为例,但在具体实施时,基于相同的技术构思,无线充电系统可以扩展至更多的线圈数量,以进一步提升充电功率。例如,参见图7,为充电设备和供电设备中分别设置三个线圈的示例,其中充电设备包含三个线圈(即线圈101A、线圈101B、线圈101C),每个线圈都具有独立的RX芯片(即RX102A、RX102B、RX102C),供电设备包含三个线圈(即线圈201A、线圈201B、线圈201C),三个线圈共用一个TX(即TX202),RX102A可以与TX202通讯。该系统具体的充电实现方式可以参考上文图4~图6所示无线充电系统的相关介绍,此处不再赘述。
实施例2
本实施例介绍充电设备设置双线圈或多线圈,供电设备设置单线圈的方案。
参见图8,为本申请实施例提供的另一种无线充电系统的结构示意图,包括:充电设备03和供电设备04。其中,充电设备03还可以称为第一电子设备,供电设备04还可以称为第二电子设备。
充电设备01包括两路充电通路(为了与实施例1中的“第一充电通路”、“第二充电通路”相区别,这里的两路充电通路分别命名为“第三充电通路”、“第四充电通路”),其中第三充电通路包括线圈301A、RX302A,第四充电通路包括线圈301B、RX302B,两路 充电通路以并联的方式与充电设备03中的电池304相连。在第三充电通路中,RX302A的第一端与线圈301A相连,RX302A的第二端与电池304相连,线圈301A用于接收电能(或者说无线充电信号)产生交流电,RX302A用于将线圈301A产生的交流电转换为直流电并输送至电池304。在第四充电通路中,RX302B的第一端与线圈301B相连,RX302B的第二端与电池304相连,线圈301B用于接收电能(或者说无线充电信号)产生交流电,RX302B用于将线圈301B产生的交流电转换为直流电并输送至电池304。充电设备03还包括控制器303,同时与两路充电通路相连,用于监控和控制各路充电通路的工作状态。
其中,第三充电通路还可以称为第一无线充电通路,第四充电通路还可以称为第二无线充电通路。第三充电通路中的线圈301A还可以称为第一无线充电线圈,线圈301A与电池304之间的电路可以称为第一无线充电电路;第四充电通路中的线圈301B还可以称为第二无线充电线圈,线圈301B与电池304之间的电路可以称为第二无线充电电路。
当充电设备03在水平面上平放时,线圈301A和线圈301B在同一水平面上为叠放关系,线圈301A和线圈301B在第五平面上的投影交叠,其中第五平面为垂直于线圈301A和/或线圈301A的轴向方向的任一平面。可选的,线圈301A和线圈301B在第五平面上的投影为同心圆,即线圈301A和线圈301B同轴设置。
供电设备04包括一路供电通路,该供电通路包括线圈401和TX402,线圈401与TX402的第一端相连,TX402的第二端与电源连接。TX402用于将从电源接收到的直流电转化为交流电并将交流电输送至线圈401。线圈401用于发送电能(或者说无线充电信号)。其中,线圈401还可以称为第三无线充电线圈。
充电时,供电设备04和充电设备03以预设姿态相互靠近,线圈401同时与线圈301A、线圈301B耦合(例如线圈401、线圈301A、线圈301B三者同轴/近似同轴,线圈401所在平面、线圈301A所在平面、线圈301B所在平面相互平行/近似平行,或者说线圈401同时对准线圈301A和线圈301B),充电设备03中的线圈301A、线圈301B分别与供电设备04中的线圈401发生电磁感应,实现无线充电,供电设备04中的线圈向充电设备03中的线圈传输无线充电信号,即:交流电通过供电设备04中的线圈401时,在周围环境中产生变化的磁场,位于周围环境中的线圈301A、线圈301B分别生成感应电动势进而产生交流电。
类似的,在图8所示的场景中,预设姿态是以充电设备03平放在供电设备04上方(即充电设备03底面与供电设备04的顶面靠近)为例,但在具体实现时,也可以是其它姿态。例如,供电设备04平放在充电设备03上方(充电设备03顶面与供电设备04的底面靠近)、或者供电设备04、充电设备03位于同一水平面(充电设备03侧面与供电设备04的侧面靠近)等,本申请不做限制。
类似的,在具体实现时,线圈301A、线圈301B、线圈401三者之间可以不必具有严格的同轴关系和平行关系,可以存在一定偏差。例如,线圈301A、线圈301B、线圈401中任意两个线圈在第六平面上投影部分交叠,其中第六平面为垂直于线圈301A或线圈301B或线圈401的轴向方向的任一平面,线圈301A、线圈301B、线圈401中任意两个线圈所在的平面可以存在微小夹角(例如0~30°)。换而言之,在充电时,充电设备04与供电设备03的对准关系稍微偏移时,也可以进行充电。
类似的,在具体实现时,充电设备03的线圈的电感量和供电设备04的线圈的电感量可以相同,也可以不同,本申请对此不做限制;线圈301A与线圈301B的电感量可以相同, 也可以不同,本申请对此不做限制。其中,影响线圈的电感量的参数例如包括但不限于是:线圈的匝数、线圈的绕线方式、线圈的材料、线圈的厚度等。
类似的,控制器303是整个充电系统的神经中枢和指挥中心。RX302A和RX302B除了具有AC/DC转换功能之外,还可以有简单的处理功能和通讯功能。RX302A和RX302B采用主从控制模式,即RX302A和RX302B中的一个RX为主RX,另一个为从RX,其中主RX用于与供电设备04中的TX402通信,控制器303通过控制主RX与TX402通讯,可以调整主RX所在充电通路的工作状态(例如向电池304输送电能的输出功率),而从RX所在充电通路的工作状态(例如向电池304输送电能的输出功率)也会随着主RX所在充电通路的工作状态的调整而变化。
以主RX是RX302A为例,当控制器303需要调整第三充电通路和第四充电通路向电池304输送电能的输出功率时,控制器303向RX302A发送控制指令;RX302A将控制指令转换为第一控制信号发送给TX402。TX402收到第一控制信号后调整TX402的输出功率,进而线圈401的输出功率相应被调整,导致线圈301A和线圈301B的接收功率也随线圈401的输出功率的变化而变化。如此,可以实现控制器303通过控制第三充电通路改变两路充电通路的工作状态的效果。
应理解,由于充电设备03的线圈301A和线圈301B均与供电设备04中的线圈401耦合,所以一旦线圈401的发送功率改变,线圈301A和线圈301B都要发生改变,但是线圈301A和线圈301B的功率数值和变化数值可以相同,也可以不同。例如,如果线圈301A和301B的电感量相同,则线圈301A和301B的功率和功率变化值均相同;如果线圈301A和301B的电感量不同,线圈301A和301B的功率和/或功率变化值可以不同。
类似的,RX302A与TX402可以基于线圈之间的电磁感应来通信,也可以基于其它方式(如蓝牙)通信,本申请不做限制。RX302A与TX402通信的具体实现方式可以参考上文实施例1中RX102A与TX202通信的具体实现方式,这里不再赘述。
类似的,RX302A可以监控自身所在第三充电通路(即线圈301A至电池304的通路)上的电压、电流、温度等信息,生成第一监控信息,并将第一监控信息上报给控制器303;RX302B监控自身所在第四充电通路(即线圈301B至电池304的通路)上的电压、电流、温度等信息,生成第二监控信息,并将第二监控信息上报给控制器303。进而控制器303可以根据RX302A、RX302B上报的监控信息调整两路充电通路的工作状态。如此,可以更加精准地控制各路充电通路的工作状态。
类似的,控制器303可以通过控制RX302A和RX302B是/否工作实现单路充电与双路充电的切换。如此,可以实现单路充电模式与双路充电模式的切换,提高了充电方案的灵活性。
类似的,充电设备03中各路充电通路上还可以包括其它组件。例如,在第三充电通路上,RX302A和电池304之间,还可以有DC/DC、N:1电路组件等;在第四充电通路上,RX302B和电池304之间,还可以有DC/DC、N:1电路组件等。控制器303在调整各路充电通路的工作状态时,除了上述的通过控制主RX向供电设备04通讯以调整供电设备04上线圈的发送功率进而达到调整充电设备03上线圈的接收功率的效果之外,控制器303还可以直接调整各通路上的各组件的工作参数(如输出阻抗),来调整该通路上的工作状态功率。具体实现可以参考上述实施例1中的相关介绍,这里不再赘述。如此,可以更加精准地控制各路充电通路的工作状态。
类似的,控制器303可以是任何具有控制功能的器件,具体可以参考上文实施例1中控制器103的具体介绍,这里不再赘述。
