WO2022247685A1 - 信息传输方法、反射设备、基站、系统、电子设备和介质 - Google Patents

信息传输方法、反射设备、基站、系统、电子设备和介质 Download PDF

Info

Publication number
WO2022247685A1
WO2022247685A1 PCT/CN2022/093250 CN2022093250W WO2022247685A1 WO 2022247685 A1 WO2022247685 A1 WO 2022247685A1 CN 2022093250 W CN2022093250 W CN 2022093250W WO 2022247685 A1 WO2022247685 A1 WO 2022247685A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
reflection
base station
airborne terminal
communication
Prior art date
Application number
PCT/CN2022/093250
Other languages
English (en)
French (fr)
Inventor
李斌
吴枫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22810412.1A priority Critical patent/EP4329375A1/en
Priority to JP2023545889A priority patent/JP2024505526A/ja
Publication of WO2022247685A1 publication Critical patent/WO2022247685A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/42Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • This application is not limited to the field of wireless communication technology.
  • the coverage area of communication network is getting larger and larger. People can obtain high-quality communication services in high-speed vehicles such as cars or trains.
  • the line of sight (Line Of Sight, LOS) path is often used for the transmission of communication signals. Because of the lack of reflectors, it is difficult for the wireless channel in this system to support more than two streams. Transmission, resulting in the low traffic of a single terminal of the air-to-air wireless communication network, passengers on the plane cannot obtain high-quality communication services, resulting in a decline in user experience.
  • the present application provides an information transmission method, a reflection device, a base station, a system, an electronic device and a medium.
  • the present application provides an information transmission method, which is applied to reflection equipment.
  • the method includes: obtaining communication information sent by a base station, and the communication information is carried by a communication signal; according to the reflection weight of the reflection equipment, by corresponding to the reflection weight The beam reflects the communication signal to the airborne terminal.
  • the present application provides an information transmission method, which is applied to a base station.
  • the method includes: sending a communication signal carrying communication information to a reflection device, so that the reflection device can use the reflection weight corresponding to the reflection weight according to the reflection weight of the reflection device.
  • the beam reflects the communication signal to the on-board terminal.
  • the present application provides a reflection device, including: a first acquisition module configured to obtain communication information sent by a base station, and the communication information is carried by a communication signal; a reflection module configured to use the reflection weight of the reflection device to pass The beam corresponding to the reflection weight reflects the communication signal to the airborne terminal.
  • the present application provides a base station, including: a bearer module configured to use a communication signal to carry communication information; a sending module configured to send a communication signal to a reflection device, so that the reflection device can pass the reflection weight according to the reflection weight of the reflection device The beam corresponding to the reflection weight reflects the communication signal to the airborne terminal.
  • the present application provides an information transmission system, which includes: a reflection device configured to implement the information transmission method of the first aspect; a base station configured to implement the information transmission method of the second aspect; an airborne terminal configured to obtain The communication information sent by the base station is used to generate response information based on the communication information, and the target transmission channel is used to transmit the response information to the reflection device, so that the reflection device transmits the response information to the base station.
  • the present application provides an electronic device, including: one or more processors; a memory, on which one or more programs are stored, and when the one or more programs are executed by the one or more processors, the One or more processors implement any of the information transfer methods described herein.
  • the present application provides a readable storage medium, where a computer program is stored in the readable storage medium, and when the computer program is executed by a processor, any one of the information transmission methods described herein is implemented.
  • FIG. 1 shows a schematic diagram of the composition and structure of the ground-to-air wireless communication system of the present application.
  • Fig. 2 shows a schematic flowchart of the information transmission method provided by the present application.
  • Fig. 3 shows a schematic flowchart of the information transmission method provided by the present application.
  • Fig. 4 shows a schematic flowchart of the information transmission method provided by the present application.
  • Fig. 5 shows a block diagram of the reflection device provided by the present application.
  • FIG. 6 shows a block diagram of a base station provided by the present application.
  • Fig. 7 shows a block diagram of the composition of the information transmission system provided by the present application.
  • Fig. 8 shows a schematic flow chart of the transmission of downlink information in the information transmission system provided by the present application.
  • FIG. 9 shows a schematic flow chart of transmitting uplink information by using an omnidirectional antenna in the information transmission system provided by the present application.
  • FIG. 10 shows a schematic flow chart of using directional antennas to transmit uplink information in the information transmission system provided by the present application.
  • FIG. 11 shows a schematic flowchart of the transmission of downlink communication signals using a transmission channel based on a synchronization signal and a PBCH block in the information transmission system provided by the present application.
  • FIG. 12 shows a schematic flow chart of transmitting downlink communication signals based on channel state information in the information transmission system provided by the present application.
  • FIG. 13 shows a schematic flowchart of downlink information transmission based on active RIS in the information transmission system provided by the present application.
  • FIG. 14 shows a schematic flow chart of transmitting uplink information based on active RIS in the information transmission system provided by the present application.
  • FIG. 15 shows a schematic flow chart of transmitting downlink information based on passive RIS in the information transmission system provided by the present application.
  • FIG. 16 shows a schematic flow chart of transmitting uplink information based on passive RIS in the information transmission system provided by the present application.
  • Fig. 17 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing the information transmission method and apparatus provided by the present application.
  • FIG. 1 shows a schematic diagram of the composition and structure of the ground-to-air wireless communication system of the present application.
  • an Air To Ground (ATG) wireless communication system includes the following devices: a core network device 101 , an Internet device 102 , a base station 104 and an airborne terminal 103 .
  • ATG Air To Ground
  • the base station 104 is a ground base station, and the airborne terminal 103 is a terminal installed on an aircraft.
  • the base station 104 not only needs to communicate with the onboard terminal 103, but also needs to communicate with the intelligent terminals (such as smart phones, tablet computers, etc.) used by passengers on the plane.
  • the base station 104 communicates with the intelligent terminals used by the passengers on the aircraft, it communicates with the intelligent terminals used by the passengers on the aircraft through the airborne mobile hotspot (Wi-Fi) equipment installed on the aircraft.
  • Wi-Fi airborne mobile hotspot
  • the onboard Wi-Fi equipment needs to be carried, and the communication pressure is too heavy.
  • the movement speed of the aircraft can reach 800-1200Km/h, which belongs to the ultra-high-speed transportation means, and the passengers on the aircraft cannot obtain high-quality communication services.
  • bandwidth resources are extremely precious resources, and it is impossible to use them all in a private network system such as the ATG wireless communication system; and the communication between the airborne terminal 103 and the base station 104 mostly uses a line of sight (Line Of Sight, LOS) path Signal transmission, wherein the LOS path indicates that there is a clear, unblocked communication channel between the airborne terminal 103 and the base station 104, and the airborne terminal 103 can directly receive the communication signal sent by the base station 104. Due to the particularity of the communication channel corresponding to the LOS path, the communication channel based on the LOS path cannot support multi-stream transmission. How to increase the number of single-user data streams and data rate in an environment where the LOS path is dominant such as air-to-air coverage is an urgent problem to be solved.
  • LOS path Line Of Sight
  • the first aspect of the present application provides an information transmission method.
  • Fig. 2 shows a schematic flowchart of the information transmission method provided by the present application. This information transmission method can be applied to reflective devices. As shown in FIG. 2, the information transmission method of the present application may include the following steps S201 and S202.
  • step S201 the communication information sent by the base station is acquired.
  • the communication information is carried by a communication signal.
  • the communication information includes any one or more of broadcast information, channel state information, downlink control information and downlink service information.
  • the reflection device may be an active device or a passive device.
  • the active reflective device can adjust the angle of the beam corresponding to the target transmission channel between the reflective device and the airborne terminal according to the control information sent by the base station, so that the target transmission channel can More accurate transmission of communication information to the airborne terminal.
  • the passive reflective device In the case that the reflective device is determined to be a passive device, the passive reflective device cannot automatically adjust the reflection weight between it and the airborne terminal.
  • the installation position of the passive reflection device is determined by preset network planning parameters, and the installation position includes installation angle information, installation height information, and the relationship between the passive reflection device and the base station Any one or several of the distance information between them.
  • the passive reflection device is a device specially set up and configured to reflect the communication signal to the airborne terminal, rather than a general obstacle.
  • the passive reflection device may use a beam (ie, a wide beam) with a beam width greater than or equal to a preset width threshold, so as to increase the probability that the airborne terminal receives communication information.
  • the beamwidth includes: horizontal beamwidth and/or vertical beamwidth.
  • the preset width threshold includes: Half Power beam width (HPBW).
  • step S202 according to the reflection weight of the reflection device, the communication signal is reflected to the airborne terminal through the beam corresponding to the reflection weight.
  • the reflection weight of the reflection device can be adjusted adaptively, so that the direction of the beam corresponding to the communication signal reflected to the airborne terminal is more accurate.
  • the reflection weight can be the reflection angle of the reflection device, or the beam width corresponding to the reflection signal, etc.
  • the reflection weight above is only an example, and can be set according to the specific implementation. Other unspecified reflection weights can also be Within the protection scope of the present application, details are not repeated here.
  • the communication signal carrying the communication information is sent to the reflection device for the reflection device to reflect the communication signal to the airborne terminal through the beam corresponding to the reflection weight according to the reflection weight of the reflection device, so as to ensure that the transmission through the target
  • the communication information transmitted through the channel can reach the airborne terminal smoothly, improving the channel quality of air coverage; on the basis of the traditional transmission channel between the base station and the airborne terminal, by adding reflection equipment, the distance between the base station and the airborne terminal is increased.
  • the communication path increases the number of concurrent data streams sent by the base station to the airborne terminal, enabling the air-to-air coverage wireless communication system to support multi-stream transmission and increase the communication rate of the terminal.
  • Fig. 3 shows a schematic flowchart of the information transmission method provided by the present application. This information transmission method can be applied to reflective devices. As shown in Figure 3, the information transmission method of the present application may include the following steps S301 to S304.
  • step S301 the communication information sent by the base station is acquired.
  • the communication information sent by the base station is acquired through the first transmission channel and/or the second transmission channel.
  • the first transmission channel is a line-of-sight transmission channel between the reflection device and the base station
  • the second transmission channel is a non-line-of-sight transmission channel between the reflection device and the base station.
  • non-line-of-sight transmission channel is a transmission channel determined based on a non-line-of-sight (No Line Of Sight, NLOS) path.
  • the line-of-sight transmission channel is a transmission channel determined based on the LOS path.
  • reflection devices for example, a first reflection device and a second reflection device
  • these reflection devices block the communication signal between the airborne terminal and the base station, while the communication information sent by the base station It can directly reach the second reflection device via the first transmission channel, or can reach the second reflection device via the second transmission channel (for example, the communication information sent by the base station is forwarded by the first reflection device, so that the second reflection device can obtain the communication information).
  • the device enables the current device (that is, the second reflection device) to obtain the communication information sent by the base station through multiple transmission channels, which can increase the number of concurrent data streams sent by the base station to the current device and improve the communication quality of the current device.
  • step S302 control information sent by the base station is acquired.
  • control information includes angle adjustment information, and/or direction adjustment information of the beam corresponding to the target transmission channel.
  • the reflective device includes a reconfigurable intelligent reflective surface (Reconfigable Intelligent Surface, RIS) device, and the RIS device can automatically adjust its corresponding to the target transmission channel between the airborne terminal according to the obtained control information.
  • RIS reconfigurable Intelligent Surface
  • step S303 the reflection weight of the beam corresponding to the target transmission channel is adjusted according to the control information.
  • a target transmission channel is selected from the multiple transmission channels as the transmission channel for the communication information.
  • the RIS device can increase or decrease the reflection weight of the beam corresponding to the target transmission channel between it and the airborne terminal according to the adjustment information of the angle; it can also adjust the information according to the direction of the beam corresponding to the target transmission channel to adjust The horizontal direction and/or vertical direction of the beam corresponding to the target transmission channel; the direction of the beam corresponding to the target transmission channel and the angle of the beam corresponding to the target transmission channel may also be adjusted simultaneously according to the control information. In this way, the beam corresponding to the target transmission channel can target the airborne terminal to ensure the accuracy of the target transmission channel.
  • control information is only an example, and other undescribed control information is also within the protection scope of the present application, which can be set according to specific situations, and will not be repeated here.
  • step S304 according to the reflection weight of the reflection device, the communication signal is reflected to the airborne terminal through the beam corresponding to the reflection weight.
  • the traditional transmission channel between the base station and the airborne terminal is based on the transmission channel corresponding to the LOS path.
  • adding a target transmission channel can make the base station and the airborne terminal.
  • the transmission channels between the on-board terminals are more abundant, and the number of concurrent data streams sent by the base station to the on-board terminals is increased.
  • the airborne terminal can receive the communication information sent by the base station through multiple different transmission channels, which improves the signal quality of the airborne terminal and ensures the integrity and accuracy of the communication information received by the airborne terminal.
  • the communication information sent by the base station is obtained through the first transmission channel and/or the second transmission channel, that is, the communication information sent by the base station is obtained through multiple transmission channels, which can increase the concurrent data flow sent by the base station to the current device number, improve the communication quality of the current device; and obtain the control information through the first transmission channel (that is, the line-of-sight transmission channel between the current device and the base station), which can ensure the accuracy of the control information; use the control information to adjust the reflection weight , which can ensure that the communication information transmitted through the target transmission channel can reach the airborne terminal smoothly, and improve the channel quality of air coverage.
  • the first transmission channel that is, the line-of-sight transmission channel between the current device and the base station
  • the method before adjusting the reflection weight of the beam corresponding to the target transmission channel according to the control information, the method further includes: acquiring the position information of the reflection device and the position information of the airborne terminal; The location information and the location information of the reflection device determine the control information.
  • the location information of the airborne terminal can be longitude and latitude information
  • the location information of the current device can also be longitude and latitude information.
  • the relative position of the airborne terminal and the current device can be accurately calculated through the longitude and latitude information, and then the control information can be determined according to the relative position. .
  • determining the location information of the airborne terminal and the location information of the current device through the latitude and longitude information can improve the accuracy of the location information of each device, thereby improving the accuracy of the control information.
  • the reflecting device includes a plurality of reflecting units to be used; determining the control information according to the position information of the airborne terminal and the position information of the reflecting device, including: according to the position information of the airborne terminal and the position of the reflecting device information, select a target reflection unit from multiple reflection units to be used, and determine the reflection weight corresponding to the target reflection unit; determine the control information according to the reflection weight corresponding to the target reflection unit.
  • each reflective unit to be used may be a low-cost passive reflective element, or may be an active reflective element. Different reflection elements correspond to different reflection weights.
  • the specific orientation for example, relative position information (for example, amplitude information) and/or relative angle information (for example, phase information) of the airborne terminal relative to the reflecting device can be determined. ), etc.
  • control information is determined according to the reflection weights corresponding to the target reflection units (or the reflection weights of the target reflection units), including: according to the reflection weights corresponding to multiple target reflection units , sort multiple target reflection units to obtain the sorting result, for example, take the target reflection unit with the largest reflection weight gain as the final target reflection unit, and determine the control information according to the reflection weight corresponding to the final target reflection unit .
  • Using a target reflection unit with the largest reflection weight gain as the final target reflection unit can improve the accuracy of control information.
  • multiple reflection units can cooperate to realize the target transmission channel and realize the adjustment of the target transmission channel. Significantly improve the performance of wireless communication networks.
  • the target transmission channel is a channel corresponding to a beam based on an enhanced or nulled signal.
  • the null signal is to amplify the useful signal to the greatest extent, suppress the interference signal, and align the main lobe of the beam with the incident direction of the useful signal. Through the null signal, the lowest gain point in the beam pattern can be obtained. Ensure the accuracy of the beam, thereby improving the accuracy of the target transmission channel.
  • the method further includes: corresponding to the response signal sent by the airborne terminal The beam is reflected to the base station.
  • the response signal carries a response message
  • the response message is information fed back by the airborne terminal for the communication information.
  • the base station By reflecting the beam corresponding to the response signal sent by the airborne terminal (which carries the response signal) to the base station, the base station can accurately obtain the response information fed back by the airborne terminal, ensuring normal communication.
  • the second aspect of the present application provides an information transmission method.
  • Fig. 4 shows a schematic flowchart of the information transmission method provided by the present application.
  • the information transmission method can be applied to a base station.
  • the information transmission method of the present application may include the following steps S401 and S402.
  • step S401 use a communication signal to carry communication information.
  • control information is information configured to adjust the reflection weight of the beam corresponding to the target transmission channel
  • the target transmission channel is a transmission channel between the reflection device and the airborne terminal.
  • step S402 a communication signal is sent to the reflection device.
  • the reflection device When it is determined that the reflection device receives the communication signal, the reflection device reflects the communication signal to the airborne terminal through the beam corresponding to the reflection weight according to the reflection weight of the reflection device, and the reflection weight is the beam corresponding to the target transmission channel
  • the reflection weight, the target transmission channel is the transmission channel between the reflection device and the airborne terminal.
  • the method before sending the communication signal to the reflection device, the method further includes: acquiring control information, the control information is configured to adjust the reflection weight of the beam corresponding to the target transmission channel, and the target transmission channel is the reflection device Transmission channel with the onboard terminal; transmits control information to the reflection device.
  • the reflection device will adjust the reflection weight of the beam corresponding to the target transmission channel between it and the airborne terminal according to the control information, so as to ensure that the angle of the beam corresponding to the target transmission channel can meet the transmission requirements (for example, the target transmission channel corresponds to The angle of the beam can accurately correspond to the airborne terminal, so that the airborne terminal can accurately receive the communication information sent by the reflection device), and improve the transmission accuracy of communication information.
  • the reflection device adjusts the reflection weight of the beam corresponding to the target transmission channel according to the control information, so that the reflection device uses the target transmission channel quickly and accurately.
  • the communication information is transmitted to the airborne terminal to ensure that the airborne terminal can accurately receive the communication information.
  • Add reflection equipment between the base station and the airborne terminal By adding the reflection equipment, the communication path between the base station and the airborne terminal is increased, thereby increasing the number of concurrent data streams sent by the base station to the airborne terminal, so that the air coverage
  • the wireless communication system can support multi-stream transmission and improve the communication rate of the terminal.
  • acquiring the control information includes: acquiring location information of the reflective device and location information of the airborne terminal; and determining the control information according to the location information of the airborne terminal and the location information of the reflective device.
  • the location information of the airborne terminal and the location information of the reflecting device can be represented by longitude and latitude information, which can accurately characterize the relative position between the airborne terminal and the reflecting device, and then determine the control information according to the relative position to ensure that the reflecting device can According to the control information, the target transmission channel between it and the airborne terminal is accurately adjusted to improve the transmission accuracy of communication information.
  • the method before transmitting the control information to the reflection device, the method further includes: acquiring the location information of the base station; and determining the beam corresponding to the first transmission channel according to the location information of the base station and the location information of the reflection device Angle.
  • the first transmission channel is a line-of-sight transmission channel between the reflection device and the base station. Through the first transmission channel, it can be ensured that the reflective device can obtain the control information sent by the base station more quickly and accurately, and the accuracy of the control information can be ensured.
  • the line-of-sight transmission channel is a transmission channel determined based on the LOS path.
  • the base station can accurately send communication information or control information to the reflective device through the first transmission channel, so that the reflective device can adjust the angle of the beam corresponding to the target transmission channel between the reflective device and the airborne terminal according to the control information, and realize the control of the base station. Accurate control of reflective devices.
  • the first transmission channel includes: a transmission channel based on channel state information, and/or a transmission channel based on a synchronization signal and a PBCH block.
  • the synchronization signal and PBCH block include: primary synchronization signal (Primary Synchronization Signals, PSS), secondary synchronization signal (Secondary Synchronization Signals, SSS) and broadcast physical channel (Physical Broadcast CHannel, PBCH) .
  • PSS Primary Synchronization Signals
  • SSS Secondary Synchronization Signals
  • broadcast physical channel Physical Broadcast CHannel
  • the channel state information is used to characterize the channel properties of the communication link.
  • the channel state information includes: the attenuation factor of the communication signal on each transmission channel.
  • the base station uses the reference signal (Channel State Information-Reference Signal, CSI-RS) port of the channel state information and the reflective device to which the transmit beam points, so that the terminal can obtain more accurate channel estimation.
  • CSI-RS Channel State Information-Reference Signal
  • the target transmission channel includes: a channel determined based on the first beam of the airborne terminal, or, a channel determined based on the second beam of the airborne terminal, the beam width of the first beam is smaller than that of the second beam beam width.
  • the beam width includes: horizontal beam width and/or vertical beam width.
  • the preset width thresholds include: half power width.
  • using the target transmission channel to transmit the communication information between the airborne terminal and the base station can increase The number of concurrent data streams between the airborne terminal and the base station enables the air-to-air coverage wireless communication system to support multi-stream transmission and improve the communication rate of the terminal.
  • the method further includes: in the case of determining that the target transmission channel is a channel determined based on the second beam of the airborne terminal, adopting the principle of maximum ratio combining
  • the information transmitted by the target transmission channel is processed to obtain response information, wherein the response information is the response information fed back by the airborne terminal forwarded by the reflection device for the communication information.
  • the principle of maximum ratio combination is that the base station determines the weights corresponding to each received signal according to the strength of the received signal, and performs weighted combination processing on each received signal to make the processed received signal clearer and ensure The received signal can get more complete response information.
  • the second beam may be a beam corresponding to an omnidirectional antenna.
  • the transmitted energy of the omnidirectional antenna not only acts on the LOS path between the airborne terminal and the base station, but also acts on the LOS path between the airborne terminal and other reflection devices. NLOS trail.
  • the base station can process the information transmitted by the target transmission channel according to the magnitude of the reflected energy corresponding to each reflecting device, using the principle of maximum ratio combination, so that the obtained response information sent by the airborne terminal is more complete.
  • a third aspect of the present application provides a reflection device.
  • Fig. 5 shows a block diagram of the reflection device provided by the present application.
  • the reflection device includes the following modules: a first acquisition module 501 configured to acquire communication information sent by a base station, and the communication information is carried by a communication signal; a reflection module 502 configured to pass The beam corresponding to the reflection weight reflects the communication signal to the airborne terminal.
  • the control information and communication information sent by the base station are acquired through the first acquisition module, and the adjustment module is used to adjust the angle of the beam corresponding to the target transmission channel according to the control information, so as to ensure that the communication information transmitted through the target transmission channel can reach the machine smoothly.
  • Carrying terminals to improve the channel quality of air-to-air coverage Use the first transmission module to transmit communication information to the airborne terminal through the target transmission channel.
  • FIG. 6 shows a block diagram of a base station provided by the present application.
  • the base station includes the following modules: a bearer module 601 configured to use communication signals to carry communication information; a sending module 602 configured to send communication signals to reflection devices for the reflection devices to pass according to the reflection weights of the reflection devices The beam corresponding to the reflection weight reflects the communication signal to the airborne terminal.
  • the control information and communication information used to adjust the angle of the beam corresponding to the target transmission channel are obtained through the second acquisition module, and then the second transmission module is used to transmit the control information and communication information to the reflection device, so that the reflection device
  • the transmission channel between the airborne terminal and the airborne terminal can be more accurate, ensuring that the communication information transmitted through the target transmission channel can reach the airborne terminal smoothly, and improving the channel quality of air coverage; on the basis of the transmission channel between the traditional base station and the airborne terminal
  • increasing the target transmission channel increases the number of concurrent data streams sent by the base station to the airborne terminal, enabling the wireless communication system with air coverage to support multi-stream transmission and improving the communication rate of the terminal.
  • a fifth aspect of the present application provides an information transmission system.
  • Fig. 7 shows a block diagram of the composition of the information transmission system provided by the present application.
  • the information transmission system includes the following equipment: reflection device 710, configured to implement the information transmission method of the first aspect; base station 720, configured to implement the information transmission method of the second aspect; airborne terminal 730, configured to obtain the communication sent by the base station 720 information, generate response information according to the communication information, and use the target transmission channel to transmit the response information to the reflection device 710, so that the reflection device 710 transmits the response information to the base station 720.
  • the reflective device may be an active device configured to implement the information transmission method of the first aspect; it may also be a passive device that forwards the received communication information sent by the base station 720 to the airborne terminal 730 through different reflection weights .
  • the airborne terminal 730 may be an aircraft, an unmanned aerial vehicle or other terminals supported by the air coverage system.
  • Base station 720 may be a terrestrial base station.
  • the base station 720 sends control information to the reflection device 710 through the port corresponding to the CSI-RS, so that the reflection device 710 adjusts the angle of the beam directed to the reflection device 710 according to the control information, so that the reflection device 710 can accurately transmit the communication information sent by the base station. Forward to the airborne terminal 730. It is ensured that the airborne terminal 730 obtains information such as more accurate channel estimation, channel quality indicator (Channel Quality Indicator, CQI), rank indicator (Rank Indication, RI), and precoding matrix indicator (Precoding Matrix Indicator, PMI).
  • CQI Channel Quality Indicator
  • RI rank indicator
  • PMI precoding Matrix Indicator
  • the CQI is used to measure and reflect the channel quality of the Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • 0-15 is used to represent the channel quality of PDSCH. 0 means the worst channel quality, 15 means the best channel quality.
  • the base station 720 can transmit more data to the airborne terminal 730; otherwise, if the channel quality of the PDSCH is poor, the base station 720 can only transmit less data to the airborne terminal 730.
  • RI is used to indicate the effective number of data layers of PDSCH. Through the RI reported by the airborne terminal 730, the base station 720 can know the number of code words (Code Word, CW) supported by the airborne terminal 730.
  • the PMI is used to indicate the index of the codebook set. Through the PMI reported by the airborne terminal 730, it can be determined whether the communication signal transmitted by the PDSCH is an optimal signal.
  • control information includes position information of the airborne terminal 730 and/or angle adjustment information of the beam corresponding to the first transmission channel, which is a non-line-of-sight transmission channel between the reflection device 710 and the base station 730 .
  • Communication information includes any one or more of broadcast information, channel state information, downlink control information, and downlink service information.
  • the downlink control information is configuration information corresponding to downlink service information, and is used to configure and adjust different service data.
  • the reflection device 710 after the reflection device 710 obtains the location information of the airborne terminal 730, it can determine the distance between the reflection device 710 and the airborne terminal 730 through the location information of the reflection device 710 itself and the location information of the airborne terminal 730. The angle of the beam corresponding to the target transmission channel, and then adjust the angle of the beam corresponding to the target transmission channel according to the angle, so that the airborne terminal 730 can accurately receive the communication information forwarded by the reflection device 710, and improve the air coverage Signal quality.
  • the uplink channel in the information transmission system (the channel that the airborne terminal 730 transmits to the base station 720 through different transmission channels)
  • different types of transmission antennas used by the airborne terminal 730 can be used to correspond to different transmission channels. channel.
  • the target transmission channel is added, and the The number of concurrent data streams sent by the base station to the airborne terminal is increased, so that the wireless communication system with air coverage can support multi-stream transmission and improve the communication rate of the terminal.
  • Fig. 8 shows a schematic flowchart of downlink information transmission in the information transmission system provided by the present application.
  • the information transmission system may include a plurality of reflection devices, for example, the information transmission system includes: a first reflection device 711, a second reflection device 712, a third reflection device 713, ..., an Nth reflection device 71N, Wherein, N is an integer greater than or equal to 1.
  • the downlink transmission channel in the information transmission system is a transmission channel for transmitting the communication information sent by the base station 720 to the airborne terminal 730 .
  • the downlink transmission channel includes the following channels: 0) the 0th downlink channel: base station 720 ⁇ airborne terminal 730; 1) the first downlink channel: base station 720 ⁇ first reflection device 711 ⁇ airborne terminal 730; 2) the second downlink channel : base station 720 ⁇ second reflecting device 712 ⁇ airborne terminal 730; 3) the third downlink channel: base station 720 ⁇ third reflecting device 713 ⁇ airborne terminal 730; ...; N) Nth downlink channel: base station 720 ⁇ the first N reflecting device 71N ⁇ airborne terminal 730 .
  • the N reflection devices may include both active devices and passive devices.
  • the passive device means that the reflection device cannot automatically adjust the reflection weight between itself and the airborne terminal 730 .
  • the installation position of the passive reflection device is a position determined by preset network planning parameters, and the installation position includes installation angle information, installation height information, and the distance between the passive reflection device and the base station 720 Any one or several types of distance information.
  • the passive reflection device may use a beam with a beam width greater than or equal to a preset width threshold (ie, a wide beam) to increase the probability that the airborne terminal 730 receives communication information.
  • the beam width includes: a horizontal beam width and a vertical beam width.
  • the horizontal beam width indicates the angle between two directions in which the radiation power on both sides of the maximum radiation direction drops by 3dB in the horizontal direction.
  • the vertical beam width indicates the angle between two directions in which the radiation power on both sides of the maximum radiation direction drops by 3dB in the vertical direction.
  • the preset width threshold includes half power width.
  • the active device means that the reflection device can automatically adjust the reflection weight of the beam corresponding to the target transmission channel between it and the airborne terminal 730 according to the control information sent by the base station 720, so that the communication information forwarded by the reflection device can reach the airborne terminal 730 smoothly.
  • the terminal 730 improves the signal quality of the airborne terminal 730 .
  • the base station 720 will generate a beam with a fixed emission angle, so that the angle of the beam corresponds to the reflection devices around it, so as to ensure that the control information and communication information sent by the base station 720 can be accurately transmitted to each reflection device .
  • the downlink information forwarded by each reflection device to the airborne terminal 730 is only communication information, excluding the control information sent by the base station 720 to each reflection device.
  • the airborne terminal 730 receives the communication information sent by the base station 720 through different downlink transmission channels.
  • the base station 720 can obtain the position information of the airborne terminal 730 and the position information of each reflection device through the Global Positioning System (Global Positioning System, GPS), and then determine each reflection device according to the above position information. Angles corresponding to beams of the target transmission channel between the airborne terminals 730 .
  • Global Positioning System Global Positioning System, GPS
  • multiple reflection units to be used are included; the reflection device can select a target reflection unit from the plurality of reflection units to be used according to the position information of the airborne terminal 730 and the position information of the reflection device itself, and Determine the reflection weight corresponding to the target reflection unit; determine the beam correspondence of the target transmission channel between the reflection device and the airborne terminal 730 according to the reflection weight corresponding to the target reflection unit (or the reflection weight of the target reflection unit) Angle.
  • the antenna used by the airborne terminal 730 in the information transmission system may be an omnidirectional antenna or a directional antenna, but the direction of the directional antenna is adjustable.
  • FIG. 9 shows a schematic flow chart of transmitting uplink information by using an omnidirectional antenna in the information transmission system provided by the present application.
  • FIG. 10 shows a schematic flow chart of using directional antennas to transmit uplink information in the information transmission system provided by the present application.
  • the uplink transmission channel in the information transmission system is a transmission channel for transmitting the communication information sent by the airborne terminal 730 to the base station 720 .
  • the uplink transmission channel includes the following channels: 0) 0th downlink channel: airborne terminal 730 ⁇ base station 720; 1) first downlink channel: airborne terminal 730 ⁇ first reflection device 711 ⁇ base station 720; 2) second downlink channel : airborne terminal 730 ⁇ second reflection device 712 ⁇ base station 720; 3) the third downlink channel: airborne terminal 730 ⁇ third reflection device 713 ⁇ base station 720; ...; N) Nth downlink channel: airborne terminal 730 ⁇ Nth reflection device 71N ⁇ base station 720 .
  • the antenna used by the airborne terminal 730 is an omnidirectional antenna, and the beam corresponding to the omnidirectional antenna is a wide beam (that is, the beam width of the beam corresponding to the omnidirectional antenna is greater than or equal to the preset width threshold) .
  • the transmission energy of the omnidirectional antenna not only acts on the LOS path between the airborne terminal 730 and the base station 720, but also acts on the NLOS path between the airborne terminal 730 and other reflecting devices (that is, the airborne terminal 730 and the base station There are multiple reflection devices between 720, which block the communication signal between the airborne terminal 730 and the base station 720).
  • the base station 720 may process the received signal according to the magnitude of the reflected energy corresponding to each reflecting device, using the principle of maximum ratio combination, so as to obtain more complete communication information sent by the airborne terminal 730 .
  • the principle of maximum ratio combination is to determine the corresponding weight of each received signal according to the strength of the received signal, and perform weighted combination processing on each received signal to make the processed received signal clearer and ensure that the processed received signal is passed. Receive the signal to get more complete communication information.
  • the antenna used by the airborne terminal 730 is a directional antenna whose direction can be adjusted, and the beam corresponding to the directional antenna is a narrow beam (that is, the beam width of the beam corresponding to the directional antenna is smaller than the preset width threshold) .
  • the main transmission energy of the directional antenna acts on the LOS path between the airborne terminal 730 and the base station 720 , so that the uplink communication information sent by the airborne terminal 730 can reach the base station 720 more accurately.
  • the number of concurrent data streams between the airborne terminal 730 and the base station 720 is increased, and the communication rate of the terminal is improved.
  • the base station 720 in the information transmission system may use a transmission channel based on a synchronization signal and a PBCH block to transmit downlink communication signals.
  • FIG. 11 shows a schematic flowchart of the transmission of downlink communication signals using a transmission channel based on a synchronization signal and a PBCH block in the information transmission system provided by the present application.
  • the information transmission system is a 5G-based time division duplex (Time Division Dual, TDD) air-to-air coverage wireless communication system.
  • the base station 720 corresponds to two reflective devices (ie, the first reflective device 711 and the second reflective device 712 ), and each reflective device is an active device.
  • the beams sent by the base station 720 include: a first SSB modulated beam 741 , a second SSB modulated beam 742 , a third SSB modulated beam 743 and a fourth SSB modulated beam 744 .
  • the third SSB modulated beam 743 corresponds to the first reflecting device 711
  • the fourth SSB modulated beam 744 corresponds to the second reflecting device 712 .
  • the base station 720 in the information transmission system may transmit downlink communication signals based on channel state information.
  • FIG. 12 shows a schematic flow chart of transmitting downlink communication signals based on channel state information in the information transmission system provided by the present application.
  • the channel state information is used to characterize the channel properties of the communication link.
  • the channel state information includes: the attenuation factor of the communication signal on each transmission channel. For example, any one or more of signal scattering (Scattering) information, environmental fading (fading, multipath fading or shadowing fading) information, and distance attenuation (power decay of distance) information.
  • Scattering signal scattering
  • environmental fading fading, multipath fading or shadowing fading
  • distance attenuation power decay of distance
  • base station 720 may transmit multiple beams. As shown in FIG. 12 , the beams sent by the base station 720 include: a first channel state beam 751 , a second channel state beam 752 , a third channel state beam 753 and a fourth channel state beam 754 .
  • the channel state information transmitted by each channel state beam can ensure the reliability of communication.
  • the base station 720 directs different transmit beams to different reflective devices based on ports corresponding to Channel State Information-Reference Signal (CSI-RS). For example, make the third channel state beam 753 correspond to the first reflection device 711, or make the fourth channel state beam 754 correspond to the second reflection device 712, etc., so that the terminal can obtain more accurate channel estimation.
  • CSI-RS Channel State Information-Reference Signal
  • FIG. 13 shows a schematic flowchart of downlink information transmission based on active RIS in the information transmission system provided by the present application.
  • the base station 720 performs downlink communication with the first airborne terminal 731 and the second airborne terminal 732 in the following manner.
  • the base station 720 sends a first control signal 7631 to the first reflection device 711, so that the first reflection device 711 adjusts the emission angle between itself and the first airborne terminal 731 according to the first control signal 7631.
  • the base station 720 sends a second control signal 7632 to the second reflection device 712, so that the second reflection device 712 adjusts the emission angle between itself and the second airborne terminal 732 according to the second control signal 7632.
  • the base station 720 may transmit the first control signal 7631 and/or the second control signal 7632 through a communication channel in a WIFI or 4G communication network.
  • the base station 720 adopts the TDD communication method, uses the time division multiplexing beam 7611 at the first time at the first time to send the first downlink communication information; at the second time uses the time division multiplexing beam 7621 at the second time to send the second downlink communication information.
  • the first reflection device 711 When the first reflection device 711 receives the first downlink communication information, the first reflection device 711 forwards the first downlink communication information to the first airborne terminal 731 using the time division multiplexing forwarding beam 76111 at the first moment; When the first reflection device 711 receives the second downlink communication information, the first reflection device 711 forwards the second downlink communication information to the first airborne terminal 731 by using the time division multiplexing forwarding beam 76211 at the second moment.
  • the second reflection device 712 When the second reflection device 712 receives the first downlink communication information, the second reflection device 712 forwards the first downlink communication information to the second airborne terminal 732 using the time division multiplexing forwarding beam 76112 at the first moment; When the second reflection device 712 receives the second downlink communication information, the second reflection device 712 forwards the second downlink communication information to the second airborne terminal 732 by using the time division multiplexing forwarding beam 76212 at the second moment.
  • the first reflection device and the second reflection device forward different downlink communication information sent by the base station to the airborne terminal at different times, so that the airborne terminal can receive the downlink communication information sent by the base station through multiple transmission channels, which can increase the number of transmissions sent by the base station.
  • the number of concurrent data streams to the airborne terminal enables the information transmission system to support multi-stream transmission and improve the communication rate of the terminal.
  • FIG. 14 shows a schematic flow chart of transmitting uplink information based on active RIS in the information transmission system provided by the present application.
  • the third uplink feedback beam 773 used by the first airborne terminal 731 and the fourth uplink feedback beam 774 used by the second airborne terminal 732 may be based on a directional antenna (for example, a directionally adjustable directional Antennas) may also be beams corresponding to non-directional antennas (for example, omnidirectional antennas).
  • a directional antenna for example, a directionally adjustable directional Antennas
  • non-directional antennas for example, omnidirectional antennas
  • the beam width of the beam corresponding to the directional antenna with adjustable direction is different from the beam width of the beam corresponding to the omnidirectional antenna.
  • the downlink transmission channel of a reflective device is determined based on the beam corresponding to the direction-adjustable directional antenna, its uplink transmission channel also needs to be determined based on the beam corresponding to the direction-adjustable directional antenna.
  • the downlink transmission channel of a reflection device is determined based on the beam corresponding to the omnidirectional antenna, its uplink transmission channel also needs to be determined based on the beam corresponding to the omnidirectional antenna, so that the channel gain of the uplink transmission channel ( For example, the fading condition of the uplink channel) is improved.
  • the first airborne terminal 731 and the second airborne terminal 732 perform uplink communication with the base station 720 in the following manner.
  • the first airborne terminal 731 can send the first uplink feedback information to the base station 720 through the third uplink feedback beam 773, or can use the first uplink feedback beam 771 through the first reflection device 711 to send the received first uplink feedback information to the base station 720.
  • the first uplink feedback information sent in 731 is forwarded to the base station 720.
  • the base station 720 obtains the first uplink feedback information sent by the first airborne terminal 731 through multiple different transmission channels, which can improve the quality of the received signal and ensure the integrity and accuracy of the received first uplink feedback information.
  • the second airborne terminal 732 can send the second uplink feedback information to the base station 720 through the fourth uplink feedback beam 774, or can use the second uplink feedback beam 772 through the second reflection device 712 to transmit the second uplink feedback information received by it to the base station 720.
  • the second uplink feedback information sent by the airborne terminal 732 is forwarded to the base station 720 .
  • the base station 720 obtains the second uplink feedback information sent by the second airborne terminal 732 through multiple different transmission channels, which can improve the quality of the received signal and ensure the integrity and accuracy of the received second uplink feedback information.
  • the information transmission system is a 4G-based frequency division duplex (Frequency Division Duplexing, FDD) air-to-air coverage wireless communication system.
  • the information transmission system includes: three passive reflection devices (namely, the third reflection device 713, the fourth reflection device 714 and the fifth reflection device 715), the base station 720, the first airborne terminal 731 and the second airborne Terminal 732.
  • FIG. 15 shows a schematic flow chart of transmitting downlink information based on passive RIS in the information transmission system provided by the present application.
  • the base station 720 corresponds to the third reflective device 713, the fourth reflective device 714 and the fifth reflective device 715 respectively, and each passive reflective device adopts a beam whose beam width is greater than or equal to a preset width threshold (ie, wide beam).
  • a preset width threshold ie, wide beam
  • the base station 720 uses the first downlink sending beam 781 to broadcast the downlink information, so that the first airborne terminal 731 and the second airborne terminal 732 can acquire the downlink information.
  • the downlink information includes synchronization information and/or downlink broadcast information
  • the first downlink transmission beam is a beam corresponding to a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the third reflection device 713 uses the second downlink transmission beam 782 to forward the downlink information to the first airborne terminal 731; after determining that the fourth reflection device 714 In the case of receiving the downlink information sent by the base station 720, the fourth reflection device 714 uses the third downlink transmission beam 783 to forward the downlink information to the second airborne terminal 732; In the case of information, the fifth reflection device 715 forwards the downlink information to the second airborne terminal 732 by using the fourth downlink sending beam 784 .
  • the number of data streams received by the airborne terminal can be increased, so that the 4G-based FDD air-to-air coverage wireless communication system can support multi-stream transmission and improve the communication rate of the terminal.
  • FIG. 16 shows a schematic flow chart of transmitting uplink information based on passive RIS in the information transmission system provided by the present application.
  • each airborne terminal may use a directional antenna with adjustable direction, and each reflection device may use a beam whose beam width is greater than or equal to a preset width threshold (ie, a wide beam) for each passive reflection device.
  • a preset width threshold ie, a wide beam
  • the first airborne terminal 731 uses the second uplink sending beam 792 to send the first uplink information to the base station 720
  • the second airborne terminal 732 uses the fourth uplink sending beam 794 to send the second uplink information to the base station 720.
  • the third reflection device 713 uses the first uplink transmission beam 791 to forward the first uplink information to the base station 720; therefore, the base station
  • the first uplink information received by 720 is through two different transmission channels (that is, the LOS path transmission channel between the first airborne terminal 731 and the base station 720, and the first airborne terminal 731, the third reflecting device 713 and the
  • the information obtained from the NLOS (transmission channel) formed by the base station 720 increases the number of data streams between the base station 720 and the first airborne terminal 731.
  • the fourth reflection device 714 uses the third uplink transmission beam 793 to forward the second uplink information to the base station 720;
  • the fifth reflection device 715 uses the fifth uplink sending beam 795 to forward the second uplink information to the base station 720 .
  • the second uplink information received by the base station 720 is through three different transmission channels (that is, the LOS path transmission channel between the second airborne terminal 732 and the base station 720, and the second airborne terminal 732, the fourth reflected The NLOS transmission channel formed by the device 714 and the base station 720, and the NLOS transmission channel formed by the second airborne terminal 732, the fifth reflecting device 715, and the base station 720)
  • the information obtained by adding the base station 720 and the second airborne terminal 732 The number of data streams in between improves the channel gain of the uplink transmission channel of the base station 720 (for example, the fading condition of the uplink channel).
  • Fig. 17 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing the information transmission method and apparatus provided by the present application.
  • a computing device 1700 includes an input device 1701 , an input interface 1702 , a central processing unit 1703 , a memory 1704 , an output interface 1705 , and an output device 1706 .
  • the input interface 1702, the central processing unit 1703, the memory 1704, and the output interface 1705 are connected to each other through the bus 1707, and the input device 1701 and the output device 1706 are respectively connected to the bus 1707 through the input interface 1702 and the output interface 1705, and then connected to the computing device 1700 other component connections.
  • the input device 1701 receives input information from the outside, and transmits the input information to the central processing unit 1703 through the input interface 1702; the central processing unit 1703 processes the input information based on computer-executable instructions stored in the memory 1704 to generate Output information, temporarily or permanently store the output information in the memory 1704, and then transmit the output information to the output device 1706 through the output interface 1705; the output device 1706 outputs the output information to the outside of the computing device 1700 for the user to use.
  • the computing device shown in FIG. 17 may be implemented as an electronic device, and the electronic device may include: a memory configured to store a program; a processor configured to run the program stored in the memory to Execute the information transmission method described in the above embodiments.
  • the computing device shown in FIG. 17 can be implemented as an information transmission system, and the information transmission system can include: a memory configured to store a program; a processor configured to run the program stored in the memory , so as to execute the information transmission method described in the above implementation manner.
  • the communication signal is reflected to the airborne terminal through the beam corresponding to the reflection weight according to the reflection weight of the reflection device, so as to ensure the communication information It can reach the airborne terminal smoothly and improve the channel quality of air coverage.
  • the communication path between the base station and the airborne terminal is increased, thereby increasing the number of concurrent data streams sent by the base station to the airborne terminal, so that the The wireless communication system with empty coverage can support multi-stream transmission and improve the communication rate of the terminal.
  • the reflection device by sending a communication signal carrying communication information to the reflection device, the reflection device can pass the reflection weight corresponding to the reflection weight according to the reflection weight of the reflection device
  • the beam reflects the communication signal to the airborne terminal, ensuring that the communication information can reach the airborne terminal smoothly, and improving the channel quality of air coverage; on the basis of the traditional transmission channel between the base station and the airborne terminal, by adding reflection equipment, increase
  • the communication path between the base station and the airborne terminal is increased, thereby increasing the number of concurrent data streams sent from the base station to the airborne terminal, enabling the air-to-air coverage wireless communication system to support multi-stream transmission, and improving the communication rate of the terminal.
  • the communication path between the base station and the airborne terminal can be increased, thereby increasing the number of concurrent data streams sent by the base station to the airborne terminal, so that
  • the wireless communication system with air-to-air coverage can support multi-stream transmission and improve the communication rate of the terminal.
  • Computer program instructions may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or object code.
  • ISA instruction set architecture
  • Any logic flow block diagrams in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read-only memory (ROM), random-access memory (RAM), optical memory devices and systems (digital versatile disc DVD or CD), etc.
  • Computer readable media may include non-transitory storage media.
  • the data processor can be of any type suitable for the local technical environment, such as but not limited to general purpose computer, special purpose computer, microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (FGPA) and processors based on multi-core processor architectures.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FGPA programmable logic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种信息传输方法、反射设备、基站、系统、电子设备和介质。信息传输方法包括:获取基站发送的通信信息,通信信息使用通信信号进行承载;依据反射设备的反射权值,通过与所述反射权值对应的波束将通信信号反射至机载终端。

Description

信息传输方法、反射设备、基站、系统、电子设备和介质
相关申请的交叉引用
本申请要求于2021年5月27日提交给中国专利局的第202110585961.3号专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本申请但不限于涉及无线通信技术领域。
背景技术
随着无线通信技术的发展,通信网络的覆盖面积越来越大。人们可以在汽车或火车等高速运动的交通工具中获得优质的通信服务。但是,在对空覆盖的无线通信系统中,多采用视距(Line Of Sight,LOS)径进行通信信号的传输,因为缺乏反射体,该系统中的无线信道很难支持两流以上的多流传输,导致对空覆盖的无线通信网络的单个终端流量较低,飞机上的乘客无法获得优质的通信服务,导致用户体验度下降。
发明内容
本申请提供一种信息传输方法、反射设备、基站、系统、电子设备和介质。
第一方面,本申请提供一种信息传输方法,应用于反射设备,方法包括:获取基站发送的通信信息,通信信息使用通信信号进行承载;依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端。
第二方面,本申请提供一种信息传输方法,应用于基站,方法包括:发送承载通信信息的通信信号至反射设备,以供反射设备依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端。
第三方面,本申请提供一种反射设备,包括:第一获取模块,配置为获取基站发送的通信信息,通信信息使用通信信号进行承载;反射模块,配置为依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端。
第四方面,本申请提供一种基站,包括:承载模块,配置为使用通信信号承载通信信息;发送模块,配置为发送通信信号至反射设备,以供反射设备依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端。
第五方面,本申请提供一种信息传输系统,其包括:反射设备,配置为执行第一方面的信息传输方法;基站,配置为执行第二方面的信息传输方法;机载终端,配置为获取基站发送的通信信息,并依据通信信息生成响应信息,采用目标传输信道传输响应信息至反射设备,以使反射设备传输响应信息至基站。
第六方面,本申请提供一种电子设备,包括:一个或多个处理器;存储器,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行时,使得一个或多个处理器实现本文所述的任意一种信息传输方法。
第七方面,本申请提供了一种可读存储介质,该可读存储介质存储有计算机程序,计算机程序被处理器执行时实现本文所述的任意一种信息传输方法。
附图说明
图1示出本申请的地对空无线通信系统的组成结构示意图。
图2示出本申请提供的信息传输方法的流程示意图。
图3示出本申请提供的信息传输方法的流程示意图。
图4示出本申请提供的信息传输方法的流程示意图。
图5示出本申请提供的反射设备的组成方框图。
图6示出本申请提供的基站的组成方框图。
图7示出本申请提供的信息传输系统的组成方框图。
图8示出本申请提供的信息传输系统中的下行信息的传输的流 程示意图。
图9示出本申请提供的信息传输系统中的采用全向天线进行上行信息的传输的流程示意图。
图10示出本申请提供的信息传输系统中的采用定向天线进行上行信息的传输的流程示意图。
图11示出本申请提供的信息传输系统中的采用基于同步信号和PBCH块的传输信道进行下行通信信号的传输的流程示意图。
图12示出本申请提供的信息传输系统中的基于信道状态信息进行下行通信信号的传输的流程示意图。
图13示出本申请提供的信息传输系统中的基于有源RIS进行下行信息的传输的流程示意图。
图14示出本申请提供的信息传输系统中的基于有源RIS进行上行信息的传输的流程示意图。
图15示出本申请提供的信息传输系统中的基于无源RIS进行下行信息的传输的流程示意图。
图16示出本申请提供的信息传输系统中的基于无源RIS进行上行信息的传输的流程示意图。
图17示出本申请提供的能够实现信息传输方法和装置的计算设备的示例性硬件架构的结构图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施方式及实施方式中的特征可以相互任意组合。
图1示出本申请的地对空无线通信系统的组成结构示意图。如图1所示,地对空(Air To Ground,ATG)无线通信系统包括如下设备:核心网设备101、互联网设备102、基站104和机载终端103。
其中,基站104是地面基站,机载终端103是安装在飞机上的终端。基站104不仅需要与机载终端103进行通信,还需要与飞机上 的乘客所使用的智能终端(例如,智能手机、平板电脑等)进行通信。
在基站104与飞机上的乘客所使用的智能终端进行通信时,是通过安装在飞机上的机载行动热点(Wi-Fi)设备与飞机上的乘客所使用的智能终端进行通信的,此时的机载Wi-Fi设备需要承载,通信压力过大。并且,飞机的运动时速可达800~1200Km/h,属于超高速运动的交通工具,飞机上的乘客无法获得优质的通信服务。
在飞机上的多个乘客都使用移动数据下载或上传的情况下,单个乘客无法获得期望的带宽资源,为了满足各个乘客的带宽需求,需要增加ATG无线通信系统的带宽,或,使机载终端103与基站104之间尽可能采用多流传输。但是,带宽资源是极其宝贵的资源,不可能都使用在ATG无线通信系统这种专网系统中;而机载终端103与基站104之间多采用视距(Line Of Sight,LOS)径进行通信信号的传输,其中,LOS径表示机载终端103与基站104之间存在一个清楚的、没有阻塞的通信信道,机载终端103可以直接接收到基站104发送的通信信号。由于该LOS径对应的通信信道的特殊性,导致基于LOS径的通信信道无法支持多流传输。如何提升对空覆盖等LOS径占优环境中的单用户数据流数及数据速率是亟待解决的问题。
本申请的第一方面提供一种信息传输方法。图2示出本申请提供的信息传输方法的流程示意图。该信息传输方法可应用于反射设备。如图2所示,本申请的信息传输方法可以包括以下步骤S201和S202。
在步骤S201,获取基站发送的通信信息。
其中,通信信息使用通信信号进行承载。该通信信息包括:广播信息、信道状态信息、下行控制信息和下行业务信息中的任意一种或几种。
需要说明的是,反射设备可以是有源设备,也可以是无源设备。在确定反射设备是有源设备的情况下,有源的反射设备可以根据基站发送的控制信息,调整反射设备与机载终端之间的目标传输信道对应的波束的角度,以使目标传输信道可以更准确的传输通信信息至机载终端。
在确定反射设备是无源设备的情况下,无源的反射设备不能自 动调整其与机载终端之间的反射权值。在安装无源的反射设备时,无源的反射设备的安装位置是通过预设的网络规划参数确定的位置,该安装位置包括安装角度信息、安装高度信息、以及该无源的反射设备与基站之间的距离信息中的任意一种或几种。需要说明的是,该无源的反射设备是专门设置的、配置为反射通信信号至机载终端的设备,而不是一般性的障碍物。
其中,无源的反射设备可以采用波束宽度大于或等于预设宽度阈值的波束(即,宽波束),提高机载终端接收通信信息的概率。波束宽度包括:水平波束宽度和/或垂直波束宽度。预设宽度阈值包括:半功率宽度(HalfPowerbeamwidth,HPBW)。
在步骤S202,依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端。
本文中,“通过与反射权值对应的波束将通信信号反射至机载终端”指的是将通信信号承载在与所述反射权值对应的波束上,并将承载有所述通信信号的波束反射至机载终端。
其中,反射设备的反射权值可以进行自适应的调整,以使反射给机载终端的通信信号对应的波束的方向更准确。该反射权值可以是反射设备的反射角度,也可以是反射信号对应的波束宽度等,以上对于反射权值仅是举例说明,可根据具体实现进行具体设定,其他未说明的反射权值也在本申请的保护范围之内,在此不再赘述。
在本申请中,通过发送承载通信信息的通信信号至反射设备,以供反射设备依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端,保证通过目标传输信道传输的通信信息可以顺利到达机载终端,提升对空覆盖的信道质量;在传统的基站与机载终端的传输信道的基础上,通过增加反射设备,增加了基站和机载终端之间的通信路径,从而增加了基站发送至机载终端的并发数据流数,使对空覆盖的无线通信系统能够支持多流传输,提高终端的通信速率。
图3示出本申请提供的信息传输方法的流程示意图。该信息传输方法可应用于反射设备。如图3所示,本申请的信息传输方法可以 包括以下步骤S301至S304。
在步骤S301,获取基站发送的通信信息。
在一个示例性实施方式中,通过第一传输信道和/或第二传输信道,获取基站发送的通信信息。其中,第一传输信道是反射设备与基站之间的视距径传输信道,第二传输信道是反射设备和基站之间的非视距径传输信道。
需要说明的是,其中的非视距径传输信道是基于非视距(No Line Of Sight,NLOS)径确定的传输信道。视距径传输信道是基于LOS径确定的传输信道。
例如,机载终端和基站之间存在多个反射设备(例如,第一反射设备和第二反射设备),这些反射设备阻挡了机载终端和基站之间的通信信号,而基站发送的通信信息可以经由第一传输信道直接到达第二反射设备,也可以经由第二传输信道(例如,基站发送的通信信息经过第一反射设备的转发,使第二反射设备获得该通信信息)到达第二反射设备,使当前设备(即第二反射设备)通过多个传输信道,获得基站发送的通信信息,能够增加基站发送至当前设备的并发数据流数,提高当前设备的通信质量。
在步骤S302,获取基站发送的控制信息。
其中,控制信息包括角度大小的调整信息,和/或,目标传输信道对应的波束的方向调整信息。
在一个示例性实施方式中,反射设备包括可重构智能反射面(Reconfigable Intelligent Surface,RIS)设备,RIS设备可根据获得的控制信息,自动调整其与机载终端之间的目标传输信道对应的波束的角度。
在步骤S303,依据控制信息调整目标传输信道对应的波束的反射权值。
在一个示例性实施方式中,反射设备与机载终端之间存在多个传输信道,从多个传输信道中选取一个目标传输信道,作为通信信息的传输信道。通过使用目标传输信道作为通信信息的传输信道,能够保证传输至机载终端的通信信息更准确。
RIS设备可以根据角度大小的调整信息,增加或减小其与机载终端之间的目标传输信道对应的波束的反射权值的大小;也可以根据目标传输信道对应的波束的方向调整信息,调整目标传输信道对应的波束的水平方向和/或垂直方向;还可以根据控制信息,同时调整目标传输信道对应的波束的方向和目标传输信道对应的波束的角度的大小。以使目标传输信道对应的波束能够针对机载终端,保证目标传输信道的准确性。
需要说明的是,以上对于控制信息仅是举例说明,其他未说明的控制信息也在本申请的保护范围之内,可根据具体情况具体设定,在此不再赘述。
在步骤S304,依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端。
需要说明的是,传统的基站与机载终端之间的传输信道是基于LOS径对应的传输信道,在传统的基于LOS径对应的传输信道的基础上,增加目标传输信道,能够使基站和机载终端之间的传输信道更丰富,增加了基站发送至机载终端的并发数据流数。使机载终端能够通过多个不同的传输信道接收到基站发送的通信信息,改善了机载终端的信号质量,保证机载终端接收到的通信信息的完整性和准确性。
在本申请中,通过第一传输信道和/或第二传输信道,获取基站发送的通信信息,即通过多个传输信道,获得基站发送的通信信息,能够增加基站发送至当前设备的并发数据流数,提高当前设备的通信质量;并且,通过第一传输信道(即当前设备与基站之间的视距径传输信道)获取控制信息,能够保证控制信息的准确性;采用控制信息调整反射权值,能够保证通过目标传输信道传输的通信信息顺利到达机载终端,提升对空覆盖的信道质量。
在一个示例性实施方式中,在依据控制信息调整目标传输信道对应的波束的反射权值之前,所述方法还包括:获取反射设备的位置信息和机载终端的位置信息;依据机载终端的位置信息和反射设备的位置信息,确定控制信息。
其中,机载终端的位置信息可以是经纬度信息,当前设备的位 置信息也可以是经纬度信息,通过经纬度信息可准确的计算出机载终端和当前设备的相对位置,进而根据该相对位置确定控制信息。
通过经纬度信息来具体确定机载终端的位置信息和当前设备的位置信息,能够提高各个设备的位置信息的准确性,进而提升控制信息的准确性。
在一个示例性实施方式中,反射设备包括多个待使用反射单元;依据机载终端的位置信息和反射设备的位置信息,确定控制信息,包括:依据机载终端的位置信息和反射设备的位置信息,从多个待使用反射单元中选择目标反射单元,并确定目标反射单元对应的反射权值;依据目标反射单元对应的反射权值,确定控制信息。
其中,每个待使用反射单元可以是低成本的无源反射元件,也可以是有源反射元件。不同的反射元件对应的反射权值不同。
通过机载终端的位置信息和当前设备的位置信息,可确定出机载终端相对于反射设备的具体方位(例如,相对位置信息(例如,幅度信息)和/或相对角度信息(例如,相位信息)等),进而根据该具体方位,能够确定某个反射单元是否适合用作目标反射单元,该目标反射单元需要满足预设反射条件(例如,该目标反射单元的反射角度满足机载终端相对于反射设备的相对角度信息,和/或,该目标反射单元的位置更方便发送反射信号给机载终端等)。
进一步地,目标反射单元可以是多个,依据目标反射单元对应的反射权值(或者说是目标反射单元的反射权值),确定控制信息,包括:依据多个目标反射单元对应的反射权值,对多个目标反射单元进行排序,获得排序结果,例如,将反射权值增益最大的目标反射单元作为最终的目标反射单元,并依据该最终的目标反射单元对应的反射权值,确定控制信息。采用一个反射权值增益最大的目标反射单元作为最终的目标反射单元,可提高控制信息的准确性。
通过依据不同的反射单元对应的反射权值的信息(例如幅度信息和/或相位信息)来确定控制信息,使得多个反射单元能够协同的实现目标传输信道,实现目标传输信道的可调节化,显著提升无线通信网络的性能。
在一个示例性实施方式中,目标传输信道是基于增强或者零陷信号的波束对应的信道。其中,零陷信号是为了最大限度地放大有用信号、抑制干扰信号,将波束的主瓣对准有用信号的入射方向的信号,通过该零陷信号可以获得波束的方向图中的最低增益点,保证波束的准确性,进而提升目标传输信道的准确性。
在一个示例性实施方式中,在依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端之后,所述方法还包括:将机载终端发送的响应信号对应的波束反射至基站。
其中,响应信号承载响应消息,响应消息是机载终端针对通信信息反馈的信息。
通过将机载终端发送的响应信号对应的波束(其承载有所述响应信号)反射至基站,可使基站能够准确的获取到机载终端反馈的响应信息,保证通信的正常进行。
本申请的第二方面提供一种信息传输方法。图4示出本申请提供的信息传输方法的流程示意图。该信息传输方法可应用于基站。如图4所示,本申请的信息传输方法可以包括以下步骤S401和S402。
在步骤S401,使用通信信号承载通信信息。
其中,控制信息是配置用于调整目标传输信道对应的波束的反射权值的信息,目标传输信道是反射设备与机载终端之间的传输信道。
在步骤S402,发送通信信号至反射设备。
在确定反射设备接收到通信信号的情况下,反射设备依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端,反射权值是目标传输信道对应的波束的反射权值,目标传输信道是反射设备与机载终端之间的传输信道。
在一个示例性实施方式中,在发送通信信号至反射设备之前,所述方法还包括:获取控制信息,控制信息配置用于调整目标传输信道对应的波束的反射权值,目标传输信道是反射设备与机载终端之间的传输信道;将控制信息传输至反射设备。
其中,反射设备会根据控制信息对其与机载终端之间的目标传输信道对应的波束的反射权值进行调整,保证目标传输信道对应的波 束的角度能够满足传输需求(例如,目标传输信道对应的波束的角度可以准确对应机载终端,使机载终端能够准确接收到反射设备发送的通信信息),提升通信信息的传输准确性。
在本申请中,通过将获取到的控制信息和通信信息传输至反射设备,使反射设备根据该控制信息调整目标传输信道对应的波束的反射权值,以使反射设备使用目标传输信道快速准确的将通信信息传输给机载终端,保证机载终端能够准确接收到通信信息。在基站和机载终端之间增加反射设备,通过增加反射设备,增加了基站和机载终端之间的通信路径,从而增加了基站发送至机载终端的并发数据流数,使对空覆盖的无线通信系统能够支持多流传输,提高终端的通信速率。
在一些示例性实施方式中,获取控制信息,包括:获取反射设备的位置信息和机载终端的位置信息;依据机载终端的位置信息和反射设备的位置信息,确定控制信息。
其中,机载终端的位置信息和反射设备的位置信息可以采用经纬度信息表示,能够准确的表征出机载终端与反射设备之间的相对位置,进而根据该相对位置确定控制信息,保证反射设备能够根据该控制信息,准确的调整其与机载终端之间的目标传输信道,提升通信信息的传输准确性。
在一些示例性实施方式中,在将控制信息传输至反射设备之前,所述方法还包括:获取基站的位置信息;依据基站的位置信息和反射设备的位置信息,确定第一传输信道对应的波束的角度。
其中,第一传输信道是反射设备与基站之间的视距径传输信道。通过第一传输信道可保证反射设备更快捷准确的获得基站发送的控制信息,保证控制信息的准确性。
需要说明的是,视距径传输信道是基于LOS径确定的传输信道。基站能够通过第一传输信道准确无误的将通信信息或控制信息发送至反射设备,以使反射设备能够根据控制信息调整其与机载终端之间的目标传输信道对应的波束的角度,实现基站对反射设备的准确控制。
在一些示例性实施方式中,第一传输信道包括:基于信道状态信息的传输信道,和/或,基于同步信号和PBCH块的传输信道。
其中,同步信号和PBCH块(Synchronization Signal and PBCH block,SSB)包括:主同步信号(Primary Synchronization Signals,PSS)、辅同步信号(Secondary Synchronization Signals,SSS)和广播物理信道(Physical Broadcast CHannel,PBCH)。其中的PSS或SSS可以灵活配置于载波的任意一个位置,无需配置在载波的中心频点处,以实现载波的灵活配置。
其中,信道状态信息用于表征通信链路的信道属性。信道状态信息包括:通信信号在每条传输信道上的衰弱因子。基站通过信道状态信息的参考信号(Channel State Information-Reference Signal,CSI-RS)端口、以及发射波束所指向的反射设备,使终端可以获取更准确的信道估计。
在一些示例性实施方式中,目标传输信道包括:基于机载终端的第一波束确定的信道,或,基于机载终端的第二波束确定的信道,第一波束的波束宽度小于第二波束的波束宽度。
其中,波束宽度包括:水平波束宽度和/或垂直波束宽度。预设宽度阈值包括:半功率宽度。
通过基于机载终端的第一波束确定的信道,或,基于机载终端的第二波束确定的信道作为目标传输信道,使用该目标传输信道传输机载终端与基站之间的通信信息,可以增加机载终端与基站之间的并发数据流数,使对空覆盖的无线通信系统能够支持多流传输,提高终端的通信速率。
在一些示例性实施方式中,在将控制信息传输至反射设备之后,所述方法还包括:在确定目标传输信道是基于机载终端的第二波束确定的信道的情况下,采用最大比合并原则对目标传输信道传输的信息进行处理,获得响应信息;其中,响应信息是反射设备转发的机载终端针对通信信息反馈的响应信息。
其中,最大比合并原则是基站根据接收到的接收信号的强弱,确定各个接收信号对应的权值,并对各个接收信号进行加权合并处理,使处理后的接收信号更清晰,保证通过处理后的接收信号可以获得更完整的响应信息。
例如,第二波束可以是全向天线对应的波束,该全向天线的发射能量不仅作用于机载终端与基站之间的LOS径,还可以作用于该机载终端与其他反射设备之间的NLOS径。此时,基站可以根据各个反射设备对应的反射能量的大小,采用最大比合并原则,对目标传输信道传输的信息进行处理,以使获得的机载终端发送的响应信息更完整。
本申请的第三方面提供一种反射设备。图5示出本申请提供的反射设备的组成方框图。如图5所示,反射设备包括如下模块:第一获取模块501,配置为获取基站发送的通信信息,通信信息使用通信信号进行承载;反射模块502,配置为依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端。
在本申请中,通过第一获取模块获取基站发送的控制信息和通信信息,并使用调整模块依据控制信息调整目标传输信道对应的波束的角度,保证通过目标传输信道传输的通信信息可以顺利到达机载终端,提升对空覆盖的信道质量。使用第一传输模块通过目标传输信道将通信信息传输至机载终端,在传统的基站与机载终端的传输信道的基础上,增加目标传输信道,增加了基站发送至机载终端的并发数据流数,使对空覆盖的无线通信系统能够支持多流传输,提高终端的通信速率。
本申请的第四方面提供一种基站。图6示出本申请提供的基站的组成方框图。如图6所示,基站包括如下模块:承载模块601,配置为使用通信信号承载通信信息;发送模块602,配置为发送通信信号至反射设备,以供反射设备依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端。
在本申请中,通过第二获取模块获取用于调整目标传输信道对应的波束的角度的控制信息,以及通信信息,然后使用第二传输模块将控制信息和通信信息传输至反射设备,使反射设备与机载终端之间的传输信道能够更准确,保证通过目标传输信道传输的通信信息可以顺利到达机载终端,提升对空覆盖的信道质量;在传统的基站与机载终端的传输信道的基础上,增加目标传输信道,增加了基站发送至机 载终端的并发数据流数,使对空覆盖的无线通信系统能够支持多流传输,提高终端的通信速率。
本申请的第五方面提供一种信息传输系统。图7示出本申请提供的信息传输系统的组成方框图。如图7所示。该信息传输系统包括如下设备:反射设备710,配置为执行第一方面的信息传输方法;基站720,配置为执行第二方面的信息传输方法;机载终端730,配置为获取基站720发送的通信信息,并依据通信信息生成响应信息,采用目标传输信道传输响应信息至反射设备710,以使反射设备710传输响应信息至基站720。
其中,反射设备可以是有源设备,配置为执行第一方面的信息传输方法;也可以是无源设备,通过不同的反射权值将接收到的基站720发送的通信信息转发给机载终端730。机载终端730可以是飞机、无人机或其他对空覆盖系统所支持的终端。基站720可以是地面基站。
基站720通过CSI-RS对应的端口,发送控制信息给反射设备710,以使反射设备710根据该控制信息调整指向反射设备710的波束的角度,使反射设备710能够准确的将基站发送的通信信息转发给机载终端730。保证机载终端730获取更准确的信道估计、信道质量指示(Channel Quality Indicator,CQI)、秩指示(Rank Indication,RI)和预编码矩阵指示(Precoding Matrix Indicator,PMI)等信息。
其中,CQI用于衡量反映物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的信道质量。例如,用0~15来表示PDSCH的信道质量。0表示信道质量最差,15表示信道质量最好。如果PDSCH的信道质量好,基站720就可以传输较多的数据给机载终端730;否则,如果PDSCH的信道质量差,基站720就只能少传输一些数据给机载终端730。RI用于指示PDSCH的有效的数据层数。通过机载终端730上报的RI,基站720可以获知机载终端730支持的码字(Code Word,CW)的数量。例如,当RI等于1时,表示机载终端730可支持1个CW;当RI大于1时,表示机载终端730可支持2个CW。PMI用于指示码本集合的索引。通过机载终端730上报的PMI,可确定PDSCH所传输的通信信号是否是最优的信号。
其中,控制信息包括机载终端730的位置信息,和/或,第一传输信道对应的波束的角度调整信息,第一传输信道是反射设备710与基站730之间的非视距径传输信道。通信信息包括广播信息、信道状态信息、下行控制信息和下行业务信息中的任意一种或几种。其中的下行控制信息是与下行业务信息对应的配置信息,用于对不同的业务数据进行配置和调整。
在一个示例性实施方式中,反射设备710在获得机载终端730的位置信息后,通过反射设备710自身的位置信和机载终端730的位置信息,可确定反射设备710和机载终端730之间的目标传输信道对应的波束的角度,进而根据该角度,对目标传输信道对应的波束的角度进行调整,使机载终端730可以准确的接收到反射设备710转发的通信信息,提升对空覆盖的信号质量。
需要说明的是,针对信息传输系统中的上行信道(机载终端730通过不同的传输信道传输至基站720的信道),可根据机载终端730所使用的发送天线的类型不同,对应不同的传输信道。
本申请中的信息传输系统,通过在基站(和/或,射频设备)和机载终端之间部署反射设备,在传统的基站与机载终端的传输信道的基础上,增加目标传输信道,增加了基站发送至机载终端的并发数据流数,使对空覆盖的无线通信系统能够支持多流传输,提高终端的通信速率。
图8示出本申请提供的信息传输系统中的下行信息的传输的流程示意图。如图8所示,信息传输系统可以包括多个反射设备,例如,信息传输系统包括:第一反射设备711、第二反射设备712、第三反射设备713、……、第N反射设备71N,其中,N为大于或等于1的整数。
如图8所示,信息传输系统中的下行传输信道是用于将基站720发送的通信信息传输至机载终端730的传输信道。该下行传输信道包括如下信道:0)第0下行信道:基站720→机载终端730;1)第1下行信道:基站720→第一反射设备711→机载终端730;2)第2下行信道:基站720→第二反射设备712→机载终端730;3)第3下行 信道:基站720→第三反射设备713→机载终端730;……;N)第N下行信道:基站720→第N反射设备71N→机载终端730。
需要说明的是,N个反射设备既可以包括有源设备,又可以包括无源设备。其中,无源设备表示反射设备不能自动调整其与机载终端730之间的反射权值。在进行安装时,无源的反射设备的安装位置是通过预设的网络规划参数确定的位置,该安装位置包括安装角度信息、安装高度信息、以及该无源的反射设备与基站720之间的距离信息中的任意一种或几种。此时,该无源的反射设备可以采用波束宽度大于或等于预设宽度阈值的波束(即,宽波束),提高机载终端730接收通信信息的概率。
其中,波束宽度包括:水平波束宽度和垂直波束宽度。水平波束宽度表示在水平方向上,在最大辐射方向两侧的辐射功率下降3dB的两个方向的夹角。垂直波束宽度表示在垂直方向上,在最大辐射方向两侧的辐射功率下降3dB的两个方向的夹角。预设宽度阈值包括半功率宽度。
有源设备表示反射设备可以根据基站720发送的控制信息,自动调整其与机载终端730之间的目标传输信道对应的波束的反射权值,以使该反射设备转发的通信信息顺利到达机载终端730,提升机载终端730的信号质量。
在一个示例性实施方式中,基站720会产生固定发射角度的波束,以使该波束的角度与其周围的反射设备相对应,保证基站720发送的控制信息和通信信息能够准确的传输至各个反射设备。
其中,各个反射设备转发给机载终端730的下行信息仅是通信信息,不包括基站720发送给各个反射设备的控制信息。而机载终端730通过各个不同的下行传输信道,接收基站720发送的通信信息。
在一个示例性实施方式中,基站720可以通过全球定位系统(Global Positioning System,GPS),获取机载终端730的位置信息和各个反射设备的位置信息,进而根据以上位置信息确定各个反射设备分别与机载终端730之间的目标传输信道的波束对应的角度。
在一个示例性实施方式中,包括多个待使用反射单元;反射设 备可以依据机载终端730的位置信息和该反射设备自身的位置信息,从多个待使用反射单元中选择目标反射单元,并确定目标反射单元对应的反射权值;依据目标反射单元对应的反射权值(或者说是目标反射单元的反射权值),确定该反射设备和机载终端730之间的目标传输信道的波束对应的角度。
在一个示例性实施方式中,信息传输系统中的机载终端730所使用的天线可以是全向天线,也可以是定向天线,但该定向天线的方向可调。图9示出本申请提供的信息传输系统中的采用全向天线进行上行信息的传输的流程示意图。图10示出本申请提供的信息传输系统中的采用定向天线进行上行信息的传输的流程示意图。
如图9或图10所示,信息传输系统中的上行传输信道是用于将机载终端730发送的通信信息传输至基站720的传输信道。该上行传输信道包括如下信道:0)第0下行信道:机载终端730→基站720;1)第1下行信道:机载终端730→第一反射设备711→基站720;2)第2下行信道:机载终端730→第二反射设备712→基站720;3)第3下行信道:机载终端730→第三反射设备713→基站720;……;N)第N下行信道:机载终端730→第N反射设备71N→基站720。
如图9所示,机载终端730所使用的天线是全向天线,该全向天线对应的波束是宽波束(即,该全向天线对应的波束的波束宽度大于或等于预设宽度阈值)。该全向天线的发射能量不仅作用于机载终端730与基站720之间的LOS径,还可以作用于该机载终端730与其他反射设备之间的NLOS径(即,机载终端730和基站720之间存在多个反射设备,阻挡了机载终端730和基站720之间的通信信号)。此时,基站720可以根据各个反射设备对应的反射能量的大小,采用最大比合并原则,对接收到的信号进行处理,以使获得的机载终端730发送的通信信息更完整。
其中,最大比合并原则是根据接收到的接收信号的强弱,确定各个接收信号对应的权值,并对各个接收信号进行加权合并处理,使处理后的接收信号更清晰,保证通过处理后的接收信号可以获得更完整的通信信息。
如图10所示,机载终端730所使用的天线是可调整方向的定向天线,则该定向天线对应的波束是窄波束(即,该定向天线对应的波束的波束宽度小于预设宽度阈值)。该定向天线的主要发射能量作用于机载终端730与基站720之间的LOS径,以使机载终端730发送的上行通信信息更准确的到达基站720。
通过使用全向天线或方向可调的定向天线作为机载终端730的天线,增加了机载终端730和基站720之间的并发数据流数,提升了终端的通信速率。
在一个示例性实施方式中,信息传输系统中的基站720可以采用基于同步信号和PBCH块的传输信道进行下行通信信号的传输。图11示出本申请提供的信息传输系统中的采用基于同步信号和PBCH块的传输信道进行下行通信信号的传输的流程示意图。
如图11所示,该信息传输系统是基于5G的时分双工(Time Division Dual,TDD)的对空覆盖无线通信系统。其中,基站720对应2个反射设备(即,第一反射设备711和第二反射设备712),每个反射设备都是有源设备。其中,基站720发送的波束包括:第一单边带调制波束741、第二单边带调制波束742、第三单边带调制波束743和第四单边带调制波束744。第三单边带调制波束743对应第一反射设备711,第四单边带调制波束744对应第二反射设备712。
在一个示例性实施方式中,信息传输系统中的基站720可以基于信道状态信息进行下行通信信号的传输。图12示出本申请提供的信息传输系统中的基于信道状态信息进行下行通信信号的传输的流程示意图。
其中,信道状态信息用于表征通信链路的信道属性。信道状态信息包括:通信信号在每条传输信道上的衰弱因子。例如,信号散射(Scattering)信息、环境衰弱(fading,multipath fading or shadowing fading)信息和距离衰减(power decay of distance)信息中的任意一种或几种。
在多天线系统中,基站720可发送多个波束。如图12所示,基站720发送的波束包括:第一信道状态波束751、第二信道状态波束 752、第三信道状态波束753和第四信道状态波束754。通过各个信道状态波束传输的信道状态信息,可以保证通信的可靠性。
基站720基于信道状态信息的参考信号(Channel State Information-Reference Signal,CSI-RS)对应的端口,使不同的发射波束指向不同的反射设备。例如,使第三信道状态波束753对应第一反射设备711,或,使第四信道状态波束754对应第二反射设备712等,使终端获取更准确的信道估计。
图13示出本申请提供的信息传输系统中的基于有源RIS进行下行信息的传输的流程示意图。如图13所示,基站720与第一机载终端731和第二机载终端732通过如下方式进行下行通信。
首先,基站720发送第一控制信号7631至第一反射设备711,以使第一反射设备711根据该第一控制信号7631调整其与第一机载终端731之间的发射角度。同时,基站720发送第二控制信号7632至第二反射设备712,以使第二反射设备712根据该第二控制信号7632调整其与第二机载终端732之间的发射角度。
在一个示例性实施方式中,基站720可以通过WIFI或4G通信网络中的通信信道,传输第一控制信号7631和/或第二控制信号7632。
其次,基站720采用TDD通信方式,在第一时刻使用第一时刻的时分复用波束7611,发送第一下行通信信息;在第二时刻使用第二时刻的时分复用波束7621,发送第二下行通信信息。
在第一反射设备711接收到第一下行通信信息的情况下,第一反射设备711使用第一时刻的时分复用转发波束76111转发该第一下行通信信息至第一机载终端731;在第一反射设备711接收到第二下行通信信息的情况下,第一反射设备711使用第二时刻的时分复用转发波束76211转发该第二下行通信信息至第一机载终端731。
在第二反射设备712接收到第一下行通信信息的情况下,第二反射设备712使用第一时刻的时分复用转发波束76112转发该第一下行通信信息至第二机载终端732;在第二反射设备712接收到第二下行通信信息的情况下,第二反射设备712使用第二时刻的时分复用转发波束76212转发该第二下行通信信息至第二机载终端732。
通过第一反射设备和第二反射设备在不同时刻转发基站发送的不同的下行通信信息至机载终端,使机载终端能够通过多个传输通道接收到基站发送的下行通信信息,能够增加基站发送至机载终端的并发数据流数,使该信息传输系统可以支持多流传输,提高终端的通信速率。
图14示出本申请提供的信息传输系统中的基于有源RIS进行上行信息的传输的流程示意图。如图14所示,第一机载终端731使用的第三上行反馈波束773和第二机载终端732使用的第四上行反馈波束774,可以是基于指向性天线(例如,方向可调的定向天线)对应的波束,也可以是基于非指向性天线(例如,全向天线)对应的波束。
其中,方向可调的定向天线对应的波束的波束宽度,与全向天线对应的波束的波束宽度不同。若某个反射设备的下行传输信道是基于方向可调的定向天线对应的波束确定的信道,则其上行传输信道也需要基于方向可调的定向天线对应的波束确定的信道。同样的,若某个反射设备的下行传输信道是基于全向天线对应的波束确定的信道,则其上行传输信道也需要基于全向天线对应的波束确定的信道,使上行传输信道的信道增益(例如,上行信道的衰落情况)得到改善。
如图14所示,第一机载终端731和第二机载终端732与基站720通过如下方式进行上行通信。
第一机载终端731可以通过第三上行反馈波束773发送第一上行反馈信息至基站720,也可以通过第一反射设备711使用第一上行反馈波束771,将其接收到的第一机载终端731发送的第一上行反馈信息转发给基站720。基站720通过多个不同的传输信道获得第一机载终端731发送的第一上行反馈信息,能够提升接收到的信号质量,保证接收到的第一上行反馈信息的完整性和准确性。
同样的,第二机载终端732可以通过第四上行反馈波束774发送第二上行反馈信息至基站720,也可以通过第二反射设备712使用第二上行反馈波束772,将其接收到的第二机载终端732发送的第二上行反馈信息转发给基站720。基站720通过多个不同的传输信道获得第二机载终端732发送的第二上行反馈信息,能够提升接收到的信 号质量,保证接收到的第二上行反馈信息的完整性和准确性。
在一个示例性实施方式中,信息传输系统是基于4G的频分双工(Frequency Division Duplexing,FDD)对空覆盖无线通信系统。其中,信息传输系统包括:三个无源的反射设备(即,第三反射设备713、第四反射设备714和第五反射设备715)、基站720、第一机载终端731和第二机载终端732。
图15示出本申请提供的信息传输系统中的基于无源RIS进行下行信息的传输的流程示意图。如图15所示,基站720分别与第三反射设备713、第四反射设备714和第五反射设备715相对应,每个无源的反射设备都采用波束宽度大于或等于预设宽度阈值的波束(即,宽波束)。
基站720使用第一下行发送波束781采用广播的方式发送下行信息,以使第一机载终端731和第二机载终端732能够获取到该下行信息。其中,下行信息包括同步信息和/或下行广播信息,第一下行发送波束是与物理下行共享信道(Physical Downlink Shared Channel,PDSCH)对应的波束。
在确定第三反射设备713接收到基站720发送的下行信息的情况下,第三反射设备713使用第二下行发送波束782转发该下行信息至第一机载终端731;在确定第四反射设备714接收到基站720发送的下行信息的情况下,第四反射设备714使用第三下行发送波束783转发该下行信息至第二机载终端732;在确定第五反射设备715接收到基站720发送的下行信息的情况下,第五反射设备715使用第四下行发送波束784转发该下行信息至第二机载终端732。
通过多个无源的反射设备转发基站发送的下行信息,能够增加机载终端接收到的数据流数,使基于4G的FDD对空覆盖无线通信系统能够支持多流传输,提高终端的通信速率。
图16示出本申请提供的信息传输系统中的基于无源RIS进行上行信息的传输的流程示意图。其中,各个机载终端都可以采用方向可调的定向天线,各个反射设备可以使用每个无源的反射设备都采用波束宽度大于或等于预设宽度阈值的波束(即,宽波束)。
如图16所示,第一机载终端731使用第二上行发送波束792发送第一上行信息给基站720,第二机载终端732使用第四上行发送波束794发送第二上行信息给基站720。
在确定第三反射设备713接收到第一机载终端731发送的第一上行信息的情况下,第三反射设备713使用第一上行发送波束791转发该第一上行信息至基站720;因此,基站720接收到的第一上行信息是通过两个不同的传输信道(即,第一机载终端731与基站720之间的LOS径传输信道,以及第一机载终端731、第三反射设备713和基站720构成的NLOS径传输信道)获得的信息,增加了基站720与第一机载终端731之间的数据流数。
在确定第四反射设备714接收到第二机载终端732发送的第二上行信息的情况下,第四反射设备714使用第三上行发送波束793转发该第二上行信息至基站720;在确定第五反射设备715接收到第二机载终端732发送的第二上行信息的情况下,第五反射设备715使用第五上行发送波束795转发该第二上行信息至基站720。
因此,基站720接收到的第二上行信息是通过3个不同的传输信道(即,第二机载终端732与基站720之间的LOS径传输信道,以及第二机载终端732、第四反射设备714和基站720构成的NLOS径传输信道,以及第二机载终端732、第五反射设备715和基站720构成的NLOS径传输信道)获得的信息,增加了基站720与第二机载终端732之间的数据流数,使基站720的上行传输信道的信道增益(例如,上行信道的衰落情况)得到改善。
需要明确的是,本发明并不局限于上文实施方式中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施方式中的对应过程,在此不再赘述。
图17示出本申请提供的能够实现信息传输方法和装置的计算设备的示例性硬件架构的结构图。
如图17所示,计算设备1700包括输入设备1701、输入接口1702、中央处理器1703、存储器1704、输出接口1705、以及输出设备1706。 其中,输入接口1702、中央处理器1703、存储器1704、以及输出接口1705通过总线1707相互连接,输入设备1701和输出设备1706分别通过输入接口1702和输出接口1705与总线1707连接,进而与计算设备1700的其他组件连接。
示例性地,输入设备1701接收来自外部的输入信息,并通过输入接口1702将输入信息传送到中央处理器1703;中央处理器1703基于存储器1704中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器1704中,然后通过输出接口1705将输出信息传送到输出设备1706;输出设备1706将输出信息输出到计算设备1700的外部供用户使用。
在一个实施方式中,图17所示的计算设备可以被实现为一种电子设备,该电子设备可以包括:存储器,被配置为存储程序;处理器,被配置为运行存储器中存储的程序,以执行上述实施方式描述的信息传输方法。
在一个实施方式中,图17所示的计算设备可以被实现为一种信息传输系统,该信息传输系统可以包括:存储器,被配置为存储程序;处理器,被配置为运行存储器中存储的程序,以执行上述实施方式描述的信息传输方法。
根据本申请的信息传输方法、反射设备、电子设备和对应的可读存储介质,通过依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端,保证通信信息可以顺利到达机载终端,提升对空覆盖的信道质量。在传统的基站与机载终端的传输信道的基础上,通过增加反射设备,增加了基站和机载终端之间的通信路径,从而增加了基站发送至机载终端的并发数据流数,使对空覆盖的无线通信系统能够支持多流传输,提高终端的通信速率。
根据本申请的信息传输方法、基站、电子设备和对应的可读存储介质,通过发送承载通信信息的通信信号至反射设备,以供反射设备依据反射设备的反射权值,通过与反射权值对应的波束将通信信号反射至机载终端,保证通信信息可以顺利到达机载终端,提升对空覆盖的信道质量;在传统的基站与机载终端的传输信道的基础上,通过 增加反射设备,增加了基站和机载终端之间的通信路径,从而增加了基站发送至机载终端的并发数据流数,使对空覆盖的无线通信系统能够支持多流传输,提高终端的通信速率。
根据本申请的信息传输系统,通过在基站和机载终端之间增加反射设备,能够增加基站和机载终端之间的通信路径,从而增加了基站发送至机载终端的并发数据流数,使对空覆盖的无线通信系统能够支持多流传输,提高终端的通信速率。
以上所述,仅为本申请的示例性实施方式而已,并非用于限定本申请的保护范围。一般来说,本申请的多种实施方式可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施方式可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施方式的详细描述。但结合附图和权利要求来考虑,对以上实施方 式的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本发明的范围。因此,本发明的恰当范围将根据权利要求确定。

