WO2022247554A1 - 清洁机器人的回充方法和清洁机器人系统 - Google Patents

清洁机器人的回充方法和清洁机器人系统 Download PDF

Info

Publication number
WO2022247554A1
WO2022247554A1 PCT/CN2022/089142 CN2022089142W WO2022247554A1 WO 2022247554 A1 WO2022247554 A1 WO 2022247554A1 CN 2022089142 W CN2022089142 W CN 2022089142W WO 2022247554 A1 WO2022247554 A1 WO 2022247554A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning robot
charging pile
signal
proximity
recharging
Prior art date
Application number
PCT/CN2022/089142
Other languages
English (en)
French (fr)
Inventor
刘章林
田武林
Original Assignee
速感科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 速感科技(北京)有限公司 filed Critical 速感科技(北京)有限公司
Publication of WO2022247554A1 publication Critical patent/WO2022247554A1/zh
Priority to US18/520,540 priority Critical patent/US20240090731A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • A47L11/4005Arrangements of batteries or cells; Electric power supply arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • A47L11/4008Arrangements of switches, indicators or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning

Definitions

  • the embodiments of the present invention relate to the technical field of cleaning robots, in particular to a cleaning robot recharging method and a cleaning robot system.
  • cleaning robots are widely used in cleaning work in offices and homes, such as using cleaning robots to clean floors.
  • the cleaning robot can automatically move to the charging pile for charging after working for a period of time.
  • the charging pile can continuously send out the recharging guidance signal after being powered on; when the cleaning robot needs to recharge, its recharging sensor receives the recharging guidance signal of the charging pile, and moves under the guidance of the recharging guidance signal Go to the charging pile for charging.
  • Embodiments of the present invention provide a cleaning robot recharging method and a cleaning robot system to solve the problem in the prior art that the cleaning robot is not connected accurately to the charging pile, resulting in recharging failure.
  • a first aspect of an embodiment of the present invention provides a method for recharging a cleaning robot, including:
  • the cleaning robot runs in the direction of the charging pile along the first direction, and approaches the charging pile;
  • the target position is in front of the charging post and at a second preset distance from the charging post;
  • the cleaning robot retreats close to the charging pile, and pre-contacts with the charging pile;
  • the cleaning robot runs forward for a first preset distance
  • the cleaning robot backs up and approaches the charging pile, and docks with the charging pile for charging.
  • the second aspect of the embodiments of the present invention provides a cleaning robot system, including: a charging pile and a cleaning robot, and the cleaning robot includes:
  • a determining unit configured to determine the direction of the charging pile
  • the motion unit is used to drive the cleaning robot to move
  • a detection unit for detecting the distance between the cleaning robot and the charging pile in real time
  • control unit configured to control the cleaning robot to run toward the charging pile in a first direction, and approach the charging pile; and judge whether the cleaning robot has run to the charging pile according to the distance between the cleaning robot and the charging pile a target position, the target position is in front of the charging pile and at a second preset distance from the charging pile,
  • the control unit is also used to control the cleaning robot to rotate to a set angle when the cleaning robot runs to a predetermined target position, and to control the cleaning robot to retreat and approach the charging pile to pre-contact with the charging pile, Control the cleaning robot to run forward for the first preset distance; control the cleaning robot to move backwards and approach the charging pile, and dock with the charging pile for charging.
  • a third aspect of the embodiments of the present invention provides a method for recharging a cleaning robot, including:
  • the transmitter on the charging pile transmits the recharging guidance signal and the first proximity signal, and the charging pile transmits the first proximity signal during the transmission interval of transmitting the recharging guidance signal, and the recharging guidance signal can be detected by the recharging sensor of the cleaning robot receiving, the first proximity signal can be received by a receiver of a proximity sensor of the cleaning robot;
  • the cleaning robot When the cleaning robot enters the recharging phase, the cleaning robot turns off the transmitter of the proximity sensor and keeps the receiver of the proximity sensor on;
  • the receiver of the proximity sensor of the cleaning robot receives the first proximity signal, and detects the distance between the cleaning robot and the charging pile according to the first proximity signal;
  • the cleaning robot According to the distance between the cleaning robot and the charging pile, the cleaning robot approaches the charging pile and docks with the charging pile for charging.
  • a fourth aspect of the embodiments of the present invention provides a cleaning robot, including:
  • the recharging sensor is used to receive the recharging guidance signal emitted by the charging pile;
  • a proximity sensor for detecting obstacles around the cleaning robot in a non-contact manner includes a transmitter and a receiver; wherein,
  • the cleaning robot When the cleaning robot enters the recharging phase, the cleaning robot turns off the transmitter of the proximity sensor and keeps the receiver of the proximity sensor on;
  • the receiver of the proximity sensor of the cleaning robot receives the first proximity signal, and detects the distance between the cleaning robot and the real-time charging pile according to the first proximity signal;
  • the cleaning robot approaches the charging pile according to the distance between it and the charging pile and docks with the charging pile for charging.
  • a fifth aspect of the embodiments of the present invention provides a charging pile, including: a transmitter;
  • the transmitter transmits a refilling guide signal and a first proximity signal, and transmits a first proximity signal during the transmission gap of the refilling guide signal, and the first proximity signal can be received by the receiver of the proximity sensor of the cleaning robot;
  • the recharging guidance signal can be received by the recharging sensor of the cleaning robot.
  • a sixth aspect of the embodiments of the present invention provides a cleaning robot system, including: a cleaning robot and a charging pile;
  • the charging pile is provided with a transmitter for transmitting the recharging guide signal and the first approach signal, and transmits the first approach signal during the transmission gap of the recharging guide signal, and the recharging guide signal can be detected by the cleaning robot.
  • a transmitter for transmitting the recharging guide signal and the first approach signal, and transmits the first approach signal during the transmission gap of the recharging guide signal, and the recharging guide signal can be detected by the cleaning robot.
  • Recharging sensor reception, said first proximity signal can be received by the receiver of the proximity sensor of the cleaning robot;
  • the receiver of the proximity sensor of the cleaning robot receives the first proximity signal, and detects the distance between the cleaning robot and the charging pile according to the first proximity signal; The distance between is close to the charging pile and docked with the charging pile for charging; wherein, when the cleaning robot enters the recharging phase, the transmitter of its proximity sensor is turned off, while the receiver of its proximity sensor is turned on.
  • a seventh aspect of the embodiments of the present invention provides a cleaning device, including: at least one processor and a memory;
  • the memory stores computer-executable instructions
  • the at least one processor executes the computer-executed instructions stored in the memory, so that the at least one processor executes the cleaning robot recharging method provided in the first aspect or the third aspect of the embodiments of the present invention.
  • the eighth aspect of the embodiments of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and when the processor executes the computer-executable instructions, the first aspect of the embodiments of the present invention is implemented.
  • the method for recharging the cleaning robot provided by the aspect or the third aspect.
  • the embodiment of the present invention realizes the precise docking between the charging contacts of the cleaning robot and the corresponding charging contacts of the charging pile (this process is also called cleaning robot pile-up), so that the cleaning robot can be automatically charged, greatly reducing the The probability of recharging failure caused by inaccurate loading of the cleaning robot increases the success rate of recharging.
  • Embodiments of the present invention provide a method and system for recharging a cleaning robot.
  • the transmitter on the charging pile is used to transmit the first proximity signal in the transmission gap of the recharging guidance signal, so that the receiver of the proximity sensor of the cleaning robot receives the first proximity signal. Or when the first proximity signal of sufficient strength is received, the approximate distance from the charging pile can be known, so that the cleaning robot can be reliably recharged according to the distance between the cleaning robot and the charging pile.
  • Fig. 1 is an application scene diagram of a cleaning robot recharging method shown in an exemplary embodiment of the present invention
  • Fig. 2 is a schematic flow chart of a cleaning robot recharging method shown in an exemplary embodiment of the present invention
  • Fig. 3 is a schematic flowchart of a method for recharging a cleaning robot according to another exemplary embodiment of the present invention
  • Fig. 4 is a schematic flowchart of a method for recharging a cleaning robot according to another exemplary embodiment of the present invention.
  • Fig. 5 is a schematic flowchart of a method for recharging a cleaning robot according to another exemplary embodiment of the present invention.
  • Fig. 6a is a schematic diagram showing coverage of directional signals transmitted by charging piles according to an exemplary embodiment of the present invention
  • Fig. 6b is a schematic diagram of the central axis position of the cleaning robot shown in an exemplary embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the process of the cleaning robot running to the charging pile shown in an exemplary embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the process of docking a cleaning robot with a charging pile according to an exemplary embodiment of the present invention
  • Fig. 9 is a schematic diagram of the process of docking a cleaning robot with a charging pile according to another exemplary embodiment of the present invention.
  • Fig. 10 is a schematic diagram of a cleaning robot running to a charging pile according to an exemplary embodiment of the present invention.
  • Fig. 11 is a schematic diagram showing the process of a cleaning robot running to a charging pile according to another exemplary embodiment of the present invention.
  • Fig. 12 is a schematic flowchart of a method for recharging a cleaning robot according to another exemplary embodiment of the present invention.
  • Fig. 13 is a schematic diagram of a signal transmitted by a charging pile according to an exemplary embodiment of the present invention.
  • Fig. 14 is a schematic flowchart of a method for calculating the distance between a cleaning robot and a charging pile according to another exemplary embodiment of the present invention.
  • Fig. 15 is a schematic structural view of a cleaning robot according to an exemplary embodiment of the present invention.
  • Fig. 16 is a schematic structural diagram of a charging pile shown in an exemplary embodiment of the present invention.
  • Fig. 17 is a schematic structural diagram of a cleaning robot system shown in an exemplary embodiment of the present invention.
  • Fig. 18 is a schematic structural diagram of a cleaning device according to an exemplary embodiment of the present invention.
  • Fig. 1 is an application scene diagram of a cleaning robot recharging method in the prior art.
  • cleaning robots are widely used in cleaning work in offices and homes, such as using cleaning robots to clean floors.
  • Guide signal coverage area 103 the cleaning robot is provided with a recharge sensor specially used to receive the recharge guide signal, find and receive the recharge guide signal when recharge is required, and approach the charging pile under the guidance of the recharge guide signal.
  • the usual cleaning robot 102 will contact the charging contacts of the charging pile 101 with the charging contacts near its head;
  • the rear of 102 is equipped with a charging contact piece, which is connected to the charging pile 101 to realize automatic charging.
  • the charging contact piece at the rear is not easy to successfully dock with the charging contact of the charging pile, which often leads to failure of recharging.
  • the technical idea of the present invention mainly lies in: firstly determine the direction of the charging pile through the cleaning robot, and then run toward the charging pile along the first direction, close to the charging pile; when the cleaning robot runs to the predetermined target position, the rotating device Fixed angle; after rotation, the cleaning robot runs along its forward direction for the first preset distance, and then retreats to approach the charging pile, so as to realize the docking between the cleaning robot and the charging pile for automatic charging.
  • the cleaning robot When the cleaning robot runs towards the charging pile and reaches the target position, it first rotates the set angle, then runs in the forward direction (that is, away from the charging pile) for a certain distance, and then backs up to the charging pile, so that the cleaning robot has a longer
  • the distance can be adjusted more precisely, which improves the success rate of the precise docking between the charging contacts of the cleaning robot and the corresponding charging contacts of the charging pile (this process is also called the cleaning robot pile), making the cleaning robot It can be automatically charged on piles, which improves the success rate of automatic recharging of cleaning robots.
  • Fig. 2 is a schematic flowchart of a method for recharging a cleaning robot according to an exemplary embodiment of the present invention.
  • the method provided by the embodiment of the present invention may be performed by a cleaning robot.
  • the method provided in this embodiment may include the following steps.
  • the recharging guidance signal can be a directional guidance signal, such as the Z signal, wherein the coverage of the Z signal is centered on the charging pile 101.
  • the preset distance is a fan-shaped area (as shown in FIG. 6 a ) or a cone-shaped area with a radius, and the coverage area of the directional guidance signal can also be an ellipse or any other asymmetric shape that may be formed by the coverage area of the refilling guidance signal.
  • the front and the rear of the cleaning robot are respectively symmetrically provided with a plurality of recharging sensors capable of receiving recharging guidance signals (such as infrared sensors for receiving, for example, high-frequency (such as 38khz) carrier codes.
  • the recharging guide signal of the signal wherein the carrier wave can be a square wave
  • the recharging sensor senses the recharging guide signal, and the direction of the charging pile 101 can be determined along the recharging guide signal.
  • the sensor of the cleaning robot can measure the distance between it and the charging pile (such as its proximity sensor), and it is possible to further determine the position of the charging pile along the direction of the charging pile.
  • a camera can also be set on the cleaning robot (for example, a first camera that is obliquely upward or vertically upward is set on the top plane of the cleaning robot, and/or a first camera that is obliquely upward or horizontally forward is set at its front)
  • Two cameras, and/or a third camera for shooting rear images at its rear collects images of the surrounding environment in real time through the cameras, and then determines the location of the charging pile based on the images.
  • the cleaning robot runs toward the charging pile along a first direction, and approaches the charging pile.
  • the cleaning robot determines the direction of the charging pile, it runs in the direction of the charging pile in a first direction, as shown in a in FIG. 8 , the first direction may be the direction in which the cleaning robot is approaching the charging pile.
  • the cleaning robot uses its own recharging sensor to continuously search for the recharging guidance signal emitted by the charging pile to ensure that the cleaning robot is getting closer and closer to the charging pile.
  • the first direction can also be different from the direction of the charging pile, but in other operating modes (such as in an arc or S-shaped curve, or in a direction perpendicular to the connection line between the initial position of the cleaning robot and the charging pile to be close to vertical The zigzag line or bow-shaped route, etc.) make the cleaning robot gradually approach the charging pile.
  • the cleaning robot includes four recharging sensors, and these four recharging sensors are divided into two groups and installed on the front and rear of the cleaning robot respectively and symmetrically located on both sides of the central axis (respectively referred to as the left side).
  • the left arrow on each cleaning robot in Figure 7 represents the two recharge sensors (both denoted as s1) set at the front and rear of the left side of the cleaning robot, and the right arrow represents the sensor set at the cleaning robot
  • the two recharge sensors on the right front and rear both denoted as s2).
  • the charging pile continues to transmit the recharging guidance signal after it is powered on.
  • the recharging guidance signal is the A signal, the B signal and the Z signal
  • the Z signal is a directional guidance signal covering the central area of the front of the charging pile.
  • the coverage area of the signal is symmetrically arranged on both sides of the Z signal coverage area, and both the A signal and the B signal have overlapping areas with the Z signal, and the overlapping areas are A+Z (that is, the area covered by the A signal and the Z signal at the same time) and B+Z (that is, the area covered by B signal and Z signal at the same time), the single area with only Z signal formed in the middle of the two overlapping signal areas is the docking center area.
  • the two front recharging sensors on the cleaning robot search for the recharging guidance signal emitted by the charging pile. When the cleaning robot enters the coverage area of the recharging guidance signal, it adjusts the cleaning according to the type of the recharging guidance signal sensed by the two recharging sensors.
  • the running posture of the robot is symmetrically arranged on both sides of the Z signal coverage area, and both the A signal and the B signal have overlapping areas with the Z signal, and the overlapping areas are A+Z (that is, the area covered by the A
  • the two recharging sensors s1 and s2 at the front can both detect the A signal and the Z signal, and then clean
  • the robot continues to move forward; when it runs to position 4, the front right recharge sensor s2 has left the A signal coverage area and can only sense the Z signal, while the front left recharge sensor s1 is still in the A signal and In the overlapping area of the Z signal, the cleaning robot continues to move forward while rotating a certain angle counterclockwise; when the two recharge sensors s1 and s2 at the front of the cleaning robot have left the A signal coverage area, they can only receive the Z signal.
  • the cleaning robot rotates counterclockwise at a certain angle, so that the two recharging sensors at the front can only sense the Z signal, but cannot sense the A signal and B signal; then, the cleaning robot continues to run in a straight line, Always keep the two recharging sensors at the front can only detect the Z signal, and finally run to the No. 5 position close to the charging pile.
  • the above example is only an example of how the cleaning robot looks for the recharging guidance signal on the charging pile through its own front recharging sensor, and how to approach the charging pile under the guidance of the recharging guidance signal.
  • the present invention does not limit the quantity and form of the recharging guide signal and the quantity, form, type and setting position of the recharging sensor on the cleaning robot. In practical applications, it is also possible for the cleaning robot to run towards the charging pile from different directions.
  • the predetermined target position may be the location of the charging pile.
  • the position of the pile and the posture of the cleaning robot relative to the charging pile determine the preset angle.
  • the set angle may be determined according to the angle between the central axis of the cleaning robot and the centerline of the docking central area of the charging pile (which may be simply referred to as the forward direction of the charging pile) measured when the cleaning robot arrives at the location of the charging pile.
  • the preset angle of rotation may also be directly set to 180 degrees without considering the above measurement angle.
  • the rear of the cleaning robot face the charging pile after rotating the preset angle (that is, after rotating the preset angle, the central axis of the cleaning robot is aligned with the charging pile.
  • the angle between directions is 180 degrees), and the above-mentioned preset angle that needs to be rotated is determined, as shown in c of FIG. 8 .
  • the central axis is the straight line where its forward running direction is located, as shown in Figure 6b, the central axis The two ends of point to the forward running direction and the opposite direction of the cleaning robot respectively.
  • the cleaning robot can also be in the shape of a square, a polygon, etc., and the specific position of the axis is determined according to its actual shape or the forward running direction of the cleaning robot, and no more examples will be given here.
  • the cleaning robot runs forward for a first preset distance.
  • the cleaning robot runs to the charging pile and rotates to a set angle (that is, the above step S230), the rear of the cleaning robot faces the charging pile, and its forward direction is away from the charging pile.
  • the cleaning robot runs forward for a first preset distance away from the charging pile, as shown in d in FIG. 8 .
  • the value range of the first preset distance is 40 cm to 60 cm.
  • the first preset distance can also be set to other distances.
  • the cleaning robot backs up and approaches the charging pile, and docks with the charging pile for charging.
  • the cleaning robot after the cleaning robot moves away from the charging pile for the first preset distance, it relies on the recharging sensor arranged symmetrically at the rear to detect the recharging guidance signal and retreats to the charging pile.
  • the cleaning robot has Sufficient space and time to adjust its posture according to the received recharging guidance signal, so that when the cleaning robot is on the pile, the charging contact piece at the rear can be accurately docked with the charging interface of the charging pile.
  • the bottom of the cleaning robot Metal contacts for charging are provided.
  • the charging pile is provided with a charging interface that can be in close contact with the charging contacts.
  • the charging interface can be a metal contact, as shown in e in FIG. 8 .
  • the charging method between the cleaning robot and the charging pile can also be other forms of charging.
  • the cleaning robot and the charging pile are respectively provided with matching wireless charging coils to realize wireless charging.
  • the present invention does not limit the charging mode between the cleaning robot and the charging pile.
  • the cleaning robot when the cleaning robot is running towards the charging pile, it first rotates to set the angle when it reaches the target position, so that its rear part faces the charging pile, and then the cleaning robot moves forward (that is, away from the charging pile) Run for a certain distance, and then retreat close to the charging pile, so that the cleaning robot has more space and time to adjust the recharging posture (direction and distance), so as to achieve accurate charging on the pile, which greatly reduces the return caused by inaccurate charging of the cleaning robot.
  • the probability of charging failure improves the success rate of recharging.
  • Fig. 3 is a schematic flowchart of a method for recharging a cleaning robot according to another exemplary embodiment of the present invention.
  • the predetermined target position can also be in front of the charging pile and at the second preset distance from the charging pile. This embodiment will further introduce Another docking method between the cleaning robot and the charging pile.
  • the method provided in this embodiment may include the following steps.
  • the cleaning robot runs toward the charging pile along a first direction, and approaches the charging pile.
  • steps S310 and S320 in this embodiment, reference may be made to the description of steps S210 and S220 in the embodiment shown in FIG. 2 , which will not be repeated here.
  • S340 Determine whether the cleaning robot has moved to a target position according to the distance between the cleaning robot and the charging post, and the target position is in front of the charging post and at a second preset distance from the charging post.
  • a ranging sensor that detects the distance between the cleaning robot and obstacles in the horizontal direction in the environment can be installed on the front, side and/or upper part of the cleaning robot, such as a proximity sensor that is usually installed on the cleaning robot. as a distance sensor.
  • the existing proximity sensor of the cleaning robot is used to detect obstacles in the environment indiscriminately, without distinguishing whether the obstacle is a charging pile or other obstacles.
  • the distance measuring sensor or the proximity sensor can be an infrared pair tube, a laser radar (laser detection rangefinder Light Detection and Ranging, referred to as LIDAR laser radar; for example, Time Of Flight is a time-of-flight sensor, referred to as TOF, which is exactly a kind of laser radar) , or at least one of an ultrasonic rangefinder, etc.
  • LIDAR laser radar laser detection rangefinder Light Detection and Ranging
  • TOF time-of-flight sensor
  • ultrasonic rangefinder etc.
  • the emitter of the distance measuring sensor emits the detection light or the detection ultrasonic wave to the surrounding environment in real time, and records the emission time of the detection light or the detection ultrasonic wave.
  • the receiver of the ranging sensor receives in real time the reflected light or reflected ultrasonic waves of a specific frequency reflected by the obstacles in the surrounding environment, and records the receiving time of receiving the reflected light or reflected ultrasonic waves.
  • the distance measuring sensor or the proximity sensor is an infrared pair tube, its principle is different from the above method of calculating the distance by the formula of distance, velocity and time.
  • the infrared pair tube is a photoelectric switch.
  • the photoelectric switch detects whether there is an obstacle at a set distance by detecting whether there is an obstacle blocking and reflecting the detection medium (electromagnetic waves used to detect distance such as infrared rays, etc.) to obtain whether there is an obstacle at the set distance.
  • the information of the object that is, the switch is triggered when there is an obstacle at the set distance, and the switch is not triggered if there is no obstacle at the set distance, so it measures a fixed distance (that is, the above-mentioned set distance) and It is not a variable distance like the distance speed time formula, but it also belongs to the ranging sensor in the present invention.
  • the above-mentioned set distance is a second preset distance in front of the charging pile and away from the charging pile.
  • the infrared pair tube has a transmitting end and a receiving end at a certain angle to each other.
  • the angle between the transmitting end and the receiving end of the infrared pairing tube The setting is: the infrared detection line emitted by the transmitting end is reflected when it hits an obstacle, and the reflected line is just received by the receiving end, so that the photoelectric switch is triggered, thereby notifying the cleaning robot that there is an obstacle at the second preset distance.
  • Obstacles such as charging piles
  • the light emitted by the transmitter will not be reflected at the second preset distance, so the receiver cannot receive the light emitted by the transmitter.
  • the reflected line of the infrared detection line the switch is not triggered, so that the cleaning robot perceives that there is no obstacle (charging pile) at the second preset distance.
  • the second preset distance (that is, the set distance) of the switch sensor can be set as the target position, and then the cleaning robot can determine when it has reached the charging pile when it gradually approaches the charging pile. target location.
  • the value range of the second preset distance may be 20 cm to 60 cm.
  • the target position is directly in front of the charging pile and 20 to 60 centimeters away from the charging pile.
  • the distance between the cleaning robot and the charging pile is measured in real time by the ranging sensor.
  • the cleaning robot is in front of the charging pile and the distance between them is 20 cm or 60 cm, or any position between 20 and 60 cm, or a certain set ratio between 20 and 60 cm (as shown by b in Figure 9 display), make sure that the cleaning robot has moved to the target position.
  • the second preset distance can also be set to other distances or distance ranges.
  • the real-time detection of the distance between the cleaning robot and the charging pile determines whether the cleaning robot has run to the target according to the distance between the cleaning robot and the charging pile location, including:
  • the cleaning robot closes the transmitter of the proximity sensor, and keeps the receiver of the proximity sensor in an open state; the receiver of the proximity sensor of the cleaning robot receives the first proximity signal, and judges whether the cleaning robot runs to the specified location according to the first proximity signal.
  • the target position, the first proximity signal is the proximity sensor signal emitted by the transmitter on the charging pile and can be received by the receiver of the proximity sensor on the cleaning robot; the first proximity signal is emitted on the charging pile It is transmitted during the transmission interval of the recharge pilot signal.
  • the refill guidance signal can be received by a refill sensor of the cleaning robot; the first proximity signal can be received by a receiver of the proximity sensor of the cleaning robot.
  • the cleaning robot usually has multiple proximity sensors, such as two proximity sensors symmetrically arranged in the shell directly in front of the cleaning robot and two proximity sensors symmetrically arranged on both sides of the cleaning robot, a total of 2 groups of 4 proximity sensors, Each proximity sensor includes at least one transmitter and a receiver matched to the transmitter as described above.
  • the cleaning robot enters the recharging stage, it can choose to turn off all the transmitters of the proximity sensor, or selectively turn off at least one transmitter of the proximity sensor according to the recharging direction of the cleaning robot and the detection light direction of the proximity sensor.
  • the cleaning robot keeps the receiver of the proximity sensor in an open state, so as to receive the first proximity signal emitted by the charging pile.
  • the charging pile is provided with a transmitter for transmitting the recharging guidance signal and the first approach signal, wherein the transmitter on the charging pile transmits the recharging guidance signal at a certain frequency (if the three recharging guidance signals shown in Figure 7 B, Z, A can be in a certain order, such as B, Z, A order or A, B, Z order, etc., each time interval ⁇ t sends out a recharging guidance signal, and then the three types of signals are launched after a round.
  • recharging pilot signal It takes 3 ⁇ t in total for the recharging pilot signal; of course, two or three recharging pilot signals can be transmitted at the same time, for example, the A and B signals are simultaneously transmitted in the first time interval ⁇ t, and the Z signal is sent out in the second time interval ⁇ t At this time, it only takes 2 ⁇ t to complete a round of recharging guidance signals. For example, in the first time interval ⁇ t, three recharging guidance signals A, B, and Z are sent at the same time, and then a round of recharging guidance signals is completed at this time.
  • the charging pile transmits the first approach signal at the transmission interval ⁇ T of the recharging guide signal, thereby avoiding mutual interference between the recharging guide signal and the first approach signal, thereby solving the problem in the prior art. It is difficult to realize the technical problem of measuring the distance between the cleaning robot and the charging pile during the recharging process.
  • the recharging guide signal includes A, B and Z signals
  • the A signal is transmitted in the first time interval ⁇ t
  • the Z signal is transmitted in the second time interval ⁇ t
  • the B signal is transmitted in the third time interval ⁇ t. Then there will be a recharge guidance signal that does not transmit any signal within the transmission gap ⁇ T. Therefore, the first approach signal can be transmitted within the transmission gap ⁇ T after the recharge guidance signal is transmitted, and then the next round of recharge guidance can be transmitted.
  • the cleaning robot knows the distance between itself and the charging pile through the first proximity signal, and it can also avoid mutual interference between the recharging guidance signal and the first proximity signal, thereby ensuring that the receiver on the cleaning robot passes Receive the first proximity signal to measure the distance between it and the charging pile.
  • the judging whether the cleaning robot runs to a predetermined target position according to the first proximity signal includes: the cleaning robot detects whether the first proximity signal is received, and when it detects When the first proximity signal is received, it is determined that the cleaning robot is running to the target position; and/or the cleaning robot detects the signal strength of the received first proximity signal, when the signal strength is greater than or equal to a preset strength threshold , it is determined that the cleaning robot runs to the target position.
  • the target position is in front of the charging pile and at a second preset distance from the charging pile.
  • the value range of the second preset distance can be 20 cm to 60 cm.
  • the first proximity signal may be a square wave with a peak value of about 0.03 mW and a frequency of 100 Hz or 666 Hz, and the cleaning robot can detect the first proximity signal within about 30 cm from the charging pile. Therefore, when the cleaning robot detects the first approach signal, it can be determined that the cleaning robot has moved to a second preset distance from the charging pile.
  • the cleaning robot is cylindrical, and its diameter in the horizontal direction is about 30 cm. Since the proximity sensor is usually only arranged at the front end of the cleaning robot, and there is often no proximity sensor at the rear of the cleaning robot, only the front end of the cleaning robot can A first proximity signal is received. When the proximity sensor installed at the front of the cleaning robot receives the first proximity signal, it needs to rotate so that its rear is aligned with the charging pile. When the second preset distance is 20cm, considering the diameter of the cleaning robot itself, the cleaning After the robot rotates, its rear part is about 20cm away from the charging pile, leaving enough space to adjust its own posture, so that it is easy to retreat and contact the charging pile.
  • the second preset distance that can be detected is about It is 60cm.
  • the above methods can also be used simultaneously to ensure that the cleaning robot runs to the set target position.
  • the predetermined target position may be a position 20 to 60 centimeters away from the charging pile.
  • the position of the pile and the posture of the cleaning robot relative to the charging pile determine the preset angle.
  • the set angle may be determined according to the angle between the central axis of the cleaning robot and the centerline of the docking central area of the charging pile (which may be simply referred to as the forward direction of the charging pile) measured when the cleaning robot arrives at the location of the charging pile.
  • the preset angle of rotation may also be directly set to 180 degrees without considering the above measurement angle.
  • the rear of the cleaning robot face the charging pile after rotating the preset angle (that is, after rotating the preset angle, the central axis of the cleaning robot is aligned with the charging pile.
  • the angle between directions is 180 degrees), and the above-mentioned preset angle that needs to be rotated is determined, as shown in c of FIG. 9 .
  • the cleaning robot retreats and approaches the charging pile, and pre-contacts the charging pile.
  • the cleaning robot runs to the target position, there is still a distance (the second preset distance) from the charging pile. Therefore, after the cleaning robot rotates at the target position, it moves back and approaches the charging pile to achieve pre-contact with the charging pile. , and try to make the charging contacts on the back of the cleaning robot dock with the charging interface of the charging pile, for example, try to make the two charging contacts on the cleaning robot correspond to the two charging contacts on the charging pile, as shown in Figure 9 as shown in d.
  • the cleaning robot since the target position of the cleaning robot when it rotates is in front of the charging pile and at the second preset distance (for example, 20 to 60 cm) from the charging pile, the cleaning robot can directly back up to the charging pile after it rotates.
  • the charging contacts of the cleaning robot can be aligned with the charging interface on the charging pile, it saves the loading time of the cleaning robot.
  • the charging contacts on the cleaning robot can be docked with the charging contacts of the charging pile, due to unstable contact or a slight deviation in the docking angle, the charging contacts may be damaged during the charging process. Automatic disengagement from the charging contacts prevents the charging process from being completed. In order to avoid this problem, for the sake of insurance, the following steps are often added to achieve more stable contact and charging between the charging contacts of the cleaning robot and the charging contacts of the charging pile.
  • the method for recharging the cleaning robot may further include the following steps after the above method steps shown in FIG. 3 .
  • the cleaning robot runs forward for a first preset distance.
  • the cleaning robot after the cleaning robot pre-contacts with the charging pile, it runs away from the charging pile for a first preset distance.
  • the value range of the first preset distance is It may be 40 cm to 60 cm, for example, the first preset distance may be 50 cm.
  • the difference between these two cases is that in the first case, it is not necessary to judge whether the cleaning robot is successfully docked with the charging pile, that is, it is not necessary to judge whether the charging contacts at the rear of the cleaning robot are in contact with the charging contacts of the charging pile; In the second case, it is necessary to judge whether the cleaning robot and the charging pile are connected successfully.
  • the cleaning robot backs up and approaches the charging pile, and docks with the charging pile for charging.
  • the cleaning robot backs up and approaches the charging pile after the first preset distance from the charging pile. Since the cleaning robot generally moves straight forward and straight back during this process, it can effectively avoid the impact caused by the docking angle when loading the pile. The small deviation leads to the problem of uncontrollable docking stability between the charging contact piece of the cleaning robot and the charging contact point of the charging pile, so that the charging contact piece at the rear of the cleaning robot and the charging interface of the charging pile (such as the two charging points on the charging pile) charging contacts) to achieve precise docking, as shown in f in Figure 9.
  • the cleaning robot comes into pre-contact with the charging pile, then moves away from the charging pile, and finally backs up and mounts the pile again.
  • the docking of the pile is more precise, reducing the possibility of recharging failure.
  • the method for recharging the cleaning robot may further include: during the process of the cleaning robot retreating close to the charging pile, adjusting the running posture according to the recharging guidance signal emitted by the charging pile, so that the backward direction of the cleaning robot Basically, it is in the docking center area in front of the charging pile, so that the charging contacts at the rear of the cleaning robot are easier to align with the charging contacts on the charging pile, and the success rate of the cleaning robot on the pile is improved.
  • the cleaning robot may also go beyond the docking center area of the charging pile at certain moments during recharging, but it will still return to the docking center area of the charging pile under the guidance of the recharging guidance signal.
  • the specific way of guiding the cleaning robot to enter the docking center area of the charging pile with the recharging guidance signal is as described above, and will not be repeated here.
  • multiple recharging sensors symmetrically arranged at the rear of the cleaning robot detect the recharging guidance signal sent by the charging pile, and guide the cleaning robot back to the process of approaching the charging pile.
  • the cleaning robot may not be in the middle of the charging pile. Running ahead, it may start approaching the charging pile from the side (such as position D in Figure 10).
  • the cleaning robot When the cleaning robot enters the coverage area of the recharging guidance signal emitted by the charging pile, adjust the running posture according to the recharging guidance signal, so that the cleaning robot gradually runs to the docking center area of the charging pile (position E in Figure 10) , and then continue to adjust the posture according to the recharging guidance signal, so that the running direction of the cleaning robot is always in the docking center area as much as possible.
  • the running direction of the cleaning robot after the posture adjustment is basically in the docking center of the charging pile The area is close to the charging pile.
  • a cleaning robot system including a charging pile 101 and a cleaning robot 102 as shown in FIG. 1 , wherein the cleaning robot includes:
  • a determination unit is used to determine the direction of the charging pile
  • the motion unit is used to drive the cleaning robot to move;
  • the motion can be forward, backward, in-situ rotation, and various combinations of the above-mentioned motion modes, and the motion can be uniform motion, variable speed motion (including acceleration, deceleration), or Acceleration and deceleration/acceleration and deceleration in any combination of alternating motion, the present invention does not limit the specific form of motion;
  • the motion unit can be various motion components, such as multi-legged motion system, wheel set, crawler belt, etc., the present invention does not limit the motion unit specific form.
  • control unit configured to control the cleaning robot to run toward the charging pile in a first direction and approach the charging pile
  • the control unit is also used to control the cleaning robot to rotate to a set angle when the cleaning robot runs to a predetermined target position
  • the control unit is also used to control the cleaning robot to run forward for a first preset distance
  • the control unit is also used to control the cleaning robot to retreat and approach the charging pile, and dock with the charging pile for charging.
  • the target position is in front of the charging pile and at a second preset distance from the charging pile
  • the cleaning robot further includes a detection unit, after the determination unit determines the direction of the charging pile, the detection unit is used to Real-time detection of the distance between the charging pile; the control unit is also used to judge whether the cleaning robot has run to the target position according to the distance between the charging pile; Before running forward for a first preset distance, the control unit is specifically configured to: control the cleaning robot to retreat and approach the charging pile, and pre-contact with the charging pile.
  • the target location is on the charging pile.
  • control unit is specifically configured to: when the cleaning robot is approaching the charging pile, adjust its running posture according to the recharging guidance signal transmitted by the charging pile, so that the running direction of the cleaning robot is consistent with the charging pile. Align with the docking center area directly in front of the charging pile.
  • Fig. 12 is a schematic flowchart of a method for recharging a cleaning robot according to another exemplary embodiment of the present invention.
  • the method provided in this embodiment may include the following steps.
  • the transmitter on the charging pile transmits a recharging guidance signal and a first approach signal, and the charging pile transmits the first proximity signal during the transmission interval of transmitting the recharging guidance signal, and the recharging guidance signal can be returned by the cleaning robot.
  • the first proximity signal can be received by the receiver of the proximity sensor of the cleaning robot.
  • the charging pile may use the same transmitter to transmit the recharging guidance signal and the first approach signal, or may use different transmitters to respectively transmit the recharging guidance signal and the first approach signal, which are not specifically limited in this embodiment.
  • the recharging pilot signal is a high-frequency (such as 38khz) carrier coded signal with a peak value of about 0.03mW
  • the carrier wave may be a square wave.
  • the first proximity signal is a low frequency square wave (eg 100 Hz or 600 Hz) with a peak value of about 0.03 mW.
  • the transmitter on the charging pile transmits the recharging guidance signal at a certain frequency, that is, it transmits a recharging guidance signal at intervals, and there will be a transmission gap ⁇ T between the previous round and the next round of recharging guidance signals No recharging guidance signal is transmitted, and the first proximity signal is transmitted in the transmission gap between the recharging guidance signals, thereby avoiding interference between the recharging guidance signal and the first proximity signal, thereby solving the problem of the prior art It is difficult to realize the technical problem of measuring the distance between the cleaning robot and the charging pile during the recharging process.
  • the recharging guide signal includes A, B, and Z signals
  • the A signal is transmitted at the first time interval ⁇ t
  • the Z signal is transmitted at the second time interval ⁇ t
  • the third time interval ⁇ t is transmitted.
  • B signal then there will be a recharge pilot signal without transmitting any signal within the transmission gap ⁇ T, therefore, the first approach signal can be transmitted within the transmission gap ⁇ T after the recharge pilot signal is transmitted, and then the next one can be transmitted
  • the cleaning robot knows the distance between itself and the charging pile through the first proximity signal, and it can also avoid mutual interference between the recharging guidance signal and the first proximity signal, thereby ensuring the cleaning robot
  • the receiver measures the distance between it and the charging post by receiving the first proximity signal.
  • the judging condition for judging whether the cleaning robot needs to be recharged can include the following two types, one is to judge whether to recharge according to the power, that is, When the remaining power of the cleaning robot is lower than the preset power threshold (such as 20%), the cleaning robot will automatically find a charging pile to charge.
  • the second category is to judge whether the cleaning robot recharges according to other judgment conditions. For example, according to the operating area of the cleaning robot, when the operating area is greater than the preset area threshold (such as 100 square meters), the cleaning robot will automatically recharge.
  • the cleaning robot will automatically recharge. No matter which judgment condition is set, when the judgment condition is triggered, the cleaning robot can automatically jump to execute the recharging method of the embodiment of the present invention.
  • the cleaning robot usually has multiple proximity sensors, such as two proximity sensors symmetrically arranged in the front shell of the cleaning robot and two proximity sensors symmetrically arranged on both sides of the cleaning robot, a total of 2 groups of 4 proximity sensors, Each proximity sensor includes at least one transmitter and a receiver matched to the transmitter as described above.
  • the cleaning robot enters the recharging stage, it can choose to turn off all the transmitters of the proximity sensor, or selectively turn off at least one transmitter of the proximity sensor according to the recharging direction of the cleaning robot and the detection light direction of the proximity sensor.
  • the cleaning robot keeps the receiver of the proximity sensor in an open state, so as to receive the first proximity signal emitted by the charging pile.
  • the receiver of the proximity sensor of the cleaning robot receives a first proximity signal, and detects the distance between the cleaning robot and the charging pile according to the first proximity signal.
  • the detecting the distance between the cleaning robot and the charging pile according to the first proximity signal includes: the cleaning robot detects whether the receiver of its proximity sensor receives the first proximity signal, when the first approach signal is detected, it is determined that the cleaning robot has moved to a second preset distance from the charging pile; and/or, the cleaning robot detects the signal strength of the received first approach signal , when the signal strength is greater than or equal to a preset strength threshold, it is determined that the cleaning robot has moved to a second preset distance from the charging pile.
  • the value range of the second preset distance may be 20 cm to 60 cm
  • the first proximity signal may be a square wave with a peak value of about 0.03 mW, and a frequency of 100 Hz or 666 Hz.
  • the first proximity signal can be detected within about 30 cm from the charging pile. Therefore, when the cleaning robot detects the first approach signal, it can be determined that the cleaning robot has moved to a second preset distance from the charging pile.
  • the cleaning robot is cylindrical, and its diameter in the horizontal direction is about 30 cm. Since the proximity sensor is usually only arranged at the front end of the cleaning robot, and there is often no proximity sensor at the rear of the cleaning robot, only the front end of the cleaning robot can A first proximity signal is received. When the proximity sensor installed at the front of the cleaning robot receives the first proximity signal, it needs to rotate so that its rear is aligned with the charging pile. When the second preset distance is 20cm, considering the diameter of the cleaning robot itself, the cleaning After the robot rotates, its rear part is about 20cm away from the charging pile, leaving enough space to adjust its own posture, so that it is easy to retreat and contact the charging pile.
  • the second preset distance that can be detected is about It is 60cm.
  • the above methods can also be used simultaneously to ensure that the cleaning robot runs to the set target position.
  • the cleaning robot approaches the charging pile according to the distance between it and the charging pile and docks with the charging pile for charging.
  • the cleaning robot when the cleaning robot is at a second preset distance from the charging pile, the cleaning robot approaches the charging pile and charges with the charging pile, and when the cleaning robot approaches the charging pile, the recharging sensor on the cleaning robot searches for and receives charging.
  • the recharging guidance signal emitted by the charging pile adjusts its posture under the guidance of the recharging guiding signal when the cleaning robot approaches the charging pile, so as to accurately dock with the charging pile for charging.
  • the recharge sensor installed on the cleaning robot may be an infrared encoder or an infrared receiver module (InfraRed Receiver Module, IRM for short).
  • step S123 in the previous embodiment the distance between the cleaning robot and the charging pile is detected according to the first proximity signal, and the specific implementation method may include the following steps:
  • the first proximity signal and the second proximity signal may be infrared signals or ultrasonic signals.
  • the reflector on the charging pile directly reflects the second approach signal back to the cleaning robot
  • the cleaning robot when the cleaning robot transmits the second proximity signal, it records the transmission moment of the second proximity signal, and records the receiving moment of the second proximity signal when it receives the second proximity signal reflected by the charging pile; wherein, the The moment when the second proximity signal is emitted refers to the moment when the cleaning robot emits the second proximity signal.
  • the receiving moment of the second proximity signal refers to the moment when the cleaning robot receives the second proximity signal reflected by the charging pile. and the propagation speed of the second proximity signal to determine the distance between the charging pile and the cleaning robot.
  • the receiver angle can be set in combination with the direction of the charging pile determined by the recharging guidance signal , so that it is easier to receive the second proximity signal reflected by the charging pile, so that the strength of the second proximity signal reflected by the charging pile is greater than the signal strength reflected by obstacles in other directions, and the maximum second proximity signal is selected during signal processing.
  • the receiving moment of the second proximity signal strength is used as the receiving moment of the second proximity signal to calculate the distance between the charging pile and the cleaning robot.
  • the distance between the cleaning robot and the charging pile (the receiving moment of the second proximity signal ⁇ the transmitting moment)/the propagation speed of the second proximity signal.
  • the first proximity signal that can be received by the receiver of the proximity sensor of the cleaning robot is transmitted by the charging pile at the transmission gap ⁇ T of the recharging guidance signal, and the charging pile is charged when the cleaning robot receives the first proximity signal.
  • the second proximity signal is transmitted, and the distance between the cleaning robot and the charging pile is calculated based on the reflected second proximity signal.
  • the second proximity signal is an electromagnetic wave (such as infrared)
  • the timer needs to reach the order of 10-10s or 0.1ns to measure the centimeter-level distance at the speed of light. Therefore, a high-precision timer is usually set on the cleaning robot to record the moment of emission and the moment of reception of the second proximity signal.
  • the present invention does not limit the specific method of calculating the distance between the cleaning robot and the charging pile through the formula of distance, speed and time.
  • a high-precision timer can also be installed on the charging pile, and the starting and ending time of the approach signal can be detected by the charging pile, and calculated to obtain Plot the distance between the robot and the charging pile and send the distance to the cleaning robot.
  • Fig. 15 is a schematic structural diagram of a cleaning robot according to an exemplary embodiment of the present invention.
  • the cleaning robot provided in this embodiment includes: a refill sensor 151 and a proximity sensor 152; wherein,
  • the recharging sensor is used to receive the recharging guidance signal emitted by the charging pile;
  • a proximity sensor for detecting obstacles around the cleaning robot in a non-contact manner includes a transmitter and a receiver; wherein,
  • the cleaning robot When the cleaning robot enters the recharging phase, the cleaning robot turns off the transmitter of the proximity sensor and keeps the receiver of the proximity sensor on;
  • the receiver of the proximity sensor of the cleaning robot receives the first proximity signal, and detects the distance between the cleaning robot and the real-time charging pile according to the first proximity signal;
  • the cleaning robot According to the distance between the cleaning robot and the charging pile, the cleaning robot approaches the charging pile and docks with the charging pile for charging.
  • the cleaning robot usually has multiple proximity sensors, such as two proximity sensors symmetrically arranged in the shell directly in front of the cleaning robot and two proximity sensors symmetrically arranged on both sides of the cleaning robot, a total of 2 groups of 4 proximity sensors 152, As shown in Figure 15.
  • the emitters of all the proximity sensors can be selected to be turned off, or at least one emitter of the proximity sensor can be selectively turned off according to the recharging direction of the cleaning robot and the detection light direction of the proximity sensor.
  • the cleaning robot usually also includes a plurality of recharging sensors. For example, as shown in FIG.
  • two recharging sensors 151 such as infrared sensors
  • a high-frequency (such as 38khz) carrier code signal for recharging and guiding signals where the carrier can be a square wave
  • a total of 4 recharging and guiding signals are searched for and received at the front of the cleaning robot (for example, in step S220 , S320, S340) and the rear (such as in steps S250, S360, S380) recharge guidance signals.
  • the transmitter on the charging pile transmits the recharging guidance signal, and transmits the first approach signal at the transmission gap ⁇ T of the recharging guidance signal, thereby avoiding interference between the recharging guidance signal and the first approach signal, thereby solving the problem of It solves the technical problem that it is difficult to measure the distance between the robot and the charging pile during the recharging process in the prior art.
  • FIG. 13 and the embodiment introduced in conjunction with FIG. 13 which will not be repeated here.
  • the cleaning robot after the cleaning robot receives the first proximity signal emitted by the charging pile, it determines the distance between it and the charging pile or starts to measure the distance between it and the charging pile, specifically, when cleaning
  • the receiver of the proximity sensor of the robot receives the first proximity signal, it turns on the transmitter of the proximity sensor, and transmits the second proximity signal to the charging pile through the transmitter of the proximity sensor, and records the emission moment of the second proximity signal
  • the second proximity signal is reflected by the reflector on the charging pile, and the cleaning robot receives the second proximity signal reflected by the charging pile, and records the receiving moment of receiving the reflected second proximity signal; according to the second proximity signal
  • the transmission time of the second proximity signal, the reception time of the second proximity signal, and the propagation speed of the second proximity signal determine the distance between the cleaning robot and the charging pile.
  • the distance between the cleaning robot and the charging pile (the receiving moment of the second proximity signal ⁇ the transmitting moment)/the propagation speed of the second proximity signal.
  • Fig. 16 is a schematic structural diagram of a charging pile according to an exemplary embodiment of the present invention.
  • the charging pile provided in this embodiment includes: a transmitter 161;
  • the transmitter transmits a refilling guide signal and a first proximity signal, and transmits a first proximity signal during the transmission gap of the refilling guide signal, and the first proximity signal can be received by the receiver of the proximity sensor of the cleaning robot;
  • the recharging guidance signal can be received by the recharging sensor of the cleaning robot.
  • the recharging guidance signal transmitted by the transmitter 161 can guide the cleaning robot to pile up; the first proximity signal transmitted by the transmitter 161 in the transmission gap ⁇ T of the recharging guidance signal can make the cleaning robot calculate the distance between it and the charging pile. The distance between them enables the cleaning robot to load piles more accurately.
  • the charging pile further includes a reflector 162;
  • the reflector 162 is used to reflect the second proximity signal emitted by the transmitter 161 of the proximity sensor of the cleaning robot.
  • the transmitter on the charging pile transmits the recharging guidance signal, and transmits the first approach signal at the transmission gap ⁇ T of the recharging guidance signal, thereby avoiding interference between the recharging guidance signal and the first approach signal, thereby solving the problem of It solves the technical problem that it is difficult to measure the distance between the robot and the charging pile during the recharging process in the prior art.
  • FIG. 13 and the embodiment introduced in conjunction with FIG. 13 which will not be repeated here.
  • the cleaning robot when the cleaning robot receives the first proximity signal emitted by the charging pile, it starts to measure the distance to the charging pile. Specifically, when the receiver of the proximity sensor of the cleaning robot receives the first proximity signal, it starts the proximity The transmitter of the sensor, and transmits the second proximity signal to the charging pile through the transmitter of the proximity sensor, and records the emission time of the second proximity signal; the reflector on the charging pile reflects the second proximity signal, cleaning The robot receives the second proximity signal reflected by the charging pile, and records the receiving moment of the reflected second proximity signal; according to the emission moment of the second proximity signal, the receiving moment of the second proximity signal, and the second proximity signal The propagation speed of determines the distance between the cleaning robot and the charging pile. For a specific determination method, refer to the foregoing embodiments, and details are not repeated here.
  • Fig. 17 is a schematic structural diagram of a cleaning robot system according to an exemplary embodiment of the present invention.
  • the system provided by this embodiment includes: a cleaning robot 171 and a charging pile 172;
  • the charging pile is provided with a transmitter 161 for transmitting the recharging guiding signal and the first approach signal, and transmitting the first approaching signal during the transmission interval ⁇ T of transmitting the recharging guiding signal, and the recharging guiding signal can be cleaned Received by the refill sensor 151 of the robot, the first proximity signal can be received by the receiver of the proximity sensor 152 of the cleaning robot;
  • the receiver of the proximity sensor 152 of the cleaning robot receives the first proximity signal, and detects the distance between the cleaning robot and the charging pile according to the first proximity signal; The distance between the piles is close to the charging pile and docked with the charging pile for charging; wherein, when the cleaning robot enters the recharging stage, the transmitter of its proximity sensor is turned off, while the receiver of its proximity sensor is turned on.
  • Fig. 18 is a schematic diagram of the hardware structure of the cleaning device provided by the embodiment of the present invention.
  • the cleaning device 180 provided in this embodiment includes: at least one processor 1801 and a memory 1802 .
  • the processor 1801 and the memory 1802 are connected through a bus 1803 .
  • At least one processor 1801 executes the computer-executed instructions stored in the memory 1802, so that at least one processor 1801 executes the method for recharging the cleaning robot in the above method embodiments.
  • the electronic device may be a terminal, such as a mobile phone, a computer, and the like.
  • the processor can be a central processing unit (English: Central Processing Unit, referred to as: CPU), and can also be other general-purpose processors, digital signal processors (English: Digital Signal Processor, referred to as: DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, referred to as: ASIC), etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like. The steps of the method disclosed in conjunction with the invention can be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may include high-speed RAM memory, and may also include non-volatile storage NVM, such as at least one disk memory.
  • the bus can be an Industry Standard Architecture (Industry Standard Architecture, ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of the present application are not limited to only one bus or one type of bus.
  • Another embodiment of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the processor executes the computer-executable instructions, the cleaning robot in the above method embodiment is implemented recharge method.
  • the above-mentioned computer-readable storage medium can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable Programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable Programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Readable storage media can be any available media that can be accessed by a general purpose or special purpose computer.
  • An exemplary readable storage medium is coupled to the processor such the processor can read information from, and write information to, the readable storage medium.
  • the readable storage medium can also be a component of the processor.
  • the processor and the readable storage medium may be located in Application Specific Integrated Circuits (ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and the readable storage medium can also exist in the device as discrete components.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the program executes the steps including the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

提供了一种清洁机器人的回充方法和清洁机器人系统,方法包括:确定充电桩的方向(S310);清洁机器人沿第一方向向充电桩方向运行靠近充电桩(S320);实时检测清洁机器人与充电桩之间的距离(S330);根据清洁机器人与充电桩之间的距离判断清洁机器人是否已运行到目标位置,目标位置在充电桩前方且距离充电桩第二预设距离处(S340);当清洁机器人运行至目标位置时,旋转设定角度(S350);清洁机器人后退靠近充电桩并与充电桩预接触(S360);清洁机器人向其正向运行第一预设距离(S370);清洁机器人后退靠近充电桩并与充电桩对接进行充电(S380)。使得清洁机器人能更精准地调整姿态,从而实现精准上桩充电,降低了由于清洁机器人上桩不准确导致的回充失败几率,提高了回充成功率。

Description

清洁机器人的回充方法和清洁机器人系统
本申请要求于2021年05月28日提交中国专利局、申请号为202110606579.6、申请名称为“清洁机器人的回充方法和清洁机器人系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及清洁机器人技术领域,尤其涉及一种清洁机器人的回充方法和清洁机器人系统。
背景技术
随着科技的发展,人们的生活中使用的家电也逐渐往智能化方向发展,其中,清洁机器人就广泛应用于办公室和家庭的清洁工作中,比如使用清洁机器人进行地板清扫。
相关技术中,清洁机器人在工作一段时间后可自动移动到充电桩进行充电。通常,充电桩在通电后即可不断向外发出回充引导信号;当清洁机器人需要回充时,其回充传感器接收到充电桩的回充引导信号,并在回充引导信号的指引下移动到充电桩上进行充电。
但是,在实际应用时存在如下缺陷:清洁机器人与充电桩有时对接不准确,导致回充可能失败。
发明内容
本发明实施例提供一种清洁机器人的回充方法和清洁机器人系统,以解决现有技术中清洁机器人与充电桩对接不准确,导致回充失败的问题。
本发明实施例的第一方面提供一种清洁机器人的回充方法,包括:
确定充电桩的方向;
清洁机器人沿第一方向向所述充电桩方向运行,靠近充电桩;
实时检测清洁机器人与所述充电桩之间的距离;
根据清洁机器人与所述充电桩之间的距离判断所述清洁机器人是否已运行到目标位置,所述目标位置在所述充电桩前方且距离所述充电桩第二预设距离处;
当所述清洁机器人运行至预先确定的目标位置时,旋转设定角度;
清洁机器人后退靠近充电桩,并与所述充电桩预接触;
清洁机器人向其正向运行第一预设距离;
清洁机器人后退靠近充电桩,并与充电桩对接进行充电。
本发明实施例的第二方面提供一种清洁机器人系统,包括:充电桩和清洁机器人,所述清洁机器人包括:
确定单元,用于确定充电桩的方向;
运动单元,用于带动清洁机器人运动;
检测单元,用于实时检测清洁机器人与所述充电桩之间的距离;
控制单元,用于控制所述清洁机器人沿第一方向向所述充电桩方向运行,靠近充电桩;并根据清洁机器人与所述充电桩之间的距离判断所述清洁机器人是否已运行到所述目标位置,所述目标位置在所述充电桩前方且距离所述充电桩第二预设距离处,
控制单元,还用于控制所述清洁机器人在所述清洁机器人运行至预先确定的目标位置时,控制清洁机器人旋转设定角度,并控制清洁机器人后退靠近充电桩,与所述充电桩预接触,控制清洁机器人向其正向运行第一预设距离;控制清洁机器人后退靠近充电桩,并与充电桩对接进行充电。
本发明实施例的第三方面提供一种清洁机器人的回充方法,包括:
充电桩上的发射器发射回充引导信号和第一接近信号,所述充电桩在发射回充引导信号的发射间隙发射第一接近信号,所述回充引导信号能被清洁机器人的回充传感器接收,所述第一接近信号能够被清洁机器人的接近传感器的接收器接收;
当清洁机器人进入回充阶段时,清洁机器人关闭接近传感器的发射器,保持接近传感器的接收器处于开启状态;
清洁机器人的接近传感器的接收器接收第一接近信号,并根据所述第一接近信号检测所述清洁机器人与所述充电桩之间的距离;
所述清洁机器人根据其与所述充电桩之间的距离靠近充电桩并与充电桩对接进行充电。
本发明实施例的第四方面提供一种清洁机器人,包括:
回充传感器,用于接收充电桩发射的回充引导信号;
接近传感器,用于非接触地检测清洁机器人周围的障碍物,所述接近传感器包括发射器和接收器;其中,
当清洁机器人进入回充阶段时,清洁机器人关闭接近传感器的发射器,保持接近传感器的接收器处于开启状态;
清洁机器人的接近传感器的接收器接收第一接近信号,并根据所述第一接近信号检测所述清洁机器人与实时充电桩之间的距离;
所述清洁机器人根据其与所述充电桩之间的距离靠近充电桩并与充电桩对接进行 充电。
本发明实施例的第五方面提供一种充电桩,包括:发射器;
所述发射器发射回充引导信号和第一接近信号,且在发射回充引导信号的发射间隙发射第一接近信号,所述第一接近信号能够被清洁机器人的接近传感器的接收器接收;所述回充引导信号能被清洁机器人的回充传感器接收。
本发明实施例的第六方面提供一种清洁机器人系统,包括:清洁机器人和充电桩;
所述充电桩上设置有发射器,用于发射回充引导信号和第一接近信号,并在发射回充引导信号的发射间隙发射第一接近信号,所述回充引导信号能被清洁机器人的回充传感器接收,所述第一接近信号能够被清洁机器人的接近传感器的接收器接收;
清洁机器人的接近传感器的接收器接收所述第一接近信号,并根据所述第一接近信号检测所述清洁机器人与所述充电桩之间的距离;所述清洁机器人根据其与所述充电桩之间的距离靠近充电桩并与充电桩对接进行充电;其中,清洁机器人在进入回充阶段时,其接近传感器的发射器关闭,而其接近传感器的接收器处于开启状态。
本发明实施例的第七方面提供一种清洁设备,包括:至少一个处理器和存储器;
所述存储器存储计算机执行指令;
所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行本发明实施例第一方面或第三方面提供的清洁机器人的回充方法。
本发明实施例的第八方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现本发明实施例的第一方面或第三方面提供的清洁机器人的回充方法。
本发明实施例实现了清洁机器人的充电触片与充电桩对应的充电触点之间的精准对接(这一过程也称之为清洁机器人上桩),使得清洁机器人能够自动充电,大大降低了由于清洁机器人上桩不准确导致的回充失败的几率,提升了回充成功率。
本发明实施例提供一种清洁机器人的回充方法和系统,利用充电桩上的发射器在发射回充引导信号的发射间隙发射第一接近信号,使清洁机器人的接近传感器的接收器在接收到或接收到足够强度的第一接近信号时,即可知道其与充电桩的大体距离,从而能够根据清洁机器人与充电桩之间的距离可靠回充。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一示例性实施例示出的清洁机器人的回充方法的应用场景图;
图2是本发明一示例性实施例示出的清洁机器人的回充方法的流程示意图;
图3是本发明另一示例性实施例示出的清洁机器人的回充方法的流程示意图;
图4是本发明另一示例性实施例示出的清洁机器人的回充方法的流程示意图;
图5是本发明另一示例性实施例示出的清洁机器人的回充方法的流程示意图;
图6a是本发明一示例性实施例示出的充电桩发射的定向信号覆盖示意图;
图6b是本发明一示例性实施例示出的清洁机器人中轴线位置示意图;
图7是本发明一示例性实施例示出的清洁机器人向充电桩运行的过程示意图;
图8是本发明一示例性实施例示出的清洁机器人对接充电桩的过程示意图;
图9是本发明另一示例性实施例示出的清洁机器人对接充电桩的过程示意图;
图10是本发明一示例性实施例示出的清洁机器人向充电桩运行的过程示意图;
图11是本发明另一示例性实施例示出的清洁机器人向充电桩运行的过程示意图;
图12是本发明另一示例性实施例示出的清洁机器人的回充方法的流程示意图;
图13是本发明一示例性实施例示出的充电桩发射信号的示意图;
图14是本发明另一示例性实施例示出的计算清洁机器人与充电桩间距的方法的流程示意图;
图15是本发明一示例性实施例示出的清洁机器人的结构示意图;
图16是本发明一示例性实施例示出的充电桩的结构示意图;
图17是本发明一示例性实施例示出的清洁机器人系统的结构示意图;
图18是本发明一示例性实施例示出的清洁设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或 单元。
图1是现有技术的清洁机器人的回充方法的应用场景图。现有技术中,随着科技的发展,人们的生活中使用的家电也逐渐往智能化方向发展,其中,清洁机器人就广泛应用于办公室和家庭的清洁工作中,比如使用清洁机器人进行地板清扫。相关技术中,清洁机器人102在工作一段时间后检测到需要充电时,可自动移动到充电桩101进行充电(即上桩),充电桩101在通电后会不断发出回充引导信号,形成回充引导信号覆盖区域103;清洁机器人上设置有专门用于接收回充引导信号的回充传感器,在需要回充时寻找并接收回充引导信号,在回充引导信号的指引下向充电桩靠近并移动到充电桩101上进行充电,如图1所示。为了便于清洁机器人102顺利与充电桩101对接从而实现自动充电,通常的清洁机器人102会以其头部附近的充电触片接触充电桩101的充电触点;但是在一些情况下,需要在清洁机器人102后部安装充电触片,以其后部与充电桩101对接实现自动充电,对于该类清洁机器人,其后部充电触片不易与充电桩的充电触点对接成功,往往导致回充失败。
针对此缺陷,本发明的技术构思主要在于:通过清洁机器人先确定充电桩所在方向,然后沿第一方向向充电桩运行,靠近充电桩;当清洁机器人运行到预先确定的目标位置时,旋转设定角度;旋转之后清洁机器人沿其正向运行第一预设距离,然后后退靠近充电桩,实现清洁机器人与充电桩对接从而进行自动充电。由于清洁机器人在向充电桩运行且到达目标位置时先旋转设定角度,然后再向其正向(也即远离充电桩)的方向运行一段距离,再后退靠近充电桩,使得清洁机器人具有较长距离可以更精准的调整姿态,从而提高了清洁机器人的充电触片与充电桩对应的充电触点之间的精准对接(这一过程也称之为清洁机器人上桩)的成功率,使得清洁机器人能够自动上桩充电,提高了清洁机器人自动回充的成功率。
图2是本发明一示例性实施例示出的清洁机器人的回充方法的流程示意图,本发明实施例提供的方法的执行主体可以是清洁机器人。
如图2所示,本实施例提供的方法可以包括以下步骤。
S210,确定充电桩的方向。
具体的,充电桩在连接电源通电后,通常会持续发射回充引导信号,回充引导信号可以是定向引导信号,比如Z信号,其中,Z信号的覆盖范围是以充电桩101为中心,以预设距离为半径的扇形区域(如图6a所示)或锥形区域,定向引导信号的覆盖区域还可以是椭圆形或其它任何由回充引导信号的覆盖范围可能形成的非对称形状。在本发明的一些实施例中,清洁机器人的前部和后部分别对称设置有能够接收回充引导信号的多个回充传感器(比如红外传感器,用以接收例如高频(比如38khz)载波编码信号的回充引导信号,其中的载波可以是方波),在清洁机器人102需要充电时,通过其回充传感器不断寻找充电桩101发出的回充引导信号;当清洁机器人102进入回充引导信号覆盖区域103,回充传感器感应到回充引导信号,则沿着回充引导信号可以确定充电桩101的方向。在有的实施例中,清洁机器人的传感器能测量其与充电桩的距离(比如其接近传感器),则可能沿着充电桩的方向进一步确定充电桩的位置。
在一种可能的实施例中,清洁机器人上还可以设置摄像头(比如在清洁机器人顶部平面设置斜向上或垂直向上的第一摄像头,和/或在其前部设置斜向上或水平向前的第二摄像头,和/或在其后部设置拍摄后部图像的第三摄像头),通过摄像头实时采集周围环境的图像,然后根据图像来确定充电桩的位置。
S220,清洁机器人沿第一方向向所述充电桩方向运行,靠近充电桩。
具体的,清洁机器人确定了充电桩的方向后,以第一方向向充电桩方向运行,如图8中的a所示,第一方向可以为清洁机器人正向靠近充电桩的方向。清洁机器人在靠近充电桩的运行过程中,通过自身的回充传感器不断搜索充电桩发射的回充引导信号,以确保清洁机器人距离充电桩越来越近。当然所述第一方向也可以与充电桩的方向不同,而是以其它运行方式(比如以弧线或S形曲线方式,或以垂直于清洁机器人初始位置与充电桩的连线方向以接近垂直的折线或弓字形路线等方式曲折前进)使得清洁机器人逐渐靠近充电桩。
S230,当所述清洁机器人运行至预先确定的目标位置时,旋转设定角度。
示例性的,以预先确定的目标位置是充电桩所在位置为例,说明所述清洁机器人如何运行至预先确定的目标位置,即图8中由位置a运行到位置b的过程。参见图7,假设清洁机器人包括四个回充传感器,这四个回充传感器平均分为两组分别安装在清洁机器人的前部和后部且对称地位于其中轴线两侧(分别称为左侧和右侧),在图7中每个清洁机器人上的左箭头代表设置在清洁机器人左侧的前部和后部的两个回充传感器(均记为s1),右箭头代表设置在清洁机器人右侧的前部和后部的两个回充传感器(均记为s2)。充电桩在通电后持续发射回充引导信号,本实施例中,回充引导信号分别为A信号、B信号和Z信号,Z信号为覆盖充电桩正面中央区域的定向引导信号,A信号、B信号的覆盖区域对称设置在Z信号覆盖区域的两侧,且A信号和B信号均与Z信号有重叠区域,重叠区域分别为A+Z(即同时被A信号和Z信号覆盖的区域)和B+Z(即同时被B信号和Z信号覆盖的区域),两个重叠信号区域中间形成的单独的只有Z信号的区域即为对接中心区域。清洁机器人上的两个前部回充传感器搜索充电桩发射的回充引导信号,当清洁机器人进入回充引导信号覆盖区域后,根据两个回充传感器感应的回充引导信号的种类来调整清洁机器人的运行姿态。
下面结合图7以具体例子描述清洁机器人向充电桩运行的过程,当清洁机器人运行到1号位置时,清洁机器人的前左回充传感器s1感应到A信号,而前右回充传感器s2在1号位置没有感应到A信号,则清洁机器人在向前运行的同时稍微向逆时针方向转一定角度,清洁机器人运行到2号位置,此时前部两个回充传感器s1和s2均能检测到A信号;然后两个回充传感器继续寻找A信号和Z信号的重叠区域,当运行到3号位置时,前部两个回充传感器s1、s2均能检测到A信号和Z信号,随后清洁机器人继续向前运行;当运行到4号位置时,前右回充传感器s2已经离开了A信号覆盖区域,只能感应到Z信号,而此时的前左回充传感器s1仍处于A信号与Z信号的重叠区域内,此时清洁机器人继续前进的同时稍微逆时针旋转一定角度;当清洁机器人的前部两个回充传感器s1和s2均已离开A信号覆盖区域,因此只能接收到Z信号时,清洁机器人向逆时针方向旋转一定角度,使得其前部两个回充传感器仍保持均只能感应到 Z信号,而不能感应到A信号和B信号;然后,清洁机器人继续直线运行,始终保持前部两个回充传感器均只能检测到Z信号,最终运行到5号位置靠近充电桩。
需要说明的是,上面例子仅仅是示例性的说明了清洁机器人如何通过其自身的前部回充传感器寻找充电桩上的回充引导信号,以及如何在回充引导信号的指引下接近充电桩,本发明并不限制回充引导信号的数量、形式以及清洁机器人上回充传感器的数量、形式、类型、以及设置位置。而在实际应用中,清洁机器人也有可能从不同方向向充电桩运行。
在一些实施例中,预先确定的目标位置可以是充电桩所在位置,当清洁机器人以第一方向运行至充电桩位置(如图8中的b所示)时,旋转设定角度,可以根据充电桩的位置以及清洁机器人相对于充电桩的姿态确定预设角度。示例性地,该设定角度可以根据清洁机器人到达充电桩位置时测量得到的其中轴线与充电桩的对接中心区域的中心线(可以简称为充电桩的正向)之间的角度来确定。在有的实施例中,旋转的预设角度也可以直接设为180度,而不考虑上述的测量角度。在本发明的一些实施例中,也可以通过使其旋转预设角度后,使清洁机器人的后部正对着充电桩(即旋转预设角度后,使清洁机器人的中轴线与充电桩的正向之间的角度为180度),而确定需要旋转的上述预设角度,如图8的c所示。当然也可以旋转预设角度后使清洁机器人的后部并非正对着充电桩,而是其中轴线与充电桩的正向成锐角,其中,清洁机器人的中轴线根据清洁机器人设定的正向运行方向来确定(对于俯视图为圆形、方形或D字形的对称图形清洁机器人,其正向运行方向(或称为运行正向)也恰好是其俯视图的对称图形的对称轴)。比如,如果清洁机器人是左右对称的圆形(俯视图),其正向运行方向为图6b中所示的前方,则中轴线就是其正向运行方向所在的直线,如图6b所示,中轴线的两端分别指向清洁机器人的正向运行方向及其反方向。
需要说明的是,清洁机器人还可以是方形、多边形等形状,其中轴线的具体位置根据其实际形状或清洁机器人的运行正向来确定,此处不再一一举例。
S240,清洁机器人向其正向运行第一预设距离。
具体的,清洁机器人在运行至充电桩并旋转设定角度(即上述步骤S230)之后,清洁机器人后部对着充电桩,其正向为远离充电桩的方向。清洁机器人向其正向运行第一预设距离,远离充电桩,如图8中的d所示。
在一些实施例中,第一预设距离的取值范围是40厘米至60厘米。当然第一预设距离也可以设置为其它距离。
S250,清洁机器人后退靠近充电桩,并与充电桩对接进行充电。
在一些实施例中,清洁机器人在远离充电桩第一预设距离后,再依靠对称设置在其后部的回充传感器检测回充引导信号而后退靠近充电桩,在此过程中,清洁机器人有充分的空间和时间根据接收到的回充引导信号调整其位姿,使得清洁机器人在上桩时,其后部的充电触片与充电桩的充电接口能够精准对接,通常而言,清洁机器人底部设置有用于充电的金属触片,相对应地,充电桩上设置有能与充电触片紧密接触的充电接口,充电接口可以是金属的触点,如图8中的e所示。当然清洁机器人与充电 桩之间的充电方式也可以是其它形式的充电方式,比如清洁机器人和充电桩上分别设置有可匹配使用的无线充电的线圈,以实现无线充电。本发明不限制清洁机器人与充电桩之间的充电方式。
本实施例中,由于清洁机器人在向充电桩运行时,在到达目标位置时先旋转设定角度,使其后部对着充电桩,然后清洁机器人再向其正向(也即远离充电桩)运行一段距离,再后退靠近充电桩,使得清洁机器人具有更多的空间和时间调整回充姿态(方向和距离),从而实现精准上桩充电,大大降低了由于清洁机器人上桩不准确导致的回充失败的几率,提高了回充成功率。
图3是本发明另一示例性实施例示出的清洁机器人的回充方法的流程示意图。
需要说明的是,在一些实施例中,预先确定的目标位置还可以是充电桩前方且距离充电桩第二预设距离处,本实施例将在图2所示实施例的基础上,进一步介绍清洁机器人与充电桩的另一种对接方法。
如图3所示,本实施例提供的方法可以包括以下步骤。
S310,确定充电桩的方向。
S320,清洁机器人沿第一方向向所述充电桩方向运行,靠近充电桩。
其中,清洁机器人沿第一方向向充电桩运行的过程如图9中的a所示。
需要说明的是,本实施例中的步骤S310和S320的详细过程可参考图2所示实施例中步骤S210和S220中的描述,此处不再重复说明。
S330,实时检测清洁机器人与所述充电桩之间的距离。
S340,根据清洁机器人与所述充电桩之间的距离判断所述清洁机器人是否已运行到目标位置,所述目标位置在所述充电桩前方且距离所述充电桩第二预设距离处。
在一些实施例中,可以在清洁机器人前部、侧面和/或上部设置检测其与环境中水平方向上的障碍物之间距离的测距传感器,比如可以用通常设置在清洁机器人上的接近传感器作为测距传感器。一般而言,清洁机器人本身已有的接近传感器用于无差别检测环境中的障碍物,而不会分辨该障碍物是充电桩还是其它障碍物,因此如果测距传感器是使用清洁机器人本身已有的接近传感器,那就还需要结合清洁机器人上的回充传感器接收到充电桩发出的回充引导信号并对整个回充逻辑做调整才有可能判断充电桩,并获取清洁机器人与充电桩的距离。
所述测距传感器或接近传感器可以是红外对管、激光雷达(激光探测测距仪Light Detection and Ranging,简称LIDAR激光雷达;比如Time Of Flight即飞行时间传感器,简称TOF,就是一种激光雷达)、或者超声波测距仪等中的至少一种。
若测距传感器是TOF或超声波测距仪,由于其都是利用l=v·t,即“距离=速度×时间”计算得到距离l,则其具体测距步骤如图5示例,具体如下:
S331,由测距传感器的发射器实时向周围环境中发出探测光线或探测超声波,并记录发出探测光线或探测超声波的发射时间。
S332,测距传感器的接收器实时接收被周围环境中障碍物反射的特定频率的反射光线或反射超声波,并记录接收到所述反射光线或反射超声波的接收时间。
S333,根据某束探测光线或探测超声波的发射时间以及相应的接收时间得到同一束光线从发射到接收的时间,并根据上述距离速度时间公式l=v·t,即“距离=速度×时间”以及根据探测介质光线或超声波在空气中的传播速度,即可计算得到清洁机器人和充电桩之间的距离。
若所述测距传感器或接近传感器是红外对管,其原理与上述通过距离速度时间公式计算距离的方式不同。红外对管属于光电开关,光电开关通过检测在某个设定距离上是否有障碍物遮挡并反射了检测媒介(用于检测距离的电磁波比如红外线等)从而获取在该设定距离上是否有障碍物的信息,即在该设定距离上有障碍物就触发该开关,而如果在设定距离上没有障碍物就不触发该开关,所以其测量的是固定距离(即上述设定距离)而不是如距离速度时间公式那种可变距离,但也属于本发明中的测距传感器。
本实施例中,上述设定距离即为在所述充电桩前方且距离所述充电桩的第二预设距离。以红外对管为例,其具有彼此成一定角度的发射端和接收端,当与红外对管相距第二预设距离处有不透光障碍物时,红外对管的发射端与接收端的角度设置为:发射端发出的红外探测线照射到障碍物上时被反射,且其反射线恰好被接收端接收到,使得该光电开关被触发,从而通知清洁机器人在该第二预设距离处有障碍物(比如充电桩);而如果在第二预设距离上没有障碍物,则发射端发出的光线则不会在该第二预设距离处被反射,因此接收端接收不到发射端发出的红外探测线的反射线,该开关不被触发,使清洁机器人感知该第二预设距离处没有障碍物(充电桩)。
在本实施例中,可以将上述开关类传感器的第二预设距离(即设定距离)设置为所述目标位置,则清洁机器人就可以在逐渐靠近充电桩时确定何时到达了充电桩的目标位置。
在有的实施例中,第二预设距离的取值范围可以是20厘米至60厘米。
在一种可能的实施方式中,目标位置为充电桩正前方且距离充电桩20~60厘米处,当清洁机器人向充电桩运行时,通过测距传感器实时测量其与充电桩之间的距离,当清洁机器人在充电桩前方且两者之间距离为20厘米或60厘米或20~60厘米之间任意位置或20~60厘米之间某个设定比例处时(如图9中的b所示),确定清洁机器人已经运行至目标位置。当然第二预设距离也可以设置为其它的距离或距离范围。
在另一种可能的实施例中,所述实时检测清洁机器人与所述充电桩之间的距离,根据清洁机器人与所述充电桩之间的距离判断所述清洁机器人是否已运行到所述目标位置,包括:
清洁机器人关闭接近传感器的发射器,保持接近传感器的接收器处于开启状态;清洁机器人的接近传感器的接收器接收第一接近信号,并根据所述第一接近信号判断所述清洁机器人是否运行至所述目标位置,所述第一接近信号是充电桩上的发射器发射的、能被清洁机器人上的接近传感器的接收器接收的接近传感器信号;所述第一接 近信号是在充电桩上发射的回充引导信号的发射间隙发射的。所述回充引导信号能被清洁机器人的回充传感器接收;所述第一接近信号能够被清洁机器人的接近传感器的接收器接收。
具体的,通常清洁机器人会有多个接近传感器,比如对称布置在清洁机器人正前方外壳内的两个接近传感器以及对称布置在清洁机器人两侧的两个接近传感器,共2组4个接近传感器,每个接近传感器如上所述包括至少一个发射器以及一个与该发射器匹配的接收器。当清洁机器人进入回充阶段时,可以选择关闭全部接近传感器的发射器,也可以根据清洁机器人的回充方向以及接近传感器的检测光线方向选择性地关闭至少一个接近传感器的发射器。同时,清洁机器人保持接近传感器的接收器处于开启状态,以便于接收充电桩发射的第一接近信号。
充电桩上设置有发射器,用来发射回充引导信号和第一接近信号,其中,充电桩上的发射器按一定频率发射回充引导信号(若是图7所示的三个回充引导信号B、Z、A,则可以依一定的顺序,比如B、Z、A顺序或A、B、Z顺序等,每个时间间隔Δt发出一种回充引导信号,则发射完一轮该三种回充引导信号共需3Δt的时间;当然也可以同时发射两种或三种回充引导信号,比如在第一个时间间隔Δt同时发射A、B信号,在第二个时间间隔Δt再发出Z信号,此时发射完一轮回充引导信号只需2Δt的时间,再比如在第一个时间间隔Δt同时发出A、B、Z三个回充引导信号,则此时发射完一轮回充引导信号只需1×Δt时间),即每隔一段时间间隔发射一轮回充引导信号(也称为发射一次回充引导信号),在上一轮与下一轮发射回充引导信号之间会有一个发射间隙ΔT不发射任何回充引导信号。本发明的实施例中,充电桩在发射回充引导信号的发射间隙ΔT发射第一接近信号,从而避免了回充引导信号与第一接近信号之间互相发生干扰,从而解决了现有技术中难以实现在回充过程中测量清洁机器人与充电桩之间距离的技术问题。比如,如图13所示,回充引导信号包括A、B以及Z信号,第一个时间间隔Δt发射A信号,第二个时间间隔Δt发射Z信号,第三个时间间隔Δt发射B信号,然后会有一个回充引导信号的发射间隙ΔT内不发射任何信号,因此,可以在发射完该论回充引导信号后的发射间隙ΔT内发射第一接近信号,然后再发射下一轮回充引导信号;这样,通过该第一接近信号使清洁机器人知道其与充电桩之间的距离,而且还可以避免回充引导信号与第一接近信号之间互相干扰,从而保证清洁机器人上的接收器通过接收第一接近信号测量其与充电桩之间的距离。
在本实施例一种可能的情况下,所述根据所述第一接近信号判断所述清洁机器人是否运行至预先确定的目标位置,包括:清洁机器人检测是否接收到第一接近信号,当检测到所述第一接近信号时,确定所述清洁机器人运行至所述目标位置处;和/或清洁机器人检测接收到的第一接近信号的信号强度,当所述信号强度大于或等于预设强度阈值时,确定所述清洁机器人运行至所述目标位置处。
具体的,目标位置在充电桩前方且距离充电桩第二预设距离处,第二预设距离的取值范围可以是20厘米至60厘米,当清洁机器人运行到目标位置时旋转预设角度后,使清洁机器人的后部正对着充电桩,清洁机器人旋转之后,后部与充电桩的距离大概也在20厘米到60厘米之间,使得充电桩后退对接充电桩时,有足够的空间调整自身 位姿,便于后退与充电桩精准对接。在一些实施例中,第一接近信号可以是峰值约为0.03mW的方波,频率为100hz或666hz,清洁机器人在距离充电桩大约30cm范围内即可检测到该第一接近信号。因此,当清洁机器人检测到第一接近信号时即可确定所述清洁机器人运行至与所述充电桩距离第二预设距离处。
在一个实施例中,清洁机器人为圆柱形,其在水平方向的直径为约30cm,由于通常只有在清洁机器人前端设置接近传感器,而清洁机器人的后部往往没有接近传感器,因此只有清洁机器人前端可以接收第一接近信号。当设置在清洁机器人前部的接近传感器接收到第一接近信号后,需要旋转以使其后部对准充电桩,当第二预设距离为20cm时,考虑到清洁机器人自身的直径尺寸,清洁机器人旋转以后其后部距离充电桩大约为20cm,留有比较充足的空间以调整其自身位姿,便于后退与充电桩接触。
在一些实施例中,还可以通过清洁机器人检测接收到的第一接近信号的信号强度来确定清洁机器人是否运行到距离充电桩第二预设距离处。具体的,清洁机器人距离充电桩越近,检测到的第一接近信号的信号强度值就越高,如果调整第一接近信号的功率或预设强度阈值,可以改变第二预设距离的范围,比如第一接近信号功率峰值调整为0.06mW,而保持预设强度阈值不变,则第二预设距离则可以达到35cm。如果保持第一接近信号的功率仍为0.03mW,而降低预设强度阈值到最小值(即接近传感器器件本身能够接收到第一接近信号的极限值),能够检测到的第二预设距离大约为60cm。
上述方法也可以同时使用,以保证清洁机器人运行至设定的目标位置处。
S350,当所述清洁机器人运行至所述目标位置时,旋转设定角度。
在一些实施例中,预先确定的目标位置可以是距离充电桩20~60厘米处的位置,当清洁机器人至目标位置(如图9中的b所示)时,旋转设定角度,可以根据充电桩的位置以及清洁机器人相对于充电桩的姿态确定预设角度。示例性地,该设定角度可以根据清洁机器人到达充电桩位置时测量得到的其中轴线与充电桩的对接中心区域的中心线(可以简称为充电桩的正向)之间的角度来确定。在有的实施例中,旋转的预设角度也可以直接设为180度,而不考虑上述的测量角度。在本发明的一些实施例中,也可以通过使其旋转预设角度后,使清洁机器人的后部正对着充电桩(即旋转预设角度后,使清洁机器人的中轴线与充电桩的正向之间的角度为180度),而确定需要旋转的上述预设角度,如图9的c所示。当然也可以旋转预设角度后使清洁机器人的后部并非正对着充电桩,而是其中轴线与充电桩的正向成锐角,使得清洁机器人的后部对准充电桩。
S360,清洁机器人后退靠近充电桩,并与所述充电桩预接触。
具体的,由于清洁机器人运行至目标位置时,距离充电桩还有一段距离(第二预设距离),因此,当清洁机器人在目标位置旋转之后,后退靠近充电桩,实现与充电桩的预接触,并尝试使清洁机器人后部的充电触片与充电桩的充电接口对接,比如尝试使清洁机器人上的两个充电触片与充电桩上的两个充电触点对应接触,如图9中的d所示。
本实施例中,由于清洁机器人旋转时所在的目标位置为充电桩前方且距离充电桩第二预设距离(比如20~60厘米)处,因此,清洁机器人旋转之后可直接后退上桩,若此时清洁机器人的充电触片与充电桩上的充电接口能够恰好对准,则节省了清洁机器人的上桩时间。然而有的情况下,即使清洁机器人上的充电触片与充电桩的充电触点之间能够对接,但由于接触不稳固、或对接角度有少许的偏差,都可能在充电过程中使充电触片与充电触点发生自动脱离,导致无法完成充电过程。为避免该问题,保险起见,经常还增加以下步骤使清洁机器人的充电触片与充电桩的充电触点之间实现更稳定的接触和充电。
在一种可能的实施例中,参见图4,清洁机器人回充的方法在图3所示的上述方法步骤之后,还可以包括以下步骤。
S370,清洁机器人向其正向运行第一预设距离。
在一些实施例中,参见图9中的e,清洁机器人在与充电桩预接触之后,再远离充电桩运行第一预设距离,在一些实施例中,该第一预设距离的取值范围可以是40厘米至60厘米,比如第一预设距离可以是50厘米。实施该步骤可能有两种情况,第一种情况是,无论在实施步骤S360之后,清洁机器人是否与充电桩对接成功,均直接实施步骤S370;第二种情况是,只有在清洁机器人在实施步骤S360之后未与充电桩对接成功后,清洁机器人才实施步骤S370。这两种情况的区别在于,第一种情况不需要判断清洁机器人与充电桩是否对接成功,即不需要判断清洁机器人后部的充电触片是否与充电桩的充电触点分别接触上;而第二种情况需要判断清洁机器人与充电桩是否对接成功。
S380,清洁机器人后退靠近充电桩,并与充电桩对接进行充电。
在一些实施例中,清洁机器人在距离充电桩第一预设距离后,再后退靠近充电桩,由于清洁机器人在此过程中总体上是直行前进直行后退,能够有效避免上桩时由于对接角度的微小偏差导致清洁机器人的充电触片与充电桩的充电触点之间的对接稳定性不可控的问题,从而使得清洁机器人后部的充电触片与充电桩的充电接口(比如充电桩上的两个充电触点)实现精准对接,如图9中的f所示。
本实施例中,首先清洁机器人与充电桩预接触,然后再远离充电桩,最后再次后退上桩,这一过程能够使得清洁机器人有足够的时间和空间去调整上桩时的姿态,使得与充电桩的对接更加精确,减少了回充失败的可能性。
在一些实施例中,清洁机器人的回充方法还可以包括:清洁机器人在后退靠近充电桩的过程中,根据所述充电桩发射的回充引导信号调整运行姿态,使所述清洁机器人的后退方向基本上在所述充电桩的前方的对接中心区域内,从而使清洁机器人后部的充电触片更容易与充电桩上的充电触点对准,提高清洁机器人上桩的成功几率。当然在此过程中,清洁机器人也可能在回充的某些时刻越出充电桩的对接中心区域,但在回充引导信号的指引下仍会回到充电桩的对接中心区域内。回充引导信号指引清洁机器人进入充电桩的对接中心区域的具体方式如上所述,此处不再赘述。
具体的,参见图10,对称设置在清洁机器人后部的多个回充传感器检测到充电桩 发出的回充引导信号,引导清洁机器人后退向充电桩靠近的过程,清洁机器人可能不在充电桩的正前方运行,而可能是从侧面(比如图10中的位置D处)开始向充电桩靠近。当清洁机器人进入到充电桩发射的回充引导信号的覆盖区域时,根据回充引导信号调整运行姿态,使清洁机器人逐渐运行到充电桩的对接中心区域上(如图10中的位置E处),然后,继续根据回充引导信号调整姿态,使得清洁机器人的运行方向尽可能一直在对接中心区域内,如图11所示,姿态调整后的清洁机器人的运行方向基本上在充电桩的对接中心区域内向充电桩靠近。
需要说明的是,本实施例中,调整清洁机器人的运行姿态,以使所述清洁机器人的运行方向与所述充电桩的正前方的对接中心区域对准的实现原理可以参考图7对应的相关实施例中的描述,此处不再重复说明。
可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。
在本发明一示例性实施例中,提供一种清洁机器人系统,包含如图1所示的充电桩101和清洁机器人102,其中,所述清洁机器人包括:
确定单元,用于确定充电桩的方向;
运动单元,用于带动清洁机器人运动;所述运动可以是前进、后退、原地旋转、以及上述运动方式的各种组合,所述运动可以是匀速运动、变速运动(包括加速、减速)、或加速减速/加速减速匀速任意组合的交替运动,本发明不限定运动的具体形式;所述运动单元可以是各种运动组件,比如多足运动系统、轮组、履带等,本发明不限定运动单元的具体形式。
控制单元,用于控制所述清洁机器人沿第一方向向所述充电桩方向运行,靠近充电桩;
所述控制单元还用于当所述清洁机器人运行至预先确定的目标位置时,控制清洁机器人旋转设定角度;
所述控制单元还用于控制清洁机器人向其正向运行第一预设距离;
所述控制单元还用于控制清洁机器人后退靠近充电桩,并与充电桩对接进行充电。
进一步的,所述目标位置在所述充电桩前方且距离所述充电桩第二预设距离处,所述清洁机器人还包括检测单元,所述检测单元在确定单元确定充电桩方向之后,用于实时检测与所述充电桩之间的距离;所述控制单元具体还用于根据与所述充电桩之间的距离判断所述清洁机器人是否已运行到所述目标位置;所述清洁机器人向其正向运行第一预设距离之前,所述控制单元具体用于:控制清洁机器人后退靠近所述充电桩,并与所述充电桩预接触。
进一步的,所述目标位置在充电桩上。
进一步的,所述控制单元具体用于:清洁机器人在向所述充电桩靠近的过程中,根据所述充电桩发射的回充引导信号调整运行姿态,以使所述清洁机器人的运行方向 与所述充电桩的正前方的对接中心区域对准。
本实施例中各个模块的详细功能描述请参考有关该方法的实施例中的描述,此处不做详细阐述说明。
图12是本发明另一示例性实施例示出的清洁机器人的回充方法的流程示意图。
如图12所示,本实施例提供的方法可以包括以下步骤。
S121,充电桩上的发射器发射回充引导信号和第一接近信号,所述充电桩在发射回充引导信号的发射间隙发射第一接近信号,所述回充引导信号能被清洁机器人的回充传感器接收,所述第一接近信号能够被清洁机器人的接近传感器的接收器接收。
其中,充电桩可以采用同一发射器发射回充引导信号和第一接近信号,也可以采用不同的发射器分别发射回充引导信号和第一接近信号,本实施例中不做具体限定。
一些实施例中,回充引导信号是峰值约为0.03mW的高频(比如38khz)载波编码信号,其载波可以是方波。第一接近信号是峰值约为0.03mW的低频方波(比如为100hz或600hz)。充电桩上的发射器是按一定频率发射回充引导信号,即每隔一段时间间隔发射一轮回充引导信号,在上一轮与下一轮发射回充引导信号之间会有一个发射间隙ΔT不发射任何回充引导信号,而第一接近信号就在回充引导信号之间的发射间隙发射,从而避免了回充引导信号与第一接近信号之间发生干扰,从而解决了现有技术中难以实现在回充过程中测量清洁机器人与充电桩之间距离的技术问题。
示例性的,如图13所示,回充引导信号包括A、B、以及Z信号,第一个时间间隔Δt发射A信号,第二个时间间隔Δt发射Z信号,第三个时间间隔Δt发射B信号,然后会有一个回充引导信号的发射间隙ΔT内不发射任何信号,因此,可以在发射完该论回充引导信号后的发射间隙ΔT内发射第一接近信号,然后再发射下一轮回充引导信号;这样,通过该第一接近信号使清洁机器人知道其与充电桩之间的距离,而且还可以避免回充引导信号与第一接近信号之间互相干扰,从而保证清洁机器人上的接收器通过接收第一接近信号测量其与充电桩之间的距离。
S122,当清洁机器人进入回充阶段时,清洁机器人关闭接近传感器的发射器,保持接近传感器的接收器处于开启状态。
在一些实施例中,作为触发本发明的实施例的回充方法的触发条件,即判断清洁机器人是否需要回充的判断条件可以包括如下两类,一类是根据电量来判断是否回充,即当清洁机器人的剩余电量低于预设电量阈值(比如20%)时,清洁机器人自动寻找充电桩充电。第二类是根据其他判断条件来判断清洁机器人是否回充,比如,根据清洁机器人的运行面积,当运行面积大于预设面积阈值(比如100平米)时,清洁机器人自动回充。再比如,根据清洁机器人的运行时间来判断,当运行时间大于预设时间阈值(比如3小时)时,清洁机器人自动回充。无论设定哪种判断条件,在触发所述判断条件的情况下,均可以使清洁机器人自动跳转到执行本发明实施例的回充方法。
具体的,通常清洁机器人会有多个接近传感器,比如对称布置在清洁机器人正前方外壳内的两个接近传感器以及对称布置在清洁机器人两侧的两个接近传感器,共2 组4个接近传感器,每个接近传感器如上所述包括至少一个发射器以及一个与该发射器匹配的接收器。当清洁机器人进入回充阶段时,可以选择关闭全部接近传感器的发射器,也可以根据清洁机器人的回充方向以及接近传感器的检测光线方向选择性地关闭至少一个接近传感器的发射器。同时,清洁机器人保持接近传感器的接收器处于开启状态,以便于接收充电桩发射的第一接近信号。
S123,清洁机器人的接近传感器的接收器接收第一接近信号,并根据所述第一接近信号检测所述清洁机器人与所述充电桩之间的距离。
在一种可能的实施例中,所述根据所述第一接近信号检测所述清洁机器人与所述充电桩之间的距离,包括:清洁机器人检测其接近传感器的接收器是否接收到第一接近信号,当检测到所述第一接近信号时,确定所述清洁机器人运行至与所述充电桩距离第二预设距离处;和/或,清洁机器人检测接收到的第一接近信号的信号强度,当所述信号强度大于或等于预设强度阈值时,确定所述清洁机器人运行至与所述充电桩距离第二预设距离处。
具体的,在一些实施例中,第二预设距离的取值范围可以是20厘米至60厘米,第一接近信号可以是峰值约为0.03mW的方波,频率为100hz或666hz,清洁机器人在距离充电桩大约30cm范围内即可检测到该第一接近信号。因此,当清洁机器人检测到第一接近信号时即可确定所述清洁机器人运行至与所述充电桩距离第二预设距离处。
在一个实施例中,清洁机器人为圆柱形,其在水平方向的直径为约30cm,由于通常只有在清洁机器人前端设置接近传感器,而清洁机器人的后部往往没有接近传感器,因此只有清洁机器人前端可以接收第一接近信号。当设置在清洁机器人前部的接近传感器接收到第一接近信号后,需要旋转以使其后部对准充电桩,当第二预设距离为20cm时,考虑到清洁机器人自身的直径尺寸,清洁机器人旋转以后其后部距离充电桩大约为20cm,留有比较充足的空间以调整其自身位姿,便于后退与充电桩接触。
在一些实施例中,还可以通过清洁机器人检测接收到的第一接近信号的信号强度来确定清洁机器人是否运行到距离充电桩第二预设距离处。具体的,清洁机器人距离充电桩越近,检测到的第一接近信号的信号强度值就越高,如果调整第一接近信号的功率或预设强度阈值,可以改变第二预设距离的范围,比如第一接近信号功率峰值调整为0.06mW,而保持预设强度阈值不变,则第二预设距离则可以达到35cm。如果保持第一接近信号的功率仍为0.03mW,而降低预设强度阈值到最小值(即接近传感器器件本身能够接收到第一接近信号的极限值),能够检测到的第二预设距离大约为60cm。
上述方法也可以同时使用,以保证清洁机器人运行至设定的目标位置处。
S124,所述清洁机器人根据其与所述充电桩之间的距离靠近充电桩并与充电桩对接进行充电。
具体的,当清洁机器人距离充电桩第二预设距离时,清洁机器人靠近充电桩并与充电桩充电,并且,清洁机器人在靠近充电桩的过程中,清洁机器人上的回充传感器寻找并接收充电桩发射的回充引导信号,在清洁机器人靠近充电桩的过程中在回充引 导信号的指引下调整自身姿态,以精准对接充电桩进行充电。
本实施例中,清洁机器人上安装的回充传感器可以是红外编码器或红外线接收模组(InfraRed Receiver Module,简称IRM)。
一些实施例中,参考图14,上一实施例中的步骤S123中根据所述第一接近信号检测所述清洁机器人与所述充电桩之间的距离,具体实现方法可以包括如下步骤:
S1231,当清洁机器人接收到所述第一接近信号时,开启接近传感器的发射器,并通过所述接近传感器的发射器向充电桩发射第二接近信号。
本步骤中,第一接近信号和第二接近信号可以是红外信号,也可以是超声信号。
S1232,充电桩上的反射器将所述第二接近信号直接反射回至清洁机器人;
S1233,清洁机器人根据所述第二接近信号确定其与充电桩之间的距离。
具体的,清洁机器人在发射第二接近信号时即记录第二接近信号的发射时刻,在接收到经充电桩反射的第二接近信号时记录所述第二接近信号的接收时刻;其中,所述第二接近信号的发射时刻是指清洁机器人发射出第二接近信号的时刻。所述第二接近信号的接收时刻是指清洁机器人接收到经充电桩反射的第二接近信号的时刻,然后,清洁机器人根据所述第二接近信号的发射时刻、第二接近信号的接收时刻、以及第二接近信号的传播速度,确定充电桩与所述清洁机器人的距离。
为了将被充电桩反射的第二接近信号与被其它障碍物反射的第二接近信号相区别,避免障碍物反射信号的干扰,可以结合回充引导信号确定的充电桩的方向设定接收器角度,使其更容易接收到由充电桩反射的第二接近信号,使由充电桩反射的第二接近信号的强度比由其它方向的障碍物反射的信号强度大,在信号处理时筛取最大第二接近信号强度的接收时刻作为第二接近信号的接收时刻计算充电桩与清洁机器人的距离。当然还可以采用其它方法确定由充电桩反射的第二接近信号,比如使用对第二接近信号具有更强或更弱反射效率的材料制成反射器,使经其反射的第二接近信号明显区别于由其它障碍物反射的第二接近信号。
具体的,清洁机器人与充电桩之间的距离=(第二接近信号的接收时刻-发射时刻)/第二接近信号的传播速度。
本实施例中,通过充电桩在发射回充引导信号的发射间隙ΔT发射能够被清洁机器人的接近传感器的接收器接收的第一接近信号,并在清洁机器人接收到第一接近信号时向充电桩发射第二接近信号,并对反射回来的第二接近信号计算得到清洁机器人与充电桩之间距离。
若第二接近信号是电磁波(比如红外线),由于光速接近3×108m/s,以光速测量厘米级的距离,计时器需要达到10-10s即0.1ns量级。因此通常会在清洁机器人上设置高精度计时器记录第二接近信号的发射时刻和接收时刻。
需要说明的是,本发明不限制通过距离速度时间公式计算清洁机器人与充电桩距离的具体方式,比如也可以在充电桩上安装高精度计时器,通过充电桩检测接近信号 的起止时间、计算得到情节i机器人与充电桩的距离并将该距离发送给清洁机器人,还可以在清洁机器人和充电桩上都安装高精度计时器,按距离速度时间公式分别计算多个光传播的时间或距离,再取平均值得到清洁机器人与充电桩之间的距离。
图15是本发明一示例性实施例示出的清洁机器人的结构示意图。
如图15所示,本实施例提供的清洁机器人包括:回充传感器151和接近传感器152;其中,
回充传感器,用于接收充电桩发射的回充引导信号;
接近传感器,用于非接触地检测清洁机器人周围的障碍物,所述接近传感器包括发射器和接收器;其中,
当清洁机器人进入回充阶段时,清洁机器人关闭接近传感器的发射器,保持接近传感器的接收器处于开启状态;
清洁机器人的接近传感器的接收器接收第一接近信号,并根据所述第一接近信号检测所述清洁机器人与实时充电桩之间的距离;
所述清洁机器人根据其与所述充电桩之间的距离靠近充电桩并与充电桩对接进行充电。
其中,通常清洁机器人会有多个接近传感器,比如对称布置在清洁机器人正前方外壳内的两个接近传感器以及对称布置在清洁机器人两侧的两个接近传感器,共2组4个接近传感器152,如图15所示。可以选择关闭全部接近传感器的发射器,也可以根据清洁机器人的回充方向以及接近传感器的检测光线方向选择性地关闭至少一个接近传感器的发射器。清洁机器人通常还会包括多个回充传感器,比如如图15所示,在清洁机器人的前部和后部分别对称设置有能够接收回充引导信号的2个回充传感器151(比如红外传感器,用以接收例如高频(比如38khz)载波编码信号的回充引导信号,其中的载波可以是方波),共4个回充引导信号,分别寻找和接收在清洁机器人前部(比如在步骤S220、S320、S340中)和后部(比如在步骤S250、S360、S380)的回充引导信号。
具体的,充电桩上的发射器发射回充引导信号,并在回充引导信号的发射间隙ΔT发射第一接近信号,从而避免了回充引导信号与第一接近信号之间发生干扰,从而解决了现有技术中难以实现在回充过程中测量机器人与充电桩之间距离的技术问题。具体说明参见图13以及结合图13介绍的实施例,此处不再赘述。
进一步的,在一些实施例中,当清洁机器人接收到充电桩发射的第一接近信号之后,即确定了其与充电桩的距离或开始测量其与充电桩之间的距离,具体的,当清洁机器人的接近传感器的接收器接收第一接近信号时,开启接近传感器的发射器,并通过所述接近传感器的发射器向充电桩发射第二接近信号,并记录所述第二接近信号的发射时刻;由充电桩上的反射器反射所述第二接近信号,清洁机器人接收到经充电桩反射的第二接近信号,记录接收到反射的第二接近信号的接收时刻;根据所述第二接近信号的发射时刻、第二接近信号的接收时刻,以及第二接近信号的传播速度确定所 述清洁机器人与所述充电桩之间的距离。
具体的,清洁机器人与充电桩之间的距离=(第二接近信号的接收时刻-发射时刻)/第二接近信号的传播速度。
图16是本发明一示例性实施例示出的充电桩的结构示意图。
如图16所示,本实施例提供的充电桩包括:发射器161;
所述发射器发射回充引导信号和第一接近信号,且在发射回充引导信号的发射间隙发射第一接近信号,所述第一接近信号能够被清洁机器人的接近传感器的接收器接收;所述回充引导信号能被清洁机器人的回充传感器接收。通过发射器161发射的回充引导信号,可以引导清洁机器人上桩;通过发射器161在发射回充引导信号的发射间隙ΔT发射的第一接近信号,可以使清洁机器人计算得到其与充电桩之间的距离,从而使清洁机器人更精准地上桩。
进一步的,在一个实施例中,所述充电桩还包括反射器162;
所述反射器162用于反射所述清洁机器人的接近传感器的发射器161发射的第二接近信号。
具体的,充电桩上的发射器发射回充引导信号,并在回充引导信号的发射间隙ΔT发射第一接近信号,从而避免了回充引导信号与第一接近信号之间发生干扰,从而解决了现有技术中难以实现在回充过程中测量机器人与充电桩之间距离的技术问题。具体说明参见图13以及结合图13介绍的实施例,此处不再赘述。
进一步的,当清洁机器人接收到充电桩发射的第一接近信号之后,便开始测量与充电桩之间的距离,具体的,当清洁机器人的接近传感器的接收器接收第一接近信号时,开启接近传感器的发射器,并通过所述接近传感器的发射器向充电桩发射第二接近信号,记录所述第二接近信号的发射时刻;由充电桩上的反射器反射所述第二接近信号,清洁机器人接收到经充电桩反射的第二接近信号,记录接收到反射的第二接近信号的接收时刻;根据所述第二接近信号的发射时刻、第二接近信号的接收时刻,以及第二接近信号的传播速度确定所述清洁机器人与所述充电桩之间的距离。具体确定方法参见上述实施例,此处不再赘述。
图17是本发明一示例性实施例示出的清洁机器人系统的结构示意图。
如图17所示,本实施例提供的系统包括:清洁机器人171和充电桩172;
所述充电桩上设置有发射器161,用于发射回充引导信号和第一接近信号,并在发射回充引导信号的发射间隙ΔT发射第一接近信号,所述回充引导信号能被清洁机器人的回充传感器151接收,所述第一接近信号能够被清洁机器人的接近传感器152的接收器接收;
清洁机器人的接近传感器152的接收器接收所述第一接近信号,并根据所述第一接近信号检测所述清洁机器人与所述充电桩之间的距离;所述清洁机器人根据其与所述充电桩之间的距离靠近充电桩并与充电桩对接进行充电;其中,清洁机器人在进入 回充阶段时,其接近传感器的发射器关闭,而其接近传感器的接收器处于开启状态。
图18为本发明实施例提供的清洁设备的硬件结构示意图。如图18所示,本实施例提供的清洁设备180包括:至少一个处理器1801和存储器1802。其中,处理器1801、存储器1802通过总线1803连接。
在具体实现过程中,至少一个处理器1801执行所述存储器1802存储的计算机执行指令,使得至少一个处理器1801执行上述方法实施例中的清洁机器人的回充方法。
本实施例中,电子设备可以是一种终端,比如,手机、电脑等。
处理器1801的具体实现过程可参见上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
在上述的图18所示的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
本申请的另一实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现上述方法实施例中的清洁机器人的回充方法。
上述的计算机可读存储介质,上述可读存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。可读存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的可读存储介质耦合至处理器,从而使处理器能够从该可读存储介质读取信息,且可向该可读存储介质写入信息。当然,可读存储介质也可以是处理器的组成部分。处理器和可读存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称:ASIC)中。当然,处理器和可读存储介质也可以作为分立组件存在于设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通 过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种清洁机器人的回充方法,其特征在于,所述方法包括:
    确定充电桩的方向;
    清洁机器人沿第一方向向所述充电桩方向运行,靠近充电桩;
    实时检测清洁机器人与所述充电桩之间的距离;
    根据清洁机器人与所述充电桩之间的距离判断所述清洁机器人是否已运行到目标位置,所述目标位置在所述充电桩前方且距离所述充电桩第二预设距离处;
    当所述清洁机器人运行至预先确定的目标位置时,旋转设定角度;
    清洁机器人后退靠近充电桩,并与所述充电桩预接触;
    清洁机器人向其正向运行第一预设距离;
    清洁机器人后退靠近充电桩,并与充电桩对接进行充电。
  2. 根据权利要求1所述的方法,其特征在于,
    所述实时检测清洁机器人与所述充电桩之间的距离,根据清洁机器人与所述充电桩之间的距离判断所述清洁机器人是否已运行到所述目标位置,包括:
    清洁机器人关闭接近传感器的发射器,保持接近传感器的接收器处于开启状态;
    清洁机器人的接近传感器的接收器接收第一接近信号,并根据所述第一接近信号判断所述清洁机器人是否运行至所述目标位置,所述第一接近信号是充电桩上的发射器发射的、能被清洁机器人上的接近传感器的接收器接收的接近传感器信号;所述第一接近信号是在充电桩上发射的回充引导信号的发射间隙发射的。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一接近信号判断所述清洁机器人是否运行至预先确定的目标位置,包括:
    清洁机器人检测是否接收到第一接近信号,当检测到所述第一接近信号时,确定所述清洁机器人运行至所述目标位置处;和/或
    清洁机器人检测接收到的第一接近信号的信号强度,当所述信号强度大于或等于预设强度阈值时,确定所述清洁机器人运行至所述目标位置处。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    清洁机器人在向所述充电桩靠近的过程中,根据所述充电桩发射的回充引导信号调整运行姿态,以使所述清洁机器人的运行方向与所述充电桩的正前方的对接中心区域对准。
  5. 根据权利要求4所述的方法,其特征在于,所述回充引导信号包括定向引导信号。
  6. 根据权利要求1所述的方法,其特征在于,所述第一预设距离的取值范围是40厘米至60厘米;和/或,
    所述第二预设距离的取值范围是20厘米至60厘米。
  7. 一种清洁机器人系统,其特征在于,包括:充电桩和清洁机器人,所述清洁机器人包括:
    确定单元,用于确定充电桩的方向;
    运动单元,用于带动清洁机器人运动;
    检测单元,用于实时检测清洁机器人与所述充电桩之间的距离;
    控制单元,用于控制所述清洁机器人沿第一方向向所述充电桩方向运行,靠近充电桩; 并根据清洁机器人与所述充电桩之间的距离判断所述清洁机器人是否已运行到目标位置,所述目标位置在所述充电桩前方且距离所述充电桩第二预设距离处,
    控制单元,还用于控制所述清洁机器人在所述清洁机器人运行至预先确定的目标位置时,控制清洁机器人旋转设定角度,并控制清洁机器人后退靠近充电桩,与所述充电桩预接触,控制清洁机器人向其正向运行第一预设距离;控制清洁机器人后退靠近充电桩,并与充电桩对接进行充电。
  8. 一种清洁机器人的回充方法,其特征在于,包括:
    充电桩上的发射器发射回充引导信号和第一接近信号,所述充电桩在发射回充引导信号的发射间隙发射第一接近信号,所述回充引导信号能被清洁机器人的回充传感器接收,所述第一接近信号能够被清洁机器人的接近传感器的接收器接收;
    当清洁机器人进入回充阶段时,清洁机器人关闭接近传感器的发射器,保持接近传感器的接收器处于开启状态;
    清洁机器人的接近传感器的接收器接收第一接近信号,并根据所述第一接近信号检测所述清洁机器人与所述充电桩之间的距离;
    所述清洁机器人根据其与所述充电桩之间的距离靠近充电桩并与充电桩对接进行充电。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第一接近信号检测所述清洁机器人与所述充电桩之间的距离,包括:
    清洁机器人检测其接近传感器的接收器是否接收到第一接近信号,当检测到所述第一接近信号时,确定所述清洁机器人运行至与所述充电桩距离第二预设距离处;和/或
    清洁机器人检测接收到的第一接近信号的信号强度,当所述信号强度大于或等于预设强度阈值时,确定所述清洁机器人运行至与所述充电桩距离第二预设距离处。
  10. 根据权利要求8所述的方法,其特征在于,所述根据所述第一接近信号检测所述清洁机器人与所述充电桩之间的距离,包括:
    当清洁机器人接收到所述第一接近信号时,开启接近传感器的发射器,并通过所述接近传感器的发射器向充电桩发射第二接近信号,记录所述第二接近信号的发射时刻;
    充电桩上的反射器反射所述第二接近信号;
    清洁机器人接收到经充电桩反射的第二接近信号,记录接收到反射的第二接近信号的接收时刻;根据所述第二接近信号的发射时刻、第二接近信号的接收时刻,以及第二接近信号的传播速度确定所述清洁机器人与所述充电桩之间的距离。
  11. 一种清洁机器人,其特征在于,包括:
    回充传感器,用于接收充电桩发射的回充引导信号;
    接近传感器,用于非接触地检测清洁机器人周围的障碍物,所述接近传感器包括发射器和接收器;其中,
    当清洁机器人进入回充阶段时,清洁机器人关闭接近传感器的发射器,保持接近传感器的接收器处于开启状态;
    清洁机器人的接近传感器的接收器接收第一接近信号,并根据所述第一接近信号检测所述清洁机器人与实时充电桩之间的距离;
    所述清洁机器人根据其与所述充电桩之间的距离靠近充电桩并与充电桩对接进行充 电。
  12. 根据权利要求11所述的清洁机器人,其特征在于,当清洁机器人的接近传感器的接收器接收第一接近信号时,开启接近传感器的发射器,并通过所述接近传感器的发射器向充电桩发射第二接近信号,记录所述第二接近信号的发射时刻;并接收经所述充电桩反射的第二接近信号,记录接收到反射的第二接近信号的接收时刻;根据所述第二接近信号的发射时刻、第二接近信号的接收时刻、以及第二接收信号的传播速度,确定所述清洁机器人与所述充电桩之间的距离。
  13. 一种充电桩,其特征在于,包括:发射器;
    所述发射器发射回充引导信号和第一接近信号,且在发射回充引导信号的发射间隙发射第一接近信号,所述第一接近信号能够被清洁机器人的接近传感器的接收器接收;所述回充引导信号能被清洁机器人的回充传感器接收。
  14. 根据权利要求13所述的充电桩,其特征在于,还包括反射器;
    所述反射器用于反射所述清洁机器人的接近传感器的发射器发射的第二接近信号。
  15. 一种清洁机器人系统,其特征在于,包括:清洁机器人和充电桩;
    所述充电桩上设置有发射器,用于发射回充引导信号和第一接近信号,并在发射回充引导信号的发射间隙发射第一接近信号,所述回充引导信号能被清洁机器人的回充传感器接收,所述第一接近信号能够被清洁机器人的接近传感器的接收器接收;
    清洁机器人的接近传感器的接收器接收所述第一接近信号,并根据所述第一接近信号检测所述清洁机器人与所述充电桩之间的距离;所述清洁机器人根据其与所述充电桩之间的距离靠近充电桩并与充电桩对接进行充电;其中,清洁机器人在进入回充阶段时,其接近传感器的发射器关闭,而其接近传感器的接收器处于开启状态。
  16. 一种清洁设备,其特征在于,包括:至少一个处理器和存储器;
    所述存储器存储计算机执行指令;
    所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行如权利要求1-6或8-10中任一项所述的清洁机器人的回充方法。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求1-6或8-10中任一项所述的清洁机器人的回充方法。
PCT/CN2022/089142 2021-05-28 2022-04-26 清洁机器人的回充方法和清洁机器人系统 WO2022247554A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/520,540 US20240090731A1 (en) 2021-05-28 2023-11-27 Recharging method for cleaning robot and cleaning robot system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110606579.6 2021-05-28
CN202110606579.6A CN115399677B (zh) 2021-05-28 2021-05-28 清洁机器人的回充方法和清洁机器人系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/520,540 Continuation US20240090731A1 (en) 2021-05-28 2023-11-27 Recharging method for cleaning robot and cleaning robot system

Publications (1)

Publication Number Publication Date
WO2022247554A1 true WO2022247554A1 (zh) 2022-12-01

Family

ID=84156061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089142 WO2022247554A1 (zh) 2021-05-28 2022-04-26 清洁机器人的回充方法和清洁机器人系统

Country Status (3)

Country Link
US (1) US20240090731A1 (zh)
CN (1) CN115399677B (zh)
WO (1) WO2022247554A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115755920A (zh) * 2022-11-30 2023-03-07 南京蔚蓝智能科技有限公司 一种机器狗自动充电方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193473A (ja) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd 移動ロボットシステム
US20120296511A1 (en) * 2011-05-20 2012-11-22 VGO Communications, Inc. Method & apparatus for docking a robotic device with a charging station
CN103251355A (zh) * 2012-02-16 2013-08-21 恩斯迈电子(深圳)有限公司 扫地机器人与充电系统
CN106026288A (zh) * 2016-07-18 2016-10-12 旗瀚科技有限公司 一种机器人自动充电系统及其充电方法
CN108390441A (zh) * 2018-05-03 2018-08-10 深圳市银星智能科技股份有限公司 充电座、移动机器人以及自动充电系统
CN109974727A (zh) * 2017-12-28 2019-07-05 深圳市优必选科技有限公司 一种机器人充电方法、装置及机器人
CN111427361A (zh) * 2020-04-21 2020-07-17 浙江欣奕华智能科技有限公司 一种回充方法、回充装置及机器人
CN112731924A (zh) * 2020-12-17 2021-04-30 深圳市银星智能科技股份有限公司 移动机器人的回充方法、移动机器人及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486498B1 (ko) * 2002-09-11 2005-04-29 엘지전자 주식회사 자동 주행 청소기의 자동 충전 방법 및 장치
CN1291685C (zh) * 2004-02-06 2006-12-27 泰怡凯电器(苏州)有限公司 自动吸尘器与充电座的对接方法
CN101524257B (zh) * 2009-03-31 2011-06-15 杭州五星电子有限公司 智能吸尘器的自动充电实现方法
KR101428877B1 (ko) * 2012-12-05 2014-08-14 엘지전자 주식회사 로봇 청소기
CN105990876B (zh) * 2015-12-21 2019-03-01 小米科技有限责任公司 充电桩及其识别方法、装置和自动清洁设备
CN115089070B (zh) * 2017-09-25 2024-05-28 北京石头创新科技有限公司 自动清洁设备
CN108521149B (zh) * 2018-04-17 2024-06-11 武汉斌果科技有限公司 基于摄像头的与机器人低耦合的智能充电桩系统及方法
CN112336267B (zh) * 2019-08-07 2022-10-18 杭州萤石软件有限公司 一种清洁机器人及其控制方法
CN110477825B (zh) * 2019-08-30 2021-10-26 深圳飞科机器人有限公司 清洁机器人、自主充电方法、系统及可读存储介质
CN212996275U (zh) * 2020-05-09 2021-04-20 科沃斯机器人股份有限公司 一种清洁基座及自移动机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193473A (ja) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd 移動ロボットシステム
US20120296511A1 (en) * 2011-05-20 2012-11-22 VGO Communications, Inc. Method & apparatus for docking a robotic device with a charging station
CN103251355A (zh) * 2012-02-16 2013-08-21 恩斯迈电子(深圳)有限公司 扫地机器人与充电系统
CN106026288A (zh) * 2016-07-18 2016-10-12 旗瀚科技有限公司 一种机器人自动充电系统及其充电方法
CN109974727A (zh) * 2017-12-28 2019-07-05 深圳市优必选科技有限公司 一种机器人充电方法、装置及机器人
CN108390441A (zh) * 2018-05-03 2018-08-10 深圳市银星智能科技股份有限公司 充电座、移动机器人以及自动充电系统
CN111427361A (zh) * 2020-04-21 2020-07-17 浙江欣奕华智能科技有限公司 一种回充方法、回充装置及机器人
CN112731924A (zh) * 2020-12-17 2021-04-30 深圳市银星智能科技股份有限公司 移动机器人的回充方法、移动机器人及存储介质

Also Published As

Publication number Publication date
US20240090731A1 (en) 2024-03-21
CN115399677A (zh) 2022-11-29
CN115399677B (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
CN108173308B (zh) 一种机器人充电方法及其装置
US11910742B2 (en) Moving robot, system of moving robot and method for moving to charging station of moving robot
RU2628970C2 (ru) Система и способ для ведения автоматического очистительного устройства по траектории
US20210393099A1 (en) Mobile device docking method and mobile device
US20120065829A1 (en) Wall-following Moving Device
CN108037759B (zh) 扫地机器人回充系统及回充路径规划方法
AU2014342114B2 (en) Scanning range finder
US8972060B2 (en) Control method for cleaning robots
CN107390685B (zh) 一种机器人的回充控制方法、机器人及机器人系统
TWI424296B (zh) 引導裝置及操作系統
KR102599876B1 (ko) 로봇 청소기, 충전 장치 및 충전 시스템
WO2022247554A1 (zh) 清洁机器人的回充方法和清洁机器人系统
TWI529507B (zh) 充電站與充電系統
WO2016063530A1 (ja) 物体検知装置及び車両制御装置
JP2007101492A (ja) 移動ロボットの距離および位置検出装置
US20220197299A1 (en) Recharging method for mobile robot and mobile robot
WO2018094863A1 (zh) 一种定位方法、装置和计算机存储介质
US20240000281A1 (en) Autonomous robot
CN109991983B (zh) 机器人导航方法、装置、系统、电子设备及存储介质
KR20220136430A (ko) 검출 방법 및 장치
CN108879809B (zh) 自动清洁设备及其充电的方法
JP2005135274A (ja) 移動作業ロボットおよびそのプログラム
CN210931169U (zh) 一种机器人
CN112783146A (zh) 自移动设备引导方法、装置和自移动设备
CN112190184B (zh) 机器人自动返回方法、装置以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE