WO2022247517A1 - 一种电池包、电动工具系统及充电系统 - Google Patents

一种电池包、电动工具系统及充电系统 Download PDF

Info

Publication number
WO2022247517A1
WO2022247517A1 PCT/CN2022/087124 CN2022087124W WO2022247517A1 WO 2022247517 A1 WO2022247517 A1 WO 2022247517A1 CN 2022087124 W CN2022087124 W CN 2022087124W WO 2022247517 A1 WO2022247517 A1 WO 2022247517A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
interface
type
charging
unit
Prior art date
Application number
PCT/CN2022/087124
Other languages
English (en)
French (fr)
Inventor
罗明
庄宪
李保安
陆春桃
严安
霍晓辉
李志远
Original Assignee
格力博(江苏)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110599060.XA external-priority patent/CN114447533B/zh
Priority claimed from CN202121190241.9U external-priority patent/CN214707257U/zh
Priority claimed from CN202121190311.0U external-priority patent/CN214707258U/zh
Priority claimed from CN202110766898.3A external-priority patent/CN115602980A/zh
Priority claimed from CN202121540534.5U external-priority patent/CN215070214U/zh
Application filed by 格力博(江苏)股份有限公司 filed Critical 格力博(江苏)股份有限公司
Priority to CA3220576A priority Critical patent/CA3220576A1/en
Priority to EP22810250.5A priority patent/EP4350866A1/en
Priority to AU2022282142A priority patent/AU2022282142A1/en
Publication of WO2022247517A1 publication Critical patent/WO2022247517A1/zh
Priority to US18/519,071 priority patent/US20240088506A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/298Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the technical field of the battery pack of the present invention specifically relates to a battery pack, an electric tool system and a charging system.
  • the existing chargers usually can only charge a single battery pack, and cannot charge multiple battery packs at the same time, so that the user needs to spend a long time charging the battery packs one by one after each use of the electric tool. Moreover, the existing charger charges the battery pack through a single interface, and the charging process is slow and takes a long time.
  • the battery pack works in a humid environment, the battery pack is required to have high waterproof performance.
  • the existing battery pack housing has gaps and poor sealing performance, which cannot effectively prevent water from entering the battery pack, and often causes short circuits due to water entering the battery pack.
  • a battery pack including:
  • a battery pack housing in which a cell assembly and a circuit board are installed, and the circuit board is electrically connected to the cell assembly;
  • a plurality of Type-C interfaces are installed on the circuit board and are electrically connected to the circuit board, so as to realize the electrical connection between the cell assembly and the Type-C interface, and to connect external devices.
  • the upper shell of the battery pack housing is provided with a limiting member installation groove, and the limiting member is installed in the limiting member installation groove, and is sealed by the installation groove cover.
  • the limiting member includes a limiting pressing portion and a limiting column, and when the battery pack is connected to the external tool, the limiting column is used to realize the connection between the battery pack and the external tool.
  • the fixed connection between the external tools, the limit pressing part is used for the operator to operate to unlock and separate the battery pack from the external tool.
  • a display device is also provided on the battery pack housing, and the display device is used to display the remaining power and/or voltage and/or current and/or cell temperature and/or or malfunction.
  • the battery pack further includes a power supply terminal mounted on the circuit board and electrically connected to the circuit board.
  • the housing is provided with a socket, the Type-C port is located in the socket, and a protective cover is provided at the socket.
  • the protective cover is a protective plug, one end of the protective plug is inserted into the Type-C interface to match the Type-C interface, and the other end is compatible with the plug interface. match.
  • the protective cover is a rotating protective cover
  • the rotating protective cover is matched with the Type-C interface
  • one end of the rotating protective cover is connected to the battery pack through a rotating shaft.
  • the housing is connected in rotation.
  • the protective cover is a protective sliding cover that matches the Type-C interface.
  • the Type-C interface includes at least a first Type-C interface and a second Type-C interface, and the first Type-C interface and the second Type-C interface are respectively assembled on the circuit board and electrically connected with the circuit board.
  • a plug-in portion is provided on the top of the battery pack housing, and slide rails are provided on both sides of the plug-in portion.
  • a terminal interface is installed on the top of the battery pack housing, the terminal interface is located between the slide rails, and the terminal interface is electrically connected to the circuit board.
  • the first Type-C interface and the second Type-C interface are located on two sides or the same side of the socket part.
  • the first Type-C interface and the second Type-C interface are located on the top surface of the socket.
  • the first Type-C interface and the second Type-C interface are located on the same side or both sides of the battery pack casing.
  • the battery pack housing includes an upper housing and a lower housing, the upper housing is fixedly connected to the lower housing, and the plug-in portion is located on the upper housing top surface.
  • a sealing groove is provided on the edge connecting the lower casing and the upper casing, and a sealing ring is installed in the sealing groove.
  • the present invention also proposes an electric tool system, including a battery pack and an electric tool, the electric tool includes functional modules for performing corresponding functions, and multiple tool Type-C interfaces are arranged on the electric tool;
  • the battery pack includes: the battery pack includes a battery pack housing, in which a battery cell assembly and a circuit board are installed, and the circuit board is electrically connected to the battery pack;
  • a plurality of Type-C interfaces installed on the circuit board and electrically connected to the circuit board, so as to realize the electrical connection between the battery cell assembly and the Type-C interface, and to connect external devices;
  • the multiple battery pack Type-C interfaces are connected to the multiple tool Type-C interfaces, and the battery pack outputs energy to the electric tool to drive the The function modules described above work.
  • the electric tool is a lawn trimmer, a pruner, a hair dryer, a chain saw, a lawn pusher, a cleaning machine, a vacuum cleaner, an electric drill, an electric hammer, a riding lawn mower, an intelligent lawn mower, etc.
  • a lawn trimmer a pruner, a hair dryer, a chain saw, a lawn pusher, a cleaning machine, a vacuum cleaner, an electric drill, an electric hammer, a riding lawn mower, an intelligent lawn mower, etc.
  • a lawn trimmer a pruner, a hair dryer, a chain saw, a lawn pusher, a cleaning machine, a vacuum cleaner, an electric drill, an electric hammer, a riding lawn mower, an intelligent lawn mower, etc.
  • the present invention also proposes a charging system, including:
  • a battery pack the battery pack includes a battery pack housing, in which a cell assembly and a circuit board are installed, and the circuit board is electrically connected to the cell assembly;
  • a plurality of Type-C interfaces installed on the circuit board and electrically connected to the circuit board to realize the electrical connection between the battery cell assembly and the Type-C interface, located on the battery pack shell In the socket, and used to connect external equipment;
  • a charger the charger includes a charger housing, in which a first circuit board is installed, and a first charging interface is arranged on the charger housing, and the first charging interface is electrically connected to the first circuit board. sexual connection;
  • the first charging interface is electrically connected to the Type-C interface.
  • the battery pack of the present invention is provided with a plurality of Type-C interfaces on the battery pack shell, so that the electrical connection between the Type-C interface and the circuit board can be used to realize the electrical connection between the battery pack and the Type-C interface. It can supply power to multiple different electric tools at the same time, which improves the applicability of the product. At the same time, it also provides the possibility to supply power to electronic products such as mobile phones, notebooks, and digital cameras. charging to improve charging efficiency.
  • the battery pack of the present invention is provided with a sealed and waterproof structure on the power supply terminal and other structures of the battery pack to improve its sealing and waterproof performance, effectively prevent water from entering the battery pack, and thereby avoid damage to the battery due to water entering the battery pack The problem.
  • the battery pack of the present invention can charge/discharge the battery pack according to the type of equipment, not only can perform fast charging through the Type-C interface, but also can quickly discharge the connected equipment with the Type-C interface, and the charging/discharging power can be It is adjusted according to the access equipment within a certain range, and is suitable for access equipment of various voltages, which is convenient for users to use.
  • FIG. 1 is a schematic structural diagram of a battery pack proposed by the present invention.
  • FIG. 2 is a schematic structural diagram of a middle circuit board of a battery pack proposed by the present invention.
  • FIG. 3 is a schematic structural view of a middle and upper casing of a battery pack proposed by the present invention.
  • FIG. 4 is a schematic structural view of a middle and lower casing of a battery pack proposed by the present invention.
  • FIG. 5 is a schematic structural view of a battery cell assembly of a battery pack proposed by the present invention.
  • FIG. 6 is a schematic diagram of the location of the charging interface proposed by the present invention on both sides of the battery pack casing.
  • FIG. 7 is a schematic diagram of the position of the charging interface proposed by the present invention on the same side of the battery pack casing.
  • FIG. 8 is a schematic diagram of the position of the charging interface proposed by the present invention on both sides of the socket.
  • FIG. 9 is a schematic diagram of the location of the same side of the charging interface socket proposed by the present invention.
  • FIG. 10 is a schematic diagram of the position of the charging interface proposed by the present invention at the terminal interface.
  • FIG. 11 is a schematic diagram of the position of the charging interface proposed by the present invention on the top of the battery pack.
  • FIG. 12 is a schematic diagram of another position where the charging interface is located on the top of the battery pack proposed by the present invention.
  • FIG. 13 is a schematic structural diagram of a Type-C interface in a battery pack proposed by the present invention.
  • FIG. 14 is a structural schematic diagram of a middle limiting member and a mounting slot cover of a battery pack proposed by the present invention.
  • FIG. 15 is a schematic structural view of a middle limiting member of a battery pack proposed by the present invention.
  • FIG. 16 is a schematic bottom view of a middle limiting member of a battery pack proposed by the present invention.
  • FIG. 17 is a schematic structural view of the upper casing in an embodiment of the present invention.
  • Fig. 18 is a schematic structural diagram of a waterproof battery pack proposed by the present invention.
  • FIG. 19 is a schematic structural view of a cell holder in an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a circuit board in an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a first interface in an embodiment of the present invention.
  • Fig. 22 is a schematic structural view of the lower casing in an embodiment of the present invention.
  • FIG. 23 is a structural schematic diagram of another angle of the lower casing in an embodiment of the present invention.
  • Fig. 24 is a schematic diagram of the assembly of the protective plug and the first interface in an embodiment of the present invention.
  • Fig. 25 is a schematic diagram of the assembly of the rotating protective cover and the first interface in an embodiment of the present invention.
  • Fig. 26 is a schematic diagram of the assembly of the protective sliding cover and the first interface in an embodiment of the present invention.
  • FIG. 27 is another schematic diagram of the protective sliding cover and the first interface in an embodiment of the present invention.
  • FIG. 28 is a schematic diagram of the internal structure of the upper casing in an embodiment of the present invention.
  • FIG. 29 is a schematic diagram of an exploded structure of a power supply terminal in an embodiment of the present invention.
  • Fig. 30 is a schematic diagram of the structure of the water guiding channel in an embodiment of the present invention.
  • Fig. 31 is a schematic structural diagram of a battery pack with a wireless interface disclosed in an embodiment of the present invention.
  • Fig. 32 is a structural block diagram of the battery pack disclosed in the embodiment of the present invention.
  • Fig. 33 is another structural block diagram of the battery pack disclosed in the embodiment of the present invention.
  • Fig. 34 is a structural block diagram of the charging and discharging control system disclosed in the embodiment of the present invention.
  • Fig. 35 is another structural block diagram of the charging and discharging control system disclosed in the embodiment of the present invention.
  • Fig. 36 is a structural block diagram of the wireless voltage regulating module disclosed in the embodiment of the present invention.
  • Fig. 37 is another structural block diagram of the charging and discharging control system disclosed in the embodiment of the present invention.
  • Fig. 38 is a schematic diagram of the internal communication connection of the control module disclosed in the embodiment of the present invention.
  • FIG. 39 is a schematic workflow diagram of the charging and discharging control method disclosed in the embodiment of the present invention.
  • Fig. 40 is a schematic workflow diagram of the type of detection equipment disclosed in the embodiment of the present invention.
  • Fig. 41 is a schematic diagram of the workflow of the wireless charging protection logic disclosed in the embodiment of the present invention.
  • Fig. 42 is a schematic diagram of the workflow of the wireless discharge protection logic disclosed in the embodiment of the present invention.
  • Fig. 43 is a schematic diagram of the workflow of the charging protection logic disclosed in the embodiment of the present invention.
  • Fig. 44 is a schematic diagram of the workflow of the discharge protection logic disclosed in the embodiment of the present invention.
  • FIG. 45 is another schematic workflow diagram of the charging and discharging control method disclosed in the embodiment of the present invention.
  • Fig. 46 is a schematic diagram of the workflow of the charging and discharging protection logic disclosed in the embodiment of the present invention.
  • Fig. 47 is a schematic structural diagram of the charging combination disclosed in the embodiment of the present invention.
  • Fig. 48 is a schematic circuit diagram of a battery pack proposed by the present invention.
  • Fig. 49 is a schematic structural view of the power tool and the battery pack of the power supply system according to an embodiment of the present invention.
  • FIG. 50 is a simplified schematic block diagram of a power tool and a battery pack of a power supply system according to an embodiment of the present invention.
  • Fig. 51 is a schematic perspective view of a power tool of a power supply system according to an embodiment of the present invention.
  • Fig. 52 is a bottom view of the power tool of the power supply system according to the embodiment of the present invention.
  • Fig. 53 is an exploded schematic diagram of a battery pack according to an embodiment of the present invention.
  • FIG. 54 is a block diagram showing a configuration of a discharge control circuit of a battery pack in a power supply system according to an embodiment of the present invention.
  • FIG. 55 is a schematic diagram of the working flow of the discharge circuit of the battery pack of the power supply system according to an embodiment of the present invention.
  • Fig. 56 is a schematic structural diagram of an electric tool and a battery pack of a power supply system according to another embodiment of the present invention.
  • Fig. 57 is a simplified schematic block diagram of a power tool and a battery pack of a power supply system according to another embodiment of the present invention.
  • FIG. 58 is a schematic perspective view of the battery pack of the power supply system according to another embodiment of the present invention.
  • Fig. 59 is a schematic structural diagram of the electric tool and the battery pack of the power supply system of the present invention.
  • Fig. 60 is a simplified schematic block diagram of the power tool and the battery pack of the power supply system of the present invention.
  • Fig. 61 is a block diagram of the circuit structure of the power supply system of the present invention.
  • Fig. 62 is a schematic diagram of the discharging process of the power supply system of the present invention.
  • Fig. 63 is a schematic structural view of an electric tool and a battery pack through terminals according to the present invention.
  • Fig. 64 is a circuit block diagram of the power supply system through the Type-C interface of the present invention.
  • Fig. 65 is a circuit block diagram of the terminal power supply system of the present invention.
  • Fig. 66 is a flow chart of battery pack activation in the present invention.
  • Fig. 67 is a flow chart of the terminal discharge mode of the battery pack of the present invention.
  • Fig. 68 is a flow chart of the discharge logic of the battery pack through the Type-C interface of the present invention.
  • Fig. 69 is a flowchart of the battery pack Type-C discharge mode of the present invention.
  • FIG. 70 is another structural schematic diagram of a charging system proposed by the present invention.
  • FIG. 71 is a schematic diagram of a circuit structure of a charger proposed by the present invention.
  • Fig. 72 is a schematic structural diagram of the charging combination disclosed in the embodiment of the present invention.
  • Fig. 73 is a schematic structural diagram of a charger in an embodiment of the present invention.
  • Fig. 74 is a schematic top view of the charger in an embodiment of the present invention.
  • Fig. 75 is a structural block diagram of the charger disclosed in the embodiment of the present invention.
  • Fig. 76 is another structural block diagram of the charger disclosed in the embodiment of the present invention.
  • Fig. 77 is a structural block diagram of the battery pack disclosed in the embodiment of the present invention.
  • Fig. 78 is a structural block diagram of the detection module disclosed in the embodiment of the present invention.
  • Fig. 79 is another structural block diagram of the battery pack disclosed in the embodiment of the present invention.
  • Fig. 80 is a structural block diagram of the charging combination disclosed in the embodiment of the present invention.
  • Fig. 81 is a flowchart of the charging method disclosed in the embodiment of the present invention.
  • Fig. 82 is another structural block diagram of the communication control system disclosed in the embodiment of the present invention.
  • Fig. 83 is a schematic workflow diagram of the communication control method disclosed in the embodiment of the present invention.
  • Fig. 84 is a schematic diagram of the workflow of charging/discharging according to the device type disclosed in the embodiment of the present invention.
  • Fig. 85 is another schematic workflow diagram of the communication control method disclosed in the embodiment of the present invention.
  • Fig. 86 is an application scene diagram of an adaptation device.
  • Figure 87 is a three-dimensional structure diagram of the shell.
  • Figure 88 is an exploded view of the adapter device.
  • Fig. 89 is a structural diagram of the first casing.
  • Fig. 90 is a structural diagram of one side of the second casing.
  • Fig. 91 is a structural view of the other side of the second casing.
  • Fig. 92 is a block diagram of a battery pack control system.
  • Fig. 93 is a block diagram of a charging device control system.
  • Fig. 94 is a block diagram of a charge conversion control system.
  • Figure 95 is a flowchart of battery pack charging.
  • Fig. 96 is a flowchart of charging the battery pack by the charging device.
  • Fig. 97 is a flow chart of a charge conversion method.
  • Fig. 98 is a three-dimensional structural view of the housing in another embodiment.
  • Fig. 99 is a structural diagram of the first housing in another embodiment.
  • Fig. 100 is a side structural view of the first structure of the first casing in another embodiment.
  • Figure 101 is a flowchart of battery pack discharge.
  • Fig. 102 is a block diagram of an electric tool control system.
  • Fig. 103 is a block diagram of a charger control system.
  • Fig. 104 is a flow chart for the electric tool (charger) to enter the working mode (charging the battery pack).
  • Fig. 105 is a block diagram of a charge conversion control system.
  • Fig. 106 is a flowchart of the voltage conversion of the adaptation device.
  • Fig. 107 is a schematic structural diagram of a multi-slot charger proposed by the present invention.
  • FIG. 108 is a front view of the multi-slot charger of FIG. 107.
  • FIG. 108 is a front view of the multi-slot charger of FIG. 107.
  • FIG. 109 is a top view of the multi-slot charger of FIG. 107.
  • FIG. 109 is a top view of the multi-slot charger of FIG. 107.
  • FIG. 110 is a schematic structural diagram of a charging system in an embodiment of the present invention.
  • Figure 111 is a front view of the assembly of the battery pack and the multi-slot charger.
  • Fig. 112 is a structural schematic diagram of a charging box in a multi-slot charger and charging system proposed by the present invention.
  • Fig. 113 is a schematic top view of the charging box.
  • Fig. 114 is a structural schematic diagram of a multi-slot charger and a charging case in a charging system proposed by the present invention.
  • Fig. 115 is a partial structural schematic diagram of a charging box in a multi-slot charger and charging system proposed by the present invention.
  • Fig. 116 is another partial schematic diagram of a charging box in a multi-slot charger and charging system proposed by the present invention.
  • Figure 117 is a left side view of the battery pack assembled with the multi-slot charger.
  • Fig. 118 is a structural schematic diagram of a battery pack in a multi-slot charger and charging system proposed by the present invention.
  • Figure 119 is a bottom view of the battery pack.
  • Fig. 120 is a schematic structural diagram of a backpack battery pack proposed by the present invention.
  • FIG. 121 is a schematic structural view of a battery pack case in an embodiment of the present invention.
  • FIG. 122 is a structural schematic diagram of another angle of the battery pack shell in an embodiment of the present invention.
  • Fig. 123 is a schematic diagram of the connection between the battery pack and the electric tool in an embodiment of the present invention.
  • Fig. 124 is a schematic diagram of the connection between the battery pack and the charger in an embodiment of the present invention.
  • the present invention discloses a battery pack 100 for powering electric tools and electronic equipment.
  • the battery pack 100 includes a battery pack housing 10, a plurality of Type-C interfaces and power supply terminals.
  • the battery pack 100 shown also includes a battery cell assembly 120 and a circuit board accommodated in the battery pack housing 10. 13.
  • the cell assembly 120 includes a plurality of cells, and the plurality of cells are installed in the cell bracket 14, and the cell bracket 14 is located in the battery pack housing 10, and the cells are The cells are connected through electrode sheets 141 , and the cells are electrically connected to the circuit board 13 .
  • the power supply terminal 132 is installed on the circuit board 13 and is electrically connected to the circuit board 13, and the power supply terminal 132 is close to the top of the battery pack housing 10.
  • the terminal interface 131 is partially exposed to the terminal interface for connecting an external electric tool.
  • the output voltage of the battery pack 100 is 24V, the output current is 40A, and the output power is 960W, but it should not be limited thereto.
  • the battery pack is applied to an electric tool system
  • the electric tool system includes the battery pack and the electric tool in the above embodiment
  • the electric tool includes a functional module and a plurality of tools for performing corresponding functions Type-C interface
  • the battery pack 100 is connected to the electric tool
  • the Type-C interfaces on the multiple battery packs are connected to the multiple tool Type-C interfaces
  • the battery pack is connected to the
  • the electric tool outputs energy to drive the functional modules to work.
  • the electric tools include, but are not limited to, lawn trimmers, hair dryers, pruners, chain saws, lawn pushers, washing machines, vacuum cleaners, smart lawn mowers, smart cleaning equipment, and ride-on lawn mowers.
  • the battery pack housing 10 includes an upper housing 11 and a lower housing 12, the upper housing 11 is fixedly connected to the lower housing 12, and the electrical
  • the core assembly 120 and the circuit board 13 are accommodated in the accommodation space formed by assembling the upper casing 11 and the lower casing 12, and the top surface of the upper casing 11 is provided with a plug-in part 1101, and the plug-in part 1101
  • Slide rails 1102 are arranged on both sides, and the terminal interface 131 is arranged at one end of the insertion part 1101, and is located between the slide rails 1102 on both sides of the insertion part 1101, when the external electric tool and the When the slide rail 1101 is connected to the battery pack 100 , the power supply terminal 132 is electrically connected to the external electric tool.
  • the upper casing 11 of the battery pack housing 10 is provided with a limiting member installation groove 112, and the limiting member 111 is installed in the limiting member installation groove 112, and is sealed by the installation groove cover 1121.
  • the limiting member 111 is used to allow the battery pack 100 to be easily detached when the battery pack 100 is plugged and unplugged.
  • the battery pack housing 10 is provided with an insertion interface 113, and the battery pack 100 also includes a The Type-C interface of the plug interface 113, the Type-C interface is electrically connected to the circuit board 13, so as to realize the electrical connection between the battery core and the Type-C interface, so as to facilitate the use of the Type-C interface to Realize the power output/input of the cell assembly 120 .
  • the battery pack case 10 is arranged in a roughly rectangular shape, the Type-C interface is arranged on the long side of the battery pack case 10, and the stopper 111 is close to The short side of the upper case 11 is provided.
  • the Type-C interface is provided on the opposite long sides of the battery pack case 10, and the Type-C interface includes: a first Type-C interface 122a and a second Type-C interface 122a.
  • -C interface 122b correspondingly, there are two plug ports 113 and they are respectively arranged on the two long sides of the battery pack casing 10, specifically on the two long sides of the upper case 11; the orientation of the plug ports 113 perpendicular to the two long sides.
  • the first Type-C interface 122a and the second Type-C interface 122b are located on the same side or both sides of the battery pack case 10, when When the first Type-C interface 122a and the second Type-C interface 122b are located on both sides of the battery pack housing 10, they are preferably arranged symmetrically or asymmetrically, and preferably The Type-C interface is set approximately flush with the circuit board in the height direction, and the distance L1 between the two Type-C interfaces is in the range of 0-140mm.
  • the first Type-C interface 122a and the second Type-C interface 122b are approximately flush with the second circuit board 13 in the height direction, when the battery pack is used on the tool , 2 Type-C interfaces can also discharge peripherals at the same time, or supply power to peripherals separately through 2 Type-C interfaces.
  • the distance L2 between the two Type-C interfaces ranges from 0 to 160 mm.
  • the first Type-C interface 122a and the second Type-C interface 122b are located on both sides or on the same side of the socket part 1101 , Specifically, the first Type-C interface 122a and the second Type-C interface 122b are located at the slide rail 1102, so that when the battery pack is used on the tool, the first Type-C The C interface 122a and the second Type-C interface 122b are completely covered, so as to prevent foreign matter generated when the tool is used from entering the battery pack 100 .
  • the first Type-C interface 122a and the second Type-C interface 122b are located at the terminal interface 131 and arranged vertically, when the battery pack When used on a tool, the first Type-C interface 122a and the second Type-C interface 122b are completely covered, so as to prevent foreign matter generated when the tool is used from entering the battery pack 100 .
  • the height L3 from the top surface of the battery pack to the bottom surface of the guide rail is in the range of 0-30mm, preferably 11.85mm, and two Type-Cs are distributed between the top surface and the bottom surface of the guide rail.
  • the first Type-C interface 122a and the second Type-C interface 122b are located on the top surface of the socket part 1102 and arranged side by side , when the battery pack is used on the tool, the first Type-C interface 122a and the second Type-C interface 122b will be completely covered, so that foreign matter generated when the tool is used can be prevented from entering the battery pack, or One of the Type-C ports is on the top surface and the other is on the side.
  • the first Type-C interface 122a and the second Type-C interface 122b can also be arranged at other positions, as long as power transmission can be realized, and there is no limitation here.
  • the Type-C interface is an electrical connector capable of charging and discharging, and the output voltage of the Type-C interface is 5-20V, preferably 5V, 9V, 12V, 15V, 20V; output current is 1-5A, preferably 1A, 2A, 3A, 4A, 5A; output power is 15-100W, preferably 15W, 18W, 30W, 45W, 60W, 100W.
  • the Type-C interface includes an insulating body 1221, a conductive terminal 1222 fixed on the insulating body 1221, and a cover on the outside of the insulating body 1221 and the conductive terminal 1222.
  • the shield housing 1223, the conductive terminal 1222 and the shield housing 1223 are both made of metal material, and the conductive terminal 1222 is in contact with the inner side wall of the shield housing 1223, so that the conductive terminal 1222 and the shield housing
  • the housing 1223 is electrically connected, and the shield housing 1223 is provided with pins 1224 welded and fixed with the circuit board 13 .
  • the conductive terminal 1222 of the Type-C interface can be electrically connected to the battery cell through the pin 1224 of the cover housing 1223 and the circuit board 13, and then can be connected to the battery cell through the Type-C interface.
  • Electronic devices such as digital cameras, wearable smart devices and other electronic products are charged.
  • the Type-C interface is arranged in parallel with the circuit board 13, and the parallel arrangement includes both the situation where the Type-C interface is fixed on the upper side of the circuit board 13, and also includes
  • the distance between the outer edge of the socket 113 and the circuit board 13 is smaller than the longitudinal length of the socket 113 Specifically, the distance between the outer edge of the socket 113 and the circuit board 13 is 0-20 mm, preferably 0-15 mm, more preferably 0-10 mm, and most preferably 7.75 mm.
  • the circuit board 13 is integrated with a power supply terminal 132, and the power supply terminal 132 is also electrically connected to the battery cell through the circuit board 13, and the upper casing 11
  • a terminal interface 131 is defined at an end away from the limiting member 111 , and a power supply terminal 132 is disposed close to the terminal interface 131 and partially exposed to the terminal interface 131 .
  • the extending direction of the power supply terminal 132 and the orientation of the terminal interface 131 are parallel to the two long sides.
  • the design of the power supply terminal 31 and the terminal interface 131 enables the battery pack 100 of the present invention to be plugged into an electric tool to provide power for the electric tool.
  • the battery pack housing 10 is also provided with a display device 1115, which can be used to display the remaining power of the battery pack 100, or can be used to It is used to display the voltage and current of the battery pack 100, the temperature of the battery cells, faults, and the like.
  • the display device can also display the operating parameters of the electric tool, such as the rotation speed of the motor and so on.
  • the display device is preferably an LCD display, but should not be limited thereto.
  • the display device 1115 is fixed on the upper casing 11 and located beside the limiting member 111 .
  • the limit member 111 includes a limit pressing part 1111 and a limit post 1112.
  • the limit press part 1111 is used for the operator to operate to release the lock between the battery pack 100 and the electric tool; In order to realize the fixed connection between the battery pack 100 and the external equipment.
  • a spring installation column 1113 and a guide sleeve 1114 are provided on both ends of the bottom of the limiting member 111, a limiting spring is installed on the spring installing column 1113, and the bottom end of the limiting spring It abuts against the limit member installation groove 112 of the upper housing 11, and is used to reset the limit member 111.
  • the guide sleeve 1114 is sleeved on the guide post on the limit member installation groove 112.
  • the limiting member 11 plays a guiding role in the process of pressing down and rising.
  • the display device 1115 is fixed on the upper casing 11 and located between the position-limiting pressing part 1111 and the position-limiting column 1112, the purpose of which is to: When the battery pack 100 is combined with the electric tool, the operator can see the content displayed on the display device 1115 during use. Timely discovery and treatment to avoid the danger.
  • the display device 1115 can also be installed on the front side of the battery pack 100 , that is, on the side of the limiting pressing portion 1111 away from the limiting post 1112 .
  • such an installation solution needs to consider whether the lead wires between the display device 1115 and the circuit board 13 will be interfered by the position-limiting pressing portion 1111 , and the wiring will be limited.
  • a layer of waterproof label 11151 is pasted on the display device 1115 to enhance the waterproof performance of this part.
  • a ventilation hole 1116 is also provided in the limiting member installation groove 112.
  • the battery pack 100 will generate gas during use or the air inside the battery pack will expand due to the heating of the battery cells.
  • the ventilation hole 1116 is used to The air inside the battery pack 100 is exhausted.
  • the circular groove at the bottom of the stopper 111 always covers the vent hole 1116 to prevent water from entering the battery pack 100 through the vent hole 1116 .
  • the interface of the battery pack is provided with a waterproof structure, and the battery pack also includes a first interface 122 arranged on the side of the housing, the first interface 122 is installed on the bottom surface of the circuit board 13, and is electrically connected to the circuit board 13.
  • the cell bracket 14 is provided with an interface installation part 142, the first interface 122 is located in the interface installation part 142, and the interface installation part 142 is a limit baffle, located in the first interface 122, in order to realize the limit of the first interface 122, to ensure that the first interface 122 will not be displaced after being stressed, so as to ensure the normal use of the function of the first interface 122.
  • the first interface 122 An interface 122 is preferably a Type-C interface.
  • the first interface 122 is installed above the circuit board 13 .
  • one end of the first interface 122 protrudes from the side of the cell support 14, and the first interface 122 protrudes from the cell support
  • a first sealing member 123 is installed on one end of the side surface of 14 , and the first sealing member 123 is deformed under the extrusion of the battery pack case 10 and the first interface 122 to achieve sealing.
  • a sealing groove 115 is provided at the edge connecting the lower casing 12 and the upper casing 11, and a second sealing ring 116 is installed in the sealing groove 115, when the When the lower housing 12 is fixedly assembled with the upper housing 11, the second sealing ring 116 is deformed under the extrusion of the upper housing 11 and the lower housing 12 to fill the upper housing 11 and the upper housing 11. The gap between the lower casings 12 forms a seal.
  • the upper casing 11 and the lower casing 12 are connected by screws, specifically, the four corners of the lower casing 12 are respectively provided with threaded passages.
  • Holes 1201 the inside of the upper housing 11 is also provided with four threaded holes with a certain depth correspondingly, screws extend from the bottom of the lower housing 12 into the threaded through holes 1201, and Connected with the threaded hole of the upper case 11, the threaded connection between the upper case 11 and the lower case 12 makes the threaded hole at the bottom of the lower case 12, so as to prevent water from entering the battery from the threaded hole inside the bag.
  • a groove 114 is provided on the inner side of the lower case 12, and the groove 114 is located below the insertion port 113, and the battery cell
  • a rib 143 is provided on the side of the bracket 14, and the rib 143 is located below the first interface 122 and protrudes beyond the end of the first interface 122 where the first seal 123 is installed.
  • the rib 143 of the cell support 14 moves to the lower case 12, and the lower case 12 is extruded and deformed until the rib 143 is Installed in the groove 114 corresponding to the lower casing 12, so that the first sealing member 123 on the first interface 122 is squeezed by the lower casing 12 to deform it, and the first interface 122 is connected to the lower casing 12.
  • the gaps in between are filled so that water cannot enter.
  • the ribs 143 and the grooves 114 are both arranged in an L-shaped structure and matched with each other.
  • the battery pack casing 10 of the battery pack is also equipped with a protective cover, and the protective cover is located at the insertion port 113 to cover the first port. 122, so as to play the effect of waterproof and dustproof.
  • the protective cover is a protective plug 117, one end of the protective plug 117 is inserted into the first interface 122 to match the first interface 122, and the other end is connected to the plug.
  • the interface 113 is matched so as to cover the first interface 122 to achieve a sealing effect, so as to further improve the effect of waterproof and dustproof.
  • the protective cover is a rotating protective cover 118
  • the rotating protective cover 118 is matched with the first interface 122
  • one end of the rotating protective cover 118 passes through a
  • the rotating shaft is rotatably connected with the lower housing 12, rotates around the rotating shaft, and rotates the rotating protective cover 118 to the insertion port 113 to cover the first port 122, so as to seal and Further improve the effect of waterproof and dustproof.
  • the protective cover is a protective sliding cover 119 matching with the first interface 122 .
  • the protective sliding cover 119 includes a sliding rail 1191 and a sliding cover 1192, the sliding rail 1191 is installed on the lower housing 12, and a limiting rib is arranged on the sliding rail 1191, and the sliding cover can be manually slid 1192 to the limiting rib, the sliding cover 1192 is fixed under the action of the limiting member rib to cover the first interface 122, so as to seal and further improve the effect of waterproof and dustproof.
  • the protective sliding cover can also include a sliding rail 1191, a sliding cover 1192 and a spring 1193, the sliding rail 1191 is installed on the lower casing 12, and the sliding cover 1192 Installed on the slide rail 1191, and one end of the spring 1193 is connected to the platform between the lower ends of the slide rail 1192, and the other end is connected to the top of the inner side of the slide cover 1192, under the elastic force of the spring 1193
  • the sliding cover 1192 automatically covers the insertion port 113, thereby covering the first port 122, so as to perform a sealing function to further improve the effect of waterproof and dustproof.
  • a sealing ring on the first interface, and makes the first sealing member deform under the extrusion of the battery pack shell and the first interface to achieve sealing, thereby improving its sealing performance, effectively Prevent water from entering the battery pack, thereby avoiding damage to the battery due to water entering the battery pack.
  • a second sealing ring is installed at the joint between the lower case and the upper case to further improve the waterproof effect.
  • a protective cover is provided on the battery pack casing to cover the first interface, thereby further improving the waterproof effect, and at the same time achieving the purpose of dustproofing.
  • the power supply terminal 132 is installed on the circuit board 13 and located at the terminal interface 131.
  • the The inside of the upper housing 11 is provided with a terminal installation groove 1311, the power supply terminal 132 is installed on the circuit board 13, and is located in the terminal installation groove 1311, so that the first sealing ring 1324 on the power supply terminal 132 is in the position.
  • the cooperation between the insert mounting seat 1321 and the terminal mounting groove 1311 realizes the sealing effect.
  • the power supply terminal 132 includes a plug mount 1321 and a plurality of plugs 1322, and the plug mount 1321 is installed on the circuit board 13, so
  • the plurality of inserts 1322 are installed on the insert mount 1321, and the height of the insert mount 1321 is higher than the height of the insert 1322, and the bottom of the insert 1322 is in contact with the circuit board 13 are electrically connected, and every two inserts 1322 are separated from each other by vertical ribs 1323.
  • the insert mounting seat 1321 is set as a mounting groove with two adjacent surfaces set as openings, and the A plurality of vertical ribs 1323 are distributed at intervals in the groove, and the groove has been divided into a plurality of separate and mutually separated spaces for installing inserts 1322, and the height of the vertical ribs 1323 is higher than that of the inserts 1322 to isolate each insertion piece 1322 separately, so as to avoid mutual influence between multiple insertion pieces 1322 .
  • a sealing groove 1320 is provided at the bottom of the insertion piece mounting seat 1321, and a first sealing ring 1324 is arranged in the sealing groove 1320, and the first sealing ring 1324 is installed on the insertion piece.
  • the mounting seat 1321 and the battery pack shell 10 are deformed under extrusion to fill the gap between the insertion piece mounting seat 1321 and the battery pack shell 10 , thereby achieving a sealing effect.
  • the inserts 1322 will not interfere with each other, and due to the sealing effect of the first sealing ring 1324, the insert mounting seat 1321 and the battery case There is no gap between the bodies 10 , so that the water entering from the terminal interface 131 cannot enter the interior of the battery pack and is easily drained from the terminal interface 131 .
  • the upper casing 11 of the battery pack case 10 is provided with a limiting member installation groove 112, and a limiting member 111 is installed in the limiting member installation groove 112. , and sealed by the installation groove cover 1121, the limiter 111 is used to make the battery pack 100 can be easily disengaged when the battery pack 100 is inserted and pulled out, the installation groove cover 1121 and the battery pack shell 10 A water guiding groove 101 is provided between them, so that the water entering the limiting member installation groove 112 can quickly flow out from the water guiding groove 101, so as to avoid water accumulation there, thereby affecting the waterproof performance of the battery pack.
  • a plurality of threaded holes are provided in the installation groove 112 of the limiting member, and the bolts are fixedly connected with the installation groove cover 1121 through the threaded holes.
  • Bosses 11201 are provided at the holes, and the height of the bosses 11201 is higher than the bottom surface of the limiter installation groove 112, so as to prevent the bolts from being soaked in water, and at the same time prevent water from coming out of the gap between the bolts and the threaded holes. Enter the battery pack.
  • the battery pack casing 10 is provided with a wireless interface 114 , and the battery pack can be charged and discharged through the wireless interface 114 .
  • the battery pack includes multiple discharge modes, the discharge modes at least include wireless discharge mode, Type-C interface discharge mode and power supply terminal discharge mode, and the discharge process is the wireless discharge mode, the One of the discharge modes of the Type-C interface and the discharge mode of the power supply terminal is used for discharging, or multiple modes are used for discharging simultaneously.
  • the battery pack includes multiple charging modes, the charging modes at least include wireless charging mode, Type-C interface charging mode and power supply terminal charging mode, and the charging process is the wireless charging mode, the Charging is performed in one of the charging modes of the Type-C interface and the charging mode of the power supply terminal, or charging is performed in multiple modes at the same time.
  • the battery pack also includes charging through the wireless interface while discharging externally through the Type-C interface, and charging through the Type-C interface while charging through the wireless interface.
  • the wireless interface discharges externally and the power supply terminal discharges externally through the wireless interface and the Type-C interface at the same time.
  • the embodiment of the present invention discloses a charging and discharging control system, which is applied to a battery pack 100 that uses a Type-C interface 122 and/or a wireless interface 114 for charging/discharging.
  • the battery pack 100 includes a cell assembly 120.
  • the cell assembly 120 includes a plurality of cells. The cells can be combined in series and parallel to form a cell assembly 120.
  • the cell assembly 120 is used to store electrical energy, and the cells are connected to each other. After being combined, charging/discharging can be performed through the Type-C interface 122 and/or the wireless interface 114 .
  • One end of the control system is electrically connected to the battery cell assembly 120, and the other end is electrically connected to the wireless interface 114 and each Type-C interface 122, and is used to detect the equipment connected to the device on the Type-C interface 122 and/or wireless interface 114 Type, the battery pack 100 is charged/discharged through the Type-C interface 122 and/or the wireless interface 114 according to the device type; wherein, the device type includes a charging device and a discharging device.
  • Type-C interface 122 is a USB standard interface, and its interface type is a double-sided model that can adapt to front and back insertion, and supports the USB PD fast charging protocol (USB Power Delivery Specification, USB fast charging standard).
  • the pins of the Type-C interface 122 include VBUS, CC, D+, D-, and GND.
  • the communication protocol of the Type-C interface 122 is not limited to the above-mentioned standardized USB PD fast charging protocol, but also supports proprietary protocols, which are generally designed by each manufacturer according to their own conditions, and this solution does not limit it.
  • the access device is also provided with a Type-C interface, and the interaction between the access device and the battery pack 100 should meet the Type-C general communication protocol and proprietary protocol.
  • the access device when the access device is a charging device, it can be a gallium nitride charger; when the access device is a discharge device, it can be various electric tools and garden tools, or it can be mobile phones, notebooks, Bluetooth speakers and other electrical equipment.
  • the wireless interface 114 adopts a WPC coil (Wireless Power Consortium, Wireless Charging Consortium), which meets the international wireless charging standard Qi, and can charge/discharge the access device equipped with a wireless interface.
  • WPC coil Wireless Power Consortium, Wireless Charging Consortium
  • the battery pack 100 in this embodiment can also include a power supply terminal 132, and the control system is also used to detect the device type of the device connected to the power supply terminal 132, and according to the device type, the battery pack 100 can be connected to the battery pack 100 through the power supply terminal 132 Perform charge/discharge.
  • the power supply terminal 132 is a commonly used connection port in garden tools, and there are various types to choose from.
  • its pins include: P+, CHG, COM, and P ⁇ .
  • the present embodiment includes a Type-C interface 122 and/or a power supply terminal 132.
  • a plurality of Type-C interfaces 122 can be set as required, and charging and discharging can be accelerated by adjusting the charging or discharging power. The speed is convenient for users to use.
  • the control system includes: a detection module 170 , a control module 180 , a voltage regulation module 160 and a wireless voltage regulation module 140 .
  • the detection module 170 is used to obtain the battery parameters of the cell assembly 120 in real time, and is also used to obtain the circuit parameters of the Type-C loop and the wireless loop in real time; wherein, the battery parameters include the voltage, current and temperature of the cell assembly 120; the loop parameters Including loop voltage, loop current, power device temperature and input/output voltage.
  • Type-C loop is the relevant circuit from the Type-C interface 122 to the cell assembly 120 inside the battery pack 100, and the Type-C loop in this embodiment includes the Type-C interface 122, the detection module 170, and the control module 180 , the voltage regulating module 160 and the cell assembly 120 .
  • the wireless loop is the relevant circuit from the wireless interface 114 to the cell assembly 120 inside the battery pack 100.
  • the Type-C loop in this embodiment includes the wireless interface 114, the detection module 170, the control module 180, the wireless voltage regulation module 140 and the cell assembly. Component 120.
  • the control module 180 is used to judge the device type of the connected device according to the interface signal of the Type-C interface 122; it is also used to receive the key signal of the wireless charging and discharging button, and judge the device type of the connected device on the wireless interface 114 according to the key signal ; It is also used to output control signals to the voltage regulation module 160 and the wireless voltage regulation module 140 according to the device type, battery parameters and circuit parameters.
  • data interaction between the detection module 170 and the control module 180 is realized through the I2C bus.
  • the voltage regulating module 160 is connected in series between the cell assembly 120 and the Type-C interface 122, and its control terminal is electrically connected to the control module 180, and is used to adjust the input of the cell assembly 120 according to the control signal of the control module 180 /The output voltage.
  • the wireless voltage regulation module 140 is connected in series between the cell assembly 120 and the wireless interface 114, and its control terminal is electrically connected to the control module 180, and is used to adjust the input/output of the cell assembly 120 according to the control signal of the control module 180.
  • the output voltage is used to adjust the input/output of the cell assembly 120 according to the control signal of the control module 180.
  • control module 180 includes: a first control unit 1801 and a second control unit 1802 .
  • the first control unit 1801 is used to obtain the status of the battery pack according to the battery parameters and transmit it to the second control unit 1802; it is also used to receive the key signal of the wireless charging and discharging key, and judge the device connected to the device on the wireless interface 114 according to the key signal Type, for the convenience of description, the device type of the access device on the wireless interface 114 is recorded as the wireless device type;
  • the first control unit 1801 is also configured to output a control signal to the wireless voltage regulating module 140 according to the type of the wireless device, the state of the battery pack and the circuit parameters.
  • the second control unit 1802 is configured to determine the type of the access device according to the interface signal of the Type-C interface 122.
  • the device type of the access device on the Type-C interface 122 is recorded as the Type-C device type;
  • the second control unit 1802 is also configured to output a control signal to the voltage regulation module 160 according to the Type-C device type, battery pack status and circuit parameters.
  • the parameter range of the cell assembly 120 can be preset according to the needs of use, and the state of the battery pack can be judged according to the parameter range.
  • the state of the battery pack in this embodiment includes abnormal, Normal, charging protection and discharging protection, in practical application, users can also subdivide according to needs.
  • the state of the battery pack is abnormal, and charging/discharging is not allowed;
  • the state of the battery pack is normal, and charging/discharging can be performed;
  • the state of the battery pack is charging protection and is only used for charging
  • the state of the battery pack is discharge protection, which is only used for discharge
  • the voltage values of the first threshold, the second threshold, the third threshold and the fourth threshold increase sequentially.
  • the first threshold, the second threshold, the third threshold and the fourth threshold are all preset values, which can be determined according to the index parameters of the battery pack 100, and the index parameters generally include capacity, voltage, charging voltage, charging current, discharge The voltage and discharge current can be set by the user according to the needs, and this program does not limit the specific values.
  • the first control unit 1801 can communicate with the second control unit 1802 through various communication methods, wherein the communication methods include I2C bus communication, UART serial port communication and SPI communication.
  • the communication methods include I2C bus communication, UART serial port communication and SPI communication.
  • select 4 groups of I/O ports among the multiple I/O ports of the first control unit 1801 and the second control unit 1802 to realize data interaction and the specific communication protocol is described as follows :
  • first pin and the second pin of the first control unit 1801 as the first sending end, the third pin and the fourth pin as the first receiving end; define the first pin and the second pin of the second control unit 1802 The second pin is the second receiving end, the third pin and the fourth pin are the second sending end; and the high level output by the first control unit 1801 and/or the second control unit 1802 is defined as 1, and the low level Defined as 0.
  • the first control unit 1801 obtains the status of the battery pack according to the battery parameters, and transmits the status to the second control unit 1802 through the high and low levels of each pin, and the second control unit 1802 performs the battery pack 100 through the Type-C interface 122 according to the status of the battery pack. Discharge.
  • the parameter corresponding to the state of the battery pack is denoted as OVP.
  • the second control unit 1802 performs universal protocol matching with the access device on the Type-C interface 122, judges whether the access device is a charging device or a discharge device, and transmits to the first control unit 1801 through the high and low levels of each pin.
  • the battery pack 100 is in a charging protection state and is only used for charging;
  • the battery pack 100 is in a discharge protection state and is only used for discharging.
  • any Type-C interface 122 is connected to an access device equipped with a Type-C interface 122, and communicates with the second control unit 1802 to shake hands After success, the second control unit 1802 can perform data interaction with the first control unit 1801 .
  • control system detects battery parameters and circuit parameters in real time during the charging/discharging process, executes charging/discharging protection logic according to the battery parameters and circuit parameters, and dynamically adjusts the input/output power, thereby realizing the safety and security of the battery pack 100. Fast charge/discharge function.
  • the voltage regulation module 160 includes: a full-bridge drive unit 1601 and a full-bridge power unit 1602 .
  • the full-bridge driving unit 1601 is configured to output a driving signal to the full-bridge power unit 1602 according to the control signal of the second control unit 1802; wherein, the control signal of the second control unit 1802 is a PWM signal.
  • a full-bridge power unit 1602 which is connected in series between the Type-C interface 122 and the cell assembly 120, and whose control terminal is connected to the full-bridge drive unit 1601, for adjusting the input/output voltage of the cell assembly 120 according to the driving signal .
  • the full-bridge driving unit 1601 can output a driving signal to the full-bridge power unit 1602 according to the control signal, so as to adjust the input/output voltage of the cell assembly 120 through the full-bridge power unit 1602 .
  • the detection module 170 includes: a first detection unit 1701 and a second detection unit 1702 .
  • the first detection unit 1701 is used to obtain battery parameters in real time and transmit them to the first control unit 1801;
  • the second detection unit 1702 is used to obtain the loop parameters in real time and transmit them to the second control unit 1802 , and the second control unit 1802 transmits the loop parameters to the first control unit 1801 for use by the first control unit 1801 .
  • the wireless voltage regulation module 140 includes:
  • Coil switching unit 1401 one end of which is wirelessly connected to wireless interface 114, the other end is electrically connected to wireless boost sub-module 1402 and wireless step-down sub-module 1403, and its control end is electrically connected to first control unit 1801, for The control signal switching loop of the first control unit 1801;
  • the wireless boost sub-module 1402 is connected in series between the coil switching unit 1401 and the cell assembly 120 , and is used to boost the received voltage to the voltage required for charging the cell assembly 120 according to the control signal of the first control unit 1801 .
  • the wireless boost sub-module 1402 specifically includes: a wireless energy receiving control unit, a wireless charging protection unit and a boost unit;
  • the wireless energy receiving control unit communicates with the access device on the wireless interface 114 and receives energy according to the international wireless charging standard Qi;
  • the wireless charging protection unit is connected in series between the wireless energy receiving control unit and the booster unit, and its control terminal is connected to the first control unit 1801, and is used to control the closing or closing of the wireless loop according to the control signal of the first control unit 1801. disconnect;
  • the boost unit is connected in series between the wireless charging protection unit and the battery cell assembly 120, and boosts the received voltage to the voltage required for charging the battery cell assembly 120.
  • the wireless step-down sub-module 1403 is connected in series between the coil switching unit 1401 and the cell assembly 120 , and is used to step down the voltage of the cell assembly 120 to the output voltage of the wireless interface 114 according to the control signal of the first control unit 1801 .
  • the wireless step-down sub-module 1403 specifically includes: a wireless energy transmission control unit, a wireless discharge protection unit and a step-down unit;
  • the wireless energy transmission control unit communicates with the access device on the wireless interface 114 and transmits energy according to the international wireless charging standard Qi;
  • the wireless discharge protection unit is connected in series between the wireless energy transmission control unit and the step-down unit, and its control terminal is connected to the first control unit 1801, and is used to control the closing or closing of the wireless loop according to the control signal of the first control unit 1801. disconnect;
  • the step-down unit is connected in series between the wireless discharge protection unit and the cell assembly 120 , and steps down the voltage of the cell assembly 120 to the output voltage of the wireless interface 114 .
  • control system further includes: an activation unit 110 .
  • the activation unit 110 is used to activate the first control unit 1801 according to the activation signal; the activation signal is obtained through any one or several of the connection status of the Type-C interface 122, pressing the activation button or pressing the wireless charging and discharging button; it should be understood that the battery
  • the battery pack 100 is provided with an activation button for controlling the on-off of the power supply circuit.
  • a pull-up or pull-down activation signal can be generated; the battery pack 100 is also provided with a wireless charging and discharging button, and the wireless charging and discharging button After being pressed, a pull-up or pull-down activation signal can be generated, and the first control unit 1801 can also judge the wireless device type of the wireless interface 114 according to the key signal of the wireless charging and discharging key.
  • the first control unit 1801 is further configured to detect the state of the battery pack after being activated, and activate the second control unit 1802 if the state of the battery pack is not abnormal.
  • the battery pack 100 is in a dormant state when there is no activation signal, and at this time both the first control unit 1801 and the second control unit 1802 are powered off; when the activation signal is received, the first control unit 1801 first detects the state of the battery pack , if the state of the battery pack is normal, the second control unit 1802 is activated; otherwise, the charging/discharging process is stopped, which not only saves electric energy, but also prevents damage to the cell assembly 120 .
  • the first control unit 1801 can also output a control signal to the second control unit 1802 to make it power off, and the first control unit 1801 powers off itself after a delay of a certain period of time, thereby saving electric energy .
  • the control system also includes a Type-C communication unit 192, which is connected in series between the second control unit 1802 and the Type-C interface 122, and the second control unit 1802 can communicate with the Type-C interface through the Type-C communication unit 192
  • the access device on 122 is connected by communication, so as to obtain the interface signal through the Type-C interface 122.
  • the interface signal includes the device type of the access device, charging request, discharging request, charging voltage and discharging voltage.
  • control system further includes: a Type-C protection unit 152 .
  • Type-C protection unit 152 which is connected in series between the full bridge power unit 1602 and the Type-C interface 122, and its control terminal is connected to the second control unit 1802 for charging according to the protection instructions of the second control unit 1802 /discharge protection;
  • the second control unit 1802 is also configured to output protection instructions to the Type-C protection unit 152 according to the state of the battery pack and circuit parameters.
  • control system when the battery pack 100 also includes a power supply terminal 132, the control system also includes:
  • a terminal protection unit 151 which is connected in series between the power supply terminal 132 and the cell assembly 120, and whose control terminal is connected to the first control unit 1801, for charging/discharging protection according to the protection instruction of the first control unit 1801;
  • the first control unit 1801 is further configured to output protection instructions to the terminal protection unit 151 according to battery parameters.
  • control system when the battery pack 100 also includes the power supply terminal 132, the control system also includes:
  • the terminal communication unit 191 is connected in series between the power supply terminal 132 and the first control unit 1801 , and is used for communication connection between the first control unit 1801 and the access device on the power supply terminal 132 .
  • the activation signal received by the activation unit 110 can be through the connection status of the Type-C interface 122, the connection status of the power supply terminal 132, pressing the activation button or pressing the wireless charging and discharging button. Any one or several of them can be obtained.
  • the second control unit 1802 is also configured to transmit the device type of the access device on the Type-C interface 122 to the first control unit 1801;
  • the first control unit 1801 is also used to determine the device type of the connected device according to the interface signal of the power supply terminal 132.
  • the device type of the connected device on the power supply terminal 132 is recorded as the terminal device type; and according to the terminal device type
  • the battery pack 100 is charged/discharged according to the working conditions of the battery pack, specifically:
  • the first control unit 1801 After the first control unit 1801 receives the device type of the connected device on the Type-C interface 122, if it is a charging device, then judge whether the second control unit 1802 has received the charging request sent by the charging device, if the charging request is received, the first The control unit 1801 judges the working condition of the battery pack. If the working condition of the battery pack is the non-discharging mode, it judges whether the battery pack 100 needs to be charged according to the state of the battery pack.
  • the second control unit 1802 controls the charging of the battery pack 100; discharge device, then judge whether the second control unit 1802 has received the discharge request sent by the discharge device; if the discharge request is received, the first control unit 1801 will judge the working condition of the battery pack; The state of the battery pack determines whether it can be discharged, and if so, the second control unit 1802 controls the battery pack 100 to discharge.
  • the first control unit 1801 judges the device type of the device connected to the power supply terminal 132. If it is a charging device, it judges whether a charging request sent by the charging device is received. If a charging request is received, it judges the working condition of the battery pack. If the working condition is non-discharging mode, then judge whether the battery pack 100 needs to be charged according to the state of the battery pack, and if so, charge the battery pack 100; if it is a discharge device, then judge whether the discharge request sent by the discharge device is received, and if received When a discharge request is received, the working condition of the battery pack is judged. If the working condition of the battery pack is non-charging mode, it is judged according to the state of the battery pack whether it can be discharged, and if so, the battery pack 100 is discharged.
  • the working conditions of the battery pack include charging mode, discharging mode and idle mode, specifically:
  • the first control unit 1801 sets the working condition of the battery pack to the charging mode when the battery pack 100 starts charging through the Type-C interface 122 and/or the power supply terminal 132 and/or the wireless interface 114;
  • the first control unit 1801 sets the working condition of the battery pack to discharge mode when the battery pack 100 starts to discharge through the Type-C interface 122 and/or the power supply terminal 132 and/or the wireless interface 114;
  • the first control unit 1801 sets the working condition of the battery pack to idle mode when there is no access device on the Type-C interface 122 or the power supply terminal 132 and/or the wireless interface 114 .
  • the first control unit 1801 when there is an access device on the power supply terminal 132 or the wireless interface 114, but no access device is detected on the Type-C interface 122, the first control unit 1801 also outputs a control signal to the second control unit 1802, so that It sleeps to save power; when the first control unit 1801 receives the activation signal again and the state of the battery pack is not abnormal, the second control unit 1802 is activated again.
  • the first control unit and the second control unit in the above embodiment are usually the central processing unit (Central Processing Unit, CPU) of the entire microcomputer digital display sensor processor system, and can be configured with a corresponding operating system, And control interface, etc., specifically, it can be a single-chip microcomputer, DSP (Digital Signal Processing, digital signal processing), ARM (Advanced RISCMachines, ARM processor) and other digital logic processors that can be used for automatic control, and control instructions can be loaded at any time It can be stored and executed in the memory.
  • DSP Digital Signal Processing, digital signal processing
  • ARM Advanced RISCMachines, ARM processor
  • CPU instructions and data memory, input and output units, power modules, digital simulation and other units can be built in.
  • the specific settings can be set according to the actual usage. This solution does not limit this.
  • the control system in the above embodiment is applied to the battery pack 100 that uses the Type-C interface 122, the wireless interface 114 or the power supply terminal 132 for charging/discharging, supports the USB PD fast charging protocol and the international wireless charging standard Qi, and can real-time Detect the device type of the device connected to the Type-C interface 122, wireless interface 114 or power supply terminal 132, and charge/discharge the battery pack 100 according to the device type, not only through the Type-C interface 122, wireless interface 114 or power supply terminal 132 It can perform fast charging, and can also quickly discharge the access equipment with Type-C interface 122, wireless interface 114 or power supply terminal 132, and the charging/discharging power can be adjusted according to the access equipment within a certain range, which is suitable for a variety of different Voltage access equipment is convenient for users; and during the charging/discharging process, the technical parameters of the battery pack 100 are detected in real time, and the charging/discharging protection logic is executed according to the technical parameters, and the input/out
  • FIG. 39 another embodiment of the present invention discloses a charging and discharging control method, which is applied to a battery pack 100 that uses a Type-C interface 122 and/or a wireless interface 114 for charging/discharging.
  • the control method includes :
  • the device type includes a charging device and a discharging device.
  • control method also includes:
  • Detect the state of the battery pack if the state of the battery pack is non-abnormal, then judge whether there is an access device on the Type-C interface 122 and/or the wireless interface 114; wherein, the state of the battery pack is obtained by judging the battery parameters in real time, and the battery parameters include battery The voltage, current and temperature of the core assembly 120.
  • the battery pack 100 is in a dormant state when there is no activation signal, and only after receiving the activation signal and the state of the battery pack is not abnormal, the charging or discharging process starts, which not only saves electric energy, but also prevents damage to the battery pack. core assembly 120 .
  • a communication handshake is performed with the access device.
  • the steps of detecting the device type of the access device on the Type-C interface 122 include:
  • Communication handshake with the access device If the handshake is successful, the type of communication handshake is judged. If the type of communication handshake is charging handshake, it is a charging device; if the type of communication handshake is discharge handshake, it is a discharge device.
  • the steps of charging/discharging the battery pack 100 according to the device type include:
  • the device type is a charging device, judge whether a charging request from the charging device is received. If a charging request is received, judge whether charging is required based on the status of the battery pack. If necessary, set the working condition of the battery pack to charging mode. Pack 100 to charge and execute charging protection logic;
  • the device type is a discharge device, judge whether the discharge request from the discharge device is received. If the discharge request is received, judge whether it can be discharged according to the state of the battery pack. If yes, set the working condition of the battery pack to discharge mode. Pack 100 discharges and executes discharge protection logic.
  • the wireless interface 114 If it is detected that there is an access device on the wireless interface 114, it is determined whether it is a charging device or a discharging device according to the key signal of the wireless charging and discharging button.
  • the steps of charging/discharging the battery pack 100 according to the device type include:
  • a charging device If a charging device is connected to the Type-C interface 122, it is judged whether the charging request sent by the charging device is received, and if so, it is judged whether charging is required according to the state of the battery pack, and if necessary, the battery pack 100 is charged and charging protection is performed logic;
  • a discharge device If a discharge device is connected to the Type-C interface 122, it is judged whether the discharge request sent by the discharge device is received, if received, it is judged whether it can be discharged according to the state of the battery pack, if yes, the battery pack 100 is discharged and discharge protection is performed logic.
  • the status of the battery pack should be detected first, and charging is allowed only when it is non-abnormal; when a discharge request is received, the status of the battery pack should be detected first, and discharge is allowed only when it is normal. Avoid damage to the cell assembly 120 caused by overcharging or undervoltage, affecting its service life.
  • the steps of the wireless charging protection logic include:
  • the wireless discharge protection logic includes:
  • the steps of the charging protection logic include:
  • the circuit parameters include circuit voltage, circuit current, power device temperature and input/output voltage;
  • the steps of the charging protection logic also include:
  • the status of the battery pack is monitored in real time; if the status of the battery pack is abnormal, the charging is stopped.
  • the steps of the discharge protection logic include:
  • the circuit parameters include circuit voltage, circuit current, power device temperature and input/output voltage;
  • the steps of the discharge protection logic also include:
  • the status of the battery pack is monitored in real time; if the status of the battery pack is abnormal, the discharge is stopped.
  • the parameter range can be set according to the use needs during the charging/discharging process.
  • the charging parameter or discharging parameter exceeds the preset parameter range, it is considered abnormal, and the charging/discharging can be performed according to the preset logic.
  • the discharge voltage and the charging/discharging current are dynamically adjusted, and the number of adjustments can be one or more times, and the specific number of times can be set according to needs, and in this embodiment, it is 5 times.
  • both the maximum charging value and the minimum discharging value are preset values, which can be determined according to the index parameters of the battery pack 100, and the index parameters generally include capacity, voltage, charging voltage, charging current, discharging voltage, and discharging current; in this embodiment
  • control method when the battery pack 100 also includes the power supply terminal 132, the control method includes:
  • control method also includes:
  • a communication handshake is performed with the access device, and if no access device is detected, the working condition of the battery pack is set to idle mode.
  • the step of detecting the device type of the connected device on the power supply terminal 132 includes:
  • Communication handshake with the access device If the handshake is successful, the type of communication handshake is judged. If the type of communication handshake is charging handshake, it is a charging device; if the type of communication handshake is discharge handshake, it is a discharge device.
  • the steps of charging/discharging the battery pack 100 include:
  • the charging device If it is a charging device, it is judged whether the charging request sent by the charging device is received, and if so, it is judged according to the state of the battery pack whether the battery pack 100 needs to be charged, and if necessary, the battery pack 100 is charged through the power supply terminal 132;
  • the discharge device If it is a discharge device, it is judged whether the discharge request sent by the discharge device is received, and if so, it is judged whether it can be discharged according to the state of the battery pack, and if so, the battery pack 100 is discharged through the or power supply terminal 132 .
  • a battery pack 100 including a charge and discharge control system, a cell assembly 120, and at least one Type-C interface 122;
  • the charging and discharging control system is connected in series between the Type-C interface 122 and the battery cell assembly 120, and the Type-C interface 122 is detachably connected to an access device, and the charging and discharging control system is passed according to the type of the access device.
  • the Type-C interface 122 charges/discharges the battery pack 100 .
  • the battery pack 100 in this embodiment can also include a power supply terminal 132, a plurality of Type-C interfaces 122 and a wireless interface 114, and one end of the control system for charging and discharging is connected to each Type-C interface 122, power supply terminals 132 and wireless interfaces. Interface 114 is connected, and the other end is connected to the cell assembly 120.
  • Each Type-C interface 122 and/or power supply terminal 132 and/or wireless interface 114 is detachably connected to an access device, and the charging and discharging control system is based on the access device.
  • the battery pack 100 is charged/discharged through each Type-C interface 122 and/or the power supply terminal 132 and/or the wireless interface 114 .
  • the two Type-C interfaces where the charger 200 and the battery pack 100 are connected are male and female, which is convenient for users to connect; in addition, the above-mentioned battery pack 100 and charger 200 may also include a power supply terminal 132 and an insert 23, The charger 200 can also charge the battery pack 100 through the insertion piece 23 , and correspondingly, the power supply terminal 132 and the insertion piece 23 electrically connected to each other are also matched male and female connectors.
  • the charging and discharging control method in the above embodiment is applied to the battery pack 100 that uses the Type-C interface 122 and/or the power supply terminal 132 and/or the wireless interface 114 for charging/discharging, supports the USB PD fast charging protocol, and can Real-time detection of the device type of the connected device on the Type-C interface 122 and/or power supply terminal 132 and/or wireless interface 114, and charge/discharge the battery pack 100 according to the device type, not only through the Type-C interface 122 and/or
  • the power supply terminal 132 and/or the wireless interface 114 perform fast charging, and can also perform fast discharge for the access device with the Type-C interface 122 and/or the power supply terminal 132 and/or the wireless interface 114, and the charging/discharging power can be within a certain range.
  • the range is adjusted according to the access equipment, which is suitable for a variety of access equipment with different voltages, which is convenient for users to use; and during the charging/discharging process, the technical parameters of the battery pack 100 are detected in real time, and the charging/discharging protection is performed according to the technical parameters
  • the logic can dynamically adjust the input/output power, which can effectively protect the safety of the battery pack 100 and prolong the service life of the battery pack 100.
  • the above charging and discharging control method can not only charge the battery pack 100 simultaneously through one or more of the Type-C interface 122, the wireless interface 114 or the power supply terminal 132, but also can charge the battery pack 100 through the Type-C interface 122, the wireless interface 114 or One or more of the power supply terminals 132 discharges the battery pack 100 at the same time, and can also discharge while the battery pack 100 is being charged, and vice versa.
  • the following is an example of charging through the wireless interface 114 and discharging through the Type-C interface 122 at the same time illustrate:
  • the Type-C interface 122 communicates with the access device to shake hands, determine whether it is a charging device or a discharge device, if it is a discharge device, determine whether a discharge request is received, and determine whether it can be discharged according to the state of the battery pack , if possible, the battery pack 100 is discharged, and the charging and discharging protection logic is executed at the same time.
  • the steps of charge and discharge protection logic include:
  • the access status of the access device is also detected in real time, and if the access status changes, the corresponding protection logic is adjusted.
  • the charging and discharging control method in the above embodiment is applied to the battery pack 100 that uses the Type-C interface 122, the wireless interface 114 or the power supply terminal 132 for charging/discharging, and supports the USB PD fast charging protocol and the international wireless charging standard Qi , can detect the device type of the connected device on the Type-C interface 122, the wireless interface 114 or the power supply terminal 132 in real time, and charge/discharge the battery pack 100 according to the device type, not only through the Type-C interface 122, the wireless interface 114 or The power supply terminal 132 can perform fast charging, and can also quickly discharge the access equipment with the Type-C interface 122, wireless interface 114 or power supply terminal 132, and the charging/discharging power can be adjusted according to the access equipment within a certain range, which is suitable for A variety of access devices with different voltages are convenient for users to use; and during the charging/discharging process, the technical parameters of the battery pack 100 are detected in real time, and the charging/discharging protection logic is executed
  • a battery pack 100 including a charging and discharging control system, a cell assembly 120, a wireless interface 114 and at least one Type-C interface 122;
  • One end of the control system is electrically connected to the cell assembly 120, and the other end is electrically connected to the wireless interface 114 and each Type-C interface 122 respectively; the Type-C interface 122 and/or the wireless interface 114 are detachably connected to an access device, and the control system The system charges/discharges the battery pack 100 according to the device type of the connected device.
  • Type-C interfaces 122 of the battery pack 100 there may be multiple Type-C interfaces 122 of the battery pack 100 in this embodiment, and by adjusting the charging or discharging power, the charging and discharging speed can be accelerated, which is convenient for users.
  • the battery pack 100 in this embodiment may further include a power supply terminal 132, and an access device is detachably connected to the power supply terminal 132, and the control system charges/discharges the battery pack 100 according to the type of the access device.
  • the battery pack 100 in this embodiment supports the USB PD fast charging protocol and the international wireless charging standard Qi, and can detect in real time the type of device connected to the device on the Type-C interface 122, the wireless interface 114 or the power supply terminal 132.
  • Type to charge/discharge the battery pack 100 not only can fast charge through the Type-C interface 122, wireless interface 114 or power supply terminal 132, but also can provide the access
  • the device performs rapid discharge, and the charging/discharging power can be adjusted according to the access device within a certain range, which is suitable for a variety of access devices with different voltages, which is convenient for users to use; and during the charging/discharging process, real-time detection of the battery pack 100
  • the charging/discharging protection logic is executed according to the technical parameters, and the input/output power is dynamically adjusted, which can effectively protect the safety of the battery pack 100 and prolong the service life of the battery pack 100.
  • the present invention can also charge the battery pack by connecting multiple chargers to improve charging efficiency.
  • the battery pack is connected to the charger through Type-C, and the activation signal can activate the battery pack.
  • the first control unit 1801 After the first control unit 1801 completes power-on and initialization, it starts to detect the battery status. Except for abnormal conditions, the first control unit 1801 will turn on the Type-C circuit, and set the value of OVP according to the state of the battery pack; after that, the second control unit 1802 self-calibrates and powers on, and after the second control unit 1802 is powered on, it will judge whether there is a device connected according to the signal of the Type-C port; when the second control unit 1802 When the unit 1802 judges that any Type-C port has a charging device connected, the first control unit 1801 and the second control unit 1802 will perform data interaction, and the second control unit 1802 will tell the first control unit 1801 that a charger is connected , the first control unit 1801 executes the charging protection logic; and during the entire charging process, the first control unit 1801 will monitor the state of the battery in real time and maintain communication with the first control unit
  • the present invention also proposes a system, including a first electric tool, a second electric tool and the battery pack in the above embodiment, the first electric tool has a first rated voltage, and a plurality of The first tool Type-C interface; the second electric tool has a second rated voltage, and the second electric tool is provided with a plurality of second tool Type-C interfaces; when the battery pack is installed on the first electric tool, The Type-C interfaces on the multiple battery packs are connected to the multiple first tool Type-C interfaces, and the battery packs output energy to the first electric tool; when the battery pack is installed on the second electric tool, the The Type-C interfaces on the plurality of battery packs are connected to the Type-C interfaces of the plurality of second tools, the battery packs output energy to the second electric tools, and the first rated power of the first electric tools The voltage is different than a second rated voltage of the second power tool.
  • the battery pack can also provide power for mobile phones, notebook computers, wearable smart devices, etc. through the Type-C interface
  • a plurality of Type-C interfaces are provided on the battery pack casing, so that the electrical connection between the Type-C interface and the circuit board can be used to realize the electrical connection between the battery pack 120 and the Type-C interface.
  • Sexual connection provides the possibility of power supply for mobile phones, notebooks, digital cameras and other electronic products. At the same time, it can also charge the battery pack by connecting multiple chargers to improve charging efficiency.
  • this embodiment introduces a power supply system.
  • the power supply system includes a mutually adapted electric tool 30 and a battery pack 100.
  • the battery pack 100 is used to supply power to the electric tool 30.
  • the electric tool 30 Includes, but is not limited to, lawn trimmers, hair dryers, trimmers, chainsaws, lawn pushers, washers, vacuum cleaners, smart lawn mowers, smart cleaning devices, and ride-on lawn mowers.
  • the battery pack 100 is provided with a Type-C interface (defined as the first Type-C interface 122), and the electric tool 30 is provided with a single Type-C interface corresponding to the battery pack 100 (defined as the second Type-C interface 34) , the battery pack 100 can output a rated voltage to the electric tool 30 through the first Type-C interface 122 .
  • the above-mentioned Type-C interface 122 is an electrical connector capable of discharging, and the output voltage of the Type-C interface 122 is, for example, 5-20V, preferably 5V, 9V, 12V, 15V, 20V; output
  • the current is, for example, 1-5A, preferably 1A, 2A, 3A, 4A, 5A;
  • the output power is, for example, 15-100W, preferably 15W, 18W, 30W, 45W, 60W, 100W.
  • the output voltage of the Type-C interface 122 can also be any value less than 5V or greater than 20V
  • the output current can also be any value less than 1A or greater than 5A
  • the output power can also be Any value less than 15W and greater than 100W.
  • the electric tool 30 includes a tool body 31 with functional modules, a handle 32 disposed on one side of the tool body 31, and a handle 32 disposed at an end of the handle 32 away from the tool body 31.
  • the top of the above-mentioned battery pack 100 is provided with a plug-in portion 1101 that matches the battery socket 331, and the plug-in portion 1101 of the battery pack 100 connects from one end of the opening of the battery socket 331 (that is, the insertion end). Insert into the battery socket 331, and the battery socket 331 at least partially wraps the socket part 1101, preventing the socket part 1101 of the battery pack 100 from coming out of the battery socket 331 from the position other than the opening of the battery socket 331, so as to ensure that the battery Pack of 100's of solidity.
  • the first Type-C interface 122 When the electric tool 30 is connected to the battery pack 100 through the slide rail 1102, the first Type-C interface 122 is electrically connected to the second Type-C interface 34 of the external electric tool 30, and the battery pack 100 can be connected through the first Type-C
  • the interface 122 outputs a rated voltage to the electric tool 30 to supply power to the functional modules of the electric tool 30 to realize corresponding functions of the electric tool 30 .
  • first Type-C interface 122 and the second Type-C interface 34 are USB standard interfaces, and the interface type is a double-sided model that can adapt to front and back insertion, and supports the USB PD fast charging protocol (USB Power Delivery Specification , USB fast charging standard), the first Type-C interface 122 and the second Type-C interface 34 pins can include VBUS, CC, D+, D-, GND.
  • a guide groove 332 is provided on the side wall of the battery socket 331 of the above-mentioned base 33, and the guide groove 322 can be, for example, an L-shaped groove.
  • the side wall of 1101 is provided with a slide rail 1102 that matches the guide groove 332.
  • the top of the battery pack 100 is provided with a limiter 111
  • the limiter 111 includes a limiter main body, and integrally formed limiter columns 1112 and limiter pressing parts arranged at both ends of the limiter body 1111.
  • a limit card slot 333 corresponding to the limit post 1112 of the limit member 111 is provided on the bottom of the battery socket 331 of the base 33 near the insertion end.
  • the top of the battery pack 100 is provided with a limit installation groove 112 and an installation groove cover 1121 for covering the limit installation groove 112.
  • the limit installation groove 112 is used to install the limit member 111
  • the installation groove cover 1121 covers the limit installation groove 112
  • the installation groove cover 1121 has a first opening at the position corresponding to the limit column 1112 and the limit pressing part 1111 1122 and the second opening 1123, the limiting column 1112 and the limiting pressing part 1111 are exposed from the first opening 1122 and the second opening 1123, and the limiting column 1112 needs to be inserted into the base 33 after the battery pack 100 is disassembled It can protrude from the surface of the installation slot cover 1121 under the action of the elastic element.
  • a limit installation protrusion 1124 is provided in the middle of the limit installation groove 112, and a limit installation protrusion 1124 is provided in the middle of the limit main body of the limit member 111.
  • the limit member 111 is sleeved on the limit installation protrusion 1124 through the limit through hole 1115, and the limit installation protrusion 1124 can play a certain guiding role.
  • An elastic element (not shown) is also provided between the limiting member 111 and the bottom surface of the limiting installation groove 112, and the elastic element can reset the limiting member 111 when the battery pack 100 is removed or plugged into the base 33, thereby Make the limiting column 1112 and the limiting pressing part 1111 protrude from the first opening 1122 and the second opening 1123 respectively, and when the battery pack 100 is inserted into the base 33, the limiting column 1112 of the limiting member 111 is inserted into the base 33
  • the limit card slot 333 in the stopper acts as a limiter to prevent the battery pack 100 from sliding out of the base 33 along the first direction, and when the battery pack 100 is released, the limit pressing part 1111 and the limit post 1112 need only be pressed down.
  • the limit post 1112 escapes from the limit card slot 333, and then the battery pack 100 can be removed from the base along the opposite direction of insertion. 33 to move out.
  • two elastic elements may be included, one is arranged between the limit post 1112 and the bottom surface of the limit installation groove 112, the other is arranged between the limit pressing part 1111 and the bottom surface of the limit installation groove 112, and A structure for installing the elastic element is provided at the position corresponding to the elastic element on the limiting post 1112 , the bottom surface of the limiting installation groove 112 and the limiting pressing portion 1111 .
  • Figure 54 shows the discharge control circuit of the battery pack 100 of this embodiment
  • the discharge control circuit can be integrated on the circuit board 13 of the battery pack 100, and the discharge control circuit is used as the Type-C management circuit of the first Type-C interface 122 .
  • the discharge control circuit is connected in series between the first Type-C interface 122 and the cell assembly 120 of the battery pack 100, and the discharge control circuit is used to control the output of the cell assembly 120 to the electric tool 30 through the first Type-C interface 122.
  • rated voltage and the discharge control circuit can automatically adapt to the rated voltage of the electric tool 30, that is, the battery pack 100 of this embodiment can be adapted to electric tools 30 with different rated voltages, and the battery pack 100 and multiple electric tools with different rated voltages
  • the tools 30 collectively form a tool system.
  • the discharge control circuit can also be used as the charge control circuit of the battery pack 100 .
  • the discharge control circuit includes the detection unit 170, the main control unit 1801, the first full-bridge power unit 1602 (full-bridge power unit 1), the full-bridge drive unit 1601, and the first Type-C charging unit in the above-mentioned embodiment.
  • Discharge protection unit 152 Type-C protection unit 1
  • Type-C communication processing unit 192 Type-C communication unit
  • activation unit 110 keys.
  • a first full bridge drive unit 1601 and a first Type-C charge and discharge protection unit 152 are sequentially connected in series between the cell assembly 120 and the first Type-C interface 122, and the main control unit 1801 is connected with the full bridge drive unit 1601, detection The unit 170, the activation unit 110, the first Type-C charge and discharge protection unit 152 and the Type-C communication processing unit 192 are connected, the first full-bridge power unit 1602 is connected to the full-bridge drive unit 1601, and the Type-C communication processing unit 192 also They are respectively connected to the activation unit 110 and the first Type-C interface 122 , and the key is connected to the activation unit 110 .
  • the detection unit 170 is used to obtain the battery parameters of the battery cell and the circuit parameters of the Type-C loop (the relevant circuit from the first Type-C interface 122 to the battery pack inside the battery pack) in real time, and transmit the detection result to
  • the main control unit 1801 wherein the battery parameters include the cell voltage, current and temperature in the cell assembly 120, etc., and the circuit parameters of the Type-C circuit include the input/output voltage of the Type-C circuit, the circuit current, and the temperature of the power device
  • the main control unit 1801 is used to receive the data information of the detection unit 170, and after analysis, it will issue a Type-C circuit charge and discharge protection instruction, execute a power-off sleep operation instruction, and related instructions of the main control unit 1801; the first full bridge power The unit 1602 and the full-bridge drive unit 1601 together form a buck-boost module of the Type-C circuit, and the main control unit 1801 communicates with the external electric tool 30 of the first Type-C interface 122 through the CC signal to determine the input
  • the main control unit 1801 in this embodiment is the central processing unit (Central Processing Unit, CPU) of the microcomputer digital display sensor processor system, and can be configured with a corresponding operating system and control interface.
  • CPU Central Processing Unit
  • It can be a single-chip microcomputer, DSP (Digital Signal Processing, digital signal processing), ARM (Advanced RISC Machines, ARM processor) and other digital logic processors that can be used for automatic control, and can load control instructions into memory at any time for storage and execution.
  • DSP Digital Signal Processing, digital signal processing
  • ARM Advanced RISC Machines, ARM processor
  • CPU instructions and data memory, input and output units, power supply modules, digital simulation and other units can be built in, which can be set according to actual usage conditions, and this solution does not limit this.
  • the Type-C interface will perform discharge protocol matching for discharge. Specifically, when the battery pack 100 is connected to the second Type-C interface 34 of the electric tool 30 through the first Type-C interface 122, the battery pack 100 is activated through the CC signal, and the main control unit 1801 completes power-on initialization, and the battery pack 100 and The electric tool 30 performs a discharge handshake. If the handshake is successful, the electric tool 30 sends a discharge request signal, and the battery pack 100 enters a discharge mode, wherein the discharge request signal includes the rated voltage of the electric tool 30 .
  • the main control unit 1801 When using the first Type-C interface 122 to discharge the battery pack 100, the main control unit 1801 will send a PWM control signal to the full-bridge drive unit 1601, and the full-bridge drive unit 1601 provides a suitable discharge voltage according to the PWM signal;
  • the battery pack 100 is provided with two or more Type-C interfaces (Type-C interface 122), and the electric tool 30 is provided with two or more Type-C interfaces corresponding to the battery pack 100.
  • -C interface the second Type-C interface 34
  • the structures of the battery pack 100 and the electric tool 30 are basically the same as those of the above-mentioned embodiments, so the description will not be repeated.
  • the above-mentioned battery pack 100 is provided with two Type-C interfaces 122 arranged in parallel, which are respectively provided at the insertion ends of the plug-in parts 1101 of the battery pack 100, and the two The Type-C interfaces 122 are arranged at intervals; the corresponding electric tool 30 is provided with two parallel-connected second Type-C interfaces 34 corresponding to the battery pack 100, and the two second Type-C interfaces 34 are arranged at intervals in the battery socket. The bottom end of the interface 331.
  • each second Type-C interface 34 is electrically connected to a first Type-C interface 122, which can be through one of the two first Type-C interfaces 122 or Both output the rated voltage to the electric tool 30 at the same time, and discharge the electric tool 30 simultaneously through the two first Type-C interfaces 122 connected in parallel to increase the discharge power.
  • the discharge control circuit of the above-mentioned battery pack 100 includes two Type-C management circuits, each Type-C management circuit corresponds to a first type-C interface, and each Type-C management circuit string is connected between a first Type-C Between the C interface 122 and the cell assembly 120 of the battery pack 100 , other functional units are basically the same, and the principle and functions will not be repeated here.
  • the discharge control circuit can output the rated voltage to the electric tool 30 through one or both of the two first Type-C interfaces 122, and the discharge control circuit can automatically adapt the rated voltage of the electric tool 30, that is, the present embodiment
  • the battery pack 100 can be adapted to electric tools 30 with different rated voltages, and the battery pack 100 and multiple electric tools 30 with different rated voltages together form a tool system. It can be understood that the discharge control circuit can also be used as the charge control circuit of the battery pack 100 .
  • the battery pack of the present invention can discharge the electric tool through the first Type-C interface.
  • the battery pack can automatically adjust the discharge voltage according to the rated voltage of the electric tool, so that it can be adapted to electric tools with different rated voltages.
  • the battery pack of the present invention can simultaneously discharge the electric tool through two or parallel first Type-C interfaces, which can increase the discharge power.
  • a power supply system is also proposed.
  • the power supply system includes an electric tool 30 and a battery pack 100 adapted to each other.
  • the battery pack 100 is used to supply power to the electric tool 30 .
  • Tools 30 include, but are not limited to, lawn trimmers, hair dryers, trimmers, chain saws, lawn pushers, washers, vacuum cleaners, smart lawn mowers, smart cleaning devices, and ride-on lawn mowers.
  • the battery pack 100 is provided with a Type-C interface 122 and a first power supply terminal 132, and the Type-C interface 122 and the power supply terminal 132 are both arranged at the insertion end of the insertion part 1101, and are electrically connected to the circuit board 13.
  • the electric tool 30 is provided with a second Type-C interface 34 and a second power supply terminal 35 corresponding to the battery pack 100, the battery pack 100 can discharge the electric tool 30 through the first power supply terminal 132, and through the first Type-C
  • the C interface 122 provides activation power and communication for the tool-side main control and MOS drive unit of the electric tool 30, and realizes the controllable control of the entire discharge process and the protection of the battery pack 100.
  • the structure of the battery pack 100 and the electric tool 30 and the above-mentioned implementation The examples are basically the same, so the description will not be repeated.
  • the first Type-C interface 122 can also only be used as a communication port, the battery pack 100 communicates through the tool-side main control of the first Type-C interface 122, and the battery pack 100 supplies power through the first Terminal 132 is used to provide power to the tool-side main control and MOS drive unit 362 . It can be understood that, in other embodiments, the first Type-C interface 122 may also be located at one side of the first power supply terminal 132 .
  • the first Type-C interface 122 is electrically connected to the second Type-C interface 34 of the external electric tool 30, and the first power supply terminal 132 is connected to the second power supply terminal.
  • the battery pack 100 can discharge the electric tool 30 through the first power supply terminal 132, so as to supply power to the functional modules of the electric tool 30 to realize the corresponding functions of the electric tool 30, and can also pass through the first Type-C when discharging.
  • the interface 122 provides activation power and communication for the tool-side main control of the electric tool 30 and the MOS drive unit 362 , so as to realize the controllable control of the entire discharge process and the protection of the battery pack 100 .
  • first power supply terminal 132 and second power supply terminal 35 can be plug-in ports for power transmission commonly used in garden tools, and there are various models to choose from.
  • the above-mentioned first power supply terminal 132 may include a first P+ terminal and a first P- terminal as a discharge port
  • the second power supply terminal 35 may include a second P+ terminal and a second P- terminal as a discharge port that match each terminal of the first power supply terminal. terminals.
  • FIG. 61 shows a block diagram of the circuit structure of the power supply system of this embodiment, including the discharge control circuit of the battery pack 100 and the motor drive circuit of the electric tool 30 .
  • the discharge control circuit of the battery pack 100 can be integrated into the circuit board 13 of the battery pack 100, and the discharge control circuit is connected in series between the first Type-C interface 122 and the cell assembly 120 of the battery pack 100, and the discharge control circuit is also connected in series Connected between the first power supply terminal 132 and the battery cell assembly 120 of the battery pack 100, the discharge control circuit is used to control the battery cell assembly 120 to discharge the electric tool 30 through the first power supply terminal 132, and through the first Type-C interface 122 Provide activation power and communication for the tool-side main control of the electric tool 30 (the main control unit 2 in FIG. Pack of 100's of protection.
  • the above-mentioned discharge control circuit includes a detection unit 170, a first main control unit 1801 (main control unit 1 in Figure 61), a first DC-DC unit 1301 (DC-DC unit 1 in Figure 61), a first A Type-C communication processing unit 192 (communication processing unit 1 in FIG. 61 ), activation unit 110 and keys.
  • the positive end of the cell assembly 120 is respectively connected to the first P+ terminal (P+ in the battery pack in FIG.
  • the first Type-C interface 122 is connected to the first main control unit 1801, and the first main control unit 1801 is also connected to the detection unit 170, the activation unit 110 and the first Type-C communication processing unit 192 respectively.
  • the C communication processing unit 192 is also respectively connected to the first Type-C interface 122 and the activation unit 110, the button is connected to the activation unit 110, and the negative end of the battery cell assembly 120 is respectively connected to the first P-terminal of the first power supply terminal 132 (Fig. P-) in the battery pack in 61 is connected with the first Type-C interface 122.
  • the detection unit 170 may include a current detection unit, a voltage detection unit AFE, and a temperature detection unit respectively connected to the first main control unit 1801.
  • the current detection unit is used to detect the discharge circuit current of the battery pack 100 and transmit the detection result to the first main control unit 1801.
  • the control unit 1801, the voltage detection unit AFE is used to detect the voltage of a single cell in the cell assembly 120 and transmits the detection result to the first main control unit 1801, the temperature detection unit is used to detect and monitor the temperature of the cell and transmit the detection result To the first main control unit 1801; the first main control unit 1801 is used for the data information of the battery detection unit 170, including information such as the voltage of a single battery cell, the loop current, and the temperature of the battery core.
  • the first DC-DC unit 1301 is used to provide VCC power
  • the first Type-C communication processing unit 192 is used to process the communication between the external Type-C communication and the first main control unit 1801
  • the activation unit 110 is used to receive an activation signal from the outside, including a KEY signal (button) and a CC signal, to complete the power-on action on the first main control unit 1801, and after the first main control unit 1801 completes the power-on action, pass the second A Type-C communication processing unit 192 communicates with the outside.
  • the motor drive circuit of the electric tool 30 includes a second main control unit 361 (main control unit 2 in Figure 61), a second DC-DC unit 365 (DC-DC unit 2 in Figure 61), a second Type-C communication processing unit 364 (communication processing unit 2 in FIG. 61 ), MOS drive unit 362 , power MOS unit 363 and switch 35 .
  • the second Type-C interface 34 is respectively connected to the second P-terminal of the second DC-DC unit 365, the MOS drive unit 362, the second Type-C communication processing unit 364 and the second power supply terminal 35 (in the electric tool in FIG.
  • the second Type-C communication processing unit 364 is connected to the second main control unit 361, the second main control unit 361 is also connected to the MOS drive unit 362 and the second DC-DC unit 365 respectively, and the power MOS unit 363 are respectively connected to the second P+ terminal (P+ in the electric tool in FIG. Between the two P- terminals and the power MOS unit 363 .
  • the switch 35 is used as the main switch of the tool circuit
  • the second main control unit 361 is used for processing the communication with the battery pack 100 and sending a PWM signal to the MOS drive unit 362
  • the second Type-C communication processing unit 364 is used for processing external Type-C communication And communicate with the second main control unit 361
  • the second DC-DC unit 365 is used to provide the appropriate power VCC1 for the second main control unit 361
  • the MOS drive unit 362 is used to receive the power from the second main control unit 361
  • the PWM signal is used to drive the power MOS unit 363
  • the power MOS unit 363 is used to provide suitable voltage and current for the motor 37 to drive the motor 37
  • the motor 37 is used as the power unit of the electric tool 30 .
  • the first Type-C interface 122 is connected to the second Type-C interface 34
  • the first power supply terminal 132 is connected to the second power supply terminal 35 .
  • the battery side is stepped down by the first DC-DC unit 1301 to provide the power supply VCC to the electric tool 30.
  • the power supply VCC is connected to the MOS drive unit 362 on the tool side through the Type-C interface to supply power.
  • the power supply VCC passes through the The second DC-DC unit 365 provides power VCC1 to the main control of the tool (the second main control unit 361 ) after stepping down the voltage.
  • the power supply VCC on the tool side is provided by the battery side.
  • the first DC-DC unit 1301 that provides the power supply VCC can be controlled by the first main control unit 1801 of the battery pack 100.
  • the communication function of the C interface 122 receives the discharge stop signal sent by the electric tool 30, and the first main control unit 1801 of the battery pack 100 powers off the first DC-DC unit 1301, so that the VCC power supply on the tool control board will be cut off, In this way, even if the switch 35 of the electric tool 30 is in the closed state, the entire system on the tool side will be shut down, so that the entire discharge process is controllable, and the protection of the battery pack 100 during discharge is realized.
  • the discharge process of the battery pack 100 in this embodiment is as follows: connect the electric tool 30 to the battery pack 100, turn on the switch 35 on the electric tool, and press the button to activate the battery pack 100; after the battery pack 100 is activated, the first The main control unit 1801 is powered on and initialized, and then starts to detect the state of the battery pack to determine whether there is an abnormality in the battery pack. If there is an abnormality, discharge is prohibited.
  • the first main control unit 1801 enables the first DC-DC unit 1301 to make it Output VCC, VCC outputs VCC1 to the second main control unit 361 after passing through the second DC-DC unit 365 on the tool side, so that the second main control unit 361 is powered on and initialized; after the second main control unit 361 is powered on and initialized, it starts to communicate with the battery
  • the battery pack 100 starts to discharge normally; during the normal discharge process, the first main control unit 1801 monitors the voltage, current, battery temperature and other parameters of the battery pack 120 in real time through the detection unit 170
  • the power calculation module calculates the SOC in real time, and stops discharging when it is determined that the SOC is 5% (or other suitable values). At the same time, once it is judged that there is an abnormality in a single battery cell or an abnormal temperature in the battery cell, it will also stop discharging.
  • the battery pack of the present invention can control the main control of the electric tool and the MOS-driven power supply through the first Type-C interface when discharging the electric tool through the first power supply terminal, so as to realize the controllability of the entire discharge process. control and protection of the battery pack.
  • the battery pack and the electric tool can be discharged through the Type-C interface, or through the power supply terminal, as shown in Figure 49, when there is a second
  • the first Type-C interface 122 is electrically connected to the second Type-C interface 34 of the electric tool 30, and the battery pack 100 can be connected through the first Type-C interface 34.
  • the Type-C interface 122 discharges the electric tool 30 to supply power to the functional modules of the electric tool 30 to realize corresponding functions of the electric tool 30 . As shown in FIG.
  • the first power supply terminal 132 is electrically connected to the second power supply terminal 35 of the electric tool 30', and the battery
  • the package 100 can discharge the power tool 30 ′ through the first power supply terminal 132 , so as to supply power to the functional modules of the power tool 30 ′ to realize corresponding functions of the power tool 30 .
  • the structures of the battery pack 100 and the electric tool 30 (electric tool 30') are basically the same as those of the above-mentioned embodiments, so the description thereof will not be repeated.
  • the circuit block diagrams of the two power supply systems all include the discharge control circuit of the battery pack 100, and the discharge control circuit can be integrated into the circuit board 13 of the battery pack 100. superior.
  • the discharge control circuit is connected in series between the first Type-C interface 122 and the cell assembly 120 of the battery pack 100, and the discharge control circuit is also connected in series between the first power supply terminal 132 and the cell assembly 120 of the battery pack 100.
  • the discharge control circuit is used to control the electric core assembly 120 to discharge to the electric tool 30 having the second Type-C interface 34 or the second power supply terminal 35 through the first Type-C interface 122 or the first power supply terminal 132 .
  • the discharge control circuit can automatically adapt the rated voltage of the electric tool 30, that is, the battery of this embodiment
  • the battery pack 100 can be adapted to electric tools 30 with different rated voltages.
  • the battery pack 100 and multiple electric tools 30 with Type-C interfaces and different rated voltages together form a tool system.
  • the tool system also includes an electric power tool with a second power supply terminal 35.
  • the rated voltages of the tool 30', the power tool 30' and the power tool 30 may be the same or different.
  • the discharge control circuit can also be used as the charge control circuit of the battery pack 100 , and the discharge control circuit is the same as or similar to the charge and discharge control circuit described above, and will not be repeated here.
  • FIG. 66 shows a flowchart for activating the battery pack 100 .
  • the battery pack 100 can activate the main control unit 1801 of the battery pack 100 through the key (KEY signal), the COM signal of the charger or the electric tool 30, and the CC signal of the first Type-C interface;
  • the control unit 1801 After the control unit 1801 is activated by the activation signal, it will complete the power-on initialization work, then self-check the battery status, and decide whether to turn on the Type-C circuit according to the self-test result;
  • the battery pack 100 will power off the main control unit 1801 in case of abnormality , the battery pack 100 will enter the shutdown state, otherwise the initialization of the battery pack 100 will be completed, the main control unit 1801 will open the Type-C circuit, and set the status flag OVP of the battery pack 100 to a corresponding value according to the self-test result, wherein, Setting OVP to 10 indicates that the battery pack 100 is in a
  • the battery pack 100 of this embodiment has two discharge modes, the first discharge mode is to realize discharge through the first power supply terminal 132 of the battery pack 100, and the second is to realize discharge through the first Type-C interface 122 of the battery pack 100 discharge. Each will be described below.
  • the battery pack 100 discharges to the electric tool with the second power supply terminal 35 through the first power supply terminal 132, and the battery pack and the tool are provided with a P+ terminal, a COM terminal, and a P- terminal, and one by one Correspondingly, discharge is realized through the matching of terminals and communication.
  • the battery pack 100 when the battery pack 100 is plugged into the electric tool 30, the battery pack 100 corresponds to the P+ terminal, the COM terminal, and the P- terminal on the electric tool 30, and the battery pack 100 can be activated through the above-mentioned activation method.
  • 100 performs discharge handshake with the electric tool 30 , and if the handshake is successful, it enters the discharge mode and discharges through the first power supply terminal 132 .
  • the battery pack 100 discharges to the electric tool with the second Type-C interface 34 through the first Type-C interface 122: when the battery pack 100 is connected through the Type-C interface
  • the Type-C interface will perform discharge protocol matching for discharge.
  • the battery pack 100 when the battery pack 100 is connected to the second Type-C interface 34 of the electric tool 30 through the first Type-C interface 122, the battery pack 100 is activated through the CC signal, and the main control unit 1801 completes power-on initialization, and the battery pack 100 and The electric tool 30 performs a discharge handshake, and if the handshake is successful, the electric tool 30 sends a discharge request signal, which includes the rated voltage of the electric tool 30; detects the working condition of the battery pack, and enters Type-C when the working condition of the battery pack 100 is idle mode discharge mode, and when the working condition of the battery pack 100 is the charging mode, the Type-C discharge mode is prohibited, and when the working condition of the battery pack 100 is that the battery pack 100 discharges through the first power supply terminal 132, it enters the first power supply Terminal 132 and Type-C dual discharge mode; when entering the Type-C discharge mode, the main control unit 1801 starts to detect the battery status, except for abnormal situations, the main control will open the Type-C circuit and set the value
  • the control process of the entire Type-C discharge process is as follows: when the battery pack 100 is discharged by using the first Type-C interface 122, the auxiliary control unit 1802 will send a PWM control signal to the full bridge drive unit 1601,
  • the full-bridge drive unit 1601 provides a discharge voltage matching the rated voltage of the electric tool 30 according to the PWM signal;
  • the auxiliary control unit 1802 monitors the discharge voltage VBUS, VIN and discharge current in real time; when the discharge voltage and discharge current are abnormal, the auxiliary control unit 1802 real-time Adjustment, after multiple adjustments (can be determined according to the actual situation, for example, 5 times), it will judge whether there is still an abnormality, if abnormal, stop discharging, otherwise normal discharge; in the normal discharge mode of the Type-C port, the main control unit 1801 real-time Monitor the state of the battery, including voltage, current and cell temperature, and stop discharging when there is an abnormal voltage or temperature of a single cell; can be other suitable values), stop discharging.
  • the battery pack of the present invention is compatible with electric tools with Type-C interface or power supply terminals for discharge, and has a wide range of applications.
  • the battery pack of the present invention can discharge electric tools with different rated voltages through the Type-C interface, so that the electric tools with different rated voltages can be adapted.
  • the charger includes a charger housing 21, a first charging interface and a first power supply terminal 23, and the first charging interface and the first power supply terminal 23 are located at the On different two sides of the charger housing 21, preferably on opposite sides of the charger housing 21, and a first circuit board is installed in the charger housing 21, and the first charging interface One end is electrically connected with the first circuit board, and the other end is located in the through hole on the side of the charger housing 21, so as to be connected to the battery pack 100 through a charging line, and the first power supply terminal 23 is connected to the first power supply terminal 23.
  • the first circuit board is electrically connected, and the first power supply terminal 23 is used to connect to an external power source.
  • the first charging interface is a third Type-C interface 22 .
  • an AC-DC module 1002, a control and protocol module 1004, and a DC-DC module 1003 are integrated on the first circuit board, and the AC-DC module 1002 and the DC - the DC module 1003 is connected, the DC-DC module 1003 is connected to the first charging interface, and the control and protocol module 1004 is connected to the DC-DC module 1003 and the first charging interface respectively.
  • the first charging interface includes a plurality of Type-C interfaces, and each Type-C interface is connected to a DC-DC module 1003, and the control and protocol module 1004 is connected to each of the DC-DC modules respectively.
  • the AC-DC module 1002 is used to convert alternating current into direct current;
  • the DC-DC module 1003 is used to give a suitable charging voltage according to the control signal;
  • the control and protocol module 1004 is used For the control of the entire charging system, as well as protocol analysis and charging control for each Type-C port, the first charging interface is connected to the second charging interface on the battery pack to charge the battery pack.
  • the battery pack passes through the third Type-C interface 22.
  • a Type-C interface 122a and the second Type-C interface 122b are respectively connected to the third Type-C interfaces 22 of the two chargers.
  • the charger housing 21 is provided with two interfaces
  • the two interfaces are the third Type-C interface 22a and the third Type-C interface 22b
  • the battery pack 100 passes through the first
  • the Type-C interface 122a and the second Type-C interface 122b are respectively connected to the third Type-C interface 22a and the third Type-C interface 22b on the same charger.
  • the charger 20 can also charge different battery packs with different first charging interfaces.
  • a battery pack 100 including: a plurality of Type-C interfaces 122, a charging control system and a battery cell assembly 120; the charging control system is connected in series between each Type-C interface 122 and the battery cell assembly Between 120, each Type-C interface 122 is detachably connected to an access device, and the charging control system detects the type of the access device, and if it is a charging device, then charges the battery pack 100 .
  • FIG. 47 another embodiment of the present invention discloses a charging combination, including: a detachably connected battery pack 100 and a charger, and the battery pack 100 can be charged by the charger;
  • the battery pack 100 includes: a plurality of Type-C interfaces 122, a charging control system and a cell assembly 120; the charging control system is connected in series between each Type-C interface 122 and the cell assembly 120, and each Type-C interface 122 can be Disconnect and connect the access device, the charging control system detects the device type of the access device, if it is a charging device, the battery pack 100 is charged;
  • the charger is provided with at least one Type-C interface 22 , and the Type-C interface 22 of the charger matches the Type-C interface 122 of the battery pack 100 .
  • the two Type-C interfaces connected to the charger 200 and the battery pack 100 are male and female, which is convenient for users to connect; in addition, the above-mentioned battery pack 100 and charger may also include a power supply terminal 132 and an insert 23 for charging The device can also charge the battery pack 100 through the insertion piece 23, and correspondingly, the power supply terminal 132 and the insertion piece 23 that are electrically connected to each other are also matched male and female headers.
  • a charger 200 is provided to charge the battery pack 100 in the above embodiment, the charger 200 includes a charger housing 21, so The charger housing 21 is provided with a battery pack charging portion 211, the first power supply terminal 23 is disposed on the battery pack charging portion 211, and the first Type-C interface 22 is disposed on the battery pack charging portion.
  • the battery pack 100 when the battery pack 100 is charging, the battery pack 100 is installed in the battery pack charging part 211, and the first power supply terminal 23 is connected to the second power supply terminal 132 in the terminal interface 131 , the first Type-C interface 22 is connected to the second Type-C interface 122, and charger guide rails 212 are arranged on opposite sides of the battery pack charging part 211, and the charger guide rails 212 are connected to the
  • the cooperation between the charger guide rail 212 and the slide rail 1102 plays the role of guiding or facilitating sliding , so that it can be installed smoothly.
  • the first power supply terminal 23 includes a first discharge port P+ and a first discharge port P-, the first Type-C interface 22 is located between the first discharge port P+ and the first discharge port P-, When charging, the first discharge port P+ and the first discharge port P- are charging and discharging ports, and the first Type-C interface 22 is a communication port.
  • the first Type-C The interface 22 is also used as an auxiliary power port, and the battery pack provides activation power for the main controller on the charger side through the first Type-C interface 22 .
  • the charger 200 charges the battery pack 100 after receiving the activation voltage, and turns on or off the charger according to the on/off of the externally connected activation voltage during the process of charging the battery pack 100. 200 output.
  • the charger 200 specifically includes: a first Type-C interface 22 , an insertion piece 23 and an on-off control module 210 .
  • the first Type-C interface 22 is used to receive the activation voltage
  • An on-off control module 210 configured to control the charging of the charger 200 according to the activation voltage
  • the insertion piece 23 is electrically connected to the battery pack 100 and the on-off control module 210 for outputting the charging voltage to the battery pack 100 .
  • first Type-C interface 22 and the insert piece 23 in this embodiment are both one, and the number of Type-C interfaces in practical applications can be set to multiple as required. By adjusting the charging power, the charging process can be accelerated. Speed, user-friendly.
  • the first Type-C interface 22 is a USB standard interface, and its interface type is a double-sided model that can adapt to front and back insertion, and supports the USB PD fast charging protocol (USB Power Delivery Specification, USB fast charging standard), which can realize power transmission and Data interaction.
  • the Type-C interface pins include VBUS, CC, D+, D-, and GND.
  • the communication protocol of the first Type-C interface is not limited to the above-mentioned standardized USB PD fast charging protocol, but also supports proprietary protocols, which are generally designed by each manufacturer according to their own conditions, and this solution does not limit this.
  • the insert 23 is a connection port commonly used in garden tools, and there are many types to choose from. In this embodiment, there are positive terminal P+ and negative terminal P ⁇ .
  • the on-off control module 210 includes: a first converter 2101 , a first processor 2102 , a second converter 2103 and an AC-DC converter 2104 .
  • the first converter 2101 is connected in series between the first Type-C interface 22 and the first processor 2102, and is used to step down the activation voltage and output it to the first processor 2102. After the activation voltage is stepped down, it should adapt to the first The operating voltage range of the processor 2102.
  • the first processor 2102 is configured to output a control signal to the second converter 2103 to start working after receiving the reduced activation voltage; wherein, the control signal is a PWM signal.
  • AC-DC converter 2104 used to convert external AC power into DC power
  • the second converter 2103 is used for stepping down the DC power and outputting it to the plug 23 according to the control signal of the first processor 2102 .
  • the charger 200 further includes a first communication unit 201 .
  • the first communication unit 201 which is connected in series between the first processor 2102 and the first Type-C interface 22, is used to realize the communication connection between the first processor 2102 and the battery pack 100, and the first processor 2102 according to
  • the data transmitted by the battery pack 100 dynamically adjusts the output power to match the load capacity of the battery pack 100, so as to avoid accidents such as short circuit of the wires, or even explosion due to overheating of the product.
  • the charger 200 further includes: a charging protection unit 202 .
  • the charging protection unit 202 is connected in series between the second converter 2103 and the insert 23 , and its control terminal is connected to the first processor 2102 , for protecting the charging circuit of the charger 200 .
  • the charging circuit of the charger 200 is the internal circuit of the charger 200, including the insert piece 23, the first communication unit 201 and the on-off control module 210, any abnormality in any part of it will affect the service life of the charger 200, and should be Immediately stop the charging process.
  • the charger 200 of this embodiment starts to charge the battery pack 100 after receiving the activation voltage input from the outside. output power; and when the activation voltage is disconnected, the output of the charger 200 is stopped in time, which avoids the damage caused to the battery pack 100 by continuing to charge when the battery pack 100 fails or the charging is completed, and ensures that the battery pack 100% charging safety improves the service life of the battery pack 100%.
  • the cell assembly 120 of the battery pack 100 includes a plurality of cells, and the cells can be combined in series and parallel to form a cell assembly. 120 , the battery cell assembly 120 is used to store electric energy, and can be charged by an external charger 200 to obtain electric energy.
  • the battery pack 100 specifically includes: a second Type-C interface 122 , a power supply terminal 132 , a voltage generation module 130 and a detection module 170 .
  • the detection module 170 is configured to acquire the charging parameters of the battery pack 100 in real time.
  • the charging parameters of the battery pack 100 are the technical parameters of the charging circuit of the battery pack, including: the single cell voltage of the battery pack 120, the loop current of the charging circuit, the temperature of the battery pack 120 and/or the power device in the charging circuit.
  • the detection module 170 includes: a voltage detection unit, a current detection unit and a temperature detection unit.
  • a voltage detection unit configured to obtain the voltage value of the cell assembly 120
  • a current detection unit configured to acquire the loop current of the charging loop of the battery pack 100
  • the temperature detection unit is used to acquire the temperature of the battery cell assembly 120 and/or the power device in the charging circuit.
  • the charging circuit of the battery pack 100 is the internal circuit of the battery pack 100, including the power supply terminal 132, the second Type-C interface 122, the detection module 170, the voltage generation module 130, and the battery cell assembly 120. It will affect the service life of the battery pack 100, and the charging process should be stopped immediately.
  • the voltage generation module 130 is used to generate the activation voltage to the second Type-C interface 122; it is also used to obtain the charging status according to the charging parameters, and stop the generation of the activation voltage when the charging status is abnormal or complete.
  • the parameter range of the charging parameter can be preset according to the needs of use, and the charging status can be judged according to the parameter range.
  • the charging status in this embodiment includes: normal, abnormal and complete. In practical applications, the user The state of charge can be subdivided as required.
  • the state of charge is considered abnormal; when it is within the parameter range, the state of charge is considered normal; when the SOC of the nuclear power state of the battery cell assembly 120 reaches a preset value, for example, the SOC is At 100%, the charging status is considered complete.
  • the second Type-C interface 122 is used to output the activation voltage of the charger 200 .
  • the power supply terminal 132 is electrically connected to the charger 200 for charging the battery pack 100 .
  • the second Type-C interface 122 and the power supply terminal 132 in this embodiment are both one.
  • the number of Type-C interfaces can be set to multiple as required. By adjusting the charging power, the charging process can be accelerated. Speed, user-friendly.
  • the interface definitions of the second Type-C interface 122 and the power supply terminal 132 are the same as those of the first Type-C interface 22 and the insert piece 23 in the above-mentioned embodiment, and will not be repeated here to save space.
  • the power supply terminal 132 matches the insert 23 in the above embodiment, and is a male and female connector;
  • the second Type-C interface 122 matches the first Type-C interface 22 in the above embodiment, and is also a male connector. female head.
  • the voltage generation module 130 includes: a third converter 1301 and a second processor 1302 .
  • the second processor 1302 is electrically connected to the detection module 170, and is used to output a control signal to the third converter 1301 according to the charging parameters; when the charging state is normal and the charging is not completed, the output control signal starts the third converter 1301 work; when the charging state is abnormal or the charging is completed, the output control signal stops the third converter 1301 from working.
  • the third converter 1301 is connected in series between the power supply terminal 132 and the second Type-C interface 122, and its control terminal is connected to the second processor 1302 for charging according to the control signal of the second processor 1302.
  • the input voltage of the device 200 is converted into an activation voltage and output to the second Type-C interface 122 .
  • the third converter 1301 in this embodiment, the first converter 2101, the second converter 2103 and the AC-DC converter 2104 in the above-mentioned embodiments are all conventional voltage conversion devices in the prior art , there are mature products to choose from, and this application does not limit its models.
  • the battery pack 100 further includes: an activation unit 110 .
  • the activation unit 110 is configured to activate the second processor 1302 according to an activation signal, wherein the activation signal is obtained through the second Type-C interface 122 of the battery pack 100 and/or by pressing an activation button.
  • the battery pack 100 is provided with an activation button for controlling the on/off of the power circuit, and when the activation button is pressed, a pull-up or pull-down activation signal can be generated.
  • the battery pack 100 is in a dormant state when there is no activation signal, and starts to work only after receiving an activation signal, thereby saving electric energy.
  • the battery pack 100 further includes: a Type-C communication unit 192 .
  • the Type-C communication unit 192 is serially connected between the second processor 1302 and the second Type-C interface 122 , and is used to realize the communication connection between the second processor 1302 and the charger 200 .
  • an external pull-up signal is generated, and the pull-up signal is transmitted to the second processor 1302 through the Type-C communication unit 192 as an activation signal.
  • the battery pack 100 can also transmit the charging parameters of the battery pack 100 to the charger 200 through the Type-C communication unit 192, so that the charger 200 can dynamically adjust the output power to match the load capacity of the battery pack 100, thereby avoiding short circuit, Even accidents such as overheating and explosion of the product.
  • the battery pack 100 of this embodiment outputs an activation voltage to the charger 200 after activation, so that it starts to charge the battery pack 100; while charging, the battery pack 100 detects the charging state in real time, and the charging state is abnormal or complete When the battery pack 100 fails or the charging is completed, the output of the activation voltage is stopped, thereby stopping the charging process, avoiding the damage to the battery pack 100 caused by continuous charging, ensuring the charging safety of the battery pack 100, and improving the charging process of the battery pack 100. service life.
  • FIG. 72 and Fig. 80 another embodiment of the present invention provides a charging combination, including: a detachably connected charger 200 and a battery pack 100;
  • Charger 200 includes:
  • the first Type-C interface 22 is used to receive the activation voltage
  • An on-off control module 210 configured to control the charging of the charger 200 according to the activation voltage
  • the insert 23 is electrically connected to the battery pack 100 and the on-off control module 210, and is used to output the charging voltage to the battery pack 100;
  • the battery pack 100 includes:
  • the voltage generation module 130 is used to generate the activation voltage of the charger 200 to the second Type-C interface 122; it is also used to obtain the charging status according to the charging parameters, and stop the generation of the activation voltage when the charging status is abnormal or complete;
  • the second Type-C interface 122 is used to output the activation voltage
  • the power supply terminal 132 is electrically connected to the charger 200 for charging the battery pack 100;
  • the detection module 170 is used to obtain the charging parameters of the battery pack 100 in real time
  • the first Type-C interface 22 is matched with the second Type-C interface 122
  • the insertion piece 23 is matched with the power supply terminal 132 .
  • the battery pack 100 provides an activation voltage for the charger 200 to start charging the battery pack 100; while charging, the battery pack 100 detects the charging state in real time, and when the charging state is abnormal or complete , stop outputting the activation voltage, thereby stopping the charging process, avoiding damage to the battery pack 100 caused by continuous charging when the battery pack 100 fails or charging is completed, ensures the charging safety of the battery pack 100, and improves the battery pack 100. service life.
  • the battery pack 100 and the charger 200 exchange data in real time during the charging process, adjust the output power of the charger 200 in real time according to the charging parameters of the battery pack 100, and cooperate with the load capacity of the battery pack 100 to avoid short-circuiting of wires and even overheating of the product.
  • Accidents such as explosions.
  • another embodiment of the present invention provides a charging method, the charging method includes: the battery pack 100 outputs an activation voltage to the charger 200, and the charger 200 charges the battery pack 100 after being powered on; during the charging process, the battery The pack 100 detects the charging parameters of the charging circuit of the battery pack in real time, obtains the charging status according to the charging parameters, and stops outputting the activation voltage when the charging status is abnormal or complete.
  • the steps before the battery pack 100 outputs the activation voltage to the charger 200 include:
  • the battery pack 100 After receiving the activation signal, the battery pack 100 is activated; wherein, the activation signal is obtained through the second Type-C interface 122 of the battery pack 100 and/or the activation button.
  • the steps before the battery pack 100 outputs the activation voltage to the charger 200 further include:
  • the charging parameters of the battery pack 100 are detected, and the charging status is obtained according to the charging parameters. If the charging status is normal, an activation voltage is output.
  • the steps before charging the battery pack 100 also include:
  • the battery pack 100 and the charger 200 perform communication handshake, and if the handshake is successful, charging starts.
  • the charging method of this embodiment is applied to the charging combination of the above-mentioned embodiment
  • the battery pack 100 provides an activation voltage for the charger 200, so that it starts to charge the battery pack 100; while charging, the battery pack 100 detects the charging status in real time , when the charging state is abnormal or completed, stop outputting the activation voltage, thereby stopping the charging process, avoiding damage to the battery pack 100 caused by continuing charging when the battery pack 100 fails or charging is completed, and ensuring the battery pack 100
  • the charging is safe, and the service life of the battery pack 100 is improved.
  • the battery pack 100 and the charger 200 exchange data in real time during the charging process, and adjust the output power of the charger 200 in real time according to the charging parameters of the battery pack 100, so as to avoid accidents such as short circuit of wires or even explosion due to overheating of the product.
  • FIG. 82 another embodiment of the present invention discloses a battery pack 100, including a charging and discharging communication control system, a power supply terminal 132, and at least one Type-C interface 122; the communication control system is located in the battery pack 100, and Communicatively connect with the power supply terminal 132 and each Type-C interface 122 respectively;
  • the communication control system includes the first control unit 1801 and the second control unit 1802 in the above embodiments:
  • a first control unit 1801 which is electrically connected to the power supply terminal 132, and is used to communicate with the access device on the power supply terminal 132;
  • the second control unit 1802 is electrically connected to each Type-C interface 122, and is used to communicate with the access device on each Type-C interface 122;
  • the first control unit 1801 is communicatively connected with the second control unit 1802 .
  • the first control unit 1801 can communicate with the second control unit 1802 through various communication methods, wherein the communication methods include I2C bus communication, UART serial port communication and SPI communication.
  • the communication methods include I2C bus communication, UART serial port communication and SPI communication.
  • the communication control system also includes the terminal communication unit 191 and the Type-C communication unit 192 in the above embodiments.
  • the terminal communication unit 191 is connected in series between the power supply terminal 132 and the first control unit 1801 , and is used for communication connection between the first control unit 1801 and the access device on the power supply terminal 132 .
  • the Type-C communication unit 192 is serially connected between each Type-C interface 122 and the second control unit 1802 , and is used for communication connection between the second control unit 1802 and the access device on each Type-C interface 122 .
  • FIG. 83 another embodiment of the present invention discloses a communication control method for charging and discharging.
  • the communication control method is applied to a battery pack 100 including a power supply terminal 132 and at least one Type-C interface 122.
  • the communication control method include:
  • Step 501 the first control unit 1801 obtains the device type of the connected device on the power supply terminal 132;
  • Step 502 the second control unit 1802 obtains the device type of the access device on each Type-C interface 122, and transmits it to the first control unit 1801;
  • Step 503 the first control unit 1801 charges/discharges the battery pack 100 according to the device type of the power supply terminal 132 and/or the device connected to each Type-C interface 122; wherein, the device type includes a charging device and a discharging device, and The device type is indicated by the high and low levels on the second sending end of the second control unit 1802 .
  • the steps of obtaining the device type of the connected device on the power supply terminal 132 and/or each Type-C interface 122 include:
  • the first control unit 1801 and/or the second control unit 1802 perform a communication handshake with the access device. If the handshake is successful, the type of communication handshake is determined. If the type of communication handshake is charging handshake, it is a charging device; if the type of communication handshake is A discharge handshake is a discharge device.
  • the steps for the first control unit 1801 to charge/discharge the battery pack 100 according to the power supply terminal 132 and/or the device type of the connected device on each Type-C interface 122 include:
  • the charging request is passed through the Type-C interface 122 and/or the power supply terminal 132 charging the battery pack 100;
  • the working conditions of the battery pack include charging mode, discharging mode and idle mode; the first control unit 1801 marks the working conditions of the battery pack according to the charging/discharging status of the battery pack 100 and the connection status of the connected device, and the marking method is the same as the above-mentioned The embodiment is the same.
  • the steps for the first control unit 1801 to charge/discharge the battery pack 100 include:
  • the first control unit 1801 charges/discharges the battery pack 100 through the power supply terminal 132 according to the device type connected to the power supply terminal 132;
  • the first control unit 1801 sends charging/discharging instructions to the second control unit 1802 according to the device type of the connected device on each Type-C interface 122;
  • the battery pack 100 is charged/discharged.
  • the communication control method also includes:
  • Step 701 the first control unit 1801 receives the battery parameters of the cell components of the battery pack 100, obtains the status of the battery pack according to the battery parameters, and transmits it to the second control unit 1802; wherein, the status of the battery pack includes power-off, protection, normal and Abnormal; the status of the battery pack is indicated by the high and low levels on the first sending end of the first control unit 1801 .
  • Step 701 the second control unit 1802 charges/discharges the battery pack 100 according to the state of the battery pack.
  • the state of the battery pack should be detected first, and charging is allowed only when it is not abnormal; when a discharge request is received, the state of the battery pack should be detected first, and discharge is allowed only when it is normal, thereby avoiding Overcharging or undervoltage causes damage to the cell components and affects their service life.
  • the second control unit 1802 also detects the status of the battery pack in real time, and stops the charging/discharging process to protect the battery core from damage if any abnormality occurs.
  • the communication control method in the above embodiment is applied to the battery pack 100 including the power supply terminal 132 and at least one Type-C interface 122, supports the USB PD fast charging protocol, and has a connection between the power supply terminal 132 and the first control unit 1801,
  • the charging/discharging protection logic is executed interactively, and the input/output power is dynamically adjusted, which not only enables fast charging/discharging, but also effectively protects the safety of the battery pack 100 and prolongs the service life of the battery pack 100 .
  • Fig. 72 is a scene diagram of connecting a battery pack to a charger.
  • the battery pack 100 is directly connected to the charger.
  • the charger 200 is connected to charge the battery pack 100, and the output voltage of the charger needs to be equal to the input voltage of the battery pack 100. matching, to realize the normal charging of the battery pack 100; or the output voltage of the charger does not exceed the maximum withstand voltage of the battery pack 100, at this time, the battery pack 100 can realize the charging function, but cannot achieve the best charging effect. That is, each battery pack 100 needs to be matched with a corresponding charger to achieve the best charging state of the battery pack 100 .
  • an adapting device 40 is provided, which can convert the output voltage of the charger 20 into the input voltage required by the battery pack 100 according to the input voltage requirement of the battery pack 100 .
  • a charging system provided by the present invention includes a charger 20 matching device 40 and a battery pack 100 .
  • the charger 20 is connected to the adapter device 40 .
  • On one side of the charger 20 there is a Type-C output interface 22 .
  • the Type-C output interface 22 is electrically connected to the voltage input end of the adapter device 40 through the charging cable 1001 .
  • the present invention provides a battery pack 100.
  • An insertion portion 1101 is provided on the top surface of the battery pack housing 10.
  • Slide rails 1102 are provided on both sides of the insertion portion 1101. The slide rails 1102 are used to communicate with The adapter device 40 is connected, and one end of the socket part 1101 is provided with a terminal 132, and is located between the slide rails 1102 on both sides of the socket part 1101.
  • the terminal 132 is electrically connected to the voltage output terminal of the adapter device 40 , and the terminal 132 is an output terminal.
  • the structure of the battery pack is the same as that of the battery pack described above, and will not be described again.
  • an adapter device 40 provided by the present invention is arranged between the charger 20 and the battery pack 100 for converting the output voltage of the charger 20 into the input voltage required by the battery pack 100 .
  • the adapter device 40 provided by the present invention includes a casing 41 and a circuit board 402, wherein the casing 41 includes a first casing 401 and a second casing 403, and the first casing 401 and the second casing 403 each have a concave portion.
  • the first housing 401 is buckled on the second housing 403 to form a receiving chamber, which is formed by the concave portion of the first housing 401 and used for placing the circuit board 402 .
  • a circuit board 402 is installed in the cavity formed by the first housing 401 for fixing the circuit board 402 , and the concave portion of the second housing 403 is used for engaging with the battery pack 100 .
  • the first housing 401 is connected to the charger 20 through the charging cable 1001, and the side of the first housing 401 connected to the charger 20 is an adapter device
  • the input part of 40 and the output part include a first interface 408 connected with the charger 20 .
  • a first through hole 407 is provided on the sidewall of the first concave portion 411 .
  • the first interface 408 is disposed on the circuit board 402 and is located in the first recess 411 of the first housing 401 , the first interface 408 extends into the first through hole 407 , and the first interface 408 is electrically connected to the circuit board 402
  • the input end is an input interface of the adapter device 40
  • the first interface 408 is, for example, a Type-C input interface.
  • the Type-C output interface 22 is electrically connected to the first interface 408 .
  • a button 409 is provided on the surface of the first housing 401 , and the button 409 extends into the first recess 411 and can be used as a button switch of the circuit board 402 .
  • a plurality of clamping posts 412 are arranged, which are connected with the clamping points 417 of the second recess 418 on the second housing 403, for connecting the first housing 401 and
  • the second housing 403 is positioned and connected to the first housing 401 and the second housing 403, wherein the clamping column 412 is a hollow cylinder, the clamping point 417 is a hollow cylinder, and the outer diameter of the clamping column 412 is equal to that of the clamping column.
  • the inner diameter of the hollow cylinder on the point 417, the clamping column 412 is clamped into the clamping point 417.
  • first concave portion 411 On the side wall of the first concave portion 411, there are also a plurality of second locking grooves 413, which are engaged with the locking pieces 416 on the second housing 403, and are used for fixedly connecting the first housing 401 and the second housing. 403.
  • a plurality of support plates 410 are also provided on the outer side of the first concave portion 411 for reinforcing the first casing 401 .
  • the second housing 403 is provided with a plurality of card points 417 on the side connected to the first housing 401 .
  • Post 413 snaps into place.
  • the circuit board 402 is fixed on the side where the second housing 403 is connected to the first housing 401 , and when the first housing 401 engages with the second housing 403 , the circuit board 402 is located in the first recess 411 .
  • the output end of the circuit board 402 is connected to a plurality of second interfaces 414, one end of the second interface 414 is electrically connected to the output end of the circuit board 402, which is the output interface of the adapter device 40, and the other end passes through the second housing in turn
  • the second through hole 415 on the 403 enters into the second concave portion 418 .
  • the second interface 414 is also electrically connected to the terminal 132 of the battery pack 100 .
  • an output portion of the adapter device 40 is provided, and the output portion includes a second interface 414 electrically connected to the terminal 132 , and a second guide rail 419 engaged with the slide rail 1102 .
  • the second housing 403 is provided with a second concave portion 418
  • the second concave portion 418 is a concave portion with an opening
  • second guide rails 419 are provided on two opposite side walls of the second concave portion 418, that is, the second Guide rails 419 are provided on the side walls adjacent to the opening.
  • the two second guide rails 419 are arranged in parallel for engaging with the slide rail 1102 of the battery pack 100 .
  • a limit groove 421 is provided on the bottom wall of the second recess 418, the limit groove 421 is adapted to the shape of the limit post 1112 on the battery pack 100, when the second housing 403 When the two concave parts 418 are engaged with the socket part 1101 of the battery pack 100 , the limiting column 1112 is locked in the limiting groove 421 .
  • the first interface 408 on the first housing 401 is electrically connected to the Type-C output interface 22 through the charging cable 1001 ;
  • the second guide rail 419 on the second housing 403 engages with the slide rail 1102 on the battery pack 100 , and the second interface 414 is electrically connected to the terminal 132 of the battery pack 100 .
  • the circuit board 402 disposed in the cavity formed by the first recess 411 of the first casing 401 converts the output voltage of the charger 20 into the input voltage required by the battery pack 100 .
  • the present application does not limit the length of the charging cable 1001, and both ends of the charging cable 1001 are Type-C interfaces.
  • the present invention does not limit the rated operating voltage of the battery pack 100.
  • the first battery pack has a first rated operating voltage
  • the terminal 132 is the terminal of the first battery pack
  • the second interface 414 is electrically connected to the terminal of the first battery pack.
  • the output voltage of the charger 20 is converted into a first rated working voltage to charge the charger 20;
  • the second battery pack has a second rated working voltage, and the terminal 132 is a terminal of the second battery pack, and the second interface 414 is electrically connected to
  • the second battery pack terminal converts the output voltage of the charger 20 into a second rated working voltage to charge the charger 20 .
  • the control system of the battery pack 100 includes: a cell pack 120 (lithium battery), a main control unit 181, a detection unit 171 and an activation unit 110 electrically connected to the main control unit 181, and an electrical connection with the main control unit 181 and the activation unit 110.
  • a cell pack 120 lithium battery
  • main control unit 181 a detection unit 171 and an activation unit 110 electrically connected to the main control unit 181, and an electrical connection with the main control unit 181 and the activation unit 110.
  • the detection unit 171 is used to detect the voltage of a single cell in the battery pack 120, the temperature of the battery pack 120, etc., and transmit the detection results to the main control unit 181.
  • the main control unit 181 is used to receive the data information of the detection unit 2 and the circuit charge and discharge information, and perform corresponding protection operations after analysis.
  • the detection unit 171 and the main control unit adopt I2C communication; the DC-DC unit 130 connects the battery pack The voltage at both ends of 120 is converted into the voltage required by the main control unit 181 and other modules; the first charge and discharge protection unit 151 receives the protection command from the main control unit 181, and completes the charge and discharge protection action of the circuit; the COM communication processing unit 191 processes Communication between the external COM communication and the main control unit 181; the activation unit 110 receives the activation signal from the outside, including the KEY signal (button) and the COM signal, and completes the power-on action of the main control unit 181, and the main control completes the power-on action Finally, communicate with the outside through the COM communication processing unit.
  • the control method of the battery pack 100 includes the following steps: S10: the battery pack 100 is electrically connected to the adapter device 40; S11: activate the battery pack 100; S12: the battery The package 100 communicates with the adapter device 40 to shake hands; S13: judge whether the handshake is successful, if the handshake is successful, execute S14: enter the charging mode; otherwise, return to step S12.
  • the control method of the battery pack 100 specifically includes: after the battery pack 100 is electrically connected to the adapter device 40, the adapter device 40 activates the battery through a COM signal.
  • Pack 100, battery pack 100, and adapter device 40 carry out communication handshake, and judge whether the handshake is successful, if not successful, keep in handshake mode, after the handshake is successful, adapter device 40 sends a charging request through COM signal, when the battery pack After 100 passes the request, the battery pack 100 enters the charging mode.
  • the main control unit 181 monitors the battery status in real time, including voltage, current and cell temperature, and stops charging when the voltage or temperature of a single cell is abnormal.
  • the main control unit 181 may further include a power calculation module, which will calculate the battery power in real time.
  • the first threshold is, for example, 100%.
  • the control system of the charger 20 includes: an AC-DC conversion unit 202, a first DC-DC conversion unit 209 electrically connected to the AC-DC conversion unit 202, electrically connected to the AC-DC
  • the second DC-DC conversion unit 204 of the conversion unit 202 is electrically connected to the second main control unit 201 of the first DC-DC conversion unit 209 and the second DC-DC conversion unit 204, and is electrically connected to the second main control unit 201.
  • the Type-C output interface 22 of the control unit 201, and the Type-C output interface 22 includes VBUS, CC, D+, D- and GND ports, electrically connected between the Type-C output interface 22 and the second main control unit 201
  • the second communication processing unit 208 is electrically connected to the charging protection unit 206 between the Type-C output interface 22 and the second main control unit 201 .
  • the AC-DC conversion unit 202 is used to convert AC power into DC power; the first DC-DC conversion unit 209 converts AC-DC power according to the input voltage required by the battery pack 100 The DC output of the unit 202 is converted into the voltage required by the battery pack; the second DC-DC conversion unit 204 converts the DC output of the AC-DC conversion unit 202 into power supply for the second main control unit 201 and other modules to work voltage; the charging protection unit 206 is used to receive the protection command from the second main control unit 201 to complete the discharge protection of the charger 20, the second communication processing unit 208 completes the communication between the adapter device 40 and the charger 20, and the second The main control unit 201 processes the power on and off instructions provided by the second communication processing unit 208 and the charging protection unit 206 .
  • the second communication processing unit 208 is a Type-C communication processing unit.
  • the control method of the charging device 20 includes the following steps: S30: the charging device 20 is connected to the adapter device 40; S31: the charging device 20 is connected to the adapter device The matching device 40 performs communication handshake; S32: judge whether the handshake is successful, if the handshake is successful, execute step S33: the charging device 20 charges the battery pack 100, otherwise return to step S31.
  • the charging device 20 passes Type- The C output interface 22 communicates with the adapter device 40 for handshake. If the handshake is not successful, the handshake mode is always in. After the handshake is successful, the second main control unit 201 turns on the charging protection unit 206 and sends a charging request. After the request is passed, the charging device 20 is The battery pack 100 is charged.
  • a charging conversion control system 42 provided by the present invention is arranged between the charging device 20 and the control system of the battery pack 100 , and the charging conversion control system 42 mainly includes: electrically connected to the second interface 414
  • the third communication processing unit 433 is electrically connected to the third main control unit 434 of the third communication processing unit 433, is electrically connected to the full bridge drive unit 437 of the third main control unit 434, and is electrically connected to the second interface 414 and the full bridge power unit 436 of the full bridge drive unit 437, and the fourth communication processing unit 439 electrically connected to the third main control unit 434, and the full bridge power unit 436 and the fourth communication processing unit 439 are electrically connected to first interface 408 .
  • the second interface 414 is electrically connected to the terminal 132 of the battery pack 100
  • the first interface 408 is connected to the Type-C output interface of the charging device 20 22 electrical connections.
  • the second interface 414 in the present invention is the output interface of the charging conversion control system 42, which is electrically connected to the terminal 132 of the battery pack 100, and corresponding to the terminal 132, the second interface 414 includes P+,
  • the four output terminals CHG, COM and P- correspond to the terminals 132 of the battery pack 100 one by one, wherein the CHG port is the charging port, the P+ and P- ports are used to provide the input voltage of the battery pack 100, and the COM port is used for communication .
  • the first interface 408 is the input interface of the charging conversion control system 42, which is electrically connected to the Type-C output interface 22 of the charging device 20.
  • the first interface 408 includes VBUS, CC, D+, D- and GND ports, and is connected to the Type-C output port 22.
  • the ports of the C output interface 22 are in one-to-one correspondence.
  • the D+ and D- ports are used to receive the input voltage of the charging conversion control system 42
  • the CC port is used for communication between the charging conversion control system 42 and the charging device 20
  • the GND port is the ground terminal
  • VBUS outputs a constant voltage, which is
  • VBUS is, for example, a commonly used 5V voltage.
  • the third communication processing unit 433 is electrically connected to the COM port of the second interface 414 and the third main control unit 434 to realize the communication between the battery pack 100 and the adapter device 40 .
  • the third communication processing unit 433 is a COM communication processing unit, which matches the COM communication of the battery pack 100 .
  • the third main control unit 434 receives signals from various modules and sends out operation instructions.
  • One end of the fourth communication processing unit 439 is electrically connected to the third main control unit 434, and the other end is electrically connected to the first interface 408 to realize communication between the charging device 20 and the adapter device 40.
  • the fourth communication processing unit 439 is a Type-C communication processing unit, which matches the Type-C communication of the charging device 20 .
  • the full-bridge drive unit 437 is electrically connected to the third main control unit 434
  • the full-bridge power unit 436 is electrically connected to the second interface 414 and the full-bridge drive unit 437
  • the full-bridge drive unit 437 and the full-bridge power unit 436 form a boost module
  • the output voltage information can be obtained according to the communication between the third communication processing unit 433 and the battery pack 100
  • the required input voltage can be obtained according to the communication between the fourth communication processing unit 439 and the charging device 20 information
  • the third main control unit 434 determines the duty ratio of the output PWM signal according to the input voltage and the voltage to be output, and according to the PWM signal sent by the third main control unit 434, the full-bridge drive unit 437 and the full-bridge power unit 436 will
  • the charging device 20 converts the voltage input by the first interface 408 into the voltage required by the battery pack 100 and outputs it through the second interface 414 .
  • the charging conversion control system 42 in the present invention also includes a DC-DC conversion unit 430, the input terminal of which is electrically connected to the first interface 414, specifically, the input terminal of the DC-DC conversion unit 430 is electrically The output end is electrically connected to the third main control unit 434 and each module, and the DC-DC conversion unit 430 converts the input voltage of the first interface 414 into the operating voltage required by each module.
  • the voltage is, for example, 5V.
  • the charging conversion control system 42 of the present invention also includes a button activation unit 431, which is a trigger unit, which is connected to the button 409 on the first housing 401.
  • a button activation unit 431 which is a trigger unit, which is connected to the button 409 on the first housing 401.
  • the third main control unit 434 is turned off by the key activation unit 431 , and then the charging conversion control system 42 is turned off.
  • the charging conversion control system 42 in the present invention further includes a total voltage detection unit 432, one end of the total voltage detection unit 432 is electrically connected to the second interface 414, specifically, one end of the total voltage detection unit 432 It is electrically connected to the P+ port, and the other end of the total voltage detection unit 432 is electrically connected to the third main control unit 434 .
  • the total voltage detection unit 432 detects the input voltage required by the battery pack 100 .
  • the charging conversion control system 42 in the present invention further includes a current sampling unit 440, the current sampling unit 440 is electrically connected between the second interface 414 and the first interface 408, and connected in series to the charging conversion control system 42 and electrically connected to the third main control unit 434 .
  • one end of the current sampling unit 440 is electrically connected to the P-port, the other end is electrically connected to the D-port, and is also electrically connected to the third main control unit 434; the current sampling unit 440 is used to detect the current in the loop , and transmit the current information in the loop to the third main control unit 434, and when the current in the circuit is abnormal, the voltage conversion process can be terminated.
  • the charging conversion control system 42 of the present invention further includes a switch unit 435, the switch unit 435 is electrically connected between the second interface 414 and the first interface 408, and is electrically connected to the third main control The unit 434 , specifically, one end of the switch unit 435 is electrically connected to the P+ port, the other end is electrically connected to the input end of the full-bridge power unit 436 , and is electrically connected to the third main control unit 434 .
  • the switch unit 435 is turned on, the full-bridge power unit 436 has an input voltage, and the charging conversion control system 42 can realize the voltage conversion function.
  • the switch unit 435 When the third main control unit 434 sends a turn-off command , the switch unit 435 is turned off, the circuit where the full-bridge power unit 436 is located is disconnected, and the charge conversion control system 42 cannot realize the voltage conversion function.
  • the switch unit 435 when the input voltage is over/under voltage, the current is abnormal, the charging and discharging is abnormal, etc., the switch unit 435 is turned off.
  • the charge conversion control system 42 in the present invention also includes a second charge and discharge protection unit 438, the second charge and discharge protection unit 438 is connected between the first interface 408 and the full bridge power unit 436, and the electric sexually connected to the third main control unit 434.
  • the protection instruction from the third main control unit 434 is received to complete the charging and discharging protection of the circuit.
  • the second charge and discharge protection unit 438 is a Type-C charge and discharge protection unit.
  • a charge conversion method provided by the present invention specifically includes:
  • the button activation unit 431 is triggered, and then the third main control unit 434 electrically connected with the button activation unit 431 is activated, and then the charging conversion control system 42 is activated.
  • the third main control unit 434 can be turned off through the button activation unit 431 , and then the charging conversion control system 42 can be turned off.
  • the switch unit 435 is arranged between the second interface 414 and the first interface 408, and is located between the second interface 414 (input end) and the full-bridge power unit 436. If the switch unit 435 is disconnected, voltage conversion cannot be performed. .
  • S402 Perform communication handshake through the third communication processing unit 433 and the fourth communication processing unit 439;
  • the third communication processing unit 433 is electrically connected to the COM port of the second interface 414, and performs a COM communication handshake with the battery pack 100
  • the fourth communication processing unit 439 is electrically connected to the CC port of the first interface 408, and charges The device 20 performs a CC communication handshake.
  • step S403 Determine whether the handshake is successful, if successful, execute step S405, otherwise return to step S402;
  • the total voltage detection unit 432 is electrically connected to the P+ port of the second interface 414 for detecting the required input voltage of the battery pack 100 , and the input voltage of the battery pack 100 is the output voltage of the charging conversion control system 42 .
  • the electric quantity of the battery pack 100 is not fully charged, That is, when the state of charge SOC ⁇ 100%, execute step S407, otherwise execute step S417 to stop charging.
  • the third main control unit 434 sends a PWM signal
  • the full-bridge drive unit 437 and the full-bridge power unit 436 form a boost module.
  • the third main control unit 434 sends out a voltage with a certain duty ratio.
  • the PWM signal controls the voltage output of the full bridge power unit 436 .
  • the full-bridge power unit 436 performs voltage conversion to convert the output voltage of the charging device 20 into the input voltage required by the battery pack 100 , the charging voltage is the output voltage of the charging conversion control system 42 .
  • the third main control unit 434 detects the input voltage, output voltage and loop current of the charge conversion control system 42;
  • the third main control unit 434 detects the information in the circuit in real time, including detecting the output voltage of the battery pack 100 through the total voltage detection unit 432, that is, the charging conversion control system 42
  • the input voltage of the charging conversion control system 42 is detected by the second charge and discharge protection unit 438 ; and the current of the loop of the charging conversion control system 42 is detected by the current sampling unit 440 .
  • the overall voltage detection unit 432 can detect whether the output voltage of the charging conversion control system 42 is abnormal; in the third main control unit 434, according to the voltage required by the charging conversion system 42, a charging conversion control system 42 can be set.
  • the threshold of the input voltage of the VBUS terminal is the second threshold
  • the threshold of the loop current in the charge conversion control system 42 is the third threshold
  • the second charge and discharge protection unit 438 monitors the input voltage of the charge conversion control system 42 in real time, and transmits to
  • the current sampling unit 440 monitors the loop current of the charge conversion control system 42 in real time.
  • step S411 is executed, otherwise step S414 is executed.
  • the third main control unit 434 changes the output voltage and the size of the loop current by adjusting the duty ratio of the PWM signal. During the adjustment process, the third main control unit 434 still monitors the input voltage in the charging conversion control system 42 in real time. , output voltage and loop current.
  • step S412 Record the number of adjustments of the third main control unit 434, and when the number of adjustments of the third main control unit 434 reaches a set number, execute step S413; wherein, the set number of times is, for example, 5 times.
  • step S410 the judging process is the same as that of step S410.
  • step S414 is executed; otherwise, step S417 is executed, and the charging is stopped.
  • the adapter device 40 performs turntable interaction with the battery pack 100 through the third communication processing unit 433 .
  • step S416 Determine whether the battery pack 100 has a power-off signal, if not, execute step S414, otherwise execute step S417.
  • the third main control unit 434 sends a signal to the switch unit 435 to stop the operation of the charge conversion control system 42 .
  • a charging conversion method provided by the present invention mainly includes: after the adapter device 40 is connected to the battery pack 100, the charging conversion control of the adapter device 40 can be activated through the button 409 on the adapter device 40 System 42. After the charging conversion control system 42 is activated, it will activate the battery pack 100 through the COM signal and communicate with it to shake hands. After the handshake is successful, the total voltage detection unit 432 will detect whether the battery pack 100 is fully charged. If it is not full, the battery pack 100 will enter the charging mode.
  • the control process of the voltage conversion is as follows: the third main control unit 434 sends a PWM signal, the full bridge drive unit 437 provides a suitable output voltage, the third main control unit 434 monitors the parameters in the voltage conversion process, and the parameters in the voltage conversion process
  • the parameters in the process generally include loop current, input voltage and output voltage, and the parameter range can be set according to the needs. When the parameters in the voltage conversion process exceed the preset parameter range, it is considered abnormal, and can be adjusted according to the preset logic
  • the charging/discharging voltage and charging/discharging current are dynamically adjusted, and the number of adjustments can be one or more times, and the specific number of times can be set according to needs, and in this embodiment, it is 5 times. After adjustment, continue to detect the parameters in the voltage conversion process.
  • the battery pack 100 and the adapter device 40 exchange data in real time through communication, and the charging will stop when the battery pack 100 sends a charging cut-off signal.
  • the battery pack 100 sends a charge cutoff signal.
  • a voltage output terminal is provided on the battery pack, and a voltage input terminal is provided on the electric tool, and the voltage output terminal on the battery pack is electrically connected to the voltage input terminal on the electric tool to provide
  • the output voltage of the battery pack matches the input voltage of the electric tool to realize the normal operation of the electric tool; or the output voltage of the battery pack does not exceed the maximum withstand voltage of the electric tool, and the electric tool can work at this time, but Can not achieve the best working condition. That is, each power tool needs to be equipped with a corresponding battery pack to achieve the best working condition of the power tool. Because there are many hand-held power tools, a variety of battery packs need to be equipped.
  • an adaptation device which can convert the output voltage of the battery pack into the input voltage required by the electric tool according to the input voltage requirement of the electric tool. And when the voltage output terminal of the battery pack and the voltage input terminal of the electric tool are different types of terminals, the connection between the battery pack and the electric tool can be realized by setting an interface compatible with the battery pack and the electric tool on the adapter device.
  • a tool system provided by the present invention includes an electric tool 30 , an adapter device 40 and a battery pack 100 .
  • the base 33 of the electric tool 30 is connected to the adapter device 40, and on the side where the base 33 of the electric tool 30 is connected to the adapter device 40, a battery socket 331 is provided, and the opening of the battery socket 331 is arranged on one side of the base 33. And it is located on the side close to the working end of the electric tool 30 .
  • On the base 33 located in the opening there is also a limiting slot 333 for limiting the position of the adapter device 40 .
  • a guide groove 332 connected with the adapter device 40 is provided on the two side walls adjacent to the opening of the battery socket 331, a guide groove 332 connected with the adapter device 40 is provided. Snap.
  • a Type-C port 34 is provided, and the Type-C port 34 is electrically connected to the first port 408 of the adapter device 40, and is a type-C input port of the electric tool 30 .
  • the present invention provides a battery pack 100.
  • An insertion portion 1101 is provided on the top surface of the battery pack housing 10.
  • Slide rails 1102 are provided on both sides of the insertion portion 1101. The slide rails 1102 are used to connect with the adapter device 40.
  • one end of the plug-in part 1101 is provided with a terminal 132, which is located between the slide rails 1102 on both sides of the plug-in part 1101.
  • the terminal 132 is electrically connected to the adaptable
  • the voltage input terminal of the matching device 40, and the terminal 132 is an output terminal.
  • the structure of the battery pack is the same as that of the battery pack described above, and will not be described again.
  • An adapter device 40 provided by the present invention is arranged between the battery pack 100 and the electric tool 30 for converting the output voltage of the battery pack 100 into the input voltage required by the electric tool 30 .
  • the structure of the fitting device 40 provided by the present invention is similar to that of the fitting device in the above-mentioned embodiments.
  • the side of the first housing 401 connected to the electric tool 30 is the output part of the adapter device, and the output part includes a The first guide rail 405 and the first interface 408 electrically connected to the Type-C port 34 .
  • the first housing 401 is provided with a first protrusion 404
  • the top surface of the first protrusion 404 extends out of the sidewall to form a first guide rail 405
  • the two first guide rails 405 are arranged parallel to each other.
  • the battery socket 331 of the electric tool 30 is allowed to engage with the first protrusion 404
  • the guide groove 332 is engaged with the first guide rail 405 .
  • a first through hole 407 is also provided on the side wall of the first protrusion 404 , and the first through hole 407 to the first protrusion 404
  • the top surface is set at a first distance D1, which is compatible with the distance from the Type-C port 34 on the base 33 of the electric tool 30 to the bottom wall of the battery socket 331, that is, the first distance D1 is equal to the distance from the Type-C port 34 to the battery socket 331 distance from the bottom wall.
  • the first interface 408 is disposed in the first concave portion 411 of the first housing 401, and the first interface 408 extends into the first through hole 407, and the first interface 408 is electrically connected to the output end of the circuit board 402 for adapting
  • the output interface of the device, the first interface 408 is, for example, a Type-C output interface.
  • the button 409 is arranged on one side of the first convex portion 404 and is located on the surface of the first housing 401 , and the button 409 extends into the first concave portion 411 , can be used as a key switch of the circuit board 402.
  • a stopper 111 in the above-mentioned embodiment can also be provided to realize the first
  • the lock between the housing 401 and the electric tool 30 is realized in the same manner as that shown in the above-mentioned embodiments.
  • the second interface 414 on the adapter device 40 is the input interface of the adapter device 40, and the opposite side of the connection between the second housing 403 and the first housing 401 is the input part of the adapter device 40, and the input part includes
  • the second interface 414 is electrically connected to the terminal 132 , and the second guide rail 419 is engaged with the slide rail 1102 .
  • the first guide rail 405 on the first housing 401 engages with the guide groove 332 of the electric tool 30
  • the first The interface 408 is electrically connected to the Type-C port 34
  • the second guide rail 419 on the second housing 403 engages with the sliding rail 1102 on the battery pack 100
  • the second interface 414 is electrically connected to the terminal 132 of the battery pack 100 .
  • the circuit board 402 disposed in the cavity formed by the first recess 411 of the first housing 401 converts the output voltage of the battery pack 100 into the input voltage required by the electric tool 30 .
  • the present application does not limit the rated voltage of the electric tool 30.
  • the first electric tool has a first rated voltage
  • the Type-C port 34 is a first type-C input interface
  • the first interface 408 is electrically connected to the first type-C input interface.
  • the C input interface converts the output voltage of the battery pack 100 into the first rated voltage
  • the first electric tool works with the first rated voltage
  • the second electric tool has the second rated voltage
  • the Type-C port 34 is the second type-C
  • the first interface 408 is electrically connected to the second type-C input interface to convert the output voltage of the battery pack 100 into a second rated voltage
  • the second electric tool works at the second rated voltage.
  • the control system of the battery pack 100 is the same as the control system of the battery pack in the above embodiment when the battery pack is connected to the electric tool through an adapter .
  • the control method of the battery pack 100 includes the following steps: S100: the battery pack 100 is electrically connected to the adapter device 40; S110: Activate the battery pack 100; S120: The battery pack 100 communicates with the adapter device 40 to shake hands; S130: Determine whether the handshake is successful, and if the handshake is successful, execute S140: Enter the discharge mode; otherwise, return to step S120.
  • the control method of the battery pack 100 specifically includes: after the battery pack 100 is electrically connected to the adapter device 40, the adapter device 40 activates the battery pack 100 through a COM signal, and the battery pack 100 and the adapter device 40 communicate with each other to shake hands and judge whether the handshake is successful. If the handshake is not successful, the adapter device 40 sends a discharge request through the COM signal. When the battery pack 100 passes the request, the battery pack 100 enters the discharge mode. When the battery pack 100 enters the discharge mode, the main control unit 181 monitors the battery status in real time, including voltage, current and cell temperature, and stops discharging when the voltage or temperature of a single cell is abnormal.
  • the main control unit 181 may further include a power calculation module, which will calculate the battery power in real time.
  • the first threshold is, for example, 5%.
  • the control system of the electric tool 30 includes: a Type-C port 34, and the Type-C port 34 includes VBUS, CC, D+, D- and GND ports, electrically connected to the Type-C port 34
  • the second main control unit 368 is electrically connected to the second communication processing unit 366 between the Type-C port 34 and the second main control unit 368, and is electrically connected between the Type-C port 34 and the second main control unit 368
  • One end of the discharge protection unit 367 is electrically connected to the discharge protection unit 367 and further connected to the power unit 37 connected to the D+ port, and the other end of the power unit 37 is electrically connected to the D- port.
  • the discharge protection unit 367 is used to receive the protection command from the second main control unit 368 to complete the discharge protection of the electric tool 30, and the second communication processing unit 366 completes the communication between the adapter device 40 and For the communication between the electric tools 30 , the second main control unit 368 processes the power on and off instructions provided by the second communication processing unit 366 and the discharge protection unit 367 .
  • the control method of the electric tool 30 includes the following steps: S300: connect the electric tool 30 with the adapter device 40; S310: connect the electric tool 30 with the adapter device The matching device 40 performs communication handshake; S320: judge whether the handshake is successful, if the handshake is successful, execute step S330: the electric tool 30 enters the working mode, otherwise return to step S310.
  • the electric tool 30 passes Type- The C interface communicates with the adapter device 40 for handshake. If the handshake is not successful, it will always be in the handshake mode. After the handshake is successful, the second main control unit of the electric tool 30 turns on the discharge protection unit and sends a discharge request. After the request is passed, the electric tool 30 enters the Operating mode.
  • a charge conversion control system 42 provided by the present invention is arranged between the battery pack 100 and the control system of the electric tool 30 , and the charge conversion control system 42 mainly includes: electrically connected to the second interface 414
  • the third communication processing unit 433 is electrically connected to the third main control unit 434 of the third communication processing unit 433, is electrically connected to the full bridge drive unit 437 of the third main control unit 434, and is electrically connected to the second interface 414 and the full bridge power unit 436 of the full bridge drive unit 437, and the fourth communication processing unit 439 electrically connected to the third main control unit 434, and the full bridge power unit 436 and the fourth communication processing unit 439 are electrically connected to first interface 408 .
  • the second interface 414 when electrically connecting the control system of the battery pack 100 and the control system of the electric tool 30, the second interface 414 is electrically connected to the terminal 132 of the battery pack 100, and the first interface 408 is connected to the Type-C port 34 of the electric tool 30. electrical connection.
  • the second interface 414 in the present invention is the input interface of the charging conversion control system 42, which is connected to the battery pack
  • the terminal 132 of 100 is electrically connected, and corresponding to the terminal 132, the second interface 414 includes four ports of P+, CHG, COM and P-, which correspond to the ports of the terminal 132 one by one.
  • the CHG port is a charging port
  • the P+ and P- ports are used to provide the input voltage of the battery pack 100
  • the COM port is used for communication.
  • the first interface 408 is the output interface of the charging conversion control system 42, which is electrically connected to the Type-C port 34 of the electric tool 30.
  • the first interface 408 includes VBUS, CC, D+, D- and GND ports, and is connected to the Type-C port 34.
  • Port 34 has a port-to-port correspondence.
  • the D+ and D- ports are used to output the output voltage of the charging conversion control system 42
  • the CC port is used for the communication between the charging conversion control system 42 and the electric tool 30
  • the GND port is the ground terminal
  • the VBUS outputs a constant voltage, which is
  • Each module in the electric tool 30 supplies power
  • VBUS is, for example, a commonly used 5V voltage.
  • the third communication processing unit 433 is electrically connected to the COM port of the second interface 414 and the third main control unit 434 to realize the communication between the battery pack 100 and the adapter device 40 .
  • the third communication processing unit 433 is a COM communication processing unit, which matches the COM communication of the battery pack 100 .
  • the third main control unit 434 receives signals from various modules and sends out operation instructions.
  • One end of the fourth communication processing unit 439 is electrically connected to the third main control unit 434, and the other end is electrically connected to the first interface 408 to realize the communication between the electric tool 30 and the adapter device 40.
  • the fourth communication processing unit 439 is a Type-C communication processing unit, which matches the Type-C communication of the electric tool 30 .
  • the full bridge drive unit 437 is electrically connected to the third main control unit 434
  • the full bridge power unit 436 is electrically connected to the second interface 414 and the full bridge drive unit 437
  • the full bridge drive unit 437 and the full-bridge power unit 436 form a step-up/down module
  • the information of the input voltage can be obtained according to the communication between the third communication processing unit 433 and the battery pack 100
  • the required output can be obtained according to the communication between the fourth communication processing unit 439 and the electric tool 30 Voltage information
  • the third main control unit 434 determines the duty ratio of the output PWM signal according to the input voltage and the voltage to be output, and according to the PWM signal sent by the third main control unit 434
  • the full bridge drive unit 437 and the full bridge power unit 436 converts the voltage input by the battery pack 100 through the second interface 414 into the voltage required by the electric tool 30 , and outputs it through the first interface 408 .
  • the charging conversion control system 42 in the present invention also includes a DC-DC conversion unit 430, the input terminal of which is electrically connected to the second interface 414, specifically, the input terminal of the DC-DC conversion unit 430 is electrically The output end is electrically connected to the third main control unit 434 and each module, and the DC-DC conversion unit 430 converts the input voltage of the second interface 414 into the operating voltage required for the operation of each module.
  • the voltage is, for example, 5V.
  • the charging conversion control system 42 of the present invention also includes a key activation unit 431, which is a trigger unit, which is connected to the key 409 on the first housing 401, and when it is necessary to start the charging conversion
  • a key activation unit 431 which is a trigger unit, which is connected to the key 409 on the first housing 401, and when it is necessary to start the charging conversion
  • the third main control unit 434 is turned off by the key activation unit 431 , and then the charging conversion control system 42 is turned off.
  • the charge conversion control system 42 in the present invention further includes a total voltage detection unit 432 , one end of the total voltage detection unit 432 is electrically connected to the second interface 414 , specifically, one end of the total voltage detection unit 432 It is electrically connected to the P+ port, and the other end of the total voltage detection unit 432 is electrically connected to the third main control unit 434 .
  • the total voltage detection unit 432 detects the output voltage of the battery pack 100, and in the total voltage detection unit 432, the threshold value of the output voltage of the battery pack 100 is used as the second threshold value, and it is judged that the output voltage of the battery pack 100 is Within the second threshold, the judgment result is transmitted to the third main control unit 434, when the output voltage of the battery pack 100 is within the second threshold, voltage conversion can be performed, when the output voltage of the battery pack 100 exceeds the second threshold , voltage conversion is disabled.
  • the total voltage detection unit 432 can prevent the battery pack 100 from being over-discharged, and the charge conversion control system 42 from being burned out.
  • the charging conversion control system 42 in the present invention also includes a current sampling unit 440, the current sampling unit 440 is electrically connected between the second interface 414 and the first interface 408, and connected in series to the charging conversion control system 42 and electrically connected to the third main control unit 434 .
  • one end of the current sampling unit 440 is electrically connected to the P-port, the other end is electrically connected to the D-port, and is also electrically connected to the third main control unit 434; the current sampling unit 440 is used to detect the current in the loop , and transmit the current information in the loop to the third main control unit 434, and when the current in the circuit is abnormal, the voltage conversion process can be terminated.
  • the charging conversion control system 42 in the present invention further includes a switch unit 435, the switch unit 435 is electrically connected between the second interface 414 and the first interface 408, and is electrically connected to the third main control The unit 434 , specifically, one end of the switch unit 435 is electrically connected to the P+ port, the other end is electrically connected to the input end of the full-bridge power unit 436 , and is electrically connected to the third main control unit 434 .
  • the third main control unit 434 sends a turn-on command
  • the switch unit 435 is turned on, the full-bridge power unit 436 has an input voltage, and the charging conversion control system 42 can realize the voltage conversion function.
  • the switch unit 435 When the third main control unit 434 sends a turn-off command , the switch unit 435 is turned off, the full-bridge power unit 436 has no input voltage, and the charge conversion control system 42 cannot realize the voltage conversion function. In this application, when the input voltage is over/under voltage, the current is abnormal, the charging and discharging is abnormal, etc., the switch unit 435 is turned off.
  • the charge conversion control system 42 in the present invention also includes a second charge and discharge protection unit 438, the second charge and discharge protection unit 438 is connected between the first interface 408 and the full bridge power unit 436, and the electric sexually connected to the third main control unit 434.
  • the protection instruction from the third main control unit 434 is received to complete the charging and discharging protection of the circuit.
  • the second charge and discharge protection unit 438 is a Type-C charge and discharge protection unit.
  • a charge conversion method provided by the present invention specifically includes:
  • S4000 activate the charging conversion control system 42 through the key activation unit 431;
  • the button activation unit 431 is triggered, and then the third main control unit 434 electrically connected with the button activation unit 431 is activated, and then the charging conversion control system 42 is activated.
  • the third main control unit 434 can be turned off through the button activation unit 431 , and then the charging conversion control system 42 can be turned off.
  • the switch unit 435 is disposed between the second interface 414 and the first interface 408, and between the second interface 414 and the full-bridge power unit 436. If the switch unit 435 is turned off, voltage conversion cannot be performed.
  • S4020 Perform communication handshake through the third communication processing unit 433 and the fourth communication processing unit 439;
  • the third communication processing unit 433 is electrically connected to the COM port of the second interface 414, and performs a COM communication handshake with the battery pack 100;
  • the fourth communication processing unit 439 is electrically connected to the CC port of the first interface 408, and communicates with the electric Tool 30 performs a CC communication handshake.
  • step S4030 Determine whether the handshake is successful, if successful, execute step S4040, otherwise return to step S4020;
  • S4040 enter the discharge mode
  • entering the discharge mode includes turning on the circuit in the electric tool 30 to enter the working mode; the battery pack 100 enters the discharge mode; the charge conversion control system 42 enters the voltage conversion mode.
  • the total voltage detection unit 432 detects the output voltage of the battery pack 100
  • the total voltage detection unit 432 is electrically connected to the P+ port of the second interface 414 for detecting the output voltage of the battery pack 100.
  • the total voltage detection unit 432 is set with an input voltage threshold of the charging conversion control system 42, for example is the second threshold.
  • S4060 is to judge whether the output voltage of the battery pack 100 is over/under voltage
  • the total voltage detection unit 432 judges whether the output voltage of the battery pack 100 is within the second threshold of the charging conversion control system 42, and when the output voltage of the battery pack 100 is within the second threshold, step S4070 is executed; otherwise, step S4070 is executed; Step S4170, stop discharging.
  • said S406 is to judge whether the output voltage of the battery pack 100 is fully charged
  • the electric quantity of the battery pack 100 is not fully charged, That is, when the state of charge SOC ⁇ 100%, execute step S4070, otherwise execute step S4170 to stop charging.
  • the third main control unit 434 sends a PWM signal
  • the full-bridge drive unit 437 and the full-bridge power unit 436 form a boost module, and according to the output voltage required by the battery pack 100 detected by the total voltage detection unit 432, the third main control unit 434 sends out a voltage with a certain duty cycle.
  • the PWM signal controls the voltage output of the full bridge power unit 436 .
  • the full-bridge power unit 436 performs voltage conversion to convert the output voltage of the battery pack 100 into the voltage required by the electric tool 30.
  • the input voltage, the discharge voltage is the output voltage of the charge conversion control system 42 .
  • the third main control unit 434 detects the input voltage, output voltage and loop current of the charging conversion control system 42;
  • the third main control unit 434 detects the information in the circuit in real time, including detecting the output voltage of the battery pack 100 through the total voltage detection unit 432, that is, the charging conversion control system 42
  • the input voltage of the charging conversion control system 42 is detected by the second charge and discharge protection unit 438 ; and the current of the loop of the charging conversion control system 42 is detected by the current sampling unit 440 .
  • the overall voltage detection unit 432 can detect whether the output voltage of the battery pack 100 is abnormal; in the third main control unit 434, according to the voltage required by the electric tool 30, the output voltage of the charging conversion control system 42 can be set.
  • the threshold is the second threshold, and the threshold of the loop current in the charge conversion control system 42 is the third threshold; the second charge and discharge protection unit 438 monitors the output voltage of the charge conversion control system 42 in real time, and transmits it to the third main control unit 434.
  • step S4110 When the output voltage of the charging conversion control system 42 is within the second threshold, it is considered that no abnormality has occurred; when the output voltage of the charging conversion control system 42 is not within the second threshold, it is considered that an abnormality has occurred; the current sampling unit 440 real-time Monitoring the loop current of the charge conversion control system 42, when the loop current of the charge conversion control system 42 is within the third threshold, it is deemed that no abnormality has occurred, and when the loop current of the charge conversion control system 42 is not within the third threshold, it is considered An exception occurs. When any of the above abnormalities occurs, it is considered that an abnormality has occurred. If there is an abnormality, step S4110 is executed, otherwise step S4140 is executed.
  • the third main control unit 434 changes the output voltage and the size of the loop current by adjusting the duty ratio of the PWM signal. During the adjustment process, the third main control unit 434 still monitors the input voltage in the charging conversion control system 42 in real time. , output voltage and loop current.
  • step S4120 Record the number of adjustments of the third main control unit 434, and when the number of adjustments of the third main control unit 434 reaches a set number, execute step S4130; wherein, the set number of times is, for example, 5 times.
  • S4130 Determine whether the input voltage, output voltage and loop current of the charging conversion control system 42 are abnormal
  • step S4140 is executed; otherwise, step S4170 is executed, and the discharge is stopped.
  • the adapter device 40 performs turntable interaction with the battery pack 100 through the third communication processing unit 433 .
  • step S4160 Determine whether the battery pack 100 has a power cut-off signal, if not, execute step S4140, otherwise execute step S4170.
  • the third main control unit 434 sends a signal to the switch unit 435 to stop the operation of the charge conversion control system 42 .
  • a charging conversion method provided by the present invention mainly includes: after the adapter device 40 is connected to the battery pack 100 , the charging conversion control of the adapter device 40 can be activated through the button 409 on the adapter device 40 System 42. After the charging conversion control system 42 is activated, it will activate the battery pack 100 through the COM signal and communicate with it to shake hands. After the handshake is successful, the total voltage detection unit 432 detects whether the battery pack 100 is undervoltage. If it is not undervoltage, the battery pack 100 will enter the voltage conversion process. model.
  • the control process of the voltage conversion is as follows: the third main control unit 434 sends a PWM signal, the full bridge drive unit 437 provides a suitable output voltage, the third main control unit 434 monitors the parameters in the voltage conversion process, and the parameters in the voltage conversion process
  • the parameters in the process generally include loop current, input voltage and output voltage, and the parameter range can be set according to the needs. When the parameters in the voltage conversion process exceed the preset parameter range, it is considered abnormal, and can be adjusted according to the preset logic
  • the charging/discharging voltage and charging/discharging current are dynamically adjusted, and the number of adjustments can be one or more times, and the specific number of times can be set according to needs, and in this embodiment, it is 5 times. After adjustment, continue to detect the parameters in the voltage conversion process.
  • the discharge will be stopped. If there is no abnormality, the voltage conversion will be performed normally.
  • the battery pack 100 and the adapter device 40 exchange data in real time through communication, and the battery pack 100 will stop discharging when it sends out a discharge cut-off signal. In this embodiment, when the state of charge SOC of the battery pack 100 is equal to the first threshold, the battery pack sends a discharge cutoff signal.
  • the adapter device and tool system of the present invention can convert the output voltage of the battery pack into the input voltage required by the electric tool, and detect the battery pack, the adapter device and the power tool in real time during the discharge process.
  • the charging conversion method is executed according to the technical parameters, and the input/output power is dynamically adjusted, which can effectively protect the safety of the battery pack, the adapter device and the electric tool, and prolong the service life of the battery pack and the electric tool.
  • the multi-slot charger 600 includes a body 60, the The body 60 is provided with a plurality of battery pack accommodating parts 621, and each of the battery pack accommodating parts 621 is provided with a first mating interface, and the first mating interface is used to cooperate with the first mating interface on each of the battery packs. 2 Cooperate with the interface for installation.
  • the body 60 includes a charging case 61 , a charging case 62 and a case cover 63 , the charging case 62 is located in the charging case 61 , and the top is sealed by the case cover 63 .
  • the charging box 62 includes a plurality of battery pack accommodating parts 621, and the plurality of battery pack accommodating parts 621 are distributed in a rectangular shape, and the number of the battery pack accommodating parts 621 is set to 2 or 4 , 6, 8 or 10 cavities, in this embodiment, the number is preferably 6 and distributed in a rectangular shape, and one of the plurality of rectangularly distributed battery pack accommodating parts 621 on the charging box 62 There are gaps between them to facilitate heat dissipation.
  • the battery pack accommodating portion 621 is provided with a charging interface 622 and a battery pack ejection mechanism, preferably, the battery pack ejection mechanism is located in the battery pack accommodating portion 621, the charging interface 622 is located on one side of the bottom of the battery pack accommodating portion 621, specifically, the charging interface 622 is a Type-C interface, and the middle position of the bottom of the battery pack accommodating portion 621 faces The lower recess forms an ejection mechanism installation cavity 624, and the battery pack ejection mechanism is installed in the ejection mechanism installation cavity 624.
  • the battery pack ejection structure includes a spring 6231 and a bottom bracket 6232, and the spring One end of 6231 is connected to the bottom of the battery pack accommodating part 124, and the other end is connected to the bottom of the bottom bracket 6232, and the charging interface 622 is connected to the Type-C interface 122 at the bottom of the battery pack, and is limited by
  • the mechanism 64 locks the battery pack for charging.
  • the limit mechanism 64 is installed on the top edge of the battery pack accommodating portion 621, and each battery pack accommodating portion 621 corresponds to a limit mechanism 64 and a battery pack ejection mechanism 12.
  • the limiting mechanism 64 includes a mounting base 641, a limiting member 642, a rotating shaft 643 and a torsion spring 644, and the mounting base 641 is installed in the battery pack.
  • the top edge of the part 621, the rotating shaft 643 is installed on the mounting seat 641, the stopper 642 is connected to the rotating shaft 643, the torsion spring 644 is sleeved on the rotating shaft 643, when the battery is installed
  • the limiting member 642 is pressed and rotates with the rotating shaft 643, the torsion spring 644 is compressed until the battery pack is installed in place for charging, the limiting member 642 is twisted Reset under the action of the spring 644, and match with the limiting groove 722 on the side of the battery pack housing to lock the battery pack, when the battery pack is to be taken out, press the limiting member 642, so that the The limiting member 642 is disengaged from the limiting slot 722 and loses its limiting function
  • the multi-slot charger 600 further includes a case cover 63 , one side of the case cover 63 is connected to the charging case 61 through a hinge 601 , The other end is provided with a locking structure to lock the charging case 61 and the box cover 63 together. And in this embodiment, there is a gap between the bottom of the charging box 62 and the bottom of the charging case 61, and a circuit board (not shown in the figure) is installed in the gap, and the circuit board and each It is electrically connected to the charging interface 622 at the bottom of each battery pack accommodating portion 621.
  • the charging case 61 is arranged in a rectangular shape, for example, and the two short sides of the rectangular charging case 61 are arranged from the charging case 61 The gap formed from the top to the bottom, and the depths of the gaps on the two short sides are different.
  • the deeper gap is defined as the first gap 611
  • the shallower gap is defined as the second gap 612
  • the first notch 611 and the second notch 612 on the two short sides of the casing 61 are for heat dissipation.
  • a cooling fan 613 is installed at a deep notch on the charging case 61 , and the top of the cooling fan 613 is in contact with the top of the charging case 61 .
  • the tops are flush with each other.
  • the heat dissipation fan 613 is installed on the first notch 611 to realize heat dissipation through the action of the heat dissipation fan 613 .
  • heat dissipation windows 614 are installed on opposite sides of the charging case 61, specifically, the heat dissipation windows 614 are installed in the first notch 611 and the second notch respectively. 612 , and the heat dissipation fan 613 is located in the heat dissipation window 614 , so as to protect the heat dissipation fan 613 and at the same time cover the first gap 611 .
  • a power interface 615 is installed on the charging case 61, the power interface 615 includes an input end and an output end, and the input end is connected to an external power supply , the output terminal is electrically connected to the charging interface 622 .
  • the power interface 615 is connected to the circuit board between the bottom of the charging box 62 and the bottom of the charging case 61.
  • the power interface 615 is preferably located below the cooling fan 613, and the The power interface 615 is fixedly installed on the bottom of the heat dissipation window 614 and connected to an external power supply.
  • the two long sides of the rectangular charging case 61 are provided with handles 616 for easy transportation.
  • the first mating interface includes a raised structure 6211 and a plurality of guide rails 6212, and the plurality of guide rails 6212 are respectively located on the raised Lift both sides of structure 6211.
  • the second mating interface includes a groove structure 723 and a plurality of sliding grooves 724, and the plurality of sliding grooves 724 are respectively located on both sides of the groove structure 723, when the battery pack is installed on the battery pack
  • the groove structure 723 cooperates with the protrusion structure 6211
  • the slide groove 724 cooperates with the guide rail 1211 .
  • the protruding structure 6211 and the groove structure 723 are equivalent to the mutual cooperation between the slider and the sliding rail, and the mutual cooperation between the guide rail 6212 and the sliding groove 724, so as to play a guiding role, so as to be able to
  • the Type-C interface 122 at the bottom of the battery pack is smoothly and accurately connected to the charging interface 622 at the bottom of the battery pack accommodating portion 621 for charging.
  • the multi-slot charger 600 includes an AD-DC module, multiple DC-DC modules, multiple charging interfaces 622 and control and protocol modules, each battery pack
  • the accommodating part 621 corresponds to one DC-DC module 1003 and one charging interface 622.
  • the number of the DC-DC module and multiple charging interfaces 622 is set to 6, for example, that is, the AD-DC modules are respectively Connect 6 DC-DC modules, each DC-DC module is connected to a charging interface 622, the control and protocol module is connected to each DC-DC module and charging interface 622, and the AD-DC module is used for Convert alternating current to direct current, and the DC-DC module is used to give the appropriate charging voltage according to the signal of the control chip; the control and protocol module is used for the control of the entire charging system, protocol analysis and charging control of each Type-C port, multi-slot
  • the charger judges whether there is a battery pack connected according to the CC signal of the Type-C connector, and can determine which battery pack is connected.
  • Each Type-C port corresponds to a DC-DC module. After the handshake is successful through the CC signal, the corresponding The DC-DC module enables the battery to be charged through Type-C.
  • each of the battery packs corresponds to a battery pack accommodating portion 621.
  • the battery pack is provided with a Type-C interface, and the inside is provided with a battery pack.
  • the Type-C power supply circuit is the entire charging/discharging circuit from the Type-C interface to the battery pack. Multiple batteries inside the battery pack form the battery pack circuit.
  • the charging/discharging circuit can be set to Control the switch, so as to realize the activation or deactivation function of the Type-C power supply circuit.
  • the multi-slot charger can determine which port has a battery pack connected to it through the CC signal, and activate the connected battery pack through the CC signal. After the battery pack is activated, it will communicate with the multi-slot charger through the CC signal. The communication handshake is performed, and the corresponding DC-DC module 1003 will be turned on only after the handshake is successful, so as to realize the charger for the battery.
  • the battery pack charging control process is as follows:
  • the CC signal will activate the battery pack. After the battery pack is activated, it will perform a charging handshake with the multi-slot charger. After the handshake is successful, it will enter the charging management mode;
  • the main control unit 180 When the battery enters the charging management mode, the main control unit 180 will send a PWM control signal to the full-bridge driving unit 1601, and the full-bridge driving unit 1601 will provide an appropriate charging voltage according to the PWM signal;
  • the main control unit 180 monitors the discharge voltage VBUS, VIN and charging current in real time;
  • the main control unit 180 When the charging voltage and charging current are abnormal, the main control unit 180 will adjust in real time. After 5 adjustments, it will judge whether there is still an abnormality. If it is abnormal, stop charging, otherwise it will charge normally;
  • the main control unit 180 monitors the battery status in real time, including voltage, current and battery temperature, and will stop charging when there is an abnormal voltage or temperature of a single battery cell, otherwise, it will charge normally;
  • the present invention proposes a multi-slot charger and a charging system, the multi-slot charger, the multi-slot charger includes a charging casing and a charging box, the charging box is located in the charging casing, and the charging box It includes a plurality of battery pack accommodations distributed in a rectangular shape to accommodate multiple battery packs at the same time, so that multiple battery packs can be charged at the same time, and at the same time, the battery pack can be portable, moved and stored, which shortens the charging time and effectively improves the battery life. work efficiency.
  • the present invention proposes a backpack battery pack 800 , including a strap 81 , and a backpack housing 80 mounted on the strap 81 , in which a battery pack is installed, and is connected to the backpack through a charging interface 12 . External device connection.
  • the backpack shell 80 includes a back shell 801 and a front shell 802, and the back shell 801 and the front shell 802 are fixed
  • the connection forms a housing cavity, and the battery cell assembly and the circuit board are installed in the housing cavity, and the battery cells in the battery cell assembly are electrically connected to the circuit board, and the battery assembly includes a plurality of battery cells, A plurality of the battery cells are installed in the battery cell bracket, and the battery cell bracket is located in the backpack housing 80 .
  • the strap 81 is installed on one side of the backpack shell 80, specifically, on the back shell 801, for connecting backpack personnel .
  • the strap 81 includes a shoulder strap 811 and a waist belt 812, the shoulder strap 811 is installed on the back shell 801 near the two sides, and along the height direction of the backpack shell 80 Arranged for connecting the shoulders of the backpacker, the waist belt 812 is installed on the side of the back shell 801 close to the bottom surface for connecting the waist of the backpacker.
  • a sliding adjustment groove is provided on the side of the backpack shell 80 where the strap 81 is installed, and the sliding adjustment groove includes at least two slide grooves 813, and the slide grooves 813 are along the The height direction of the backpack shell 80 is arranged, and the two slide grooves 813 are spaced apart and arranged parallel to each other.
  • a slider is arranged on the side where the waist belt 812 is connected to the back shell 801 . The slider is matched with the sliding groove 813, and the height adjustment of the waist belt is realized by sliding the slider on the sliding groove 813.
  • a display device 803 is installed on the backpack shell 80, and the display device 803 is located opposite to the side of the backpack shell 80 where the strap 81 is installed.
  • the display device 803 is installed on the front housing 802 , specifically, the display device 803 is preferably located in the middle of the front housing 802 .
  • the display device 803 is used to display the remaining power and/or voltage and/or current and/or cell temperature and/or failure of the battery pack.
  • the display device 803 can also display the operating parameters of the electric tool, such as the speed of the motor and so on.
  • the display device 803 is preferably an LCD display, but should not be limited thereto.
  • the bottom surface of the backpack case 80 is set as a horizontal structure, so as to facilitate the placement of the battery pack, and a handle 83 is installed on the top of the backpack case 80,
  • the handle 83 and the backpack shell 80 are preferably integrally formed to facilitate handling and carrying.
  • the battery pack further includes a charging interface 12, the charging interface 12 is installed on the circuit board and electrically connected to the circuit board, and the charging interface 12
  • the charging interface 12 is located on the side of the backpack casing 80 , preferably, the charging interface 12 is located on the side of the backpack casing 80 close to the bottom surface.
  • the charging interface 12 is set as a Type-C interface, and its number is preferably two, and the two Type-C interfaces are respectively located on both sides of the backpack housing 80, that is, when the backpack When the person puts on the battery pack, the two Type-C interfaces are respectively close to the left and right arms of the backpacker for ease of use.
  • the two Type-C interfaces can be respectively connected to different electric devices, such as the first electric tool 3001 and the second electric tool 3002, to perform different functions, thereby improving work efficiency.
  • the first electric tool 3001 and the second electric tool 3002 are similar to the electric tools in the above embodiments, and include functional modules that perform corresponding functions, and the functional modules are driven by the battery pack in the above embodiments.
  • the charging interface 12 includes a first Type-C interface and a second Type-C interface, the first Type-C interface is connected with a first electric tool 3001, and the first electric tool 3001
  • the tool 3001 has a first rated voltage
  • the second Type-C interface is connected to a second electric tool 3002
  • the second electric tool 3002 has a second rated voltage
  • the difference between the first rated voltage and the second rated voltage is may be the same or different, and the first electric tool 3001 and the second electric tool 3002 may or may not be used at the same time.
  • the backpack battery pack can also provide power for mobile phones, notebook computers, wearable smart devices, etc. through the Type-C interface on the backpack battery pack.
  • FIG. 800 Another embodiment of the present invention discloses a charging and discharging combination, including: a backpack-type battery pack 800 , an access device is detachably connected to the backpack-type battery pack 800 , and the access device can charge the backpack-type battery pack 800 /discharge;
  • Backpack Battery Pack 800 includes:
  • Backpack housing 80 which is provided with a battery cell assembly 120 and a control system for charging and discharging;
  • Straps 81 installed on one side of the backpack shell 80;
  • each Type-C interface 122 is arranged on the backpack shell 80;
  • the charging and discharging control system is connected in series between the battery cell assembly 120 and each Type-C interface 122, and is used to detect the device type of the connected device on each Type-C interface 122, and perform a check on the backpack battery pack 800 according to the device type.
  • Charge/discharge; device types include charging devices and discharging devices.
  • the access device is provided with at least one Type-C interface, and each Type-C interface of the access device matches each Type-C interface 122 of the battery pack, and is a male and female head; in addition, the access device can also The plug-in piece is provided, and the access device can also charge/discharge the battery pack through the plug-in piece.
  • the plug-in piece electrically connected to each other and the power supply terminal 132 of the backpack battery pack are also male and female.
  • the access equipment includes:
  • At least one charging device At least one charging device
  • the discharge device includes a first tool 3001 and a second tool 3002;
  • the backpack battery pack 800 When the backpack battery pack 800 is connected with the first tool 3001 and the second tool 3002 , the backpack battery pack 800 outputs the first voltage to the first tool 3001 and the second voltage to the second tool 3002 at the same time.
  • access devices include:
  • At least one charging device At least one charging device
  • the discharge device comprises a first tool 3001 or a second tool 3002;
  • the backpack battery pack 800 When the backpack battery pack 100 is connected with the first tool 3001 or the second tool 3002 , the backpack battery pack 800 outputs the first voltage to the first tool 3001 , or outputs the second voltage to the second tool 3002 .
  • the first voltage and the second voltage are determined according to parameter values of the discharge device.
  • the knapsack battery pack is provided with a charging and discharging control system, which is similar to the charging and discharging system of the battery pack in the above embodiment, and its charging and discharging methods are also similar, and will not be repeated again.
  • the invention supports the USB PD fast charging protocol, can detect the device type of the connected device on the Type-C interface in real time, and can charge/discharge the backpack battery pack according to the device type, and can not only perform fast charging through the Type-C interface, but also Fast discharge for access devices with Type-C interface, and the charging/discharging power can be adjusted according to the access devices within a certain range.
  • the technical parameters of the backpack battery pack are detected in real time, and the charging/discharging protection logic is executed according to the technical parameters, and the input/output power is dynamically adjusted, which can effectively protect the safety of the backpack battery pack and prolong the service life of the backpack battery pack .
  • the invention proposes a backpack battery pack and electric tool system.
  • the battery pack shell is provided with a strap. When the battery pack needs to be carried to work outdoors, the battery pack can be carried by the strap, which is convenient and labor-saving.
  • the backpack battery pack There are multiple Type-C interfaces on the phone, which can charge and discharge at the same time. And each Type-C interface can be connected to different electric tools or chargers to improve work efficiency and charging efficiency.

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提出一种电池包、电动工具系统及充电系统,所述电池包包括电池包壳体,其内安装有电芯组件和电路板,所述电路板与所述电芯组件之间电性连接;多个Type-C接口,安装在所述电路板上,且与所述电路板电性连接,以实现电芯组件与Type-C接口之间的电性连接,并用于连接外部设备。本发明的电池包通过在电池包壳体上设置多个Type-C接口,从而可利用Type-C接口与电路板的电性连接,来实现电芯组件与Type-C接口之间的电性连接,可以同时为多个不同的电动工具进行供电,提高产品适用性,同时还为手机、笔记本、数码相机等电子产品供电提供了可能,同时还可以通过连接多个个充电器以对电池包进行充电,以提高充电效率。

Description

一种电池包、电动工具系统及充电系统 技术领域
本发明电池包技术领域,具体涉及了一种电池包、电动工具系统及充电系统。
背景技术
近年来,随着电池材料技术的发展,电芯的应用范围已被大幅度提升。目前市场上的电动工具产品已大量使用,但是,目前电池包的充放电接口普遍采用机械端子,输入输出的电压单一,导致与接入设备的匹配性较差,适用范围小,不方便用户的使用,且目前的电池包只能对相同电压的电气装置供电,输出较为单一,局限性比较大,其他消费类电子产品无法使用此电源供电。
并且现有的充电器通常只能为单个电池包进行充电,不能同时为多个电池包进行充电,从而使得用户每次用完电动工具后都需要花费较长的时间对电池包进行逐一充电。并且现有充电器通过单个接口对电池包进行充电,其充电过程缓慢,耗费时间较长。
且当电池包在潮湿的环境下工作时,需要电池包具有较高的防水性能。然而现有的电池包壳体存在空隙,密封性能差,不能有效的防止水进入电池包内,时常会因电池包内进水从而造成短路。
有鉴于此,确有必要对现有的电池包以及充电器提出改进,以解决上述问题。
发明内容
为解决上述技术问题,本发明提出一种电池包,包括:
电池包壳体,其内安装有电芯组件和电路板,所述电路板与所述电芯组件之间电性连接;
多个Type-C接口,安装在所述电路板上,且与所述电路板电性连接,以实现电芯组件与Type-C接口之间的电性连接,并用于连接外部设备。
在本发明的一个实施例中,所述电池包壳体的上壳体上设置有限位件安装槽,所述限位件安装槽内安装有限位件,并通过安装槽盖进行密封。
在本发明的一个实施例中,所述限位件包括限位按压部和限位柱,当所述电池包连接所述外部工具时,所述限位柱用于实现所述电池包与所述外部工具之间的固定连接,所述限位 按压部用于供操作者操作,以将所述电池包与外部工具解锁分离。
在本发明的一个实施例中,所述电池包壳体上还设有显示装置,所述显示装置用于显示电池包的剩余电量和/或电压和/或电流和/或电芯温度和/或故障。
在本发明的一个实施例中,所述电池包还包括供电端子,安装在所述电路板上,并与所述电路板电性连接。
在本发明的一个实施例中,所述壳体上设置有插接口,所述Type-C接口位于所述插接口内,所述插接口处设置有防护盖。
在本发明的一个实施例中,所述防护盖为防护塞,所述防护塞的一端插入所述Type-C接口内,与所述Type-C接口相匹配,另一端与所述插接口相匹配。
在本发明的一个实施例中,所述防护盖为旋转防护盖,所述旋转防护盖与所述Type-C接口相匹配,且所述旋转防护盖的一端通过一旋转轴与所述电池包壳体转动连接。
在本发明的一个实施例中,所述防护盖为防护滑盖,与所述Type-C接口相匹配。
在本发明的一个实施例中,所述Type-C接口至少包括第一Type-C接口和第二Type-C接口,所述第一Type-C接口和所述第二Type-C接口分别装配在所述电路板上,且与所述电路板电连接。
在本发明的一个实施例中,所述电池包壳体的顶部上设置有一插接部,所述插接部的两侧设置有滑轨。
在本发明的一个实施例中,所述电池包壳体的顶部安装有端子接口,所述端子接口位于所述滑轨之间,且所述端子接口与所述电路板电性连接。
在本发明的一个实施例中,所述第一Type-C接口和所述第二Type-C接口位于所述插接部的两侧或同一侧。
在本发明的一个实施例中,所述第一Type-C接口和所述第二Type-C接口位于所述插接部的顶面。
在本发明的一个实施例中,所述第一Type-C接口和所述第二Type-C接口位于所述电池包壳体的同一侧或两侧。
在本发明的一个实施例中,所述电池包壳体包括上壳体和下壳体,所述上壳体与所述下壳体固定连接,且所述插接部位于所述上壳体的顶面。
在本发明的一个实施例中,所述下壳体与上壳体连接的边缘设置有一圈密封槽,所述密封槽内安装有密封圈,当所述下壳体与所述上壳体固定装配时,所述密封圈在所述上壳体与所述下壳体的挤压下变形以填充所述上壳体与所述下壳体之间的间隙形成密封。
本发明还提出一种电动工具系统,包括电池包和电动工具,所述电动工具包括执行相应 功能的功能模块,多个工具Type-C接口,设置在所述电动工具上;
所述电池包包括:所述电池包包括电池包壳体,其内安装有电芯组件和电路板,所述电路板与所述电芯组件之间电性连接;
多个Type-C接口,安装在所述电路板上,且与所述电路板电性连接,以实现电芯组件与Type-C接口之间的电性连接,并用于连接外部设备;
当所述电池包与所述电动工具连接时,所述多个电池包Type-C接口与所述多个工具Type-C接口连接,所述电池包向所述电动工具输出能量,以驱动所述功能模块工作。
在本发明的一个实施例中,所述电动工具为打草机、修枝机、吹风机、链锯、推草机、清洗机、吸尘器、电钻、电锤、坐骑式割草机、智能割草机、智能清洁设备中的一种。
本发明还提出一种充电系统,包括:
电池包,所述电池包包括电池包壳体,其内安装有电芯组件和电路板,所述电路板与所述电芯组件之间电性连接;
多个Type-C接口,安装在所述电路板上,且与所述电路板电性连接,以实现电芯组件与Type-C接口之间的电性连接,位于所述电池包壳体上的插接口内,并用于连接外部设备;
充电器,所述充电器包括充电器壳体,其内安装有第一电路板,所述充电器壳体上设置有第一充电接口,所述第一充电接口与所述第一电路板电性连接;
当所述充电器为所述电池包充电时,所述第一充电接口和所述Type-C接口电性连接。
本发明的电池包通过在电池包壳体上设置多个Type-C接口,从而可利用Type-C接口与电路板的电性连接,来实现电芯组件与Type-C接口之间的电性连接,可以同时为多个不同的电动工具进行供电,提高产品适用性,同时还为手机、笔记本、数码相机等电子产品供电提供了可能,同时还可以通过连接多个个充电器以对电池包进行充电,以提高充电效率。
本发明的电池包通过在电池包的供电端子和其他结构上均设置密封防水结构,以提高其密封防水性能,有效地避免水进入电池包内,从而避免因电池包内进水对电池造成损坏的问题。
本发明的电池包能够根据设备类型对电池包进行充/放电,不仅能通过Type-C接口进行快速充电,还能为具备Type-C接口的接入设备进行快速放电,且充/放电功率能够在一定范围根据接入设备进行调整,适用于多种不同电压的接入设备,方便用户的使用。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图 作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提出的一种电池包的结构示意图。
图2为本发明提出的一种电池包的中电路板的结构示意图。
图3为本发明提出的一种电池包的中上壳体的结构示意图。
图4为本发明提出的一种电池包的中下壳体的结构示意图。
图5为本发明提出的一种电池包的中电芯组件的结构示意图。
图6为本发明提出的充电接口位于电池包壳体两侧的位置示意图。
图7为本发明提出的充电接口位于电池包壳体同一侧的位置示意图。
图8为本发明提出的充电接口位于插接部两侧的位置示意图。
图9为本发明提出的充电接口插接部同一侧的位置示意图。
图10为本发明提出的充电接口位于端子接口的位置示意图。
图11为本发明提出的充电接口位于电池包顶部的位置示意图。
图12为本发明提出的充电接口位于电池包顶部的另一位置示意图。
图13为本发明提出的一种电池包的中Type-C接口的结构示意图。
图14为本发明提出的一种电池包的中限位件与安装槽盖的结构示意图。
图15为本发明提出的一种电池包的中限位件的结构示意图。
图16为本发明提出的一种电池包的中限位件的仰视结构示意图。
图17为本发明于一实施例中的上壳体的结构示意图。
图18为本发明提出的一种防水电池包的结构示意图。
图19为本发明于一实施例中的电芯支架的结构示意图。
图20为本发明于一实施例中的电路板的结构示意图。
图21为本发明于一实施例中的第一接口的结构示意图。
图22为本发明于一实施例中的下壳体的结构示意图。
图23为本发明于一实施例中下壳体的另一角度结构示意图。
图24为本发明于一实施例中防护塞与第一接口装配示意图。
图25为本发明于一实施例中旋转防护盖与第一接口装配示意图。
图26为本发明于一实施例中防护滑盖与第一接口装配示意图。
图27为本发明于一实施例中防护滑盖与第一接口另一示意图。
图28为本发明于一实施例中的上壳体的内部结构示意图。
图29为本发明于一实施例中的供电端子的爆炸结构示意图。
图30为本发明于一实施例中的导水槽结构示意图。
图31为本发明实施例中公开的带无线接口的电池包的结构示意图。
图32为本发明实施例中公开的电池包的一种结构框图。
图33为本发明实施例中公开的电池包的另一种结构框图。
图34为本发明实施例中公开的充放电的控制系统的一种结构框图。
图35为本发明实施例中公开的充放电的控制系统的另一种结构框图。
图36为本发明实施例中公开的无线调压模块的结构框图。
图37为本发明实施例中公开的充放电的控制系统的另一种结构框图。
图38为本发明实施例中公开的控制模块的内部通信连接示意图。
图39为本发明实施例中公开的充放电的控制方法的工作流程示意图。
图40为本发明实施例中公开的检测设备类型的工作流程示意图。
图41为本发明实施例中公开的无线充电保护逻辑的工作流程示意图。
图42为本发明实施例中公开的无线放电保护逻辑的工作流程示意图。
图43为本发明实施例中公开的充电保护逻辑的工作流程示意图。
图44为本发明实施例中公开的放电保护逻辑的工作流程示意图。
图45为本发明实施例中公开的充放电的控制方法的另一种工作流程示意图。
图46为本发明实施例中公开的充放电保护逻辑的工作流程示意图。
图47为本发明实施例中公开的充电组合的结构示意图。
图48为本发明提出的一种电池包的电路示意图。
图49为本发明的一实施方式的供电系统的电动工具和电池包的结构示意图。
图50为本发明的一实施方式的供电系统的电动工具和电池包的简化原理框图。
图51为本发明的一实施方式的供电系统的电动工具的立体结构示意图。
图52为本发明的一实施方式的供电系统的电动工具的仰视图。
图53为本发明的一实施方式的电池包的爆炸示意图。
图54为本发明的一实施方式的供电系统的电池包的放电控制电路的结构框图。
图55为本发明的一实施方式的供电系统的电池包的放电电路的工作流程示意图。
图56为本发明的另一实施方式的供电系统的电动工具和电池包的结构示意图。
图57为本发明的另一实施方式的供电系统的电动工具和电池包的简化原理框图。
图58为本发明的另一实施方式的供电系统的电池包的立体结构示意图。
图59为本发明的供电系统的电动工具和电池包的结构示意图。
图60为本发明的供电系统的电动工具和电池包的简化原理框图。
图61为本发明的供电系统的电路结构框图。
图62为本发明的供电系统放电流程示意图。
图63为本发明的通过端子的电动工具和电池包的结构示意图。
图64为本发明的通过Type-C接口供电系统的电路框图。
图65为本发明的通过端子供电系统的电路框图。
图66为本发明的电池包激活流程图。
图67为本发明的电池包的端子放电模式流程图。
图68为本发明的电池包通过Type-C接口放电逻辑流程图。
图69为本发明的电池包Type-C放电模式流程图。
图70为本发明提出一种充电系统的另一结构示意图。
图71为本发明提出一种充电器的电路结构示意图。
图72为本发明实施例中公开的充电组合的结构示意图。
图73为本发明于一实施例中充电器的结构示意图。
图74为本发明于一实施例中充电器的俯视结构示意图。
图75为本发明实施例中公开的充电器的一种结构框图。
图76为本发明实施例中公开的充电器的另一种结构框图。
图77为本发明实施例中公开的电池包的一种结构框图。
图78为本发明实施例中公开的检测模块的结构框图。
图79为本发明实施例中公开的电池包的另一种结构框图。
图80为本发明实施例中公开的充电组合的结构框图。
图81为本发明实施例中公开的充电方法工作流程图。
图82为本发明实施例中公开的通信控制系统的另一种结构框图。
图83为本发明实施例中公开的通信控制方法的工作流程示意图。
图84为本发明实施例中公开的根据设备类型进行充/放电的工作流程示意图。
图85为本发明实施例中公开的通信控制方法的另一种工作流程示意图。
图86为一种适配装置应用场景图。
图87为外壳立体结构图。
图88为适配装置的爆炸图。
图89为第一壳体结构图。
图90为第二壳体一侧结构图。
图91为第二壳体另一侧结构图。
图92为一种电池包控制系统框图。
图93为一种充电装置控制系统框图。
图94为一种充电转换控制系统框图。
图95为电池包充电流程图。
图96为充电装置为电池包充电流程图。
图97为一种充电转换方法流程图。
图98为另一实施例中外壳立体结构图。
图99为另一实施例中第一壳体结构图。
图100为另一实施例中第一壳体第一结构侧结构图。
图101为电池包放电流程图。
图102为一种电动工具控制系统框图。
图103为一种充电器控制系统框图。
图104为电动工具(充电器)为进入工作模式(电池包充电)流程图。
图105为一种充电转换控制系统框图。
图106为适配装置的电压转换流程图。
图107为本发明提出的一种多槽充电器的结构示意图。
图108为图107中多槽充电器的主视图。
图109为图107中多槽充电器的俯视图。
图110为本发明于一实施例中充电系统的结构示意图。
图111为电池包与多槽充电器装配的主视图。
图112为本发明提出的一种多槽充电器及充电系统中充电盒的结构示意图。
图113为充电盒的俯视示意图。
图114为本发明提出的一种多槽充电器及充电系统中充电壳体的结构示意图。
图115为本发明提出的一种多槽充电器及充电系统中充电盒的局部结构示意图。
图116为本发明提出的一种多槽充电器及充电系统中充电盒的另一局部示意图。
图117为电池包与多槽充电器装配的左视图。
图118为本发明提出的一种多槽充电器及充电系统中电池包的结构示意图。
图119为电池包的仰视图。
图120为本发明提出的一种背负式电池包的结构示意图。
图121为本发明于一实施例中电池包壳体的结构示意图。
图122为本发明于一实施例中电池包壳体另一角度的结构示意图。
图123为本发明于一实施例中电池包与电动工具的连接示意图。
图124为本发明于一实施例中电池包与充电器的连接示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图1至图10所示,本发明揭示了一种电池包100,用于给电动工具和电子设备供电。所述电池包100包括电池包壳体10、多个Type-C接口和供电端子,具体的,所示电池包100还包括收容在所述电池包壳体10内的电芯组件120和电路板13,所述电芯组件120包括多个电芯,多个所述电芯安装在电芯支架14内,所述电芯支架14位于所述电池包壳体10内,且所述电芯之间通过电极片141连接,且所述电芯与所述电路板13电性连接。
如图1及图2所示,所述供电端子132安装在所述电路板13上,并与所述电路板13电性连接,且所述供电端子132靠近所述电池包壳体10顶部的端子接口131,并部分暴露于端子接口,以连接外部电动工具。所述电池包100的输出电压为24V、输出电流为40A、输出功率为960W,但不应以此为限。在本实施例中,所述电池包应用于一种电动工具系统,所述电动工具系统包括上述实施例中的电池包和电动工具,所述电动工具包括执行相应功能的功能模块和多个工具Type-C接口,当所述电池包100与所述电动工具连接时,所述多个电池包上的Type-C接口与所述多个工具Type-C接口连接,所述电池包向所述电动工具输出能量,以驱动所述功能模块工作。所述电动工具包括但不限于打草机、吹风机、修枝机、链锯、推草机、清洗机、吸尘器、智能割草机、智能清洁设备和坐骑式割草机。
如图3及图4所示,在本实施例中,所述电池包壳体10包括上壳体11和下壳体12,所述上壳体11与所述下壳体12固定连接,电芯组件120和电路板13收容在由上壳体11和下壳体12组装形成的收容空间内,且所述上壳体11的顶面设置有一插接部1101,所述插接部1101的两侧设置有滑轨1102,且所述端子接口131设置在所述插接部1101的一端,并位于 所述插接部1101两侧的滑轨1102之间,当所述外部电动工具与通过所述滑轨1101与所述电池包100连接时,所述供电端子132与所述外部电动工具电性连接。所述电池包壳体10的上壳体11上设置有限位件安装槽112,所述限位件安装槽112内安装有限位件111,并通过安装槽盖1121进行密封,所述限位件111用于在插拔电池包100时使电池包100能够较轻松的脱离出来。
如图3及图4所示,在本实施例中,所述电池包壳体10上开设有插接口113,所述电池包100还包括安装在所述电池包壳体10内并部分位于所述插接口113的Type-C接口,所述Type-C接口与所述电路板13电性连接,以实现电芯与Type-C接口之间的电性连接,从而便于利用Type-C接口来实现电芯组件120的电源输出/输入。
如图1及图6所示,在本实施例中,所述电池包壳体10大致呈长方形设置,所述Type-C接口设置在电池包壳体10的长边上,限位件111靠近上壳体11的短边设置。本实施例中,所述电池包壳体10的相对设置的两侧长边上均设置有所述Type-C接口,所述Type-C接口包括:第一Type-C接口122a和第二Type-C接口122b,对应的,插接口113开设有两个并分设在电池包壳体10的两个长边上,具体为开设在上壳体11的两个长边上;插接口113的朝向垂直于该两个长边。
如图6至图12所示,在本实施例中,所述第一Type-C接口122a和所述第二Type-C接口122b位于所述电池包壳体10的同一侧或两侧,当所述第一Type-C接口122a和所述第二Type-C接口122b位于所述电池包壳体10的两侧时,优选的方式为对称排布,也可以不对称排布,且优选的Type-C接口设置在高度方向上大致与电路板平齐,且两个Type-C接口之间的距离L1范围为0-140mm。在本实施例中,优选的,所述第一Type-C接口122a和所述第二Type-C接口122b在高度方向上大致与第二电路板13平齐,当电池包在工具上使用时,2个Type-C接口也可以同时对外设放电,也可通过2个Type-C接口单独给外设供电。如图7所示,当位于所述电池包壳体同一侧时,两个Type-C接口之间的距L2范围为0-160mm。
如图6至图12所示,另外,在一些实施例中,所述第一Type-C接口122a和所述第二Type-C接口122b位于所述插接部1101的两侧或同一侧,具体的,所述第一Type-C接口122a和所述第二Type-C接口122b位于所述滑轨1102处,以使得,当电池包在工具上使用时,会将所述第一Type-C接口122a和所述第二Type-C接口122b完全遮挡住,这样就可以防止工具使用时产生的异物进入电池包100内。
还有,如图10所示,在一些实施例中,所述第一Type-C接口122a和所述第二Type-C接口122b位于所述端子接口131处,且呈纵向排列,当电池包在工具上使用时,会将所述第一Type-C接口122a和所述第二Type-C接口122b完全遮挡住,这样就可以防止工具使用 时产生的异物进入电池包100。电池包顶面至导轨底面的高度L3范围为0-30mm,优选为11.85mm,两个Type-C分布在顶面与导轨底面之间。
还有,如图11及12所示,在一些实施例中,所述第一Type-C接口122a和所述第二Type-C接口122b位于所述插接部1102的顶面,且并列设置,当电池包在工具上使用时,会将所述第一Type-C接口122a和所述第二Type-C接口122b完全遮挡住,这样就可以防止工具使用时产生的异物进入电池包,或其中一个Type-C接口位于顶面,另一个位于侧面。当然,在其他实施例中,所述第一Type-C接口122a和第二Type-C接口122b也可以设置在其他位置上,只要能够实现电源的传输即可,此处不作限制。
如图1至图5所示,所述Type-C接口为可实现充放电的电连接器,且该Type-C接口的输出电压为5-20V,优选的为5V、9V、12V、15V、20V;输出电流为1-5A,优选的为1A、2A、3A、4A、5A;输出功率为15-100W,优选的为15W、18W、30W、45W、60W、100W。
如图13所示,在本实施例中,所述Type-C接口包括绝缘本体1221、固定在所述绝缘本体1221上的导电端子1222以及遮罩在所述绝缘本体1221和导电端子1222外侧的遮罩壳体1223,所述导电端子1222与所述遮罩壳体1223均由金属材料制成,且导电端子1222与遮罩壳体1223的内侧壁相接触,从而实现导电端子1222与遮罩壳体1223的电性导通,所述遮罩壳体1223上设有与电路板13焊接固定的插脚1224。通过这样的设计,使得Type-C接口的导电端子1222能够通过遮罩壳体1223的插脚1224及电路板13与电芯实现电性连接,继而能够通过该Type-C接口对包括手机、笔记本、数码相机、可穿戴智能设备等电子产品的电子设备进行充电。
如图1至图5、图13所示,本实施例中,Type-C接口与电路板13平行设置,该平行设置既包括Type-C接口固定在电路板13的上侧的情形,也包括Type-C接口固定在电路板13的下侧的情形,因Type-C接口与电路板13直接焊接,所以插接口113的外边缘与电路板13之间的距离要小于插接口113的纵向长度,具体地,插接口113的外边缘与电路板13之间的距离为0-20mm,优选为0-15mm,进一步的优选为0-10mm,最佳的为7.75mm。
如图1至图5、图13所示,本实施例中,所述电路板13上集成有供电端子132,该供电端子132也通过电路板13与电芯电性连接,上壳体11的远离限位件111的一端开设有端子接口131,供电端子132靠近端子接口131设置并部分暴露于端子接口131。供电端子132的延伸方向以及端子接口131的朝向均平行于两个长边。供电端子31与端子接口131的设计,使得本发明的电池包100还能够插接在电动工具上,从而为电动工具供电。
如图1至图5、图13所示,本实施例中,所述电池包壳体10上还设有显示装置1115,该显示装置1115可以用于显示电池包100的剩余电量,也可以用于显示电池包100的电压、 电流以及电芯温度和故障等等。当电池包100与电动工具相结合并进行工作时,该显示装置还可以显示电动工具的运行参数,比如电机的转速等等。所述显示装置优选为LCD显示屏,但不应以此为限。
如图1、图14至图16所示,在本实施例中,所述显示装置1115固定在所述上壳体11上并位于所述限位件111的旁侧。具体地,限位件111包括限位按压部1111和限位柱1112,限位按压部1111用于供操作者操作,以释放电池包100与电动工具之间的锁扣;限位柱1112用于实现电池包100与外部设备之间的固定连接。另外,在本实施例中,所述限位件111底部的两端上设置有弹簧安装柱1113和导向套1114,所述弹簧安装柱1113上安装有限位弹簧,所述限位弹簧的底端抵接在上壳体11的限位件安装槽112上,用于使得所述限位件111复位,所述导向套1114套设在所述限位件安装槽112上的导向柱上,在所述限位件11下压和上升的过程中起到导向的作用。
如图1、图14至图16所示,在本实施例中,较佳的,显示装置1115固定在上壳体11上并位于限位按压部1111和限位柱1112之间,目的在于:当电池包100与电动工具相结合时,操作者能够在使用的过程中看到显示装置1115上显示的内容,当操作过程中或者电池包100和/或电动工具工作过程中发生异常时,能够及时的发现并做出处理,避免了危险的发生。
当然,显示装置1115也可以安装在电池包100的前侧,即位于限位按压部1111的远离限位柱1112的一侧。只不过,这样的安装方案需要考虑显示装置1115与电路板13之间的引线是否会受到限位按压部1111的干扰,布线会有局限。
如图17所示,另外,在本实施例中,所述显示装置1115上贴有一层防水标贴11151,以加强该部分的防水性能。在本实施例中,所述限位件安装槽112内还设置有一透气孔1116,电池包100在使用过程中会产生气体或者电池包内部空气由于电芯发热而膨胀,透气孔1116用于将电池包100内部的空气排出,在整个按钮运动过程中:限位件111的底部圆槽始终将该透气孔1116遮住,避免水通过透气孔1116进入电池包100内。
如图18至图20所示,由于电池包壳体存在空隙,密封性能差,不能有效的防止水进入电池包内,时常会因电池包内进水对电池造成损坏的问题,在所述电池包的接口处设置防水结构,所述电池包还包括设置在壳体侧面的第一接口122,所述第一接口122安装在所述电路板13的底面,并与所述电路板13电性连接,所述电芯支架14上设置有接口安装部142,所述第一接口122位于所述接口安装部142内,且所述接口安装部142为限位挡板,位于所述第一接口122的侧面,以实现对所第一接口122的限位,保证第一接口122在受力后不会发生位移,从而保证第一接口122功能的正常使用,在本实施例中,所述第一接口122优选 为Type-C接口。在另一种实施方式中,所述第一接口122安装在所述电路板13的上方。
另外,如图18至图21所示,在本实施例中,所述第一接口122的一端突出于所述电芯支架14的侧面,且所述第一接口122突出于所述电芯支架14侧面的一端上安装有第一密封件123,所述第一密封件123在所述电池包壳体10和所述第一接口122的挤压下变形以实现密封。
如图22所示,在本实施例中,所述下壳体12与上壳体11连接的边缘设置有一圈密封槽115,所述密封槽115内安装有第二密封圈116,当所述下壳体12与所述上壳体11固定装配时,所述第二密封圈116在所述上壳体11与所述下壳体12的挤压下变形以填充所述上壳体11与所述下壳体12之间的间隙形成密封。
如图22所示,在本实施例中,所述上壳体11与所述下壳体12之间通过螺丝连接,具体的,所述下壳体12的四个角上分别设置有螺纹通孔1201,所述上壳体11的内部与之相对应的也同样设置有四个具有一定深度的螺纹孔,螺丝从所述下壳体12的底部伸入所述螺纹通孔1201内,并与所述上壳体11的螺纹孔连接,上述上壳体11与下壳体12之间的螺纹连接方式,使得其螺纹孔在下壳体12的底部,从而以防止水从螺纹孔中进入电池包内。
如图19及图23所示,在本实施例中,所述下壳体12的内侧设置有凹槽114,且所述凹槽114位于所述插接口113的下方,另外,所述电芯支架14的侧面上设置有凸筋143,且所述凸筋143位于所述第一接口122的下方,并突出于所述第一接口122安装有所述第一密封件123的一端,当所述电芯支架14与所述下壳体12安装在一起时,电芯支架14的凸筋143向下壳体12运动,将下壳体12向外挤压变形,直至将所述凸筋143安装至所述下壳体12对应的凹槽114内,以使得利用下壳体12挤压第一接口122上的第一密封件123,使其变形,将第一接口122与下壳体12之间的间隙填充,使其无法进水。在本实施例中,所述凸筋143和所述凹槽114均设置为L型结构,并相互匹配。
如图24所示,在本实施例中,所述电池包的电池包壳体10上还安装有还包括防护盖,所述防护盖位于所述插接口113处,以覆盖所述第一接口122,从而起到防水、防尘的效果。具体的,在本实施例中,所述防护盖为防护塞117,所述防护塞117的一端插入所述第一接口122内,与所述第一接口122相匹配,另一端与所述插接口113相匹配,从而覆盖所述第一接口122,以实现密封作用,以进一步提高防水、防尘的效果。
如图25所示,在一些其他实施例中,所述防护盖为旋转防护盖118,所述旋转防护盖118与所述第一接口122相匹配,且所述旋转防护盖118的一端通过一旋转轴与所述下壳体12转动连接,绕着所述旋转轴转动,将所述旋转防护盖118转动至所述插接口113处,以覆盖所述第一接口122,从而密封作用,以进一步提高防水、防尘的效果。
如图26及图27所示,在另一实施例中,所述防护盖为防护滑盖119,与所述第一接口122相匹配。所述防护滑盖119包括滑轨1191和滑盖1192,所述滑轨1191安装在所述下壳体12上,且所述滑轨1191上设置有一限位筋,通过手动滑动所述滑盖1192至所述限位筋时,在所述限位件筋的作用下将所述滑盖1192固定,以覆盖所述第一接口122,从而密封作用,以进一步提高防水、防尘的效果。
如图26及图27所示,另外,所述防护滑盖还可以包括滑轨1191、滑盖1192和弹簧1193,所述滑轨1191安装在所述下壳体12上,所述滑盖1192安装在所述滑轨1191上,且所述弹簧1193的一端与所述滑轨1192下端之间的平台连接,另一端与所述滑盖1192内侧的顶部连接,在所述弹簧1193的弹力作用下,所述滑盖1192自动覆盖所述插接口113,从而覆盖所述第一接口122,从而密封作用,以进一步提高防水、防尘的效果。
其通过在第一接口上套设密封圈,并且使得所述第一密封件在所述电池包壳体和所述第一接口的挤压下变形以实现密封,从而提高其密封性能,有效的避免水进入电池包内,从而避免因电池包内进水对电池造成损坏的问题。并且在所述下壳体与上壳体的连接处安装有第二密封圈,以进一步提高防水效果。再通过在电池包壳体上设置防护盖,以覆盖所述第一接口,从而进一步提高防水效果,并且同时也能达到防尘的目的。
在又一实施例中,如图20至图29所示,所述供电端子132安装在所述电路板13上,并位于所述端子接口131处,具体的,在本实施例中,所述上壳体11的内部设置有一端子安装槽1311,所述供电端子132安装在所述电路板13上,并且位于所述端子安装槽1311内,使得供电端子132上的第一密封圈1324在所述插片安装座1321和所述端子安装槽1311之间的配合作用实现密封作用。
如图28及图29所示,在本实施例中,所述供电端子132包括插片安装座1321和多个插片1322,所述插片安装座1321安装在所述电路板13上,所述多个插片1322安装在所述插片安装座1321上,且所述插片安装座1321的高度高于所述插片1322的高度,且所述插片1322的底部与所述电路板13电性连接,并且每两个插片1322之间通过竖格筋1323相互隔开,具体的,所述插片安装座1321设置为一两相邻的面设置为开口的安装槽,所述槽内间隔分布有多个竖格筋1323,已将该槽分为多个单独且相互隔开的空间,用于安装插片1322,且所述竖格筋1323的高度高于所述插片1322的高度,以将每个插片1322单独隔离,以避免多个插片1322之间相互影响。另外,在本实施例中,所述插片安装座1321的底部设置有一圈密封槽1320,所述密封槽1320内设置有第一密封圈1324,所述第一密封圈1324在所述插片安装座1321和所述电池包壳体10的挤压下变形以填充插片安装座1321和电池包壳体10之间的间隙,从而实现密封作用。当端子接口131进水后,由于插片1322之间单独隔 开,使得插片1322之间不会相互干扰,且由于第一密封圈1324的密封作用,使得插片安装座1321与电池包壳体10之间不存在间隙,从而使得从端子接口131处进入的水无法进入到电池包内部,并容易从端子接口131处排出。
如图17及图30所示,在本实施例中,所述电池包壳体10的上壳体11上设置有限位件安装槽112,所述限位件安装槽112内安装有限位件111,并通过安装槽盖1121进行密封,所述限位件111用于在插拔电池包100时使电池包100能够较轻松的脱离出来,所述安装槽盖1121与所述电池包壳体10之间设置有一导水槽101,所述使得进入限位件安装槽112内的水能够迅速从该导水槽101处流出,以避免该处积水,从而影响电池包的防水性能。
如图17所示,在本实施例中,所述限位件安装槽112内设置有多个螺纹孔,将螺栓通过所述螺纹孔与所述安装槽盖1121固定连接,另外,所述螺纹孔处设置有凸台11201,所述凸台11201的高度高于所述限位件安装槽112的底面,以防止螺栓被浸泡水中,同时也能够防止水从螺栓和螺纹孔之间的间隙中进入电池包。
如图31所示,在本实施例中,所述电池包壳体10上设置有一无线接口114,所述电池包可以通过所述无线接口114进行充放电。在本实施例中,所述电池包包括多种放电模式,所述放电模式至少包括无线放电模式、Type-C接口放电模式和供电端子放电模式,且放电过程为所述无线放电模式、所述Type-C接口放电模式和所述供电端子放电模式中的一种模式进行放电或多种模式同时进行放电。在本实施例中,所述电池包包括多种充电模式,所述充电模式至少包括无线充电模式、Type-C接口充电模式和供电端子充电模式,且充电过程为所述无线充电模式、所述Type-C接口充电模式和所述供电端子充电模式中的一种模式进行充电或多种模式同时进行充电。
如图31所示,另外,在本实施例中,所述电池包还包括所述无线接口进行充电的同时通过所述Type-C接口对外放电、所述Type-C接口进行充电的同时通过所述无线接口对外放电以及所述供电端子进行充电的同时通过所述无线接口和所述Type-C接口对外放电。
如图32所示,本发明的实施例公开了一种充放电的控制系统,该控制系统应用于采用Type-C接口122和/或无线接口114进行充/放电的电池包100,应理解,电池包100包括电芯组件120,电芯组件120包括多个电芯,各电芯之间可通过串并联方式组合成电芯组件120,电芯组件120用于存储电能,且各电芯相互组合后可通过Type-C接口122和/或无线接口114进行充/放电。
该控制系统的一端与电芯组件120电连接,另一端分别与无线接口114和各Type-C接口122电连接,用于检测Type-C接口122和/或无线接口114上接入设备的设备类型,根据设备类型通过Type-C接口122和/或无线接口114对电池包100进行充/放电;其中,设备 类型包括充电设备和放电设备。
应理解,上述Type-C接口122为USB标准接口,其接口类型为能适应正反插的双面型号,且支持USB PD快充协议(USB Power Delivery Specification,USB快速充电标准)。本实施例中,Type-C接口122管脚包括VBUS、CC、D+、D-、GND。
此外,Type-C接口122的通信协议不只限于上述标准化的USB PD快充协议,还支持专有协议,专有协议一般由各厂家根据自身情况设计而定,本方案对此不做限定。
相对应的,接入设备上也设有Type-C接口,且接入设备与电池包100之间的交互应满足Type-C通用通信协议和专有协议。其中,接入设备为充电设备时,可以为氮化镓充电器;接入设备为放电设备时,可以为各种电动工具及园林工具,也可以为手机、笔记本、蓝牙音箱等用电设备。
无线接口114采用WPC线圈(Wireless Power Consortium,无线充电联盟),满足国际无线充电标准Qi,可为设有无线接口的接入设备充/放电。
如图33所示,本实施例中的电池包100还可包括供电端子132,控制系统还用于检测供电端子132上接入设备的设备类型,根据该设备类型通过供电端子132对电池包100进行充/放电。
应理解,供电端子132为园林工具中常用的连接端口,有多种型号可供选择,本实施例中其管脚包括:P+、CHG、COM、P-。
需要说明的是,本实施例中包括Type-C接口122和/或供电端子132,实际应用中可根据需要设置多个Type-C接口122,通过调整充电或放电的功率,可加快充电和放电的速度,方便用户使用。
如图34所示,控制系统包括:检测模块170、控制模块180、调压模块160及无线调压模块140。
检测模块170,用于实时获取电芯组件120的电池参数,还用于实时获取Type-C回路和无线回路的回路参数;其中,电池参数包括电芯组件120的电压、电流及温度;回路参数包括回路电压、回路电流、功率器件温度及输入/输出电压。
应理解,Type-C回路为电池包100内部从Type-C接口122到电芯组件120的相关电路,本实施例中的Type-C回路包括Type-C接口122、检测模块170、控制模块180、调压模块160及电芯组件120。
无线回路为电池包100内部从无线接口114到电芯组件120的相关电路,本实施例中的Type-C回路包括无线接口114、检测模块170、控制模块180、无线调压模块140及电芯组件120。
控制模块180,用于根据Type-C接口122的接口信号判断接入设备的设备类型;还用于接收无线充放电按键的按键信号,并根据按键信号判断无线接口114上接入设备的设备类型;还用于根据设备类型、电池参数和回路参数输出控制信号到调压模块160和无线调压模块140。
本实施例中,检测模块170与控制模块180之间通过I2C总线实现数据交互。
调压模块160,其串接在电芯组件120与Type-C接口122之间,且其控制端与控制模块180电连接,用于根据控制模块180的控制信号,调整电芯组件120的输入/输出电压。
无线调压模块140,其串接在电芯组件120与无线接口114之间,且其控制端与控制模块180电连接,用于根据控制模块180的控制信号,调整电芯组件120的输入/输出电压。
如图35,可选的,控制模块180包括:第一控制单元1801和第二控制单元1802。
第一控制单元1801,用于根据电池参数获取电池包状态,并传输至第二控制单元1802;还用于接收无线充放电按键的按键信号,根据按键信号判断无线接口114上接入设备的设备类型,为方便描述,将无线接口114上接入设备的设备类型记为无线设备类型;
第一控制单元1801还用于根据无线设备类型、电池包状态和回路参数输出控制信号到无线调压模块140。
第二控制单元1802,用于根据Type-C接口122的接口信号判断接入设备的类型,为方便描述,将Type-C接口122上接入设备的设备类型记为Type-C设备类型;
第二控制单元1802还用于根据Type-C设备类型、电池包状态和回路参数输出控制信号到调压模块160。
应理解,在电池包100的充/放电过程中,可根据使用需要预先设定电芯组件120的参数范围,并根据参数范围来判断电池包状态,本实施例中的电池包状态包括异常、正常、充电保护及放电保护,实际应用中,用户还可根据需要进行细分。
具体的说,若满足电芯组件120的电压小于预设的第一阈值、大于第四阈值或温度大于预设的温度阈值中任一条件,则电池包状态为异常,不允许充/放电;
若电芯组件120的电压位于预设的第二阈值和第三阈值之间,则电池包状态为正常,可进行充/放电;
若电芯组件120的电压位于预设的第一阈值和第二阈值之间,则电池包状态为充电保护,仅用于充电;
若电芯组件120的电压位于预设的第三阈值和第四阈值之间,则电池包状态为放电保护,仅用于放电;
其中,第一阈值、第二阈值、第三阈值及第四阈值的电压值依次增加。
应理解,第一阈值、第二阈值、第三阈值和第四阈值均为预设值,可根据电池包100的指标参数而定,指标参数一般包括容量、电压、充电电压、充电电流、放电电压、放电电流,用户可根据需要自行设定,本方案对具体数值不做限定。
如图38,第一控制单元1801可通过多种通信方式与第二控制单元1802通信连接,其中,通信方式包括I2C总线通信、UART串口通信及SPI通信。为提高通信效率和抗干扰能力,本实施例中,在第一控制单元1801、第二控制单元1802的多个I/O口中选择4组I/O口来实现数据交互,具体通信协议描述如下:
定义第一控制单元1801的第一引脚、第二引脚为第一发送端,第三引脚、第四引脚为第一接收端;定义第二控制单元1802的第一引脚、第二引脚为第二接收端,第三引脚、第四引脚为第二发送端;且第一控制单元1801和/或第二控制单元1802输出的高电平定义为1,低电平定义为0。
第一控制单元1801根据电池参数获取电池包状态,并通过各引脚的高低电平传输至第二控制单元1802,第二控制单元1802根据电池包状态通过Type-C接口122对电池包100进行充/放电。其中,电池包状态对应参数记为OVP。
第二控制单元1802与Type-C接口122上的接入设备进行通用协议的匹配,判断接入设备是充电设备还是放电设备,并通过各引脚的高低电平传输至第一控制单元1801。
下面给出一种电池包状态的定义:
OVP=00,此时电池包100为异常状态,不允许充/放电;
OVP=01,此时电池包100为正常状态,可进行充/放电;
OVP=10,此时电池包100为充电保护状态,仅用于充电;
OVP=11,此时电池包100为放电保护状态,仅用于放电。
需要说明的是,上述通信协议对多个Type-C接口122依然适用,任一个Type-C接口122上连接有设置有Type-C接口122的接入设备,且与第二控制单元1802通信握手成功后,第二控制单元1802均可与第一控制单元1801进行数据交互。
采用这种方案,控制系统在充/放电过程中,实时检测电池参数和回路参数,根据电池参数和回路参数执行充/放电保护逻辑,动态调整输入/输出功率,实现了电池包100的安全、快速的充/放电功能。
如图35所述,可选的,调压模块160包括:全桥驱动单元1601和全桥功率单元1602。
全桥驱动单元1601,用于根据第二控制单元1802的控制信号输出驱动信号到全桥功率单元1602;其中,第二控制单元1802的控制信号为PWM信号。
全桥功率单元1602,其串接于Type-C接口122和电芯组件120之间,且其控制端与全 桥驱动单元1601连接,用于根据驱动信号调整电芯组件120的输入/输出电压。
应理解,全桥驱动单元1601可根据控制信号输出驱动信号到全桥功率单元1602,从而通过全桥功率单元1602调整电芯组件120的输入/输出电压。
可选的,检测模块170包括:第一检测单元1701和第二检测单元1702。
第一检测单元1701,用于实时获取电池参数并传输至第一控制单元1801;
第二检测单元1702,用于实时获取回路参数并传输至第二控制单元1802,第二控制单元1802将回路参数传输至第一控制单元1801,供第一控制单元1801使用。
如图36所示,可选的,无线调压模块140包括:
线圈切换单元1401,其一端与无线接口114无线连接,另一端分别与无线升压子模块1402和无线降压子模块1403电连接,且其控制端与第一控制单元1801电连接,用于根据第一控制单元1801的控制信号切换回路;
无线升压子模块1402,其串接在线圈切换单元1401与电芯组件120之间,用于根据第一控制单元1801的控制信号将接收的电压升压到电芯组件120充电所需电压。
无线升压子模块1402具体包括:无线能量接收控制单元、无线充电保护单元及升压单元;
无线能量接收控制单元,依据国际无线充电标准Qi和无线接口114上的接入设备通信并接收能量;
无线充电保护单元,其串接在无线能量接收控制单元和升压单元之间,且其控制端与第一控制单元1801连接,用于根据第一控制单元1801的控制信号控制无线回路的闭合或断开;
升压单元,其串接在无线充电保护单元和电芯组件120之间,将接收的电压升压到电芯组件120充电所需电压。
无线降压子模块1403,其串接在线圈切换单元1401与电芯组件120之间,用于根据第一控制单元1801的控制信号将电芯组件120电压降压到无线接口114的输出电压。
无线降压子模块1403具体包括:无线能量发送控制单元、无线放电保护单元及降压单元;
无线能量发送控制单元,依据国际无线充电标准Qi和无线接口114上的接入设备通信并发送能量;
无线放电保护单元,其串接在无线能量发送控制单元和降压单元之间,且其控制端与第一控制单元1801连接,用于根据第一控制单元1801的控制信号控制无线回路的闭合或断开;
降压单元,其串接在无线放电保护单元和电芯组件120之间,将电芯组件120电压降压到无线接口114的输出电压。
进一步说明,控制系统还包括:激活单元110。
激活单元110,用于根据激活信号激活第一控制单元1801;激活信号为通过Type-C接口122的连接状态、按压激活按键或按压无线充放电按键的任意一个或几个获得;应理解,电池包100上设有控制电源回路通断的激活按键,该激活按键被按下后,即可产生上拉或下拉的激活信号;电池包100上还设有无线充放电按键,该无线充放电按键被按下后,即可产生上拉或下拉的激活信号,第一控制单元1801还可根据无线充放电按键的按键信号判断无线接口114的无线设备类型。
第一控制单元1801,还用于在被激活后检测电池包状态,若电池包状态为非异常,则激活第二控制单元1802。
采用这种方案,电池包100在无激活信号时处于休眠状态,此时第一控制单元1801和第二控制单元1802均下电;当接收到激活信号,第一控制单元1801先检测电池包状态,若电池包状态无异常,则激活第二控制单元1802,否则停止充电/放电过程,不仅节约了电能,还可防止损坏电芯组件120。
此外,在电池包100充/放电结束后,第一控制单元1801还可输出控制信号到第二控制单元1802,使其下电,第一控制单元1801延迟一定时间后自身下电,从而节约电能。
继续说明,控制系统还包括Type-C通信单元192,其串接于第二控制单元1802与Type-C接口122之间,第二控制单元1802可通过Type-C通信单元192与Type-C接口122上的接入设备通信连接,从而通过Type-C接口122获取接口信号,接口信号包括接入设备的设备类型、充电请求、放电请求、充电电压及放电电压。
继续说明,控制系统还包括:Type-C保护单元152。
Type-C保护单元152,其串接在全桥功率单元1602和Type-C接口122之间,且其控制端与第二控制单元1802连接,用于根据第二控制单元1802的保护指令进行充/放电保护;
第二控制单元1802,还用于根据电池包状态和回路参数输出保护指令到Type-C保护单元152。
如图37所示,当电池包100还包括供电端子132时,控制系统还包括:
端子保护单元151,其串接在供电端子132和电芯组件120之间,且其控制端与第一控制单元1801连接,用于根据第一控制单元1801的保护指令进行充/放电保护;
第一控制单元1801,还用于根据电池参数输出保护指令到端子保护单元151。
继续说明,当电池包100还包括供电端子132时,控制系统还包括:
端子通信单元191,其串接在供电端子132和第一控制单元1801之间,用于通信连接第一控制单元1801和供电端子132上的接入设备。
需要说明的是,当电池包100还包括供电端子132时,激活单元110接收的激活信号可通过Type-C接口122的连接状态、供电端子132的连接状态、按压激活按键或按压无线充放电按键中的任意一个或几个获得。
第二控制单元1802,还用于将Type-C接口122上接入设备的设备类型传输至第一控制单元1801;
第一控制单元1801,还用于根据供电端子132的接口信号判断接入设备的设备类型,为方便描述,将供电端子132上接入设备的设备类型记为端子设备类型;并根据端子设备类型和电池包工况对电池包100进行充/放电,具体的说:
第一控制单元1801接收Type-C接口122上接入设备的设备类型后,若为充电设备,则判断第二控制单元1802是否接收到充电设备发送的充电请求,若接收到充电请求,第一控制单元1801则判断电池包工况,若电池包工况为非放电模式,则根据电池包状态判断电池包100是否需要充电,若需要,则第二控制单元1802控制电池包100充电;若为放电设备,则判断第二控制单元1802是否接收到放电设备发送的放电请求,若接收到放电请求,第一控制单元1801则判断电池包工况,若电池包工况为非充电模式,则根据电池包状态判断是否可以放电,若可以,则第二控制单元1802控制电池包100放电。
第一控制单元1801判断供电端子132上接入设备的设备类型,若为充电设备,则判断是否接收到充电设备发送的充电请求,若接收到充电请求,则判断电池包工况,若电池包工况为非放电模式,则根据电池包状态判断电池包100是否需要充电,若需要,则对电池包100进行充电;若为放电设备,则判断是否接收到放电设备发送的放电请求,若接收到放电请求,则判断电池包工况,若电池包工况为非充电模式,则根据电池包状态判断是否可以放电,若可以,则对电池包100进行放电。
其中,电池包工况包括充电模式、放电模式及空闲模式,具体的说:
第一控制单元1801在电池包100通过Type-C接口122和/或供电端子132和/或无线接口114开始充电时,将电池包工况设为充电模式;
第一控制单元1801在电池包100通过Type-C接口122和/或供电端子132和/或无线接口114开始放电时,将电池包工况设为放电模式;
第一控制单元1801在Type-C接口122或供电端子132和/或无线接口114上均无接入设备时,将电池包工况设为空闲模式。
采用这种方案,可保证电池包100在同一时间仅处在充电或放电状态,防止用户错接 对电池包100的损坏。
需要说明的是,当供电端子132或无线接口114上有接入设备,而Type-C接口122上未检测到接入设备,第一控制单元1801还输出控制信号到第二控制单元1802,使其休眠,节约电量;当第一控制单元1801再次接收到激活信号,且电池包状态为非异常时,才再次激活第二控制单元1802。
需要说明的是,上述实施例中的第一控制单元和第二控制单元,通常是整个微电脑数显传感处理器系统的中央处理器(Central Processing Unit,CPU),可以配置相应的操作系统,以及控制接口等,具体地,可以是单片机、DSP(Digital Signal Processing,数字信号处理)、ARM(Advanced RISCMachines,ARM处理器)等能够用于自动化控制的数字逻辑处理器,可以将控制指令随时加载到内存进行储存与执行,同时,可以内置CPU指令及资料内存、输入输出单元、电源模组、数字模拟等单元,具体可以根据实际使用情况进行设置,本方案对此不进行限制。
可见,上述实施例中的控制系统,应用于采用Type-C接口122、无线接口114或供电端子132进行充/放电的电池包100,支持USB PD快充协议和国际无线充电标准Qi,能实时检测Type-C接口122、无线接口114或供电端子132上接入设备的设备类型,根据设备类型对电池包100进行充/放电,不仅能通过Type-C接口122、无线接口114或供电端子132进行快速充电,还能为具备Type-C接口122、无线接口114或供电端子132的接入设备进行快速放电,且充/放电功率能够在一定范围根据接入设备进行调整,适用于多种不同电压的接入设备,方便用户的使用;并在充/放电过程中,实时检测电池包100的技术参数,根据该技术参数执行充/放电保护逻辑,动态调整输入/输出功率,可有效保护电池包100安全,延长电池包100使用寿命。
如图39所示,本发明的另一实施例公开了一种充放电的控制方法,应用于采用Type-C接口122和/或无线接口114进行充/放电的电池包100,该控制方法包括:
检测Type-C接口122和/或无线接口114上接入设备的设备类型,根据设备类型对电池包100进行充/放电;其中,设备类型包括充电设备和放电设备。
可选的,控制方法还包括:
接收到激活信号后,激活充放电的控制系统;
检测电池包状态,若电池包状态为非异常,则判断Type-C接口122和/或无线接口114上是否有接入设备;其中,电池包状态是通过实时判断电池参数获得,电池参数包括电芯组件120的电压、电流及温度。
采用这种方案,电池包100在无激活信号时处于休眠状态,仅在接收到激活信号后, 且电池包状态为非异常时才开始充电或放电过程,不仅节约了电能,还可防止损坏电芯组件120。
若检测到Type-C接口122上有接入设备,则与该接入设备进行通信握手。
如图40所示,检测Type-C接口122上接入设备的设备类型的步骤包括:
与接入设备进行通信握手,握手成功则判断通信握手的类型,若通信握手的类型为充电握手,则为充电设备;若通信握手的类型为放电握手,则为放电设备。
如图38所示,继续说明,根据设备类型对电池包100进行充/放电的步骤包括:
若设备类型为充电设备,判断是否接收到充电设备发出的充电请求,若接收到充电请求,则根据电池包状态判断是否需要充电,若需要,则将电池包工况设置为充电模式,对电池包100进行充电并执行充电保护逻辑;
若设备类型为放电设备,判断是否接收到放电设备发出的放电请求,若接收到放电请求,则根据电池包状态判断是否可以放电,若可以,则将电池包工况设置为放电模式,对电池包100进行放电并执行放电保护逻辑。
若检测到无线接口114上有接入设备,则根据无线充放电按键的按键信号来判断是充电设备或放电设备。
如图39所示,继续说明,根据设备类型对电池包100进行充/放电的步骤包括:
若无线接口114上无线连接有充电设备,根据电池包状态判断是否需要充电,若需要,则对电池包100进行充电并执行无线充电保护逻辑;
若无线接口114上无线连接有放电设备,根据电池包状态判断是否可以放电,若可以,则对电池包100进行放电并执行无线放电保护逻辑;
若Type-C接口122上连接有充电设备,判断是否接收到充电设备发出的充电请求,若接收到,根据电池包状态判断是否需要充电,若需要,则对电池包100进行充电并执行充电保护逻辑;
若Type-C接口122上连接有放电设备,判断是否接收到放电设备发出的放电请求,若接收到,根据电池包状态判断是否可以放电,若可以,则对电池包100进行放电并执行放电保护逻辑。
需要说明的是,在接收到充电请求时,应先检测电池包状态,为非异常时才允许充电;在接收到放电请求时,应先检测电池包状态,在正常时才允许放电,由此避免过充或欠压造成电芯组件120的损坏,影响其使用寿命。
如图41所示,无线充电保护逻辑的步骤包括:
根据无线接口114的接口信号确定电池包100的充电电压,根据充电电压对电池包100 进行无线充电;充电过程中,实时检测无线回路的回路电流是否异常,若异常则停止充电;充电过程中,实时检测无线接口114上是否有充电设备,若预设时间内未检测到充电设备,则停止充电;当电芯组件120的荷电状态大于预设的最大充电值时,充电完成,具体的说:
预设电流下限N1和电流上限N2,回路电流I的正常范围为N1≤I≤N2;
开始充电后,设置预设时间T,开始计时,在时间T内实时检测回路电流是否正常;
若正常,则取消计时,继续充电,同时重新设置预设时间T,重新开始计时;
若非正常,则判断回路电流I是否大于电流上限N2,若大于,则认为出现故障,应立即停止充电;否则,继续判断预设时间T是否超时,若超时,则认为无线接口114上无接入设备,为节约电源,停止充电。
如图42所示,无线放电保护逻辑包括:
根据无线接口114的接口信号确定电池包100的放电电压,根据放电电压对电池包100进行无线放电;放电过程中,实时检测无线回路的回路电流是否异常,若异常则停止放电;放电过程中,实时检测无线接口114上是否有放电设备,若预设时间内未检测到放电设备,则停止放电;当电芯组件120的荷电状态小于预设的最小放电值时,放电完成,具体的说:
预设电流下限N1和电流上限N2,回路电流I的正常范围为N1≤I≤N2;
开始放电后,设置预设时间T,开始计时,在时间T内实时检测回路电流是否正常;
若正常,则取消计时,继续放电,同时重新设置预设时间T,重新开始计时;
若非正常,则判断回路电流I是否大于电流上限N2,若大于,则认为出现故障,应立即停止放电;否则,继续判断预设时间T是否超时,若超时,则认为无线接口114上无接入设备,为节约电源,停止放电。
如图43所示,充电保护逻辑的步骤包括:
根据Type-C接口122的接口信号确定电池包100的充电电压;
根据充电电压对电池包100进行充电;
充电过程中,监测回路参数是否异常,若异常则调整回路电压和回路电流,若调整后依然异常,则停止充电;其中,回路参数包括回路电压、回路电流、功率器件温度及输入/输出电压;
当电芯组件120的荷电状态大于预设的最大充电值时,充电完成。
可选的,充电保护逻辑的步骤还包括:
充电过程中,实时监测电池包状态;若电池包状态为异常,则停止充电。
如图44所示,放电保护逻辑的步骤包括:
根据Type-C接口122的接口信号确定电池包100的放电电压;根据放电电压对电池包 100进行放电;
放电过程中,监测回路参数是否异常,若异常则调整回路电压和回路电流,若调整后依然异常,则停止放电;其中,回路参数包括回路电压、回路电流、功率器件温度及输入/输出电压;
当电芯组件120的荷电状态小于预设的最小放电值时,放电完成。
可选的,放电保护逻辑的步骤还包括:
放电过程中,实时监测电池包状态;若电池包状态为异常时,则停止放电。
需要说明的是,实际应用中,充/放电过程中可根据使用需要设定参数范围,当充电参数或放电参数超出预设的参数范围时,即认为异常,可根据预设的逻辑对充/放电压及充/放电流进行动态调整,调整的次数可以为一次或多次,具体次数可根据需要进行设定,本实施例中为5次。
应理解,最大充电值和最小放电值均为预设值,可根据电池包100的指标参数而定,指标参数一般包括容量、电压、充电电压、充电电流、放电电压、放电电流;本实施例中最大充电值为荷电状态SOC=100%,最小放电值为荷电状态SOC=5%,实际应用中用户可根据需要自行设定上述数值。
继续说明,当电池包100还包括供电端子132时,控制方法包括:
检测Type-C接口122、无线接口114或供电端子132上接入设备的设备类型,根据设备类型对电池包100进行充/放电。
可选的,控制方法还包括:
接收到激活信号后,激活充放电的控制系统;
检测电池包状态,若电池包状态为非异常,则判断Type-C接口122、无线接口114或供电端子132上是否有接入设备。
若检测到接入设备,则与该接入设备进行通信握手,若未检测到接入设备,则将电池包工况设置为空闲模式。
其中,检测供电端子132上接入设备的设备类型的步骤包括:
与接入设备进行通信握手,握手成功则判断通信握手的类型,若通信握手的类型为充电握手,则为充电设备;若通信握手的类型为放电握手,则为放电设备。
继续说明,根据供电端子132上接入设备的设备类型,对电池包100进行充/放电的步骤包括:
若为充电设备,则判断是否接收到充电设备发送的充电请求,若接收到,则根据电池包状态判断电池包100是否需要充电,若需要,则通过供电端子132对电池包100进行充电;
若为放电设备,则判断是否接收到放电设备发送的放电请求,若接收,则根据电池包状态判断是否可以放电,若可以,则通过或供电端子132对电池包100进行放电。
本发明的另一实施例公开了一种电池包100,包括充放电的控制系统、电芯组件120及至少一个Type-C接口122;
其中,充放电的控制系统串接在Type-C接口122和电芯组件120之间,Type-C接口122上可拆卸连接有接入设备,充放电的控制系统根据接入设备的设备类型通过Type-C接口122对电池包100进行充/放电。
应理解,本实施例中的电池包100还可包括供电端子132、多个Type-C接口122和无线接口114,充放电的控制系统的一端与各Type-C接口122、供电端子132和无线接口114连接,另一端与电芯组件120连接,各Type-C接口122和/或供电端子132和/或无线接口114上可拆卸连接有接入设备,充放电的控制系统根据接入设备的类型通过各Type-C接口122和/或供电端子132和/或无线接口114对电池包100进行充/放电。
应理解,充电器200和电池包100相对接的两个Type-C接口互为公母头,方便用户连接;此外,上述电池包100和充电器200还可包括供电端子132和插片23,充电器200还可通过插片23为电池包100充电,相应的,相互电连接的供电端子132和插片23也为相匹配的公母头。
可见,上述实施例中的充放电的控制方法,应用于采用Type-C接口122和/或供电端子132和/或无线接口114进行充/放电的电池包100,支持USB PD快充协议,能实时检测Type-C接口122和/或供电端子132和/或无线接口114上接入设备的设备类型,根据设备类型对电池包100进行充/放电,不仅能通过Type-C接口122和/或供电端子132和/或无线接口114进行快速充电,还能为具备Type-C接口122和/或供电端子132和/或无线接口114的接入设备进行快速放电,且充/放电功率能够在一定范围根据接入设备进行调整,适用于多种不同电压的接入设备,方便用户的使用;并在充/放电过程中,实时检测电池包100的技术参数,根据该技术参数执行充/放电保护逻辑,动态调整输入/输出功率,可有效保护电池包100安全,延长电池包100使用寿命。
需要说明的是,上述充放电的控制方法不仅可通过Type-C接口122、无线接口114或供电端子132的一个或多个同时对电池包100充电,通过Type-C接口122、无线接口114或供电端子132的一个或多个同时对电池包100放电,还可在电池包100充电的同时进行放电,反之亦然,以下以同时通过无线接口114充电、通过Type-C接口122放电来进行举例说明:
如图45所示,接收到激活信号后,激活充放电的控制系统;
检测电池包状态是否异常,若非异常,则判断是否有接入设备;
若无线接口114上有接入设备,则根据无线充放电按键的按键信号来判断是充电设备或放电设备,若为充电设备,根据电池包状态判断是否需要充电,若需要,则对电池包100进行充电,同时执行充放电保护逻辑;
同时,若Type-C接口122上有接入设备,与接入设备通信握手,判断是充电设备或放电设备,若为放电设备,判断是否接收到放电请求,并根据电池包状态判断是否可以放电,若可以,则对电池包100进行放电,同时执行充放电保护逻辑。
如图46所示,充放电保护逻辑的步骤包括:
根据无线接口114的接口信号确定电池包100的充电电压,根据充电电压对电池包100进行无线充电;根据Type-C接口122的接口信号确定电池包100的放电电压;根据放电电压对电池包100进行放电;
充放电过程中,实时检测回路参数是否异常,若异常,则停止充放电;
充放电过程中,实时检测电池包状态,
若电池包状态为充电保护,则停止放电,仅允许充电;
若电池包状态为正常,则继续充/放电;
若电池包状态为放电保护,则停止充电,仅允许放电;
若电池包状态为异常,则立即停止充/放电。
应理解,充放电过程中,还实时检测接入设备的接入状态,若接入状态发生变化,则调整到相应的保护逻辑。
可见,上述实施例中的充放电的控制方法,应用于采用Type-C接口122、无线接口114或供电端子132进行充/放电的电池包100,支持USB PD快充协议和国际无线充电标准Qi,能实时检测Type-C接口122、无线接口114或供电端子132上接入设备的设备类型,根据设备类型对电池包100进行充/放电,不仅能通过Type-C接口122、无线接口114或供电端子132进行快速充电,还能为具备Type-C接口122、无线接口114或供电端子132的接入设备进行快速放电,且充/放电功率能够在一定范围根据接入设备进行调整,适用于多种不同电压的接入设备,方便用户的使用;并在充/放电过程中,实时检测电池包100的技术参数,根据该技术参数执行充/放电保护逻辑,动态调整输入/输出功率,可有效保护电池包100安全,延长电池包100使用寿命。
如图31和图32所示,本发明的另一实施例公开了一种电池包100,包括充放电的控制系统、电芯组件120、无线接口114及至少一个Type-C接口122;
控制系统的一端与电芯组件120电连接,另一端分别与无线接口114和各Type-C接口 122电连接;Type-C接口122和/或无线接口114上可拆卸连接有接入设备,控制系统根据接入设备的设备类型对电池包100进行充/放电。
应理解,本实施例中的电池包100的Type-C接口122可以为多个,通过调整充电或放电的功率,可加快充电和放电的速度,方便用户使用。
此外,本实施例中的电池包100还可包括供电端子132,供电端子132上可拆卸连接有接入设备,控制系统根据接入设备的设备类型对电池包100进行充/放电。
可见,本实施例中的电池包100,支持USB PD快充协议和国际无线充电标准Qi,能实时检测Type-C接口122、无线接口114或供电端子132上接入设备的设备类型,根据设备类型对电池包100进行充/放电,不仅能通过Type-C接口122、无线接口114或供电端子132进行快速充电,还能为具备Type-C接口122、无线接口114或供电端子132的接入设备进行快速放电,且充/放电功率能够在一定范围根据接入设备进行调整,适用于多种不同电压的接入设备,方便用户的使用;并在充/放电过程中,实时检测电池包100的技术参数,根据该技术参数执行充/放电保护逻辑,动态调整输入/输出功率,可有效保护电池包100安全,延长电池包100使用寿命。
如图47所示,本发明还可以通过连接多个充电器以对电池包进行充电,以提高充电效率。
电池包通过Type-C连接到充电器,激活信号均可激活电池包,第一控制单元1801完成上电初始化后开始检测电池状态,除异常情况外,第一控制单元1801均会开启Type-C电路,并根据电池包状态设置OVP的值;之后第二控制单元1802自校准上电,第二控制单元1802上电后会根据Type-C口的信号判断是否有设备接入;当第二控制单元1802判断任一路Type-C口有充电设备接入时,第一控制单元1801和第二控制单元1802之间会进行数据交互,第二控制单元1802告诉第一控制单元1801有充电器接入,第一控制单元1801执行充电保护逻辑;并且在整个充电过程中,第一控制单元1801会实时监控电池的状态,并与第一控制单元1802之间保持通信,确保充电过程处于可控状态;通过第一控制单元1801和第二控制单元1802之间的配合可以实现单口Type-C充电和双口Type-C口的充电保护。
本发明还提出一种系统,包括第一电动工具、第二电动工具和上述实施例中的电池包,所述第一电动工具具有第一额定电压,所述第一电动工具上设置有多个第一工具Type-C接口;所述第二电动工具具有第二额定电压,所述第二电动工具上设置有多个第二工具Type-C接口;当电池包安装至第一电动工具时,所述多个电池包上的Type-C接口与所述多个第一工具Type-C接口连接,所述电池包向第一电动工具输出能量;当电池包安装至第二电动工具时,所述多个电池包上的Type-C接口与所述多个第二工具Type-C接口连接,所述电池包 向所述第二电动工具输出能量,且所述第一电动工具的第一额定电压与第二电动工具的第二额定电压不同。另外需要说明的是,所述电池包还可以通过电池包上的Type-C接口为手机、笔记本电脑、可穿戴智能设备等进行供电。
本发明的电池包通过在电池包壳体上设置多个Type-C接口,从而可利用Type-C接口与电路板的电性连接,来实现电芯组件120与Type-C接口之间的电性连接,为手机、笔记本、数码相机等电子产品供电提供了可能,同时还可以通过连接多个个充电器以对电池包进行充电,以提高充电效率。
在另一实施例中,如图49所示,本实施例介绍一种供电系统,供电系统包括相互适配的电动工具30和电池包100,电池包100用于给电动工具30供电,电动工具30包括但不限于打草机、吹风机、修枝机、链锯、推草机、清洗机、吸尘器、智能割草机、智能清洁设备和坐骑式割草机。电池包100上设置有Type-C接口(定义为第一Type-C接口122),电动工具30上设置有和电池包100对应的单个Type-C接口(定义为第二Type-C接口34),电池包100可通过第一Type-C接口122对电动工具30输出额定电压。
在本实施例中,上述Type-C接口122为可实现放电的电连接器,该Type-C接口122的输出电压例如为5-20V,优选的为5V、9V、12V、15V、20V;输出电流例如为1-5A,优选的为1A、2A、3A、4A、5A;输出功率例如为15-100W,优选的为15W、18W、30W、45W、60W、100W。可以理解的是,在其他实施例中,Type-C接口122的输出电压也可以为小于5V或者大于20V的任意值,输出电流也可以为小于1A或者大于5A的任意值,输出功率也可以为的小于15W而大于100W的任意值。
如图49至52所示,在本实施例中,上述电动工具30包括具有功能模块的工具本体31,设置于工具本体31一侧的手柄32、设置于手柄32的远离工具本体31的一端的底座33、设置于底座33的远离手柄32的一侧的用于插入电池包100的电池插接口331及设置于电池插接口331的底端(远离插入端的一端)的第二Type-C接口34,底座33与电池包100可拆卸连接。
在本实施例中,上述电池包100的顶部设置有与电池插接口331相配合的插接部1101,电池包100的插接部1101从电池插接口331的开口的一端(也即插入端)插入电池插接口331中,且电池插接口331至少部分包裹插接部1101,防止电池包100的插接部1101从电池插接口331的开口处之外的方位脱出电池插接口331,以保证电池包100的稳固性。
当电动工具30通过滑轨1102与电池包100连接时,第一Type-C接口122与外部的电动工具30的第二Type-C接口34电性连接,电池包100可通过第一Type-C接口122对电动工具30输出额定电压,以给电动工具30的功能模块供电实现电动工具30的相应功能。
应理解,上述第一Type-C接口122和第二Type-C接口34为USB标准接口,其接口类型为能适应正反插的双面型号,且支持USB PD快充协议(USB Power Delivery Specification,USB快速充电标准),第一Type-C接口122和第二Type-C接口34管脚均可包括VBUS、CC、D+、D-、GND。
如图49至53所示,在本实施例中,上述底座33的电池插接口331的侧壁上设置有导向槽332,该导向槽322例如可为L型槽,电池包100的插接部1101的侧壁上设置有与导向槽332相匹配的滑轨1102,当电池包100插入底座33上时,滑轨1102插入导向槽332中,可防止电池包100从非插入方向脱出电池插接口331。
如图49至53所示,上述电池包100的顶部设置有限位件111,限位件111包括限位主体部和设置于限位主体部两端的一体成型的限位柱1112和限位按压部1111。底座33的电池插接口331的底部的靠近插入端的一端设置有与限位件111的限位柱1112相对应的限位卡槽333。电池包100插接到底座33上时,限位柱1112伸入限位卡槽333中,限位柱1112与限位卡槽333相互匹配起到限制电池包100沿插入方向脱出底座33的电池插接口331的作用。
如图49至53所示,在本实施例中,上述电池包100顶部设置有限位安装槽112及用于封盖限位安装槽112的安装槽盖1121,限位安装槽112设置于插接凸起部的远离插入端的一端。限位安装槽112用于安装限位件111,安装槽盖1121盖合于限位安装槽112上,安装槽盖1121在对应限位柱1112和限位按压部1111的位置开设有第一开口1122和第二开口1123,限位柱1112和限位按压部1111从第一开口1122和第二开口1123处显露出,并且限位柱1112需要在电池包100拆卸下来后和插入底座33中时可在弹性元件的作用下凸出于安装槽盖1121的表面。
如图49至53所示,在本实施例中,上述限位安装槽112的中部设置有限位安装凸块1124,限位件111的限位主体部的中部开设有与限位安装凸块1124相配合的限位贯通孔1115,限位件111通过限位贯通孔1115套设于限位安装凸块1124上,限位安装凸块1124可起到一定的导向作用。在限位件111与限位安装槽112的底面之间还设置有弹性元件(未图示),弹性元件可以在电池包100拆下或者插接在底座33时使限位件111复位,从而使限位柱1112和限位按压部1111分别从第一开口1122和第二开口1123中伸出,而在电池包100插入底座33时,以使限位件111的限位柱1112插入底座33的限位卡槽333中,起到限位作用,防止电池包100沿第一方向滑出底座33,而在释放电池包100时,只需向下按压限位按压部1111,限位柱1112随限位按压部1111同步向下运动,并缩回安装槽盖1121的对应开口,从而限位柱1112脱出限位卡槽333,这时就可以沿着插入的反方向将电池包100从底 座33上移出。作为示例,弹性元件例如可包括两个,一个设置于限位柱1112与限位安装槽112的底面之间,另一个设置于限位按压部1111与限位安装槽112的底面之间,并且在限位柱1112、与限位安装槽112底面及限位按压部1111上对应弹性元件的位置设置有用于安装弹性元件的结构。
图54示出了本实施例的电池包100的放电控制电路,放电控制电路可集成于电池包100的电路板13上,该放电控制电路作为第一Type-C接口122的Type-C管理电路。该放电控制电路串接于第一Type-C接口122和电池包100的电芯组件120之间,该放电控制电路用于控制电芯组件120通过第一Type-C接口122向电动工具30输出额定电压,并且放电控制电路可自动适配电动工具30的额定电压,也即本实施例的电池包100可以适配不同额定电压的电动工具30,电池包100和多个具有不同额定电压的电动工具30共同组成工具系统。可以理解的是,该放电控制电路也可以作为电池包100的充电控制电路。
如图54,上述放电控制电路包括上述实施例中的检测单元170、主控单元1801、第一全桥功率单元1602(全桥功率单元1)、全桥驱动单元1601、第一Type-C充放电保护单元152(Type-C保护单元1)、Type-C通信处理单元192(Type-C通信单元)、激活单元110以及按键。电芯组件120与第一Type-C接口122之间依次串接有第一全桥驱动单元1601和第一Type-C充放电保护单元152,主控单元1801分别与全桥驱动单元1601、检测单元170、激活单元110、第一Type-C充放电保护单元152及Type-C通信处理单元192连接,第一全桥功率单元1602与全桥驱动单元1601连接,Type-C通信处理单元192还分别与激活单元110及第一Type-C接口122连接,按键与激活单元110连接。
具体地,检测单元170,用于实时获取电芯的电池参数和Type-C回路(电池包内部从第一Type-C接口122到电芯的相关电路)的回路参数,并将检测结果传输给主控单元1801,其中,电池参数包括电芯组件120中的电芯电压、电流及温度等,Type-C回路的回路参数包括Type-C回路的输入/输出电压,回路电流、功率器件的温度;主控单元1801,用于接收检测单元170的数据信息,进行分析后会发出Type-C回路充放电保护指令、执行下电休眠操作指令以及主控单元1801的相关指令;第一全桥功率单元1602和全桥驱动单元1601共同组成Type-C回路的升降压模块,主控单元1801通过CC信号同第一Type-C接口122的外部电动工具30通信,确定当前电路的输入\输出电压,确定好后,调压工作就由全桥驱动单元1601来完成;第一Type-C充放电保护单元152,用于接收来自主控单元1801的保护指令,完成Type-C回路的充放电保护动作;激活单元110,用于接收来自外界的激活信号,包含KEY信号(按键)以及CC信号,完成对主控单元1801的上电动作,主控单元1801完成上电动作后,同时将CC信号由激活回路切换到与Type-C通信处理单元192的通信回路,主控单元 1801开始与外部的电动工具30正常通信。
需要说明的是,本实施例中的主控单元1801是微电脑数显传感处理器系统的中央处理器(Central Processing Unit,CPU),可以配置相应的操作系统,以及控制接口等,具体地,可以是单片机、DSP(Digital Signal Processing,数字信号处理)、ARM(Advanced RISC Machines,ARM处理器)等能够用于自动化控制的数字逻辑处理器,可以将控制指令随时加载到内存进行储存与执行,同时,可以内置CPU指令及资料内存、输入输出单元、电源模组、数字模拟等单元,具体可以根据实际使用情况进行设置,本方案对此不进行限制。
如图55,当电池包100通过Type-C接口连接到具有Type-C接口的电动工具30时,Type-C接口会进行放电协议匹配进行放电。具体地,电池包100通过第一Type-C接口122与电动工具30的第二Type-C接口34连接时,通过CC信号激活电池包100,主控单元1801完成上电初始化,电池包100与电动工具30进行放电握手,握手成功则电动工具30发出放电请求信号,电池包100进入放电模式,其中放电请求信号包括电动工具30的额定电压。当用第一Type-C接口122对电池包100进行放电时,主控单元1801会发出PWM控制信号给全桥驱动单元1601,全桥驱动单元1601根据PWM信号提供合适的放电电压;同时主控单元1801利用检测单元170实时监测放电电压VBUS、Vin和放电电流;放电电压和放电电流出现异常时,主控单元1801实时调整,调整多次(可根据实际情况进行确定,例如5次)后会判断是否仍然存在异常,如果异常则停止放电,否则正常放电;在Type-C口正常放电模式中,主控单元1801实时监测电池状态,包括电压、电流以及电芯温度,当出现单节电芯电压异常或者温度异常时会停止放电;同时电量计算模块会实时计算电池电量,当S0C=5%时(也可以是其他合适的值),停止放电。
在另一实施例中,电池包100上设置有两个或更多个Type-C接口(Type-C接口122),电动工具30上设置有和电池包100对应的两个或更多个Type-C接口(第二Type-C接口34),电池包100和电动工具30的结构和上述实施例的基本相同,故不再重复说明。
如图56至58所示,在本实施例中,上述电池包100上设置有两个并联设置的Type-C接口122,分别设置于电池包100的插接部1101的插入端,并且两个Type-C接口122间隔排布;对应的电动工具30上设置有和电池包100对应的两个并联设置的第二Type-C接口34,两个第二Type-C接口34间隔设置于电池插接口331的底端。当电池包100插接于电动工具30上时,每个第二Type-C接口34与一第一Type-C接口122电性连接,可通过两个第一Type-C接口122中的一个或者两者同时对电动工具30输出额定电压,通过并联的两个第一Type-C接口122同时对电动工具30放电可提高放电功率。
上述电池包100的放电控制电路包括两路Type-C管理电路,每个Type-C管理电路与一 第一ype-C接口相对应,每个Type-C管理电路串介于一第一Type-C接口122和电池包100的电芯组件120之间,其它功能单元基本一致,原理功能不再一一赘述。该放电控制电路可通过两个第一Type-C接口122中的一个或者两者同时对电动工具30输出额定电压,并且放电控制电路可自动适配电动工具30的额定电压,也即本实施例的电池包100可以适配不同额定电压的电动工具30,电池包100和多个具有不同额定电压的电动工具30共同组成工具系统。可以理解的是,该放电控制电路也可以作为电池包100的充电控制电路。
可以理解的是,不管是单口Type-C放电还是双口Type-C口、亦或者三口或者更多口Type-C口放电,主控对放电过程的控制和保护逻辑均一致。
本发明的电池包可通过第一Type-C接口对电动工具进行放电,在放电时,电池包可根据电动工具的额定电压自动调整放电电压,从而可以适配不同额定电压的电动工具。本发明的电池包可通过两个或并联的第一Type-C接口同时对电动工具进行放电,可提高放电功率。
在另一实施例中,如图59及图60所示,还提出一种供电系统,供电系统包括相互适配的电动工具30和电池包100,电池包100用于给电动工具30供电,电动工具30包括但不限于打草机、吹风机、修枝机、链锯、推草机、清洗机、吸尘器、智能割草机、智能清洁设备和坐骑式割草机。所述电池包100上设置有一个Type-C接口122和第一供电端子132,Type-C接口122和供电端子132均设置在所述插接部1101的插入端,且与电路板13电性连接,电动工具30上设置有和电池包100对应的一个第二Type-C接口34和第二供电端子35,电池包100可通过第一供电端子132对电动工具30放电,通过第一Type-C接口122为电动工具30的工具侧主控和MOS驱动单元提供激活电源和通信,实现整个放电过程的可控控制和对电池包100的保护,电池包100和电动工具30的结构和上述实施例的基本相同,故不再重复说明。
可以理解的是,在其他实施例中,第一Type-C接口122也可只作为通信端口,电池包100通过第一Type-C接口122工具侧主控进行通信,电池包100通过第一供电端子132来向工具侧主控和MOS驱动单元362提供电源。可以理解的是,在其他实施例中,第一Type-C接口122也可位于第一供电端子132的一侧。
当电动工具30通过滑轨1102与电池包100连接时,第一Type-C接口122与外部的电动工具30的第二Type-C接口34电性连接,第一供电端子132与第二供电端子35电性连接,电池包100可通过第一供电端子132对电动工具30放电,以给电动工具30的功能模块供电实现电动工具30的相应功能,并且在放电时还可通过第一Type-C接口122为电动工具30的工具侧主控和MOS驱动单元362提供激活电源和通信,实现整个放电过程的可控控制和对电池包100的保护。
应理解,上述的第一供电端子132和第二供电端子35,可为园林工具中常用的电源传输的插片端口,有多种型号可供选择,在本实施例中,上述第一供电端子132可包括作为放电端口的第一P+端子及第一P-端子,上述第二供电端子35可包括与第一供电端子的各端子相匹配的作为放电端口的第二P+端子及第二P-端子。
图61示出了本实施例的供电系统的电路结构框图,包括电池包100的放电控制电路和电动工具30的电机驱动电路。电池包100的放电控制电路可集成于电池包100的电路板13,该放电控制电路串接于第一Type-C接口122与电池包100的电芯组件120之间,该放电控制电路也串接于第一供电端子132与电池包100的电芯组件120之间,该放电控制电路用于控制电芯组件120通过第一供电端子132对电动工具30放电,通过第一Type-C接口122为电动工具30的工具侧主控(图61中的主控单元2,定义为第二主控单元361)和MOS驱动单元362提供激活电源和通信,实现整个放电过程的可控控制和对电池包100的保护。
如图61,上述放电控制电路包括检测单元170、第一主控单元1801(图61中的主控单元1)、第一DC-DC单元1301(图61中的DC-DC单元1)、第一Type-C通信处理单元192(图61中的通讯处理单元1)、激活单元110以及按键。电芯组件120的正极端分别与第一供电端子132的第一P+端子(图61中电池包中的P+)及第一DC-DC单元1301连接,第一DC-DC单元1301连接还分别与第一Type-C接口122及所述第一主控单元1801连接,第一主控单元1801还分别与检测单元170、激活单元110及第一Type-C通信处理单元192连接,第一Type-C通信处理单元192还分别与第一Type-C接口122及激活单元110连接,按键与激活单元110连接,电芯组件120的负极端分别与第一供电端子132的第一P-端子(图61中电池包中的P-)及第一Type-C接口122连接。
检测单元170可包括分别与第一主控单元1801连接的电流检测单元、电压检测单元AFE及温度检测单元,电流检测单元用于检测电池包100的放电回路电流并将检测结果传输给第一主控单元1801,电压检测单元AFE用于检测电芯组件120中的单节电芯电压并将检测结果传输给第一主控单元1801,温度检测单元用于检测监测电芯温度并将检测结果传输给第一主控单元1801;第一主控单元1801用于电池检测单元170的数据信息,包括单节电芯电压、回路电流、电芯温度等信息,进行分析后来发出控制DC-DC单元的上电和下电的指令;第一DC-DC单元1301用于提供VCC电源;第一Type-C通信处理单元192用于处理外部Type-C通信与第一主控单元1801之间的通信;激活单元110,用于接收来自外界的激活信号,包含KEY信号(按键)以及CC信号,完成对第一主控单元1801的上电动作,第一主控单元1801完成上电动作后,通过第一Type-C通信处理单元192与外部进行通信。
如图61,电动工具30的电机驱动电路包括第二主控单元361(图61中的主控单元2)、 第二DC-DC单元365(图61中的DC-DC单元2)、第二Type-C通信处理单元364(图61中的通讯处理单元2)、MOS驱动单元362、功率MOS单元363以及开关35。第二Type-C接口34分别与第二DC-DC单元365、MOS驱动单元362、第二Type-C通信处理单元364及第二供电端子35的第二P-端子(图61中电动工具中的P-)连接,第二Type-C通信处理单元364与第二主控单元361连接,第二主控单元361还分别与MOS驱动单元362及第二DC-DC单元365连接,功率MOS单元363分别与第二供电端子35的第二P+端子(图61中电动工具中的P+)及第二P-端子、MOS驱动单元362以及电机37连接,并且开关35位于第二供电端子35的第二P-端子与功率MOS单元363之间。
开关35作为工具回路的总开关,第二主控单元361用于处理与电池包100通信及给MOS驱动单元362发出PWM信号;第二Type-C通信处理单元364用于处理外部Type-C通信并与第二主控单元361之间的通信;第二DC-DC单元365用于为第二主控单元361提供合适的电源VCC1;MOS驱动单元362用于接收来自第二主控单元361的PWM信号以驱动功率MOS单元363;功率MOS单元363用于为电机37提供合适的电压和电流以驱动电机37;电机37作为电动工具30的动力单元。
如图61,电动工具30与电池包100连接时,第一Type-C接口122与第二Type-C接口34连接,第一供电端子132第二供电端子35连接。电池侧通过第一DC-DC单元1301降压后向电动工具30提供电源VCC,一方面电源VCC通过Type-C接口连接给工具侧的MOS驱动单元362供电,另一方面电源VCC经过工具侧的第二DC-DC单元365降压后给工具测主控(第二主控单元361)提供电源VCC1。工具侧的电源VCC由电池侧提供,提供电源VCC的第一DC-DC单元1301可以由电池包100的第一主控单元1801控制,当电池包100欠压或电池包100通过第一Type-C接口122的通信功能收到电动工具30发出的放电停止信号,电池包100的第一主控单元1801将第一DC-DC单元1301下电,这样工具控制板上的VCC电源会断掉,这样即使电动工具30开关35处于闭合状态,工具侧整个系统都会被关闭,这样整个放电过程可控,实现在放电时对电池包100的保护。
如图62,本实施例的电池包100的放电流程如下:电动工具30连接到电池包100,打开电动工具上的开关35,并按下按键激活电池包100;电池包100激活后,第一主控单元1801上电初始化,然后开始检测电池包状态,判断电池包是否存在异常,有异常则禁止放电,如无异常,则第一主控单元1801使能第一DC-DC单元1301使其输出VCC,VCC经过工具侧的第二DC-DC单元365后输出VCC1给第二主控单元361,这样第二主控单元361上电初始化;第二主控单元361上电初始化后开始与电池包进行通信握手,通信握手成功后,电池包100开始正常放电;在正常放电的过程中,第一主控单元1801通过检测单元170实时监测电芯 组件120的电压、电流、电芯温度等参数,同时电量计算模块实时计算SOC,当判定SOC为5%(也可以是其他合适的值)时停止放电,同时一旦判断有单节电芯异常或者电芯温度异常也会停止放电。
综上所述,本发明的电池包可通过第一供电端子对电动工具放电时,并通过第一Type-C接口来控制电动工具的主控和MOS驱动的电源,实现整个放电过程的可控控制和对电池包的保护。
如图49及图63所示,在本实施例中,所述电池包和电动工具之间可以通过Type-C接口进行放电,或通过供电端子进行放电,如图49所示,当具有第二Type-C接口34的电动工具30通过滑轨1102与电池包100连接时,第一Type-C接口122与电动工具30的第二Type-C接口34电性连接,电池包100可通过第一Type-C接口122对电动工具30进行放电,以给电动工具30的功能模块供电实现电动工具30的相应功能。如图63所示,当具有第二供电端子35的电动工具30’通过滑轨1102与电池包100连接时,第一供电端子132与电动工具30’的第二供电端子35电性连接,电池包100可通过第一供电端子132对电动工具30’进行放电,以给电动工具30’的功能模块供电实现电动工具30的相应功能。电池包100和电动工具30(电动工具30’)的结构和上述实施例的基本相同,故不再重复说明。
图64和65示出了本实施例的两种供电系统的电路框图,两种供电系统的电路框图均包括电池包100的放电控制电路,该放电控制电路可集成于电池包100的电路板13上。该放电控制电路串接于第一Type-C接口122与电池包100的电芯组件120之间,该放电控制电路也串接于第一供电端子132与电池包100的电芯组件120之间,该放电控制电路用于控制电芯组件120通过第一Type-C接口122或者第一供电端子132向具有第二Type-C接口34或第二供电端子35的电动工具30放电。并且当电池包100通过第一Type-C接口122向具有第二Type-C接口34的电动工具30放电时,放电控制电路可自动适配电动工具30的额定电压,也即本实施例的电池包100可以适配不同额定电压的电动工具30,电池包100和多个具有Type-C接口且额定电压不同的电动工具30共同组成工具系统,该工具系统还包括具有第二供电端子35的电动工具30’,电动工具30’和电动工具30的额定电压可以相同也可以不同。可以理解的是,该放电控制电路也可以作为电池包100的充电控制电路,该放电控制电路与上述充放电控制电路相同或类似,不再重复赘述。
电池包100在充电或放电之前,需要先完成电池包的激活,图66示出了电池包100激活流程图。如图66所示,电池包100可通过按键(KEY信号)、充电器或者电动工具30的COM信号、第一Type-C接口的CC信号激活电池包100的主控单元1801;电池包100主控单元1801被激活信号激活后会完成上电初始化工作,然后自检电池状态,根据自检结果会决 定是否开启Type-C电路;电池包100在异常的情况下会将主控单元1801下电,电池包100会进入关机状态,否则会完成电池包100的初始化工作,主控单元1801开启Type-C回路,并将电池包100状态标志位OVP根据自检结果置成相应的值,其中,OVP置为10表示电池包100为充电保护状态,仅用于充电,OVP置为11表示电池包100为放电保护状态,仅用于放电。
本实施例的电池包100有两种放电的方式,第一种放电方式是通过电池包100的第一供电端子132实现放电,第二种是通过电池包100的第一Type-C接口122实现放电。下面将分别进行说明。
如图66至67所示,电池包100通过第一供电端子132向具有第二供电端子35的电动工具放电,电池包和工具上均设置有P+端子、COM端子、P-端子,且一一对应,通过端子及通信的匹配实现放电。具体地,当电池包100插接于电动工具30上时,电池包100与电动工具30上的P+端子、COM端子、P-端子一一对应可通过上述的激活方式激活电池包100,电池包100与电动工具30进行放电握手,握手成功则进入放电模式,通过第一供电端子132进行放电。
如图64、图66、图68及图69所示,电池包100通过第一Type-C接口122向具有第二Type-C接口34的电动工具放电:当电池包100通过Type-C接口连接到具有Type-C接口的电动工具30时,Type-C接口会进行放电协议匹配进行放电。具体地,电池包100通过第一Type-C接口122与电动工具30的第二Type-C接口34连接时,通过CC信号激活电池包100,主控单元1801完成上电初始化,电池包100与电动工具30进行放电握手,握手成功则电动工具30发出放电请求信号,放电请求信号包括电动工具30的额定电压;检测电池包工况,当电池包100的工况为空闲模式时进入Type-C放电模式,而当电池包100的工况为充电模式时,则禁止Type-C放电模式,而当电池包100的工况为电池包100通过第一供电端子132放电时,则进入第一供电端子132和Type-C双放电模式;进入Type-C放电模式时主控单元1801开始检测电池状态,除异常情况外,主控均会开启Type-C电路,并根据电池包状态设置OVP的值,之后辅控自校准上电,辅控上电后会根据Type-C口信号判断是否有电动工具30接入;当辅控单元1802判断有电动工具30接入时,主控单元1801和辅控单元1802之间会进行数据交互,辅控单元1802告诉主控单元1801有电动工具30接入,主控单元1801执行放电保护逻辑;在整个Type-C放电过程中,主控单元1801会实时监控电池的状态,并与辅控单元1802之间保持通信,确保放电过程处于可控状态。
如图69所示,整个Type-C放电过程的控制过程如下:当用第一Type-C接口122对电池包100进行放电时,辅控单元1802会发出PWM控制信号给全桥驱动单元1601,全桥驱动 单元1601根据PWM信号提供与电动工具30的额定电压相配的放电电压;辅控单元1802实时监测放电电压VBUS、VIN和放电电流;放电电压和放电电流出现异常时,辅控单元1802实时调整,调整多次(可根据实际情况进行确定,例如5次)后会判断是否仍然存在异常,如果异常则停止放电,否则正常放电;在Type-C口正常放电模式中,主控单元1801实时监测电池状态,包括电压、电流以及电芯温度,当出现单节电芯电压异常或者温度异常时会停止放电;并且在放电过程中电量计算模块会实时计算电池电量,当S0C=5%(也可以是其他合适的值)时,停止放电。
综上所述,本发明的电池包可兼容匹配带Type-C接口或者供电端子的电动工具放电,适用范围大。本发明的电池包可通过Type-C接口对不同额定电压的电动工具进行放电,从而可以适配不同额定电压的电动工具。
如图47所示,在本实施例中,所述充电器包括充电器壳体21、第一充电接口和第一供电端子23,所述第一充电接口与所述第一供电端子23位于所述充电器壳体21不同的两侧上,优选为位于所述充电器壳体21相对的两侧上,且所述充电器壳体21内安装有第一电路板,所述第一充电接口的一端与所述第一电路板电性连接,另一端位于所述充电器壳体21的侧面上的通孔内,以通过充电线与电池包100连接,所述第一供电端子23与所述第一电路板电性连接,所述第一供电端子23用于连接外部电源,在本实施例中,所述第一充电接口为第三Type-C接口22。
如图47、图70及图71所示,所述第一电路板上集成有AC-DC模块1002、控制和协议模块1004以及DC-DC模块1003,所述AC-DC模块1002与所述DC-DC模块1003连接,所述DC-DC模块1003与所述第一充电接口连接,所述控制和协议模块1004分别与所述DC-DC模块1003和所述第一充电接口连接。所述第一充电接口包括有多个Type-C接口,且每一个Type-C接口均连接有一个DC-DC模块1003,且所述控制和协议模块1004分别与每一个所述DC-DC模块1003和每一个所述Type-C接口连接,所述AC-DC模块1002用于将交流电转换成直流电;DC-DC模块1003用于根据控制信号给出合适的充电电压;控制和协议模块1004用于度整个充电系统的控制,以及对各个Type-C端口的协议解析及充电控制,所述第一充电接口与所述电池包上的第二充电接口连接以为所述电池包进行充电。
具体的,如图47、图70及图71所示,在本实施例中,当所述充电器壳体21上设置有一个第三Type-C接口22时,所述电池包通过所述第一Type-C接口122a和所述第二Type-C接口122b分别与两个充电器的第三Type-C接口22连接。在本实施例中,当充电器壳体21上设置有两个接口,两个接口为第三Type-C接口22a和第三Type-C接口22b时,所述电池包100通过所述第一Type-C接口122a和所述第二Type-C接口122b分别与同一充电器上的 所述第三Type-C接口22a和所述第三Type-C接口22b连接。在一些其他实施例中,所述充电器20还可以不同的第一充电接口为不同的电池包进行充电。
本发明的另一实施例公开了一种电池包100,包括:多个Type-C接口122、充电控制系统及电芯组件120;充电控制系统串接在各Type-C接口122和电芯组件120之间,各Type-C接口122上可拆卸连接有接入设备,充电控制系统检测接入设备的设备类型,若为充电设备,则对电池包100进行充电。
如图47,本发明的另一实施例公开了一种充电组合,包括:可拆卸连接的电池包100和充电器,电池包100可通过充电器进行充电;
电池包100包括:多个Type-C接口122、充电控制系统及电芯组件120;充电控制系统串接在各Type-C接口122和电芯组件120之间,各Type-C接口122上可拆卸连接有接入设备,充电控制系统检测接入设备的设备类型,若为充电设备,则对电池包100进行充电;
充电器,其上设有至少一个Type-C接口22,充电器的Type-C接口22与电池包100的Type-C接口122相匹配。
应理解,充电器200和电池包100相对接的两个Type-C接口互为公母头,方便用户连接;此外,上述电池包100和充电器还可包括供电端子132和插片23,充电器还可通过插片23为电池包100充电,相应的,相互电连接的供电端子132和插片23也为相匹配的公母头。
如图72至图74所示,本发明的另一实施例中,提供一种充电器200,以为上述实施例中的电池包100进行充电,所述充电器200包括充电器壳体21,所述充电器壳体21上设置有一电池包充电部211,所述第一供电端子23设置在所述电池包充电部211上,所述第一Type-C接口22设在所述电池包充电部211上,当所述电池包100充电时,将所述电池包100安装在所述电池包充电部211内,所述第一供电端子23与所述端子接口131内的第二供电端子132连接,所述第一Type-C接口22与所述第二Type-C接口122连接,且所述电池包充电部211相对的两侧上设置有充电器导轨212,所述充电器导轨212与所述滑轨1102相配合,当电池包100安装在充电器200的电池包充电部211内充电时,所述充电器导轨212与所述滑轨1102之间的配合起到导向或便于滑动的作用,使其能够顺利的安装。所述第一供电端子23包括第一放电端口P+和第一放电端口P-,所述第一Type-C接口22位于所述第一放电端口P+和所述第一放电端口P-之间,充电时,所述第一放电端口P+和所述第一放电端口P-为充放电端口,所述第一Type-C接口22为通信端口,在一个实施例中,所述第一Type-C接口22还作为辅助电源端口,所述电池包通过所述第一Type-C接口22为所述充电器侧主控提供激活电源。
如图75所示,该充电器200在接收到激活电压后,为电池包100充电,在为电池包100 充电的过程中,根据外部接入的激活电压的通/断,开启或关闭充电器200的输出。充电器200具体包括:第一Type-C接口22、插片23及通断控制模块210。
第一Type-C接口22,用于接收激活电压;
通断控制模块210,用于根据激活电压控制充电器200的充电;
插片23,与电池包100和通断控制模块210电连接,用于输出充电电压至电池包100。
应理解,本实施例中的第一Type-C接口22和插片23均为一个,实际应用中Type-C接口的数量可根据需要设为多个,通过调整充电的功率,可加快充电的速度,方便用户使用。
第一Type-C接口22为USB标准接口,其接口类型为能适应正反插的双面型号,且支持USB PD快充协议(USB Power Delivery Specification,USB快速充电标准),可实现电能传输和数据交互。本实施例中,Type-C接口引脚包括VBUS、CC、D+、D-、GND。
此外,第一Type-C接口的通信协议不只限于上述标准化的USB PD快充协议,还支持专有协议,专有协议一般由各厂家根据自身情况设计而定,本方案对此不做限定。
插片23为园林工具中常用的连接端口,有多种型号可供选择,本实施例中包括正端子P+和负端子P-。
如图76,通断控制模块210包括:第一转换器2101、第一处理器2102、第二转换器2103及交直流转换器2104。
第一转换器2101,串接在第一Type-C接口22与第一处理器2102之间,用于对激活电压降压并输出至第一处理器2102,激活电压降压后应适应第一处理器2102的工作电压范围。
第一处理器2102,用于在接收到降压后的激活电压后,输出控制信号到第二转换器2103,使其开始工作;其中,控制信号为PWM信号。
交直流转换器2104,用于将外部的交流电转换为直流电;
第二转换器2103,用于根据第一处理器2102的控制信号,将直流电降压并输出至插片23。
如图76,充电器200还包括第一通信单元201。
第一通信单元201,其串接在第一处理器2102和第一Type-C接口22之间,用于实现第一处理器2102和电池包100之间的通信连接,第一处理器2102根据电池包100传输的数据,动态调整输出功率,配合电池包100的负载能力,从而避免电线短路、甚至产品过热而爆炸等意外。
如图76,充电器200还包括:充电保护单元202。
充电保护单元202,其串接在第二转换器2103和插片23之间,且其控制端与第一处理器2102连接,用于保护充电器200的充电回路。
应理解,充电器200的充电回路为充电器200内部电路,包括插片23、第一通信单元201及通断控制模块210,其任意部分出现异常,均会影响充电器200的使用寿命,应立即停止充电过程。
可见,本实施例的充电器200,在接收到外部输入的激活电压后开始对电池包100充电,充电过程中,与电池包100进行数据交互,根据电池包100的充电参数实时调整充电器200的输出功率;并在激活电压被断开时,及时停止充电器200的输出,避免了在电池包100出现故障或充电完成的情况下,继续充电对电池包100造成的损坏,保证了电池包100的充电安全,提高了电池包100的使用寿命。
如图77,本发明的另一实施例提供一种电池包100,应理解,电池包100的电芯组件120包括多个电芯,各电芯之间可通过串并联方式组合成电芯组件120,电芯组件120用于存储电能,且可通过外接的充电器200进行充电获取电能。电池包100具体包括:第二Type-C接口122、供电端子132、电压生成模块130及检测模块170。
检测模块170,用于实时获取电池包100的充电参数。其中,电池包100的充电参数为电池包充电回路的技术参数,包括:电芯组件120的单节电压、充电回路的回路电流、电芯组件120和/或充电回路中功率器件的温度。
如图78,检测模块170包括:电压检测单元、电流检测单元和温度检测单元。
电压检测单元,用于获取电芯组件120的电压值;
电流检测单元,用于获取电池包100的充电回路的回路电流;
温度检测单元,用于获取电芯组件120和/或充电回路中功率器件的温度。
应理解,电池包100的充电回路为电池包100内部电路,包括供电端子132、第二Type-C接口122、检测模块170、电压生成模块130及电芯组件120,其任意部分出现异常,均会影响电池包100的使用寿命,应立即停止充电过程。
电压生成模块130,用于生成激活电压到第二Type-C接口122;还用于根据充电参数获取充电状态,在充电状态为异常或完成时,停止激活电压的生成。
应理解,在充电过程中,可根据使用需要预先设定充电参数的参数范围,并根据参数范围来判断充电状态,本实施例中的充电状态包括:正常、异常和完成,实际应用中,用户可根据需要对充电状态细分。
具体的说,当超出该参数范围时,即认为充电状态为异常;当位于参数范围内时,即认为充电状态为正常;当电芯组件120的核电状态SOC均达到预设值,比如SOC为100%时,即认为充电状态为完成。
第二Type-C接口122,用于输出充电器200的激活电压。
供电端子132,与充电器200电连接,用于对电池包100充电。
应理解,本实施例中的第二Type-C接口122和供电端子132均为一个,实际应用中Type-C接口的数量可根据需要设为多个,通过调整充电的功率,可加快充电的速度,方便用户使用。
第二Type-C接口122和供电端子132的接口定义与上述实施例中的第一Type-C接口22和插片23相同,为节省篇幅,此处不再赘述。此外,供电端子132与上述实施例中的插片23相匹配,互为公母头;第二Type-C接口122与上述实施例中的第一Type-C接口22相匹配,也互为公母头。
如图79,电压生成模块130包括:第三转换器1301和第二处理器1302。
第二处理器1302,与检测模块170电连接,用于根据充电参数,输出控制信号到第三转换器1301;当充电状态为正常、且充电未完成时,输出控制信号开始第三转换器1301的工作;当充电状态异常或充电完成时,输出控制信号停止第三转换器1301的工作。
第三转换器1301,其串接在供电端子132与第二Type-C接口122之间,且其控制端与第二处理器1302连接,用于根据第二处理器1302的控制信号,将充电器200的输入电压转换为激活电压,并输出至第二Type-C接口122。
需要说明的是,本实施例中的第三转换器1301,及上述实施例中的第一转换器2101、第二转换器2103和交直流转换器2104均为现有技术中常规的电压转换器件,有成熟的产品供选择,本申请对其型号不做限定。
如图79,电池包100还包括:激活单元110。
激活单元110,用于根据激活信号激活第二处理器1302,其中,激活信号为通过电池包100的第二Type-C接口122和/或按压激活按键获得。
应理解,电池包100上设有控制电源回路通断的激活按键,该激活按键被按下后,即可产生上拉或下拉的激活信号。
采用这种方案,电池包100在无激活信号时处于休眠状态,仅在接收到激活信号后才开始工作,从而节约电能。
如图79,电池包100还包括:Type-C通信单元192。
Type-C通信单元192,其串接在第二处理器1302和第二Type-C接口122之间,用于实现第二处理器1302与充电器200之间的通信连接。当第二Type-C接口122上连接有充电器200时,产生外部的上拉信号,该上拉信号作为激活信号通过Type-C通信单元192传输至第二处理器1302。此外,电池包100还可通过Type-C通信单元192将电池包100的充电参数传输至充电器200,以使充电器200动态调整输出功率,配合电池包100的负载能力,从而 避免电线短路、甚至产品过热而爆炸等意外。
可见,本实施例的电池包100,在激活后输出激活电压到充电器200,使其开始为电池包100充电;在充电的同时,电池包100实时检测充电状态,在充电状态为异常或完成时,停止输出激活电压,从而停止充电过程,避免了在电池包100出现故障或充电完成的情况下,继续充电对电池包100的损坏,保证了电池包100的充电安全,提高了电池包100的使用寿命。
如图72及图80,本发明的另一实施例提供一种充电组合,包括:可拆卸连接的充电器200和电池包100;
充电器200包括:
第一Type-C接口22,用于接收激活电压;
通断控制模块210,用于根据激活电压控制充电器200的充电;
插片23,与电池包100和通断控制模块210电连接,用于输出充电电压至电池包100;
电池包100包括:
电压生成模块130,用于生成充电器200的激活电压到第二Type-C接口122;还用于根据充电参数获取充电状态,在充电状态为异常或完成时,停止激活电压的生成;
第二Type-C接口122,用于输出激活电压;
供电端子132,与充电器200电连接,用于对电池包100充电;
检测模块170,用于实时获取电池包100的充电参数
其中,第一Type-C接口22与第二Type-C接口122相匹配,插片23与供电端子132相匹配。
可见,本实施例的充电组合,电池包100为充电器200提供激活电压,使其开始为电池包100充电;在充电的同时,电池包100实时检测充电状态,在充电状态为异常或完成时,停止输出激活电压,从而停止充电过程,避免了在电池包100出现故障或充电完成的情况下,继续充电对电池包100造成损坏,保证了电池包100的充电安全,提高了电池包100的使用寿命。此外,电池包100和充电器200在充电过程中实时交互数据,根据电池包100的充电参数实时调整充电器200的输出功率,配合电池包100的负载能力,避免出现电线短路、甚至产品过热而爆炸等意外。
如图81,本发明的另一实施例提供一种充电方法,该充电方法包括:电池包100输出激活电压到充电器200,充电器200上电后对电池包100充电;充电过程中,电池包100实时检测电池包充电回路的充电参数,根据充电参数获取充电状态,在充电状态为异常或完成时,停止输出激活电压。
可选的,在电池包100输出激活电压到充电器200之前的步骤包括:
接收到激活信号后,激活电池包100;其中,激活信号为通过电池包100的第二Type-C接口122和/或激活按键获得。
可选的,在电池包100输出激活电压到充电器200之前的步骤还包括:
激活电池包100后,检测电池包100的充电参数,根据充电参数获取充电状态,若充电状态为正常,则输出激活电压。
可选的,充电器200上电后,对电池包100充电前的步骤还包括:
电池包100和充电器200进行通信握手,握手成功则开始充电。
可见,本实施例的充电方法,应用于上述实施例的充电组合,电池包100为充电器200提供激活电压,使其开始为电池包100充电;在充电的同时,电池包100实时检测充电状态,在充电状态为异常或完成时,停止输出激活电压,从而停止充电过程,避免了在电池包100出现故障或充电完成的情况下,继续充电对电池包100造成损坏,保证了电池包100的充电安全,提高了电池包100的使用寿命。此外,电池包100和充电器200在充电过程中实时交互数据,根据电池包100的充电参数实时调整充电器200的输出功率,避免出现电线短路、甚至产品过热而爆炸等意外。
如图82,本发明的另一实施例公开了一种电池包100,包括充放电的通信控制系统、供电端子132和至少一个Type-C接口122;通信控制系统设于电池包100内,并分别与供电端子132和各Type-C接口122通信连接;
通信控制系统包括上述实施例中的第一控制单元1801和第二控制单元1802:
第一控制单元1801,其与供电端子132电连接,用于和供电端子132上的接入设备进行通信;
第二控制单元1802,其与各Type-C接口122电连接,用于和各Type-C接口122上的接入设备进行通信;
第一控制单元1801与第二控制单元1802通信连接。
其中,第一控制单元1801可通过多种通信方式与第二控制单元1802通信连接,其中,通信方式包括I2C总线通信、UART串口通信及SPI通信。
通信控制系统还包括上述实施例中的端子通信单元191和Type-C通信单元192。
端子通信单元191,其串接于供电端子132和第一控制单元1801之间,用于通信连接第一控制单元1801与供电端子132上的接入设备。
Type-C通信单元192,其串接在各Type-C接口122与第二控制单元1802之间,用于通信连接第二控制单元1802与各Type-C接口122上的接入设备。
如图83所示,本发明的另一实施例公开了一种充放电的通信控制方法,该通信控制方法应用于包括供电端子132和至少一个Type-C接口122的电池包100,通信控制方法包括:
步骤501,第一控制单元1801获取供电端子132上接入设备的设备类型;
步骤502,第二控制单元1802获取各Type-C接口122上接入设备的设备类型,并传输至第一控制单元1801;
步骤503,第一控制单元1801根据供电端子132和/或各Type-C接口122上接入设备的设备类型,对电池包100进行充/放电;其中,设备类型包括充电设备和放电设备,且该设备类型通过第二控制单元1802的第二发送端上的高低电平表示。
如图84,进一步说明,获取供电端子132和/或各Type-C接口122上接入设备的设备类型的步骤包括:
第一控制单元1801和/或第二控制单元1802与接入设备进行通信握手,握手成功则判断通信握手的类型,若通信握手的类型为充电握手,则为充电设备;若通信握手的类型为放电握手,则为放电设备。
如图84,继续说明,第一控制单元1801根据供电端子132和/或各Type-C接口122上接入设备的设备类型,对电池包100进行充/放电的步骤包括:
若为充电设备,判断是否接收到该充电设备发送的充电请求,若接收到,则判断电池包工况,若电池包工况为非放电模式,则通过Type-C接口122和/或供电端子132对电池包100进行充电;
若为放电设备,判断是否接收到该放电设备发送的放电请求,若接收到,则判断电池包工况,若电池包工况为非充电模式,则通过Type-C接口122和/或供电端子132对电池包100进行放电;
其中,电池包工况包括充电模式、放电模式及空闲模式;第一控制单元1801根据电池包100的充/放电状态和接入设备的连接状态对电池包工况进行标记,其标记方式与上述实施例相同。
继续说明,第一控制单元1801对电池包100进行充/放电的步骤包括:
第一控制单元1801根据供电端子132上接入设备的设备类型,通过供电端子132对电池包100进行充/放电;
第一控制单元1801根据各Type-C接口122上接入设备的设备类型,发送充/放电指令到第二控制单元1802;第二控制单元1802根据充/放电指令通过各Type-C接口122对电池包100进行充/放电。
如图85,继续说明,通信控制方法还包括:
步骤701,第一控制单元1801接收电池包100的电芯组件的电池参数,根据电池参数获取电池包状态,并传输至第二控制单元1802;其中,电池包状态包括断电、保护、正常及异常;电池包状态通过第一控制单元1801的第一发送端上的高低电平表示。
步骤701,第二控制单元1802根据电池包状态对电池包100进行充/放电。
具体的说,在接收到充电请求时,应先检测电池包状态,不为异常时才允许充电;在接收到放电请求时,应先检测电池包状态,在正常时才允许放电,由此避免过充或欠压造成电芯组件的损坏,影响其使用寿命。
在充/放电过程中,第二控制单元1802还实时检测电池包状态,若出现异常,即停止充/放电过程,保护电池芯不受损坏。
可见,上述实施例中的通信控制方法,应用于包括供电端子132和至少一个Type-C接口122的电池包100,支持USB PD快充协议,具备供电端子132与第一控制单元1801之间、各Type-C接口122与第二控制单元1802之间、以及第一控制单元1801和第二控制单元1802之间的三路通信线路,在电池包100的充/放电过程中,根据实时的数据交互执行充/放电保护逻辑,动态地调整输入/输出功率,不仅能快速地进行充/放电,还有效保护电池包100安全,延长电池包100使用寿命。
图72为一种电池包与充电器连接场景图,电池包100直接连接在充电器,此时,充电器200接给电池包100充电,则需要充电器输出电压与电池包100的输入电压相匹配,以实现电池包100的正常充电;或充电器的输出电压不超过电池包100最大的承受电压,此时电池包100的能够实现充电功能,但不能达到最佳的充电效果。即每个电池包100需要匹配对应的充电器以达到电池包100的最佳充电状态。在本实施例中,提供一种适配装置40,能够按照电池包100的输入电压需求,将充电器20的输出电压转换为电池包100所需的输入电压。
如图86所示,本发明提供的一种充电系统包括充电器20适配装置40和电池包100。充电器20与适配装置40连接,在充电器20的一侧,设置有一Type-C输出接口22,Type-C输出接口22通过充电线1001电性连接于适配装置40的电压输入端。
如图86所示,本发明提供一种电池包100,电池包壳体10的顶面上设置有一插接部1101,插接部1101的两侧设置有滑轨1102,滑轨1102用于与适配装置40连接,插接部1101的一端设置有端子132,并位于插接部1101两侧的滑轨1102之间,当适配装置40通过第二导轨419与电池包100连接时,端子132电性连接于适配装置40的电压输出端,端子132为输出端子。该电池包的结构与上述电池包的结构相同,不在重复描述。
如图86至图88所示,本发明提供的一种适配装置40设置在充电器20与电池包100之 间,用于将充电器20的输出电压转换成电池包100所需的输入电压。本发明提供的适配装置40包括外壳41和电路板402,其中,外壳41包括第一壳体401和第二壳体403,第一壳体401和第二壳体403均具有一凹部,在安装时,第一壳体401扣在第二壳体403上,形成一容纳腔,所述容纳腔由第一壳体401的凹部形成,用于放置电路板402。且在第一壳体401形成的容纳腔内,安装有一电路板402,用于固定电路板402,而第二壳体403的凹部用于与电池包100卡合。
如图86至图91所示,在本发明一实施例中,第一壳体401通过充电线1001与充电器20连接,且第一壳体401与充电器20连接的一侧为适配装置40的输入部,输出部包括与充电器20连接的第一接口408。在第一凹部411的侧壁上,设置有第一通孔407。第一接口408设置在电路板402上,且位于第一壳体401的第一凹部411内,第一接口408延伸至第一通孔407内,第一接口408电性连接于电路板402的输入端,为适配装置40的输入接口,第一接口408例如为Type-C输入接口。当适配装置40通过充电线1001与充电器20连接时,Type-C输出接口22与第一接口408电性连接。
如图86至图91所示,在本发明一实施例中,在第一壳体401的表面,设置有一按键409,按键409延伸至第一凹部411内,可作为电路板402的按键开关。在第一凹部411内,且位于第一凹部411的外侧设置有多个卡柱412,其与第二壳体403上第二凹部418的卡点417连接,用于将第一壳体401和第二壳体403定位,并连接第一壳体401和第二壳体403,其中,卡柱412为中空的柱体,卡点417呈中空的柱体,且卡柱412的外直径等于卡点417上中空柱体的内直径,卡柱412卡进卡点417内。在第一凹部411的侧壁上还设置有多个第二卡槽413,其与第二壳体403上的卡件416卡合连接,用于固定连接第一壳体401和第二壳体403。第一凹部411的外侧还设置有多个支撑板410,用于加固第一壳体401。
如图86至图91所示,在本发明一实施例中,第二壳体403在与第一壳体401连接的一侧设置有多个卡点417,与第一壳体401上的卡柱413卡合。且在第二壳体403与第一壳体401连接的一侧,还设置有多个卡件416,其位置与第二卡槽413对应,当第一壳体401和第二壳体403卡合时,卡件416与第二卡槽413卡合连接。电路板402固定在第二壳体403与第一壳体401连接的一侧,当第一壳体401与第二壳体403卡合时,电路板402位于第一凹部411内。电路板402的输出端连接有多个第二接口414,第二接口414的一端电性连接于电路板402的输出端,为适配装置40的输出接口,另一端依次穿过第二壳体403上的第二通孔415至第二凹部418内,当第二壳体403卡合在电池包100上时,第二接口414还电性连接于电池包100的端子132。
如图86至图91所示,在本发明一实施例中,在第二壳体403与第一壳体401连接的相 对的一侧,即第二壳体403与电池包100连接的一侧,设置有适配装置40的输出部,输出部包括与端子132电性连接的第二接口414,以及与滑轨1102卡合的第二导轨419。具体的,第二壳体403上设置有第二凹部418,第二凹部418呈具有一开口的凹部,在第二凹部418的两个相对的侧壁上设置有第二导轨419,即第二导轨419设置在与开口相邻的侧壁上。两个第二导轨419平行设置,用于与电池包100的滑轨1102卡合。且在位于开口的一侧,第二凹部418的底壁上还设置有一限位槽421,限位槽421与电池包100上的限位柱1112形状相适应,当第二壳体403的第二凹部418卡合在电池包100的插接部1101上时,限位柱1112卡在限位槽内421内。
如图86至图91所示,适配装置40在连接充电器20和电池包100时,第一壳体401上第一接口408通过充电线1001电性连接于Type-C输出接口22;第二壳体403上第二导轨419与电池包100上的滑轨1102卡合,第二接口414电性连接于电池包100的端子132。第一壳体401的第一凹部411形成的容纳腔内设置的电路板402将充电器20的输出电压转换成电池包100需要的输入电压。本申请并不限制充电线1001的长度,且充电线1001的两端均为Type-C接口。且本发明并部限制电池包100的额定工作电压,例如第一电池包具有第一额定工作电压,端子132为第一电池包端子,则第二接口414电性连接于第一电池包端子,将充电器20的输出电压转换成第一额定工作电压,为充电器20充电;第二电池包具有第二额定工作电压,端子132为第二电池包端子,则第二接口414电性连接于第二电池包端子,将充电器20的输出电压转换成第二额定工作电压,为充电器20充电。
电池包100的控制系统包括:电芯组120(锂电池),主控单元181,与主控单元181电性连接的检测单元171和激活单元110,与主控单元181和激活单元110电性连接的COM通讯处理单元191,与电芯组120和主控单元181电性连接的DC-DC单元130,与电芯组120、主控单元181和DC-DC单元130电性连接的第一充放电保护单元151,以及端子132,其中,端子132包括P+、CHG、COM以及P-四个端子,且P+和CHG接第一充放电保护单元151,并接入电池正极,COM端口连接COM通讯处理单元,P-端口接电池的负极。
请参阅图92所示,在本发明中,检测单元171用于检测电芯组120中的单节电压,以及电芯组120的温度等,将检测结果传输给主控单元181,主控单元181用于接收检测单元2的数据信息以及回路充放电信息,进行分析后会执行相应的保护操作,其中,检测单元171与主控单元之间采用I2C通讯;DC-DC单元130将电芯组120两端的电压转换成主控单元181及其它模块工作所需要的电压;第一充放电保护单元151接收来自主控单元181的保护指令,完成回路的充放电保护动作;COM通讯处理单元191处理外部COM通信与主控单元181之间的通信;激活单元110接收来自外界的激活信号,包含KEY信号(按键)以及COM信号,完成 对主控单元181的上电动作,主控完成上电动作后,通过COM通讯处理单元与外部进行通信。
请参阅图92和图95所示,在本实施例中,电池包100的控制方法包括以下步骤:S10:电池包100电性连接到适配装置40;S11:激活电池包100;S12:电池包100与适配装置40通信握手;S13:判断是否握手成功,当握手成功执行S14:进入充电模式;否则返回步骤S12。
请参阅图92和图95所示,在本发明一具体实施例中,电池包100的控制方法具体包括:电池包100电性连接到适配装置40后,适配装置40通过COM信号激活电池包100,电池包100和适配装置40之间进行通信握手,并判断是否握手成功,若没有成功则一直处于握手模式,握手成功后,适配装置40通过COM信号发送充电请求,当电池包100通过该请求后,电池包100进入充电模式。在电池包100进入充电模式中,主控单元181实时监测电池状态,包括电压、电流以及电芯温度,当出现单节电芯电压异常或者温度异常时会停止充电。在本实施例中,主控单元181内还可以包括电量计算模块,电量计算模块会实时计算电池电量,当电池包100的电量为第一阈值时,即荷电状态S0C=第一阈值时,停止充电,第一阈值例如为100%。
请参阅图93所示,充电器20的控制系统包括:交流-直流变换单元202,电性连接于交流-直流变换单元202的第一直流-直流变换单元209,电性连接于交流-直流变换单元202的第二直流-直流变换单元204,电性连接于第一直流-直流变换单元209和第二直流-直流变换单元204的第二主控单元201,电性连接于第二主控单元201的Type-C输出接口22,且Type-C输出接口22包括VBUS、CC、D+、D-以及GND端口,电性连接于Type-C输出接口22和第二主控单元201之间的第二通讯处理单元208,电性连接于Type-C输出接口22和第二主控单元201之间的充电保护单元206。
请参阅图93所示,在本发明中,交流-直流变换单元202用于将交流电转换为直流电;第一直流-直流变换单元209根据电池包100所需的输入电压,将交流-直流变换单元202的输出的直流电转换为电池包所需的电压;第二直流-直流变换单元204将交流-直流变换单元202的输出的直流电转换为供第二主控单元201以及其他模块工作时的供电电压;充电保护单元206用于接收来第二主控单元201的保护命令,完成充电器20的放电保护,第二通讯处理单元208完成适配装置40与充电器20之间的通信,第二主控单元201处理第二通讯处理单元208以及充电保护单元206提供的上下电指令。在本实施例中,第二通讯处理单元208为Type-C通讯处理单元。
请参阅图93和图98所示,充电装置20与适配装置40连接后,充电装置20的控制方法包括以下步骤:S30:充电装置20与适配装置40连接;S31:充电装置20与适配装置40 进行通信握手;S32:判断握手是否成功,当握手成功时,则执行步骤S33:充电装置20为电池包100充电,否则返回步骤S31。具体的,在本发明一实施例中,充电装置20与适配装置40连接后,且在整个系统(包括电池包100和适配装置40内的控制系统)激活后,充电装置20通过Type-C输出接口22与适配装置40进行通信握手,若没有成功则一直处于握手模式,握手成功后,第二主控单元201开启充电保护单元206,并发出充电请求,请求通过后充电装置20为电池包100充电。
请参阅图94所示,本发明提供的一种充电转换控制系统42设置在充电装置20和电池包100的控制系统之间,且充电转换控制系统42主要包括:电性连接于第二接口414的第三通讯处理单元433,电性连接于第三通讯处理单元433的第三主控单元434,电性连接于第三主控单元434的全桥驱动单元437,电性连接于第二接口414和全桥驱动单元437的全桥功率单元436,以及电性连接于第三主控单元434的第四通讯处理单元439,且全桥功率单元436和第四通讯处理单元439电性连接于第一接口408。其中,在电性连接电池包100的控制系统和充电装置30的控制系统时,第二接口414与电池包100的端子132电性连接,第一接口408与充电装置20的Type-C输出接口22电性连接。
请参阅图94所示,本发明中的第二接口414为充电转换控制系统42的输出接口,其与电池包100的端子132电性连接,与端子132对应的,第二接口414包括P+、CHG、COM以及P-四个输出端子,与电池包100的端子132一一对应,其中CHG端口为充电端口,P+、P-端口用于提供电池包100的输入电压,COM端口用于通讯沟通。第一接口408为充电转换控制系统42的输入接口,其与充电装置20的Type-C输出接口22电性连接,第一接口408包括VBUS、CC、D+、D-以及GND端口,与Type-C输出接口22的端口一一对应。其中,D+、D-端口用于接收充电转换控制系统42的输入电压,CC端口用于充电转换控制系统42与充电装置20之间的通讯,GND端口为接地端,VBUS输出一恒定电压,为充电装置20中的各个模块供电,VBUS例如为常用的5V电压。
进一步的,请参阅图94所示,第三通讯处理单元433电性连接于第二接口414的COM端口,以及第三主控单元434,实现电池包100和适配装置40之间的通讯,在本实施例中,第三通讯处理单元433为COM通讯处理单元,与电池包100的COM通讯相匹配。第三主控单元434接收各个模块的信号并发出操作指令。第四通讯处理单元439的一端电性连接于第三主控单元434,另一端电性连接于第一接口408,实现充电装置20和适配装置40之间的通讯,在本实施例中,第四通讯处理单元439为Type-C通讯处理单元,与充电装置20的Type-C通讯相匹配。
进一步的,请参阅图94所示,全桥驱动单元437电性连接于第三主控单元434,全桥功 率单元436电性连接于第二接口414和全桥驱动单元437,全桥驱动单元437和全桥功率单元436组成升压模块,根据第三通讯处理单元433与电池包100的沟通可获得输出电压的信息,根据第四通讯处理单元439与充电装置20沟通可获得需要输入电压的信息,第三主控单元434根据输入电压以及需要输出的电压确定输出的PWM信号的占空率,根据第三主控单元434发出的PWM信号,全桥驱动单元437和全桥功率单元436将充电装置20由第一接口408输入的电压转换为电池包100所需的电压,由第二接口414输出。
请参阅图94所示,本发明中的充电转换控制系统42还包括直流-直流变换单元430,其输入端电性连接于第一接口414,具体的,直流-直流变换单元430的输入端电性连接于VBUS端口,输出端电性连接于第三主控单元434以及各个模块,直流-直流变换单元430将第一接口414的输入电压转换成各个模块工作所需的工作电压,所述工作电压例如为5V。
请参阅图94所示,本发明中的充电转换控制系统42还包括按键激活单元431,按键激活单元431为一触发单元,其连接于第一壳体401上的按键409,当需要开启充电转换控制系统42时,按动按键409,触发按键激活单元431,进而激活与按键激活单元431电性连接的第三主控单元434,进而激活充电转换控制系统42;当再次按动按键409,可通过按键激活单元431关闭第三主控单元434,进而关闭充电转换控制系统42。
请参阅图94所示,本发明中的充电转换控制系统42还包括总电压检测单元432,总电压检测单元432的一端电性连接于第二接口414,具体的,总电压检测单元432的一端电性连接于P+端口,总电压检测单元432的另一端电性连接于第三主控单元434。在进行电压转换之前,总电压检测单元432检测电池包100所需的输入电压。
请参阅图94所示,本发明中的充电转换控制系统42还包括电流采样单元440,电流采样单元440电性连接在第二接口414和第一接口408之间,串接在充电转换控制系统42的回路上,同时电性连接于第三主控单元434。具体的,电流采样单元440的一端电性连接于P-端口,另一端电性连接于D-端口,还电性连接于第三主控单元434;电流采样单元440用于检测回路中的电流,并将回路中的电流信息传送至第三主控单元434,当电路中的电流异常时,可终止电压转换的过程。
请参阅图94所示,本发明中的充电转换控制系统42还包括开关单元435,开关单元435电性连接在第二接口414和第一接口408之间,同时电性连接于第三主控单元434,具体的,开关单元435的一端电性连接与P+端口,另一端电性连接于全桥功率单元436的输入端,且电性连接于第三主控单元434。当第三主控单元434发出导通指令时,开关单元435导通,全桥功率单元436具有输入电压,充电转换控制系统42可实现电压转换功能,当第三主控单元434发出关断指令时,开关单元435关断,全桥功率单元436所在回路断开,充电转换 控制系统42无法实现电压转换功能。在本申请中,输入电压过/欠压、电流异常、充放电异常等异常时,开关单元435关断。
请参阅图94所示,本发明中的充电转换控制系统42还包括第二充放电保护单元438,第二充放电保护单元438连接在第一接口408和全桥功率单元436之间,且电性连接于第三主控单元434。接收来自第三主控单元434的保护指令,完成回路的充放电保护。在本实施例中,第二充放电保护单元438为Type-C充放电保护单元。
请参阅图92至图97所示,在本发明一实施例中,本发明提供的一种充电转换方法具体包括:
S400:通过按键激活单元431激活充电转换控制系统42;
具体的,通过按动第一壳体401上的按键409,触发按键激活单元431,进而激活与按键激活单元431电性连接的第三主控单元434,进而激活充电转换控制系统42。在本实施例中,当再次按动按键409,可通过按键激活单元431关闭第三主控单元434,进而关闭充电转换控制系统42。
S401:通过第三主控单元434开启开关单元435;
具体的,开关单元435设置在第二接口414和第一接口408之间,且位于第二接口414(输入端)和全桥功率单元436之间,开关单元435断开,则无法进行电压转换。
S402:通过第三通讯处理单元433和第四通讯处理单元439进行通信握手;
具体的,第三通讯处理单元433电性连接于第二接口414的COM端口,与电池包100进行COM通信握手,第四通讯处理单元439电性连接于第一接口408的CC端口,与充电装置20进行CC通信握手。
S403:判断握手是否成功,若成功则执行步骤S405,否则返回步骤S402;
S405:总电压检测单元432检测电池包100的所需的输入电压;
具体的,总电压检测单元432电性连接于第二接口414的P+端口,用于检测电池包100的所需的输入电压,电池包100的输入电压即为充电转换控制系统42的输出电压。
S406:判断电池包100的输出电压是否满电;
具体的,总电压检测单元432判断电池包100内的电量是否为满电,即荷电状态SOC=第一阈值,第一阈值例如为100%,当电池包100的电量不为满电时,即荷电状态SOC<100%时,执行步骤S407,否则执行步骤S417,停止充电。
S407:第三主控单元434发出PWM信号;
具体的,全桥驱动单元437和全桥功率单元436组成升压模块,根据总电压检测单元432检测到的电池包100所需的输入电压,第三主控单元434通过发出一定占空比的PWM信号控 制全桥功率单元436的电压输出。
S408:全桥功率单元436提供充电电压;
具体的,开关单元435开启,且第三主控单元434发出PWM信号给予升压模块后,全桥功率单元436进行电压转换,将充电装置20的输出电压转换成电池包100所需的输入电压,所述充电电压即为充电转换控制系统42的输出电压。
S409:第三主控单元434检测充电转换控制系统42的输入电压、输出电压和回路电流;
具体的,在充电转换控制系统42进行电压转换的过程中,第三主控单元434实时检测电路中的信息,包括通过总电压检测单元432检测电池包100的输出电压,即充电转换控制系统42的输入电压;通过第二充放电保护单元438检测充电转换控制系统42的输入电压;以及通过电流采样单元440检测充电转换控制系统42回路的电流。
S410:判断充电转换控制系统42的输入电压、输出电压和回路电流是否有异常;
具体的,通总电压检测单元432可检测充电转换控制系统42的输出电压是否有异常;在第三主控单元434内,根据充电转换系统42所需的电压,可设置出充电转换控制系统42中VBUS端的输入电压的阈值为第二阈值,以及充电转换控制系统42中的回路电流的阈值为第三阈值;第二充放电保护单元438实时监测充电转换控制系统42的输入电压,并传输至第三主控单元434,当充电转换控制系统42的输入电压在第二阈值内,则视为未发生异常,当充电转换控制系统42的输入电压不在第二阈值内,则视为发生异常;电流采样单元440实时监测充电转换控制系统42的回路电流,当充电转换控制系统42的回路电流在第三阈值内,则视为未发生异常,当充电转换控制系统42的回路电流不在第三阈值内,则视为发生异常。当发生上述任一异常时,则视为发生异常,当有异常时,执行步骤S411,否则执行步骤S414。
S411:第三主控单元434实时调整;
具体的,第三主控单元434通过调整PWM信号的占空率改变输出电压和回路电流的大小,在调整的过程中,第三主控单元434仍实时监测充电转换控制系统42中的输入电压、输出电压和回路电流。
S412:记录第三主控单元434的调整次数,当第三主控单元434的调整次数到达设定的次数后,则执行步骤S413;其中,设定的次数例如为5次。
S413:判断充电转换控制系统42的输入电压、输出电压和回路电流是否有异常;
具体的,其判断过程与步骤S410相同,当判断结果无异常,则执行步骤S414,否则执行步骤S417,充电截止。
S414:正常充电。
S415:通过第三通讯处理单元433与电池包100交互电流状态;
具体的,在电池包100的充电过程中,适配装置40通过第三通讯处理单元433与电池包100进行转台交互。
S416:判断电池包100是否出电截止信号,若否,则执行步骤S414,否则执行步骤S417。其中,电池包100内设置有电量计算模块,实时监测电池包100的荷电状态,当荷电状态S0C=100%时,发出充电截止信号。
S417:充电截止;
具体的,通过第三主控单元434发出信号给予开关单元435,停止充电转换控制系统42的工作。
请参阅图92至图97所示,本发明提供的一种充电转换方法主要包括:适配装置40到电池包100后,通过适配装置40上按键409可以激活适配装置40的充电转换控制系统42。充电转换控制系统42激活后,将通过COM信号激活电池包100并与其通信握手,握手成功后,总压检测单元432检测电池包100是否满电,如不满电,电池包100将进入充电模式。电压转换的控制过程如下:第三主控单元434发出PWM信号,全桥驱动单元437提供合适的输出电压,第三主控单元434监测电压转换过程中的参数,所述电压转换过程中的参数过程中的参数一般包括回路电流、输入电压和输出电压,可根据需要设定参数范围,当所述电压转换过程中的参数超出预设的参数范围时,即认为异常,可根据预设的逻辑对充/放电压及充/放电流进行动态调整,调整的次数可以为一次或多次,具体次数可根据需要进行设定,本实施例中为5次。调整后继续检测电压转换过程中的参数,当仍有异常则停止充电,没有异常时,则正常进行电压转换。在正常充电过程中,电池包100与适配装置40通过通信实时交互数据,当电池包100发出充电截止信号后将停止充电。在本实施例中,当电池包100的荷电状态SOC=第一阈值时,或单节电芯异常或温度异常时,电池包100发出充电截止信号。
(79、80)
一般而言,在电池包上设置有电压输出端子,在电动工具上设置有电压输入端子,电池包上的电压输出端子电性连接于电动工具上的电压输入端子,为电动工具的正常工作提供电量,此时,电池包的输出电压与电动工具的输入电压匹配,以实现电动工具的正常工作;或者电池包的输出电压不超过电动工具最大的承受电压,此时电动工具的能够工作,但不能达到最佳的工作状态。即每个电动工具都需配置相应的电池包,以达到电动工具的最佳工作状态,因手持式电动工具较多,需要配备多种电池包。在本申请中,提供一种适配装置,能够按照电动工具的输入电压需求,将电池包的输出电压转换为电动工具所需的输入电压。且当电池包的电压输出端子和电动工具的电压输入端子为不同种类端子时,通过在适配装置上设 置与电池包和电动工具相适应的接口,实现电池包与电动工具的连接。
本发明提供的一种工具系统包括电动工具30、适配装置40和电池包100。电动工具30的底座33与适配装置40连接,在电动工具30的底座33与适配装置40连接的一侧,设置有一电池插接口331,电池插接口331的开口设置在底座33的一边,且位于靠近电动工具30工作端的一侧。在位于开口的底座33上,还设置有一限位卡槽333,用于限定适配装置40的位置。与电池插接口331的开口相邻的两个的侧壁上,设置有与适配装置40连接的导向槽332,导向槽332例如可为L型槽,用于与适配装置40更好的卡合。在电池插接口331与开口相对的侧壁上,设置有Type-C端口34,Type-C端口34电性连接于适配装置40的第一接口408,为电动工具30的type-C输入接口。
本发明提供一种电池包100,电池包壳体10的顶面上设置有一插接部1101,插接部1101的两侧设置有滑轨1102,滑轨1102用于与适配装置40连接,且插接部1101的一端设置端子132,并位于插接部1101两侧的滑轨1102之间,当适配装置40通过第二导轨419与电池包100连接时,端子132电性连接于适配装置40的电压输入端,端子132为输出端子。该电池包的结构与上述电池包的结构相同,不在重复描述。
本发明提供的一种适配装置40设置在电池包100与电动工具30之间,用于将电池包100的输出电压转换成电动工具30所需的输入电压。本发明提供的适配装置40的结构与上述实施例中的适配装置的结构类似。
不同的是,请参阅图98至图100所示,在本实施例中,第一壳体401与电动工具30连接的一侧为适配装置的输出部,输出部包括与电动工具30卡合的第一导轨405,以及与Type-C端口34电性连接的第一接口408。具体的,第一壳体401上设置有第一凸部404,第一凸部404的顶面延伸出侧壁,形成第一导轨405,两个第一导轨405相互平行设置。允许电动工具30的电池插接口331卡合在第一凸部404上,导向槽332卡合在第一导轨405上。
请参阅图98至图100所示,在本发明一实施例中,在第一凸部404的侧壁上,还设置有第一通孔407,第一通孔407至第一凸部404的顶面呈第一距离D1设置,其与电动工具30底座33上的Type-C端口34至电池插接口331底壁的距离相适应,即第一距离D1等于Type-C端口34至电池插接口331底壁的距离。第一接口408设置在第一壳体401的第一凹部411内,且第一接口408延伸至第一通孔407内,第一接口408电性连接于电路板402的输出端,为适配装置的输出接口,第一接口408例如为Type-C输出接口。当电动工具30与适配装置40卡合时,电池插接口331卡合在第一凸部404上,导向槽332与第一导轨405卡合,Type-C端口34与第一接口408卡合且电性连接。
请参阅图98至图100所示,在本发明一实施例中,按键409设置在第一凸部404的一 侧,且位于第一壳体401的表面,且按键409延伸第一凹部411内,可作为电路板402的按键开关。
请参阅图98至图100所示,在本发明一实施例中,在第一壳体401以及第一凸部404上,还可以设置一上述实施例中的限位件111,以实现第一壳体401和电动工具30的锁扣,其实现方式与上述实施例所示相同。
该适配装置40上的第二接口414为适配装置40的输入接口,在第二壳体403与第一壳体401连接的相对的一侧为适配装置40的输入部,输入部包括与端子132电性连接的第二接口414,以及与滑轨1102卡合的第二导轨419。
请参阅图98至图100所示,适配装置40在连接电动工具30和电池包100时,第一壳体401上的第一导轨405与电动工具30的导向槽332卡合,且第一接口408电性连接于Type-C端口34;第二壳体403上第二导轨419与电池包100上的滑轨1102卡合,第二接口414电性连接于电池包100的端子132。第一壳体401的第一凹部411形成的容纳腔内设置的电路板402将电池包100的输出电压转换成电动工具30需要的输入电压。本申请并不限制电动工具30的额定电压,例如第一电动工具具有第一额定电压,Type-C端口34为第一type-C输入接口,则第一接口408电性连接于第一type-C输入接口,将电池包100的输出电压转换为第一额定电压,第一电动工具以第一额定电压工作;第二电动工具具有第二额定电压,Type-C端口34为第二type-C输入接口,则第一接口408电性连接于第二type-C输入接口,将电池包100的输出电压转换为第二额定电压,第二电动工具以第二额定电压工作。
在本发明一实施例中,当所述电池包通过适配器与电动工具连接时,电池包100的控制系统与上述实施例中当所述电池包通过适配器与电动工具连接时电池包的控制系统相同。
请参阅图101所示,在本实施例中,电池包100与适配装置40连接后,电池包100的控制方法包括以下步骤:S100:电池包100电性连接到适配装置40;S110:激活电池包100;S120:电池包100与适配装置40通信握手;S130:判断是否握手成功,当握手成功执行S140:进入放电模式;否则返回步骤S120。
在本发明一具体实施例中,电池包100的控制方法具体包括:电池包100电性连接到适配装置40后,适配装置40通过COM信号激活电池包100,电池包100和适配装置40之间进行通信握手,并判断是否握手成功,若没有成功则一直处于握手模式,握手成功后,适配装置40通过COM信号发送放电请求,当电池包100通过该请求后,电池包100进入放电模式。在电池包100进入放电模式中,主控单元181实时监测电池状态,包括电压、电流以及电芯温度,当出现单节电芯电压异常或者温度异常时会停止放电。在本实施例中,主控单元181内还可以包括电量计算模块,电量计算模块会实时计算电池电量,当电池包100的电量为第 一阈值时,即荷电状态S0C=第一阈值时,停止放电,第一阈值例如为5%。
请参阅图102所示,电动工具30的控制系统包括:Type-C端口34,且Type-C端口34包括VBUS、CC、D+、D-以及GND端口,电性连接于Type-C端口34的第二主控单元368,电性连接于Type-C端口34和第二主控单元368之间的第二通讯处理单元366,电性连接于Type-C端口34和第二主控单元368之间的放电保护单元367,一端电性连接于放电保护单元367进而与D+端口连接的动力单元37,动力单元37的另一端电性连接于D-端口。
请参阅图102所示,在本发明中,放电保护单元367用于接收来第二主控单元368的保护命令,完成电动工具30的放电保护,第二通讯处理单元366完成适配装置40与电动工具30之间的通信,第二主控单元368处理第二通讯处理单元366以及放电保护单元367提供的上下电指令。
(79)
请参阅图102和图104所示,电动工具30与适配装置40连接后,电动工具30的控制方法包括以下步骤:S300:电动工具30与适配装置40连接;S310:电动工具30与适配装置40进行通信握手;S320:判断握手是否成功,当握手成功时,则执行步骤S330:电动工具30进入工作模式,否则返回步骤S310。具体的,在本发明一实施例中,电动工具30与适配装置40连接后,且在整个系统(包括电动工具30和适配装置40内的控制系统)激活后,电动工具30通过Type-C接口与适配装置40进行通信握手,若没有成功则一直处于握手模式,握手成功后,电动工具30的第二主控单元开启放电保护单元,并发出放电请求,请求通过后电动工具30进入工作模式。
请参阅图105所示,本发明提供的一种充电转换控制系统42设置在电池包100和电动工具30的控制系统之间,且充电转换控制系统42主要包括:电性连接于第二接口414的第三通讯处理单元433,电性连接于第三通讯处理单元433的第三主控单元434,电性连接于第三主控单元434的全桥驱动单元437,电性连接于第二接口414和全桥驱动单元437的全桥功率单元436,以及电性连接于第三主控单元434的第四通讯处理单元439,且全桥功率单元436和第四通讯处理单元439电性连接于第一接口408。其中,在电性连接电池包100的控制系统和电动工具30的控制系统时,第二接口414与电池包100的端子132电性连接,第一接口408与电动工具30的Type-C端口34电性连接。
请参阅图105所示,充电转换控制系统42设置在电池包100和电动工具30的控制系统之间时,本发明中的第二接口414为充电转换控制系统42的输入接口,其与电池包100的端子132电性连接,与端子132对应的,第二接口414包括P+、CHG、COM以及P-四个端口,与端子132的端口一一对应,在和电动工具30的连接中,不使用其中的CHG端口,将CHG 端口设置为空端口,P+、P-端口用于提供电池包100的输出电压,COM端口用于通讯沟通;需要说明的是,在和充电器20连接中,其中CHG端口为充电端口,P+、P-端口用于提供电池包100的输入电压,COM端口用于通讯沟通。第一接口408为充电转换控制系统42的输出接口,其与电动工具30的Type-C端口34电性连接,第一接口408包括VBUS、CC、D+、D-以及GND端口,与Type-C端口34的端口一一对应。其中,D+、D-端口用于输出充电转换控制系统42的输出电压,CC端口用于充电转换控制系统42与电动工具30之间的通讯,GND端口为接地端,VBUS输出一恒定电压,为电动工具30中的各个模块供电,VBUS例如为常用的5V电压。
进一步的,请参阅图105所示,第三通讯处理单元433电性连接于第二接口414的COM端口,以及第三主控单元434,实现电池包100和适配装置40之间的通讯,在本实施例中,第三通讯处理单元433为COM通讯处理单元,与电池包100的COM通讯相匹配。第三主控单元434接收各个模块的信号并发出操作指令。第四通讯处理单元439的一端电性连接于第三主控单元434,另一端电性连接于第一接口408,实现电动工具30和适配装置40之间的通讯,在本实施例中,第四通讯处理单元439为Type-C通讯处理单元,与电动工具30的Type-C通讯相匹配。
进一步的,请参阅图105所示,全桥驱动单元437电性连接于第三主控单元434,全桥功率单元436电性连接于第二接口414和全桥驱动单元437,全桥驱动单元437和全桥功率单元436组成升/降压模块,根据第三通讯处理单元433与电池包100的沟通可获得输入电压的信息,根据第四通讯处理单元439与电动工具30沟通可获得需要输出电压的信息,第三主控单元434根据输入电压以及需要输出的电压确定输出的PWM信号的占空率,根据第三主控单元434发出的PWM信号,全桥驱动单元437和全桥功率单元436将电池包100由第二接口414输入的电压转换为电动工具30所需的电压,由第一接口408输出。
请参阅图105所示,本发明中的充电转换控制系统42还包括直流-直流变换单元430,其输入端电性连接于第二接口414,具体的,直流-直流变换单元430的输入端电性连接于P+端口,输出端电性连接于第三主控单元434以及各个模块,直流-直流变换单元430将第二接口414的输入电压转换成各个模块工作所需的工作电压,所述工作电压例如为5V。
请参阅图105所示,本发明中的充电转换控制系统42还包括按键激活单元431,按键激活单元431为一触发单元,其连接于第一壳体401上的按键409,当需要开启充电转换控制系统42时,按动按键409,触发按键激活单元431,进而激活与按键激活单元431电性连接的第三主控单元434,进而激活充电转换控制系统42;当再次按动按键409,可通过按键激活单元431关闭第三主控单元434,进而关闭充电转换控制系统42。
请参阅图105所示,本发明中的充电转换控制系统42还包括总电压检测单元432,总电压检测单元432的一端电性连接于第二接口414,具体的,总电压检测单元432的一端电性连接于P+端口,总电压检测单元432的另一端电性连接于第三主控单元434。在进行电压转换之前,总电压检测单元432检测电池包100的输出电压,在总电压检测单元432内,将电池包100的输出电压的阈值作为第二阈值,并判断电池包100的输出电压是在第二阈值内,将判断的结果传递至第三主控单元434,当电池包100的输出电压是在第二阈值内时,可以进行电压转换,当电池包100的输出电压超过第二阈值时,禁止电压转换。总电压检测单元432可防止电池包100过放电,以及充电转换控制系统42被烧坏。
请参阅图105所示,本发明中的充电转换控制系统42还包括电流采样单元440,电流采样单元440电性连接在第二接口414和第一接口408之间,串接在充电转换控制系统42的回路上,同时电性连接于第三主控单元434。具体的,电流采样单元440的一端电性连接于P-端口,另一端电性连接于D-端口,还电性连接于第三主控单元434;电流采样单元440用于检测回路中的电流,并将回路中的电流信息传送至第三主控单元434,当电路中的电流异常时,可终止电压转换的过程。
请参阅图105所示,本发明中的充电转换控制系统42还包括开关单元435,开关单元435电性连接在第二接口414和第一接口408之间,同时电性连接于第三主控单元434,具体的,开关单元435的一端电性连接与P+端口,另一端电性连接于全桥功率单元436的输入端,且电性连接于第三主控单元434。当第三主控单元434发出导通指令时,开关单元435导通,全桥功率单元436具有输入电压,充电转换控制系统42可实现电压转换功能,当第三主控单元434发出关断指令时,开关单元435关断,全桥功率单元436不具有输入电压,充电转换控制系统42无法实现电压转换功能。在本申请中,输入电压过/欠压、电流异常、充放电异常等异常时,开关单元435关断。
请参阅图105所示,本发明中的充电转换控制系统42还包括第二充放电保护单元438,第二充放电保护单元438连接在第一接口408和全桥功率单元436之间,且电性连接于第三主控单元434。接收来自第三主控单元434的保护指令,完成回路的充放电保护。在本实施例中,第二充放电保护单元438为Type-C充放电保护单元。
请参阅图106所示,在本发明一实施例中,本发明提供的一种充电转换方法具体包括:
S4000:通过按键激活单元431激活充电转换控制系统42;
具体的,通过按动第一壳体401上的按键409,触发按键激活单元431,进而激活与按键激活单元431电性连接的第三主控单元434,进而激活充电转换控制系统42。在本实施例中,当再次按动按键409,可通过按键激活单元431关闭第三主控单元434,进而关闭充电 转换控制系统42。
S4010:通过第三主控单元434开启开关单元435;
具体的,开关单元435设置在第二接口414和第一接口408之间,且位于第二接口414和全桥功率单元436之间,开关单元435断开,则无法进行电压转换。
S4020:通过第三通讯处理单元433和第四通讯处理单元439进行通信握手;
具体的,第三通讯处理单元433电性连接于第二接口414的COM端口,与电池包100进行COM通信握手,第四通讯处理单元439电性连接于第一接口408的CC端口,与电动工具30进行CC通信握手。
S4030:判断握手是否成功,若成功则执行步骤S4040,否则返回步骤S4020;
S4040:进入放电模式;
具体的,进入放电模式包括电动工具30内的电路开启,进入工作模式;电池包100进入放电模式;充电转换控制系统42进入电压转换模式。
S4050:总电压检测单元432检测电池包100的输出电压;
具体的,总电压检测单元432电性连接于第二接口414的P+端口,用于检测电池包100的输出电压,总电压检测单元432内设定有充电转换控制系统42的输入电压阈值,例如为第二阈值。
当该电池包100通过适配器与电动工具连接时,S4060为判断电池包100的输出电压是否超/欠压;
具体的,总电压检测单元432判断电池包100的输出电压是否在充电转换控制系统42的第二阈值内,当电池包100的输出电压在是在第二阈值内时,执行步骤S4070,否则执行步骤S4170,停止放电。
当该电池包100通过适配器与充电器连接时,所述S406为判断电池包100的输出电压是否满电;
具体的,总电压检测单元432判断电池包100内的电量是否为满电,即荷电状态SOC=第一阈值,第一阈值例如为100%,当电池包100的电量不为满电时,即荷电状态SOC<100%时,执行步骤S4070,否则执行步骤S4170,停止充电。
S4070:第三主控单元434发出PWM信号;
具体的,全桥驱动单元437和全桥功率单元436组成升压模块,根据总电压检测单元432检测到的电池包100所需的输出电压,第三主控单元434通过发出一定占空比的PWM信号控制全桥功率单元436的电压输出。
S4080:全桥功率单元436提供放电电压;
具体的,开关单元435开启,且第三主控单元434发出PWM信号给予升/降压模块后,全桥功率单元436进行电压转换,将电池包100的输出电压转换成电动工具30所需的输入电压,所述放电电压即为充电转换控制系统42的输出电压。
S4090:第三主控单元434检测充电转换控制系统42的输入电压、输出电压和回路电流;
具体的,在充电转换控制系统42进行电压转换的过程中,第三主控单元434实时检测电路中的信息,包括通过总电压检测单元432检测电池包100的输出电压,即充电转换控制系统42的输入电压;通过第二充放电保护单元438检测充电转换控制系统42的输出电压;以及通过电流采样单元440检测充电转换控制系统42回路的电流。
S4100:判断充电转换控制系统42的输入电压、输出电压和回路电流是否有异常;
具体的,通总电压检测单元432可检测出电池包100的输出电压是否有异常;在第三主控单元434内,根据电动工具30所需的电压,可设置出充电转换控制系统42输出电压的阈值为第二阈值,以及充电转换控制系统42中的回路电流的阈值为第三阈值;第二充放电保护单元438实时监测充电转换控制系统42的输出电压,并传输至第三主控单元434,当充电转换控制系统42的输出电压在第二阈值内,则视为未发生异常,当充电转换控制系统42的输出电压不在第二阈值内,则视为发生异常;电流采样单元440实时监测充电转换控制系统42的回路电流,当充电转换控制系统42的回路电流在第三阈值内,则视为未发生异常,当充电转换控制系统42的回路电流不在第三阈值内,则视为发生异常。当发生上述任一异常时,则视为发生异常,当有异常时,执行步骤S4110,否则执行步骤S4140。
S4110:第三主控单元434实时调整;
具体的,第三主控单元434通过调整PWM信号的占空率改变输出电压和回路电流的大小,在调整的过程中,第三主控单元434仍实时监测充电转换控制系统42中的输入电压、输出电压和回路电流。
S4120:记录第三主控单元434的调整次数,当第三主控单元434的调整次数到达设定的次数后,则执行步骤S4130;其中,设定的次数例如为5次。
S4130:判断充电转换控制系统42的输入电压、输出电压和回路电流是否有异常;
具体的,其判断过程与步骤S4100相同,当判断结果无异常,则执行步骤S4140,否则执行步骤S4170,放电截止。
S4140:正常放电。
S4150:通过第三通讯处理单元433与电池包100交互电流状态;
具体的,在放电过程中,适配装置40通过第三通讯处理单元433与电池包100进行转台交互。
S4160:判断电池包100是否出电截止信号,若否,则执行步骤S4140,否则执行步骤S4170。其中,电池包100内设置有电量计算模块,实时监测电池包100的荷电状态,当荷电状态S0C=第一阈值时,发出电截止信号。
S4170:放电截止;
具体的,通过第三主控单元434发出信号给予开关单元435,停止充电转换控制系统42的工作。
综上,请参阅图106所示,本发明提供的一种充电转换方法主要包括:适配装置40到电池包100后,通过适配装置40上按键409可以激活适配装置40的充电转换控制系统42。充电转换控制系统42激活后,将通过COM信号激活电池包100并与其通信握手,握手成功后,总压检测单元432检测电池包100是否欠压,如不欠压,电池包100将进入电压转换模式。电压转换的控制过程如下:第三主控单元434发出PWM信号,全桥驱动单元437提供合适的输出电压,第三主控单元434监测电压转换过程中的参数,所述电压转换过程中的参数过程中的参数一般包括回路电流、输入电压和输出电压,可根据需要设定参数范围,当所述电压转换过程中的参数超出预设的参数范围时,即认为异常,可根据预设的逻辑对充/放电压及充/放电流进行动态调整,调整的次数可以为一次或多次,具体次数可根据需要进行设定,本实施例中为5次。调整后继续检测电压转换过程中的参数,当仍有异常则停止放电,没有异常时,则正常进行电压转换。在正常放电过程中,电池包100与适配装置40通过通信实时交互数据,当电池包100发出放电截止信号后将停止放电。在本实施例中,当电池包100的荷电状态SOC=第一阈值时,电池包发出放电截止信号。
综上所述,本发明的一种适配装置及工具系统,能够将电池包的输出电压转换成电动工具所需的输入电压,当并在放电过程中,实时检测电池包、适配装置和电动工具的技术参数,根据该技术参数执行充电转换方法,动态调整输入/输出功率,可有效保护电池包、适配装置和电动工具的安全,延长电池包和电动工具的使用寿命。
(77、78)
如图107至图119所示,在本发明的一个实施例中,还提出一种多槽充电器,以同时为多个电池包进行充电,所述多槽充电器600包括本体60,所述本体60上设置有多个电池包容纳部621,且每个所述电池包容纳部621上设置有第一配合界面,所述第一配合界面配合用于与每个所述电池包上的第二配合界面配合安装。具体的,所述本体60包括充电壳体61、充电盒62和箱盖63,所述充电盒62位于所述充电壳体61内,上方通过所述箱盖63进行密封。具体的,所述充电盒62包括多个电池包容纳部621,且所述多个电池包容纳部621之间呈矩形分布,所述电池包容纳部621的数量例如设置为2个、4个、6个、8个或10个腔体, 在本实施例中,其数量优选为6个,并呈矩形分布,且所述充电盒62上的多个呈矩形分布的电池包容纳部621之间均留有间隙,以便于进行散热。
如图107至图119所示,在本实施例中,所述电池包容纳部621上设置有一充电接口622和电池包弹出机构,优选的,所述电池包弹出机构位于所述电池包容纳部621底部的中间位置,所述充电接口622位于所述电池包容纳部621底部的一侧,具体的,所述充电接口622为Type-C接口,所述电池包容纳部621的底部中间位置向下凹陷形成弹出机构安装腔624,且所述电池包弹出机构安装在所述弹出机构安装腔624内,在本实施例中,所述电池包弹出结构包括弹簧6231和底托6232,所述弹簧6231的一端与所述电池包容纳部124的底部连接,另一端与所述底托6232的底部连接,所述充电接口622与所述电池包底部的Type-C接口122连接,并通过限位机构64将所述电池包锁定,以进行充电,所述限位机构64安装在电池包容纳部621的顶部边缘,且每个电池包容纳部621对应一个限位机构64和一个电池包弹出机构12。
如图107至图119所示,在本实施例中,所述限位机构64包括安装座641、限位件642、转轴643和扭簧644,所述安装座641安装在所述电池包容纳部621的顶部边缘,所述转轴643安装在所述安装座641上,所述限位件642连接在所述转轴643上,所述扭簧644套设在所述转轴643上,当安装电池包进行充电时,所述限位件642被按压后随着所述转轴643进行转动,所述扭簧644被压缩,直至所述电池包安装到位进行充电时,所述限位件642在扭簧644的作用下复位,并与所述电池包的壳体的侧面上的限位槽722相匹配以对电池包实现锁定,当要取出电池包时,按压所述限位件642,使得所述限位件642从所述限位槽722内脱离,失去限位作用,使得电池包在所述电池包弹出机构的作用下弹出,以取出所述电池包。
如图107至图119所示,具体的,当所述电池包安装在所述电池包容纳部621内时,所述电池包弹出机构的底托6232下降,且弹簧6231被压缩,直至所述充电接口622与所述Type-C接口122连接,且在所述限位机构64的作用下,所述电池包被锁定以进行充电;当按压所述限位机构64的限位件141后,限位作用消失,所述底托6232在弹簧6231的弹力作用下被顶起,从而将所述电池包顶出的同时所述充电接口622与所述Type-C接口122之间分离。
如图107至图119所示,在本实施例中,所述多槽充电器600还包括箱盖63,所述箱盖63的一侧与所述充电壳体61之间通过铰链601连接,另一端上设置有锁止结构,以将所述充电壳体61和所述箱盖63锁定在一起。且在本实施例中,所述充电盒62的底部与所述充电壳体61的底部之间留有间隙,所述间隙内安装有电路板(图中未表示),所述电路板与每 个电池包容纳部621底部的充电接口622电性连接。
如图107至图119所示,在本实施例中,所述充电壳体61例如设置为矩形,且矩形的所述充电壳体61的两个短边上均设置自所述充电壳体61顶部向底部所形成的缺口,且两个短边上缺口的深度不同,具体的,在本实施例中,深度较深的缺口定义为第一缺口611,深度较浅的缺口定义为第二缺口612,所述充电盒62上的多个呈矩形分布的电池包容纳部621之间均留有间隙,且沿所述短边方向布置的电池包容纳部621之间的间隙正对于所述充电壳体61两个短边上的第一缺口611和第二缺口612,以便于散热。
如图107至图119所示,在本实施例中,所述充电壳体61上深度较深的缺口处安装有散热风扇613,且所述散热风扇613的顶部与所述充电壳体61的顶部相齐平,具体的,所述散热风扇613安装在所述第一缺口611上,通过所述散热风扇613的作用,以实现散热。另外,在本实施例中,所述充电壳体61相对的两侧上安装均安装有散热窗614,具体的,所述散热窗614分别安装在所述第一缺口611和所述第二缺口612处,且所述散热风扇613位于所述散热窗614内,以对所述散热风扇613起到保护作用的同时,能够将所述第一缺口611覆盖。
另外,如图107至图119所示,在本实施例中,所述充电壳体61上安装有一电源接口615,所述电源接口615包括输入端和输出端,所述输入端与外部电源连接,所述输出端与所述充电接口622电性连接。所述电源接口615连接在所述充电盒62的底部与所述充电壳体61的底部之间的电路板上,具体的,所述电源接口615优选位于所述散热风扇613的下方,且所述电源接口615固定安装在所述散热窗614的底部,并外接电源。以及,矩形的所述充电壳体61的两个长边上均设置手持部616,以便于搬运。
如图107至图119所示,具体的,在本发明的一个实施例中,所述第一配合界面上包括凸起结构6211和多条导轨6212,多条所述导轨6212分别位于所述凸起结构6211的两侧。所述第二配合界面上包括凹槽结构723和多条滑槽724,多条所述滑槽724分别位于所述凹槽结构723的两侧,当所述电池包与安装在所述电池包容纳部621内时,所述凹槽结构723与所述凸起结构6211相配合,所述滑槽724与所述导轨1211相配合。凸起结构6211和所述凹槽结构723之间相当于滑块与滑轨的相互配合,以及所述导轨6212和所述滑槽724之间的相互配合,以起到导向的作用,从而能够使得电池包底部的Type-C接口122顺利并准确的与电池包容纳部621底部的充电接口622连接,以进行充电。
如图107至图119所示,在本实施例中,所述多槽充电器600包括AD-DC模块、多个DC-DC模块、多个充电接口622和控制和协议模块,每个电池包容纳部621对应一个DC-DC模块1003和一个充电接口622,在本实施例中,所述DC-DC模块和多个充电接口622的数量例如设置 为6个,即所述AD-DC模块分别连接6个所述DC-DC模块,每一个DC-DC模块分别连接一个充电接口622,所述控制和协议模块分别连接每个DC-DC模块和充电接口622,所述AD-DC模块用于将交流电转换成直流电,DC-DC模块用于根据控制芯片的信号给出合适的充电电压;控制和协议模块用于整个充电系统的控制,各个Type-C端口的协议解析及充电控制,多槽充电器根据Type-C接头的CC信号判断是否有电池包接入,并可以判断出是哪个电池包接入,每个Type-C端口对应一个DC-DC模块,通过CC信号握手成功后开启相应的DC-DC模块,从而实现通过Type-C对电池充电。
如图107至图119所示,在本实施例中,每一个所述电池包分别对应一个电池包容纳部621,应理解,电池包上设有Type-C接口,内侧设有电芯组,Type-C供电回路为从Type-C接口到电芯组的整个充/放电回路,电芯组内部的多个电芯组成电芯组回路,实际应用中可在该充/放电回路中设置可控开关,从而实现Type-C供电回路的激活或关闭功能。
在本实施例中,多槽充电器端通过CC信号可以判断是哪个端口有电池包接入,并通过CC信号将接入的电池包激活,电池包激活后会通过CC信号与多槽充电器进行通信握手,握手成功后才会开启对应的DC-DC模块1003,实现对电池的充电器。电池包充电控制流程如下:
电池包连接到充电器后,CC信号会激活电池包,电池包激活后与多槽充电器进行充电握手,握手成功后进入充电管理模式;
当电池进入充电管理模式时,主控单元180会发出PWM控制信号给全桥驱动单元1601,全桥驱动单元1601根据PWM信号提供合适的充电电压;
同时主控单元180实时监测放电电压VBUS、VIN和充电电流;
充电电压和充电电流出现异常时,主控单元180实时调整,调整5次后会判断是否仍然存在异常,如果异常则停止充电,否则正常充电;
在Type-C口正常充电模式中,主控单元180实时监测电池状态,包括电压、电流以及电芯温度,当出现单节电芯电压异常或者温度异常时会停止充电,否则,则正常充电;
同时电量计算模块会实时计算电池电量,当SOC=100%时,停止充电。
本发明提出一种多槽充电器及充电系统,所述多槽充电器,所述多槽充电器包括充电壳体和充电盒,所述充电盒位于所述充电壳体内,且所述充电盒包括多个呈矩形分布的电池包容纳部,以容纳同时容纳多个电池包,从而使其能够实现多个电池包同时充电,同时还可以便携移动和存储电池包,缩短了充电时间,有效提高了工作效率。
(91、92)
如图121至图124所示,本发明提出一种背负式电池包800,包括背带81,安装在所述背带81上的背包壳体80,其内安装有电池包,并通过充电接口12于外部设备连接。
如图121至图124所示,在本实施例中,所述背包壳体80包括背面壳体801和前侧壳体802,所述背面壳体801和所述前侧壳体802之间固定连接形成一容纳腔,所述容纳腔内安装有电芯组件和电路板,所述电芯组件中的电芯和所述电路板之间电性连接,所述电池组件包括多个电芯,多个所述电芯安装在电芯支架内,所述电芯支架位于背包壳体80。
如图121至图124所示,在本实施例中,所述背带81安装在所述背包壳体80的一侧上,具体的,安装在所述背面壳体801上,用于连接背包人员。在本实施例中,所述背带81包括肩带811和腰带812,所述肩带811安装在所述背面壳体801上靠近两侧的位置上,并且沿所述背包壳体80的高度方向布置,用于连接背包人员的肩部,所述腰带812安装在所述背面壳体801靠近底面的一侧上,用于连接背包人员的腰部。另外,在本实施例中,所述背包壳体80安装有所述背带81的一侧上设置滑动调节凹槽,所述滑动调节凹槽至少包括两条滑槽813,所述滑槽813沿所述背包壳体80的高度方向布置,且所述两条滑槽813之间间隔并相互平行设置,所述腰带812与所述背面壳体801连接的一侧上设置有滑块,所述滑块与所述滑槽813相匹配,通过所述滑块在所述滑槽813上滑动以实现所述腰带的高度调节。
如图121至图124所示,在本实施例中,所述背包壳体80上安装有显示装置803,所述显示装置803位于与所述背包壳体80安装有所述背带81一侧相对的一侧上,即所述显示装置803安装在所述前侧壳体802上,具体的,所述显示装置803优选的位于所述前侧壳体802的中间位置。在本实施例中,所述显示装置803用于显示电池包的剩余电量和/或电压和/或电流和/或电芯温度和/或故障。当电池包与电动工具相结合并进行工作时,该显示装置803还可以显示电动工具的运行参数,比如电机的转速等等。所述显示装置803优选为LCD显示屏,但不应以此为限。
如图121至图124所示,在本实施例中,所述背包壳体80的底面设置为水平结构,以便于放置所述电池包,且所述背包壳体80的顶部安装有把手83,所述把手83与所述背包壳体80优选为一体成型,以便于搬运和携带。
如图121至图124所示,在本实施例中,所述电池包还包括充电接口12,所述充电接口12安装在所述电路板上,并与所述电路板电性连接,且所述充电接口12位于所述背包壳体80的侧面上,优选的,所述充电接口12位于所述背包壳体80侧面靠近底面的位置上。在本实施例中,所述充电接口12设置为Type-C接口,并且其数量优选为两个,两个所述Type-C接口分别位于所述背包壳体80的两侧,即,当背包人员上所述电池包时,两个所述Type-C接口分别靠近背包人员的左右手臂,以便于使用。在本实施例中,所述两个Type-C接口可分别连接不同的用电设备,例如第一电动工具3001和第二电动工具3002,以执行不同的功能,从而提高工作效率。第一电动工具3001和第二电动工具3002与上述实施例中的电动工 具相似,包括执行相应功能的功能模块,所述功能模块由上述实施例中的电池包驱动。
如图121至图124所示,所述充电接口12包括第一Type-C接口和第二Type-C接口,所述第一Type-C接口连接有第一电动工具3001,所述第一电动工具3001具有第一额定电压;所述第二Type-C接口连接第二电动工具3002,所述第二电动工具3002具有第二额定电压,所述第一额定电压和所述第二额定电压之间可以相同也可以不相同,且所述第一电动工具3001和所述第二电动工具3002之间可以同时使用也可以不同时使用。另外需要说明的是,所述背负式电池包还可以通过背负式电池包上的Type-C接口为手机、笔记本电脑、可穿戴智能设备等进行供电。
本发明的另一实施例公开了一种充放电组合,包括:背包式电池包800,该背包式电池包800上可拆卸连接有接入设备,接入设备可对背包式电池包800进行充/放电;
背包式电池包800包括:
背包壳体80,其内设置有电芯组件120和充放电的控制系统;
背带81,安装在背包壳体80的一侧上;
至少一个Type-C接口122,各Type-C接口122设置于背包壳体80上;
充放电的控制系统串接在电芯组件120和各Type-C接口122之间,用于检测各Type-C接口122上接入设备的设备类型,并根据设备类型对背包式电池包800进行充/放电;设备类型包括充电设备和放电设备。
接入设备,其上设有至少一个Type-C接口,接入设备的各Type-C接口与电池包的各Type-C接口122相匹配,互为公母头;此外,接入设备还可设有插片,接入设备还可通过插片为电池包充/放电,相应的,相互电连接的插片和背包式电池包的供电端子132也互为公母头。
如图121至图124所示,接入设备包括:
至少一个充电设备;
放电设备包括第一工具3001和第二工具3002;
当背包式电池包800上连接有第一工具3001和第二工具3002时,背包式电池包800同时输出第一电压到第一工具3001、输出第二电压到第二工具3002。
可选的,接入设备包括:
至少一个充电设备;
放电设备包括第一工具3001或第二工具3002;
当背包式电池包100上连接有第一工具3001或第二工具3002时,背包式电池包800输出第一电压到第一工具3001,或,输出第二电压到第二工具3002。
其中,第一电压和第二电压根据放电设备的参数值而定。
所述背包式电池包内设置有充放电的控制系统,该充放电的控制系统与上述实施例中的电池包的充放电系统相类似,其充放电方法也相类似,再次不再重复赘述。
本发明支持USB PD快充协议,能实时检测Type-C接口上接入设备的设备类型,根据设备类型对背包式电池包进行充/放电,不仅能通过Type-C接口进行快速充电,还能为具备Type-C接口的接入设备进行快速放电,且充/放电功率能够在一定范围根据接入设备进行调整,适用于多种不同电压的接入设备,方便用户的携带、使用;并在充/放电过程中,实时检测背包式电池包的技术参数,根据该技术参数执行充/放电保护逻辑,动态调整输入/输出功率,可有效保护背包式电池包安全,延长背包式电池包使用寿命。
本发明提出一种背负式电池包及电动工具系统,电池包壳体上设置有背带,当需要携带电池包到户外工作时,可以通过背带背起电池包,方便省力,并且该背负式电池包上设置有多个Type-C接口,能够同时进行充放电。且每个Type-C接口可接入不同的电动工具或充电器,以提高工作效率和充电效率。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明,本领域技术人员应当理解,本申请中所涉及的范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案,例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
除说明书所述的技术特征外,其余技术特征为本领域技术人员的已知技术,为突出本发明的创新特点,其余技术特征在此不再赘述。

Claims (20)

  1. 一种电池包,其特征在于,包括:
    电池包壳体,其内安装有电芯组件和电路板,所述电路板与所述电芯组件之间电性连接;
    多个Type-C接口,安装在所述电路板上,且与所述电路板电性连接,以实现电芯组件与Type-C接口之间的电性连接,并用于连接外部设备。
  2. 根据权利要求1所述的电池包,其特征在于,所述电池包壳体的上壳体上设置有限位件安装槽,所述限位件安装槽内安装有限位件,并通过安装槽盖进行密封。
  3. 根据权利要求2所述的电池包,其特征在于,所述限位件包括限位按压部和限位柱,当所述电池包连接所述外部工具时,所述限位柱用于实现所述电池包与所述外部工具之间的固定连接,所述限位按压部用于供操作者操作,以将所述电池包与外部工具解锁分离。
  4. 根据权利要求3所述的电池包,其特征在于,所述电池包壳体上还设有显示装置,所述显示装置用于显示电池包的剩余电量和/或电压和/或电流和/或电芯温度和/或故障。
  5. 根据权利要求1所述的电池包,其特征在于,所述电池包还包括供电端子,安装在所述电路板上,并与所述电路板电性连接。
  6. 根据权利要求1所述的电池包,其特征在于,所述壳体上设置有插接口,所述Type-C接口位于所述插接口内,所述插接口处设置有防护盖。
  7. 根据权利要求6所述的电池包,其特征在于,所述防护盖为防护塞,所述防护塞的一端插入所述Type-C接口内,与所述Type-C接口相匹配,另一端与所述插接口相匹配。
  8. 根据权利要求6所述的电池包,其特征在于,所述防护盖为旋转防护盖,所述旋转防护盖与所述Type-C接口相匹配,且所述旋转防护盖的一端通过一旋转轴与所述电池包壳体转动连接。
  9. 根据权利要求6所述的电池包,其特征在于,所述防护盖为防护滑盖,与所述Type-C接口相匹配。
  10. 根据权利要求1所述的电池包,其特征在于,所述Type-C接口至少包括第一Type-C接口和第二Type-C接口,所述第一Type-C接口和所述第二Type-C接口分别装配在所述电路板上,且与所述电路板电连接。
  11. 根据权利要求10所述的电池包,其特征在于,所述电池包壳体的顶部上设置有一插接部,所述插接部的两侧设置有滑轨。
  12. 根据权利要求11所述的电池包,其特征在于,所述电池包壳体的顶部安装有端子接口,所述端子接口位于所述滑轨之间,且所述端子接口与所述电路板电性连接。
  13. 根据权利要求11所述的电池包,其特征在于,所述第一Type-C接口和所述第二Type-C接口位于所述插接部的两侧或同一侧。
  14. 根据权利要求11所述的电池包,其特征在于,所述第一Type-C接口和所述第二Type-C接口位于所述插接部的顶面。
  15. 根据权利要求10所述的电池包,其特征在于,所述第一Type-C接口和所述第二Type-C接口位于所述电池包壳体的同一侧或两侧。
  16. 根据权利要求11所述的电池包,其特征在于,所述电池包壳体包括上壳体和下壳体,所述上壳体与所述下壳体固定连接,且所述插接部位于所述上壳体的顶面。
  17. 根据权利要求16所述的电池包,其特征在于,所述下壳体与上壳体连接的边缘设置有一圈密封槽,所述密封槽内安装有密封圈,当所述下壳体与所述上壳体固定装配时,所述密封圈在所述上壳体与所述下壳体的挤压下变形以填充所述上壳体与所述下壳体之间的间隙形成密封。
  18. 一种电动工具系统,其特征在于,包括电池包和电动工具,所述电动工具包括执行相应功能的功能模块,多个工具Type-C接口,设置在所述电动工具上;
    所述电池包包括:所述电池包包括电池包壳体,其内安装有电芯组件和电路板,所述电路板与所述电芯组件之间电性连接;
    多个Type-C接口,安装在所述电路板上,且与所述电路板电性连接,以实现电芯组件与Type-C接口之间的电性连接,并用于连接外部设备;
    当所述电池包与所述电动工具连接时,所述多个电池包Type-C接口与所述多个工具Type-C接口连接,所述电池包向所述电动工具输出能量,以驱动所述功能模块工作。
  19. 根据权利要求18所述的一种电动工具系统,其特征在于,所述电动工具为打草机、修枝机、吹风机、链锯、推草机、清洗机、吸尘器、电钻、电锤、坐骑式割草机、智能割草机、智能清洁设备中的一种。
  20. 一种充电系统,其特征在于,包括:
    电池包,所述电池包包括电池包壳体,其内安装有电芯组件和电路板,所述电路板与所述电芯组件之间电性连接;
    多个Type-C接口,安装在所述电路板上,且与所述电路板电性连接,以实现电芯组件与Type-C接口之间的电性连接,位于所述电池包壳体上的插接口内,并用于连接外部设备;
    充电器,所述充电器包括充电器壳体,其内安装有第一电路板,所述充电器壳体上设置有第一充电接口,所述第一充电接口与所述第一电路板电性连接;
    当所述充电器为所述电池包充电时,所述第一充电接口和所述Type-C接口电性连接。
PCT/CN2022/087124 2021-05-28 2022-04-15 一种电池包、电动工具系统及充电系统 WO2022247517A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3220576A CA3220576A1 (en) 2021-05-28 2022-04-15 Battery pack, power tool system, and charging system
EP22810250.5A EP4350866A1 (en) 2021-05-28 2022-04-15 Battery pack, electric tool system, and charging system
AU2022282142A AU2022282142A1 (en) 2021-05-28 2022-04-15 Battery pack, electric tool system, and charging system
US18/519,071 US20240088506A1 (en) 2021-05-28 2023-11-27 Battery pack, power tool system and charging system

Applications Claiming Priority (54)

Application Number Priority Date Filing Date Title
CN202110599060.XA CN114447533B (zh) 2020-11-06 2021-05-28 电池包、供电系统及工具系统
CN202121190274.3U CN215418445U (zh) 2020-11-06 2021-05-28 电池包、供电系统及工具系统
CN202121182145.XU CN218939916U (zh) 2020-11-06 2021-05-28 一种防水电池包
CN202110596913.4 2021-05-28
CN202121181551.4U CN215419646U (zh) 2020-11-06 2021-05-28 一种充电器及充电系统
CN202110598060.8A CN114447457A (zh) 2020-11-06 2021-05-28 电池包、供电系统及工具系统
CN202110597537.0 2021-05-28
CN202110599060.X 2021-05-28
CN202110594819.5A CN114530899A (zh) 2020-11-06 2021-05-28 一种适配装置及工具系统
CN202110594819.5 2021-05-28
CN202110599056.3 2021-05-28
CN202110592720.1A CN114448008A (zh) 2020-11-06 2021-05-28 一种多槽充电器及充电系统
CN202121190241.9U CN214707257U (zh) 2021-05-28 2021-05-28 一种多槽充电器及充电系统
CN202110597537.0A CN114448011A (zh) 2020-11-06 2021-05-28 一种充电控制系统、方法、电池包及充电组合
CN202110592720.1 2021-05-28
CN202110596769.4 2021-05-28
CN202121186466.7 2021-05-28
CN202121181551.4 2021-05-28
CN202110594839.2 2021-05-28
CN202121189296.8U CN218548688U (zh) 2020-11-06 2021-05-28 一种适配装置及工具系统
CN202121189483.6U CN218939917U (zh) 2020-11-06 2021-05-28 一种电池包、电动工具系统及系统
CN202110599056.3A CN114448012A (zh) 2020-11-06 2021-05-28 一种充放电的通信控制系统、方法及电池包
CN202121190311.0U CN214707258U (zh) 2021-05-28 2021-05-28 一种适配装置及充电系统
CN202110596483.6A CN114448010A (zh) 2020-11-06 2021-05-28 一种充放电的控制系统、方法及电池包
CN202110599414.0 2021-05-28
CN202110599310.X 2021-05-28
CN202110596769.4A CN114447450A (zh) 2020-11-06 2021-05-28 一种背包式电池包、充放电的控制方法及充放电组合
CN202110599310.XA CN114530900A (zh) 2020-11-06 2021-05-28 一种充电器、电池包、充电组合及充电方法
CN202110598060.8 2021-05-28
CN202110596483.6 2021-05-28
CN202121189296.8 2021-05-28
CN202110592719.9 2021-05-28
CN202121190241.9 2021-05-28
CN202121186384.2 2021-05-28
CN202121182145.X 2021-05-28
CN202121180953.2 2021-05-28
CN202121189685.0U CN220400799U (zh) 2020-11-06 2021-05-28 一种电池包、电动工具及充电系统
CN202121190274.3 2021-05-28
CN202110596913.4A CN114447507B (zh) 2020-11-06 2021-05-28 电池包、电动工具及供电系统
CN202121180953.2U CN218548687U (zh) 2020-11-06 2021-05-28 一种充电器及充电系统
CN202121189300.0U CN215911524U (zh) 2020-11-06 2021-05-28 一种电动工具系统
CN202110592719.9A CN114448007A (zh) 2020-11-06 2021-05-28 一种适配装置及充电系统
CN202121186466.7U CN218919168U (zh) 2020-11-06 2021-05-28 电池包、供电系统及工具系统
CN202110599414.0A CN114448013A (zh) 2020-11-06 2021-05-28 一种充放电的控制系统、方法及电池包
CN202121190311.0 2021-05-28
CN202121189483.6 2021-05-28
CN202110594839.2A CN114448009A (zh) 2020-11-06 2021-05-28 一种电池包、电动工具系统及系统
CN202121189300.0 2021-05-28
CN202121189685.0 2021-05-28
CN202121186384.2U CN214797631U (zh) 2020-11-06 2021-05-28 电池包、电动工具及供电系统
CN202121540534.5 2021-07-07
CN202110766898.3 2021-07-07
CN202110766898.3A CN115602980A (zh) 2021-07-07 2021-07-07 一种防水电池包
CN202121540534.5U CN215070214U (zh) 2021-07-07 2021-07-07 一种防水电池包

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/519,071 Continuation US20240088506A1 (en) 2021-05-28 2023-11-27 Battery pack, power tool system and charging system

Publications (1)

Publication Number Publication Date
WO2022247517A1 true WO2022247517A1 (zh) 2022-12-01

Family

ID=84229494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087124 WO2022247517A1 (zh) 2021-05-28 2022-04-15 一种电池包、电动工具系统及充电系统

Country Status (5)

Country Link
US (1) US20240088506A1 (zh)
EP (1) EP4350866A1 (zh)
AU (1) AU2022282142A1 (zh)
CA (1) CA3220576A1 (zh)
WO (1) WO2022247517A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017189786A1 (en) * 2016-04-26 2017-11-02 Black & Decker Inc. Cordless power tool and multi-purpose battery pack system
CN207868253U (zh) * 2018-03-02 2018-09-14 东莞市倍励达数码科技有限公司 一种多功能摄像机电池
CN208539628U (zh) * 2018-08-14 2019-02-22 深圳快门摄影器材有限公司 一种用于具有d-tap母座的摄像机电池转换器
CN112259866A (zh) * 2020-11-06 2021-01-22 格力博(江苏)股份有限公司 电池包、电动工具及系统
CN214797631U (zh) * 2020-11-06 2021-11-19 格力博(江苏)股份有限公司 电池包、电动工具及供电系统
CN215070214U (zh) * 2021-07-07 2021-12-07 格力博(江苏)股份有限公司 一种防水电池包

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017189786A1 (en) * 2016-04-26 2017-11-02 Black & Decker Inc. Cordless power tool and multi-purpose battery pack system
CN207868253U (zh) * 2018-03-02 2018-09-14 东莞市倍励达数码科技有限公司 一种多功能摄像机电池
CN208539628U (zh) * 2018-08-14 2019-02-22 深圳快门摄影器材有限公司 一种用于具有d-tap母座的摄像机电池转换器
CN112259866A (zh) * 2020-11-06 2021-01-22 格力博(江苏)股份有限公司 电池包、电动工具及系统
CN214797631U (zh) * 2020-11-06 2021-11-19 格力博(江苏)股份有限公司 电池包、电动工具及供电系统
CN215418445U (zh) * 2020-11-06 2022-01-04 格力博(江苏)股份有限公司 电池包、供电系统及工具系统
CN215911524U (zh) * 2020-11-06 2022-02-25 格力博(江苏)股份有限公司 一种电动工具系统
CN215070214U (zh) * 2021-07-07 2021-12-07 格力博(江苏)股份有限公司 一种防水电池包

Also Published As

Publication number Publication date
EP4350866A1 (en) 2024-04-10
AU2022282142A1 (en) 2023-12-21
US20240088506A1 (en) 2024-03-14
CA3220576A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US11601002B2 (en) Electrical energy transmission apparatus, method for controlling same, and power supply system
US20210044123A1 (en) Multi-functional portable power charger
CN220400799U (zh) 一种电池包、电动工具及充电系统
US20050280398A1 (en) Mobile charger
CN107492920B (zh) 一种通用移动电源
WO2022247517A1 (zh) 一种电池包、电动工具系统及充电系统
WO2021185307A1 (zh) 直流电源
WO2021115330A1 (zh) 电动车
CN209426591U (zh) 一种无人机电池移动充电箱
CN218039390U (zh) 用于无绳电动工具的电池包
CN214707258U (zh) 一种适配装置及充电系统
CN218548631U (zh) 一种中框
CN212085846U (zh) 一种通用型模块电池
CN214707257U (zh) 一种多槽充电器及充电系统
CN218648099U (zh) 电池包
CN115799668A (zh) 用于无绳电动工具的电池包
CN117293461A (zh) 一种中框
CN201252142Y (zh) 充电器
CA3224504A1 (en) Energy storage device and energy storage power supply thereof
CN117940228A (zh) 电动洗车器及电动洗车器系统
CN116438724A (zh) 一种电池包、工具系统、充电系统、适配器及使用方法
CN117937016A (zh) 电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810250

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3220576

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022282142

Country of ref document: AU

Ref document number: AU2022282142

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022282142

Country of ref document: AU

Date of ref document: 20220415

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022810250

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022810250

Country of ref document: EP

Effective date: 20240102