Claims (19)

  1. 一种信息传输方法,应用于反射设备,包括:
    获取基站发送的通信信息,所述通信信息使用通信信号进行承载;
    依据所述反射设备的反射权值,通过与所述反射权值对应的波束将所述通信信号反射至机载终端。
  2. 根据权利要求1所述的方法,其中,在所述依据所述反射设备的反射权值,通过与所述反射权值对应的波束将所述通信信号反射至机载终端之前,所述方法还包括:
    获取所述基站发送的控制信息;
    依据所述控制信息调整目标传输信道对应的波束的反射权值,所述目标传输信道是所述反射设备与所述机载终端之间的传输信道。
  3. 根据权利要求2所述的方法,其中,在所述依据所述控制信息调整目标传输信道对应的波束的反射权值之前,所述方法还包括:
    获取所述反射设备的位置信息和所述机载终端的位置信息;
    依据所述机载终端的位置信息和所述反射设备的位置信息,确定所述控制信息。
  4. 根据权利要求3所述的方法,其中,所述反射设备包括多个待使用反射单元;
    所述依据所述机载终端的位置信息和所述反射设备的位置信息,确定所述控制信息,包括:
    依据所述机载终端的位置信息和所述反射设备的位置信息,从所述多个待使用反射单元中选择目标反射单元,并确定所述目标反射单元对应的反射权值;
    依据所述目标反射单元对应的反射权值,确定所述控制信息。
  5. 根据权利要求1所述的方法,其中,所述获取基站发送的通信信息,包括:
    通过第一传输信道和第二传输信道中的至少一个,获取所述基站发送的所述通信信息,所述第一传输信道是所述反射设备与所述基站之间的视距径传输信道,所述第二传输信道是所述反射设备和所述基站之间的非视距径传输信道。
  6. 根据权利要求1所述的方法,其中,在所述依据所述反射设备的反射权值,通过与所述反射权值对应的波束将所述通信信号反射至机载终端之后,所述方法还包括:
    将所述机载终端发送的响应信号对应的波束反射至所述基站;
    其中,所述响应信号承载响应消息,所述响应消息是所述机载终端针对所述通信信息反馈的信息。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述通信信息包括:广播信息、信道状态信息、下行控制信息和下行业务信息中的任意一种或几种。
  8. 一种信息传输方法,应用于基站,包括:
    发送承载通信信息的通信信号至反射设备,以供所述反射设备依据所述反射设备的反射权值,通过与所述反射权值对应的波束将所述通信信号反射至机载终端。
  9. 根据权利要求8所述的方法,其中,在所述发送承载通信信息的通信信号至反射设备之前,所述方法还包括:
    获取控制信息,所述控制信息配置用于调整目标传输信道对应的波束的反射权值,所述目标传输信道是所述反射设备与所述机载终端之间的传输信道;
    将所述控制信息传输至所述反射设备。
  10. 根据权利要求9所述的方法,其中,所述获取控制信息,包括:
    获取所述反射设备的位置信息和所述机载终端的位置信息;
    依据所述机载终端的位置信息和所述反射设备的位置信息,确定所述控制信息。
  11. 根据权利要求10所述的方法,其中,在所述将所述控制信息传输至所述反射设备之前,所述方法还包括:
    获取所述基站的位置信息;
    依据所述基站的位置信息和所述反射设备的位置信息,确定第一传输信道对应的波束的角度,所述第一传输信道是所述反射设备与所述基站之间的视距径传输信道。
  12. 根据权利要求11所述的方法,其中,所述第一传输信道包括:基于信道状态信息的传输信道,和/或,基于同步信号和广播物理信道PBCH块的传输信道。
  13. 根据权利要求9所述的方法,其中,所述目标传输信道包括:基于所述机载终端的第一波束确定的信道,或,基于所述机载终端的第二波束确定的信道,所述第一波束的波束宽度小于所述第二波束的波束宽度。
  14. 根据权利要求13所述的方法,其中,在所述将所述控制信息传输至所述反射设备之后,所述方法还包括:
    在确定所述目标传输信道是基于所述机载终端的第二波束确定的信道的情况下,采用最大比合并原则对所述目标传输信道传输的信息进行处理,获得响应信息;
    其中,所述响应信息是所述机载终端针对所述通信信息反馈的响应信息。
  15. 一种反射设备,包括:
    第一获取模块,配置为获取基站发送的通信信息,所述通信信息使用通信信号进行承载;
    反射模块,配置为依据所述反射设备的反射权值,通过与所述反射权值对应的波束将所述通信信号反射至机载终端。
  16. 一种基站,包括:
    承载模块,配置为使用通信信号承载通信信息;
    发送模块,配置为发送所述通信信号至反射设备,以供所述反射设备依据所述反射设备的反射权值,通过与所述反射权值对应的波束将所述通信信号反射至机载终端。
  17. 一种信息传输系统,包括:
    反射设备,配置为执行如权利要求1-7中任一项所述的信息传输方法;
    基站,配置为执行如权利要求8-14中任一项所述的信息传输方法;
    机载终端,配置为获取所述基站发送的通信信息,并依据所述通信信息生成响应信息,采用目标传输信道传输所述响应信息至所述反射设备,以使所述反射设备传输所述响应信息至所述基站。
  18. 一种电子设备,包括:
    一个或多个处理器;
    存储器,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的信息传输方法,或,如权利要求8-14中任一项所述的信息传输方法。
  19. 一种可读存储介质,其中,所述可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一项 所述的信息传输方法,或,如权利要求8-14中任一项所述的信息传输方法。
PCT/CN2022/093250 2021-05-27 2022-05-17 信息传输方法、反射设备、基站、系统、电子设备和介质 WO2022247685A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22810412.1A EP4329375A1 (en) 2021-05-27 2022-05-17 Information transmission method, reflecting device, base station, system, electronic device, and medium
JP2023545889A JP2024505526A (ja) 2021-05-27 2022-05-17 情報伝送方法、反射装置、基地局、システム、電子機器及び媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110585961.3A CN115412991A (zh) 2021-05-27 2021-05-27 信息传输方法、反射设备、基站、系统、电子设备和介质
CN202110585961.3 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022247685A1 true WO2022247685A1 (zh) 2022-12-01

Family

ID=84154916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093250 WO2022247685A1 (zh) 2021-05-27 2022-05-17 信息传输方法、反射设备、基站、系统、电子设备和介质

Country Status (4)

Country Link
EP (1) EP4329375A1 (zh)
JP (1) JP2024505526A (zh)
CN (1) CN115412991A (zh)
WO (1) WO2022247685A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116614826A (zh) * 2023-05-24 2023-08-18 北京天坦智能科技有限责任公司 一种同时传输和反射表面网络的覆盖和容量优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208939A (zh) * 2010-03-30 2011-10-05 株式会社Ntt都科摩 反射板装置、无线基站以及无线通信方法
US20140266870A1 (en) * 2013-03-13 2014-09-18 The Boeing Company Compensating for a non-ideal surface of a reflector in a satellite communication system
CN111181615A (zh) * 2019-11-29 2020-05-19 广东工业大学 一种基于智能反射面的多小区无线通信方法
CN111245494A (zh) * 2020-01-13 2020-06-05 东南大学 基于智能反射面的定位信息辅助波束控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208939A (zh) * 2010-03-30 2011-10-05 株式会社Ntt都科摩 反射板装置、无线基站以及无线通信方法
US20140266870A1 (en) * 2013-03-13 2014-09-18 The Boeing Company Compensating for a non-ideal surface of a reflector in a satellite communication system
CN111181615A (zh) * 2019-11-29 2020-05-19 广东工业大学 一种基于智能反射面的多小区无线通信方法
CN111245494A (zh) * 2020-01-13 2020-06-05 东南大学 基于智能反射面的定位信息辅助波束控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116614826A (zh) * 2023-05-24 2023-08-18 北京天坦智能科技有限责任公司 一种同时传输和反射表面网络的覆盖和容量优化方法
CN116614826B (zh) * 2023-05-24 2024-01-16 北京天坦智能科技有限责任公司 一种同时传输和反射表面网络的覆盖和容量优化方法

Also Published As

Publication number Publication date
CN115412991A (zh) 2022-11-29
JP2024505526A (ja) 2024-02-06
EP4329375A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
CN108463984B (zh) 向机载移动通信设备提供蜂窝电信系统服务的方法和节点
WO2017028676A1 (zh) 一种数据传输方法、装置及系统
US11082104B2 (en) Apparatus for configuring reference signal beams based on accuracy of user equipment localization
CN103095356B (zh) 一种波束成形方法、基站和交通运输装置
CN101542937A (zh) 用于移动通信系统的束分多址系统和方法
US10966110B2 (en) Terminal apparatus, base station, method and recording medium
US20220123817A1 (en) Apparatus, method and computer program for beam management
JP2020511813A (ja) 決定されたビーム構成に基づくメッセージ伝送
WO2022247685A1 (zh) 信息传输方法、反射设备、基站、系统、电子设备和介质
CN111869123A (zh) 用于高效波束管理的通信设备
US11606701B2 (en) Enhanced establishment of communication between nodes in a communication system
JP6888663B2 (ja) 端末装置、基地局、方法及び記録媒体
US20230128145A1 (en) Predictive csi enhancements for high speed scenarios
US20240195484A1 (en) mmWAVE 5G PROPAGATION USING INTER-SECTOR BEAMSETS
WO2023042319A1 (ja) 端末及び通信方法
CN115550948B (zh) 一种上行探测参考信号传输方法及设备
WO2023033690A1 (en) Providing network coverage to a vehicle
KR102430193B1 (ko) 비행 센서 데이터 및 빔포밍 정보 기반 공중 노드 추적 방법 및 장치
WO2023135824A1 (ja) 端末及び通信方法
US10938452B2 (en) Base station system for transmitting a data stream towards a user entity
WO2023047603A1 (ja) 端末、無線中継装置及び通信方法
US20240129000A1 (en) Fixed base station antenna system using directional and omnidirectional antenna elements in a mimo configuration
CN117221051A (zh) 通信方法及通信装置
WO2023212153A1 (en) Full duplex interference management based on device location
EP4035282A1 (en) Relaying communications with mobile objects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545889

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18560964

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022810412

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022810412

Country of ref document: EP

Effective date: 20231122

NENP Non-entry into the national phase

Ref country code: DE