在一些实施例中,线圈301A和线圈301B的整体厚度小于或等于0.25mm。以图8所示,线圈301B的底面与线圈301A的顶面相对设置,则线圈301B的顶面到线圈301A底面的距离小于或等于0.25mm。一种可能的设计中,可以将图3所示的线圈上下A、B部分进行拆分,然后将A、B两部分作为线圈301A和线圈301B,如此,可以降低工艺难度,同时保证线圈301A和线圈301B和原有的线圈(即图3所示线圈)的厚度一致,尽可能地降低对充电设备整机ID的影响。应理解,这里是以基于厚度为0.25mm的单线圈设计本申请实施例中两个叠放的线圈为例,在具体实施时,还基于其它厚度的单线圈设计本申请实施例中两个叠放的线圈。
基于上述可知,本申请实施例中与现有技术通过提升单线圈的电压或电流提升充电设备充电功率不同,本申请实施例是通过在充电设备03设置两个叠放的线圈来提升无线充电功率。在制作工艺上,可以将现有的单线圈做薄后进行叠放,进而保证充电设备03的厚度不增加;由于充电设备03中叠放的两个线圈分别独立设置RX芯片,所以可以避免RX芯片的功率过饱和;另外,供电设备04中只需要一个线圈和一个TX芯片,所以还可以复用现有的供电设备(即可以不对供电设备做改动),进一步节省了硬件成本。可见,本申请实施例提供的无线充电系统,可以在不增加充电设备整机厚度、热量、芯片功率的前提下,实现充电功率的有效提升。
以上图8是以充电设备叠放双线圈为例,在具体实施时,基于相同的技术构思,无线充电系统可以扩展至更多的线圈数量,以进一步提升充电功率。例如,参见图9,为充电设备设置三个叠放的线圈的示例,其中充电设备包含三个线圈(即线圈301A、线圈301B、线圈301C),每个线圈都具有独立的RX芯片(即RX302A、RX302B、RX302C),供电设备包含单个线圈和单个TX不变,RX302A可以与TX402通讯。该系统的具体实现可以参考上文图8所示无线充电系统的相关介绍,此处不再赘述。
以上分别介绍了充电设备设置双线圈或多线圈且供电设备设置双线圈或多线圈的方案(即实施例1)、充电设备设置双线圈或多线圈且供电设备设置单线圈的方案(即实施例2)。在具体实现时,上述两个方案还可以相互结合实施。
实施例3
参见图10,为本申请实施例提供的另一种无线充电系统的结构示意图,包括:充电设备05和供电设备06。其中,充电设备05还可以称为第一电子设备,供电设备06还可以称为第二电子设备。
充电设备05包括电池504以及与电池504分别相连的三路充电通路,其中第一充电通路(或者称为第一无线充电通路)依次包括线圈501A、RX502A,第二充电通路(或者称为第二无线充电通路)依次包括线圈501B、RX502B,第三充电通路(或者称为第三无线充电通路)依次包括线圈501C、RX502C。其中线圈501B和501C为叠放关系,线圈501A与叠放的线圈(即501B和501C)整体为平放关系。充电设备05还包括控制器503,与三路供电通路分别相连,用于监控和控制路供电通路的工作状态。
供电设备06包括两路供电通路,其中第一供电通路依次包括线圈601A和TX602,第二路供电通路依次包括线圈601B和TX602,即线圈601A和线圈601B以并联的方式与TX602连接。
其中,线圈501A还可以称为第一无线充电线圈,线圈501B还可以称为第二无线充电线圈,线圈601A还可以称为第三无线充电线圈,线圈601B还可以称为第四无线充电线圈、线圈501C还可以称为第五无线充电线圈。线圈501A与电池504之间的电路可以称为第一无线充电电路,线圈501B与电池504之间的电路可以称为第二无线充电电路,线圈501C与电池504之间的电路可以称为第三无线充电电路。
在充电时,线圈601A与线圈501A耦合,即线圈501A接收来自线圈601A的无线充电信号;线圈501B和501C均与线圈601B耦合,即线圈501B接收来自线圈601B的无线充电信号、线圈501C接收来自线圈601B的无线充电信号。控制器503通过控制RX502A、RX502B、RX502C中的主RX(如RX502A)与TX602通信,可以调整线圈601A、线圈601B的输出功率,进而使得线圈501A、线圈501B、线圈501C的接收功率改变。实现控制器503通过控制一充电通路改变多路充电通路的工作状态的效果。
图10所示无线充电系统的具体实现,可以参考上文图4~图9中相关实施例的具体介绍,这里不再赘述。
基于相同的技术构思,本申请实施例还提供一种无线充电方法,该方法可以应用于图4至图10中所示的任一无线充电系统。
参见图11,该方法包括:
S1101、第二电子设备发送无线充电信号;
S1102、第一电子设备中的第一无线充电线圈接收来自第二电子设备的无线充电信号,通过第一无线充电电路为第一电子设备的电池充电;第一电子设备中的第二无线充电线圈接收来自第二电子设备的无线充电信号,通过第二无线充电电路为第一电子设备的电池充电。
上述第二电子设备执行方法步骤的具体实现方式可以参考上文中供电设备02或供电设备04或供电设备06执行对应方法步骤时的具体实现方式,上述第一电子设备执行方法步骤的具体实现方式可以参考上文中充电设备01或充电设备03或充电设备05执行对应方法步骤时的具体实现方式,此处不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个 网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种无线充电系统,其特征在于,包括第一电子设备和第二电子设备;
    所述第一电子设备至少包括第一无线充电通路和第二无线充电通路,所述第一无线充电通路包括第一无线充电线圈和第一无线充电电路,所述第二无线充电通路包括第二无线充电线圈和第二无线充电电路,所述第一无线充电线圈通过所述第一无线充电电路与所述第一电子设备的电池电连接,所述第二无线充电线圈通过所述第二无线充电电路与所述第一电子设备的电池电连接;
    所述第一无线充电线圈被配置接收第二电子设备的无线充电信号,通过所述第一无线充电电路为所述第一电子设备的电池充电;
    所述第二无线充电线圈被配置接收第二电子设备的无线充电信号,通过所述第二无线充电电路为所述第一电子设备的电池充电。
  2. 如权利要求1所述的系统,其特征在于,
    所述第一无线充电线圈和所述第二无线充电线圈沿第一方向层叠设置,其中所述第一方向平行于所述第一无线充电线圈的轴向方向和/或所述第一方向平行于所述第二无线充电线圈的轴向方向;
    所述第二电子设备包括第三无线充电线圈;
    所述第一无线充电线圈被配置接收第二电子设备的无线充电信号,包括:
    所述第一无线充电线圈被配置为与所述第三无线充电线圈耦合,接收所述第二电子设备的无线充电信号;
    所述第二无线充电线圈被配置接收第二电子设备的无线充电信号,包括:
    所述第二无线充电线圈被配置为与所述第三无线充电线圈耦合,接收所述第二电子设备的无线充电信号。
  3. 如权利要求2所述的系统,其特征在于,所述第一无线充电线圈与所述第二无线充电线圈同轴设置。
  4. 如权利要求2或3所述的系统,其特征在于,所述第一无线充电线圈的底面与所述第二无线充电线圈的顶面相对设置,所述第一无线充电线圈的顶面至所述第二无线充电线圈的底面的距离小于或等于0.25mm。
  5. 如权利要求1所述的系统,其特征在于,
    所述第一无线充电线圈与所述第二无线充电线圈间隔设置于第一平面,所述第一平面垂直于所述第一无线充电线圈的轴向方向和/或所述第一平面垂直于所述第二无线充电线圈的轴向方向,所述第一无线充电线圈在所述第一平面上的投影与所述第二无线充电线圈在所述第一平面上的投影不相交;
    所述第二电子设备包括第三无线充电线圈和第四无线充电线圈,所述第三无线充电线圈和所述第四无线充电线圈间隔设置于第二平面,所述第二平面垂直于所述第三无线充电线圈的轴向方向和/或所述第二平面垂直于所述第四无线充电线圈的轴向方向,所述第三无线充电线圈在所述第二平面上的投影与所述第四无线充电线圈在所述第二平面上的投影不相交;
    所述第一无线充电线圈被配置接收第二电子设备的无线充电信号,包括:
    所述第一无线充电线圈与所述第三无线充电线圈耦合,接收所述第二电子设备的无线充电信号;
    所述第二无线充电线圈被配置接收第二电子设备的无线充电信号,包括
    所述第二无线充电线圈与所述第四无线充电线圈耦合,接收所述第二电子设备的无线充电信号。
  6. 如权利要求5所述的系统,其特征在于,所述第一无线充电线圈的厚度小于或等于0.25mm,所述第二无线充电线圈的厚度小于或等于0.25mm。
  7. 如权利要求5或6所述的系统,其特征在于,所述第一电子设备还包括第五无线充电线圈;
    所述第二无线充电线圈与所述第五无线充电线圈沿第二方向层叠设置,所述第二方向平行于所述第二无线充电线圈的轴向方向和/或所述第二方向平行于所述第五无线充电线圈的轴向方向;
    所述第五无线充电线圈与所述第四无线充电线圈耦合,接收所述第二电子设备的无线充电信号,为所述第一电子设备的电池充电。
  8. 如权利要求1-7任一项所述的系统,其特征在于,
    所述第一无线充电电路还用于向所述第二电子设备发送第一控制信号;
    响应于所述第一控制信号,所述第二电子设备调整无线充电功率。
  9. 如权利要求8所述的系统,其特征在于,所述第一电子设备还包括处理器;
    所述第一无线充电电路还用于向所述处理器发送第一监控信息;
    所述第二无线充电电路还用于向所述处理器发送第二监控信息;
    所述处理器用于:根据所述第一监控信息和所述第二监控信息,指示所述第一无线充电电路向所述第二电子设备发送所述第一控制信号。
  10. 如权利要求5所述的系统,其特征在于,
    所述第二电子设备还包括开关;
    所述第一无线充电电路还用于向所述第二电子设备发送第二控制信号;
    响应于所述第二控制信号,所述第二电子设备至少执行:
    通过所述开关控制所述第三无线充电线圈与所述第二电子设备的无线充电电路的导通或断开;或,
    通过所述开关控制所述第四无线充电线圈与所述第二电子设备的无线充电电路的导通或断开。
  11. 一种充电方法,其特征在于,应用于无线充电系统,所述无线充电系统包括第一电子设备和第二电子设备;所述第一电子设备至少包括第一无线充电通路和第二无线充电通路,所述第一无线充电通路包括第一无线充电线圈和第一无线充电电路,所述第二无线充电通路包括第二无线充电线圈和第二无线充电电路,所述第一无线充电线圈通过所述第一无线充电电路与所述第一电子设备的电池电连接,所述第二无线充电线圈通过所述第二无线充电电路与所述第一电子设备的电池电连接;
    所述方法包括:
    所述第二电子设备发送无线充电信号;
    所述第一无线充电线圈接收来自所述第二电子设备的无线充电信号,通过所述第一无线充电电路为所述第一电子设备的电池充电;
    所述第二无线充电线圈接收来自所述第二电子设备的无线充电信号,通过所述第二无线充电电路为所述第一电子设备的电池充电。
  12. 如权利要求11所述的方法,其特征在于,所述第一无线充电线圈和所述第二无线充电线圈沿第一方向层叠设置,其中所述第一方向平行于所述第一无线充电线圈的轴向方向和/或所述第一方向平行于所述第二无线充电线圈的轴向方向;所述第二电子设备包括第三无线充电线圈;
    所述第二电子设备发送无线充电信号,包括:
    所述第三无线充电线圈发送所述无线充电信号;
    所述第一无线充电线圈接收来自所述第二电子设备的无线充电信号,包括:
    在所述第一无线充电线圈与所述第三无线充电线圈耦合时,所述第一无线充电线圈接收来自所述第三无线充电线圈的无线充电信号;
    所述第二无线充电线圈接收来自所述第二电子设备的无线充电信号,包括:
    在所述第二无线充电线圈与所述第三无线充电线圈耦合时,所述第二无线充电线圈接收来自所述第三无线充电线圈的无线充电信号。
  13. 如权利要求11所述的方法,其特征在于,所述第一无线充电线圈与所述第二无线充电线圈间隔设置于第一平面,所述第一平面垂直于所述第一无线充电线圈的轴向方向和/或所述第一平面垂直于所述第二无线充电线圈的轴向方向,所述第一无线充电线圈在所述第一平面上的投影与所述第二无线充电线圈在所述第一平面上的投影不相交;所述第二电子设备包括第三无线充电线圈和第四无线充电线圈,所述第三无线充电线圈和所述第四无线充电线圈间隔设置于第二平面,所述第二平面垂直于所述第三无线充电线圈的轴向方向和/或所述第二平面垂直于所述第四无线充电线圈的轴向方向,所述第三无线充电线圈在所述第二平面上的投影与所述第四无线充电线圈在所述第二平面上的投影不相交;
    所述第二电子设备发送无线充电信号,包括:
    所述第三无线充电线圈发送第一无线充电信号,所述第四无线充电线圈发送第二无线充电信号;
    所述第一无线充电线圈接收来自所述第二电子设备的无线充电信号,包括:
    在所述第一无线充电线圈与所述第三无线充电线圈耦合时,所述第一无线充电线圈接收所述第一无线充电信号;
    所述第二无线充电线圈接收来自所述第二电子设备的无线充电信号,包括:
    在所述第一无线充电线圈与所述第四无线充电线圈耦合时,所述第二无线充电线圈接收所述第二无线充电信号。
  14. 如权利要求13所述的方法,其特征在于,所述第一电子设备还包括第五无线充电线圈;所述第二无线充电线圈与所述第五无线充电线圈沿第二方向层叠设置,所述第二方向平行于所述第二无线充电线圈的轴向方向和/或所述第二方向平行于所述第五无线充电线圈的轴向方向;
    所述方法还包括:
    在所述第五无线充电线圈与所述第四无线充电线圈耦合时,所述第五无线充电线圈接收所述第二电子设备的无线充电信号,为所述第一电子设备的电池充电。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述方法还包括:
    所述第一无线充电电路向所述第二电子设备发送第一控制信号;
    响应于所述第一控制信号,所述第二电子设备调整无线充电功率。
  16. 如权利要求15所述的方法,其特征在于,所述第一电子设备还包括处理器;
    所述方法还包括:
    所述第一无线充电电路向所述处理器发送第一监控信息,所述第二无线充电电路向所述处理器发送第二监控信息;
    所述处理器根据所述第一监控信息和所述第二监控信息,指示所述第一无线充电电路向所述第二电子设备发送所述第一控制信号。
  17. 如权利要求13所述的方法,其特征在于,所述第二电子设备还包括开关;
    所述方法还包括:
    所述第一无线充电电路向所述第二电子设备发送第二控制信号;
    响应于所述第二控制信号,所述第二电子设备至少执行:通过所述开关控制所述第三无线充电线圈与所述第二电子设备的无线充电电路的导通或断开;或,通过所述开关控制所述第四无线充电线圈与所述第二电子设备的无线充电电路的导通或断开。
  18. 一种充电装置,其特征在于,
    所述充电装置至少包括第一无线充电通路和第二无线充电通路,所述第一无线充电通路包括第一无线充电线圈和第一无线充电电路,所述第二无线充电通路包括第二无线充电线圈和第二无线充电电路,所述第一无线充电线圈通过所述第一无线充电电路与所述充电装置的电池电连接,所述第二无线充电线圈通过所述第二无线充电电路与所述充电装置的电池电连接;
    所述第一无线充电线圈被配置接收无线充电座的无线充电信号,通过所述第一无线充电电路为所述充电装置的电池充电;
    所述第二无线充电线圈被配置接收所述无线充电座的无线充电信号,通过所述第二无线充电电路为所述充电装置的电池充电。
  19. 一种充电方法,其特征在于,应用于第一电子设备;所述第一电子设备至少包括第一无线充电通路和第二无线充电通路,所述第一无线充电通路包括第一无线充电线圈和第一无线充电电路,所述第二无线充电通路包括第二无线充电线圈和第二无线充电电路,所述第一无线充电线圈通过所述第一无线充电电路与所述第一电子设备的电池电连接,所述第二无线充电线圈通过所述第二无线充电电路与所述第一电子设备的电池电连接;
    所述方法包括:
    所述第一无线充电线圈接收来自所述第二电子设备的无线充电信号,通过所述第一无线充电电路为所述第一电子设备的电池充电;
    所述第二无线充电线圈接收来自所述第二电子设备的无线充电信号,通过所述第二无线充电电路为所述第一电子设备的电池充电。
PCT/CN2022/094965 2021-05-27 2022-05-25 一种无线充电系统、方法和装置 WO2022247859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110587412.X 2021-05-27
CN202110587412.XA CN115411844A (zh) 2021-05-27 2021-05-27 一种无线充电系统、方法和装置

Publications (1)

Publication Number Publication Date
WO2022247859A1 true WO2022247859A1 (zh) 2022-12-01

Family

ID=84155286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094965 WO2022247859A1 (zh) 2021-05-27 2022-05-25 一种无线充电系统、方法和装置

Country Status (2)

Country Link
CN (1) CN115411844A (zh)
WO (1) WO2022247859A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104813420A (zh) * 2012-11-27 2015-07-29 高通股份有限公司 无线充电系统和方法
JP2015204743A (ja) * 2014-04-15 2015-11-16 ウー, チェミンChe−Min Wu 携帯型無線充電装置およびシステム
CN106571695A (zh) * 2016-10-28 2017-04-19 努比亚技术有限公司 一种无线充电器、移动终端及无线充电系统
CN207251314U (zh) * 2017-08-18 2018-04-17 蜂联智能(深圳)有限公司 一种带无线充电装置的电子锁
CN109478794A (zh) * 2016-07-06 2019-03-15 苹果公司 带有多线圈接收器的无线充电系统
CN208971188U (zh) * 2018-09-29 2019-06-11 珠海市魅族科技有限公司 一种无线充电电路、系统、电子设备及无线电源适配器
CN110518707A (zh) * 2019-08-14 2019-11-29 维沃移动通信有限公司 发射端设备、接收端设备及无线充电方法
WO2020105991A1 (ko) * 2018-11-20 2020-05-28 삼성전자 주식회사 변압기 코일에 기반한 유무선 충전 방법 및 장치
CN111404288A (zh) * 2020-04-30 2020-07-10 维沃移动通信有限公司 一种无线充电设备
CN111458877A (zh) * 2020-04-10 2020-07-28 Oppo广东移动通信有限公司 头戴式设备、设备盒及无线充电系统
CN112803560A (zh) * 2019-11-14 2021-05-14 Oppo广东移动通信有限公司 无线充电装置、待充电设备、充电系统及方法、存储介质
CN113036827A (zh) * 2019-12-24 2021-06-25 Oppo广东移动通信有限公司 电子设备
CN114189061A (zh) * 2020-09-15 2022-03-15 Oppo广东移动通信有限公司 电子设备、无线充电装置、系统及方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104813420A (zh) * 2012-11-27 2015-07-29 高通股份有限公司 无线充电系统和方法
JP2015204743A (ja) * 2014-04-15 2015-11-16 ウー, チェミンChe−Min Wu 携帯型無線充電装置およびシステム
CN109478794A (zh) * 2016-07-06 2019-03-15 苹果公司 带有多线圈接收器的无线充电系统
CN106571695A (zh) * 2016-10-28 2017-04-19 努比亚技术有限公司 一种无线充电器、移动终端及无线充电系统
CN207251314U (zh) * 2017-08-18 2018-04-17 蜂联智能(深圳)有限公司 一种带无线充电装置的电子锁
CN208971188U (zh) * 2018-09-29 2019-06-11 珠海市魅族科技有限公司 一种无线充电电路、系统、电子设备及无线电源适配器
WO2020105991A1 (ko) * 2018-11-20 2020-05-28 삼성전자 주식회사 변압기 코일에 기반한 유무선 충전 방법 및 장치
CN110518707A (zh) * 2019-08-14 2019-11-29 维沃移动通信有限公司 发射端设备、接收端设备及无线充电方法
CN112803560A (zh) * 2019-11-14 2021-05-14 Oppo广东移动通信有限公司 无线充电装置、待充电设备、充电系统及方法、存储介质
CN113036827A (zh) * 2019-12-24 2021-06-25 Oppo广东移动通信有限公司 电子设备
CN111458877A (zh) * 2020-04-10 2020-07-28 Oppo广东移动通信有限公司 头戴式设备、设备盒及无线充电系统
CN111404288A (zh) * 2020-04-30 2020-07-10 维沃移动通信有限公司 一种无线充电设备
CN114189061A (zh) * 2020-09-15 2022-03-15 Oppo广东移动通信有限公司 电子设备、无线充电装置、系统及方法

Also Published As

Publication number Publication date
CN115411844A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
US11936204B2 (en) Wireless power transmitter and receiver for vehicle
US10205353B2 (en) Apparatus and method for charging control in wireless charging system
CN110867937A (zh) 无线电池充电期间的带外通信
EP4024663A1 (en) Wireless charging apparatus, device to be charged, charging system and method, and storage medium
WO2009070730A2 (en) Method and apparatus for high efficiency scalable near-field wireless power transfer
EP4071964A1 (en) Electronic device, wireless charging receiving apparatus, wireless charging control method and wireless charging system
WO2019006782A1 (zh) 一种无线充电系统及方法
US10923939B2 (en) Wireless power transmitter and receiver
WO2021092870A1 (zh) 电子设备、无线充电装置、系统及方法
US20210313822A1 (en) Wireless charging method and device to be charged
WO2015035924A1 (zh) 无线充电装置与方法以及使用该装置的移动终端
US11791662B2 (en) Wireless power receiver configurable for LDO or buck operation
WO2021093704A1 (zh) 待充电设备、系统以及无线充电方法、存储介质
JP2013252001A (ja) 給電システム、給電装置、及び受電装置
KR101222777B1 (ko) 무선 충전용 코일 구조체 및 이를 구비한 무선 충전 장치
CN114123537B (zh) 无线充电发射器、无线充电接收器及无线充电系统
WO2022247859A1 (zh) 一种无线充电系统、方法和装置
JP5905357B2 (ja) 無接点給電システム、受電機器、給電台、無接点給電方法
WO2022042498A1 (zh) 无线充电发射器、无线充电接收器及无线充电系统
EP4210200A1 (en) Transmitting terminal supporting wireless charging of multiple devices, charging base and system
WO2021093708A1 (zh) 无线充电装置、待充电设备、充电系统及方法、存储介质
WO2021114296A1 (zh) 适配器和充电方法
CN214479849U (zh) 无线受电模组、无线充电装置和无线受电设备
US20220263351A1 (en) Wireless receiving device, wireless charging system, wireless charging method
CN113068417B (zh) 一种无线充电的接收端及电子设备、发射端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810583

Country of ref document: EP

Kind code of ref document: A1