WO2022247184A1 - 可调谐激光器 - Google Patents

可调谐激光器 Download PDF

Info

Publication number
WO2022247184A1
WO2022247184A1 PCT/CN2021/133479 CN2021133479W WO2022247184A1 WO 2022247184 A1 WO2022247184 A1 WO 2022247184A1 CN 2021133479 W CN2021133479 W CN 2021133479W WO 2022247184 A1 WO2022247184 A1 WO 2022247184A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wire
sub
etalon
temperature measuring
Prior art date
Application number
PCT/CN2021/133479
Other languages
English (en)
French (fr)
Inventor
骆亮
涂文凯
孙雨舟
Original Assignee
苏州旭创科技有限公司
铜陵旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司, 铜陵旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Publication of WO2022247184A1 publication Critical patent/WO2022247184A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Definitions

  • the present application relates to the technical field of optical communication, in particular to a tunable laser.
  • the laser chip and the wave locking device are set in the same packaging box.
  • the laser chip needs TEC for temperature control, and the thermally tuned filter commonly used in the wave locking device also needs temperature control to adjust the temperature of the filter.
  • two separate TECs are used in the packaging box to control the temperature of the laser chip and the external wave locking device separately. This solution has temperature crosstalk between each other and is bulky, which is not conducive to the miniaturization of the module package.
  • An embodiment of the present application provides a tunable laser, which includes a housing, a light source module disposed in the housing, an optical processing module, and a wavelength locking module.
  • the housing has an optical interface and an electrical interface, wherein,
  • the light processing module includes a first beam splitter and a coupling lens, the light beam emitted by the light source module is divided into a first sub-beam and a second sub-beam through the first beam splitter, and the first sub-beam passes through the coupling lens transmitted to the optical interface, and output through the optical interface; the second sub-beam is transmitted to the wavelength locking module;
  • the wavelength locking module includes a second optical splitter, a tunable filter, a first optical detector and a second optical detector; the second sub-beam is divided into a third sub-beam and a fourth sub-beam by the second optical splitter. a light beam, the third sub-beam is incident on the first photodetector after being filtered by the tunable filter, and the fourth sub-beam is incident on the second photodetector;
  • the tunable filter includes an optical etalon with thermo-optic effect and a heating wire, and the heating wire is used to adjust the temperature of the optical etalon to tune the filter spectrum of the optical etalon.
  • the optical etalon has a light-passing area
  • the tunable filter further includes a temperature-measuring wire
  • the heating wire and the temperature-measuring wire are arranged on the optical etalon and surround the light-passing area. There are heating electrodes at both ends of the heating wire, and temperature measuring electrodes at both ends of the temperature measuring wire.
  • the optical etalon has two oppositely arranged optical planes, and the heating wire and the temperature measuring wire are arranged on the same optical plane or on two different optical planes, or are arranged on the two optical planes. Inside the optical etalon described above.
  • the optical etalon has a side surface connected to the two optical planes, and the heating electrode and the temperature measuring electrode are arranged on the side surface.
  • the tunable filter further includes a heater
  • the heater includes a substrate with a light hole, a temperature measuring wire disposed on the surface of the substrate and surrounding the outside of the light hole and the heating wire, the two ends of the heating wire are provided with heating electrodes, and the two ends of the temperature measuring wire are provided with temperature measuring electrodes; The surface of the temperature measuring wire.
  • the optical etalon is a silicon etalon
  • both the heating wire and the temperature measuring wire are platinum wires.
  • the second split beam split by the first beam splitter to the second beam splitter accounts for 1%-5% of the light beam emitted by the light source module, and the second split beam split to the second beam splitter
  • the third sub-beam of the tunable filter accounts for 55%-75% of the second sub-beam.
  • the light source module includes a TEC, a DFB array laser chip or a DBR tunable laser chip disposed on the TEC, and a collimating lens, and the light beam emitted by the DFB array laser chip or DBR tunable laser chip passes through The collimating lens is collimated and transmitted to the first beam splitter.
  • the first photodetector and the second photodetector are photodiodes.
  • the tunable laser further includes a temperature control structure respectively matched with the first photodetector and the second photodetector, and the temperature control structure is used to adjust the working temperature of the corresponding photodetector;
  • the temperature control structure includes a carrier plate, a temperature control wire and a detection wire arranged on the carrier plate, the two ends of the temperature control wire have temperature control electrodes, and the two ends of the detection wire have detection electrodes.
  • the tunable filter of the present application uses the heating wire to directly heat the optical etalon, which can quickly and uniformly heat the optical etalon and precisely control the temperature, realize fast wave locking, and has low power consumption, high Bandwidth, small temperature crosstalk and other advantages; and the overall size of the tunable filter is reduced, which is conducive to miniaturization design.
  • Fig. 1 is a front view of the tunable laser according to the first embodiment of the present application
  • FIG. 2 is a perspective schematic diagram of a tunable laser according to the first embodiment of the present application
  • Fig. 3 is a three-dimensional exploded view of the tunable filter and the circuit board of the first embodiment of the present application;
  • FIG. 4 is a perspective view of a tunable laser according to a fourth embodiment of the present application.
  • Fig. 5 is a three-dimensional exploded view of the tunable laser according to the fourth embodiment of the present application from another viewing angle;
  • FIG. 6 is an exploded perspective view of a tunable filter and a circuit board according to a fourth embodiment of the present application.
  • the tunable laser includes a housing 10 , a light source module 20 disposed in the housing 10 , an optical processing module 30 and a wavelength locking module 40 , the housing 10 has an optical interface 11 and an electrical interface (the electrical interface is omitted in the figure).
  • the light processing module 30 includes a first beam splitter 31, an optical isolator 32, and a coupling lens 33, and the light beam emitted by the light source module 20 is divided into a first sub-beam 221 and a second sub-beam 221 by the first beam splitter 31.
  • the sub-beam 222, the first sub-beam 221 is transmitted to the optical interface 11 through the optical isolator 32 and the coupling lens 33, and is output through the optical interface 11; the second sub-beam 222 is transmitted to the wavelength locking module 40.
  • the optical isolator can also be arranged between the coupling lens and the optical interface, or in the optical interface or in the optical path behind the optical interface.
  • the wavelength locking module 40 includes a second beam splitter 41, a tunable filter 42, a first photodetector 43 and a second photodetector 44; Three sub-beams 223 and a fourth sub-beam 224, the third sub-beam 223 is incident on the first photodetector 43 after being filtered by the tunable filter 42, and the fourth sub-beam 224 is incident on the second light on detector 44.
  • the tunable filter 42 includes an optical etalon 421 with a thermo-optic effect and a heating wire 425 , the heating wire 425 is used to adjust the temperature of the optical etalon 421 to tune the filtering spectrum of the optical etalon 421 .
  • the light source module 20 includes a TEC21 (Thermo Electric Cooler, semiconductor cooler), a laser chip 22 and a collimating lens 23.
  • the laser chip 22 is a DFB array laser chip or a DBR tunable laser chip
  • the laser chip 22 is mounted on a substrate, and is disposed on the TEC 21 through the substrate.
  • the beam emitted by the laser chip 22 is collimated by the collimating lens 23 and transmitted to the first beam splitter 31 .
  • the optical isolator 32 is used to prevent a small amount of reflected light reflected by the optical interface in the optical path behind the optical isolator 32 from returning to the first sub-beam 221 in the laser chip 22, and the coupling lens 33 is used to couple the first sub-beam 221 to optical interface 11.
  • the optical etalon 421 has two opposite optical planes 422 , a side 423 connecting the two optical planes 422 , and a light-transmitting area 424 , and the two optical planes 422 are provided with partial reflection films.
  • the light-transmitting area 424 is a square area located in the middle of the optical plane 422 , of course, in other embodiments, the light-transmitting area 424 may also be a circular or polygonal area.
  • the tunable filter 42 also includes a temperature measuring wire 426, the heating wire 425 and the temperature measuring wire 426 are arranged on the optical etalon 421 and surround the periphery of the light-passing area 424, and the two ends of the heating wire 425 It has a heating electrode 427, and the two ends of the temperature measuring wire 426 have a temperature measuring electrode 428.
  • the heating wire 425 is arranged around the periphery of the light-transmissive area 424 , the heating is faster and the optical etalon 421 is heated more uniformly.
  • the temperature measuring wire 426 is arranged around the periphery of the heating wire 425, and can simultaneously sense the temperature of each point around the periphery of the light-transmitting area 424, and the temperature measurement accuracy is higher. Therefore, the present application can quickly and uniformly heat and precisely control the temperature of the optical etalon 421 to realize fast tuning and filtering; and the heating wire 425 and the temperature measuring wire 426 are directly arranged on the optical etalon 421, reducing the number of tunable filters.
  • the overall volume of 42 is conducive to the miniaturization of the device.
  • the heating wire 425 can also be arranged on the periphery of the temperature measuring wire 426 .
  • the heating wire 425 has low power consumption, has little influence on the ambient temperature, and has minimal thermal crosstalk with the light source.
  • the temperature measuring wire 426 can quickly and accurately feed back the temperature of the optical etalon 421, and respond quickly to changes in the ambient temperature, so that the heating wire 425 can be adjusted in time to make the optical etalon 421 have a stable working temperature, reducing the impact of the light source TEC21 on the tunable filter 42 heat effects.
  • the optical etalon 421 with thermo-optic effect is made of optically transparent material with thermo-optic effect, such as gallium arsenide, silicon oxide or silicon.
  • the optical etalon 421 is a silicon plate made of a silicon material with a large thermo-optic coefficient, and the tuning speed is faster and the range is larger.
  • the optical etalon 421 may also be made of other thermo-optic materials.
  • a silicon plate with a specific thickness can be produced by grinding and polishing processes, and then the target reflectivity can be achieved by optical coating on the silicon plate to make a comb filter that meets the requirements.
  • a patterned metal film can be plated on the optical plane 422 by MEMS technology to form the heating wire 425 and the temperature measuring wire 426.
  • the two ends of the heating wire 425 are plated with heating electrodes 427 and the temperature measuring wire
  • the two ends of 426 are plated with temperature measuring electrodes 428, and the heating wire 425 and the temperature measuring wire 426 are made of platinum.
  • the heating wire 425 and the temperature measuring wire 426 are arranged on the same optical plane 422, and the heating electrode 427 and the temperature measuring electrode 428 are arranged on the side 423 of the optical etalon 421.
  • the heating electrode 427 and the temperature measuring electrode 428 can also be arranged on the optical plane 422 .
  • the wavelength locking module 40 also includes a circuit board 45 electrically connected to the tunable filter 42, and the circuit board 45 has a connecting portion 451 connected to the heating electrode 427 and the temperature measuring electrode 428, And because the heating electrode 427 and the temperature measuring electrode 428 are arranged on the side 423 of the optical etalon 421, the heating electrode 427 and the temperature measuring electrode 428 can be directly welded to the conducting part 451 by soldering, Therefore, the tunable filter 42 is fixed on the circuit board 45 and the electrical connection between the tunable filter 42 and the circuit board 45 is realized, the process is simple and the production efficiency is high.
  • the heating electrode 427 and the temperature measuring electrode 428 can also be arranged on the optical plane 422, the heating electrode 427 and the temperature measuring electrode 427 can also be realized by other methods such as gold wire or silver glue/gold-tin solder sintering.
  • the warm electrode 428 is electrically connected to the conducting portion 451 of the circuit board 45 .
  • the temperature measuring wire 426 is a thermistor film, therefore, the temperature value can be obtained according to the resistance value of the temperature measuring wire 426 .
  • the two ends of the temperature measuring wire 426 respectively have a pair of temperature measuring electrodes 428 electrically connected to the connecting part 451. Therefore, the present application uses the four-wire method to measure resistance, which can eliminate the connection.
  • the redundant resistors on the circuit have higher precision than the two-wire method, so that the measured temperature is more accurate, which facilitates the precise heating of the heating wire 425 , thereby realizing the tunable function of the tunable filter 42 .
  • the second sub-beam 222 split from the first beam splitter 31 to the second beam splitter 41 accounts for 1%-5% of the light beam emitted by the light source module 20, that is, the first The light splitting ratio from the first beam splitter 31 to the second beam splitter 41 is 1%-5%, which can also be understood as: the light beam emitted by the light source module 20 is divided into the first sub-beam 221 and the second Two sub-beams 222, the second sub-beam 222 accounts for 1-5% of the light beam emitted by the light source module 20, therefore, in the case of realizing wave locking, the output strength of the signal can also be guaranteed.
  • the light splitting ratio from the first beam splitter 31 to the second beam splitter 41 can also be appropriately increased according to the actual situation.
  • the second beam splitter 41 has a specific splitting ratio, and the optical power of the third sub-beam 223 split into the tunable filter 44 by the second beam splitter 41 is greater than the optical power of the fourth sub-beam 224, usually the second split beam
  • the third sub-beam 223 split by the device 41 to the tunable filter 44 accounts for 55%-75% of the second sub-beam 222, after the third sub-beam 223 subtracts the insertion loss of the tunable filter 44 and the fourth sub-beam 224 are equal, to eliminate the light splitting ratio of the third sub-beam 223 and the fourth sub-beam 224 and the insertion loss of the tunable filter 44 on the optical power received by the first photodetector 43 and the second photodetector 44.
  • the influence of the ratio, so that the first photodetector 43 and the second photodetector 44 receive equal optical power try to eliminate various influencing factors, so as to greatly improve the control accuracy.
  • the two optical planes of the first beam splitter 31 are non-parallel to each other, and the two optical planes of the second beam splitter 41 are non-parallel to each other, so as to prevent the gap between the two optical planes of the first beam splitter 31. 1.
  • a resonant filter spectrum is formed between the two optical planes of the second beam splitter 41 .
  • the third sub-beam 223 and the fourth sub-beam 224 are respectively incident on the first photodetector 43 and the second photodetector 44 at non-perpendicular angles, that is, the incidence of the first photodetector 43 and the second photodetector 44
  • the light is non-normal incidence to avoid a small amount of reflected light that may exist on the surfaces of the first photodetector 43 and the second photodetector 44 and return to the light source module 20 through the second beam splitter 41 and the first beam splitter 31 . Therefore, the influence of a small amount of reflected light that may exist on the surface of the first photodetector 43 and the second photodetector 44 on the light source module 20 is reduced, and the stable output of the light source module 20 is ensured.
  • the first light detector 43 and the second light detector 44 are photodiodes.
  • the tunable laser also includes a temperature control structure 50 that cooperates with the first photodetector 43 and the second photodetector 44 respectively, and the temperature control structure 50 is used to adjust the working temperature of the corresponding photodetector.
  • the temperature control structure 50 includes a carrier plate, a temperature control wire and a detection wire arranged on the carrier plate, the two ends of the temperature control wire have temperature control electrodes, and the two ends of the detection wire have detection electrodes.
  • the temperature control wire and the detection wire of the temperature control structure 50 are the same as the heating wire 425 and the temperature measurement wire 426 of the above optical etalon 421 , but the carrier plate is different from the optical etalon 421 . Therefore, the temperature control structure 50 can adjust the temperature of the first photodetector 43 and the second photodetector 44, reduce the impact of the ambient temperature on the first photodetector 43 and the second photodetector 44, thereby further improving the temperature of the first photodetector 43 and the second photodetector 44. The accuracy of the first photodetector 43 and the second photodetector 44.
  • the tunable filter 42 of the present application not only has advantages in volume, power consumption and cost. Moreover, the temperature crosstalk between the tunable filter 42 and the TEC 21 in the light source module 20 is small, thereby ensuring precise heating and temperature control of the optical etalon 421 .
  • the material of the temperature measuring wire 426 is platinum, the resistance and temperature have a linear relationship within the working temperature range, so the calibration only needs the resistance values at two temperature points to fit a straight line. Therefore, when measuring whether the heated optical etalon 421 reaches the preset temperature, it is only necessary to measure whether the temperature measuring wire 426 reaches the corresponding resistance, and the temperature measurement control is very convenient.
  • the present application also provides a second embodiment, which differs from the first embodiment in that: the heating wire 425 and the temperature measuring wire 426 are respectively plated on different optical planes 422 of the optical etalon 421 . That is, after the two optical planes 422 of the optical etalon 421 are coated with a partially reflective film, a patterned metal film can be plated on one of the optical planes 422 of the optical etalon 421 by MEMS technology to form a heating wire 425, and the other optical plane A patterned metal film is plated on the 422 to form a temperature measuring wire 426 , heating electrodes 427 are plated on both ends of the heating wire 425 , and a temperature measuring electrode 428 is plated on both ends of the temperature measuring wire 426 .
  • the middle area of the two optical planes 422 is the light-transmitting area 424 , and the heating wire 425 and the temperature-measuring wire 426 are arranged around the light-transmitting area 424 .
  • the heating wire 425 and the temperature measuring wire 426 are respectively plated on different optical planes 422 to reduce the interference of the heating wire 425 on the temperature measuring wire 426, which can further improve the accuracy of temperature measurement and achieve faster and more accurate tuning filtering.
  • the above-mentioned heating wire 425 and temperature measuring wire 426 can also be plated on the two optical planes 422 of the optical etalon 421, that is, the above-mentioned heating wire 425 and temperature measuring wire 426 are all provided on the two optical planes 422. Wensi426.
  • the two heating wires 425 simultaneously heat the optical etalon 421 from the two optical planes 422, and the heating speed is faster and more uniform, which can further increase the tuning speed of the tunable filter 40 and realize fast tuning and filtering.
  • the heating wire 425 can also be coated on both optical planes 422, and the temperature measuring wire 426 can be coated on one of the optical planes 422; Flat surface 422 is plated with heating wire 425 .
  • the present application also provides a third embodiment, which differs from the first embodiment in that in this embodiment, the heating wire 425 and the temperature measuring wire 426 are buried in the optical etalon 421, and a piece of Thinner silicon chip a, plated patterned metal film on silicon chip a to form heating wire 425 and temperature measuring wire 426, can also make heating electrode 427 and temperature measuring electrode 428 at both ends of heating wire 425 and temperature measuring wire 426 Lead out to the side 423 of the silicon wafer a to facilitate connection with external circuits, and then grow a thin layer of silicon b on the silicon wafer a coated with the above-mentioned patterned metal film by chemical deposition, etc., and then thin the silicon by polishing and other processes.
  • the overall thickness of the plate is processed to meet the requirements of FSR, and finally a partial reflection film is coated on the two optical planes 422 of the silicon plate to meet the requirements of FWHM.
  • the heating wire 425 and the temperature measuring wire 426 are plated in the groove by coating, or the prepared heating wire 425 and the temperature measuring wire 426 are filled in the groove, and the groove can also be filled with protective materials. Cover the heating wire 425 and the temperature measuring wire 426 . Then, the overall thickness of the silicon wafer is processed to meet the requirements of FSR through polishing and other processes, and finally a partial reflection film is coated on the two optical planes 422 of the silicon wafer to meet the requirements of FWHM.
  • the heating wire 425 and the temperature measuring wire 426 are buried in the optical etalon 421, which can be directly heated inside the optical etalon 421, which reduces the heat loss of the heating wire 425 and the thermal interference to other devices, and further improves the The heating efficiency reduces the power consumption of the device, and the heating is faster and more uniform, which can realize faster and more accurate tuning and filtering.
  • only the heating wire 425 can be embedded in the optical etalon 421 , and the temperature measuring wire 426 is plated on the optical plane 422 .
  • the present application also provides a fourth embodiment, which is different from the first embodiment in that: the tunable filter 42 also includes a heater 46, and the heater 46 includes a belt There is a substrate 461 with a light hole 462, the heating wire 425 and the temperature measuring wire 426 that are arranged on the surface of the substrate 461 and surround the outside of the light hole 462.
  • the two ends of the heating wire 425 are provided with heating electrodes 427, so Both ends of the temperature measuring wire 426 are provided with temperature measuring electrodes 428 ;
  • the optical etalon 421 is provided on the surface of the substrate 461 provided with the heating wire 425 and the temperature measuring wire 426 .
  • the heater 46 and the optical etalon 421 are bonded together by thermally conductive adhesive.
  • the heater 46 with mature manufacturing technology can be used to adjust the temperature of the optical etalon 421 to realize the tunable filter 42, which has the advantages of simple manufacture and low cost.
  • the specific arrangement of the heating wire 425 and the temperature measuring wire 426 on the above heater 46 can also refer to the above embodiment.
  • the tunable filter 42 of the present application uses the heating wire 425 to directly heat the optical etalon 421, which can quickly and uniformly heat the optical etalon 421 and precisely control the temperature, realize fast wave locking, and have low power consumption , high bandwidth, small temperature crosstalk, etc.; and the overall volume of the tunable filter 421 is reduced, which is favorable for miniaturized design.

Abstract

一种可调谐激光器,包括壳体(10)、设于壳体(10)内的光源模块(20)、光处理模块(30)和波长锁定模块(40),壳体(10)具有光接口(11)和电接口,其中,光处理模块(30)包括第一分光器(31)、光隔离器(32)和耦合透镜(33),波长锁定模块(40)包括第二分光器(41)、可调谐滤波器(42)、第一光探测器(43)和第二光探测器(44);可调谐滤波器(42)包括具有热光效应的光学标准具(421)和加热丝(45),加热丝(45)用于调节光学标准具(421)的温度以调谐光学标准具(421)的滤波光谱。可调谐滤波器(42)可对光学标准具(421)进行快速均匀的加热和精确控温,实现快速锁波,具有低功耗、高带宽、温度串扰小等优点;而且可调谐滤波器(42)整体体积减小,有利于小型化设计。

Description

可调谐激光器 技术领域
本申请涉及光通信技术领域,尤其涉及一种可调谐激光器。
背景技术
随着大数据、物联网以及5G业务的迅速发展,网络容量需要日益激增,这使得具有大带宽、长距离传输的相干光通讯技术成为下一代高速大容量光网络的首选。作为高相干性的光源和本振器,窄线宽可调谐激光器成为相干光通讯的核心器件之一。相干光模块封装形式主要有CFP2-ACO、CFP-DCO、OSFP等,封装小型化受模块内部器件尺寸限制,所以可调谐激光器的封装尺寸需进一步小型化。目前采用InP技术制作的窄线宽可调谐激光器如DFB array、DBR芯片等具有高集成度的优势,但是需要外部锁波装置反馈锁定进行稳频。
一般激光器芯片和锁波装置设置在同一个封装盒内,激光器芯片需要TEC进行温控,锁波装置常用的热调谐滤波器也需要有温控调节滤波器的温度。通常在封装盒内采用分立的两个TEC分别对激光器芯片和外部锁波装置进行单独温度控制,这种方案相互之间存在温度串扰,且体积大,不利于模块小型化封装。
技术问题
有鉴于此,有必要对现有的可调谐激光器予以改进,以解决上述问题。
技术解决方案
本申请一实施例提供一种可调谐激光器,包括壳体、设于壳体内的光源模块、光处理模块和波长锁定模块,所述壳体具有光接口和电接口,其中,
所述光处理模块包括第一分光器和耦合透镜,所述光源模块发射的光束经所述第一分光器分成第一分光束和第二分光束,所述第一分光束经所述耦合透镜传输到所述光接口,经所述光接口输出;所述第二分光束传输至所述波长锁定模块;
所述波长锁定模块包括第二分光器、可调谐滤波器、第一光探测器和第二光探测器;所述第二分光束经所述第二分光器分成第三分光束和第四分光束,所述第三分光束经所述可调谐滤波器滤波之后入射到所述第一光探测器上,所述第四分光束入射到所述第二光探测器上;
所述可调谐滤波器包括具有热光效应的光学标准具和加热丝,所述加热丝用于调节所述光学标准具的温度以调谐所述光学标准具的滤波光谱。。
一实施例中,所述光学标准具具有一通光区,所述可调谐滤波器还包括测温丝,所述加热丝和测温丝设置于所述光学标准具上且环绕于所述通光区外围,所述加热丝的两端具有加热电极,所述测温丝的两端具有测温电极。
一实施例中,所述光学标准具具有相对设置的两个光学平面,所述加热丝和测温丝设置于同一所述光学平面上或不同的两个所述光学平面上,或者设置于所述光学标准具内部。
一实施例中,所述光学标准具具有连接于两个所述光学平面的侧面,所述加热电极和测温电极设置于所述侧面。
一实施例中,所述可调谐滤波器还包括一加热器,所述加热器包括一带有通光孔的基板、设置于所述基板表面且环绕设置于所述通光孔外侧的测温丝和所述加热丝,所述加热丝的两端设有加热电极,所述测温丝的两端设有测温电极;所述光学标准具设于所述基板设有所述加热丝和所述测温丝的表面。
一实施例中,所述光学标准具为硅标准具,所述加热丝和测温丝均为铂丝。
一实施例中,所述第一分光器分光至所述第二分光器的所述第二分光束占所述光源模块发射的光束的1%-5%,所述第二分光器分光至所述可调谐滤波器的所述第三分光束占所述第二分光束的55%-75%。
一实施例中,所述光源模块包括TEC、设置于所述TEC上的DFB阵列激光器芯片或DBR可调激光器芯片以及准直透镜,所述DFB阵列激光器芯片或DBR可调激光器芯片发射的光束经所述准直透镜准直后传输至所述第一分光器。
一实施例中,所述第一光探测器和第二光探测器为光电二极管。
一实施例中,所述可调谐激光器还包括分别与所述第一光探测器和第二光探测器相配合的温控结构,所述温控结构用于调节相应光探测器的工作温度;所述温控结构包括一载板、设置于载板上的控温丝和探测丝,所述控温丝的两端具有控温电极,所述探测丝的两端具有探测电极。
有益效果
与现有技术相比,本申请的可调谐滤波器采用加热丝直接对光学标准具加热,可对光学标准具进行快速均匀的加热和精确控温,实现快速锁波,具有低功耗、高带宽、温度串扰小等优点;而且可调谐滤波器整体体积减小,有利于小型化设计。
附图说明
图1是本申请第一实施例可调谐激光器的正视图;
图2是本申请第一实施例可调谐激光器的立体示意图;
图3是本申请第一实施例可调谐滤波器和电路板的立体分解图;
图4是本申请第四实施例可调谐激光器的立体示意图;
图5是本申请第四实施例可调谐激光器另一视角立体分解图;
图6是本申请第四实施例可调谐滤波器和电路板的立体分解图。
本发明的实施方式
以下将结合附图所示的实施方式对本申请进行详细描述。但该实施方式并
不限制本申请,本领域的普通技术人员根据该实施方式所做出的结构、方法、或功能上的变换均包含在本申请的保护范围内。
请参图1至图3,为本申请可调谐激光器的第一实施例,所述可调谐激光器包括壳体10、设于壳体10内的光源模块20、光处理模块30和波长锁定模块40,所述壳体10具有光接口11和电接口(图中省略电接口)。
该实施例中,光处理模块30包括第一分光器31、光隔离器32和耦合透镜33,所述光源模块20发射的光束经所述第一分光器31分成第一分光束221和第二分光束222,所述第一分光束221经光隔离器32和耦合透镜33传输到所述光接口11,经所述光接口11输出;所述第二分光束222传输至所述波长锁定模块40。在其它实施例中,光隔离器也可以设于耦合透镜与光接口之间,或者设于光接口中或光接口之后的光路中。
所述波长锁定模块40包括第二分光器41、可调谐滤波器42、第一光探测器43和第二光探测器44;所述第二分光束222经所述第二分光器41分成第三分光束223和第四分光束224,第三分光束223经所述可调谐滤波器42滤波之后入射到所述第一光探测器43上,第四分光束224入射到所述第二光探测器44上。
所述可调谐滤波器42包括具有热光效应的光学标准具421和加热丝425,所述加热丝425用于调节所述光学标准具421的温度以调谐所述光学标准具421的滤波光谱。
具体的,所述光源模块20包括TEC21(Thermo Electric Cooler,半导体制冷器)、激光器芯片22和准直透镜23,该实施例中,激光器芯片22采用的是DFB阵列激光器芯片或DBR可调激光器芯片,激光器芯片22贴装于一基板上,通过该基板设置于TEC21上。该激光器芯片22发射的光束经所述准直透镜23准直后,传输至所述第一分光器31。所述光隔离器32用以防止光隔离器32之后的光路中的光学界面反射的少量反射光返回激光器芯片22内第一分光束221,所述耦合透镜33用以将第一分光束221耦合至光接口11。
所述光学标准具421具有相对的两个光学平面422、连接两个光学平面422的侧面423、通光区424,两个光学平面422均设有部分反射膜。在本实施例中,通光区424为位于光学平面422中间的方形区域,当然在其它实施例中,所述通光区424也可以是圆形或其它多边形等几何形状的区域。所述可调谐滤波器42还包括测温丝426,所述加热丝425和测温丝426设置于所述光学标准具421上且环绕于通光区424外围,所述加热丝425的两端具有加热电极427,所述测温丝426的两端具有测温电极428。
由于加热丝425环绕设于通光区424外围,因此加热更快,光学标准具421受热也更均匀。同时测温丝426环绕设置于加热丝425外围,可同时感测环绕通光区424外围各点的温度,测温精度更高。所以,本申请可对光学标准具421进行快速均匀的加热和精确控温,实现快速调谐滤波;而且加热丝425和测温丝426直接设置在光学标准具421上,减小了可调谐滤波器42整体的体积,有利于器件的小型化。当然在其他实施例中,所述加热丝425也可以设置于测温丝426外围。加热丝425功耗低,对周边环境温度影响小,与光源的热串扰极小。测温丝426可快速、精确地反馈光学标准具421的温度,对环境温度变化反应迅速,以便及时调整加热丝425以使光学标准具421具有稳定的工作温度,减少光源TEC21对可调谐滤波器42的热影响。
上述具有热光效应的光学标准具421采用具有热光效应且光学透明的材料制作,比如砷化镓、氧化硅或硅等。在本实施例中,所述光学标准具421采用的是具有较大热光系数的硅材料制成的硅平板,调谐速度更快、范围更大。当然在其它实施例中,所述光学标准具421也可以采用其它热光材料制作。制作时,可通过研磨抛光等工艺制作特定厚度的硅平板,再在硅平板上通过光学镀膜实现目标反射率,制成满足要求的梳状滤波器 。
镀好反射膜之后,可通过MEMS工艺在光学平面422上镀制图形化的金属膜,形成所述加热丝425和测温丝426,加热丝425的两端镀制加热电极427,测温丝426的两端镀制测温电极428,所述加热丝425和测温丝426的材质为铂。在本实施例中,所述加热丝425和测温丝426设置于同一光学平面422上,所述加热电极427和测温电极428设置于光学标准具421侧面423,当然在其他实施例中,所述加热电极427和测温电极428也可以设置于光学平面422上。
所述波长锁定模块40还包括与所述可调谐滤波器42电性连接的电路板45,所述电路板45具有与所述加热电极427和测温电极428相导接的导接部451,并且由于所述加热电极427和测温电极428设置于光学标准具421的侧面423,因此,可直接通过锡焊的方式将加热电极427和测温电极428与所述导接部451相焊接,从而使得可调谐滤波器42固定于电路板45上,并实现可调谐滤波器42与电路板45之间的电连接,工艺简单且生产效率高。
当然在其它实施例中,所述加热电极427和测温电极428也可以设置于光学平面422上时,也可以通过打金线或银胶/金锡焊料烧结等其它方式实现加热电极427和测温电极428与电路板45的导接部451电性连接。
所述测温丝426为热敏电阻膜,因此,可以根据测温丝426的电阻值获得温度值。在本实施例中,所述测温丝426的两端分别各有一对与所述导接部451相电性连接的测温电极428,因此,本申请通过四线法测电阻,可以消除连接线路上的冗余电阻,相比二线法精度更高,从而所测温度更加精确,便于加热丝425的精准加热,进而实现可调谐滤波器42的可调谐功能。
在本实施例中,所述第一分光器31分光至所述第二分光器41的所述第二分光束222占所述光源模块20发射的光束的1%-5%,即所述第一分光器31分光至第二分光器41的分光比例为1%-5%,也可以理解为:所述光源模块20发射的光束经所述第一分光器31分成第一分光束221和第二分光束222,第二分光束222占光源模块20发射光束的1-5%,因此,在实现锁波的情况下,还可保证信号的输出强度。当然在其他实施例中,在保证信号输出强度的情况下,也可以根据实际情况适当增大第一分光器31分光至第二分光器41的分光比例。
所述第二分光器41为特定分光比,经该第二分光器41分光至可调谐滤波器44的第三分光束223的光功率比第四分光束224的光功率大,通常第二分光器41分光至可调谐滤波器44的第三分光束223占第二分光束222的55%-75%,以第三分光束223减去可调谐滤波器44的插损之后与第四分光束224相等为优,以消除第三分光束223和第四分光束224的分光比例以及可调谐滤波器44的插损对第一光探测器43和第二光探测器44接收到的光功率的比值的影响,以使第一光探测器43和第二光探测器44接收到相等的光功率,尽量排除各种影响因素,以极大地提高控制精度。
在本实施例中,第一分光器31的两个光学平面相互非平行设置,第二分光器41的两个光学平面相互非平行设置,以防止第一分光器31的两个光学平面之间、第二分光器41的两个光学平面之间形成谐振滤波谱。第三分光束223和第四分光束224分别以非垂直的角度入射到第一光探测器43和第二光探测器44上,即第一光探测器43和第二光探测器44的入射光均为非正入射,以避免第一光探测器43和第二光探测器44表面可能存在的少量反射光经第二分光器41和第一分光器31返回至光源模块20。从而降低了第一光探测器43和第二光探测器44表面可能存在的少量反射光对光源模块20的影响,保证光源模块20能够稳定输出。
在本实施例中,所述第一光探测器43和第二光探测器44为光电二极管。所述可调谐激光器还包括分别与所述第一光探测器43和第二光探测器44相配合的温控结构50,该温控结构50用于调节相应光探测器的工作温度。所述温控结构50包括一载板、设置于载板上的控温丝和探测丝,所述控温丝的两端具有控温电极,所述探测丝的两端具有探测电极。所述温控结构50的控温丝和探测丝与上述光学标准具421的加热丝425和测温丝426相同,只是载板与光学标准具421不同。因此,所述温控结构50可以调节第一光探测器43和第二光探测器44的温度,降低环境温度对第一光探测器43和第二光探测器44的影响,从而进一步提高第一光探测器43和第二光探测器44的精度。
本申请的可调谐滤波器42相比于传统的将光学标准具421设于TEC上的结构,不仅具备体积、功耗和成本上的优势。而且可调谐滤波器42与光源模块20中的TEC21温度串扰小,从而保证光学标准具421的精准加热控温。同时,由于测温丝426的材质为铂,在工作温度范围内电阻与温度具有线性变化关系,所以标定时只需要两个温度点的电阻值进行拟合直线即可。因此,当测量加热光学标准具421是否达到预设温度时,只需测量测温丝426是否达到与之对应的电阻即可,测温控制十分方便。
本申请还提供第二实施例,其与第一实施例的不同之处在于:加热丝425和测温丝426分别镀制于光学标准具421的不同光学平面422上。即光学标准具421的两个光学平面422镀好部分反射膜之后,可通过MEMS工艺在光学标准具421的其中一个光学平面422上镀制图形化的金属膜形成加热丝425,另一个光学平面422上镀制图形化的金属膜形成测温丝426,加热丝425的两端镀制加热电极427,测温丝426的两端镀制测温电极428。两个光学平面422的中间区域为通光区424,加热丝425和测温丝426均环绕通光区424域设置。
因此,将加热丝425和测温丝426分别镀制在不同的光学平面422上,减少加热丝425对测温丝426的干扰,可进一步提高测温的精确度,实现更快更精确的调谐滤波。
当然在其它实施例中,也可以在光学标准具421的两个光学平面422上均镀制上述加热丝425和测温丝426,即两个光学平面422上都设有上述加热丝425和测温丝426。两个加热丝425从两个光学平面422同时加热光学标准具421,加热速度更快更均匀,可进一步提高可调谐滤波器40的调谐速度,实现快速调谐滤波。在两个光学平面422上设置测温丝426,同时监测两个光学平面422的温度,也可进一步提高测温的速度和精度,从而进一步加快了调谐速度和调谐滤波的精度。或者,在其它实施例中,也可以两个光学平面422都镀加热丝425,其中一个光学平面422镀测温丝426;又或者,两个光学平面422都镀测温丝426,其中一个光学平面422镀加热丝425。
本申请还提供第三实施例,其与第一实施例的不同之处在于:该实施例中,将加热丝425和测温丝426埋设于光学标准具421内,制作时,可以先制作一片较薄的硅片a,在硅片a上镀制图形化的金属膜形成加热丝425和测温丝426,还可将加热丝425和测温丝426两端的加热电极427和测温电极428引出至硅片a的侧面423以方便跟外部电路连接,再通过化学沉积等方式在镀有上述图形化的金属膜的硅片a上生长薄层硅b,然后通过减薄抛光等工艺将硅平板的整体厚度加工到满足FSR要求,最后在硅平板的两个光学平面422上镀部分反射膜以满足FWHM的要求。
在其它实施例中,也可以制作一较厚的硅片,在硅片上刻蚀凹槽,将加热丝425和测温丝426设在不同的凹槽内,或者设在同一个凹槽内。比如通过镀膜的方式将加热丝425和测温丝426镀制在凹槽内,或者将制作好的加热丝425和测温丝426填入凹槽内,还可在凹槽内填充保护材料,覆盖加热丝425和测温丝426。然后通过抛光等工艺将硅片的整体厚度加工到满足FSR要求,最后在硅片的两个光学平面422上镀部分反射膜以满足FWHM的要求。
该实施例,将加热丝425和测温丝426埋设在光学标准具421内,可以直接在光学标准具421内部加热,减少了加热丝425的热损耗以及对其它器件的热干扰,进一步提高了加热效率,降低了器件功耗,而且加热更快速均匀,可实现更快速精确的调谐滤波。当然,在其它实施例中,也可以只将加热丝425埋设的光学标准具421内,测温丝426镀制在光学平面422上。
请参图4至图6,本申请还提供第四实施例,其与第一实施例的不同之处在于:所述可调谐滤波器42还包括一加热器46,所述加热器46包括一带有通光孔462的基板461、设置于基板461表面且环绕设置于通光孔462外侧的所述加热丝425和测温丝426,所述加热丝425的两端设有加热电极427,所述测温丝426的两端设有测温电极428;所述光学标准具421设于所述基板461设有所述加热丝425和所述测温丝426的表面。加热器46和光学标准具421通过导热胶粘接至一起。
因此,该实施例可采用上述制造工艺成熟的加热器46调节光学标准具421的温度来实现可调谐滤波器42,具有制造简单,成本较低的优势。上述加热器46上的加热丝425和测温丝426的具体设置方式也可参考上述实施例。
综上所述,本申请的可调谐滤波器42采用加热丝425直接对光学标准具421加热,可对光学标准具421进行快速均匀的加热和精确控温,实现快速锁波,具有低功耗、高带宽、温度串扰小等优点;而且可调谐滤波器421整体体积减小,有利于的小型化设计。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本申请的可行性实施方式的具体说明,它们并非用以限制本申请的保护范围,凡未脱离本申请技艺精神所作的等效实施方式或变更均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种可调谐激光器,包括壳体、设于壳体内的光源模块、光处理模块和波长锁定模块,所述壳体具有光接口和电接口,其特征在于:
    所述光处理模块包括第一分光器和耦合透镜,所述光源模块发射的光束经所述第一分光器分成第一分光束和第二分光束,所述第一分光束经所述耦合透镜传输到所述光接口,经所述光接口输出;所述第二分光束传输至所述波长锁定模块;
    所述波长锁定模块包括第二分光器、可调谐滤波器、第一光探测器和第二光探测器;所述第二分光束经所述第二分光器分成第三分光束和第四分光束,所述第三分光束经所述可调谐滤波器滤波之后入射到所述第一光探测器上,所述第四分光束入射到所述第二光探测器上;
    所述可调谐滤波器包括具有热光效应的光学标准具和加热丝,所述加热丝用于调节所述光学标准具的温度以调谐所述光学标准具的滤波光谱。
  2. 如权利要求1所述的可调谐激光器,其特征在于:所述光学标准具具有一通光区,所述可调谐滤波器还包括测温丝,所述加热丝和测温丝设置于所述光学标准具上且环绕于所述通光区外围,所述加热丝的两端具有加热电极,所述测温丝的两端具有测温电极。
  3. 如权利要求2所述的可调谐激光器,其特征在于:所述光学标准具具有相对设置的两个光学平面,所述加热丝和测温丝设置于同一所述光学平面上或不同的两个所述光学平面上,或者设置于所述光学标准具内部。
  4. 如权利要求3所述的可调谐激光器,其特征在于:所述光学标准具具有连接两个所述光学平面的侧面,所述加热电极和测温电极设置于所述侧面。
  5. 如权利要求1所述的可调谐激光器,其特征在于:所述可调谐滤波器还包括一加热器,所述加热器包括一带有通光孔的基板、设置于所述基板表面且环绕设置于所述通光孔外侧的测温丝和所述加热丝,所述加热丝的两端设有加热电极,所述测温丝的两端设有测温电极;所述光学标准具设于所述基板设有所述加热丝和所述测温丝的表面。
  6. 如权利要求2-5中任一项所述的可调谐激光器,其特征在于:所述光学标准具为硅标准具,所述加热丝和测温丝均为铂丝。
  7. 如权利要求1所述的可调谐激光器,其特征在于:所述第一分光器分光至所述第二分光器的所述第二分光束占所述光源模块发射的光束的1%-5%,所述第二分光器分光至所述可调谐滤波器的所述第三分光束占所述第二分光束的55%-75%。
  8. 如权利要求1所述的可调谐激光器,其特征在于:所述光源模块包括TEC、设置于所述TEC上的DFB阵列激光器芯片或DBR可调激光器芯片以及准直透镜,所述DFB阵列激光器芯片或DBR可调激光器芯片发射的光束经所述准直透镜准直后传输至所述第一分光器。
  9. 如权利要求1所述的可调谐激光器,其特征在于:所述第一光探测器和第二光探测器为光电二极管。
  10. 如权利要求9所述的可调谐激光器,其特征在于:所述可调谐激光器还包括分别与所述第一光探测器和第二光探测器相配合的温控结构,所述温控结构用于调节相应光探测器的工作温度;所述温控结构包括一载板、设置于载板上的控温丝和探测丝,所述控温丝的两端具有控温电极,所述探测丝的两端具有探测电极。
PCT/CN2021/133479 2021-05-25 2021-11-26 可调谐激光器 WO2022247184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121138594.4U CN216794230U (zh) 2021-05-25 2021-05-25 可调谐激光器
CN202121138594.4 2021-05-25

Publications (1)

Publication Number Publication Date
WO2022247184A1 true WO2022247184A1 (zh) 2022-12-01

Family

ID=81998001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133479 WO2022247184A1 (zh) 2021-05-25 2021-11-26 可调谐激光器

Country Status (2)

Country Link
CN (1) CN216794230U (zh)
WO (1) WO2022247184A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050265402A1 (en) * 2004-05-25 2005-12-01 Fujitsu Limited Wavelength tunable laser device
JP2010034114A (ja) * 2008-07-25 2010-02-12 Mitsubishi Electric Corp レーザ装置、レーザモジュールおよび波長多重光通信システム
CN102213844A (zh) * 2011-06-13 2011-10-12 黄辉 一种腔内掩埋金属加热电极的可调谐光学滤波器
CN102621714A (zh) * 2012-04-27 2012-08-01 吉林大学 Soi和聚合物混合集成的f-p谐振腔可调谐光滤波器及制备方法
CN102738702A (zh) * 2012-01-19 2012-10-17 四川马尔斯科技有限责任公司 利用fp激光器为增益光源的外腔式单波长可调谐激光器
CN102931584A (zh) * 2011-08-10 2013-02-13 桂林优西科学仪器有限责任公司 波长可调谐激光器系统及其控制方法
CN108886229A (zh) * 2016-10-31 2018-11-23 凯沃斯光电技术 用于可调谐激光器的波长锁定结构和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050265402A1 (en) * 2004-05-25 2005-12-01 Fujitsu Limited Wavelength tunable laser device
JP2010034114A (ja) * 2008-07-25 2010-02-12 Mitsubishi Electric Corp レーザ装置、レーザモジュールおよび波長多重光通信システム
CN102213844A (zh) * 2011-06-13 2011-10-12 黄辉 一种腔内掩埋金属加热电极的可调谐光学滤波器
CN102931584A (zh) * 2011-08-10 2013-02-13 桂林优西科学仪器有限责任公司 波长可调谐激光器系统及其控制方法
CN102738702A (zh) * 2012-01-19 2012-10-17 四川马尔斯科技有限责任公司 利用fp激光器为增益光源的外腔式单波长可调谐激光器
CN102621714A (zh) * 2012-04-27 2012-08-01 吉林大学 Soi和聚合物混合集成的f-p谐振腔可调谐光滤波器及制备方法
CN108886229A (zh) * 2016-10-31 2018-11-23 凯沃斯光电技术 用于可调谐激光器的波长锁定结构和方法

Also Published As

Publication number Publication date
CN216794230U (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US7002697B2 (en) Tunable optical instruments
US6985281B2 (en) Package for optical components
JP4809353B2 (ja) マイクロマシン構造体に気密パッケージされた光学モジュール
US6841733B2 (en) Laser monitoring and control in a transmitter optical subassembly having a ceramic feedthrough header assembly
CN111051940A (zh) 在硅衬底上具有聚合物波导的光学互连模块
JP3794552B2 (ja) 光モジュール、光送信器及び光モジュールの製造方法
US7711219B2 (en) Thermally tunable optical dispersion compensation devices
US8396092B2 (en) Vertically emitting, optically pumped semiconductor comprising an external resonator and frequency doubling on a separate substrate
US20040004980A1 (en) Wavelength locked semiconductor laser module
US10480993B2 (en) Cylindrical package
KR101807684B1 (ko) 필터, 필터 제조 방법, 및 레이저 파장 모니터링 장치
CN211928231U (zh) 可调谐滤波器、游标滤波器及可调谐激光器
CN106338799A (zh) 光发射组件
WO2022247184A1 (zh) 可调谐激光器
CN216013741U (zh) 一种相干光接收器件
US7616847B2 (en) Thermally tunable optical dispersion compensation devices
US6724784B2 (en) Optical wavelength locker module having a high thermal conductive material
US6839139B2 (en) Bench based integrated wavelength locker
US20220263290A1 (en) Narrow linewidth semiconductor laser device
JP2757350B2 (ja) 光半導体モジュール
CN115548862A (zh) 一种波长可调的单纤双向传输方法
JP2004233594A (ja) 光電気回路基板及びそれを用いた光電気回路モジュール
CN113721332A (zh) 一种相干光接收器件
WO2022267356A1 (zh) 外腔激光器
JPH04349674A (ja) 光半導体素子および実装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE