WO2021185307A1 - 直流电源 - Google Patents

直流电源 Download PDF

Info

Publication number
WO2021185307A1
WO2021185307A1 PCT/CN2021/081485 CN2021081485W WO2021185307A1 WO 2021185307 A1 WO2021185307 A1 WO 2021185307A1 CN 2021081485 W CN2021081485 W CN 2021081485W WO 2021185307 A1 WO2021185307 A1 WO 2021185307A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
charging
module
adapter
battery
Prior art date
Application number
PCT/CN2021/081485
Other languages
English (en)
French (fr)
Inventor
何明明
陈小勇
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2021185307A1 publication Critical patent/WO2021185307A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a direct current power supply, in particular to a direct current power supply for electric tools.
  • the existing DC power supplies for power tools on the market can usually only be charged with chargers for power tools.
  • the characteristic of this kind of charger is that its output voltage to the DC power supply must be higher than the full charging voltage of the DC power supply.
  • household electronic devices are very common.
  • the chargers of mobile phones, tablet computers, notebook computers and other household electronic devices can output charging voltage between 5-20V, and the DC power supply for electric tools requires high-power usage.
  • the voltage is generally above 20V. This requirement makes the DC power supply for electric tools unable to be charged by household electronic device chargers.
  • the invention provides a DC power supply for electric tools, which can use the lower charging voltage to fully charge the DC power supply even when the charging voltage output by the external electronic device charger is lower than the full charging voltage of the DC power supply.
  • a DC power supply capable of supplying power to an electric tool, the DC power supply comprising: an energy storage module, the nominal full charging voltage is a first preset voltage; an electronic device interface, which receives an external power input; The power supply is lower than the first preset voltage; a charging circuit, connected to the electronic device interface, raises the power supply voltage input from the electronic device interface to the first preset voltage, and charges the energy storage module When the charging of the energy storage module is completed, the charging capacity of the energy storage module reaches more than 80% of its nominal capacity.
  • the charging circuit includes a main control module and a first charging branch and a second charging branch connected in parallel, and the first charging branch directly outputs the power supply voltage input by the electronic device interface to the energy storage Module, the second charging branch boosts the power supply voltage input from the electronic device interface to the first preset voltage and then outputs it to the energy storage module, and the main control module monitors the charging state of the energy storage module , Control the first charging branch and the second charging branch to conduct alternatively according to the state of charge.
  • the second charging branch includes a first switch and a DC-DC circuit connected in series; the controlled end of the first switch is connected to the main control module for controlling it on the main control module.
  • the DC-DC circuit When turned on, the DC-DC circuit is turned on to boost the power supply voltage input from the electronic device interface to the first preset voltage.
  • the main control module is used to monitor the magnitude of the charging current of the energy storage module and the magnitude of the real-time voltage of the energy storage module, when the charging current reaches a first preset current or the real-time voltage When the first preset voltage is reached, it is determined that the energy storage module is full.
  • the main control module is configured to control the conduction of the second charging branch when charging is started.
  • the main control module is also used to monitor the size of the power supply voltage input by the electronic device interface, and when the power supply voltage is greater than the real-time voltage, control to switch the first charging support Road conduction.
  • the main control module is further configured to control to switch the second charging branch to be turned on when the first charging branch is turned on and the charging current reaches a second preset current; wherein, The electrical second preset current is greater than the first preset current.
  • the main control module is further configured to control to switch the second charging branch to be turned on when the first charging branch is turned on and the real-time voltage reaches a second preset voltage;
  • the second preset voltage is less than the first preset voltage.
  • the main control module is further configured to control the first charging branch when the real-time voltage reaches a second preset voltage and the charging current reaches the second charging current.
  • the second charging branch is turned on; wherein the second preset current is greater than the first preset current, and the second preset voltage is less than the first preset voltage.
  • the electronic device interface is a USBTYPE-C interface.
  • the present invention also provides another DC power supply capable of supplying power to electric tools.
  • the DC power supply includes: an energy storage module, the nominal full charging voltage is the first preset voltage; an electronic device interface, which receives an external power input; and a charging circuit , Connect to the electronic device interface, convert the power input from the electronic device interface into a power source suitable for charging the energy storage module, and charge the energy storage module; the power input from the electronic device interface is lower than the first A preset voltage.
  • the charging circuit determines that the energy storage module is fully charged and stops charging, the capacity received by the energy storage module reaches more than 80% of its nominal capacity.
  • the charging circuit includes a boost circuit, and the boost circuit boosts the power input from the electronic device interface to the first preset voltage.
  • the charging circuit includes a main control module and a first charging branch and a second charging branch connected in parallel, and the first charging branch directly outputs the power input from the electronic device interface to the energy storage module ,
  • the second charging branch circuit boosts the power input from the electronic device interface to the energy storage module after being boosted by the boost circuit, and the main control module detects the charging state of the DC power source, and controls the first charging circuit according to the charging state And the second charging circuit is turned on alternatively.
  • the main control module controls the first charging branch to be turned on, and when the charging current is not greater than the preset value, the main control module controls the second charging branch to be turned on .
  • the boost circuit is implemented by a dedicated charging chip, and the charging current output by the dedicated charging chip is less than the ratio of the capacity of the DC power supply to hours.
  • the DC power source is a battery pack
  • the battery pack is detachably connected to the electric tool to supply power to the electric tool.
  • the battery pack includes an adapter and a battery module, and the battery module is detachably matched with the adapter.
  • the DC power source is a battery module that forms a battery pack
  • the battery pack is detachably connected to the electric tool to supply power to the electric tool
  • the battery module includes a casing and is housed in the The battery pack of the shell.
  • the electronic device interface is provided on the battery module.
  • the electronic device interface is a USB TYPE-C interface
  • the input voltage of the USB TYPE-C interface is 20V
  • the first preset voltage is between 20V and 21V.
  • the present invention also provides a third type of DC power supply, which can supply power for electric tools.
  • the DC power supply includes: an energy storage module, the highest voltage that can be output is the first preset voltage; an electronic device interface that receives an external power input; and a charging circuit , Connect to the interface of the electronic device, convert the power input from the interface of the electronic device into a power source suitable for charging the energy storage module, and charge the energy storage module; the power input from the interface of the electronic device is not higher than the At 80% of the first preset voltage, the DC power supply can be fully charged with more than 80% of its capacity when the charging ends.
  • the charging circuit includes a booster circuit, and the booster circuit boosts the power input from the interface of the electronic device to above the first preset voltage.
  • the charging circuit includes a main control module and a first charging branch and a second charging branch connected in parallel, the first charging branch directly outputs the power input from the electronic device interface to the energy storage module,
  • the second charging branch circuit boosts the power input from the electronic device interface to the energy storage module after being boosted by the boost circuit.
  • the main control module detects the charging state of the DC power supply, and controls the first charging circuit and the charging state according to the charging state.
  • the second charging circuit is turned on alternatively.
  • the main control module controls the first charging branch to be turned on, and when the charging current is not greater than the preset value, the main control module controls the second charging branch to be turned on.
  • the booster voltage is implemented by a dedicated charging chip, and the time required for the dedicated charging chip to fully charge the energy storage module is greater than 1 hour.
  • the DC power source is a battery pack
  • the battery pack is detachably connected to the electric tool to supply power to the electric tool.
  • the battery pack includes an adapter and a battery module, and the battery module is detachably matched with the adapter.
  • the DC power source is a battery module
  • the battery module is detachably connected to an adapter, and is detachably connected to the electric tool via the adapter to supply power to the electric tool.
  • the electronic device interface is a USB TYPE-C interface
  • the input voltage of the USB TYPE-C interface is 20V
  • the first preset voltage is between 20V and 21V.
  • the above-mentioned DC power supply provided by the present invention can accept the output of an external electronic device charger to charge itself, and even when the charging voltage output by the charger is lower than the full charging voltage of the DC power supply, its own capacity can be fully charged. More than 80% of the nominal capacity.
  • the present invention also provides an adapter.
  • the adapter includes: a tool power terminal group, which is detachably matched with an electric tool; The power of the group is provided to the power tool; the second power terminal group of the adapter is arranged in parallel with the first power terminal group of the adapter, and the second battery module is detachably connected to provide the power of the second battery module to the power tool
  • the adapter further includes a first switch component, a second switch component, and a main control module; the first switch component is arranged between the first power terminal group of the adapter and the tool power terminal group, the first The two switch components are arranged between the second power terminal group of the adapter and the tool power terminal group; the main control module obtains the voltage difference between the voltage of the first battery module and the voltage of the second battery module, when When the voltage difference is less than the preset voltage value, the first switch component and the second switch component are controlled to be closed.
  • the main control module obtains the voltage of the first battery module and the voltage of the second battery module, and obtains the voltage difference value according to the voltage of the first battery module and the voltage of the second battery module .
  • the adapter includes a first signal terminal group of the adapter and a second signal terminal group of the adapter, which respectively receive the status information of the first battery module and the second battery module, and the main control module according to the first signal terminal of the adapter
  • the state information obtained by the group and the second signal terminal group of the adapter obtains the voltage values of the first battery module and the second battery module.
  • the main control module controls the first switch assembly to close and the second switch assembly to open, obtain the voltage value of the first battery module through the adapter first power terminal group, and the main control module controls the first The switch component is opened and the second switch component is closed, and the voltage value of the second battery module is obtained through the second power terminal group of the adapter.
  • the main control module obtains the voltage difference between the two ends of the first switch component and the voltage difference between the two ends of the second switch component, and obtains the second The voltage difference between the voltage of one battery module and the voltage of the second battery module.
  • the main control module determines that the voltage difference exceeds a preset voltage value, and the voltage of the first battery module is higher than the voltage of the second battery module, the main control module controls the first switch component to be closed, and the second switch The component is disconnected.
  • the main control module determines that the voltage difference exceeds a preset voltage value, and the voltage of the first battery module is higher than the voltage of the second battery module, the main control module controls the first switch component to be closed, and the second switch The components are closed intermittently.
  • the first switch component includes two P-MOS transistors, and the two transistors are connected in series with each other.
  • the adapter further includes a tool signal terminal group detachably connected to the electric tool, and a power-on self-locking circuit arranged between the main control module and the first power terminal group of the adapter and the second power terminal group of the adapter ,
  • the power-on self-locking circuit includes an open state and a closed state. In the open state, the main control module enters a sleep mode in a power-down state, and in the closed state, the main control module is in a power-on state and starts working When the start switch of the electric tool is closed, the tool signal terminal group receives a trigger signal, and the power-on self-locking circuit is switched from an open state to a closed state.
  • the main control module determines that the second power terminal group of the adapter is not connected to the second battery module, it controls the first switch component to close and the second switch component to disconnect.
  • the present invention also provides a battery pack including a first battery module, a second battery module, and the adapter of any one of the foregoing, wherein the first battery module is detachably Installed on the adapter, including a first battery module power terminal set connected to the first power terminal set of the adapter; a second battery module, detachably installed on the adapter, including a second power source connected to the adapter The second battery module power terminal group connected to the terminal group.
  • the present invention also provides an electric tool, including a motor, a start switch, and a battery pack that supplies power to the motor.
  • the battery pack is as described above.
  • the start switch When the start switch is closed, the motor obtains the battery pack. Power and start working.
  • the advantage of the above-mentioned adapter, battery pack, and electric tool provided by the present invention is that the control circuit in the adapter enables multiple battery modules to be discharged in parallel, which can avoid mutual charging due to voltage difference between each other, causing potential safety hazards. At the same time, the control circuit in the adapter can automatically enter a low power consumption state when it does not need to work, so as to avoid excessive consumption of the power of the battery module.
  • the present invention also provides another adapter.
  • the adapter includes: a tool power terminal group, which can be detachably matched with an electric tool; a first power terminal group of the adapter and a first signal terminal group of the adapter, which are detachably connected to the first battery module , Provide the power of the first battery module to the electric tool, the first battery module includes a first charging power module that receives external charging energy to charge the first battery module; the adapter second power terminal group and the adapter first Two signal terminal groups, detachably connected to the second battery module, to provide the electric energy of the second battery module to the electric tool, the second battery module includes a device that receives external charging energy to charge the second battery module The second charging power supply module; the adapter further includes a switch component and a main control module; the first power terminal group of the adapter and the second power terminal group of the adapter are connected in parallel via the switch component; the first charging power module and the main control module When one of the second charging power modules receives external charging energy input, the adapter first signal
  • the main control module controls the switch assembly to close, obtain the voltage of the first battery module and the voltage of the second battery module, and determine the voltage of the first battery module and the second battery module If the voltage of ⁇ satisfies the preset condition, when the judgment result is yes, the switch assembly is controlled to be closed; when the judgment result is no, the switch assembly is controlled to open.
  • the preset condition is whether the voltage of the first battery module is not lower than the voltage of the second battery module
  • the preset condition is whether the voltage of the second battery module is not lower than the voltage of the first battery module
  • the switch assembly includes a first switch assembly and a second switch assembly, the first switch assembly is arranged between the first power terminal set of the adapter and the tool power terminal set, and the second switch assembly is arranged on the adapter. Between the first power terminal group and the tool power terminal group, the adapter first power terminal group and the adapter second power terminal group are connected in parallel via the first switch assembly and the second switch assembly.
  • the main control module controls the first switch assembly to close and the second switch assembly to open, obtain the voltage value of the first battery module through the first battery module power terminal group, and the main control module controls The first switch component is opened and the second switch component is closed, and the voltage value of the second battery module is obtained through the second battery module power terminal group.
  • the switch assembly when the main control module determines that the trigger signal comes from the first battery module signal terminal group, and the main control module determines the second battery module according to the signal transmitted by the second battery module signal terminal When fully charged, the switch assembly is controlled to turn off; when the main control module determines that the trigger signal comes from the second battery module signal terminal group, and the main control module transmits the signal according to the first battery module signal terminal When the signal determines that the first battery module is fully charged, the switch assembly is controlled to be turned off.
  • the adapter further includes a power-on self-locking circuit provided between the first power terminal group of the adapter and the second power terminal group of the adapter and the main control module, and the power-on self-locking circuit does not receive the
  • the main control module is in the power-off state and enters the sleep mode
  • the power-on self-locking circuit receives the first signal of the adapter.
  • the signal terminal group or the second signal terminal group of the adapter is in the closed state when the trigger signal is triggered, and the main control module is in the power-on state and starts to work.
  • the main control module determines that the trigger signal comes from the first battery module and the second battery module is not connected, it controls the power-on self-locking module to switch from a closed state to an off state. Open state.
  • the present invention also provides a battery pack, the battery pack comprising a first battery module, a second battery module, and the adapter as described in any one of the preceding, wherein the first battery module is detachable Groundly installed in the adapter, including a first battery module power terminal group connected to the first power terminal group of the adapter, a first battery module signal terminal group connected to the first signal terminal group of the adapter, and an external receiver A first charging power module for charging the first battery module with charging energy; a second battery module, detachably mounted on the adapter, including a second battery module connected to the second power terminal group of the adapter A power terminal group, a second battery module signal terminal group connected to the second signal terminal group of the adapter, and a second charging power module that receives external charging energy to charge the second battery module.
  • the first battery module is detachable Groundly installed in the adapter, including a first battery module power terminal group connected to the first power terminal group of the adapter, a first battery module signal terminal group connected to the first signal terminal group of
  • the first battery module further includes a first battery module charging management module connected to the first charging power supply module, and the first battery module charging management module monitors the state of the first battery module , And control the charging process of the first battery module by the first charging power module;
  • the second battery module further includes a second battery module charging management module connected to the second charging power module, the The second battery module charging management module monitors the state of the second battery module, and controls the charging process of the second battery module by the second charging power module.
  • the first charging power supply module and the second charging power supply module include a USB TYPE C energy transmission protocol, which receives power input from an external USB TYPE C interface and converts it into energy suitable for charging the battery module.
  • the first charging power supply module and the second charging power supply module include a wireless charging receiving module, which receives energy sent by an external wireless charging transmitting module and converts it into energy suitable for charging the battery module.
  • the present invention also provides an electric tool, including a motor, a start switch, and a battery pack for powering the motor.
  • the battery pack is as described in any one of the preceding items.
  • the start switch When the start switch is closed, the motor obtains State the power of the battery pack to start the work.
  • the advantage of the above-mentioned adapter, battery pack, and electric tool provided by the present invention is that the control circuit in the adapter allows any one of the battery modules to be connected to a charging power source. The module is charged. At the same time, the control circuit in the adapter can automatically enter a low power consumption state when it does not need to work, so as to avoid excessive consumption of the power of the battery module.
  • the present invention also provides a third type of adapter, which is detachably connected to an electric tool and detachably connected to the battery module to provide the electric energy of the battery module to the electric tool.
  • the adapter includes: an adapter power terminal Group and adapter signal terminal group, detachably connected with the battery module; tool power terminal group and tool signal terminal group, detachably connected with the power tool; main control module, consumes the power of the battery module to start work; power on
  • the self-locking circuit is arranged between the main control module and the adapter power terminal group, and is optionally in an open state or a closed state.
  • the main control module When the power-on self-locking circuit is in the open state, the main control module When the power-off state enters the sleep mode, and the power-on self-locking circuit is in the closed state, the main control module is in the power-on state and starts to work.
  • the power-on self-locking circuit is switched from an open state to a closed state.
  • the battery module further includes a charging power module that receives external charging energy to charge the battery module, and when the charging power module receives an input of external charging energy, the battery module signal terminal set A trigger signal is output to the adapter signal terminal group, and when the adapter signal terminal group receives the trigger signal, the power-on self-locking circuit is switched from an open state to a closed state.
  • a charging power module that receives external charging energy to charge the battery module, and when the charging power module receives an input of external charging energy, the battery module signal terminal set A trigger signal is output to the adapter signal terminal group, and when the adapter signal terminal group receives the trigger signal, the power-on self-locking circuit is switched from an open state to a closed state.
  • the adapter power terminal group includes an adapter first power terminal group and an adapter second power terminal group connected in parallel
  • the adapter signal terminal group includes an adapter first signal terminal group and an adapter second signal terminal group, when When the main control module determines that the trigger signal comes from the adapter signal terminal group and the second battery module is not connected to the adapter, it controls the power-on self-locking circuit to switch from a closed state to an open state.
  • the present invention also provides a battery pack that includes a battery module and the adapter as described in any one of the preceding items, wherein the battery module includes multiple battery cells and a battery module that outputs electrical energy.
  • the battery module power terminal group is matched with the adapter power terminal group, and the battery module signal terminal group is connected to the adapter signal. Terminal group matching.
  • the present invention also provides an electric tool.
  • the electric tool includes a start switch, a motor, and a battery pack that supplies power to the motor.
  • the battery pack is as described above. When the start switch is closed, the motor obtains The power of the battery pack starts work.
  • the advantage of the above-mentioned adapter, battery pack, and electric tool provided by the present invention is that the control circuit in the adapter automatically enters a low power consumption state when it does not need to work, so as to avoid excessive consumption of the power of the battery module.
  • the present invention also provides a battery module, which is detachably matched with an adapter, and provides electrical energy to an electric tool via the adapter.
  • the battery module includes a housing, including six surfaces, at least one of which is rectangular;
  • the core group is housed in the casing, and the batteries are connected in series and/or in parallel;
  • the positive terminal of the battery module is connected to the positive electrode of the battery pack;
  • the negative terminal of the battery module is connected to the negative electrode of the battery pack; control Module, when the positive terminal of the battery module and the negative terminal of the battery module are short-circuited, the power output of the battery pack is blocked.
  • control module includes a switch circuit connected in series between the positive terminal of the battery module and the positive electrode of the battery pack, or between the negative terminal of the battery module and the negative electrode of the battery pack .
  • the switch circuit is a fuse.
  • the switch circuit is a P-MOS switch transistor
  • the battery module interface further includes a battery module signal terminal
  • the battery module signal terminal is connected to the signal terminal of the adapter
  • the P-MOS transistor The grid G is connected to the signal terminal of the battery module
  • the source S is connected to one of the positive electrode of the battery pack or the negative electrode of the battery pack
  • the drain D is connected to one of the positive terminal of the battery module or the negative terminal of the battery pack.
  • the above-mentioned battery module provided by the present invention can exist and be transported alone without causing danger.
  • the present invention also provides another battery module.
  • the battery module includes: a housing, including six faces, at least one of which is rectangular; a battery cell group housed in the housing, and the battery cells are connected in series And/or connected in parallel; the battery module interface can be detachably matched with an adapter, through which the adapter provides electric power to the electric tool or receives the electric power of the electric tool charger to charge the battery pack; the electronic device interface, optional Ground provides power to an external electronic device or receives power input from an external power source to charge the battery pack, the electronic device interface is a USB Type-c interface; the control module monitors the state of the battery pack and controls the battery pack The process of discharging to the electronic device via the electronic device interface or the process of charging the battery pack by the external power supply.
  • the battery module includes a wireless charging receiving module, and the wireless charging receiving module receives energy sent by an external wireless charging transmitting module to charge the battery module.
  • control module controls the process of discharging the battery pack to the electric tool via the battery module interface or the process of charging the battery pack by the electric tool charger.
  • the above-mentioned battery module provided by the present invention can be charged when a charging power source is connected, and when a power-consuming device is connected, it can supply power to the power-consuming device.
  • the present invention also provides an adapter.
  • the adapter includes: an adapter interface that detachably cooperates with the battery module to receive power from the battery module; The electrical energy of the power tool is provided to the power tool, or the electrical power of the power tool charger is received to charge the battery module; the adapter includes at least one of the following three components: an electronic device interface, a wireless charging receiving module, and a control circuit;
  • the electronic device interface has at least one of the following three functions: powering the electronic device connected to it; receiving external power input to charge the battery module connected to it; data exchange with external electronic devices; the wireless charging reception
  • the module can receive the energy sent by the external wireless charging transmitter module to charge the battery module;
  • the control circuit has at least one of the following functions: monitoring the status information of the battery module and sending the monitoring result to the outside; monitoring the battery Module status information and control the process of charging the battery module through the electronic device interface; monitor the status information of the battery module and control the process of discharging the battery module through the electronic device interface; monitor the battery The status
  • the electronic device interface is a USB TYPE-C interface.
  • the present invention also provides a battery pack, the battery pack includes: an adapter, including a tool interface and an adapter interface, the tool interface detachably cooperates with the electric tool, and provides the electric energy received from the adapter interface to the electric tool;
  • the set is detachably mounted on the adapter and includes a battery module interface, which is detachably connected to the adapter interface to provide power to the adapter interface; USB type-c interface, which receives the input of external power , To charge the battery pack.
  • USB type-c interface is provided on the adapter.
  • USB type-c interface is provided on the battery module.
  • the USB type-c interface can be selectively connected to an external electronic device to supply power to the electronic device.
  • the battery pack further includes a wireless charging receiving module, and the wireless charging receiving module receives energy sent by an external wireless charging transmitting module to charge the battery module.
  • the present invention also provides a battery pack system, the battery pack system includes: an adapter, including a tool interface and an adapter interface, the tool interface detachably cooperates with the electric tool, and provides the electric power received from the adapter interface to the electric tool;
  • the first battery module is detachably mounted on the adapter, and includes a first battery module interface, the first battery module interface is detachably connected to the adapter interface, and the first battery module is detachably connected to the adapter interface.
  • the first battery module interface provides power to the adapter interface;
  • a second battery module detachably mounted on the adapter, includes a second battery module interface, and the second battery module interface is connected to the adapter
  • the interface is detachably connected, the second battery module provides power to the adapter interface through the second battery module interface, and the number of cells contained in the second battery module is different from that of the first battery module.
  • the number of battery cells included in the group; the adapter can be selectively connected to one of the first battery module and the second battery module.
  • the voltage of the first battery module is the same as the voltage of the second battery module, and the capacity of the first battery module is different from the capacity of the second battery module.
  • the present invention also provides another battery pack system.
  • the battery pack system includes an adapter including a first adapter and a second adapter; the first adapter includes a first tool interface and a first adapter interface, and the first tool The interface is detachably matched with the electric tool to provide the electric energy received from the first adapter interface to the electric tool; the second adapter includes a second tool interface and a second adapter interface, the second tool interface is detachably Cooperating with an electric tool, the electric energy received from the second adapter interface is provided to the electric tool; the battery module includes a first battery module and a second battery module; the first battery module is detachably mounted on The first adapter or the second adapter includes a first battery module interface, and the first battery module interface is detachably connected to the first adapter interface or the second adapter interface, and is connected to the The first adapter interface or the second adapter interface provides power; the second battery module is detachably mounted on the first adapter or the second adapter, and includes a second battery module interface,
  • the adapter includes a USB interface that is electrically connected to the adapter interface, and charges the battery module through the adapter interface or transmits the power of the battery module to the outside.
  • the adapter includes a wireless charging receiving module electrically connected to the adapter interface, and the wireless charging receiving module receives an external wireless charging power input, and charges the battery module through the adapter interface.
  • the adapter includes a control circuit that monitors the status information of the battery module through the adapter interface, and transmits the information to a tool interface, and transmits the information to an external device connected to the tool interface through the tool interface.
  • the first battery module and the second battery module are connected in parallel or in series to the second adapter interface.
  • the second adapter includes an anti-mutual charging circuit
  • the first battery module and the second battery module are connected in parallel to the second adapter interface via the anti-mutual charging circuit, and the anti-mutual charging The circuit prevents the battery module with a high voltage in the first battery module and the second battery module from charging the battery module with a low voltage.
  • the battery module includes a USB interface, and the USB interface receives an external power input to charge the battery module, or transmits the electric energy of the battery module to the outside via the USB interface.
  • the battery module includes a wireless charging receiving module, and the wireless charging receiving module receives energy sent by an external wireless charging transmitting module to charge the battery module.
  • the second adapter further includes a parallel charging circuit, the parallel charging circuit is connected to the USB ports or wireless charging receiving modules of a plurality of battery modules, when any one of the USB ports or wireless charging receiving modules receives energy input , The parallel charging circuit outputs the received electric energy to all battery modules.
  • the battery module includes a control circuit that monitors the state information of the battery module, and transmits the state information of the battery pack to the outside or controls the charging and discharging process of the battery module according to the state information.
  • the present invention also provides another battery pack, the battery pack includes: an adapter, including a tool interface and an adapter interface, the tool interface detachably cooperates with the electric tool, and provides the electric energy received from the adapter interface to the electric tool, so The tool interface is detachably connected to an electric tool charger to charge the battery pack; the battery module is detachably mounted on the adapter, and includes a battery module interface and an electronic device interface, and the battery module interface is connected to the battery pack.
  • the adapter interface is detachably connected, the battery module provides power to the adapter interface via the battery module interface, and the electronic device interface can selectively supply power to an external electronic device or connect to an external power supply device
  • the battery module is charged;
  • a first control module is arranged on the adapter and monitors the state parameters when the battery module is discharged to the electric tool or when the electric tool charger is charging it;
  • a second control module Set in the battery module, monitor the state parameters when the battery module is discharged to the electronic device or charged by the external power supply device, and control the discharging process of the battery module to the electronic device And the process of charging the external power supply device.
  • the first control module controls at least one of the process of discharging the battery module to the electric tool or the process of charging it by the electric tool charger according to the monitored state parameters.
  • the present invention also provides an electric tool, which is characterized by comprising a motor and a battery pack for supplying power to the motor, and the battery pack is as described in any one of the foregoing.
  • the present invention also provides another battery pack, the battery pack includes: an adapter, including a tool interface and an adapter interface, the tool interface detachably cooperates with the electric tool, and provides the electric energy received from the adapter interface to the electric tool; a battery;
  • the module is detachably mounted on the adapter and includes a battery module interface, the battery module interface is detachably connected to the adapter interface, and the battery module is connected to the adapter via the battery module interface
  • the interface provides power; the installation space of the adapter is expandable, and has a first installation space in the first state and a second installation space in the second state, the first installation space is smaller than the second installation space, the battery module It includes a first battery module and a second battery module.
  • the adapter can install one of the first battery module and the second battery module alternatively.
  • the adapter can install the first battery module at the same time. Group and second battery module.
  • the first battery module and the second battery module are connected in parallel to the adapter interface.
  • the present invention also provides another electric tool.
  • the electric tool includes: a motor; an energy connection part, including an energy interface, which receives external electric energy input to supply power to the motor; a battery module, including six surfaces, at least one of which is rectangular, It is detachably connected to the energy connection part and includes a battery module interface.
  • the battery module interface is detachably connected to the energy interface.
  • the energy interface provides electric energy to the motor.
  • the battery module can It is detachably mated with an adapter, and supplies power to the second electric tool through the adapter, and the second electric tool is detachably connected to the battery pack and is powered by the battery pack.
  • the battery module includes a casing
  • the casing includes an upper casing and a lower casing
  • two parallel guide rails are provided on the top surface of the upper casing.
  • a sliding groove matched with the guide rail is provided on the energy connection part and the adapter.
  • the present invention also provides another battery pack, the battery pack includes: an adapter, including a tool interface and an adapter interface, the tool interface detachably cooperates with the electric tool, and provides the electric energy received from the adapter interface to the electric tool; a battery;
  • the module is detachably mounted on the adapter, and includes a battery module interface, the battery module interface is detachably connected to the adapter interface, and provides power to the adapter interface; an electronic device interface, which receives input from an external power source, Charge the battery pack.
  • the electronic device interface is a USB type-c interface.
  • the electronic device interface is provided on the adapter.
  • the electronic device interface is provided on the battery module.
  • the present invention also provides another battery pack, the battery pack includes: an adapter, including a tool interface and an adapter interface, the tool interface detachably cooperates with the electric tool, and provides the electric energy received from the adapter interface to the electric tool;
  • the second battery module which is detachably mounted on the adapter, includes a second battery module interface, and the second battery module interface is connected to the adapter interface Removably connected, the second battery module provides power to the adapter interface through the second battery module interface, and the first battery module interface and the second battery module interface are connected in parallel to the adapter interface. ⁇ Adapter interface.
  • the battery pack further includes a third battery module, the third battery module is detachably mounted on the adapter, and includes a third battery module interface, and the third battery module interface is connected to the The adapter interface is detachably connected, the third battery module provides power to the adapter interface through the third battery module interface, and the third battery module interface is connected in parallel with the second battery module interface ⁇ The adapter interface.
  • the first battery module and the second battery module are stacked.
  • the present invention also provides a battery pack system, the battery pack system includes: an adapter, including a first adapter and a second adapter; the first adapter includes a first tool interface and a first adapter interface, the first tool interface Removably cooperates with the electric tool to provide the electric energy received from the first adapter interface to the electric tool; the second adapter includes a second tool interface and a second adapter interface, and the second tool interface is detachably connected with The electric tool cooperates to provide the electric energy received from the second adapter interface to the electric tool; the battery module includes a first battery module and a second battery module; the first battery module is detachably installed in the The first adapter or the second adapter includes a first battery module interface, and the first battery module interface is detachably connected to the first adapter interface or the second adapter interface, and is connected to the first battery module interface.
  • an adapter including a first adapter and a second adapter
  • the first adapter includes a first tool interface and a first adapter interface, the first tool
  • An adapter interface or the second adapter interface provides power;
  • the second battery module is detachably mounted on the first adapter or the second adapter, and includes a second battery module interface, and the second battery
  • the module interface is detachably connected to the first adapter interface or the second adapter interface, and provides power to the first adapter interface or the second adapter interface;
  • the first adapter can be installed alternatively A battery module or a second battery module, and the second adapter can install the first battery module and the second battery module at the same time.
  • the adapter includes a USB interface, which is electrically connected to the adapter interface, and charges the battery module through the adapter interface or transmits the power of the battery module to the outside.
  • the adapter includes a wireless charging receiving module electrically connected to the adapter interface, and the wireless charging receiving module receives an external wireless charging power input, and charges the battery module through the adapter interface.
  • the adapter includes a control circuit that monitors the status information of the battery module through the adapter interface, and transmits the information to the tool interface, and transmits the information to the external device connected to the tool interface through the tool interface.
  • the first battery module and the second battery module are connected in parallel or in series to the second adapter interface.
  • the second adapter includes an anti-mutual charging circuit
  • the first battery module and the second battery module are connected in parallel to the second adapter interface via the anti-mutual charging circuit
  • the anti-mutual charging circuit Prevent the battery module with a high voltage in the first battery module and the second battery module from charging the battery module with a low voltage.
  • the battery module includes a USB interface
  • the USB interface receives an external power input to charge the battery module, or transmits the power of the battery module to the outside via the USB interface.
  • the battery module includes a wireless charging receiving module, and the wireless charging receiving module receives energy sent by an external wireless charging transmitting module to charge the battery module.
  • the second adapter further includes a parallel charging circuit connected to the USB ports or wireless charging receiving modules of a plurality of battery modules, and when any one of the USB ports or wireless charging receiving modules receives energy input, The parallel charging circuit outputs the received electric energy to all battery modules.
  • the battery module includes a control circuit that monitors the state information of the battery module, and transmits the state information of the battery pack to the outside or controls the charging and discharging process of the battery module according to the state information.
  • the present invention also provides another battery pack, the battery pack includes: an adapter, including a tool interface and an adapter interface, the tool interface detachably cooperates with the electric tool, and provides the electric energy received from the adapter interface to the electric tool; a battery;
  • the module is detachably mounted on the adapter and includes a battery module interface, the battery module interface is detachably connected to the adapter interface, and the battery module is connected to the adapter via the battery module interface
  • the interface provides power; the installation space of the adapter is expandable, and has a first installation space in the first state and a second installation space in the second state, the first installation space is smaller than the second installation space, the battery module It includes a first battery module and a second battery module.
  • the adapter can install one of the first battery module and the second battery module alternatively.
  • the adapter can install the first battery module at the same time. Group and second battery module.
  • the first battery module and the second battery module are connected in parallel to the adapter interface.
  • the present invention also provides an electric tool including a motor and a battery pack for supplying power to the motor.
  • the battery pack is as described in any one of the foregoing.
  • the present invention also provides a battery module.
  • the battery module includes: a casing, approximately in the shape of a rectangular parallelepiped; a battery cell group accommodated in the casing, and the battery cells are connected in series and/or in parallel; control The module monitors the state of the battery pack and controls the charging and discharging process of the battery pack; the battery module interface detachably cooperates with an adapter, and provides power to the electric tool via the adapter; the electronic device interface, to the electronic device Provides electrical energy and receives electrical energy from an external power supply to charge the battery pack, and the electronic device interface is a USB Type-c interface.
  • the battery module includes a wireless charging receiving module, and the wireless charging receiving module receives energy sent by an external wireless charging transmitting module to charge the battery module.
  • the present invention also provides another battery module.
  • the battery module includes: a casing, approximately in the shape of a rectangular parallelepiped; a battery cell group accommodated in the casing, and the battery cells are connected in series and/or in parallel;
  • the battery module interface includes the positive terminal of the battery module connected to the positive electrode of the battery pack and the negative terminal of the battery module connected to the negative electrode of the battery pack, and is detachably matched with an adapter to provide electric power to the electric tool through the adapter;
  • the control module when the positive terminal of the battery module and the negative terminal of the battery module are short-circuited, block the electrical energy output of the battery cell group.
  • control module includes a switch circuit connected in series between the positive terminal of the battery module and the positive electrode of the battery pack, or between the negative terminal of the battery module and the negative electrode of the battery pack.
  • the switch circuit is a fuse.
  • the switch circuit is a P-MOS switch transistor
  • the battery module interface further includes a battery module signal terminal
  • the battery module signal terminal is connected to the signal terminal of the adapter, and the gate of the P-MOS transistor
  • the pole G is connected to the signal terminal of the battery module
  • the source S is connected to one of the positive terminal of the battery module or the negative terminal of the battery module
  • the drain D is connected to one of the positive terminal of the battery module or the negative terminal of the battery module.
  • the present invention also provides another electric tool.
  • the electric tool includes: a motor; an energy connection part, including an energy interface, which receives external electric energy input to supply power to the motor; and a battery module, which is detachably connected to the energy connection part , Including a battery module interface, the battery module interface is detachably connected to the energy interface, the power is provided to the motor through the energy interface, the battery module is detachably connected to an adapter, and the The adapter supplies power to the second electric tool, and the second electric tool is detachably connected to the battery pack and is powered by the battery pack.
  • the present invention also provides an adapter.
  • the adapter includes: a tool interface that detachably cooperates with an electric tool to provide the received electric energy to the electric tool; an adapter interface that detachably cooperates with the battery module to receive the battery module
  • the adapter includes at least one of the following three components: an electronic device interface, a wireless charging receiving module, and a control circuit; the electronic device interface has at least one of the following three functions: the received power can be provided to it Connected external equipment; can also receive external power input to charge the battery module connected to it; can also exchange data with external electronic equipment; the wireless charging receiving module can receive energy sent by an external wireless charging transmitting module , Charging the battery module; the control circuit has at least one of the following functions: monitoring the status information of the battery module and sending the monitoring results out; monitoring the status information of the battery module and controlling according to the status information Battery module charging process; monitoring the status information of the battery module and controlling the discharging process of the battery module according to the status information.
  • the electronic device interface is a USB TYPE-C interface.
  • the advantage of the battery pack, battery module and adapter provided by the present invention is that the battery pack can realize the difference in voltage or capacity of the battery pack by connecting different numbers of battery modules in series or parallel on the adapter. Changes to meet the needs of different power tools for battery packs. At the same time, the battery modules in the battery packs can be removed separately for use in consumer electronics or home appliances.
  • the battery pack composed of the adapter and the battery module is similar in performance and appearance to the general-purpose power tool battery pack on the market, making the battery pack different in terms of performance and appearance. Power tools, consumer electronics, or home appliances can meet the performance and appearance requirements of products of various categories, and will not change the appearance of products of various categories or affect user habits. Therefore, the compatibility of the battery pack is greatly improved.
  • Fig. 1 is a schematic diagram of a first preferred embodiment of an electric tool.
  • Fig. 2 is a schematic structural diagram of a second preferred embodiment of an electric tool.
  • Fig. 3 is an exploded view of the battery pack of the first preferred embodiment.
  • Fig. 4 is an exploded view of the battery pack of the second preferred embodiment.
  • Fig. 5 is an exploded view of the battery module of the first preferred embodiment.
  • FIG. 6 is a circuit block diagram of the battery pack of the fourth preferred embodiment including a battery module.
  • FIG. 7 is a circuit block diagram of the battery pack of the fourth preferred embodiment including two battery modules.
  • Fig. 8 is a block diagram of a battery pack circuit in a sixth preferred embodiment.
  • Fig. 9a is a block diagram of the DC power circuit of the first preferred embodiment.
  • Fig. 9b is a block diagram of the DC power circuit of the second preferred embodiment.
  • Fig. 9c is a block diagram of the DC power circuit of the third preferred embodiment.
  • Fig. 9d is a block diagram of the DC power circuit of the fourth preferred embodiment.
  • Figure 10 is a charging curve diagram of a DC power supply.
  • Fig. 11 is a schematic diagram of the battery pack of the eighth preferred embodiment.
  • Figure 12 is a schematic circuit diagram of a preferred embodiment of the adapter.
  • Fig. 13a is a flowchart of the first preferred embodiment of the battery pack shown in Fig. 11.
  • Fig. 13b is a flowchart of the second preferred embodiment of the battery pack shown in Fig. 11.
  • Fig. 14 is a schematic diagram of the battery pack of the ninth preferred embodiment.
  • FIG. 15 is a circuit block diagram of a preferred embodiment of the battery module shown in FIG. 14.
  • FIG. 15 is a circuit block diagram of a preferred embodiment of the battery module shown in FIG. 14.
  • Fig. 16 is a flowchart of the first preferred embodiment of the battery pack shown in Fig. 14;
  • Fig. 17 is a schematic diagram of a power tool system according to a preferred embodiment.
  • Fig. 18 is an exploded view of the battery module shown in Fig. 17.
  • Fig. 19 is a schematic diagram of a third preferred embodiment of an electric tool.
  • FIG. 20 is a schematic diagram of the battery module shown in FIG. 19 in cooperation with a charger.
  • Fig. 21 is a schematic flow chart of the charging steps of the DC power supply shown in Fig. 9c.
  • Fig. 22 is a schematic flow chart of the charging steps of the DC power supply shown in Fig. 9d.
  • first, second, etc. used in this application can be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element.
  • the first switch may be referred to as the second switch, and similarly, the second switch may be referred to as the first switch. Both the first switch and the second switch are switches, but they are not the same switch.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection” and the like if the connected circuits, modules, units, etc. have transmission of electrical signals or data between each other.
  • Fig. 1 shows a power tool 100 according to a first preferred embodiment provided by the present invention.
  • the electric tool 100 includes a housing, a motor located in the housing, and a battery pack interface 102 detachably connected to the battery pack 200.
  • the battery pack interface 102 obtains electric energy from the battery pack 200 to supply power to the motor.
  • the battery pack 200 includes an adapter 204 and a battery module 202 housed in the adapter 204.
  • the battery module 202 is detachably installed in the adapter 204, that is, the operator can install the battery module 202 into the adapter 204 or remove the battery module 202 from the adapter 204.
  • the adapter 204 includes a tool interface 206 and an adapter interface (not shown in the figure).
  • the tool interface 206 is detachably mated with the battery pack interface 102 of the electric tool 100.
  • the adapter interface detachably cooperates with the battery module 202 to receive power from the battery module 202.
  • the tool interface 206 includes a tool terminal group 215.
  • the adapter interface includes an adapter terminal group 217.
  • the battery module 202 includes a battery module interface, and the battery module interface includes a battery module terminal set 216.
  • the adapter terminal group 217 is electrically detachably connected to the battery module terminal group 216, and transmits the electric energy of the battery module 202 to the tool terminal group 215.
  • the tool terminal group 215 provides the electric energy of the battery module 202 to the electric tool 100.
  • the adapter 204 can install at least one battery module 202.
  • the user can selectively install one battery module 202 or two battery modules 202 or other number of battery modules 202 according to specific usage scenarios. No matter how many battery modules 202 are installed, the battery pack 200 can be discharged externally. The difference lies in the voltage or capacity during external discharge.
  • the adapter 204 is not detachable from the electric tool 100.
  • the electric tool 100 includes a motor, an energy connection part 104 and a battery module 202.
  • the energy connection part 104 includes an energy interface, and receives external electric energy input to supply power to the motor.
  • the battery module 202 is detachably connected to the energy connection part 104 and includes a battery module interface.
  • the battery module interface is detachably connected with the energy interface, and provides electric energy to the motor through the energy interface.
  • the structure of the energy connection part 104 in this embodiment is similar to the structure in which the adapter 204 in the first preferred embodiment is mounted on the electric tool 100 and is not detachable from the electric tool 100.
  • the energy interface is equivalent to the adapter interface in the first preferred embodiment.
  • the structure of the battery module 202 is the same as the structure of the battery module 202 in the first preferred embodiment.
  • the first preferred embodiment of the battery pack 200 shown in FIG. 1 is introduced with reference to FIG. 3.
  • the battery pack 200 includes an adapter 204 and a battery module 202 housed in the adapter 204.
  • the adapter 204 includes an upper cover 208, a bottom cover 210, an openable side cover 212, and a circuit board assembly 214.
  • the upper cover 208 and the bottom cover 210 constitute a receiving cavity.
  • the openable side cover 212 can close or open the receiving cavity. When the side cover 212 is opened, the operator can load the battery module 202 into the receiving cavity, or remove the battery module 202 from the receiving cavity.
  • the adapter 204 includes a tool interface 206 and an adapter interface.
  • the tool interface 206 is detachably mated with the battery pack interface 102 of the electric tool 100.
  • the adapter interface detachably cooperates with the battery module 202 to receive power from the battery module 202.
  • the tool interface 206 includes a tool terminal group 215.
  • the adapter interface includes an adapter terminal group 217.
  • the tool terminal set 215 and the adapter terminal set 217 are mounted on the circuit board assembly 214.
  • the battery module 202 includes a battery module interface, and the battery module interface includes a battery module terminal set 216.
  • the adapter terminal set 217 is electrically detachably connected to the battery module terminal set 216 to transmit the power of the battery module 202 to the tool terminal set 215.
  • the tool terminal group 215 provides the electric energy of the battery module 202 to the electric tool 100.
  • the accommodating space of the adapter 204 can only accommodate one battery module 202.
  • the bottom cover 210 of the adapter 204 is a retractable bottom cover 210.
  • the adapter 204 can only accommodate one battery module 202.
  • the adapter 204 can accommodate two battery modules 202.
  • the adaptor 204 can also be in the third extended state. At this time, the adaptor 204 can accommodate three or more battery modules 202.
  • the second preferred embodiment of the battery pack 200 shown in FIG. 1 is introduced in conjunction with FIG. 4.
  • the structure of the battery pack 200 is basically the same as that of the first preferred embodiment.
  • the adapter 204 can accommodate two battery modules 202.
  • the battery module 202 includes a first battery module 202 and a second battery module 202.
  • the first battery module 202 and the second battery module 202 are connected in parallel or in series with each other.
  • the circuit board assembly 214 includes a connection circuit connecting the first battery module 202 and the second battery module 202.
  • the connection circuit in this embodiment realizes the parallel connection of the first battery module 202 and the second battery module 202.
  • the battery pack 200 further includes a separator provided in the adapter 204.
  • the partition is vertically arranged relative to the side cover 212, and divides the receiving cavity into a first receiving cavity located above and a second receiving cavity located below.
  • the space of the first accommodating cavity and the space of the second accommodating cavity are basically the same.
  • the first accommodating cavity accommodates the first battery module 202
  • the second accommodating cavity accommodates the second battery module 202.
  • guide rails are provided on the partition plate and the bottom cover 210.
  • the bracket 226 of the battery module 202 is provided with a sliding groove.
  • the guide rail and the sliding groove both extend along the axis of the battery core and have corresponding positions, so that the battery module 202 can be accurately installed into the adapter 204 along the guide rail.
  • the battery module 202 may be installed in both the first receiving cavity and the second receiving cavity, or the battery module 202 may be installed in only one of them. No matter how many battery modules 202 are installed, the battery pack 200 can be discharged to the outside. The difference lies in the voltage or capacity during external discharge.
  • the battery module 202 is completely contained in the adapter 204. In other embodiments, the battery module 202 may be partially contained in the adapter 204. For example, when the adapter 204 does not include the bottom cover 210, the first battery module 202 is directly mated and installed with the adapter 204, and the second battery module 202 is installed on the back of the first battery module 202 to form a stack structure.
  • the first battery module 202 and the second battery module 202 are connected in parallel.
  • the adapter terminal group 217 includes an adapter positive terminal and an adapter negative terminal.
  • the connection circuit includes a first positive electrode connection terminal and a first negative electrode connection terminal, and a second positive electrode connection terminal and a second negative electrode connection terminal. Wherein, the first positive electrode connection terminal and the second positive electrode connection terminal are connected in parallel, and the first negative electrode connection terminal and the second negative electrode connection terminal are connected in parallel.
  • the terminal group of the first battery module 202 includes a positive terminal of the first battery module and a negative terminal of the first battery module.
  • the terminal group of the second battery module 202 includes a second battery module positive terminal and a second battery module negative terminal.
  • the first positive connection terminal and the first negative connection terminal correspond to the positive terminal of the first battery module and the negative terminal of the first battery module.
  • the second positive connection terminal and the second negative connection terminal are electrically connected to the positive terminal of the second battery module and the negative terminal of the second battery module correspondingly, so as to realize the first battery module 202 and the second battery module 202 ⁇ parallel.
  • the connecting circuit connects the first negative connection terminal and the second positive connection terminal in series, the series connection of the first battery module 202 and the second battery module 202 is realized.
  • the connection circuit can switch the first battery module 202 and the second battery module 202 to be in series or in parallel.
  • the connection circuit can only realize one of the first battery module 202 and the second battery module 202 being in parallel or in series.
  • connection between the connection circuit and the battery module 202 is an elastic connection
  • the elastic connection is loosened.
  • the two battery modules 202 are disconnected from the connection circuit.
  • the elastic connection is compressed, and the connection between the two battery modules 202 and the connection circuit is closed.
  • the elastic connection is realized by a spring arranged between the connection circuit and the battery module 202.
  • the adaptor 204 includes a first adaptor 204 and a second adaptor 204.
  • the first adaptor 204 can only install one battery module 202, and the second adaptor 204 can only install two.
  • One battery module 202 When the battery module 202 is mounted to the first adapter 204, a battery pack 200 similar to the first preferred embodiment is formed.
  • a battery pack 200 similar to the second preferred embodiment is formed.
  • the foregoing embodiment refers to the foregoing embodiment.
  • FIG. 5 shows a first preferred embodiment of the battery module 202 in the embodiment shown in FIGS. 1 to 4.
  • the structure of each battery module 202 is the same. Therefore, taking the battery module 202 of the smallest unit as an example, the components of the battery module 202 are introduced.
  • the battery module 202 includes a casing, and the battery pack 220 is housed in the casing.
  • the outer shell is substantially cuboid, including an upper shell 222 and a lower shell 224.
  • the upper shell 222 and the lower shell 224 are closed to form six substantially smooth surfaces. This shape is similar to mobile power supplies for electronic devices on the market.
  • the battery cell group 220 includes at least three battery cells, which are connected in series.
  • the first cell has a central axis X1, the second cell has a central axis X2, and the third cell has a central axis X3.
  • the first battery cell, the second battery cell, and the third battery cell are arranged side by side, so that the central axes X1, X2, and X3 are all located in the same plane.
  • the battery module 202 also includes a bracket 226 for supporting the cells, and a connecting piece 228 for connecting the cells.
  • the first battery module 202 includes five lithium batteries connected in series, and the nominal voltage of the lithium batteries is 3.6V.
  • the battery module 202 includes other numbers of lithium batteries, and the lithium batteries may be connected in at least one of series or parallel connection.
  • the battery module 202 includes another number of battery modules 202, and the space of the receiving cavity is correspondingly increased to accommodate a corresponding number of battery modules 202, such as 3, 4, 5, etc.
  • the battery module 202 also includes a battery module interface.
  • the battery module interface includes a battery module terminal group 216.
  • the battery module terminal group 216 includes a battery module positive terminal and a battery module connected to the positive and negative electrodes of the battery pack 220, respectively.
  • the battery module 202 When the battery module 202 is installed in the adapter 204, it is electrically connected to the adapter terminal set 217, so that the power of the battery module 202 is transmitted to the tool terminal set 215 of the adapter 204, so that the battery pack 200 can supply external power.
  • the battery pack 200 includes an adapter 204 and a battery module 202 housed in the adapter 204.
  • the structures of the adapter 204 and the battery module 202 refer to the foregoing embodiment.
  • the feature of this embodiment is that the circuit board assembly 214 in the adapter 204 includes a control circuit, and the control circuit performs at least one operation of state detection or control on the battery module 202.
  • FIG. 6 it is a circuit diagram of connecting the battery module 202 and the adapter 204.
  • FIG. 6 it is a circuit diagram of the connection between two battery modules 202 and an adapter 204.
  • each battery module 202 includes a battery module terminal group 216 and a temperature sensor 232.
  • the battery module terminal group 216 includes a first signal terminal of the battery module 202 connected to the temperature sensor 232, a battery module positive terminal and a battery module negative terminal respectively connected to the positive and negative electrodes of the battery core group.
  • the control circuit in the adapter 204 includes an adapter terminal set 217 connected to the battery module terminal set 216.
  • the adapter terminal set 217 includes an adapter positive terminal, an adapter negative terminal, and an adapter signal terminal.
  • the adapter terminal set 217 is electrically connected to the tool terminal set 215 of the adapter 204.
  • the tool terminal set 215 includes a tool positive terminal, a tool negative terminal, and a tool signal terminal.
  • the control circuit collects the signal of the temperature sensor 232 and transmits it to the outside through the tool signal terminal for use by peripherals connected to the adapter 204.
  • the control circuit transmits the power of the battery module 202 through the positive terminal of the tool and the negative terminal of the tool to the outside for use by peripherals connected to the adapter 204.
  • the battery module 202 further includes a discharge lock circuit
  • the adapter 204 also includes a discharge unlock circuit.
  • the discharge lock circuit is disconnected to prevent the battery module 202 from directly discharging to the outside, which does not meet the safety requirements for the use of the power module according to the national safety regulations.
  • the battery module 202 is installed in the adapter 204, it cooperates with the discharge unlocking circuit in the adapter 204, so that the discharge lock circuit is closed, and the battery module 202 can be discharged to the outside.
  • a discharge lock circuit is provided between the positive terminal of the battery module and the positive terminal of the battery pack 220.
  • the discharge lock circuit includes a P-MOS switch transistor, and a second signal terminal of the battery module connected to the P-MOS switch transistor.
  • the gate G of the P-MOS is connected to the second signal terminal of the battery module
  • the source S is connected to the positive electrode of the battery pack 220
  • the drain D is connected to the positive terminal of the battery module.
  • the four terminals of the adapter 204 are electrically connected to the four terminals of the battery module 202, wherein the second signal terminal of the adapter 204 is connected to the second signal terminal of the battery module
  • the P-MOS is closed, so that the voltage of the battery module 202 is applied to the positive terminal of the adapter and the negative terminal of the adapter, and is further applied to the positive terminal of the tool and the positive terminal of the tool, so that the battery pack 200 is discharged to the outside.
  • the positive terminal of the battery module and the negative terminal of the battery module have a first length
  • the first signal terminal of the battery module and the second signal terminal of the battery module have a second length
  • the first length is greater than the second length. length.
  • the advantage is that after the positive terminal of the battery module and the negative terminal of the battery module are in contact with the positive terminal of the adapter and the negative terminal of the adapter, the discharge lock circuit is closed, and the voltage of the battery module 202 is applied to the positive terminal of the adapter and the negative terminal of the adapter.
  • the positive terminal of the battery module and the negative terminal of the battery module are in contact with the positive terminal of the adapter and the negative terminal of the adapter to ignite.
  • the battery module further includes a control circuit.
  • the control circuit blocks the electric energy output of the battery pack.
  • the control circuit includes a switch circuit connected in series between the positive terminal of the battery module and the positive electrode of the battery pack, or the control circuit includes a switch circuit connected in series between the negative terminal of the battery module and the negative electrode of the battery pack.
  • the switch circuit is the discharge lock circuit described in the previous embodiment. Before the adapter is connected, the discharge lock circuit is disconnected, and there is no danger when the positive terminal of the battery module and the negative terminal of the battery module are short-circuited.
  • the switch circuit is a fuse, and when the positive terminal of the battery module and the negative terminal of the battery module are short-circuited, the fuse is blown, and the battery module will not be dangerous.
  • FIG. 7 is a circuit diagram of the connection between two battery modules 202 and an adapter 204.
  • the voltage of the battery module 202 is applied to the tool terminal group 215 of the adapter 204, so that the battery pack 200 can be externally connected. Discharge.
  • two battery modules 202 are connected in parallel to supply power to the outside. In other optional embodiments, the two battery modules 202 can also be connected in series to supply power to the outside.
  • the adapter 204 also includes an electronic device interface 218.
  • the electronic device interface 218 is different from the tool interface 206 and is detachably connected to an external electronic device other than the electric tool 100.
  • the internal circuit diagram of the battery pack 200 is as shown in FIG. 6, and the electronic device interface 218 is connected to the control circuit.
  • the electronic device is a charging device
  • the electrical energy of the charging device is transferred to the control circuit through the electronic device interface 218, and the control circuit is further transferred to the battery module 202 to realize the electronic device interface 218 to charge the battery pack 200.
  • the electronic device When the electronic device is a power-consuming product, such as a mobile phone, a Pad, a computer, etc., the electrical energy of the battery module 202 is transferred to the electronic device interface 218 through the control circuit, and then the external electronic device is supplied with power.
  • the electronic device includes a data transmission module, the status signal of the battery module 202 is transmitted to the electronic device interface 218 via the control circuit, which transmits data to the electronic device in one direction, or performs two-way data exchange with the electronic device.
  • the electronic device interface 218 is a USB interface.
  • the electronic device interface 218 is a USB Type-C interface.
  • the default 5V power supply of the USB Type-C interface is backward compatible with the previous USB interface.
  • the new USB Type-C interface contains 4 pins dedicated to power supply and grounding.
  • the USB Type-C interface can support a voltage of up to 20V and a current of 5A.
  • the nominal voltage of the battery pack 200 is 18V, and the full voltage is 21V.
  • the USB Type-C interface can only output a maximum voltage of 20V, it can charge about 80% of the 18V battery pack 200.
  • a booster circuit can be provided in the adapter 204 to boost the 20V voltage output by the USB Type-C to 21V. The specific implementation circuit will be described in detail in the following embodiments.
  • the internal circuit diagram is shown in FIG. 7.
  • the charging power source connected through the USB Type-C interface is input into the two battery modules 202 at the same time, and the two battery modules 202 are charged in parallel.
  • the adapter 204 also includes a wireless charging receiving module.
  • the wireless charging receiving module is arranged between the bottom cover 210 and the battery module 202.
  • the internal circuit diagram of the battery pack 200 is shown in FIGS. 6 and 7.
  • the wireless charging receiving module is connected to the control circuit in the adapter 204, and the received charging energy is output to the battery module through the control circuit.
  • the group 202 charges the battery module 202.
  • the wireless charging receiving module receives the energy sent by the external wireless charging transmitting module and converts the charging energy to the two battery modules 202 at the same time to charge the two battery modules 202 in parallel.
  • the adapter 204 also includes an anti-mutual charging circuit.
  • the battery pack 200 can select a conventional charger to charge the battery module 202 via the tool interface 206, or a USB charger to charge the battery module 202 via a USB type-c interface, or a wireless charger via a USB type-c interface.
  • the wireless charging receiving module charges the battery module 202.
  • the control circuit also includes a charging detection module. When the charging detection module detects that the charging power source is connected, it prohibits other charging power sources from being connected. The effect of this is that when the three charging modes are all connected, the control circuit detects that only the earliest connected charging power source is allowed to charge, and the subsequent connected charging power source is prohibited from charging.
  • the present invention also provides a fifth embodiment of the battery pack 200.
  • the battery pack 200 in this embodiment only includes part of the components in the fourth embodiment.
  • the battery module 202 does not include a discharge lock circuit.
  • the adapter 204 does not include at least one of a wireless charging receiving module, a USB interface, and a control circuit.
  • the battery pack 200 includes an adapter 204 and a battery module 202 housed in the adapter 204.
  • the battery module 202 further includes a control circuit. Since the control circuit is provided in the battery module 202, the adapter 204 does not need to be provided with a control circuit.
  • the control circuit monitors the current voltage of each battery cell in the battery module 202, the temperature of the battery module 202, the charging current and other parameters, and controls the charging and discharging process of the battery module 202 according to the detection result.
  • the battery module 202 Since the battery module 202 is provided with a control circuit, the battery module 202 manages charging and discharging by itself, and there is no need to transmit the status signal of the battery module 202 to the outside, and the battery module terminal group 216 does not need to be provided with signal terminals.
  • the battery module terminal group 216 includes a battery module positive terminal and a battery module negative terminal.
  • the adapter terminal group 217 includes an adapter positive terminal and an adapter negative terminal.
  • the battery module 202 further includes an electronic device interface 218.
  • the electronic device interface 218 is set up so that regardless of whether the battery module 202 is installed in the adapter 204, external electronic devices can be charged via the electronic device interface 218, the battery module 202 can be charged via the electronic device interface 218, and the battery module 202 can be charged via the electronic device interface. Transfer data between 218 and peripherals.
  • the battery module 202 in this embodiment does not need to be installed in the adapter 204 to realize the above functions like the fifth embodiment, which expands the usage scenarios of the battery module 202.
  • the battery module 202 when the battery module 202 is not installed in the adapter 204, it can be used as a completely independent power source to realize external discharge and internal charging.
  • the battery module 202 has a flat and smooth appearance, making it It is especially portable and provides power for various electronic devices; when the battery module 202 is installed in the adapter 204, a complete power tool battery pack is formed, which can also supply power to the power tool, so that the battery pack 200 can supply power to the power tool 100 , It also supplies power to electronic equipment, and meets the shape requirements of the traditional power tool battery pack when powering the electric tool 100, and meets the shape requirements of the traditional mobile power supply when powering the electronic device, which improves the versatility of the battery pack 200.
  • the adapter 204 further includes a parallel charging circuit, one end of the parallel charging circuit is connected to the electronic device interface 218 of the first battery module 202, and the other end of the parallel charging circuit is connected to the electronics of the second battery module 202.
  • Device interface 218 one end of the parallel charging circuit is connected to the electronic device interface 218 of the first battery module 202, and the other end of the parallel charging circuit is connected to the electronics of the second battery module 202.
  • the parallel charging circuit introduces the charging power source into another battery module 202 synchronously, so that the charging power source connected from one battery module 202 can be connected at the same time. Charge the two battery modules 202.
  • the battery module 202 further includes a wireless charging receiving module. Due to the configuration of the wireless charging receiving module, the battery module 202 can be charged through the wireless charging receiving module or the electronic device interface 218.
  • the battery pack 200 can also be connected to the conventional electric tool 100 via the tool interface 206 to charge the battery module 202.
  • the wireless charging receiving module of any one of the battery modules 202 receives the energy sent by the wireless charging transmitting module or the electronic device interface 218 receives the charging power.
  • the charging power can be introduced into other battery modules 202 through the parallel charging circuit, and all the battery modules 202 in the adapter 204 can be charged together.
  • the present invention also provides a seventh preferred embodiment of the battery pack 200.
  • the battery pack 200 in this embodiment only includes part of the components in the sixth embodiment.
  • the battery module 202 does not include at least one of a wireless charging receiving module, a USB interface, and a control circuit.
  • the present invention also provides embodiments as shown in FIG. 17 and FIG. 18.
  • the feature of this embodiment is that an adapter is used to connect a battery module containing two sets of battery packs, instead of the adapter to connect to the two aforementioned battery modules to increase the capacity or voltage of the battery pack.
  • the battery pack system includes an adapter 104, a first battery module 202', and a second battery module 202.
  • the first battery module 202' is detachably mounted on the adapter 104 and includes a first battery module interface.
  • the first battery module interface is detachably connected to the adapter interface.
  • the first battery module 202' provides power to the adapter interface via the first battery module interface.
  • the second battery module 202 is detachably mounted on the adapter 104 and includes a second battery module interface.
  • the second battery module interface is detachably connected to the adapter interface.
  • the second battery module 202 provides power to the adapter interface through the second battery module interface.
  • the number of battery cells included in the second battery module is different from the number of battery cells included in the first battery module.
  • the adapter includes a tool interface and an adapter interface.
  • the tool interface detachably cooperates with the electric tool 100 to provide the electric power received from the adapter interface to the electric tool 100.
  • the adapter can optionally be connected to one of the first battery module 202' and the second battery module 202.
  • the exploded view of the first battery module 202' is shown in Fig.
  • the first battery module 202' includes a battery pack composed of 5 battery cells.
  • the second battery module 202 includes a battery pack composed of 10 battery cells. If every 5 cells of 10 cells are connected in series to form a group, and then the two groups are connected in parallel, the capacity of the second battery module is twice the capacity of the first battery module. If 10 battery cells are connected in series, the voltage of the second battery module is twice that of the first battery module.
  • the first battery module and the second battery module may include other numbers of battery cells, so as to form capacities or voltages in other proportional relationships.
  • the battery pack capacity or voltage is increased by replacing the first battery module with the second battery module, that is, the capacity or voltage is increased by changing the number of cells contained in the battery module connected to the adapter.
  • the capacity or voltage is increased by increasing the number of battery modules in the foregoing embodiment.
  • each battery module can be used separately, so there are bound to be differences in the number of uses and operating conditions of each battery module, which may easily lead to multiple batteries. There is a difference in the current remaining capacity of the module, and a difference in the available capacity after being fully charged. At this time, unknowingly, combining battery modules with huge differences for use increases the difficulty of charging and discharging the battery pack.
  • one battery module is used to replace another battery module to change the capacity or voltage of the battery pack.
  • the battery module 202 includes a control circuit.
  • the control circuit includes a first control module and a second control module.
  • the first control module controls the discharging process when the battery pack 200 is connected to the power tool 100 and the charging process when connected to the conventional power tool charger.
  • the second control module controls the discharging process when the battery pack 200 or the battery module 202 is connected to the electronic device and the charging process when charging through the USB interface or the wireless charging receiving module.
  • the first control module is provided in the adapter 204, and the second control module is provided in the battery module 202.
  • the present invention also provides a power tool 400 of the third preferred embodiment as shown in FIG. 19.
  • the power tool 400 includes a casing, a motor located in the casing, a battery pack interface 402 detachably connected to the battery pack, and a battery pack interface 402.
  • the pack interface 402 obtains electric energy from the battery pack to supply power to the motor.
  • the battery pack is composed of an adapter 600 and a battery module 500, and the adapter 600 and the battery module 500 are detachably connected in a sliding manner.
  • the battery module 500 includes a casing and a battery pack contained in the casing.
  • the casing includes an upper casing 510a and a lower casing 510b.
  • the top surface of the upper casing is provided with two parallel guide rails 511a and 511b.
  • the adapter 600 includes a tool interface 601 and is detachably connected to the battery pack interface 402.
  • the adapter 600 also includes a battery interface 602.
  • the battery interface 602 has a sliding groove, which cooperates with the guide rails 511a and 511b on the battery module 500, so that the battery module 500 can smoothly slide along the sliding groove to a suitable position on the adapter 600 , To achieve matching with the adapter 600.
  • the battery module 500 can provide electrical energy to the electric tool 400 through the adapter 600.
  • the guide rails 511a and 511b may also be provided on the side or bottom surface of the housing of the battery module 500.
  • the battery module 500 in the embodiment shown in FIG. 19 further includes an electronic device interface 515 provided on the housing. As shown in FIG. 20, the battery module 500 can be connected to an external electronic device charger through the electronic device interface 515. The internal battery pack is charged.
  • the electronic device interface 515 is a USB interface, such as USB TYPE-A, USB TYPE-C, and other types of USB interfaces.
  • electronic equipment products are electronic products with USB ports such as mobile phones, tablet computers, notebook computers, and USB-powered desk lamps.
  • the working current of electric tools is generally as small as 6-8A, as large as 10-20A, or even 30-50A. Therefore, the energy storage module that can supply power to the electric tool generally has a strong discharge capacity.
  • the battery cell group 220 powering the electric tool 100 has a nominal full charging voltage higher than 20V, the electrical energy output through the electronic device interface is not enough to make it fully charged. Fully means that the current voltage of the battery pack 220 reaches the nominal full charging voltage, and the received charging capacity reaches more than the first preset ratio of its nominal capacity.
  • the first preset ratio is 80%, and optionally, the first preset ratio is 90%.
  • the battery cell group 220 is composed of 5 lithium battery cells connected in series.
  • the following table 1 is a record of the nominal specifications of lithium battery cells in the specification book of a specific model of lithium battery cells provided by a battery cell manufacturer.
  • the nominal full charge voltage is the highest voltage of the battery cell group in the standard charging mode in the specification book of the cells that make up the battery cell group, and the nominal capacity is the nominal discharge capacity of the battery cell in the specification book.
  • the nominal full voltage of a single-cell lithium battery is 4.15V ⁇ 4.25V
  • the nominal capacity is 2000mAh.
  • the nominal capacity of the energy storage module is 2000mAh.
  • the present invention also provides a DC power supply as shown in FIGS. 9a-9d.
  • the DC power supply includes an energy storage module, an electronic device interface, and a charging circuit.
  • the nominal full charging voltage of the energy storage module is the first preset voltage, and the power supply voltage input from the electronic device interface is lower than the first preset voltage; the charging circuit is connected to the electronic device interface to raise the power supply voltage input from the electronic device interface to The first preset voltage is for charging the energy storage module; when the charging of the energy storage module is completed, the charging capacity of the energy storage module reaches more than 80% of its nominal capacity.
  • the DC power supply provided by the present invention can still fully charge the energy storage module when the externally input charging voltage is lower than the full charging voltage of the energy storage module.
  • the DC power supply provided by the present invention may be a conventional power tool battery pack, or the battery pack 200 described in the foregoing embodiment of the present invention, or the battery module 202 described in the foregoing embodiment of the present invention, or the battery module 500, or any other A power supply that can be charged and discharged repeatedly.
  • the DC power supply can directly or indirectly supply power to the electric tool.
  • the energy storage module includes a battery cell group 220 composed of 5 lithium battery cells in series, the full charging voltage of the energy storage module is above 20V, and the electronic device interface is a USB interface.
  • the DC power supply also includes a charging circuit connected to the interface of the electronic device.
  • the USB interface receives external power input and charges the energy storage module through the charging circuit.
  • the input voltage of the ordinary USB interface is about 5V, and the input voltage of the USB type-c interface is about 20V.
  • the input voltage of the USB interface is lower than the full charging voltage of the DC power supply, but the DC power supply provided by the present invention can be fully charged with more than 80% of its nominal capacity at the end of charging.
  • the present invention proposes to install a boost circuit in the DC power supply to boost the electric energy received by the USB interface to the voltage reached when the DC power supply is full.
  • FIG. 9a shows the first preferred embodiment of the DC power supply charging circuit.
  • the charging circuit in the DC power supply includes a PD module 340, a boost circuit arranged between the PD module 340 and the battery cell group 220, and a detection circuit for monitoring the charging state of the battery core.
  • the PD module 340 is a power transmission module that complies with the USB transmission protocol.
  • the PD module 340 receives the cell state signal detected by the current detection circuit, and controls the output of the PD module 340 according to the detection signal.
  • the output of the PD module is output to the battery cell group 220 after the booster circuit to charge the battery cell group 220.
  • the charging circuit includes a dedicated charging chip, and the dedicated charging chip integrates a detection circuit (including a current detection circuit and a voltage detection circuit) and a boost circuit.
  • a detection circuit including a current detection circuit and a voltage detection circuit
  • a boost circuit When the voltage of the battery pack 220 is nominally 18V, and when it is fully charged to 21V, the dedicated charging chip will output a maximum voltage of 21V, and the output current is designed according to the capacity of the battery pack 220, such as 2A, 2.5A, 3A, etc.
  • Figure 9b shows a second preferred embodiment of the DC power supply charging circuit.
  • the boost circuit does not work at any time during the charging process, but only when the charging power is low. That is to say, when the charging power is high, the battery cell group 220 is directly charged by the output of the USB PD module. When the charging power is low, the output of the USB PD module (also known as the PD module) is powered by the booster circuit. The core group 220 is charged.
  • the charging circuit of the DC power supply includes a PD module 340, a main control module 310, a first charging branch 330, and a second charging branch 320.
  • the first charging branch 330 includes a switch S2
  • the second charging branch 320 includes a switch S1 and a boosting circuit 321
  • the first charging branch 330 and the second charging branch 320 are connected in parallel with each other.
  • the first charging branch 330 directly transmits the output power of the PD module 340 to the battery cell group 220.
  • the second charging branch 320 includes a boost circuit 321, which boosts the output electric energy of the PD module 340 and transmits it to the battery cell group 220.
  • the energy storage module also includes a detection circuit for detecting the state parameters of the battery cell group 220.
  • the main control module 310 is connected to the detection circuit to obtain the real-time charging current, charging voltage, real-time voltage, current temperature, current capacity and other parameters of the battery cell group 220.
  • the charging state of the battery cell group 220 is monitored.
  • the main control module 310 controls the first charging branch 330 and the second charging branch 320 to conduct alternatively according to the charging state of the battery cell group 220.
  • the main control module monitors that the current charging current of the battery cell group 220 reaches the minimum charging current, that is, the first preset current, or the real-time voltage of the battery cell group 220 reaches the full charging voltage, that is, the first At a preset voltage, it is determined that the battery cell group 220 has reached a fully charged state, the control switch S1 or S2 is turned off, and the connection between the battery cell group 220 and the input power source is cut off, and the charging is terminated.
  • the minimum charging current that is, the first preset current
  • the real-time voltage of the battery cell group 220 reaches the full charging voltage, that is, the first At a preset voltage
  • the USB PD module 340 communicates with the charger, obtains the output voltage of the charger, and gradually increases the output voltage of the USB interface to the output voltage of the charger.
  • the main control module 310 controls the switch S1 to close and turn on the output voltage of the charger.
  • the second charging branch 320 after charging is started, when the main control module 310 detects that the charging current of the battery cell group 220 is greater than the second preset current greater than the first preset current, the control cell group 220 is switched to the PD directly
  • the output of the module 340 is charged (that is, the charging is carried out through the first charging branch 330); when the second charging branch 320 is turned on, the output of the PD module 340 is boosted by the boost circuit 350 to the full charge of the battery pack 220 Charge the battery pack 220 after voltage (that is, charge through the second charging branch 320); when the first charging branch 330 is turned on, if the main control module 310 detects that the charging current of the battery pack 220 reaches the second preset The current is controlled to switch to the second charging branch 320 to charge the battery pack 220.
  • the second preset current is greater than the first preset current.
  • the maximum charging voltage of a typical USB-typeC interface charger is lower than the full charging voltage of the battery pack, and the battery pack cannot be fully charged.
  • the boost circuit 350 By setting the boost circuit 350, the battery pack can be effectively fully charged. Since the volume of the boost circuit doubles as its output power increases, when the power of the boost circuit is small, its volume can be made smaller, so that it can be installed in a DC power supply without excessive increase The volume of the DC power supply keeps the DC power supply compact; take the 18V DC power supply as an example, refer to Figure 10 in the high current charging stage, that is, the constant current charging stage, the charging power is relatively high, but the voltage demand is not high At this time, the output of the PD module can be directly used for charging.
  • the charging power is high and the charging speed is fast.
  • the output of the PD module does not meet the requirements of the battery cell group 220 when the voltage rises. Voltage requirements require the boost circuit to start work, but at this time the charging current is small and the overall charging power is not high, so the power of the voltage regulating circuit is not high, so that the low-power boost circuit can just meet the charging of the battery pack 220 Demand, without affecting the charging efficiency.
  • FIG. 9c shows a third preferred embodiment of the DC power supply.
  • the DC power supply includes an energy storage module, an electronic device interface, and a charging circuit.
  • the charging circuit includes a PD module 340, a main control module 310, a first charging circuit 330, a second charging circuit 320, a current detection circuit, and a voltage detection circuit.
  • the energy storage module is a battery pack 220 composed of 5 lithium battery cells in series, with a full charging voltage of 20V or more, excluding the detection circuit, and the detection circuit composed of the voltage detection circuit and the current detection circuit in the charging circuit.
  • the electronic device interface is a USB-type C interface (hereinafter referred to as the USB-C interface), and the input voltage of the USB-C interface is about 20V, that is, the input voltage of the USB interface is lower than the full charging voltage of the battery pack 220.
  • the battery pack 220 cannot be fully charged with the power supply voltage input directly from the USB interface.
  • the DC power supply is provided with a first charging branch 330 and a second charging branch 320 in parallel with each other, the first charging branch
  • the 330 only includes an on-off switch S2, which receives the charging voltage output by the USB-C interface to directly charge the battery pack 220.
  • the second charging circuit 320 includes an on-off switch S1 and a boost circuit 321 connected in series.
  • the boost circuit in this embodiment is a DC-DC circuit.
  • the main control module 310 is an MCU.
  • the MCU is connected to the voltage detection circuit and the current detection circuit, receives signals transmitted by the voltage detection circuit and the current detection circuit, and controls the first charging branch 330 and the second charging branch based on this One of 320 is turned on or off.
  • the first charging branch 330 and the second charging branch 320 are switched on or off alternately, so that even if the input voltage of the USB interface is lower than the full charging voltage of the DC power supply, the DC power supply provided by the present invention is completed at the end of charging. Time can still be filled.
  • the main control module 310 monitors the charging status of the battery cell group 220 by connecting the current detection circuit and the voltage detection circuit in the charging circuit, detects the charging current of the battery cell group 220 through the current detection circuit, and detects the charging current of the battery cell group 220 through the voltage detection circuit. For the real-time voltage of the battery cell group, the main control module 310 transmits the acquired voltage signal and current signal to the PD module 340.
  • the PD module 340 determines the battery pack 220 reaches a fully charged state, communicates with the PD module 360 in the charger, and the external electronic device charger stops inputting power, thereby ending the charging of the battery pack 220.
  • the DC power supply of this embodiment terminates the charging by cutting off the power supply of the external power supply, which avoids the problem of overcharging of the battery pack 220 caused by an internal switch failure.
  • the PD module 340 and the external charger PD module 360 communicate through the USB-C interface to obtain the input voltage of the external power supply.
  • the PD module controls the USB-C interface to gradually increase the output power supply voltage to that of the external power supply. enter.
  • the main control module 310 controls the second charging branch 320 to be turned on, connects the PD module to obtain the output voltage of the charger, and performs voltage regulation control on the second charging branch according to the output voltage of the charger.
  • the battery cell group 220 is switched to be directly charged by the output of the PD module (that is, charged through the first charging branch 330);
  • the control module 310 is also used to control the switching to the second charging branch to be turned on when the first charging branch is turned on and the charging current reaches a second current preset value greater than the minimum charging current; in another embodiment, the main control module 310 is also used to control switching to the second charging branch to be turned on when the real-time voltage reaches a second preset voltage lower than the full charging voltage of the battery pack 220; in another embodiment, the main control The module 310 is also used to control the second charging branch when the real-time voltage reaches a second preset voltage lower than the full charging voltage of the battery cell group 220, and the charging current reaches a second preset current value greater than the minimum charging current. Pass.
  • the minimum charging current of the battery cell group is the minimum charging current limited by the
  • the real-time voltage of the battery pack 220 will continue to increase, causing the charging current to continue to decrease, and the PD chip will charge by default when the charging current is less than the minimum current limited by the PD protocol (for example, 50mA or 100mA) Finish.
  • the battery pack 220 is directly connected to the USB interface through the first charging branch 330 for charging, since the power supply voltage output by the USB interface is less than the full charging voltage of the battery pack 220, the charging current on the first charging branch 330 reaches At the minimum charging current, the PD module will control the end of charging.
  • the real-time voltage of the battery pack is less than the full charge voltage, and the battery pack cannot reach the full charge state.
  • the second charging branch 320 When the second charging branch 320 is turned on, if the current charging voltage of the DC power supply is less than the real-time voltage of the energy storage module, the output of the PD module is boosted by the boost circuit 321 to the full charging voltage of the battery cell group 220 and then powered The core group 220 is charged (that is, charged through the second charging branch 320). Therefore, by controlling the first charging branch and the second charging branch to switch between each other to be turned on, when the power supply voltage input by the electronic device interface is less than the full charging voltage of the energy storage module, through the charging circuit in the DC power supply of the above embodiment, The energy storage module can be fully charged. By setting the difference of the full charge cut-off current, when the DC power supply ends charging, the charging capacity received by the energy storage module reaches more than 80% of its nominal capacity.
  • the charger PD module 350 communicates with the PD module 340 in the DC power supply, and at the same time the PD module establishes communication with the main control module 310. At this time, the charging is started, and the following steps are performed:
  • the main control module 310 controls the switch S1 to close, S2 to open, the second charging branch 320 is turned on, and the power supply voltage output by the USB interface 360 is regulated by the boost circuit 321 to the first preset voltage and then becomes the battery cell group 220 Charging, the first preset voltage is equal to the nominal full charging voltage of the battery pack 220;
  • the PD module 340 obtains the power supply voltage output by the charger and transmits it to the main control module 310.
  • the main control module 310 obtains the real-time voltage and charging current of the battery cell group 220 by connecting the current detection circuit and the voltage detection circuit;
  • the main control module 310 determines whether the power supply voltage is greater than the real-time voltage of the battery cell group 220, if it is greater than the real-time voltage of the battery cell group 220, execute step S400; if it is not greater than execute step S600;
  • the main control module 310 controls the switch S1 to open, and the switch S2 to close;
  • the first charging branch is turned on, the first charging branch is used to charge the battery pack 220, and the power supply voltage output by the USB interface 360 is directly output to the battery pack 220 for charging;
  • the main control module 310 monitors the charging state of the battery cell group 220, and determines whether the current charging state meets the charging switching condition, if yes, execute step S700; if not, execute step S500;
  • the charging switching condition in step S600 is that the charging current of the battery cell group 220 reaches the second preset current, or the real-time voltage of the battery cell group 220 reaches any condition of the second preset voltage, or a combination of the two conditions, where the first The second preset current is greater than the minimum charging current limited by the PD module 340, and the second preset voltage is less than the full charging voltage of the battery cell group 220.
  • the full charging voltage of the battery pack 220 is 21V
  • the second preset voltage is 20V
  • the second preset current value is 100mA
  • the minimum charging current limited by the PD module is 50mA.
  • the main control module 310 controls the switch S2 to open, and the switch S1 to close;
  • S800 The second charging branch is turned on, and the power supply voltage output by the USB interface 360 is adjusted to a first preset voltage by the boost circuit 321, and then the battery pack 220 is charged;
  • the main control module 310 determines whether the charging state of the battery cell group 220 meets the charging end condition. If so, the PD module 340 controls the USB interface to stop outputting electric energy, so that the battery cell group ends charging; if not, it returns to step S800.
  • the charging end condition is that the charging current of the battery cell group 220 reaches the minimum charging current limited by the PD module, or the real-time voltage of the battery cell group 220 reaches the full charging voltage of the battery cell group, or any one of the two conditions combination.
  • Figure 9d shows the fourth preferred embodiment of the DC power supply.
  • the main control module is integrated in the PD module 340, that is, a PD module with the function of the main control module is used.
  • the PD module is connected to the detection circuit, receives the signals transmitted by the voltage detection circuit and the current detection circuit, and controls the conduction or disconnection of the first charging branch 330 and the second charging branch 320 based on this.
  • the charger PD module 350 communicates with the PD module 340 in the DC power supply. At this time, charging is started, and the following steps are performed:
  • the PD module 340 controls the switch S1 to close, the second charging branch 320 is turned on, and the power supply voltage output by the USB interface 360 is adjusted to the first preset voltage by the boost circuit 321, and then the battery pack 220 is charged;
  • the PD module 340 obtains the charger power supply voltage and the real-time voltage of the battery cell group;
  • the PD module 340 determines whether the power supply voltage is greater than the battery cell group voltage, if it is greater than the cell group voltage, execute step S400; if it is not greater than execute step S600,
  • the PD module 340 controls the switch S1 to open, the switch S2 to close, and switch to the first charging branch for charging;
  • the first charging branch is turned on, the first charging branch is used to charge the battery pack 220, and the power supply voltage output by the USB interface 360 is directly output to the battery pack 220 for charging;
  • the PD module 340 monitors the charging state of the battery cell group 220, and judges whether the current charging state meets the charging switching condition, if yes, execute step S700; if not, execute step S500;
  • the charging switching condition in step S600 is that the charging current of the battery cell group 220 reaches the second preset current, or the real-time voltage of the battery cell group 220 reaches any condition of the second preset voltage, or a combination of the two conditions, where the first The second preset current is greater than the minimum charging current limited by the PD module 340, and the second preset voltage is less than the full charging voltage of the battery cell group 220.
  • the full charging voltage of the battery pack 220 is 21V
  • the second preset voltage is 20V
  • the second preset current value is 100mA
  • the minimum charging current limited by the PD module is 50mA.
  • the PD module 340 controls the switch S2 to open, and the switch S1 to close;
  • S800 The second charging branch is turned on, and the power supply voltage output by the USB interface 360 is adjusted to a first preset voltage by the boost circuit 321, and then the battery pack 220 is charged;
  • the PD module 340 determines whether the charging state of the battery cell group 220 meets the charging end condition. If so, the PD module 340 controls the USB interface to stop outputting electric energy, so that the battery cell group ends charging; if not, it returns to step S800.
  • the charging end condition is that the charging current of the battery cell group 220 reaches the minimum charging current limited by the PD module, or the real-time voltage of the battery cell group 220 reaches the full charging voltage of the battery cell group, or both conditions combination.
  • the charging circuit provided in the DC power supply provided by the present invention is not limited to the above-described external power input type and the above-described DC power output voltage.
  • the USB interface can be a normal USB interface, or a USB TYPE-C interface, or other types of electronic device interfaces.
  • the maximum output voltage of the DC power supply can also be a voltage of other values. The point is that the nominal full charging voltage of the energy storage module is higher than the input power voltage of the electronic device interface.
  • the nominal full charging voltage of the energy storage module is defined as the first preset voltage.
  • the power input from the electronic device interface is lower than the first preset voltage.
  • the power input from the electronic device interface is about 80% of the first preset voltage.
  • the present invention provides a charging circuit including a booster circuit.
  • the boost circuit is arranged inside the DC power supply, in order not to increase the volume of the DC power supply excessively, the volume of the charging circuit inside the DC power supply should be reduced as much as possible.
  • An alternative embodiment is the embodiment shown in Figs. 9b and 9c.
  • Another optional embodiment is to reduce the charging power of the DC power supply, so as to reduce the volume of the dedicated charging chip as much as possible. Define the capacity of a single energy storage module as X ampere hour, 1C charging means that the single energy storage module can be fully charged with X current for 1 hour.
  • the maximum output charging current of the dedicated charging chip is less than the 1.5C charging current of a single energy storage module.
  • the maximum output charging current of the dedicated charging chip is the 1C charging current of a single energy storage module, so the time required to fully charge the energy storage module is greater than or equal to 1 hour.
  • the DC-DC integrated circuit includes a 30W DC-DC chip, which is small in size and has a small impact on the overall size of the DC power supply.
  • first preset voltage and “second preset voltage” in the embodiments of the present application are only used to distinguish the judgment conditions for the voltage in different situations, and are not a limitation on the voltage. According to the actual situation, The magnitude relationship of the “first preset voltage” and the “second preset voltage” can be specifically set, for example, they can be equal but not equal, and for example, the first preset voltage can be greater than the second preset voltage, and so on.
  • FIG 11 shows the eighth preferred embodiment of the battery pack.
  • the battery pack includes an adapter and a battery module detachably mounted on the adapter.
  • the battery module includes a first battery module and a second battery module.
  • the adapter includes a tool power terminal set (T+/T-) that can be detachably matched with an electric tool, an adapter first power terminal set (A1+/A1-) that can be detachably matched with a first battery module, and a second battery module Remove the second power terminal set (A2+/A2-) of the matched adapter.
  • the first power terminal group A1+/A1-) and the second power terminal group (A2+/A2-) are connected in parallel to the tool power terminal group (T+/T-) to combine the electric energy of the first battery module and the second battery module Provided to power tools in parallel.
  • the adapter also includes a control circuit arranged between the battery module and the electric tool.
  • the control circuit includes a first switch component, a second switch component, and a main control module.
  • the first switch assembly is arranged between the first power terminal group of the adapter and the tool power terminal group.
  • the second switch assembly is arranged between the second power terminal group of the adapter and the tool power terminal group.
  • the main control module obtains the voltage difference between the voltage of the first battery module and the voltage of the second battery module, and when the voltage difference between the two is less than the preset voltage value, controls the first switch component and the second switch component to close,
  • the first battery module and the second battery module are connected in parallel to supply power to the electric tool.
  • the main control module determines that the voltage difference between the voltage of the first battery module and the voltage of the second battery module exceeds the preset voltage value, and the voltage of the first battery module is higher than the voltage of the second battery module, it controls the first battery module One switch assembly is closed, and the second switch assembly is opened, so that the first battery module with a higher voltage is discharged first.
  • the main control module determines that the voltage difference between the voltage of the first battery module and the voltage of the second battery module exceeds the preset voltage value, and the voltage of the second battery module is higher than the voltage of the first battery module.
  • the second switch component is controlled to be closed, and the first switch component is turned off, so that the second battery module with a higher voltage is discharged first.
  • the main control module detects that the voltage difference between the first battery module and the second battery module is less than the preset voltage value, the first switch component and the second switch component are controlled to be closed, and the first battery module and the second battery The modules are connected in parallel to supply power to the electric tools.
  • the main control module determines that the voltage difference between the first battery module and the second battery module exceeds a preset voltage value, and the voltage of the first battery module is higher than that of the second battery module.
  • the main control module controls the first switch component to close, and the second switch component intermittently closes.
  • the main control module determines that the voltage difference between the voltage of the first battery module and the voltage of the second battery module exceeds the preset voltage value, and the voltage of the second battery module is higher than the voltage of the first battery module,
  • the second switch assembly is controlled to be closed, and the first switch assembly is intermittently closed.
  • the main control module monitors that the voltage difference between the first battery module and the second battery module is less than the preset voltage value, the first switch component and the second switch component are controlled to be continuously closed, and the first battery module and the second battery module are continuously closed.
  • the battery modules are connected in parallel to supply power to the electric tool.
  • the main control module obtains the voltage difference between the voltage of the first battery module and the voltage of the second battery module.
  • the solution of directly obtaining the voltage difference is mainly to obtain the voltage difference between the voltage of the first battery module and the voltage of the second battery module directly.
  • the first battery module further includes a first battery module signal terminal set (BS) that transmits the state of the battery module to the outside
  • the second battery module further includes a second battery module that transmits the state of the battery module to the outside.
  • BS battery module signal terminal set
  • the adapter includes an adapter first signal terminal group (AS1) and an adapter second signal terminal that are detachably electrically connected to the first battery module signal terminal group and the second battery module signal terminal group Group (AS2)
  • the main control module obtains the voltage values of the first battery module and the second battery module according to the signals transmitted by the adapter first signal terminal group (AS1) and the adapter second signal terminal group (AS2).
  • the main control module controls the first switch assembly to close and the second switch assembly to open, obtain the voltage value of the first battery module through the adapter first power terminal group, and then the main control module controls The first switch component is opened and the second switch component is closed, and the voltage value of the second battery module is obtained through the second power terminal group of the adapter.
  • Indirectly obtaining the voltage difference between the first battery module and the second battery module can be indirectly obtained by measuring the voltage difference across the first switch component and the voltage difference across the second switch component.
  • the voltage difference across the first switch assembly and the voltage difference across the second switch assembly are both less than the second preset voltage value, it indicates that the voltage difference between the voltage of the first battery module and the voltage of the second battery module is less than the first
  • the main control module controls the first switch component and the second switch component to close, and the two battery modules are connected in parallel to supply power to the electric tool.
  • the voltage difference between both ends of the first switch component is greater than the second preset voltage value, it indicates that the voltage difference between the voltage of the first battery module and the voltage of the second battery module is greater than the first preset voltage value, and the first battery The voltage of the module is higher than the voltage of the second battery module.
  • the voltage difference between the two ends of the second switch component is greater than the second preset voltage value, it indicates that the voltage difference between the voltage of the first battery module and the voltage of the second battery module is greater than the first preset voltage value, and the second battery The voltage of the module is higher than the voltage of the first battery module.
  • the first switch component includes two P-MOS transistors, and the two transistors are connected in series with each other.
  • the second switch component includes two P-MOS transistors, and the two transistors are connected in series with each other. Since a transistor includes a parasitic diode from the D pole to the S pole, a transistor includes a parasitic diode from the S pole to the D pole, thereby forming two back-to-back diodes to prevent the first battery module and the first battery module from being in the standby state.
  • the two battery modules charge each other.
  • the adapter also includes a tool signal terminal set (TS) that is detachably connected to the power tool and a power-on self-locking circuit.
  • the tool signal terminal set (TS) is used to transmit electrical signals between the adapter and the power tool.
  • the power-on self-locking circuit is arranged between the main control module and the first power terminal group of the adapter and the second power terminal group of the adapter.
  • the power-on self-locking circuit includes an open state and a closed state. In the disconnected state, the main control module is in the power-off state and enters the sleep mode. In the closed state, the main control module is in the power-on state and starts to work.
  • the power-on self-locking circuit includes a first electronic switch Q5 and a second electronic switch T3.
  • the switch Q5 is arranged between the first power terminal group of the adapter and the second power terminal group of the adapter and the DC/DC module.
  • the DC/DC module is used to convert the voltage of the battery module into a voltage suitable for supplying power to the main control module.
  • the switch Q5 is in the off state, the DC/DC module cannot obtain the power of the battery module, and the main control module is in the power-down state and enters the sleep mode.
  • the DC/DC module When the switch Q5 is in the closed state, the DC/DC module obtains the electric energy of the battery module and converts it into a voltage suitable for supplying power to the main control module.
  • the main control module obtains the electric energy and is in the power-on state and starts to work. As shown in FIG. 12, at the moment when the start switch S1 of the electric tool is closed, the G pole of the switch Q5 is in a low level state via the tool signal terminal group, thereby triggering the switch Q5 to close.
  • the switch Q5 After the main control module is powered on, it sends a control signal to make the switch T3 in the closed state, so as to keep the G pole of the switch Q5 in the low state, lock the switch Q5 in the closed state, and the main control module continues to be powered , And start the aforementioned tasks, such as obtaining the voltage difference between the first battery module and the second battery module, controlling the state of the first switch component and the second switch component, and so on.
  • the main control module when only one battery module is installed to the adapter, or although multiple battery modules are installed to the adapter, only one battery module is in good contact, or although multiple battery modules are installed to the adapter, only When a battery module meets the discharge conditions, when the main control module recognizes the above situation through the adapter signal terminal group or the adapter power terminal group, it controls the switch component corresponding to the battery module to close, and the other switch components are disconnected. The group supplies power to the power tools. As a result, even when only one battery module can work, the battery pack can still supply power to the electric tool.
  • Figure 13a is the first preferred embodiment of the workflow of this embodiment.
  • the battery pack Before the trigger signal of the power tool is received, that is, before the start switch of the power tool is closed, the battery pack is in a sleep mode and consumes very little power.
  • steps S0 and S2 once the start switch of the electric tool is closed, the tool signal terminal group outputs a low-level trigger signal, which will be sent to the power-on self-locking circuit, and the power-on self-locking circuit is switched from the off state In the closed state, the main control module is powered on to start work. Then go to step S4.
  • Step S4 it is judged whether the first battery module and the second battery module are both connected to the adapter, and if the judgment result is no, go to step S10. If the judgment result is yes, go to step S8. If the judgment result is no, it means that one of the first battery module and the second battery module is connected to the adapter, and the other is not connected to the adapter. It is not that the two battery modules are not connected to the adapter, because if two If the battery modules are not connected to the adapter, the main control module cannot be powered on, and the judgment of whether the battery modules are connected to the adapter cannot be executed.
  • step S10 the first switch component or the second switch component is controlled to be closed, so that the battery module connected to the adapter supplies power to the electric tool. Then go to step S12.
  • step S12 it is judged whether the battery module reaches the over-discharge protection condition.
  • the over-discharge protection conditions include but are not limited to at least one of the following: 1) The entire pack voltage of the battery module is lower than the preset voltage; 2) The voltage of a single cell in the battery module is lower than the preset voltage; 3) Battery mode The discharge current of the group is greater than the preset current; 4) The temperature of the battery module is higher than the preset temperature.
  • step S14 go to step S16, and the main control module enters a sleep state.
  • the main control module sends a control signal to control the switch T3 to open, thereby controlling the switch Q5 to open, so that the upper electronic lock circuit is disconnected, and the main control module powers down and enters the dormant state, thereby reducing battery damage.
  • the power consumption of the module is not limited to a predetermined amount of the battery.
  • Step S8 Determine whether the difference between the voltage of the first battery module and the voltage of the second battery module exceeds a preset voltage value.
  • the judging method is as mentioned before, so I won't repeat it here.
  • the process proceeds to step S18.
  • the judgment result is YES, the process proceeds to step S22.
  • step S18 the first switch assembly and the second switch assembly are closed, so that the first battery module and the second battery module are connected in parallel to supply power to the electric tool. Then go to step S20.
  • step S20 it is determined whether the first battery module and the second battery module meet the over-discharge protection condition.
  • the over-discharge protection conditions are as described above.
  • the judgment result is YES
  • the process proceeds to step S14.
  • the judgment result is negative, return to step S18.
  • Step S22 Determine whether the voltage of the first battery module is greater than the voltage of the second battery module.
  • the judgment result is yes, it means that the voltage of the first battery module is greater than the voltage of the second battery module, and the voltage difference between the two exceeds the preset voltage value, and step S24 is entered at this time.
  • step S24 the first switch component is closed, and the second switch component is disconnected. The beneficial effect of this is that only the first battery module is discharged, and the second battery module is not discharged, which effectively prevents the first battery module from charging the second battery module when the two are discharged in parallel at the same time, causing damage to the battery module .
  • step S22 When the judgment result of step S22 is no, it means that the voltage of the second battery module is greater than the voltage of the first battery module, and the voltage difference between the two exceeds the preset voltage value, and step S32 is entered at this time.
  • step S32 the second switch component is closed, and the first switch component is disconnected. The beneficial effect of this is that only the second battery module is discharged, and the first battery module is not discharged, which effectively prevents the second battery module from charging the first battery module when the two are discharged in parallel at the same time, causing damage to the battery module .
  • step S24 After step S24, go to step S26.
  • step S26 it is determined whether the first battery module reaches the over-discharge protection condition. When the judgment result is YES, the process proceeds to step S28. When the judgment result is negative, return to step S24.
  • step S28 the first switch component is disconnected, and the second switch component is closed. That is, the discharging of the first battery module is stopped, and the discharging of the second battery module is started.
  • step S30 is entered to determine whether the second battery module reaches the over-discharge protection condition. If the judgment result of step S30 is YES, the process proceeds to step S14. If the result of the judgment in step S30 is negative, the process returns to step S28.
  • step S34 it is determined whether the second battery module reaches the over-discharge protection condition. When the judgment result is YES, the process proceeds to step S36. When the judgment result is negative, return to step S32.
  • step S36 the second switch component is opened, and the first switch component is closed. That is, the discharging of the second battery module is stopped, and the discharging of the first battery module is started.
  • step S38 is entered to determine whether the first battery module reaches the over-discharge protection condition. If the result of the judgment in step S38 is YES, the process proceeds to step S14. If the result of the judgment in step S38 is negative, the process returns to step S36.
  • FIG. 13b is the second preferred embodiment of the workflow of this embodiment.
  • the flowchart of this embodiment is basically the same as the flowchart shown in FIG. 13b, except for steps S24, S26, S32, and S34.
  • step S24 of this embodiment the first switch component is continuously closed, and the second switch component is intermittently closed.
  • the effect achieved is that the first battery module with a higher voltage continuously supplies power to the electric tool, and the second battery module with a lower voltage intermittently supplies power to the electric tool, that is, the second battery module intermittently communicates with the first battery module. Parallel power supply to the power tool.
  • step S24 After step S24, go to step S26.
  • step S26 it is judged whether the first battery module and the second battery module have reached the over-discharge protection condition, and when the judgment result is yes, go to step S14 to stop the battery module discharging the electric tool.
  • step S26 when the judgment result is negative, return to step S24.
  • step S32 the second switch component is continuously closed, and the first switch component is intermittently closed.
  • step S32 the process proceeds to step S34.
  • step S34 it is judged whether the first battery module and the second battery module have reached the over-discharge protection condition, and when the judgment result is yes, go to step S14 to stop the battery module discharging the electric tool. In step S34, when the judgment result is negative, return to step S32.
  • FIG 14 shows a ninth preferred embodiment of the battery pack.
  • the battery pack includes two battery modules connected in parallel, and each battery module includes a charging power module.
  • One of the charging power modules receives external power input, and the other charging power module does not receive external power.
  • the battery pack includes an adapter, a first battery module, and a second battery module. The electrical energy of the first battery module and the second battery module provides electrical energy to the electric tool through the adapter.
  • the adapter includes a tool power terminal group (T+/T-) that can be detachably matched with the power tool, an adapter first power terminal group (A1+/A1-) that can be detachably matched with the first battery module, and the first signal terminal group of the adapter ( AS1), and the adapter second power terminal group (A2+/A2-) and the adapter second signal terminal group (AS2) that are detachably matched with the second battery module.
  • T+/T- tool power terminal group
  • A1+/A1- an adapter first power terminal group
  • AS2+/A2- the adapter second power terminal group
  • AS2 adapter second signal terminal group
  • the first battery module is detachably mounted on the adapter, and includes a first battery module power terminal group (B+/B-) connected to the first power terminal group of the adapter, and a first battery module connected to the first signal terminal group of the adapter A set of signal terminals (BS) and a first charging power module that receives external charging energy to charge the first battery module.
  • the first power terminal group is connected with the positive and negative electrodes of the first battery module.
  • the first battery module signal terminal group transmits the state signal of the first battery module to the outside.
  • the second battery module is detachably mounted on the adapter, and includes a second battery module power terminal group connected to the adapter second power terminal group, a second battery module signal terminal group connected to the adapter second signal terminal group, and A second charging power supply module that receives external charging energy to charge the second battery module.
  • the second power terminal group is connected with the positive and negative poles of the second battery module.
  • the second battery module signal terminal group transmits the status signal of the second battery module to the outside.
  • the adapter also includes a main control module and a switch assembly. The first power terminal group of the adapter and the second power terminal group of the adapter are connected in parallel via the switch assembly.
  • the first battery module signal terminal set When the first charging power supply module receives external charging energy input and the second charging power supply module does not receive external charging energy input, the first battery module signal terminal set sends a trigger signal to the first signal terminal set of the adapter connected to it , The main control module controls the switch assembly to close, so that the first charging power supply module can charge both the first battery module and the second battery module. Conversely, when the second charging power supply module receives external charging energy input and the first charging power supply module does not receive external charging energy input, the second battery module signal terminal set sends out the second signal terminal set of the adapter connected to it With the trigger signal, the main control module controls the switch assembly to close, so that the second charging power module can charge the second battery module as well as the first battery module.
  • FIG. 15 is a circuit block diagram of an alternative embodiment of the battery module.
  • the battery module includes a battery pack, a charging management module, a charging power supply module, a trigger signal generating module, and an adapter interface.
  • the battery module interface includes a battery module power terminal group and a battery module signal terminal group.
  • the charging management module in the battery module is electrically connected to the charging power module.
  • the trigger signal generating module outputs a high-level signal
  • the high-level signal is the trigger signal.
  • the trigger signal is transmitted to the adapter signal terminal group via the battery module signal terminal group.
  • the battery module signal terminal group includes an S signal terminal and a D signal terminal.
  • the two terminals can be set independently, or one terminal can be multiplexed in time.
  • the S signal terminal transmits analog signals, such as high-level signals.
  • the D signal terminal transmits digital signals, such as the current charge and discharge status of the cells in the battery module.
  • the S signal terminal and the D signal terminal correspondingly receive the signal transmitted to it by the adapter.
  • the switch assembly includes a first switch assembly and a second switch assembly, and the first switch assembly is disposed between the first power terminal group of the adapter and the tool power terminal group.
  • the second switch assembly is arranged between the first power terminal group of the adapter and the tool power terminal group.
  • the second power terminal group of the adapter is connected in parallel via the first switch assembly and the second switch assembly.
  • the main control module controls the closing of the first switch assembly and the second switch assembly, it obtains the voltage of the first battery module and the voltage of the second battery module, and determines whether the voltage of the first battery module and the voltage of the second battery module are When the preset condition is satisfied, when the judgment result is yes, the first switch component and the second switch component are controlled to be closed; when the judgment result is no, the first switch component and the second switch component are controlled to be opened.
  • the main control module controls the first switch assembly to close and the second switch assembly to open, and obtain the voltage value of the first battery module through the first battery module power terminal group.
  • the main control module controls the first switch component to open and the second switch component to close, and obtains the voltage value of the second battery module through the second battery module power terminal group.
  • the main control module can also directly obtain the voltage of the first battery module through the signal transmitted by the first battery module signal terminal group, and obtain the voltage of the second battery module through the signal transmitted by the second battery module signal terminal group.
  • the main control module sets up different ports to receive the trigger signal of the first battery module signal terminal group and the trigger signal of the second battery module signal terminal group, thereby identifying which battery module sent the adapter Trigger signal.
  • the preset condition is whether the voltage of the first battery module is not lower than the voltage of the second battery module.
  • the preset condition is whether the voltage of the second battery module is not lower than the voltage of the first battery module.
  • the first battery module charging management module in the first battery module monitors the state of the first battery module and controls the charging process of the first battery module by the first charging power module.
  • the second battery module charging management module in the second battery module monitors the state of the second battery module and controls the charging process of the second battery module by the second charging power module.
  • the charging management of the first battery module is completed by the first battery module charging management module. 2.
  • the charging management of the battery module is completed by the main control module.
  • the charging management of the second battery module is completed by the second battery module charging management module
  • the charging management of the first battery module is completed by the main control module.
  • the charging management of the battery module by the main control module is specifically realized as: when the first charging power supply module receives external charging energy input, and the main control module determines that the second battery module is fully charged according to the signal transmitted by the signal terminal of the second battery module At this time, at least one of the first switch assembly and the second switch assembly is controlled to be turned off.
  • the main control module determines that the first battery module is fully charged according to the signal transmitted by the signal terminal of the first battery module, it controls the first switch assembly and the second switch assembly. At least one is disconnected.
  • the first charging power supply module and the second charging power supply module include a USB-C PD module, that is, the USB TYPE C energy transmission protocol.
  • the USB TYPE C energy transfer protocol receives the power input of the external USB-C (ie, USB TYPE C) interface, and converts it into energy suitable for charging the battery module.
  • the first charging power supply module and the second charging power supply module further include a wireless charging receiving module.
  • the wireless charging receiving module receives the energy sent by the external wireless charging transmitting module and converts it into energy suitable for charging the battery module.
  • the adapter further includes a power-on self-locking circuit provided between the first power terminal group of the adapter and the second power terminal group of the adapter and the main control module.
  • the power-on self-locking circuit does not receive the trigger signal of the first signal terminal group of the adapter or the second signal terminal group of the adapter, the switch T4 is in the off state, so that the switch Q5 is in the off state, so the power-on self-locking circuit is off. Open state.
  • the power provided by the battery module cannot be transmitted to the DC/DC module, so that the main control module cannot be supplied with power, and the main control module enters the sleep mode in a power-off state.
  • the switch T4 When the power-on self-locking circuit receives the trigger signal of the first signal terminal group of the adapter or the second signal terminal group of the adapter, the switch T4 is in the closed state, so that the switch Q5 is in the closed state, so the power-on self-locking circuit is in the closed state.
  • the electric energy provided by the battery module supplies power to the main control module through the DC/DC module, and the main control module is in the power-on state and starts to work. That is to say, before receiving the trigger signal from the battery module signal terminal group, the main control module is in a power-down state and consumes very little power, so that the battery pack consumes less power and prolongs when it is not working. Standby time.
  • the main control module determines that the trigger signal comes from the first battery module and the second battery module is not connected, it controls the power-on self-locking module to switch from the closed state to the open state; or when the main control module When it is determined that the trigger signal comes from the second battery module and the first battery module is not connected, the power-on self-locking module is controlled to switch from the closed state to the open state. Because the charging management of the battery module is controlled by its internal charging management module at this time, the battery pack does not need the main control module to participate in any work.
  • the battery pack Before receiving a trigger signal from the first battery module signal terminal group or the second battery module signal terminal group, the battery pack is in a sleep mode and consumes very little power. As shown in steps S0 and S2, once the first charging power supply module or the second charging power supply module receives the external charging energy input, the corresponding first battery module signal terminal group or the second battery module signal terminal group is sent to the adapter Send a high-level trigger signal.
  • the high-level trigger signal causes the power-on self-locking circuit to switch from the open state to the closed state, and the main control module is powered on to start work. Then go to step S4.
  • Step S4 It is judged whether the first battery module and the second battery module are both connected to the adapter. If the judgment result is no, it means that only this battery module is connected, the other is not connected to the adapter, and the battery module of the intervening adapter has received external charging energy input, and no other battery modules need the battery The charging power module in the module charges it, so the main control module in the adapter does not need to continue working. At this time, step S18 is entered, and the main control module enters a power-off sleep state, that is, a low power consumption state. If the judgment result of step S4 is yes, go to step S6.
  • the main control module cannot be powered on, and it is impossible to judge whether the battery module is connected or not.
  • the judgment of the adapter There are many ways to judge whether the battery module is connected to the adapter, such as by judging whether the adapter signal terminal group receives a predetermined signal, or whether the adapter power terminal group receives a predetermined voltage, or by setting sensing elements in the battery module and the adapter , To determine whether the adapter is connected to the battery module in a non-contact manner.
  • Step S6 Determine whether the trigger signal comes from the first battery module.
  • the main control module determines whether the trigger signal comes from the first battery module according to which input port the trigger signal comes from. When the judgment result is yes, it indicates that both the first battery module and the second battery module are connected to the adapter, and the first charging power module receives external charging energy input and is ready to start charging the first battery module.
  • the second charging power supply module does not receive external charging energy input, the second battery module needs to be charged with the electric energy of the first charging power supply module to the second battery module to charge the second battery module. However, before the electric energy of the first charging power supply module is introduced to the second battery module, it is necessary to determine whether the first charging power supply module is suitable for simultaneously charging the first battery module and the second battery module.
  • step S6 determines whether the second charging power supply module is suitable for charging the first battery module and the second battery module at the same time. Therefore, if the judgment result of step S6 is negative, the process proceeds to step S20 first.
  • Both step S8 and step S20 are to obtain the voltage of the first battery module and the voltage of the second battery module, and determine that the voltage of the first battery module and the voltage of the second battery module meet the preset conditions. Obtaining the voltage of the first battery module and the voltage of the second battery module is as described above.
  • the preset condition in step S8 is whether the voltage of the first battery module is not lower than the voltage of the second battery module.
  • the preset condition in step S20 is whether the voltage of the second battery module is not lower than the voltage of the first battery module.
  • step S8 if the judgment result is no, go to step S9; if the judgment result is yes, go to step S10.
  • step S20 if the judgment result is no, go to step S28; if the judgment result is yes, go to step S22.
  • step S10 the first switch component and the second switch component are closed, and the first charging power supply module simultaneously charges the first battery module and the second battery module, and then goes to step S12.
  • step S22 the first switch assembly and the second switch assembly are closed, and the second charging power supply module simultaneously charges the first battery module and the second battery module, and then goes to step S24.
  • step S9 and step S28 are to obtain the voltage of the first battery module and the voltage of the second battery module. Then return to step S8 and step S20 respectively, and continue to determine that the voltage of the first battery module and the voltage of the second battery module meet the preset conditions.
  • step S12 the main control module obtains the charging state of the second battery module.
  • the obtaining method is through the second power terminal group of the adapter or the second signal terminal group of the adapter.
  • step S14 the main control module determines whether the second battery module is fully charged based on the charging state of the second battery module.
  • the reason why the second battery module is fully charged is controlled by the main control module instead of the second charging management module inside it is that whether the first charging power supply module charges the second battery module is through the main control module To control it.
  • the charging process of the first battery module is controlled by the first charging management module within it, without the participation of the main control module.
  • step S24 the main control module obtains the charging state of the first battery module.
  • the acquisition method is through the first power terminal group of the adapter or the first signal terminal group of the adapter.
  • step S26 is entered, and the main control module determines whether the first battery module is fully charged based on the charging state of the first battery module.
  • the reason why the first battery module is fully charged is controlled by the main control module instead of the first charging management module inside it is that whether the second charging power supply module charges the first battery module is through the main control module To control it.
  • the charging process of the second battery module is controlled by the second charging management module in it, without the participation of the main control module.
  • step S14 and step S26 are yes, the process proceeds to step S16.
  • step S14 and step S26 are no, return to step S12 and step S24, respectively.
  • step S16 the main control turns off the first switch component and the second switch component. Subsequently, the power-on self-locking circuit is controlled to enter the disconnected state, and the main control module is powered off and enters the dormant state, as shown in step S18.
  • the present invention also provides a tenth embodiment of the battery pack.
  • the tenth embodiment will be described below in conjunction with FIG. 12 and FIG. 14.
  • the battery pack includes an adapter and a battery module, and the battery module is detachably installed on the adapter.
  • the battery module includes a plurality of battery cells, a battery module power terminal group for outputting electric energy, and a battery module signal terminal group for outputting electric signals.
  • the adapter is detachably connected to the electric tool, and provides the electric energy of the battery module to the electric tool.
  • the adapter also includes an adapter power terminal set that is detachably connected to the battery module power terminal set, an adapter signal terminal set that is detachably connected to the battery module signal terminal set, a tool power terminal set that is detachably connected to a power tool, and a power tool Removable connection tool signal terminal group, main control module, and power-on self-locking circuit.
  • the main control module consumes the power of the battery module to start work.
  • the power-on self-locking circuit is arranged between the main control module and the adapter power terminal group, and can be selectively in an open state or a closed state. When the power-on self-locking circuit is in the disconnected state, the main control module is in the power-down state and enters the sleep mode.
  • the main control module When the power-on self-locking circuit is in the closed state, the main control module is in the power-on state and starts to work.
  • the power-on self-locking circuit receives an external trigger signal, it switches from the open state to the closed state, and correspondingly, the main control module switches from the power-off state to the power-on state and starts working.
  • the following describes the trigger conditions for switching the power-on self-locking circuit from the open state to the closed state in conjunction with FIG. 12.
  • the first signal terminal group of the adapter when the first charging power supply module receives external charging energy input, the first signal terminal group of the adapter outputs a high-level trigger signal to the power-up self-locking circuit, so that the switch T4 is instantly closed, and the G pole of the switch Q5 A low-level signal is obtained instantly, prompting the switch Q5 to close, and the power-on self-locking circuit switches from the open state to the closed state.
  • the second signal terminal group of the adapter outputs a high-level trigger signal to the power-up self-locking circuit, so that the switch T4 is instantaneously closed, and the G pole of the switch Q5 is instantaneously obtained
  • the low-level signal prompts the switch Q5 to close, and the power-on self-locking circuit switches from the open state to the closed state.
  • the main control module After any one of the above conditions triggers the power-on self-locking circuit to switch from the open state to the closed state, the main control module starts working and sends a control signal to the switch T3 of the power-on self-locking circuit to keep it in the closed state, switch Q5
  • the G pole of the power-on continues to receive a low-level signal, the power-on self-locking circuit is continuously in the closed state, and the main control module continues to work.
  • the main control module sends a control signal to the switch T3 of the power-on self-locking circuit to switch from the closed state to the open state, so that the switch Q5 is opened and the power-on self-locking circuit is switched off.
  • the closed state is switched to the open state.
  • the main control module detects that the start switch is turned off through the tool signal terminal group, and judges that the discharge process of the battery pack is over, and the main control module needs to enter the dormant state.
  • the main control module determines that the battery module reaches the over-discharge protection condition, it stops discharging the battery module, and then enters the sleep state.
  • the main control module judges that only one battery module is connected, and the trigger signal comes from the adapter signal terminal group. When it is not a tool signal terminal group, it indicates that the battery module is about to enter the charging mode, not the discharging mode, and The charging power of the battery module comes from its own charging power module. At this time, the main control module does not need to continue working and enters the dormant state.
  • the battery pack can directly supply power to the electric tool, and the battery module in the battery pack can supply power to household equipment, so that the battery pack can not only power the electric tool, but also the household equipment, which improves the general purpose of the battery pack. It is not necessary to change the appearance of existing electric tools and household equipment, and does not affect the appearance of each product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种直流电源,可为电动工具供电,所述直流电源包括:储能模块,标称满充电压为第一预设电压;电子设备接口,接收外接的电源输入;所述电子设备接口输入的电源低于所述第一预设电压;充电电路,与所述电子设备接口连接,将所述电子设备接口输入的电源抬升到所述第一预设电压,为所述储能模块充电;所述充电电路判断所述储能模块充满并停止充电时,所述储能模块接收的容量达到其标称容量的80%以上。本发明即使在外接的电子设备充电器的输出的充电电压低于直流设备的满充电压的情况下,也能利用该较低的充电电压将直流电源充满。

Description

直流电源
本申请要求了申请日为2020年03月18日,申请号为202010190512.4和申请日为2020年04月23日,申请号为202010324664.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种直流电源,特别是一种电动工具用直流电源。
背景技术
市面上已经存在的电动工具用直流电源,通常只能通过电动工具用充电器进行充电。这种充电器的特点在于,其输出给直流电源的电压必须高于直流电源的满充电压。目前家用的电子设备非常常见,手机、平板电脑、笔记本电脑等家用电子设备的充电器可输出的充电电压在5-20V之间,而电动工具用直流电源由于大功率使用要求,其要求的充电电压一般在20V以上,这种要求导致电动工具用直流电源不能采用家用的电子设备充电器进行充电。
发明内容
本发明提供一种电动工具用直流电源,即使在外接的电子设备充电器输出的充电电压低于直流电源的满充电压的情况下,也能利用该较低的充电电压将直流电源充满。
一种直流电源,可为电动工具供电,所述直流电源包括:储能模块,标称满充电压为第一预设电压;电子设备接口,接收外接的电源输入;所述电子设备接口输入的电源电源低于所述第一预设电压;充电电路,与所述电子设备接口连接,将所述电子设备接口输入的电源电压抬升到所述第一预设电压,为所述储能模块充电;所述储能模块充电结束时,所述储能模块的充电容量达到其标称容量的80%以上。
可选的,所述充电电路包括主控模块以及相互并联的第一充电支路和第二充电支路,所述第一充电支路将所述电子设备接口输入的电源电压直接输出给储能模块,所述第二充电支路将所述电子设备接口输入的电源电压升压到所述第一预设电压后输出给储能模块,所述主控模块监测所述储能模块的充电状态,根据充电状态控制第一充电支路和第二充电支路择一导通。
可选的,所述第二充电支路包括串联的第一开关与DC-DC电路;所述第一开关的受控端与所述主控模块连接,用于在所述主控模块控制其导通时,导通所述DC-DC电路,以将所述电子设备接口输入的电源电压升压到所述第一预设电压。
可选的,所述主控模块用于监测所述储能模块的充电电流的大小和所述储能模块的实时电压的大小,当所述充电电流达到第一预设电流或所述实时电压达到所述第一预设电压时判断所述储能模块充满。
可选的,所述主控模块用于在启动充电时,控制所述第二充电支路导通。
可选的,在启动充电后,所述主控模块还用于监测所述电子设备接口输入的电源电压的大小,在所述电源电压大于所述实时电压时,控制切换所述第一充电支路导通。
可选的,所述主控模块还用于在所述第一充电支路导通,且所述充电电流达到第二预设电流时,控制切换所述第二充电支路导通;其中,所述电第二预设电流大于所述第一预设电流。
可选的,所述主控模块还用于在所述第一充电支路导通且所述实时电压达到第二预设电压时,控制切换所述第二充电支路导通;其中,所述第二预设电压小于所述第一预设电压。
可选的,所述主控模块还用于在所述第一充电支路导通,所述实时电压达到第二预设电压且所述充电电流达到所述第二充电电流时,控制所述第二充电支路导通;其中,所述第二预设电流大于所述第一预设电流,所述第二预设电压小于所述第一预设电压。
可选的,前述任一项所述的直流电源,所述电子设备接口为USBTYPE-C接口。
本发明还提供另一种直流电源,可为电动工具供电,所述直流电源包括:储能模块,标称满充电压为第一预设电压;电子设备接口,接收外接的电源输入;充电电路,与所述电子设备接口连接,将所述电子设备接口输入的电源转换为适合给储能模块充电的电源,为所述储能模块充电;所述电子设备接口输入的电源低于所述第一预设电压,所述充电电路判断所述储能模块充满并停止充电时,所述储能模块接收的容量达到其标称容量的80%以上。
可选的,所述充电电路包括升压电路,所述升压电路将所述电子设备接口输入的电源抬升到所述第一预设电压。
可选的,所述充电电路包括主控模块以及相互并联的第一充电支路和第二充电支路,所述第一充电支路将所述电子设备接口输入的电源直接输出给储能模块,所述第二充电支路将所述电子设备接口输入的电源经升压电路升压后输出给储能模块,所述主控模块检测直流电源的充电状态,根据充电状态控制第一充电电路和第二充电电路择一导通。
可选的,当所述充电电流大于预设值时,主控模块控制第一充电支路导通,当所述充电电流不大于预设值时,主控模块控制第二充电支路导通。
可选的,所述升压电路为专用充电芯片实现,所述专用充电芯片输出的充电电流小于所述直流电源的容量与小时的比值。
可选的,所述直流电源为电池包,所述电池包可拆卸地连接所述电动工具,为所述电动工具供电。
可选的,所述电池包包括适配器和电池模组,所述电池模组与所述适配器可拆卸的配合。
可选的,所述直流电源为组成电池包的电池模组,所述电池包可拆卸地连接所述电动工具,为所述电动工具供电,所述电池模组包括壳体及收容于所述壳体的电芯组。
可选的,所述电子设备接口设置在所述电池模组上。
可选的,所述电子设备接口为USB TYPE-C接口,所述USB TYPE-C接口的输入电压为20V,所述第一预设电压为20V到21V之间。
本发明还提供第三种直流电源,可为电动工具供电,所述直流电源包括:储能模块,能输出的最高电压为第一预设电压;电子设备接口,接收外接的电源输入;充电电路,与所述电子设备接口连接,将所述电子设备接口输入的电源转换为适合给储能模块充电的电源,为所述储能模块充电;所述电子设备接口输入的电源不高于所述第一预设电压的80%,所述直流电源充电结束时可充满其容量的80%以上。
优选的,所述充电电路包括升压电路,所述升压电路将所述电子设备接口输入的电源抬升到所述第一预设电压以上。
优选的,所述充电电路包括主控模块以及相互并联的第一充电支路和第二充电支路,所述第一充电支路将所述电子设备接口输入的电源直接输出给储能模块,所述第二充电支路将所述电子设备接口输入的电源经升压电路升压后输出给储能模块,所述主控模块检测直流电源的充电状态,根据充电状态控制第一充电电路和第二充电电路择一导通。
优选的,当所述充电电流大于预设值时,主控模块控制第一充电支路导通,当所述充电电流不大于预设值时,主控模块控制第二充电支路导通。
优选的,所述升压电路由专用充电芯片实现,所述专用充电芯片充满所述储能模块所需的时间大于1小时。
优选的,所述直流电源为电池包,所述电池包可拆卸地连接所述电动工具,为所述电动工具供电。
优选的,所述电池包包括适配器和电池模组,所述电池模组与所述适配器可拆卸的配合。
优选的,所述直流电源为电池模组,所述电池模组可拆卸地与一适配器配接,经所述适配器可拆卸地连接所述电动工具,为所述电动工具供电。
优选的,所述电子设备接口为USB TYPE-C接口,所述USB TYPE-C接口的输入电压为20V,所述第一预设电压为20V到21V之间。
本发明提供的上述直流电源,可接受外接的电子设备充电器的输出为自身充电,且即使 在充电器输出的充电电压低于直流电源的满充电压的情况下,也能将自身容量充满至标称容量的80%以上。
本发明还提供一种适配器,所述适配器,包括:工具电源端子组,与电动工具可拆卸配合的;适配器第一电源端子组,可拆卸地配接第一电池模组,将第一电池模组的电能提供给电动工具;适配器第二电源端子组,与所述适配器第一电源端子组并联设置,可拆卸地配接第二电池模组,将第二电池模组的电能提供给电动工具;所述适配器还包括第一开关组件、第二开关组件、以及主控模块;所述第一开关组件设置在所述适配器第一电源端子组与所述工具电源端子组之间,所述第二开关组件设置在所述适配器第二电源端子组与所述工具电源端子组之间;所述主控模块获得第一电池模组的电压和第二电池模组的电压的电压差值,当所述电压差值小于预设电压值时,控制第一开关组件和第二开关组件闭合。
可选的,所述主控模块获取第一电池模组的电压和第二电池模组的电压,根据所述第一电池模组的电压和第二电池模组的电压获得所述电压差值。
可选的,所述适配器包括适配器第一信号端子组和适配器第二信号端子组,分别接收第一电池模组和第二电池模组的状态信息,所述主控模块根据适配器第一信号端子组和适配器第二信号端子组获得的状态信息获取第一电池模组和第二电池模组的电压值。
可选的,所述主控模块控制第一开关组件闭合且第二开关组件断开,通过所述适配器第一电源端子组获取第一电池模组的电压值,所述主控模块控制第一开关组件断开且第二开关组件闭合,通过所述适配器第二电源端子组获取第二电池模组的电压值。
可选的,所述主控模块获取第一开关组件两端的电压差和第二开关组件两端的电压差,根据所述第一开关组件两端的电压差和第二开关组件两端的电压差获取第一电池模组的电压和第二电池模组的电压的电压差值。
可选的,所述主控模块判断所述电压差值超过预设电压值,且第一电池模组的电压高于第二电池模组的电压时,控制第一开关组件闭合,第二开关组件断开。
可选的,所述主控模块判断所述电压差值超过预设电压值,且第一电池模组的电压高于第二电池模组的电压时,控制第一开关组件闭合,第二开关组件间歇闭合。
可选的,第一开关组件为包括两个P-MOS晶体管,所述两个晶体管相互串联。
可选的,所述适配器还包括与所述电动工具可拆卸连接的工具信号端子组、设置在主控模块和适配器第一电源端子组以及适配器第二电源端子组之间的上电自锁电路,所述上电自锁电路包括断开状态和闭合状态,断开状态下,所述主控模块处于掉电状态进入休眠模式,闭合状态下,所述主控模块处于上电状态并启动工作,所述电动工具的启动开关闭合时,所述工具信号端子组收到触发信号,所述上电自锁电路由断开状态切换至闭合状态。
可选的,当所述主控模块判断适配器第二电源端子组未接入第二电池模组时,控制第一开关组件闭合,第二开关组件断开。
对应地,本发明还提供一种电池包,所述电池包包括第一电池模组、第二电池模组、前所任意一项所述的适配器,其中,第一电池模组,可拆卸地安装于所述适配器,包括与所述适配器第一电源端子组连接的第一电池模组电源端子组;第二电池模组,可拆卸地安装于所述适配器,包括与所述适配器第二电源端子组连接的第二电池模组电源端子组。
对应地,本发明还提供一种电动工具,包括马达、启动开关以及为马达供电的电池包,所述电池包如前所述,当所述启动开关闭合时,所述马达获取所述电池包的电能并启动工作。
本发明提供的上述适配器、电池包、电动工具的优势在于,适配器中的控制电路使得多个电池模组并联放电时,能避免相互之间由于电压差而导致互相充电,引发安全隐患。同时适配器中的控制电路还能在不需要工作时,自动进入低功耗状态,避免过多消耗电池模组的电能。
本发明还提供另外一种适配器,所述适配器包括:工具电源端子组,与电动工具可拆卸配合;适配器第一电源端子组和适配器第一信号端子组,可拆卸地配接第一电池模组,将第一电池模组的电能提供给电动工具,第一电池模组包括接收外部的充电能量为所述第一电池 模组充电的第一充电电源模块;适配器第二电源端子组和适配器第二信号端子组,可拆卸地配接第二电池模组,将第二电池模组的电能提供给电动工具,第二电池模组包括接收外部的充电能量为所述第二电池模组充电的第二充电电源模块;所述适配器还包括开关组件以及主控模块;所述适配器第一电源端子组与适配器第二电源端子组经所述开关组件并联连接;所述第一充电电源模块和所述第二充电电源模块中的一个接收到外部的充电能量输入时,所述适配器第一信号端子组或所述适配器第二信号端子组接收到来自第一电池模组或第二电池模组的触发信号,所述主控模块控制所述开关组件闭合。
可选的,所述主控模块控制所述开关组件闭合之前,获取第一电池模组的电压和第二电池模组的电压,判断第一电池模组的电压和所述第二电池模组的电压是否满足预设条件,当判断结果为是时,控制所述开关组件闭合;当判断结果为否时,控制所述开关组件断开。
可选的,当主控模块判断所述触发信号来自所述第一电池模组信号端子组时,所述预设条件为第一电池模组的电压是否不低于第二电池模组的电压,当主控模块判断所述启动信号来自所述第二电池模组信号端子组时,所述预设条件为第二电池模组的电压是否不低于第一电池模组的电压。
可选的,所述开关组件包括第一开关组件和第二开关组件,所述第一开关组件设置在适配器第一电源端子组与工具电源端子组之间,所述第二开关组件设置在适配器第一电源端子组与工具电源端子组之间,所述适配器第一电源端子组和所述适配器第二电源端子组经所述第一开关组件和所述第二开关组件并联连接。
可选的,所述主控模块控制第一开关组件闭合且第二开关组件断开,通过所述第一电池模组电源端子组获取第一电池模组的电压值,所述主控模块控制第一开关组件断开且第二开关组件闭合,通过所述第二电池模组电源端子组获取第二电池模组的电压值。
可选的,当主控模块判断所述触发信号来自所述第一电池模组信号端子组,且所述主控模块根据所述第二电池模组信号端子传递的信号判断第二电池模组充满时,控制所述开关组件断开;当主控模块判断所述触发信号来自所述第二电池模组信号端子组,且所述主控模块根据所述第一电池模组信号端子传递的信号判断第一电池模组充满时,控制所述开关组件断开。
可选的,所述适配器还包括设置在适配器第一电源端子组以及适配器第二电源端子组与所述主控模块之间的上电自锁电路,所述上电自锁电路未接收到所述适配器第一信号端子组或适配器第二信号端子组的触发信号时处于断开状态,所述主控模块处于掉电状态进入休眠模式,所述上电自锁电路接收到所述适配器第一信号端子组或适配器第二信号端子组的触发信号时处于闭合状态,所述主控模块处于上电状态并启动工作。
可选的,当所述主控模块判断所述触发信号来自所述第一电池模组且所述第二电池模组未接入时,控制所述上电自锁模块由闭合状态切换为断开状态。
对应地,本发明还提供一种电池包,所述电池包包括第一电池模组、第二电池模组、以及如前任意一项所述的适配器,其中,第一电池模组,可拆卸地安装于所述适配器,包括与所述适配器第一电源端子组连接的第一电池模组电源端子组、与适配器第一信号端子组连接的第一电池模组信号端子组、以及接收外部的充电能量为所述第一电池模组充电的第一充电电源模块;第二电池模组,可拆卸地安装于所述适配器,包括与所述适配器第二电源端子组连接的第二电池模组电源端子组、与适配器第二信号端子组连接的第二电池模组信号端子组、以及接收外部的充电能量为所述第二电池模组充电的第二充电电源模块。
可选的,所述第一电池模组还包括与所述第一充电电源模块连接的第一电池模组充电管理模块,所述第一电池模组充电管理模块监测第一电池模组的状态,并控制所述第一充电电源模块对第一电池模组的充电过程;所述第二电池模组还包括与所述第二充电电源模块连接的第二电池模组充电管理模块,所述第二电池模组充电管理模块监测第二电池模组的状态,并控制所述第二充电电源模块对第二电池模组的充电过程。
可选的,所述第一充电电源模块和所述第二充电电源模块包括USB TYPE C能量传输协议, 接收外部的USB TYPE C接口的电源输入,并转换为适合给电池模组充电的能量。
可选的,所述第一充电电源模块和所述第二充电电源模块包括无线充电接收模块,接收外部的无线充电发射模块发送的能量,并转换为适合给电池模组充电的能量。
对应地,本发明还提供一种电动工具,包括马达、启动开关以及为马达供电的电池包,所述电池包如前任意一项所述,当所述启动开关闭合时,所述马达获取所述电池包的电能,启动工作。
本发明提供的上述适配器、电池包、电动工具的优势在于,适配器中的控制电路使得多个电池模组中任意一个电池模组接入充电电源时,该充电电源能对所有接入适配器的电池模组进行充电。同时适配器中的控制电路还能在不需要工作时,自动进入低功耗状态,避免过多消耗电池模组的电能。
本发明还提供第三种适配器,可拆卸地连接电动工具,且可拆卸地连接所述电池模组,将所述电池模组的电能提供给所述电动工具,所述适配器包括:适配器电源端子组和适配器信号端子组,与电池模组可拆卸连接;工具电源端子组和工具信号端子组,与电动工具可拆卸连接;主控模块,消耗所述电池模组的电能以启动工作;上电自锁电路,设置在所述主控模块与所述适配器电源端子组之间,可选择地处于断开状态或闭合状态,所述上电自锁电路处于断开状态时,所述主控模块处于掉电状态进入休眠模式,所述上电自锁电路处于闭合状态时,所述主控模块处于上电状态并启动工作。
可选的,所述工具信号端子组接收到所述电动工具的启动开关闭合的触发信号时,所述上电自锁电路由断开状态切换至闭合状态。
可选的,所述电池模组还包括接收外部的充电能量为所述电池模组充电的充电电源模块,所述充电电源模块接收到外部的充电能量输入时,所述电池模组信号端子组向所述适配器信号端子组输出触发信号,所述适配器信号端子组接收到所述触发信号时,所述上电自锁电路由断开状态切换至闭合状态。
可选的,所述适配器电源端子组包括并联连接的适配器第一电源端子组和适配器第二电源端子组,所述适配器信号端子组包括适配器第一信号端子组和适配器第二信号端子组,当所述主控模块判断所述触发信号来自所述适配器信号端子组且所述第二电池模组未接入所述适配器时,控制所述上电自锁电路由闭合状态切换至断开状态。
对应地,本发明还提供一种电池包,所述电池包包括电池模组以及如前任意一项所述适配器,其中,所述电池模组包括多节电芯、向外输出电能的电池模组电源端子组、以及向外输出电信号的电池模组信号端子组,所述电池模组电源端子组与所述适配器电源端子组配接,所述电池模组信号端子组与所述适配器信号端子组配接。
对应地,本发明还提供一种电动工具,所述电动工具包括启动开关、马达、以及为马达供电的电池包,所述电池包如前所述,所述启动开关闭合时,所述马达获取所述电池包的电能并启动工作。
本发明提供的上述适配器、电池包、电动工具的优势在于,适配器中的控制电路在不需要工作时,自动进入低功耗状态,避免过多消耗电池模组的电能。
本发明还提供一种电池模组,可拆卸地与一适配器配合,经所述适配器向电动工具提供电能,所述电池模组包括:壳体,包括六个面,至少一个面为长方形;电芯组,收容于所述壳体,所述电芯之间串联和/或并联连接;电池模组正极端子,与电芯组正极连接;电池模组负极端子,与电芯组负极连接;控制模块,当所述电池模组正极端子与所述电池模组负极端子短路时,阻断所述电芯组的电能输出。
可选的,所述控制模块包括串联在所述电池模组正极端子与所述电芯组正极之间,或串联在所述电池模组负极端子与所述电芯组负极之间的开关电路。
可选的,所述开关电路为保险丝。
可选的,所述开关电路为P-MOS开关晶体管,所述电池模组接口还包括电池模组信号端子,所述电池模组信号端子与适配器的信号端子连接,所述P-MOS晶体管的栅极G连接电池 模组信号端子,源极S连接电芯组正极或电芯组负极中的一个,漏极D连接电池模组正极端子或电芯组负极端子中的一个。
本发明提供的上述电池模组可以单独存在和运输,不会产生危险。
本发明还提供另一种电池模组,所述电池模组包括:壳体,包括六个面,至少一个面为长方形;电芯组,收容于所述壳体,所述电芯之间串联和/或并联连接;电池模组接口,可拆卸地与一适配器配合,经所述适配器向电动工具提供电能或接收电动工具充电器的电能对所述电芯组充电;电子设备接口,可选择地向外接的电子设备提供电能或接收外接电源的电能输入为所述电芯组充电,所述电子设备接口为USB Type-c接口;控制模块,监测电芯组的状态,并控制电芯组经所述电子设备接口向所述电子设备放电的过程或所述外接电源对所述电芯组充电的过程。
可选的,所述电池模组包括无线充电接收模块,所述无线充电接收模块接收外部无线充电发射模块发送的能量向所述电池模组充电。
可选的,控制模块控制所述电芯组经所述电池模组接口向所述电动工具放电的过程或所述电动工具充电器对所述电芯组的充电过程。
本发明提供的上述电池模组在有充电电源接入时可以对其充电,在有耗电设备接入时,可对耗电设备供电。
本发明还提供一种适配器,所述适配器包括:适配器接口,可拆卸地与电池模组配合,接收电池模组的电能;工具接口,可拆卸地与电动工具或电动工具充电器配合,将接收的电能提供给电动工具,或接收电动工具充电器的电能为所述电池模组充电;所述适配器包括以下三个部件中的至少一个:电子设备接口、无线充电接收模块、控制电路;所述电子设备接口具有如下三种功能中的至少一个:对与其连接的电子设备供电;接收外部的电源输入,为与其连接的电池模组充电;与外接的电子设备进行数据交换;所述无线充电接收模块可接收外部的无线充电发射模块发送的能量,对所述电池模组充电;所述控制电路具有如下功能中的至少一个:监测电池模组的状态信息并将监测结果向外发送;监测电池模组的状态信息并控制经所述电子设备接口向所述电池模组充电的过程;监测电池模组的状态信息并控制经所述电子设备接口对所述电池模组放电的过程;监测电池模组的状态信息并控制经所述工具接口向所述电池模组充电的过程;监测电池模组的状态信息并控制经所述工具接口对所述电池模组放电的过程。
可选的,所述电子设备接口为USB TYPE-C接口。
本发明还提供一种电池包,所述电池包包括:适配器,包括工具接口和适配器接口,所述工具接口可拆卸地与电动工具配合,将从适配器接口接收的电能提供给电动工具;电池模组,可拆卸地安装于所述适配器,包括电池模组接口,所述电池模组接口与所述适配器接口可拆卸地连接,向适配器接口提供电能;USB type-c接口,接收外部电源的输入,对所述电池包充电。
可选的,所述USB type-c接口设置在适配器上。可选的,所述USB type-c接口设置在电池模组上。
可选的,USB type-c接口可选择地与外部的电子设备连接,为所述电子设备供电。
可选的,所述电池包还包括无线充电接收模块,所述无线充电接收模块接收外部无线充电发射模块发送的能量向所述电池模组充电。
本发明还提供一种电池包系统,所述电池包系统包括:适配器,包括工具接口和适配器接口,所述工具接口可拆卸地与电动工具配合,将从适配器接口接收的电能提供给电动工具;第一电池模组,可拆卸地安装于所述适配器,包括第一电池模组接口,所述第一电池模组接口与所述适配器接口可拆卸地连接,所述第一电池模组经所述第一电池模组接口向所述适配器接口提供电能;第二电池模组,可拆卸地安装于所述适配器,包括第二电池模组接口,所述第二电池模组接口与所述适配器接口可拆卸地连接,所述第二电池模组经所述第二电池模组接口向所述适配器接口提供电能,所述第二电池模组包含的电芯数量不同于所述第一电池 模组包含的电芯数量;所述适配器可选择地与所述第一电池模组和所述第二电池模组中的一个配接。
可选的,所述第一电池模组的电压与所述第二电池模组的电压相同,所述第一电池模组的容量与所述第二电池模组的容量不同。
本发明还提供另外一种电池包系统,所述电池包系统包括:适配器,包括第一适配器和第二适配器;所述第一适配器包括第一工具接口和第一适配器接口,所述第一工具接口可拆卸地与电动工具配合,将从所述第一适配器接口接收的电能提供给电动工具;所述第二适配器包括第二工具接口和第二适配器接口,所述第二工具接口可拆卸地与电动工具配合,将从所述第二适配器接口接收的电能提供给电动工具;电池模组,包括第一电池模组和第二电池模组;所述第一电池模组可拆卸地安装于所述第一适配器或所述第二适配器,包括第一电池模组接口,所述第一电池模组接口与所述第一适配器接口或所述第二适配器接口可拆卸地连接,向所述第一适配器接口或所述第二适配器接口提供电能;所述第二电池模组可拆卸地安装于所述第一适配器或所述第二适配器,包括第二电池模组接口,所述第二电池模组接口与所述第一适配器接口或所述第二适配器接口可拆卸地连接,向所述第一适配器接口或所述第二适配器接口提供电能;所述第一适配器可择一地安装第一电池模组或第二电池模组,所述第二适配器可同时安装第一电池模组和第二电池模组。
可选的,所述适配器包括USB接口,所述USB接口与所述适配器接口电性连接,经所述适配器接口向电池模组充电或向外传输电池模组的电能。
可选的,所述适配器包括无线充电接收模块,与所述适配器接口电性连接,所述无线充电接收模块接收外部无线充电电源输入,经所述适配器接口向电池模组充电。
可选的,所述适配器包括控制电路,所述控制电路经所述适配器接口监测电池模组的状态信息,并将信息传递给工具接口,经工具接口传递给与工具接口配接的外接设备。
可选的,所述第一电池模组和第二电池模组并联或串联连接于所述第二适配器接口。
可选的,所述第二适配器包括防互充电路,所述第一电池模组和第二电池模组经所述防互充电路并联连接于所述第二适配器接口,所述防互充电路防止第一电池模组和第二电池模组中电压高的电池模组向电压低的电池模组充电。
可选的,所述电池模组包括USB接口,所述USB接口接收外部电源输入向电池模组充电,或者经所述USB接口向外传输电池模组的电能。
可选的,所述电池模组包括无线充电接收模块,所述无线充电接收模块接收外部无线充电发射模块发送的能量向所述电池模组充电。
可选的,所述第二适配器还包括并联充电电路,所述并联充电电路连接多个电池模组的USB接口或无线充电接收模块,当任意一个USB接口或无线充电接收模块接收到能量输入时,并联充电电路将接收到的电能输出给所有电池模组。
可选的,所述电池模组包括控制电路,所述控制电路监测电池模组的状态信息,并向外传递电池包的状态信息或根据所述状态信息控制电池模组充电及放电过程。
本发明还提供另外一种电池包,所述电池包包括:适配器,包括工具接口和适配器接口,所述工具接口可拆卸地与电动工具配合,将从适配器接口接收的电能提供给电动工具,所述工具接口可拆卸地连接电动工具充电器,为所述电池包充电;电池模组,可拆卸地安装于所述适配器,包括电池模组接口和电子设备接口,所述电池模组接口与所述适配器接口可拆卸地连接,所述电池模组经所述电池模组接口向所述适配器接口提供电能,所述电子设备接口可选择地向外接的电子设备供电或接入外部的电源设备向所述电池模组充电;第一控制模块,设置于所述适配器,监测所述电池模组向所述电动工具放电或所述电动工具充电器对其充电时的状态参数;第二控制模块,设置于所述电池模组,监测所述电池模组向所述电子设备放电或所述外部的电源设备对其充电时的状态参数,并控制所述电池模组向所述电子设备的放电过程和所述外部的电源设备对其充电的过程。
可选的,所述第一控制模块根据其监测的状态参数控制所述电池模组向所述电动工具的 放电过程或所述电动工具充电器对其充电的过程中的至少一个。
本发明还提供一种电动工具,其特征在于,包括马达,以及为马达供电的电池包,所述电池包如前述任意一项所述。
本发明还提供另一种电池包,所述电池包包括:适配器,包括工具接口和适配器接口,所述工具接口可拆卸地与电动工具配合,将从适配器接口接收的电能提供给电动工具;电池模组,可拆卸地安装于所述适配器,包括电池模组接口,所述电池模组接口与所述适配器接口可拆卸地连接,所述电池模组经所述电池模组接口向所述适配器接口提供电能;所述适配器的安装空间可扩展,在第一状态下具有第一安装空间,在第二状态下具有第二安装空间,第一安装空间小于第二安装空间,所述电池模组包括第一电池模组和第二电池模组,第一状态下适配器可择一地安装第一电池模组和第二电池模组中的一个,第二状态下适配器可同时安装第一电池模组和第二电池模组。
可选的,所述第一电池模组和所述第二电池模组并联连接于所述适配器接口。
本发明还提供另一种电动工具,所述电动工具包括:马达;能源连接部,包括能源接口,接收外部的电能输入为马达供电;电池模组,包括六个面,至少一个面为长方形,可拆卸地配接于所述能源连接部,包括电池模组接口,所述电池模组接口与所述能源接口可拆卸地连接,经所述能源接口向马达提供电能,所述电池模组可拆卸地与一适配器配接,经所述适配器向第二电动工具供电,所述第二电动工具可拆卸地与电池包连接,由所述电池包供电。
可选的,所述电池模组包括壳体,所述壳体包括上壳体和下壳体,上壳体的顶面上设置有两条平行的导轨。
可选的,所述能源连接部和适配器上设置有与所述导轨配合的滑槽。
本发明还提供另一种电池包,所述电池包包括:适配器,包括工具接口和适配器接口,所述工具接口可拆卸地与电动工具配合,将从适配器接口接收的电能提供给电动工具;电池模组,可拆卸地安装于所述适配器,包括电池模组接口,所述电池模组接口与所述适配器接口可拆卸地连接,向适配器接口提供电能;电子设备接口,接收外部电源的输入,对所述电池包充电。
优选的,所述电子设备接口为USB type-c接口。
优选的,所述电子设备接口设置在适配器上。
优选的,所述电子设备接口设置在电池模组上。
本发明还提供另一种电池包,所述电池包包括:适配器,包括工具接口和适配器接口,所述工具接口可拆卸地与电动工具配合,将从适配器接口接收的电能提供给电动工具;第一电池模组,可拆卸地安装于所述适配器,包括第一电池模组接口,所述第一电池模组接口与所述适配器接口可拆卸地连接,所述第一电池模组经所述第一电池模组接口向所述适配器接口提供电能;第二电池模组,可拆卸地安装于所述适配器,包括第二电池模组接口,所述第二电池模组接口与所述适配器接口可拆卸地连接,所述第二电池模组经所述第二电池模组接口向所述适配器接口提供电能,所述第一电池模组接口与所述第二电池模组接口并联连接于所述适配器接口。
优选的,所述电池包还包括第三电池模组,所述第三电池模组可拆卸地安装于所述适配器,包括第三电池模组接口,所述第三电池模组接口与所述适配器接口可拆卸地连接,所述第三电池模组经所述第三电池模组接口向所述适配器接口提供电能,所述第三电池模组接口与所述第二电池模组接口并联连接于所述适配器接口。
优选的,所述第一电池模组与所述第二电池模组堆叠设置。
本发明还提供一种电池包系统,所述电池包系统包括:适配器,包括第一适配器和第二适配器;所述第一适配器包括第一工具接口和第一适配器接口,所述第一工具接口可拆卸地与电动工具配合,将从所述第一适配器接口接收的电能提供给电动工具;所述第二适配器包括第二工具接口和第二适配器接口,所述第二工具接口可拆卸地与电动工具配合,将从所述第二适配器接口接收的电能提供给电动工具;电池模组,包括第一电池模组和第二电池模组; 所述第一电池模组可拆卸地安装于所述第一适配器或所述第二适配器,包括第一电池模组接口,所述第一电池模组接口与所述第一适配器接口或所述第二适配器接口可拆卸地连接,向所述第一适配器接口或所述第二适配器接口提供电能;所述第二电池模组可拆卸地安装于所述第一适配器或所述第二适配器,包括第二电池模组接口,所述第二电池模组接口与所述第一适配器接口或所述第二适配器接口可拆卸地连接,向所述第一适配器接口或所述第二适配器接口提供电能;所述第一适配器可择一地安装第一电池模组或第二电池模组,所述第二适配器可同时安装第一电池模组和第二电池模组。
优选的,所述适配器包括USB接口,所述USB接口与所述适配器接口电性连接,经所述适配器接口向电池模组充电或向外传输电池模组的电能。
优选的,所述适配器包括无线充电接收模块,与所述适配器接口电性连接,所述无线充电接收模块接收外部无线充电电源输入,经所述适配器接口向电池模组充电。
优选的,所述适配器包括控制电路,所述控制电路经所述适配器接口监测电池模组的状态信息,并将信息传递给工具接口,经工具接口传递给与工具接口配接的外接设备。
优选的,所述第一电池模组和第二电池模组并联或串联连接于所述第二适配器接口。
优选的,所述第二适配器包括防互充电路,所述第一电池模组和第二电池模组经所述防互充电路并联连接于所述第二适配器接口,所述防互充电路防止第一电池模组和第二电池模组中电压高的电池模组向电压低的电池模组充电。
优选的,所述电池模组包括USB接口,所述USB接口接收外部电源输入向电池模组充电,或者经所述USB接口向外传输电池模组的电能。
优选的,所述电池模组包括无线充电接收模块,所述无线充电接收模块接收外部无线充电发射模块发送的能量向所述电池模组充电。
优选的,所述第二适配器还包括并联充电电路,所述并联充电电路连接多个电池模组的USB接口或无线充电接收模块,当任意一个USB接口或无线充电接收模块接收到能量输入时,并联充电电路将接收到的电能输出给所有电池模组。
优选的,所述电池模组包括控制电路,所述控制电路监测电池模组的状态信息,并向外传递电池包的状态信息或根据所述状态信息控制电池模组充电及放电过程。
本发明还提供另一种电池包,所述电池包包括:适配器,包括工具接口和适配器接口,所述工具接口可拆卸地与电动工具配合,将从适配器接口接收的电能提供给电动工具;电池模组,可拆卸地安装于所述适配器,包括电池模组接口,所述电池模组接口与所述适配器接口可拆卸地连接,所述电池模组经所述电池模组接口向所述适配器接口提供电能;所述适配器的安装空间可扩展,在第一状态下具有第一安装空间,在第二状态下具有第二安装空间,第一安装空间小于第二安装空间,所述电池模组包括第一电池模组和第二电池模组,第一状态下适配器可择一地安装第一电池模组和第二电池模组中的一个,第二状态下适配器可同时安装第一电池模组和第二电池模组。
优选的,所述第一电池模组和所述第二电池模组并联连接于所述适配器接口。
本发明还提供一种电动工具,包括马达,以及为马达供电的电池包,所述电池包如前述任意一项所述。
本发明还提供一种电池模组,所述电池模组包括:壳体,近似于长方体形状;电芯组,收容于所述壳体,所述电芯之间串联和/或并联连接;控制模块,监测电芯组的状态,并控制电芯组的充电和放电过程;电池模组接口,可拆卸地与一适配器配合,经所述适配器向电动工具提供电能;电子设备接口,向电子设备提供电能以及接收外接电源的电能向电芯组充电,所述电子设备接口为USB Type-c接口。
优选的,所述电池模组包括无线充电接收模块,所述无线充电接收模块接收外部无线充电发射模块发送的能量向所述电池模组充电。
本发明还提供另一种电池模组,所述电池模组包括:壳体,近似于长方体形状;电芯组,收容于所述壳体,所述电芯之间串联和/或并联连接;电池模组接口,包括与电芯组正极连接 的电池模组正极端子和与电芯组负极连接的电池模组负极端子,可拆卸地与一适配器配合,经所述适配器向电动工具提供电能;控制模块,当所述电池模组正极端子与所述电池模组负极端子短路时,阻断所述电芯组的电能输出。
优选的,所述控制模块包括串联在所述电池模组正极端子与所述电芯组正极之间,或串联在所述电池模组负极端子与所述电芯组负极之间的开关电路。
优选的,所述开关电路为保险丝。
优选的,所述开关电路为P-MOS开关晶体管,所述电池模组接口还包括电池模组信号端子,所述电池模组信号端子与适配器的信号端子连接,所述P-MOS晶体管的栅极G连接电池模组信号端子,源极S连接电芯组正极或电芯组负极中的一个,漏极D连接电池模组正极端子或电芯组负极端子中的一个。
本发明还提供另一种电动工具,所述电动工具包括:马达;能源连接部,包括能源接口,接收外部的电能输入为马达供电;电池模组,可拆卸地配接于所述能源连接部,包括电池模组接口,所述电池模组接口与所述能源接口可拆卸地连接,经所述能源接口向马达提供电能,所述电池模组可拆卸地与一适配器配接,经所述适配器向第二电动工具供电,所述第二电动工具可拆卸地与电池包连接,由所述电池包供电。
本发明还提供一种适配器,所述适配器包括:工具接口,可拆卸地与电动工具配合,将接收的电能提供给电动工具;适配器接口,可拆卸地与电池模组配合,接收电池模组的电能;所述适配器包括以下三个部件中的至少一个:电子设备接口、无线充电接收模块、控制电路;所述电子设备接口具有如下三种功能中的至少一个:可将接收的电能提供给与其连接的外接设备;也可接收外接的电源输入,为与其连接的电池模组充电;还可以与外接的电子设备进行数据交换;所述无线充电接收模块可接收外部的无线充电发射模块发送的能量,对所述电池模组充电;所述控制电路具有如下功能中的至少一个:监测电池模组的状态信息并将监测结果向外发送;监测电池模组的状态信息并根据所述状态信息控制电池模组充电过程;监测电池模组的状态信息并根据所述状态信息控制电池模组放电过程。
优选的,所述电子设备接口为USB TYPE-C接口。
与现有技术相比,本发明提供的电池包、电池模组和适配器的优势在于:电池包可以通过在适配器上串联或并联不同数量的电池模组,实现电池包在电压或容量上的不同变化,满足不同电动工具对电池包的需求,同时电池包内的电池模组可单独拆卸下来,供给消费类电子产品或家电产品使用。此外由于电池模组在性能与外形上与市面上通用的充电宝类似,适配器与电池模组组成的电池包在性能与外形上与市面上通用的电动工具电池包类似,使得电池包在给不同的电动工具或消费类电子产品或家电产品供电时,能满足各品类的产品对电源的性能及外形要求,不会改变各品类产品的外形或影响用户使用习惯。因此,极大提升了电池包的兼容性。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是电动工具第一较佳实施例的结构示意图。
图2是电动工具第二较佳实施例的结构示意图。
图3是第一较佳实施例的电池包爆炸图。
图4是第二较佳实施例的电池包爆炸图。
图5是第一较佳实施例的电池模组爆炸图。
图6是第四较佳实施例的电池包包含一个电池模组的电路模块图。
图7是第四较佳实施例的电池包包含两个电池模组的电路模块图。
图8是第六较佳实施例的电池包电路模块图。
图9a是第一较佳实施例的直流电源电路模块图。
图9b是第二较佳实施例的直流电源电路模块图。
图9c是第三较佳实施例的直流电源电路模块图。
图9d是第四较佳实施例的直流电源电路模块图。
图10是直流电源充电曲线图。
图11是第八较佳实施例的电池包示意图。
图12是适配器一较佳实施例的电路原理图。
图13a是图11所示电池包的第一较佳实施例的流程图。
图13b是图11所示电池包的第二较佳实施例的流程图。
图14是第九较佳实施例的电池包示意图。
图15是图14所示电池模组一较佳实施例的电路框图。
图16图14所示电池包的第一较佳实施例的流程图。
图17为一较佳实施例的电动工具系统示意图。
图18为图17所示电池模组的爆炸图。
图19是电动工具第三较佳实施例的结构示意图。
图20是图19所示的电池模组与充电器配合的示意图。
图21为图9c所示直流电源的充电步骤流程示意图。
图22为图9d所示直流电源的充电步骤流程示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一开关称为第二开关,且类似地,可将第二开关称为第一开关。第一开关和第二开关两者都是开关,但其不是同一开关。
可以理解,以下实施例中的“连接”,如果被连接的电路、模块、单元等相互之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。
如图1所示为本发明提供的第一较佳实施例的电动工具100。电动工具100包括机壳,位于机壳内的马达,与电池包200可拆卸地配接的电池包接口102。电池包接口102从电池包200获取电能为马达供电。电池包200包括适配器204,收容在适配器204内的电池模组202。电池模组202可拆卸地安装在适配器204中,即操作者可将电池模组202装入到适配器204中,或将电池模组202从适配器204中拆卸出来。适配器204包括工具接口206和适配器接口(图中未示出)。工具接口206可拆卸地与电动工具100的电池包接口102配合。适配器接口可拆卸地与电池模组202配合,接收电池模组202的电能。工具接口206包括工具端子组215。适配器接口包括适配器端子组217。电池模组202包括电池模组接口,电池模组接口包括电池模组端子组216。适配器端子组217与电池模组端子组216可拆卸地电性连接, 将电池模组202的电能传输给工具端子组215。工具端子组215将电池模组202的电能提供给电动工具100。适配器204至少可以安装1个电池模组202。使用者可以根据具体的使用场景,选择地装入一个电池模组202或2个电池模组202或其他数目的电池模组202。无论装入几个电池模组202,电池包200均可对外放电,差异在于对外放电时的电压或容量不同。
如图2所示为本发明提供的在电动工具100的第二较佳实施例中,适配器204相对电动工具100不可拆卸。本实施例中,电动工具100包括马达、能源连接部104以及电池模组202。能源连接部104包括能源接口,接收外部的电能输入为马达供电。电池模组202可拆卸地配接于能源连接部104,包括电池模组接口。电池模组接口与能源接口可拆卸地连接,经能源接口向马达提供电能。本实施例中的能源连接部104结构类似于第一较佳实施例中的适配器204装在电动工具100上,且相对电动工具100不可拆卸的结构。能源接口相当于第一较佳实施例中的适配器接口。电池模组202的结构与第一较佳实施例中的电池模组202结构相同。
结合图3介绍图1所示电池包200的第一较佳实施例。电池包200包括适配器204,收容在适配器204内的电池模组202。适配器204包括上盖208、底盖210、可打开的侧盖212、以及电路板组件214。上盖208和底盖210组成收容腔。可打开的侧盖212可闭合或打开收容腔。侧盖212打开时,操作者可将电池模组202装入到收容腔中,或将电池模组202从收容腔中拆卸出来。适配器204包括工具接口206和适配器接口。工具接口206可拆卸地与电动工具100的电池包接口102配合。适配器接口可拆卸地与电池模组202配合,接收电池模组202的电能。工具接口206包括工具端子组215。适配器接口包括适配器端子组217。工具端子组215及适配器端子组217安装在电路板组件214上。电池模组202包括电池模组接口,电池模组接口包括电池模组端子组216。适配器端子组217与电池模组端子组216可拆卸地电性连接,将电池模组202的电能传输给工具端子组215。工具端子组215将电池模组202的电能提供给电动工具100。本实施例中,适配器204的收容空间仅可收容一个电池模组202。在其他可选的实施例中,适配器204的底盖210为可伸缩底盖210,当底盖210处于收缩的第一状态时,适配器204仅可以收容一个电池模组202,当适配器204处于伸展的第二状态时,适配器204可以收容两个电池模组202。在其他实施例中,适配器204还可以处于伸展的第三状态,此时适配器204可以收容三个或以上数量的电池模组202。
结合图4介绍图1所示电池包200的第二较佳实施例。本实施例中,电池包200的结构与第一较佳实施例基本相同,区别在于本实施例中,适配器204可收容两个电池模组202。电池模组202包括第一电池模组202和第二电池模组202。第一电池模组202和第二电池模组202相互并联或串联。电路板组件214包括连接第一电池模组202和第二电池模组202的连接电路。本实施例中的连接电路实现第一电池模组202和第二电池模组202的并联。可选的,电池包200还包括设置在适配器204内的隔板。隔板相对侧盖212垂直设置,将收容腔分为位于上方的第一收容腔和位于下方的第二收容腔。第一收容腔和第二收容腔的空间基本相当。第一收容腔收容第一电池模组202,第二收容腔收容第二电池模组202。进一步地,隔板和底盖210上设置有导轨。电池模组202的支架226上设置有滑槽。导轨和滑槽均沿电芯的轴线方向延伸,且位置相对应,使得电池模组202可以沿着导轨准确地安装到适配器204内。可以在第一收容腔和第二收容腔内均装入电池模组202,也可以仅在其中一个装入电池模组202。无论装入几个电池模组202,电池包200均可对外放电。差异在于对外放电时的电压或容量不同。
上述实施例中,电池模组202完全收容于适配器204内。在其他实施例中,电池模组202可部分收容于适配器204内。例如适配器204不包括底盖210时的情形,此时第一个电池模组202直接与适配器204配接安装,第二个电池模组202安装在第一个电池模组202的背面,形成堆叠结构。
如图4所示的实施例中,第一电池模组202与第二电池模组202为并联。具体的,适配器端子组217包括适配器正极端子和适配器负极端子。连接电路包括第一正极连接端子和第一负极连接端子,以及第二正极连接端子和第二负极连接端子。其中,第一正极连接端子与 第二正极连接端子并联,第一负极连接端子和第二负极连接端子并联。第一电池模组202的端子组包括第一电池模组正极端子和第一电池模组负极端子。第二电池模组202的端子组包括第二电池模组正极端子和第二电池模组负极端子。当第一电池模组202和第二电池模组202安装到适配器204中后,第一正极连接端子和第一负极连接端子与第一电池模组正极端子和第一电池模组负极端子对应电性连接,第二正极连接端子和第二负极连接端子与第二电池模组正极端子和第二电池模组负极端子对应电性连接,从而实现第一电池模组202与第二电池模组202的并联。可选的,当连接电路将第一负极连接端子与第二正极连接端子串联时,实现第一电池模组202与第二电池模组202的串联。可选的,连接电路可切换第一电池模组202和第二电池模组202处于串联或并联。可选的,连接电路仅能实现第一电池模组202和第二电池模组202处于并联或串联中的一种。
可选的,连接电路与电池模组202的连接为弹性连接,当侧盖212打开时,弹性连接松开。两个电池模组202与连接电路的连接断开。当侧盖212闭合时,弹性连接被压紧,两个电池模组202与连接电路的连接闭合。可选的,弹性连接由设置在连接电路与电池模组202之间的弹簧实现。
在图1所示电池包200的第三较佳实施例,适配器204包括第一适配器204和第二适配器204,第一适配器204只能安装一个电池模组202,第二适配器204只能安装两个电池模组202。当电池模组202安装到第一适配器204时,形成近似于第一较佳实施例的电池包200。当电池模组202安装到第二适配器204时,形成近似于第二较佳实施例的电池包200。其他结构,参考前述实施例。
如图5所示为图1至图4所示实施例中的电池模组202的第一较佳实施例。考虑到电池模组202包括一个或多个电池模组202时,每个电池模组202的结构均相同。因此,以最小单元的电池模组202为例,对电池模组202的部件进行介绍。电池模组202包括外壳,收容于外壳的电芯组220。外壳大体成长方体,包括上壳222和下壳224,上壳222和下壳224闭合形成六个基本平滑的表面。此种外形类似于市面上的电子设备用移动电源。为电池模组202作为电子设备或其他家用电气的移动电源使用提供了可能。电芯组220包括至少三节电芯,相互串联。第一节电芯具有中轴线X1,第二节电芯具有中轴线X2,第三节电芯具有中轴线X3。可选的,第一节电芯、第二节电芯、第三节电芯并列排列,使得中轴线X1、X2、X3均位于同一平面内。电池模组202还包括支撑电芯的支架226、连接各电芯的连接片228。可选的,第一电池模组202包括5节相互串联的锂电池,锂电池的标称电压为3.6V。在其他实施例中,电池模组202包括其他数目锂电池,锂电池之间可以为串联或并联中的至少一种连接关系。在其他实施例中,电池模组202包括其他数目的电池模组202,对应地收容腔的空间增大以能容纳相应数目的电池模组202,如3个、4个、5个等。电池模组202还包括电池模组接口,电池模组接口包括电池模组端子组216,电池模组端子组216包括与电芯组220的正极和负极分别连接的电池模组正极端子和电池模组负极端子,且在电池模组202装入到适配器204中时,对应地与适配器端子组217电性连接,从而将电池模组202的电能传输给适配器204的工具端子组215,使得电池包200能对外供电。
继续结合图3至图6介绍本发明电池包200的第四较佳实施例。电池包200包括适配器204,收容在适配器204内的电池模组202。适配器204及电池模组202的构造参考前述实施例。本实施例的特点在于适配器204中的电路板组件214包括控制电路,控制电路对电池模组202进行状态检测或控制中的至少一种操作。如图6所示,为一个电池模组202与适配器204连接的电路图。如图6所示,为两个电池模组202与适配器204连接的电路图。图中,每一个电池模组202均包括电池模组端子组216以及温度传感器232。电池模组端子组216包括与温度传感器232连接的电池模组202第一信号端子,与电池芯组的正负极分别连接的电池模组正极端子和电池模组负极端子。适配器204中的控制电路包括与电池模组端子组216连接的适配器端子组217,具体的,适配器端子组217包括适配器正极端子、适配器负极端子、适配器信号端子。适配器端子组217与适配器204的工具端子组215对应电性连接,具 体的,工具端子组215包括工具正极端子、工具负极端子、工具信号端子。控制电路采集温度传感器232的信号,并经工具信号端子向外传递,供与适配器204连接的外设使用。控制电路将电池模组202的电源经工具正极端子和工具负极端子向外传递,供与适配器204连接的外设使用。
本实施例中电池模组202还包括放电锁止电路,适配器204还包括放电解锁电路。在电池模块单独放置时,放电锁止电路断开,防止电池模组202直接对外放电,不满足国家规定的安全规范对电源模块使用安全性的要求。当电池模组202安装到适配器204中时,与适配器204内的放电解锁电路配合,使得放电锁止电路闭合,电池模组202可以对外放电。具体的,如图6和图7所示,在电池模组正极端子与电芯组220的正极之间设置了放电锁止电路。可选的,放电锁止电路包括P-MOS开关晶体管,以及与P-MOS开关晶体管连接的电池模组第二信号端子。P-MOS的栅极G连接电池模组第二信号端子,源极S连接电芯组220的正极,漏极D连接电池模组正极端子。电池模组202单独放置时,P-MOS断开,使得电池模组正极端子与电芯组220的正极断开,电池模组正极端子与负极端子之间的电压为零。适配器204还包括适配器第二信号端子,适配器第二信号端子与适配器负极端子连接。当电池模组202安装到适配器204中时,适配器204的四个端子与电池模组202的四个端子对应电性连接,其中适配器204的第二信号端子与电池模组第二信号端子的连接使得P-MOS闭合,从而使得电池模组202的电压施加到适配器正极端子和适配器负极端子上,进一步施加到工具正极端子和工具正极端子上,实现电池包200对外放电。
本实施例中,优选的,电池模组正极端子和电池模组负极端子具有第一长度,电池模组第一信号端子和电池模组第二信号端子具有第二长度,第一长度大于第二长度。这样的设计使得电池模组正极端子和电池模组负极端子与适配器正极端子和适配器负极端子在第一时间点接触,电池模组第一信号端子和电池模组第二信号端子与适配器第一信号端子和适配器第二信号端子在第二时间点接触,第一时间点早于第二时间点。优势在于,电池模组正极端子和电池模组负极端子与适配器正极端子和适配器负极端子接触后,放电锁止电路才闭合,电池模组202的电压才向适配器正极端子和适配器负极端子施加,避免了电池模组正极端子和电池模组负极端子与适配器正极端子和适配器负极端子接触打火。
为保证电池模组的安全,满足安规要求,本发明提出,电池模组还包括控制电路。当电池模组正极端子与电池模组负极端子短路时,控制电路阻断电芯组的电能输出。可选的,控制电路包括串联在电池模组正极端子与电芯组正极之间的开关电路,或控制电路包括串联在电池模组负极端子与电芯组负极之间的开关电路。在一种实施例中,开关电路为前述实施例介绍的放电锁止电路。未连接适配器之前,放电锁止电路处于断开状态,电池模组正极端子与电池模组负极端子短路时不会发生危险。在另一种可选的实施例中,开关电路为保险丝,电池模组正极端子与电池模组负极端子短路时,保险丝熔断,电池模组也不会发生危险。
如图7为两个电池模组202与适配器204连接的电路图。根据上述介绍的放电锁止电路的工作原理,两个电池模组202与适配器204配接后,均将该电池模组202的电压施加到适配器204的工具端子组215,使得电池包200能对外放电。本实施例中,两个电池模组202相互并联对外供电。在其他可选的实施例中,两个电池模组202也可以形成串联对外供电。
本实施例中适配器204还包括电子设备接口218。电子设备接口218不同于工具接口206,可拆卸地与外接的非电动工具100的电子设备相连接。在一种可选的实施例中,电池包200内部的电路图如图6所示,电子设备接口218与控制电路连接。当电子设备为充电装置时,充电装置的电能经电子设备接口218传递给控制电路,控制电路进一步传递给电池模组202,实现电子设备接口218对电池包200的充电。当电子设备为耗电产品时,如手机、Pad、电脑等,电池模组202的电能经控制电路传递给电子设备接口218,进而对外接的电子设备进行供电。当电子设备包括数据传输模块时,电池模组202的状态信号经控制电路传递给电子设备接口218,单向向电子设备传递数据,或与电子设备进行双向的数据交换。
可选的,电子设备接口218为USB接口。可选的,电子设备接口218为USB Type-C接 口。USB Type-C接口默认的5V供电向后兼容之前的USB接口。不仅如此,全新的USB Type-C接口包含4个引脚分别专门用于供电和接地。USB Type-C接口最高可支持20V的电压以及5A的电流。在一种可选的实施例中,电池包200的标称电压为18V,充满电压为21V。此时由于USB Type-C接口最高仅能输出20V电压,能对18V电池包200充满80%左右。为使电池包200能够充满,可在适配器204内设置升压电路,将USB Type-C输出的20V电压升压到21V。具体实现电路将在下面的实施例中进行详细介绍。
电池包200包括两个电池模组202时,内部电路图如图7所示。此时,通过USB Type-C接口接入的充电电源同时输入到两个电池模组202中,两个电池模组202并联充电。
本实施例中适配器204还包括无线充电接收模块。无线充电接收模块设置在底盖210与电池模组202之间。在一种可选的实施例中,电池包200内部的电路图如图6和图7所示,无线充电接收模块与适配器204内的控制电路连接,经控制电路将接收的充电能量输出给电池模组202,为电池模组202充电。当两个电池模组202并联时,无线充电接收模块接收外部的无线充电发射模块发送的能量转化成的充电能量同时施加给两个电池模组202,并联地为两个电池模组202充电。
如图7所示,当电池包200包括两个并联的电池模组202时,为防止两个电池模组202之间由于存在电压差,导致一个电池模组202对另一个电池模组202充电,而损坏电池模组202甚至发生危险,本实施例中,适配器204还包括防互充电路。
本实施例中,电池包200可选择常规充电器经工具接口206对电池模组202充电,也可以选择USB充电器经USB type-c接口对电池模组202充电,还可以选择无线充电器经无线充电接收模块对电池模组202充电。控制电路还包括充电检测模块充电检测模块检测到已有充电电源接入时,禁止其他充电电源接入。这样的效果在于,当三种充电形式均接入时,控制电路检测仅允许最早接入的充电电源进行充电,而禁止后续接入的充电电源进行充电。
本发明还提供电池包200的第五实施例。本实施例中电池包200仅包含第四实施例中的部分部件。可选的,本实施例中,电池模组202不包含放电锁止电路。可选的,本实施例中,适配器204不包含无线充电接收模块、USB接口、控制电路中的至少一个。
结合图8介绍本发明电池包200的第六较佳实施例。本实施例中,电池包200包括适配器204,收容在适配器204内的电池模组202。本实施例与前述实施例的差异在于,电池模组202还包括控制电路。由于控制电路设置在电池模组202中,适配器204将无需设置控制电路。控制电路监测电池模组202内每节电芯的当前电压、电池模组202的温度、充电电流等参数,并根据检测结果对电池模组202的充电及放电过程进行控制。由于电池模组202内设置了控制电路,电池模组202自行对充电和放电进行管理,不需要将电池模组202的状态信号向外传递,电池模组端子组216无需设置信号端子。本实施例中电池模组端子组216包括电池模组正极端子和电池模组负极端子。适配器端子组217包括适配器正极端子和适配器负极端子。当电池模组202装入到适配器204中时,电池模组端子组216与适配器端子组217对应电性连接,使得电池模组202的电能提供给工具端子组215,对外供电。
本实施例中,电池模组202还包括电子设备接口218。电子设备的具体形式参考前述实施例,在此不再赘述。电子设备接口218的设置使得无论电池模组202是否安装在适配器204内,均能经电子设备接口218对外部的电子设备充电,经电子设备接口218对电池模组202充电,以及经电子设备接口218与外设之间传输数据。本实施例中的电池模组202,无需像第五实施例那样,必须将电池模组202安装在适配器204中才能实现上述功能,拓展了电池模组202的使用场景。由此带来的好处是,电池模组202未装入适配器204时,能作为一个完全独立的电源使用,实现对外放电和对内充电,同时由于电池模组202具有平整光滑的外形,使得其特别便于携带,为各种电子设备供电;当电池模组202装入到适配器204时,组成一个完整的电动工具电池包,又能为电动工具供电,实现了电池包200既为电动工具100供电,又为电子设备供电,且为电动工具100供电时符合传统电动工具电池包的外形要求,为电子设备供电时符合传统移动电源的外形要求,提高了电池包200的通用性。
本实施例中,当有两个电池模组202同时装入到适配器204中组成电池包200时,虽然电池包200具有两个电子设备接口218,但只要其中任意一个电子设备接口218接入充电电源时,要能同时对两个电池模组202充电。基于此,如图8所示,适配器204进一步包括并联充电电路,并联充电电路的一端连接第一电池模组202的电子设备接口218,并联充电电路的另一端连接第二电池模组202的电子设备接口218。当任意一个电池模组202的电子设备接口218连接到充电电源时,并联充电电路将充电电源同步引入到另一个电池模组202中,使得从一个电池模组202中接入的充电电源能同时为两个电池模组202充电。
本实施例中,电池模组202还包括无线充电接收模块。由于无线充电接收模块的设置,电池模组202既可以通过无线充电接收模块充电,也可以通过电子设备接口218充电。当电池模组202装入到适配器204后,除上述两种充电方式外,电池包200可以还可以通过工具接口206连接到常规电动工具100充电器为电池模组202充电。如图8所示,当多个电池模组202装入到适配器204中时,任意一个电池模组202的无线充电接收模块接收到无线充电发射模块发送的能量或电子设备接口218接收到充电电能时,均可以通过并连充电电路将充电电能引入到其他电池模组202中,为适配器204中的所有电池模组202一起充电。
本发明还提供电池包200的第七较佳实施例。本实施例中电池包200仅包含第六实施例中的部分部件。可选的,本实施例中,电池模组202不包含无线充电接收模块、USB接口、控制电路中的至少一个。
本发明还提供如图17和图18所示的实施例。本实施例的特点在于,用适配器配接一个包含两组电池组的电池模组,替代适配器配接2个前述的电池模组实现电池包容量或电压的增加。具体的,如图17所示,电池包系统包括适配器104、第一电池模组202’和第二电池模组202。第一电池模组202’可拆卸地安装于适配器104,包括第一电池模组接口。第一电池模组接口与适配器接口可拆卸地连接。第一电池模组202’经第一电池模组接口向适配器接口提供电能。第二电池模组202可拆卸地安装于适配器104,包括第二电池模组接口。第二电池模组接口与适配器接口可拆卸地连接。第二电池模组202经第二电池模组接口向适配器接口提供电能。第二电池模组包含的电芯数量不同于第一电池模组包含的电芯数量。适配器包括工具接口和适配器接口,工具接口可拆卸地与电动工具100配合,将从适配器接口接收的电能提供给电动工具100。适配器可选择地与第一电池模组202’和第二电池模组202中的一个配接。第一电池模组202’的爆炸图如图18(a)所示,第二电池模组202的爆炸图如图18(b)所示。示例地,第一电池模组202’包括5节电芯组成的电池组。第二电池模组202包括10节电芯组成的电池组。若10节电芯每5节串联形成一组,然后两组并联,则第二电池模组的容量是第一电池模组容量的2倍。若10节电芯相互串联,则第二电池模组的电压是第一电池模组的2倍。在其他实施例中,第一电池模组和第二电池模组可以包括其他数量的电芯,从而形成其他比例关系的容量或电压。通过用第二电池模组替换第一电池模组实现电池包容量或电压的增加,即通过改变与适配器配接的电池模组所包含的电芯数量来增加容量或电压。取代了前述实施例中通过增加电池模组数量的方式来增加容量或电压。在通过增加电池模组数量的方式来增加容量或电压的实施例中,每个电池模组可单独使用,因此每个电池模组使用次数、使用工况等必然存在差异,容易导致多个电池模组的当前剩余容量存在差异、充满后的可利用容量存在差异等。此时,在不知情的情况下,将存在巨大差异的电池模组组合在一起使用,为电池包的充电及放电管理增加了难度。本实施例提供方案中,用一个电池模组替代另一个电池模组来实现电池包容量或电压的改变,不存在不同初始状态和使用状态的电池模组混用的问题,因此有效降低电池包的充电及放电管理的难度。
本发明的前述部分实施例中,电池模组202中包含控制电路。可选的,控制电路包括第一控制模块和第二控制模块。第一控制模块控制电池包200与电动工具100连接时的放电过程及与常规电动工具充电器连接时的充电过程。第二控制模块控制电池包200或电池模组202与电子设备连接时的放电过程及通过USB接口或无线充电接收模块充电时的充电过程。可选的,第一控制模块设置在适配器204中,第二控制模块设置在电池模组202中。
本发明还提供如图19所示的第三较佳实施例的电动工具400,电动工具400包括机壳、位于机壳内的马达,与电池包可拆卸地配接的电池包接口402,电池包接口402从电池包获取电能为马达供电。电池包由适配器600和电池模组500组成,适配器600与电池模组500以滑移形式可拆卸连接。电池模组500包括壳体、收容在壳体内的电芯组,壳体包括上壳体510a和下壳体510b,上壳体的顶面设置有两条平行的导轨511a和511b。适配器600包括工具接口601,与电池包接口402可拆卸配接。适配器600还包括电池接口602,电池接口602具有滑槽,滑槽与电池模组500上的导轨511a和511b相配合,使得电池模组500能沿滑槽顺利地滑动到适配器600上的合适位置,实现与适配器600的匹配。当适配器600上的工具接口601与电动工具400上的电池包接口402配接时,电池模组500可通过适配器600向电动工具400提供电能。在其他实施例中,导轨511a和511b还可以设置在电池模组500壳体的侧面或底面。
如图19所示的实施例中的电池模组500还包括设置在壳体上的电子设备接口515,如图20所示,电池模组500可通过电子设备接口515连接外部电子设备充电器为内部电芯组充电。可选的,电子设备接口515为USB接口,如USB TYPE-A,USB TYPE-C等类型的USB接口。典型地,电子设备产品为手机、平板电脑、笔记本电脑、USB供电的台灯等带USB口电子产品。
电动工具的工作电流一般小则6-8A,大则10-20A,甚至30-50A。因此,能给电动工具供电的储能模块一般具有较强的放电能力。如前所述,给电动工具100供电的电芯组220,当电芯组220标称满充电压高于20V时,通过电子设备接口输出的电能不足以使其充满。充满为电芯组220的当前电压达到标称满充电压,接收的充电容量达到其标称容量第一预设比例以上。可选地第一预设比例为80%,可选地第一预设比例为90%。示例地,电芯组220由5节串联的锂电电芯组成。如下表1为某一电芯厂家提供的某一特定型号的锂电电芯的规格书中,对锂电电芯标称规格的记载。标称满充电压为组成电芯组的电芯的规格书中,标准充电方式下电芯组的最高电压,标称容量为规格书中电芯的标称放电容量。结合表1可知,单节锂电电芯的标称充满电压为4.15V~4.25V,标称容量为2000mAh。基于此,储能模块的标称满充电压为5*(4.15~4.25)V/cell=20.75V~21.25V,储能模块的标称容量为2000mAh。电芯组220充满时,其整包电压需达到21V,充电容量需达到2000mAH*80%=1600mAH以上。
表1:锂电电芯标称规格
Figure PCTCN2021081485-appb-000001
本发明还提供如图9a-9d所示的直流电源,直流电源包括储能模块、电子设备接口、以及充电电路。储能模块的标称满充电压为第一预设电压,电子设备接口输入的电源电压低于第一预设电压;充电电路,与电子设备接口连接,将电子设备接口输入的电源电压抬升到第一预设电压,为储能模块充电;储能模块充电结束时,储能模块的充电容量达到其标称容量的80%以上。本发明提供的直流电源,当外部输入的充电电压低于储能模块的满充电压时,仍能将储能模块充满。
本发明提供的直流电源可以为传统的电动工具电池包、或本发明前述实施例中记载的电池包200、或本发明前述实施例记载的电池模组202、或电池模组500、或任意其他能反复充放电的电源。该直流电源能直接或间接地给电动工具供电。
以下结合图9a至9d对本发明提供的直流电源进行介绍。示例地,储能模块包括5节锂电电芯串联组成的电芯组220,储能模块的满充电压为20V以上,电子设备接口为USB接口。直流电源还包括与电子设备接口连接的充电电路。USB接口接收外界的电源输入经充电电路为储能模块充电。普通USB接口的输入电压为5V左右,USB type-c接口的输入电压为20V左右。即USB接口的输入电压低于直流电源的满充电压,但本发明提供的直流电源在充电结束时可充满其标称容量的80%以上。为实现此效果,本发明提出在直流电源内设置升压电路,将USB接口接收的电能升压到直流电源充满时所达到的电压。
如图9a所示为直流电源充电电路的第一较佳实施例。直流电源内的充电电路包括PD模块340,设置在PD模块340与电芯组220之间的升压电路,监测电芯充电状态的检测电路。其中PD模块340为遵循USB传输协议的电能传输模块。PD模块340接收电流检测电路检测的电芯状态信号,并根据此检测信号控制PD模块340的输出。PD模块的输出经升压电路后输出给电芯组220,为电芯组220充电。本实施例中,充电电路包括专用充电芯片,且专用充电芯片中集成了检测电路(包括电流检测电路和电压检测电路)和升压电路。当电芯组220的电压为标称18V,充满为21V时,专用充电芯片将最高输出21V电压,输出的电流则根据电芯组220的容量来设计,如2A,2.5A,3A等。
如图9b所示为直流电源充电电路的第二较佳实施例。本实施例与第一较佳实施例的差异主要在于,升压电路并非在充电过程中的任意时候都起作用,而仅在充电功率较小的时候才起左右。也就是说,在充电功率较大时,电芯组220直接由USB PD模块的输出来充电,在充电功率较小时,USB PD模块(也称为PD模块)的输出经升压电路后给电芯组220充电。
具体的,如图9b所示,直流电源的充电电路包括PD模块340、主控模块310、第一充电支路330、第二充电支路320。第一充电支路330包括开关S2,第二充电支路320包括开关S1和升压电路321,第一充电支路330和第二充电支路320相互并联。第一充电支路330直接将PD模块340的输出电能传输给电芯组220。第二充电支路320包括升压电路321,将PD模块340的输出电能升压后传输给电芯组220。储能模块还包括检测电路,用于检测电芯组220的状态参数,主控模块310连接检测电路获取电芯组220的实时充电电流、充电电压、实时电压、当前温度、当前容量等参数以监测电芯组220的充电状态,充电过程中主控模块310根据电芯组220的充电状态控制第一充电支路330和第二充电支路320择一导通。电芯组220充电过程中,当主控模块监测到电芯组220的当前充电电流达到最小充电电流,即第一预设电流时,或电芯组220的实时电压达到满充电压,即第一预设电压时判断电芯组220达到满充状态,控制开关S1或S2断开,切断电芯组220与输入电源的连接,结束充电。
在初始启动充电时,USB PD模块340与充电器通信,获取充电器的输出电压,将USB接口的输出电压逐渐增大到充电器的输出电压,主控模块310控制开关S1闭合,导通第二充电支路320;启动充电后,当主控模块310监测到电芯组220的充电电流大于比第一预设电流大的第二预设电流时,控制电芯组220切换到直接由PD模块340的输出来充电(即通过第一充电支路330进行充电);在第二充电支路320导通时,PD模块340的输出经升压电路350升压到电芯组220的满充电压后给电芯组220充电(即通过第二充电支路320进行充电);在第一充电支路330导通时若主控模块310监测到电芯组220的充电电流达到第二预设电流,则控制切换到第二充电支路320给电芯组220充电。其中,第二预设电流大于第一预设电流。
示例性的,通常的USB-typeC接口的充电器最大充电电压低于电池包的满充电压,无法充满电池包的电量,通过设置升压电路350能够有效将电池包充满。由于升压电路的体积随着其输出功率增大而成倍增大,当升压电路的功率较小时,其体积能够做得较小,使得其能安装到直流电源中,不至于过多的增加直流电源的体积,保持直流电源的紧凑;以充18V直流电源为例,参考图10在大电流充电阶段,即恒流充电阶段,其充电功率是相对较高的,但其电压需求并不高,此时直接利用PD模块的输出即可充电,此时充电功率大,充电速度快,在小电流充电阶段,即恒压充电阶段,其电压升高PD模块的输出不满足电芯组220的电压要求,需要升压电路启动工作,但此时充电电流小,整体的充电功率不高,因此调压电路的功率并不高,使得小功率的升压电路恰好能满足电芯组220的充电需求,同时不影响充电效率。
如图9c所示为直流电源的第三较佳实施例,直流电源包括储能模块、电子设备接口和充电电路。充电电路包括PD模块340、主控模块310、第一充电电路330、第二充电电路320、电流检测电路和电压检测电路。储能模块为5节锂电电芯串联组成的电芯组220,满充电压为20V以上,不包括检测电路,由充电电路中的电压检测电路和电流检测电路组成检测电路。电子设备接口为USB-type C接口(以下简称USB-C接口),USB-C接口的输入电压为20V左右,即USB接口的输入电压低于电芯组220的满充电压。直接利用USB接口输入的电源电压无法将电芯组220充满,为使电芯组220充满,直流电源内设置了相互并联的第一充电支路330和第二充电支路320,第一充电支路330仅包括一个通断开关S2,接收USB-C接口输出的充电电压直接为电芯组220充电。第二充电电路320包括串联连接的通断开关S1和升压电路321,本实施例中升压电路为DC-DC电路。
在本实施例中主控模块310为MCU,MCU连接电压检测电路和电流检测电路,接收电压检测电路和电流检测电路传递的信号,并基于此控制第一充电支路330和第二充电支路320的择一导通或断开。充电过程中切换第一充电支路330和第二充电支路320轮换导通或断开, 实现了即使USB接口的输入电压低于直流电源的满充电压,本发明提供的直流电源在充电结束时仍可被充满。
充电过程中,主控模块310通过连接充电电路中的电流检测电路和电压检测电路监测电芯组220的充电状态,通过电流检测电路检测电芯组220的充电电流的大小,通过电压检测电路检测电芯组的实时电压的大小,主控模块310将获取的电压信号和电流信号传输给PD模块340。当电芯组220的当前充电电流达到最小充电电流,即第一预设电流时,或电芯组220的实时电压达到满充电压,即第一预设电压时,PD模块340判断电芯组220达到充满状态,与充电器内的PD模块360通信,外部电子设备充电器停止输入电源,从而结束电芯组220的充电。较第二较佳实施例,本实施例的直流电源通过切断外部电源的供电以结束充电,避免了内部开关故障导致电芯组220过充的问题。
直流电源连接充电器时,PD模块340与外部充电器PD模块360通过USB-C接口进行通信获取的外部电源的输入电压,PD模块控制USB-C接口输出的电源电压逐渐增大到外部电源的输入。初始启动充电时,主控模块310控制第二充电支路320导通,连接PD模块获取充电器的输出电压,并根据充电器的输出电压对第二充电支路进行调压控制。启动充电后,在USB-C接口输出的电源电压大于储能模块的实时电压时,电芯组220切换到直接由PD模块的输出来充电(即通过第一充电支路330进行充电);主控模块310还用于在第一充电支路导通时,且充电电流达到比最小充电电流大的第二电流预设值时,控制切换至第二充电支路导通;在另一实施例中,主控模块310还用于在实时电压达到比电芯组220满充电压小的第二预设电压时,控制切换至第二充电支路导通;在另一个实施例中,主控模块310还用于在实时电压达到比电芯组220满充电压小的第二预设电压,且充电电流达到比最小充电电流大的第二电流预设值时,控制第二充电支路导通。电芯组的最小充电电流为PD协议限制的最小充电电流。
由于在充电过程中,电芯组220的实时电压将不断增加,导致充电电流不断减小,而PD芯片在充电电流小于PD协议限制的最小电流时(例如50mA或100mA),PD芯片将默认充电结束。当电芯组220通过第一充电支路330直接连接USB接口充电的过程中,由于USB接口输出的电源电压小于电芯组220的满充电压,在第一充电支路330上的充电电流达到最小充电电流时,PD模块将控制充电结束,充电结束时电芯组的实时电压小于满充电压,电芯组无法达到满充状态。因此,为防止在电芯组充满之前结束充电,需要在充电电流达到该最小充电电流之前切换至第二充电支路进行升压充电,保证直流电源能够正常为电池包充电,直至充电电流小于某一定值(例如100mA)时,表示电池包已充满,此时则结束充电。
在第二充电支路320导通时,若直流电源的当前充电电压小于储能模块的实时电压,则PD模块的输出经升压电路321升压到电芯组220的满充电压后给电芯组220充电(即通过第二充电支路320进行充电)。从而通过控制第一充电支路和第二充电支路相互切换择一导通,在电子设备接口输入的电源电压小于储能模块的满充电压时,通过上述实施例的直流电源内的充电电路,储能模块能够充满,通过设置满充截至电流大小的不同,直流电源结束充电时,储能模块接收的充电容量达到其标称容量的80%以上。
下面结合图21详细描述图9c所示的直流电源的具体充电过程,充电过程如下:
充电器插入后,充电器PD模块350与直流电源中的PD模块340通讯,同时PD模块与主控模块310建立通讯,此时启动充电,执行以下步骤:
S100,主控模块310控制开关S1闭合,S2断开,第二充电支路320导通,USB接口360输出的电源电压经升压电路321调压至第一预设电压后为电芯组220充电,第一预设电压等于电芯组220的标称满充电压;
S200,PD模块340获取充电器输出的电源电压并传输给主控模块310,同时主控模块310通过连接电流检测电路和电压检测电路获取电芯组220的实时电压和充电电流;
S300,主控模块310判断电源电压是否大于电芯组220的实时电压,若大于执行步骤S400;若不大于执行步骤S600;
S400,主控模块310控制开关S1断开,开关S2闭合;
S500,第一充电支路导通,利用第一充电支路给电芯组220充电,USB接口360输出的电源电压直接输出给电芯组220充电;
S600,主控模块310监测电芯组220的充电状态,判断当前充电状态是否达到充电切换条件,若是,则执行步骤S700;若否,则执行步骤S500;
步骤S600中的充电切换条件为电芯组220的充电电流达到第二预设电流,或电芯组220的实时电压达到第二预设电压中任一条件,或两个条件的组合,其中第二预设电流大于PD模块340限制的最小充电电流,第二预设电压小于电芯组220的满充电压。可选地,在一实施例中,电芯组220的满充电压为21V,第二预设电压为20V,第二预设电流值为100mA,PD模块限制的最小充电电流为50mA。
S700,主控模块310控制开关S2断开,开关S1闭合;
S800,第二充电支路导通,USB接口360输出的电源电压经升压电路321调压至第一预设电压后为电芯组220充电;
S900,主控模块310判断电芯组220的充电状态是否满足充电结束条件,若是,PD模块340控制USB接口停止输出电能,从而使电芯组结束充电;若否,则返回至步骤S800。
步骤S900中,充电结束条件为电芯组220的充电电流达到PD模块限制的最小充电电流,或电芯组220的实时电压达到电芯组的满充电压中任一条件,或两个条件的组合。
如图9d所示为直流电源的第四较佳实施例,与上述第三较佳实施例的区别在于,主控模块的集成于PD模块340内,即采用具有主控模块功能的PD模块,PD模块连接检测电路,接收电压检测电路和电流检测电路传递的信号,并基于此控制第一充电支路330和第二充电支路320的导通或断开。
下面结合图22详细描述图9d所示的直流电源的具体充电过程,充电过程如下:
充电器插入后,充电器PD模块350与直流电源中的PD模块340通讯,此时启动充电,执行以下步骤:
S100,PD模块340控制开关S1闭合,第二充电支路320导通,USB接口360输出的电源电压经升压电路321调压至第一预设电压后为电芯组220充电;
S200,PD模块340获取充电器电源电压及电芯组实时电压;
S300,PD模块340判断电源电压是否大于电芯组电压,若大于执行步骤S400;若不大于执行步骤S600,;
S400,在充电器电压大于电芯组电压时,PD模块340控制开关S1断开,开关S2闭合,切换至第一充电支路充电;
S500,第一充电支路导通,利用第一充电支路给电芯组220充电,USB接口360输出的电源电压直接输出给电芯组220充电;
S600,PD模块340监测电芯组220的充电状态,判断当前充电状态是否达到充电切换条件,若是,则执行步骤S700;若否,则执行步骤S500;
步骤S600中的充电切换条件为电芯组220的充电电流达到第二预设电流,或电芯组220的实时电压达到第二预设电压中任一条件,或两个条件的组合,其中第二预设电流大于PD模块340限制的最小充电电流,第二预设电压小于电芯组220的满充电压。可选地,在一实施例中,电芯组220的满充电压为21V,第二预设电压为20V,第二预设电流值为100mA,PD模块限制的最小充电电流为50mA。
S700,PD模块340控制开关S2断开,开关S1闭合;
S800,第二充电支路导通,USB接口360输出的电源电压经升压电路321调压至第一预设电压后为电芯组220充电;
S900,PD模块340判断电芯组220的充电状态是否满足充电结束条件,若是,PD模块340控制USB接口停止输出电能,从而使电芯组结束充电;若否,则返回至步骤S800。
步骤S900中,充电结束条件为电芯组220的充电电流达到PD模块限制的最小充电电流, 或电芯组220的实时电压达到电芯组的满充电压中任一条件,或两个条件的组合。
本发明提供的设置在直流电源内部的充电电路,不局限于上述说明的外接电源输入类型及上述说明的直流电源输出电压。USB接口可以为普通USB接口,或USB TYPE-C接口,还可以为其他类型的电子设备接口,直流电源的最大输出电压也可以为其他数值的电压。重点在于,储能模块的标称满充电压高于电子设备接口的输入电源电压。定义储能模块的标称满充电压为第一预设电压,可选的,电子设备接口输入的电源低于第一预设电压。可选的,电子设备接口输入的电源为第一预设电压的80%左右。当电子设备接口输入的电源电压与第一预设电压越接近时,充电电路的体积就越小,直流电源的尺寸就越紧凑。
为了能在电子设备接口的输入电压小于直流电源的最大输出电压的情况下,能使直流电源充满,本发明提供了包含升压电路的充电电路。但考虑到升压电路设置在直流电源内部,为不过分增大直流电源的体积,要尽可能减小直流电源内部的充电电路的体积。一种可选的实施例为如图9b和9c所示的实施例。另一种可选的实施例为降低直流电源的充电功率,从而尽可能降低专用充电芯片的体积。定义单个储能模块的容量为X安时,1C充电为用X电流充电1小时可充满该单个储能模块。可选的,专用充电芯片的最大输出充电电流小于单个储能模块的1.5C充电电流。可选的,专用充电芯片的最大输出充电电流为单个储能模块的1C充电电流,因此充满储能模块所需的时间大于或等于1小时。可选的,DC-DC集成电路包括30W的DC-DC芯片,其体积小,对直流电源的整体尺寸影响较小。
需要说明的是,本申请实施例中的“第一预设电压”和“第二预设电压”仅用于区分对于不同情况下对于电压的判断条件,并非对电压的限制,根据实际情况,“第一预设电压”、“第二预设电压”的大小关系可以具体设定,例如可以相等均不相等,再例如第一预设电压可以大于第二预设电压等等。
如图11所示为电池包的第八较佳实施例。本实施例重点介绍,当电池包包括相互并联的两个电池模组时,如何防止放电时,两个电池模组相互充电的技术方案。电池包包括适配器和可拆卸地安装于适配器的电池模组。电池模组包括第一电池模组和第二电池模组。适配器包括与电动工具可拆卸配合的工具电源端子组(T+/T-)、与第一电池模组可拆卸配合的适配器第一电源端子组(A1+/A1-)、与第二电池模组可拆卸配合的适配器第二电源端子组(A2+/A2-)。第一电源端子组A1+/A1-)和第二电源端子组(A2+/A2-)并联连接于工具电源端子组(T+/T-),将第一电池模组和第二电池模组的电能并联地提供给电动工具。
适配器还包括设置在电池模组与电动工具之间的控制电路。如图12所示,控制电路包括第一开关组件、第二开关组件、以及主控模块。第一开关组件设置在适配器第一电源端子组与工具电源端子组之间。第二开关组件设置在适配器第二电源端子组与工具电源端子组之间。主控模块获得第一电池模组的电压和第二电池模组的电压的电压差值,当两者的电压差值小于预设电压值时,控制第一开关组件和第二开关组件闭合,第一电池模组和所述第二电池模组并联向所述电动工具供电。主控模块判断第一电池模组的电压和第二电池模组的电压的电压差值超过预设电压值,且第一电池模组的电压高于第二电池模组的电压时,控制第一开关组件闭合,第二开关组件断开,使得电压高的第一电池模组先放电。反之,主控模块判断第一电池模组的电压和第二电池模组的电压的电压差值超过预设电压值,且第二电池模组的电压高于第一电池模组的电压时,控制第二开关组件闭合,第一开关组件断开,使得电压高的第二电池模组先放电。直到主控模块监测到第一电池模组和第二电池模组的电压差值小于预设电压值时,控制第一开关组件和第二开关组件均闭合,第一电池模组和第二电池模组并联为电动工具供电。
在其他可选的实施例中,主控模块判断第一电池模组和第二电池模组的电压差值超过预设电压值,且第一电池模组的电压高于第二电池模组的电压时,主控模块控制第一开关组件闭合,第二开关组件间歇闭合。反之,主控模块判断第一电池模组的电压和第二电池模组的电压的电压差值超过预设电压值,且第二电池模组的电压高于第一电池模组的电压时,控制第二开关组件闭合,第一开关组件间歇闭合。直到主控模块监测到第一电池模组和第二电池 模组的电压差值小于预设电压值时,控制第一开关组件和第二开关组件均持续闭合,第一电池模组和第二电池模组并联为电动工具供电。
主控模块获取第一电池模组的电压和第二电池模组的电压的电压差值的方法有多种。包括直接获得电压差值的方案和间接获得电压差值的方案。直接获得电压差值的方案主要是通过直接获得第一电池模组的电压和第二电池模组的电压的方式获得两者的电压差值。可选的,第一电池模组还包括向外传递电池模组状态的第一电池模组信号端子组(BS),第二电池模组还包括向外传递电池模组状态的第二电池模组信号端子组(BS),适配器包括与第一电池模组信号端子组和第二电池模组信号端子组可拆卸地电性连接的适配器第一信号端子组(AS1)和适配器第二信号端子组(AS2),主控模块根据适配器第一信号端子组(AS1)和适配器第二信号端子组(AS2)传递的信号获取第一电池模组和第二电池模组的电压值。在另一种可选的实施例中,主控模块控制第一开关组件闭合且第二开关组件断开,通过适配器第一电源端子组获取第一电池模组的电压值,然后主控模块控制第一开关组件断开且第二开关组件闭合,通过适配器第二电源端子组获取第二电池模组的电压值。间接获得第一电池模组与第二电池模组的电压差值可以通过测量第一开关组件两端的电压差以及第二开关组件两端的电压差来间接获得。当第一开关组件两端的电压差和第二开关组件两端的电压差均小于第二预设电压值,则表明第一电池模组的电压和第二电池模组的电压的电压差值小于第一预设电压值,主控模块控制第一开关组件和第二开关组件闭合,两个电池模组并联为电动工具供电。当第一开关组件两端的电压差大于第二预设电压值,则表明第一电池模组的电压和第二电池模组的电压的电压差值大于第一预设电压值,且第一电池模组的电压高于第二电池模组的电压。当第二开关组件两端的电压差大于第二预设电压值,则表明第一电池模组的电压和第二电池模组的电压的电压差值大于第一预设电压值,且第二电池模组的电压高于第一电池模组的电压。
如图12所示,第一开关组件包括两个P-MOS晶体管,两个晶体管相互串联。第二开关组件包括两个P-MOS晶体管,两个晶体管相互串联。由于一个晶体管包含一个由D极指向S极的寄生二极管,一个晶体管包括一个由S极指向D极的寄生二极管,从而形成两个背靠背的二极管,防止在待机状态时,第一电池模组和第二电池模组相互充电。
如图12所示,适配器还包括与电动工具可拆卸连接的工具信号端子组(TS)和上电自锁电路。工具信号端子组(TS)用于在适配器与电动工具之间传递电信号。上电自锁电路设置在主控模块和适配器第一电源端子组以及适配器第二电源端子组之间。上电自锁电路包括断开状态和闭合状态。断开状态下,主控模块处于掉电状态进入休眠模式。闭合状态下,主控模块处于上电状态并启动工作。电动工具的启动开关(S1)闭合时,工具信号端子组收到触发信号,上电自锁电路由断开状态切换至闭合状态。具体的,上电自锁电路包括第一电子开关Q5和第二电子开关T3。开关Q5设置在适配器第一电源端子组以及适配器第二电源端子组与DC/DC模块之间。其中,DC/DC模块用于将电池模组的电压转换为适合给主控模块供电的电压。当开关Q5处于断开状态时,DC/DC模块无法获得电池模组的电能,主控模块处于掉电状态,进入休眠模式。当开关Q5处于闭合状态时,DC/DC模块获得电池模组的电能,并转换为适合给主控模块供电的电压,主控模块获得电能处于上电状态并启动工作。如图12所示,电动工具的启动开关S1闭合的瞬间,经工具信号端子组使得开关Q5的G极处于低电平状态,从而触发开关Q5闭合。同时一旦开关Q5闭合,主控模块上电后,发出控制信号使得开关T3处于闭合状态,从而保持开关Q5的G极处于低电平状态,将开关Q5锁定在闭合状态,主控模块持续得电,并启动前述工作,如获得第一电池模组和第二电池模组的电压差值、控制第一开关组件和第二开关组件的状态等。
本实施例中,当只有一个电池模组安装到适配器,或虽然安装了多个电池模组到适配器,但只有一个电池模组接触良好,或虽然安装了多个电池模组到适配器,但只有一个电池模组满足放电条件时,主控模块通过适配器信号端子组或适配器电源端子组识别到上述情况时,控制与该电池模组对应的开关组件闭合,其他开关组件断开,由该电池模组对电动工具供电。 从而使得,即使只有一个电池模组能工作的情况下,电池包仍能对电动工具供电。
以下结合图13a和图13b对本实施例的工作流程进行说明。
如图13a为本实施例工作流程的第一较佳实施例。在未收到电动工具的触发信号前,即电动工具的启动开关闭合前时,电池包处于休眠模式,消耗极少的电量。如步骤S0和S2所示,一旦电动工具的启动开关闭合,工具信号端子组输出一个低电平的触发信号,该信号会发送到上电自锁电路,上电自锁电路由断开状态切换为闭合状态,主控模块被上电从而启动工作。随后进入步骤S4。
步骤S4,判断第一电池模组和第二电池模组是否都接入适配器,若判断结果为否,进入步骤S10。若判断结果为是,进入步骤S8。判断结果为否,则表明第一电池模组和第二电池模组中的一个接入适配器,另一个没有接入适配器,不会是两个电池模组均未接入适配器,因为若两个电池模组均未接入适配器则主控模块无法上电,也就无法执行判断电池模组是否接入适配器的判断了。判断电池模组是否接入适配器的方式有很多,如通过判断适配器信号端子组是否接收到预定信号,或通过适配器电源端子组是否接收到预定电压,或者通过在电池模组及适配器中设置感应元件,以非接触的方式判断适配器是否接入电池模组。
步骤S10,控制第一开关组件或第二开关组件闭合,使得接入适配器的电池模组为电动工具供电。随后进入步骤S12。
步骤S12,判断电池模组是否达到过放保护条件。过放保护条件包括但不限于以下至少一种:1)电池模组的整包电压低于预设电压;2)电池模组中单节电芯的电压低于预设电压;3)电池模组的放电电流大于预设电流;4)电池模组的温度高于预设温度。当判断结果为是时,则需要对电池模组进行过放保护,进入步骤S14,停止对电池模组的放电,即控制第一开关组件或第二开关组件断开。当判断结果为否时,返回步骤S10。
步骤S14之后,进入步骤S16,主控模块进入休眠状态。具体的,如图12所示,主控模块发出控制信号,控制开关T3断开,从而控制开关Q5断开,使得上电子锁电路断开,主控模块掉电进入休眠状态,从而降低对电池模组的电能消耗。
步骤S8,判断第一电池模组的电压与第二电池模组的电压的差值是否超过预设电压值。判断方法如前所述,在此不再赘述。当判断结果为否时,进入步骤S18。当判断结果为是时,进入步骤S22。
步骤S18,闭合第一开关组件和第二开关组件,使得第一电池模组和第二电池模组并联地给电动工具供电。随后进入步骤S20。
步骤S20,判断第一电池模组和第二电池模组是否达到过放保护条件。过放保护条件如前所述。当判断结果为是时,进入步骤S14。当判断结果为否时,返回步骤S18。
步骤S22,判断第一电池模组的电压是否大于第二电池模组的电压。当判断结果为是,说明第一电池模组的电压大于第二电池模组的电压,且两者的电压差超过预设电压值,此时进入步骤S24。步骤S24中,闭合第一开关组件,断开第二开关组件。这样做的有益效果为仅第一电池模组放电,第二电池模组不放电,有效避免两者同时并联放电时,第一电池模组向第二电池模组充电,造成电池模组的损坏。当步骤S22的判断结果为否,说明第二电池模组的电压大于第一电池模组的电压,且两者的电压差超过预设电压值,此时进入步骤S32。步骤S32中,闭合第二开关组件,断开第一开关组件。这样做的有益效果为仅第二电池模组放电,第一电池模组不放电,有效避免两者同时并联放电时,第二电池模组向第一电池模组充电,造成电池模组的损坏。
步骤S24之后,进入步骤S26。步骤S26中,判断第一电池模组是否达到过放保护条件。当判断结果为是时,进入步骤S28。当判断结果为否时,返回步骤S24。
步骤S28中,断开第一开关组件,闭合第二开关组件。即停止对第一电池模组的放电,开始对第二电池模组的放电。随后进入步骤S30,判断第二电池模组是否达到过放保护条件。步骤S30的判断结果为是时,进入步骤S14。步骤S30的判断结果为否时,返回步骤S28。
步骤S32之后,进入步骤S34。步骤S34中,判断第二电池模组是否达到过放保护条件。 当判断结果为是时,进入步骤S36。当判断结果为否时,返回步骤S32。
步骤S36中,断开第二开关组件,闭合第一开关组件。即停止对第二电池模组的放电,开始对第一电池模组的放电。随后进入步骤S38,判断第一电池模组是否达到过放保护条件。步骤S38的判断结果为是时,进入步骤S14。步骤S38的判断结果为否时,返回步骤S36。
如图13b为本实施例工作流程的第二较佳实施例。本实施例的流程图与图13b所示的流程图基本相同,区别在于步骤S24、S26、S32、以及S34。具体的,本实施例的步骤S24中,持续闭合第一开关组件,间歇闭合第二开关组件。实现的效果是,电压更高的第一电池模组持续给电动工具供电,电压较低的第二电池模组间歇给电动工具供电,即第二电池模组间歇性地与第一电池模组并联向电动工具供电。即使由于第一电池模组与第二电池模组的电压差,导致第一电池模组向第二电池模组放电,但由于该放电是间歇性的,平均放电电流小,不会对电池模组造成较大的损坏。步骤S24之后,进入步骤S26。步骤S26中,判断第一电池模组和第二电池模组是否达到过放保护条件,当判断结果为是时,进入步骤S14,停止电池模组对电动工具的放电。步骤S26中,当判断结果为否时,返回步骤S24。步骤S32中,持续闭合第二开关组件,间歇闭合第一开关组件。实现的效果是,电压更高的第二电池模组持续给电动工具供电,电压较低的第一电池模组间歇给电动工具供电,即第一电池模组间歇性地与第二电池模组并联向电动工具供电。即使由于第二电池模组与第一电池模组的电压差,导致第二电池模组向第一电池模组放电,但由于该放电是间歇性的,平均放电电流小,不会对电池模组造成较大的损坏。步骤S32之后进入步骤S34。步骤S34中,判断第一电池模组和第二电池模组是否达到过放保护条件,当判断结果为是时,进入步骤S14,停止电池模组对电动工具的放电。步骤S34中,当判断结果为否时,返回步骤S32。
如图14所示为电池包的第九较佳实施例。本实施例重点介绍,电池包包括相互并联的两个电池模组,且每个电池模组均包含充电电源模块,其中一个充电电源模块接收了外部的电源输入,另一个充电电源模块未接收外部的电源输入时,如何同时对两个电池模组进行充电的技术方案。电池包包括适配器、第一电池模组和第二电池模组,第一电池模组和第二电池模组的电能经适配器向电动工具提供电能。适配器包括与电动工具可拆卸配合的工具电源端子组(T+/T-)、与第一电池模组可拆卸配合的适配器第一电源端子组(A1+/A1-)和适配器第一信号端子组(AS1)、以及与第二电池模组可拆卸配合的适配器第二电源端子组(A2+/A2-)和适配器第二信号端子组(AS2)。第一电池模组可拆卸地安装于适配器,包括与适配器第一电源端子组连接的第一电池模组电源端子组(B+/B-)、与适配器第一信号端子组连接的第一电池模组信号端子组(BS)、以及接收外部的充电能量为第一电池模组充电的第一充电电源模块。第一电源端子组与第一电池模组的正负极连接。第一电池模组信号端子组向外传递第一电池模组的状态信号。第二电池模组可拆卸地安装于适配器,包括与适配器第二电源端子组连接的第二电池模组电源端子组、与适配器第二信号端子组连接的第二电池模组信号端子组、以及接收外部的充电能量为第二电池模组充电的第二充电电源模块。第二电源端子组与第二电池模组的正负极连接。第二电池模组信号端子组向外传递第二电池模组的状态信号。适配器还包括主控模块和开关组件。适配器第一电源端子组与适配器第二电源端子组经开关组件并联连接。当第一充电电源模块接收到外部的充电能量输入且第二充电电源模块未接收到外部的充电能量输入时,第一电池模组信号端子组向与其连接的适配器第一信号端子组发出触发信号,主控模块控制开关组件闭合,使得第一充电电源模块既能给第一电池模组充电,也能给第二电池模组充电。反之,当第二充电电源模块接收到外部的充电能量输入且第一充电电源模块未接收到外部的充电能量输入时,第二电池模组信号端子组向与其连接的适配器第二信号端子组发出触发信号,主控模块控制开关组件闭合,使得第二充电电源模块既能给第二电池模组充电,也能给第一电池模组充电。
如图15所示为电池模组一种可选实施例的电路框图,第一电池模组和第二电池模组的电路框图均参考该图示。电池模组包括电芯组、充电管理模块、充电电源模块、触发信号生成模块、以及适配器接口。电池模组接口包括电池模组电源端子组和电池模组信号端子组。电 池模组内的充电管理模块与充电电源模块电性连接,当电池模组接收到外部充电能量的输入时,触发信号生成模块输出高电平信号,该高电平信号即为触发信号。该触发信号经电池模组信号端子组传递给适配器信号端子组。可选的,电池模组信号端子组包括S信号端子和D信号端子,两个端子可独立设置,也可分时复用一个端子。S信号端子传递模拟信号,如高电平信号。D信号端子传递数字信号,如电池模组内的电芯当前充放电状态的信号。S信号端子和D信号端子也对应地接收适配器向其传递的信号。
在如图12所示的具体实现方式中,开关组件包括第一开关组件和第二开关组件,第一开关组件设置在适配器第一电源端子组与工具电源端子组之间。第二开关组件设置在适配器第一电源端子组与工具电源端子组之间。适配器第一电源端子组和。适配器第二电源端子组经第一开关组件和第二开关组件并联连接。
主控模块控制第一开关组件和第二开关组件闭合之前,获取第一电池模组的电压和第二电池模组的电压,判断第一电池模组的电压和第二电池模组的电压是否满足预设条件,当判断结果为是时,控制第一开关组件和第二开关组件闭合;当判断结果为否时,控制第一开关组件和第二开关组件断开。主控模块获得第一电池模组和第二电池模组的电压的方式有多种。可选的,主控模块控制第一开关组件闭合且第二开关组件断开,通过第一电池模组电源端子组获取第一电池模组的电压值。主控模块控制第一开关组件断开且第二开关组件闭合,通过第二电池模组电源端子组获取第二电池模组的电压值。主控模块还可以直接通过第一电池模组信号端子组传递的信号获取第一电池模组的电压,通过第二电池模组信号端子组传递的信号获取第二电池模组的电压。如图12所示,主控模块设置不同的端口接收第一电池模组信号端子组的触发信号和第二电池模组信号端子组的触发信号,从而识别是哪一个电池模组向适配器发送了触发信号。当主控模块判断触发信号来自第一电池模组信号端子组时,预设条件为第一电池模组的电压是否不低于第二电池模组的电压。当主控模块判断触发信号来自第二电池模组信号端子组时,预设条件为第二电池模组的电压是否不低于第一电池模组的电压。
第一电池模组内的第一电池模组充电管理模块监测第一电池模组的状态,并控制第一充电电源模块对第一电池模组的充电过程。第二电池模组内的第二电池模组充电管理模块,第二电池模组充电管理模块监测第二电池模组的状态,并控制第二充电电源模块对第二电池模组的充电过程。当第一充电电源模块接收到外部的充电能量输入,且第二充电电源模块未接收到外部的充电能量输入时,第一电池模组的充电管理由第一电池模组充电管理模块完成,第二电池模组的充电管理由主控模块完成。反之,当第二充电电源模块接收到外部的充电能量输入,且第一充电电源模块未接收到外部的充电能量输入时,第二电池模组的充电管理由第二电池模组充电管理模块完成,第一电池模组的充电管理由主控模块完成。主控模块对电池模组的充电管理具体实现为,当第一充电电源模块接收到外部的充电能量输入,且主控模块根据第二电池模组信号端子传递的信号判断第二电池模组充满时,控制第一开关组件和第二开关组件中的至少一个断开。当第二充电电源模块接收到外部的充电能量输入,且主控模块根据第一电池模组信号端子传递的信号判断第一电池模组充满时,控制第一开关组件和第二开关组件中的至少一个断开。
如图15所示,第一充电电源模块和第二充电电源模块包括USB-C PD模块,即USB TYPE C能量传输协议。USB TYPE C能量传输协议接收外部的USB-C(即USB TYPE C)接口的电源输入,并转换为适合给电池模组充电的能量。如图15所示,第一充电电源模块和第二充电电源模块还包括无线充电接收模块。无线充电接收模块接收外部的无线充电发射模块发送的能量,并转换为适合给电池模组充电的能量。
参考图12,适配器还包括设置在适配器第一电源端子组以及适配器第二电源端子组与所述主控模块之间的上电自锁电路。上电自锁电路未接收到适配器第一信号端子组或适配器第二信号端子组的触发信号时,开关T4处于断开状态,从而使得开关Q5处于断开状态,因此上电自锁电路处于断开状态。电池模组提供的电能无法传输到DC/DC模块,从而无法给主控模块供电,主控模块处于掉电状态进入休眠模式。上电自锁电路接收到适配器第一信号端子 组或适配器第二信号端子组的触发信号时,开关T4处于闭合状态,从而使得开关Q5处于闭合状态,因此上电自锁电路处于闭合状态。电池模组提供的电能经DC/DC模块向主控模块供电,主控模块处于上电状态并启动工作。也就是说,在收到来自电池模组信号端子组的触发信号前,主控模块处于掉电状态,消耗极少的电能,从而使得电池包在不工作的静置状态下耗电少,延长待机时间。此外,当主控模块判断触发信号来自第一电池模组且所述第二电池模组未接入时,控制所述上电自锁模块由闭合状态切换为断开状态;或者当主控模块判断触发信号来自第二电池模组且所述第一电池模组未接入时,控制所述上电自锁模块由闭合状态切换为断开状态。因为此时电池模组的充电管理由其内部的充电管理模块管控,电池包无需主控模块参与任何工作。
以下结合图16对本实施例的工作流程进行说明。在未收到来自第一电池模组信号端子组或第二电池模组信号端子组的触发信号前,电池包处于休眠模式,消耗极少的电量。如步骤S0和S2所示,一旦第一充电电源模块或第二充电电源模块接收到外部的充电能量输入时,对应的第一电池模组信号端子组或第二电池模组信号端子组向适配器发送高电平的触发信号。该高电平的触发信号使得上电自锁电路由断开状态切换为闭合状态,主控模块被上电从而启动工作。随后进入步骤S4。
步骤S4,判断第一电池模组和第二电池模组是否都接入适配器。若判断结果为否,则表明仅有这一个电池模组接入,另一个没有接入适配器,且该介入适配器的电池模组收到了外部的充电能量输入,且没有其他电池模组需要该电池模组内的充电电源模块对其充电,因此适配器内的主控模块无需继续工作。此时,进入步骤S18,主控模块进入掉电的休眠状态,即低功耗状态。若步骤S4的判断结果为是,进入步骤S6。判断结果为否,不会是两个电池模组均未接入适配器,因为若两个电池模组均未接入适配器则主控模块无法上电,也就无法执行判断电池模组是否接入适配器的判断了。判断电池模组是否接入适配器的方式有很多,如通过判断适配器信号端子组是否接收到预定信号,或通过适配器电源端子组是否接收到预定电压,或者通过在电池模组及适配器中设置感应元件,以非接触的方式判断适配器是否接入电池模组。
步骤S6,判断触发信号是否来自第一电池模组。主控模块根据触发信号来自哪个输入口判断触发信号是否来自第一电池模组。当判断结果为是,表明第一电池模组和第二电池模组均接入适配器,且第一充电电源模块接收到外部的充电能量输入,准备启动对第一电池模组的充电。考虑到第二充电电源模块未接收到外部的充电能量输入,第二电池模组要充电则需经适配器将第一充电电源模块的电能引入到第二电池模组为其充电。但在将第一充电电源模块的电能引入到第二电池模组之前,需要判断第一充电电源模块是否适合同时为第一电池模组和第二电池模组充电。因此,若步骤S6的判断结果为是,则先进入步骤S8。若步骤S6中的判断结果为否,则表明第一电池模组和第二电池模组均接入适配器,且第二充电电源模块接收到外部的充电能量输入,准备启动对第二电池模组的充电。考虑到第一充电电源模块未接收到外部的充电能量输入,第一电池模组要充电则需经适配器将第二充电电源模块的电能引入到第一电池模组为其充电。但在将第二充电电源模块的电能引入到第一电池模组之前,需要判断第二充电电源模块是否适合同时为第一电池模组和第二电池模组充电。因此,若步骤S6的判断结果为否,则先进入步骤S20。
步骤S8和步骤S20均为,获取第一电池模组的电压和第二电池模组的电压,判断第一电池模组的电压和第二电池模组的电压满足预设条件。获取第一电池模组的电压和第二电池模组的电压如前所述。步骤S8中的预设条件为第一电池模组的电压是否不低于第二电池模组的电压。步骤S20中的预设条件为第二电池模组的电压是否不低于第一电池模组的电压。步骤S8中,若判断结果为否,则进入步骤S9;若判断结果为是,则进入步骤S10。步骤S20中,若判断结果为否,则进入步骤S28;若判断结果为是,则进入步骤S22。
步骤S10,闭合第一开关组件和第二开关组件,第一充电电源模块同时给第一电池模组和第二电池模组充电,随后进入步骤S12。步骤S22,闭合第一开关组件和第二开关组件,第 二充电电源模块同时给第一电池模组和第二电池模组充电,随后进入步骤S24。
步骤S9和步骤S28均为,获取第一电池模组的电压和第二电池模组的电压。然后分别返回步骤S8和步骤S20,继续判断第一电池模组的电压和第二电池模组的电压满足预设条件。
步骤S12中,主控模块获取第二电池模组的充电状态。获取方式为通过适配器第二电源端子组或适配器第二信号端子组。随后进入步骤S14,主控模块基于第二电池模组的充电状态,判断第二电池模组是否充满。之所以第二电池模组是否充满由主控模块来管控,而非其内的第二充电管理模块来管控的原因是,第一充电电源模块是否给第二电池模组充电是经过主控模块来控制的。同时,第一电池模组的充电过程由其内的第一充电管理模块管控,无需主控模块参与。步骤S24中,主控模块获取第一电池模组的充电状态。获取方式为通过适配器第一电源端子组或适配器第一信号端子组。随后进入步骤S26,主控模块基于第一电池模组的充电状态,判断第一电池模组是否充满。之所以第一电池模组是否充满由主控模块来管控,而非其内的第一充电管理模块来管控的原因是,第二充电电源模块是否给第一电池模组充电是经过主控模块来控制的。同时,第二电池模组的充电过程由其内的第二充电管理模块管控,无需主控模块参与。
步骤S14和步骤S26中的判断结果为是时,均进入步骤S16。步骤S14和步骤S26中的判断结果为否时,分别返回步骤S12和步骤S24。
步骤S16中,主控断开第一开关组件和第二开关组件。随后控制上电自锁电路进入断开状态,主控模块掉电,进入休眠状态,如步骤S18所示。
本发明还提供电池包的第十实施例。以下结合图12和图14对第十实施例进行介绍。电池包包括适配器和电池模组,电池模组可拆卸地安装于适配器。电池模组包括多节电芯、向外输出电能的电池模组电源端子组、以及向外输出电信号的电池模组信号端子组。适配器可拆卸地连接电动工具,将电池模组的电能提供给电动工具。适配器还包括与电池模组电源端子组可拆卸连接的适配器电源端子组、与电池模组信号端子组可拆卸连接的适配器信号端子组、与电动工具可拆卸连接的工具电源端子组、与电动工具可拆卸连接的工具信号端子组、主控模块、以及上电自锁电路。主控模块消耗电池模组的电能以启动工作。上电自锁电路设置在主控模块与适配器电源端子组之间,可选择地处于断开状态或闭合状态。上电自锁电路处于断开状态时,主控模块处于掉电状态进入休眠模式。上电自锁电路处于闭合状态时,主控模块处于上电状态并启动工作。上电自锁电路接收到外接的触发信号时,由断开状态切换为闭合状态,对应的,主控模块由掉电状态切换为上电状态并启动工作。以下结合图12分别介绍上电自锁电路由断开状态切换为闭合状态的触发条件。
如图12所示,当电动工具的启动开关S1闭合时,工具信号端子组将上电自锁电路的二极管D6接地,开关Q5的G极瞬间得到低电平信号,促使开关Q5闭合,上电自锁电路由断开状态切换为闭合状态。继续参考图12,当第一充电电源模块接收到外部的充电能量输入时,适配器第一信号端子组向上电自锁电路输出高电平的触发信号,使得开关T4瞬间闭合,开关Q5的G极瞬间得到低电平信号,促使开关Q5闭合,上电自锁电路由断开状态切换为闭合状态。同样的,当第二充电电源模块接收到外部的充电能量输入时,适配器第二信号端子组向上电自锁电路输出高电平的触发信号,使得开关T4瞬间闭合,开关Q5的G极瞬间得到低电平信号,促使开关Q5闭合,上电自锁电路由断开状态切换为闭合状态。
上述任意一个条件触发上电自锁电路由断开状态切换为闭合状态后,主控模块启动工作,并发送控制信号给上电自锁电路的开关T3,使其持续地处于闭合状态,开关Q5的G极持续得到低电平信号,上电自锁电路持续地处于闭合状态,主控模块持续工作。而一旦主控模块需要进入休眠状态时,主控模块发送控制信号给上电自锁电路的开关T3,使其由闭合状态切换为断开状态,从而开关Q5断开,上电自锁电路由闭合状态切换为断开状态。以下结合图12、13a、13b、16分别介绍主控模块需要进入休眠状态的触发条件。
如图12所示,当电动工具的启动开关S1断开时,主控模块通过工具信号端子组检测到启动开关断开,判断电池包的放电过程结束,主控模块需要进入休眠状态。
如图12-13b所示,主控模块判断电池模组达到过放保护条件后,停止对电池模组的放电,随后进入休眠状态。
如图12和16所示,主控模块判断只有一个电池模组接入,且触发信号来自适配器信号端子组,非工具信号端子组时,表明电池模组即将进入充电模式,非放电模式,且该电池模组的充电电源来自自身的充电电源模块。此时,主控模块无需继续工作,进入休眠状态。
以上实施例中,电池包可直接给电动工具供电,电池包中的电池模组可以为家用设备供电,使得电池包既能给电动工具供电,又能给家用设备供电,提高了电池包的通用性,且不需要对现有的电动工具和家用设备外形进行改变,不影响各个产品的美观。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种直流电源,可为电动工具供电,其特征在于,所述直流电源包括:
    储能模块,标称满充电压为第一预设电压;
    电子设备接口,接收外接的电源输入;所述电子设备接口输入的电源电压低于所述第一预设电压;
    充电电路,与所述电子设备接口连接,将所述电子设备接口输入的电源电压抬升到所述第一预设电压,为所述储能模块充电;
    所述储能模块充电结束时,所述储能模块接收的容量达到其标称容量的80%以上。
  2. 根据权利要求1所述的直流电源,其特征在于,所述充电电路包括主控模块以及相互并联的第一充电支路和第二充电支路,所述第一充电支路将所述电子设备接口输入的电源直接输出给所述储能模块,所述第二充电支路将所述电子设备接口输入的电源电压升压到所述第一预设电压后输出给储能模块,所述主控模块监测所述储能模块的充电状态,根据所述充电状态控制所述第一充电支路和所述第二充电支路择一导通。
  3. 根据权利要求2所述的直流电源,其特征在于,所述第二充电支路包括串联的第一开关与DC-DC电路;
    所述第一开关的受控端与所述主控模块连接,用于在所述主控模块控制其导通时,导通所述DC-DC电路,以将所述电子设备接口输入的电源电压升压到所述第一预设电压。
  4. 根据权利要求2所述的直流电源,其特征在于,所述主控模块用于监测所述储能模块的充电电流的大小和所述储能模块的实时电压的大小,当所述充电电流达到第一预设电流或所述实时电压达到所述第一预设电压时判断所述储能模块充满。
  5. 根据权利要求4所述的直流电源,其特征在于,所述主控模块用于在启动充电时,控制所述第二充电支路导通。
  6. 根据权利要求5所述的直流电源,其特征在于,所述主控模块还用于监测所述电子设备接口输入的电源电压的大小,当所述电源电压大于所述实时电压时,控制切换所述第一充电支路导通。
  7. 根据权利要求6所述的直流电源,其特征在于,所述主控模块还用于在所述第一充电支路导通且所述充电电流达到第二预设电流时,控制切换所述第二充电支路导通;其中,所述第二预设电流大于所述第一预设电流。
  8. 根据权利要求6所述的直流电源,其特征在于,所述主控模块还用于在所述第一充电支路导通且所述实时电压达到第二预设电压时,控制切换所述第二充电支路导通;其中,所述第二预设电压小于所述第一预设电压。
  9. 根据权利要求6所述的直流电源,其特征在于,所述主控模块还用于在所述第一充电支路导通,所述实时电压达到第二预设电压且所述充电电流达到第二预设电流时,控制所述第二充电支路导通;其中,所述第二预设电流大于所述第一预设电流,所述第二预设电压小于所述第一预设电压。
  10. 根据权利要求1至9任一项所述的直流电源,其特征在于,所述电子设备接口为USBTYPE-C接口。
PCT/CN2021/081485 2020-03-18 2021-03-18 直流电源 WO2021185307A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010190512 2020-03-18
CN202010190512.4 2020-03-18
CN202010324664 2020-04-23
CN202010324664.9 2020-04-23

Publications (1)

Publication Number Publication Date
WO2021185307A1 true WO2021185307A1 (zh) 2021-09-23

Family

ID=77770155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081485 WO2021185307A1 (zh) 2020-03-18 2021-03-18 直流电源

Country Status (2)

Country Link
CN (5) CN113497471B (zh)
WO (1) WO2021185307A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117584088A (zh) * 2022-08-11 2024-02-23 南京泉峰科技有限公司 电动工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080054842A1 (en) * 2006-09-01 2008-03-06 Samsung Sdi Co. Battery pack and power receiving device
CN102103400A (zh) * 2009-12-17 2011-06-22 深圳富泰宏精密工业有限公司 电源装置及其使用方法
CN104734281A (zh) * 2015-01-28 2015-06-24 惠州Tcl移动通信有限公司 可穿戴移动电源及其供电控制方法
CN105518968A (zh) * 2013-09-09 2016-04-20 苹果公司 通用电源适配器
CN105762862A (zh) * 2014-12-19 2016-07-13 比亚迪股份有限公司 电源系统及电子装置及电池的充电方法及放电方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834319B (zh) * 2010-03-10 2013-02-27 青岛海信电器股份有限公司 一种电源管理的方法、装置及电子设备
CN103762650B (zh) * 2014-01-21 2016-01-20 深圳市民展科技开发有限公司 一种基于平衡充电技术的单usb口备用电源
CN104617634B (zh) * 2015-02-26 2017-01-11 青岛歌尔声学科技有限公司 一种充放电电路及充电宝
CN106026225B (zh) * 2016-05-20 2020-05-08 深圳维普创新科技有限公司 充电电池的快速充电电路及充电方法
CN107846046A (zh) * 2016-09-18 2018-03-27 苏州宝时得电动工具有限公司 充电方法、充电装置及充电系统
CN108964197B (zh) * 2018-08-07 2020-11-17 深圳宝砾微电子有限公司 一种充电电路及电源装置
CN109088459A (zh) * 2018-09-29 2018-12-25 出门问问信息科技有限公司 充电电路和充电设备
CN109525020A (zh) * 2018-12-26 2019-03-26 维沃移动通信有限公司 充电电路及终端
CN209767169U (zh) * 2019-01-18 2019-12-10 苏州大能众创电器有限公司 充电结构及吸尘器
CN109980738A (zh) * 2019-04-08 2019-07-05 厦门兴卓科技有限公司 一种智能dc-dc充电器
CN110336353A (zh) * 2019-07-09 2019-10-15 Oppo广东移动通信有限公司 电池、电路系统及其控制方法、电子设备
CN110504728A (zh) * 2019-08-28 2019-11-26 深圳市圭石南方科技发展有限公司 一种电池充电系统、方法、装置、计算机设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080054842A1 (en) * 2006-09-01 2008-03-06 Samsung Sdi Co. Battery pack and power receiving device
CN102103400A (zh) * 2009-12-17 2011-06-22 深圳富泰宏精密工业有限公司 电源装置及其使用方法
CN105518968A (zh) * 2013-09-09 2016-04-20 苹果公司 通用电源适配器
CN105762862A (zh) * 2014-12-19 2016-07-13 比亚迪股份有限公司 电源系统及电子装置及电池的充电方法及放电方法
CN104734281A (zh) * 2015-01-28 2015-06-24 惠州Tcl移动通信有限公司 可穿戴移动电源及其供电控制方法

Also Published As

Publication number Publication date
CN215580414U (zh) 2022-01-18
CN113497471B (zh) 2023-12-08
CN113497473B (zh) 2024-04-30
CN113497471A (zh) 2021-10-12
CN217589271U (zh) 2022-10-14
CN216928756U (zh) 2022-07-08
CN113497473A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
CN101171718B (zh) 双向电池充电控制器
US7268519B2 (en) Portable battery charger for a mobile device
US9407104B2 (en) Battery powered charger
US6404168B1 (en) Auxiliary battery for portable devices
US8860371B2 (en) Series battery charger with the function of separate detection
CN100423358C (zh) 用于电子设备的适配器和混合式电源
US8643325B2 (en) Integrated battery charger
US7183748B1 (en) Electric charger and power supply device for portable terminal
US20130049675A1 (en) Output connector equipped battery pack, battery-pack-and-battery-driven-device system, and charging method by using battery pack
EP1610438A2 (en) Mobile charger
CN218548687U (zh) 一种充电器及充电系统
US20070080663A1 (en) Portable charger with a rechargeable back-up battery
US20230387697A1 (en) Battery pack and charging and discharging control method for battery pack
WO2021185307A1 (zh) 直流电源
CN114788119A (zh) 可移动平台、可移动平台的充放电方法及存储介质
TWI554000B (zh) 行動充放電裝置
CN217822945U (zh) 电池包及电动工具系统
CN112531848B (zh) 一种电池包及其控制方法
CN112421726A (zh) 电源控制系统、电风扇
CN201118462Y (zh) 多功能组合一体化便携式电源
CN213461201U (zh) 电源控制系统、电风扇
US20240088506A1 (en) Battery pack, power tool system and charging system
JP2000323181A (ja) 携帯装置用充電器
KR20150056739A (ko) 2차 전지를 구비한 충전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770838

Country of ref document: EP

Kind code of ref document: A1