WO2022247003A1 - 马达总成、行走驱动系统及作业机械 - Google Patents

马达总成、行走驱动系统及作业机械 Download PDF

Info

Publication number
WO2022247003A1
WO2022247003A1 PCT/CN2021/109282 CN2021109282W WO2022247003A1 WO 2022247003 A1 WO2022247003 A1 WO 2022247003A1 CN 2021109282 W CN2021109282 W CN 2021109282W WO 2022247003 A1 WO2022247003 A1 WO 2022247003A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
motor
valve
working
way reversing
Prior art date
Application number
PCT/CN2021/109282
Other languages
English (en)
French (fr)
Inventor
曹原
刘婧婧
支树泽
Original Assignee
三一重机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一重机有限公司 filed Critical 三一重机有限公司
Publication of WO2022247003A1 publication Critical patent/WO2022247003A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/10Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of fluid gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8633Pressure source supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8752Emergency operation mode, e.g. fail-safe operation mode

Definitions

  • the present application relates to the technical field of hydraulic systems, in particular to a motor assembly, a travel drive system and an operating machine.
  • the braking measures of the traveling device working on the tunnel or track roadbed are bound to the transmission route.
  • the traveling device will stay at the job site for a long time and cannot move. As a result, the next operation cannot be carried out and a large economic loss is caused.
  • This application provides a motor assembly, a travel drive system and an operating machine, which are used to solve the problem that the operating machine in the prior art cannot move when the main engine fails, and realize the supply control through an external oil source in the event of a main engine failure. You can drag the working machine away from the job site.
  • a motor assembly including: a motor, a brake, a brake control valve and a slide valve group.
  • the brake control valve is connected with the brake.
  • the brake is connected to the motor.
  • the brake control valve can control the brake to release a braking action or to form a braking action.
  • the slide valve group is connected between the oil inlet oil passage of the motor and the oil return oil passage of the motor to control the communication between the oil inlet oil passage of the motor and the oil return oil passage of the motor or deadline.
  • a motor assembly provided according to the present application further includes an oil drain tank and an oil drain control valve.
  • the oil drain control valve is connected between the oil drain tank and the oil drain port of the motor.
  • the oil drain control valve can control the oil drain port of the motor to communicate with the oil drain tank or communicate with the oil inlet oil passage of the motor and the oil return oil passage of the motor.
  • a charge check valve is installed between the oil drain control valve and the oil inlet oil passage of the motor, and between the oil drain control valve and the oil return oil passage of the motor.
  • the slide valve group includes a two-position four-way reversing valve and a three-position two-way reversing valve.
  • both the oil inlet oil passage of the motor and the oil return oil passage of the motor are connected with the two-position four-way reversing valve.
  • the three-position two-way reversing valve is connected with the two-position four-way reversing valve, so that the oil inlet circuit of the motor is connected to or blocked from the oil return circuit of the motor.
  • the first working oil port of the two-position four-way reversing valve is connected with the oil inlet oil passage of the motor.
  • the second working oil port of the two-position four-way reversing valve is connected with the oil return line of the motor.
  • the third working oil port of the two-position four-way reversing valve is connected with the first working oil port of the three-position two-way reversing valve.
  • the fourth working oil port of the two-position four-way reversing valve is connected with the second working oil port of the three-position two-way reversing valve.
  • the three-position two-way reversing valve includes a first pilot control oil circuit and a second pilot control oil circuit.
  • the first pilot control oil circuit is connected to the third working oil port of the two-position four-way reversing valve.
  • the second pilot control oil circuit is connected to the fourth working oil port of the two-position four-way reversing valve.
  • both ends of the spool of the three-position two-way reversing valve are provided with return springs.
  • a traveling drive system which includes the motor assembly as described above.
  • a traveling drive system provided according to the present application further includes an oil source, an accumulator, an accumulator control valve and a shuttle valve.
  • the oil source is connected with the first oil inlet of the shuttle valve.
  • the oil source is connected to the accumulator to charge the accumulator with oil.
  • the accumulator control valve is connected between the second oil inlet port of the shuttle valve and the accumulator, so as to communicate or block the accumulator with the shuttle valve.
  • the working oil port of the shuttle valve is connected with the brake control valve.
  • the oil source is connected with the oil inlet oil passage of the motor and the oil return oil passage of the motor.
  • the pilot control oil circuit of the slide valve group is connected with the working oil port of the accumulator control valve.
  • the slide valve group is connected between the oil inlet passage of the motor and the oil return passage of the motor, so as to control the connection or cutoff of the oil inlet passage of the motor and the oil return passage of the motor .
  • the accumulator control valve includes a two-position two-way electromagnetic reversing valve and a reversing switch.
  • the reversing switch includes a power source, so that the reversing switch can independently control the reversing of the two-position two-way electromagnetic reversing valve.
  • the oil source includes a first oil source, a second oil source and a third oil source.
  • the first oil source is respectively connected with the first oil inlet port of the shuttle valve and the accumulator.
  • the second oil source is connected with the oil inlet passage of the motor.
  • the third oil source is connected with the oil return circuit of the motor.
  • a working machine which includes the above-mentioned motor assembly or travel drive system.
  • the brake control valve is connected to the brake.
  • the brake is connected to the motor.
  • the brake control valve can control the brake to release a braking action or to form a braking action.
  • the slide valve group is connected between the oil inlet passage of the motor and the oil return passage of the motor, so as to control the connection or cutoff of the oil inlet passage of the motor and the oil return passage of the motor .
  • an external oil source to control the brake control valve so that the brake releases the braking action on the motor.
  • an external oil source is used to control the action of the slide valve group, so that the oil inlet and oil return circuits of the motor are connected to form a closed circuit, and then the operating machine can be dragged to the non-working area.
  • the motor assembly can release the brake action through an external oil source when the main engine of the working machine fails, and connect the oil inlet oil circuit and the oil return oil circuit of the motor, so that the working machine is stopped. Drag it to the non-working area.
  • the economic loss caused by failure of the main machine and failure of the working machine to be towed to the non-working area can be greatly reduced.
  • the walking drive system since the walking drive system includes the above-mentioned motor assembly, it also has the above-mentioned various advantages.
  • the work machine since the work machine includes the above-mentioned motor assembly or travel drive system, it also has the above-mentioned various advantages.
  • Fig. 1 is the system schematic diagram of the walking drive system provided by the application
  • 101 the first oil source
  • 102 the second oil source
  • 401 accumulator
  • 402 accumulator control valve
  • 602 Oil drain control valve
  • 603 Oil replenishment check valve
  • 701 two-position four-way reversing valve
  • 702 three-position two-way reversing valve
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • the first feature may be in direct contact with the first feature or the first feature and the second feature may pass through the middle of the second feature.
  • Media indirect contact Moreover, “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • a motor assembly 900 , a travel drive system and an operating machine provided in the embodiment of the present application will be described below with reference to FIG. 1 . It should be understood that the following descriptions are only exemplary embodiments of the present application, and do not constitute any special limitation to the present application.
  • An embodiment of the present application provides a motor assembly 900 , as shown in FIG. 1 , the motor assembly 900 includes: a motor 301 , a brake 201 , a brake control valve 202 and a slide valve group.
  • the brake control valve 202 is connected to the brake 201 .
  • the brake 201 is connected to the motor 301 .
  • the brake control valve 202 can control the brake 201 to release the braking action or to form the braking action.
  • the spool valve group is connected between the oil inlet oil passage 302 of the motor 301 and the oil return oil passage 303 of the motor 301, to control the connection or cutoff of the oil inlet oil passage 302 of the motor 301 and the oil return oil passage 303 of the motor 301 .
  • the brake piston in the brake 201 presses the brake pads under the action of the spring force, thereby the power transmitted from the motor 301 to the speed reducer is braked. At this time, the work machine is under braking.
  • the hydraulic oil inside the work machine can flow into the brake 201 through the brake control valve 202 to realize the control of the brake 201 to perform a braking action or to release the braking action.
  • an external oil source can be used to control the brake control valve 202 so that the brake 201 releases the braking action on the motor 301 .
  • an external oil source is used to control the action of the spool valve group, so that the oil inlet oil passage 302 and the oil return oil passage 303 of the motor 301 are connected to form a closed circuit, and then the working machine can be dragged to the non-working area.
  • the motor assembly 900 can release the braking action of the brake 201 through an external oil source and connect the oil inlet oil circuit 302 and the oil return oil circuit 303 of the motor 301 when the main engine of the working machine fails.
  • the working machine is towed into the non-working area.
  • the economic loss caused by failure of the main machine and failure of the working machine to be towed to the non-working area can be greatly reduced.
  • the motor assembly 900 further includes an oil drain tank 601 and an oil drain control valve 602 .
  • the oil drain control valve 602 is connected between the oil drain tank 601 and the oil drain port of the motor 301 .
  • the oil drain control valve 602 can control the oil drain port of the motor 301 to communicate with the oil drain tank 601 or communicate with the oil inlet oil passage 302 of the motor 301 and the oil return oil passage 303 of the motor 301 .
  • a charge check valve 603 is installed between the oil drain control valve 602 and the oil inlet oil passage 302 of the motor 301 , and between the oil drain control valve 602 and the oil return oil passage 303 of the motor 301 .
  • the oil drain control valve 602 includes a two-position three-way reversing valve.
  • the first working oil port of the two-position three-way reversing valve is connected with the oil drain port of the motor 301 .
  • the second working oil port of the two-position three-way reversing valve is connected with the drain oil tank 601 .
  • the third working oil port of the two-position three-way reversing valve is connected with the oil inlet oil passage 302 and the oil return oil passage 303 of the motor 301 .
  • the external oil source can communicate with the pilot control oil circuit of the two-position three-way reversing valve.
  • the two-position three-way reversing valve can be switched between the upper position and the lower position under the control of the pilot control oil circuit connected to the external oil source.
  • the two-position three-way reversing valve in the initial state, the two-position three-way reversing valve is in the down position. At this time, the main engine of the working machine is running normally.
  • the oil drain port of the motor 301 communicates with the oil drain tank 601 through a two-position three-way reversing valve. The hydraulic oil discharged from the motor 301 flows into the drain tank 601 .
  • the external oil source flows into the pilot control oil circuit of the two-position three-way reversing valve, driving the two-position three-way reversing valve to switch to the upper position.
  • the hydraulic oil discharged by the motor 301 can be supplied to the oil inlet oil passage 302 of the motor 301 through the oil supply check valve 603, so as to prevent the hydraulic oil discharged by the motor 301 from losing.
  • the oil source of the working machine continuously supplies hydraulic oil to the motor 301 , and the hydraulic oil leaked from the motor 301 can be discharged into the oil drain tank 601 . At this time, no damage will be caused to the motor 301 and the whole system.
  • the oil drain control valve 602 switches the working position, so that the hydraulic oil leaked from the motor 301 is supplied to the low-pressure side of the motor 301 . In this way, the loss of hydraulic oil can be effectively prevented, and the cavitation phenomenon of the motor 301 and the entire system can be avoided.
  • the spool valve group includes a two-position four-way reversing valve 701 and a three-position two-way reversing valve 702 .
  • both the oil inlet oil passage 302 of the motor 301 and the oil return oil passage 303 of the motor 301 are connected to the two-position four-way reversing valve 701 .
  • the three-position, two-way reversing valve 702 is connected with the two-position, four-way reversing valve 701 , so that the oil inlet circuit 302 of the motor 301 is communicated with or blocked from the oil return circuit 303 of the motor 301 .
  • the first working oil port of the two-position four-way reversing valve 701 is connected with the oil inlet oil passage 302 of the motor 301 .
  • the second working oil port of the two-position four-way reversing valve 701 is connected with the oil return line 303 of the motor 301 .
  • the third working oil port of the two-position four-way reversing valve 701 is connected with the first working oil port of the three-position two-way reversing valve 702 .
  • the fourth working oil port of the two-position four-way reversing valve 701 is connected with the second working oil port of the three-position two-way reversing valve 702 .
  • the two working oil ports on the upper side of the two-position four-way reversing valve 701 are respectively the first working oil port and the first working oil port from left to right.
  • the second working oil port; the two working oil ports on the lower side of the two-position four-way reversing valve 701 are respectively the third working oil port and the fourth working oil port from left to right.
  • the two-position four-way reversing valve 701 When the two-position four-way reversing valve 701 is switched to the left position, the first working oil port is connected to the third working oil port and the oil inlet circuit 302 of the motor 301, and the second working oil port is connected to the fourth working oil port and the motor 301.
  • the oil return oil circuit 303 is connected.
  • the two-position four-way reversing valve 701 When the two-position four-way reversing valve 701 is switched to the right position, the first working oil port, the second working oil port, the third working oil port and the fourth working oil port are mutually blocked.
  • the two working oil ports on the upper side of the three-position two-way reversing valve 702 are the first working oil port and the second working oil port respectively.
  • the first working oil port of the three-position two-way reversing valve 702 is connected to the third working oil port of the two-position four-way reversing valve 701, and the second working oil port of the three-position two-way reversing valve 702 is connected to the two-position four-way
  • the fourth working oil port of the reversing valve 701 is connected.
  • the three-position two-way reversing valve 702 When the three-position two-way reversing valve 702 is switched to the left position, the first working oil port and the second working oil port on it are connected to each other; when the three-position two-way reversing valve 702 is switched to the neutral position, the The first working oil port and the second working oil port are mutually blocked; when the three-position two-way reversing valve 702 is switched to the right position, the first working oil port and the second working oil port on it are connected to each other. It should be understood here that the left on position and the right on position of the three-position two-way reversing valve 702 are used for forward rotation and reverse rotation of the motor 301 .
  • the three-position two-way reversing valve 702 includes a first pilot control oil circuit and a second pilot control oil circuit.
  • the first pilot control oil circuit is connected with the third working oil port of the two-position four-way reversing valve 701 .
  • the second pilot control oil circuit is connected with the fourth working oil port of the two-position four-way reversing valve 701 .
  • Return springs are installed at both ends of the spool of the three-position two-way reversing valve 702 .
  • the first pilot control oil passage of the three-position two-way reversing valve 702 is connected to the third working oil port of the two-position four-way reversing valve 701 .
  • the second pilot control oil circuit of the three-position two-way reversing valve 702 is connected with the fourth working oil port of the two-position four-way reversing valve 701 .
  • return springs are installed at both ends of the spool of the three-position two-way reversing valve 702 .
  • the return spring can generate a certain pre-tightening force on the valve core.
  • the opening and opening range of the spool of the three-position two-way reversing valve 702, that is, the displacement of the spool, depends on the hydraulic pressure in the first pilot control oil circuit or the second pilot control oil circuit and the preset value of the return spring. Tight force.
  • the pressure in the first pilot control oil circuit or the second pilot control oil circuit can overcome the spring force of the return spring and drive the valve core to move when the pressure in the first pilot control oil circuit reaches a certain level. Moreover, as the pressure in the first pilot control oil circuit or the second pilot control oil circuit gradually increases, the diameter of the connecting oil circuit between the first working oil port and the second working oil port of the three-position two-way reversing valve 702 gradually increases. increase.
  • the three-position two-way reversing valve 702 can generate a certain back pressure on the motor 301 .
  • an effective lubricating oil film of suitable strength can be established between the sliding shoe and the swash plate of the motor 301.
  • the problems of dry grinding and sintering inside the motor 301 can be effectively prevented, the motor 301 is effectively protected, and the service life of the motor 301 is prolonged.
  • the two-position four-way reversing valve 701 and the three-position two-way reversing valve 702 are in the state shown in FIG. 1 . That is, the two-position four-way reversing valve 701 is in the right position, and the three-position two-way reversing valve 702 is in the middle position.
  • the external oil source flows into the pilot control oil circuit of the two-position four-way reversing valve 701, and drives the two-position four-way reversing valve 701 to switch to the left position.
  • the hydraulic oil in the third working oil port of the two-position four-way reversing valve 701 flows to the first pilot control oil circuit of the three-position two-way reversing valve 702, or, the fourth port of the two-position four-way reversing valve 701
  • the hydraulic oil in the working oil port flows to the second pilot control oil circuit of the three-position two-way reversing valve 702 to drive the three-position two-way reversing valve 702 to switch to the left or right position, so that the three-position two-way reversing valve
  • the first working oil port in 702 communicates with the second working oil port.
  • the oil inlet oil passage 302 and the oil return oil passage 303 of the motor 301 communicate with each other to form a closed circuit, and the working machine can be towed into the non-working area.
  • the three-position two-way reversing valve 702 can form a certain back pressure, so that an effective oil film with a certain strength can be established between the sliding shoe of the motor 301 and the swash plate, thereby effectively protecting the motor 301 .
  • the embodiment of the second aspect of the present application provides a traveling drive system, which includes the above-mentioned motor assembly 900 .
  • the walking drive system includes the above-mentioned motor assembly 900, it also has the above-mentioned various advantages.
  • the traveling drive system further includes an oil source, an accumulator 401 , an accumulator control valve 402 and a shuttle valve 500 .
  • the oil source is connected with the first oil inlet of the shuttle valve 500 .
  • the oil source is connected to the accumulator 401 to charge the accumulator 401 with oil.
  • the accumulator control valve 402 is connected between the second oil inlet port of the shuttle valve 500 and the accumulator 401 to connect or block the accumulator 401 and the shuttle valve 500 .
  • the working oil port of the shuttle valve 500 is connected to the brake control valve 202 .
  • the oil source is connected with the oil inlet oil passage 302 of the motor 301 and the oil return oil passage 303 of the motor 301 .
  • the pilot control oil circuit of the spool valve group is connected with the working oil port of the accumulator control valve 402 .
  • the spool valve group is connected between the oil inlet passage 302 of the motor 301 and the oil return passage 303 of the motor 301 to control the connection or cutoff of the oil inlet passage 302 of the motor 301 and the oil return passage 303 of the motor 301 .
  • the hydraulic oil can flow into the brake 201 through the shuttle valve 500 and the brake control valve 202 .
  • the oil source can enter the brake 201 through the working oil port of the shuttle valve 500 and the brake control valve 202, and the hydraulic oil acts on the brake piston in the brake 201 to overcome the preload force of the spring and push The brake piston slides to release the braking force.
  • the oil source can also provide the motor 301 with an oil inlet source and an oil return circuit. The motor 301 runs normally under the drive of the hydraulic oil to drive the drive shaft to rotate, thereby driving the working machine to run normally.
  • the oil source can also store part of the oil in the accumulator 401 during normal running of the working machine, so as to be used as a backup oil source when the main engine of the working machine fails.
  • the oil source is cut off.
  • Part of the hydraulic oil in the accumulator 401 flows into the brake 201 through the accumulator control valve 402, the shuttle valve 500 and the brake control valve 202, and the hydraulic oil acts on the brake piston in the brake 201 to overcome the preload of the spring force, and push the brake piston to slide to release the braking force.
  • part of the hydraulic oil in the accumulator 401 flows into the slide valve group through the working oil port of the accumulator control valve 402, so that the oil inlet oil passage 302 and the oil return oil passage 303 of the motor 301 are connected to form a closed loop. At this time, the working machine can be dragged to the non-working area.
  • the oil source can store oil for the accumulator 401 when the main engine of the working machine is working normally.
  • the oil source can provide the motor 301 with an oil inlet source and an oil return path.
  • the motor 301 works normally under the drive of hydraulic oil.
  • the oil source is cut off.
  • the oil in the accumulator 401 can also flow into the brake control valve 202 and the brake 201 through the accumulator control valve 402 and the shuttle valve 500 to release the brake for the motor 301 .
  • the oil stored in the accumulator 401 flows through the working oil port of the accumulator control valve 402 to the pilot control oil circuit of the spool valve group, which prompts the spool valve group to reversing so that the oil inlet circuit 302 of the motor 301 and the motor
  • the oil return oil circuit 303 of 301 is connected to form a closed circuit.
  • the travel drive system can guarantee the normal operation and driving of the operation machine; on the other hand, it can also drag the operation machine to the non-operation area when the main engine fails.
  • the economic loss caused by failure of the main machine and failure of the working machine to be towed to the non-working area can be greatly reduced.
  • the accumulator control valve 402 includes a two-position two-way electromagnetic reversing valve and a reversing switch.
  • a power supply is included in the reversing switch, so that the reversing switch can independently control the reversing of the two-position two-way electromagnetic reversing valve.
  • the accumulator control valve 402 includes a two-position two-way electromagnetic reversing valve and a reversing switch for controlling the switching position of the two-position two-way electromagnetic reversing valve.
  • a power supply is installed in the reversing switch.
  • the power source can be a battery. As long as the battery in the reversing switch is guaranteed to have electricity, the two-position two-way electromagnetic reversing valve can be controlled to switch the working position.
  • the two-position two-way electromagnetic reversing valve When the machine host is running normally, the two-position two-way electromagnetic reversing valve is in the left position as shown in FIG. 1 , that is, the accumulator 401 and the oil inlet of the shuttle valve 500 are mutually blocked. At this time, the accumulator 401 only stores energy, but does not supply energy.
  • the reversing switch is controlled to drive the two-position two-way electromagnetic reversing valve to switch to the right position, that is, the state where the accumulator 401 and the oil inlet of the shuttle valve 500 communicate with each other. At this time, the first oil source 101 is cut off. The accumulator 401 stops accumulating energy and supplies energy.
  • the oil sources include a first oil source 101 , a second oil source 102 and a third oil source 103 .
  • the first oil source 101 is respectively connected with the first oil inlet port of the shuttle valve 500 and the accumulator 401 .
  • the second oil source 102 is connected to the oil inlet passage 302 of the motor 301 .
  • the third oil source 103 is connected to the oil return line 303 of the motor 301 .
  • first oil source 101 the second oil source 102 and the third oil source 103 may be three independent oil sources, or may be three branches of a common oil source.
  • the first oil source 101 is respectively connected to the first oil inlet port of the shuttle valve 500 and the accumulator 401 .
  • part of the hydraulic oil from the first oil source 101 can flow into the brake control valve 202 through the shuttle valve 500 to control the brake 201 to perform a braking action or to release the braking action.
  • part of the hydraulic oil from the first oil source 101 can also be stored in the accumulator 401 as a backup oil source.
  • the second oil source 102 is connected to the oil inlet passage 302 of the motor 301
  • the third oil source 103 is connected to the oil return passage 303 of the motor 301 .
  • the above connection of the second oil source 102 to the oil inlet oil passage 302 of the motor 301 and the connection of the third oil source 103 to the oil return oil passage 303 of the motor 301 are only an exemplary embodiment of the present application. It cannot constitute any limitation to this application.
  • the oil inlet oil passage 302 and the oil return oil passage 303 of the motor 301 can be used interchangeably.
  • the oil inlet passage 302 when the motor 301 is rotating forward is the oil return passage 303 when the motor 301 is rotating reversely; the oil return passage 303 when the motor 301 is rotating forward is the oil inlet passage 302 when the motor 301 is rotating reversely.
  • a one-way valve 800 for preventing oil backflow is provided between the first oil source 101 and the accumulator 401 .
  • a one-way valve 800 is installed between the first oil source 101 and the accumulator 401 , and the one-way valve 800 can prevent the hydraulic oil in the accumulator 401 from flowing back into the first oil source 101 .
  • the embodiment of the third aspect of the present application provides a working machine, which includes the motor assembly 900 or the traveling drive system as described above.
  • the above working machine includes a crawler running mechanism or a wheeled running mechanism.
  • the above embodiment is only an exemplary embodiment of the present application, and does not constitute any limitation to the present application. That is to say, the aforementioned working machines include but are not limited to crawler-type traveling mechanisms and wheel-type traveling mechanisms.
  • the work machine since the work machine includes the above-mentioned motor assembly 900 or the traveling drive system, it also has the above-mentioned various advantages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种马达总成、行走驱动系统及作业机械。马达总成(900)包括:马达(301)、制动器(201)、制动器控制阀(202)和滑阀组,所述制动器控制阀与所述制动器连接;所述制动器与所述马达连接。所述制动器控制阀能够控制所述制动器解除制动动作或形成制动动作;所述滑阀组连接在所述马达的进油油路(302)和所述马达的回油油路(303)之间,以控制所述马达的进油油路与所述马达的回油油路的连通或者截止。该马达总成能够在作业机械主机出现故障时,通过外接油源使制动器解除制动动作,并使马达的进油油路和回油油路接通,从而使作业机械被拖行至非作业区域内,由此,能够极大降低由于主机故障,作业机械无法被拖行至非作业区域所导致的经济损失。

Description

马达总成、行走驱动系统及作业机械
相关申请的交叉引用
本申请要求于2021年5月25日提交的申请号为202110572485.1,发明名称为“马达总成、行走驱动系统及作业机械”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及液压系统技术领域,尤其涉及一种马达总成、行走驱动系统及作业机械。
背景技术
在隧道或轨道路基上作业的行走装置,其制动措施都是和传动路线绑定的。当主机出现故障无法移动时,行走装置将长时间停留在作业现场无法移动。由此,会导致下一步作业无法进行,并造成较大经济损失。
因此,目前亟需一种在主机故障情况下,能够拖行该行走装置的应急拖行方案。
发明内容
本申请提供一种马达总成、行走驱动系统及作业机械,用以解决现有技术中的作业机械在主机出现故障时无法移动的问题,实现在主机故障的情况下,通过外部油源供给控制即可拖动作业机械离开作业现场的效果。
根据本申请的第一方面,提供了一种马达总成,包括:马达、制动器、制动器控制阀和滑阀组。
其中,所述制动器控制阀与所述制动器连接。所述制动器与所述马达连接。所述制动器控制阀能够控制所述制动器解除制动动作或形成制动动作。
其中,所述滑阀组连接在所述马达的进油油路和所述马达的回油油路之间,以控制所述马达的进油油路与所述马达的回油油路的连通或者截止。
根据本申请提供的一种马达总成,还包括泄油油箱和泄油控制阀。
其中,所述泄油控制阀连接在所述泄油油箱与所述马达的泄油口之间。 所述泄油控制阀能够控制所述马达的泄油口与所述泄油油箱连通或者与所述马达的进油油路和所述马达的回油油路连通。并且,在所述泄油控制阀与所述马达的进油油路之间、以及所述泄油控制阀与所述马达的回油油路之间均安装有补油单向阀。
根据本申请提供的一种马达总成,所述滑阀组包括两位四通换向阀和三位两通换向阀。
其中,所述马达的进油油路和所述马达的回油油路均与所述两位四通换向阀连接。所述三位两通换向阀与所述两位四通换向阀连接,以使所述马达的进油回路与所述马达的回油油路连通或者截止。
根据本申请提供的一种马达总成,所述两位四通换向阀的第一工作油口与所述马达的进油油路连接。所述两位四通换向阀的第二工作油口与所述马达的回油油路连接。所述两位四通换向阀的第三工作油口与所述三位两通换向阀的第一工作油口连接。所述两位四通换向阀的第四工作油口与所述三位两通换向阀的第二工作油口连接。
根据本申请提供的一种马达总成,所述三位两通换向阀包括第一先导控制油路和第二先导控制油路。所述第一先导控制油路与所述两位四通换向阀的第三工作油口连接。所述第二先导控制油路与所述两位四通换向阀的第四工作油口连接。
其中,所述三位两通换向阀的阀芯两端均安装有复位弹簧。
根据本申请的第二方面,提供了一种行走驱动系统,该行走驱动系统包括如上所述的马达总成。
根据本申请提供的一种行走驱动系统,还包括油源、蓄能器、蓄能器控制阀和梭阀。
其中,所述油源与所述梭阀的第一进油口连接。所述油源与所述蓄能器连接,以为所述蓄能器充油。所述蓄能器控制阀连接在所述梭阀的第二进油口与所述蓄能器之间,以将所述蓄能器与所述梭阀连通或者截止。所述梭阀的工作油口与所述制动器控制阀连接。
所述油源与所述马达的进油油路和所述马达的回油油路连接。所述滑阀组的先导控制油路与所述蓄能器控制阀的工作油口连接。所述滑阀组连接在所述马达的进油油路和所述马达的回油油路之间,以控制所述马达的进油油 路与所述马达的回油油路的连通或者截止。
根据本申请提供的一种行走驱动系统,所述蓄能器控制阀包括两位两通电磁换向阀和换向开关。所述换向开关内包括电源,以使换向开关能够独立控制所述两位两通电磁换向阀换向。
根据本申请提供的一种行走驱动系统,所述油源包括第一油源、第二油源和第三油源。
其中,所述第一油源分别与所述梭阀的第一进油口和所述蓄能器连接。所述第二油源与所述马达的进油油路连接。所述第三油源与所述马达的回油油路连接。
根据本申请的第三方面,提供了一种作业机械,该作业机械包括如上所述的马达总成或者行走驱动系统。
在本申请提供的马达总成中,所述制动器控制阀与所述制动器连接。所述制动器与所述马达连接。所述制动器控制阀能够控制所述制动器解除制动动作或形成制动动作。所述滑阀组连接在所述马达的进油油路和所述马达的回油油路之间,以控制所述马达的进油油路与所述马达的回油油路的连通或者截止。
当作业机械出现故障时,使用外部油源控制制动器控制阀,以使制动器解除对马达的制动动作。同时,使用外部油源控制滑阀组动作,以使马达的进油油路和回油油路接通并形成闭合回路,进而能够将作业机械拖行至非工作区域内。
根据以上描述可知,该马达总成能够在作业机械主机出现故障时,通过外接油源使制动器解除制动动作,并使马达的进油油路和回油油路接通,从而使作业机械被拖行至非作业区域内。由此,能够极大降低由于主机故障,作业机械无法被拖行至非作业区域所导致的经济损失。
进一步,在本申请提供的行走驱动系统中,由于该行走驱动系统包括如上所述的马达总成,因此,其同样具备如上所述的各项优势。
更进一步,在本申请提供的作业机械中,由于该作业机械包括如上所述的马达总成或行走驱动系统,因此,其同样具备如上所述的各项优势。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的行走驱动系统的系统原理图;
附图标记:
101:第一油源;                   102:第二油源;
103:第三油源;                   201:制动器;
202:制动器控制阀;               301:马达;
302:进油油路;                   303:回油油路;
401:蓄能器;                     402:蓄能器控制阀;
500:梭阀;                       601:泄油油箱;
602:泄油控制阀;                 603:补油单向阀;
701:两位四通换向阀;             702:三位两通换向阀;
800:单向阀;                     900:马达总成。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例用于说明本申请,但不能用来限制本申请的范围。
在本申请实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例中,除非另有明确的规定和限定,第一特征在第二特征 “上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1对本申请实施例提供的一种马达总成900、行走驱动系及作业机械进行描述。应当理解的是,以下所述仅是本申请的示意性实施方式,并不对本申请构成任何特别限定。
本申请一方面的实施例提供了一种马达总成900,如图1所示,该马达总成900包括:马达301、制动器201、制动器控制阀202和滑阀组。
其中,制动器控制阀202与制动器201连接。制动器201与马达301连接。制动器控制阀202能够控制制动器201解除制动动作或形成制动动作。
其中,滑阀组连接在马达301的进油油路302和马达301的回油油路303之间,以控制马达301的进油油路302与马达301的回油油路303的连通或者截止。
作业机械在静止状态时,制动器201内的制动活塞在弹簧力的作用下,将刹车片压紧,由此,马达301向减速机传递的动力被制动。此时,作业机 械处于制动状态。
当作业机械主机正常运行时,作业机械内部的液压油能够经制动器控制阀202流动至制动器201中,以实现控制制动器201进行制动动作或者解除制动动作。
当作业机械出现故障时,可以使用外接油源控制制动器控制阀202,以使制动器201解除对马达301的制动动作。同时,使用外接油源控制滑阀组动作,以使马达301的进油油路302和回油油路303接通并形成闭合回路,进而能够将作业机械拖行至非工作区域内。
根据以上描述可知,该马达总成900能够在作业机械主机出现故障时,通过外接油源使制动器201解除制动动作,并使马达301的进油油路302和回油油路303接通,从而使作业机械被拖行至非作业区域内。由此,能够极大降低由于主机故障,作业机械无法被拖行至非作业区域所导致的经济损失。
在本申请的一个实施例中,该马达总成900还包括泄油油箱601和泄油控制阀602。
其中,泄油控制阀602连接在泄油油箱601与马达301的泄油口之间。泄油控制阀602能够控制马达301的泄油口与泄油油箱601连通或者与马达301的进油油路302和马达301的回油油路303连通。并且,在泄油控制阀602与马达301的进油油路302之间、以及泄油控制阀602与马达301的回油油路303之间均安装有补油单向阀603。
例如,如图1所示,在本申请的一个实施例中,泄油控制阀602包括两位三通换向阀。两位三通换向阀的第一工作油口与马达301的泄油口连接。两位三通换向阀的第二工作油口与泄油油箱601连接。两位三通换向阀的第三工作油口与马达301的进油油路302和回油油路303连接。外接油源可以与两位三通换向阀的先导控制油路连通。两位三通换向阀能够在与外接油源相连的先导控制油路的控制作用下,于上位与下位之间进行切换。
如图1所示,在初始状态下,两位三通换向阀处于下位。此时,作业机械主机正常运行。马达301的泄油口通过两位三通换向阀与泄油油箱601连通。马达301所泄出的液压油流至泄油油箱601内。
当作业机械主机出现故障时,外接油源流动至两位三通换向阀的先导控制油路中,驱使两位三通换向阀切换至上位。此时,马达301所泄出的液压 油能经补油单向阀603补给至马达301的进油油路302中,防止马达301所泄出的液压油流失。
根据以上描述的实施例可知,作业机械主机正常运行时,作业机械的油源不断为马达301补给液压油,马达301所泄出的液压油可以排出至泄油油箱601内。此时,并不会对马达301及整个系统造成损坏。
当作业机械主机出现故障时,并没有外部油源不断为马达301补给油液。这种状态下,当马达301所泄出的液压油仍然排出至泄油油箱601时,在拖行作业机械时,会导致马达301及整整个系统发生吸空现象,进而损坏马达301及整个行走驱动系统。
在该行走驱动系统中,当作业机械主机出现故障时,泄油控制阀602切换工作位,使得马达301所泄出的液压油补给至马达301的低压侧。由此,能够有效防止液压油的流失,进而避免了马达301及整个系统出现吸空现象。
在本申请的一个实施例中,滑阀组包括两位四通换向阀701和三位两通换向阀702。
其中,马达301的进油油路302和马达301的回油油路303均与两位四通换向阀701连接。三位两通换向阀702与两位四通换向阀701连接,以使马达301的进油回路302与马达301的回油油路303连通或者截止。
进一步,在本申请的一个实施例中,两位四通换向阀701的第一工作油口与马达301的进油油路302连接。两位四通换向阀701的第二工作油口与马达301的回油油路303连接。两位四通换向阀701的第三工作油口与三位两通换向阀702的第一工作油口连接。两位四通换向阀701的第四工作油口与三位两通换向阀702的第二工作油口连接。
具体例如,如图1所示,在两位四通换向阀701中,处于两位四通换向阀701的上侧的两个工作油口由左至右分别为第一工作油口与第二工作油口;处于两位四通换向阀701的下侧的两个工作油口由左至右分别为第三工作油口与第四工作油口。
两位四通换向阀701切换至左位时,第一工作油口与第三工作油口和马达301的进油回路302接通,第二工作油口与第四工作油口和马达301的回油油路303接通。两位四通换向阀701切换至右位时,第一工作油口、第二工作油口、第三工作油口和第四工作油口相互截止。
如图1所示,在三位两通换向阀702中,处于三位两通换向阀702的上侧的两个工作油口分别为第一工作油口和第二工作油口。三位两通换向阀702的第一工作油口与两位四通换向阀701的第三工作油口连接,三位两通换向阀702的第二工作油口与两位四通换向阀701的第四工作油口连接。
三位两通换向阀702切换至左位时,其上的第一工作油口与第二工作油口相互接通;三位两通换向阀702切换至中位时,其上的第一工作油口与第二工作油口相互截止;三位两通换向阀702切换至右位时,其上的第一工作油口与第二工作油口相互接通。此处应当理解的是,三位两通换向阀702的左位接通位和右位接通位为供马达301的正转与反转使用。
在本申请的一个实施例中,三位两通换向阀702包括第一先导控制油路和第二先导控制油路。第一先导控制油路与两位四通换向阀701的第三工作油口连接。第二先导控制油路与两位四通换向阀701的第四工作油口连接。三位两通换向阀702的阀芯两端均安装有复位弹簧。
结合上述实施例来讲,三位两通换向阀702的第一先导控制油路与两位四通换向阀701的第三工作油口连接。三位两通换向阀702的第二先导控制油路与两位四通换向阀701的第四工作油口连接。
并且,在三位两通换向阀702的阀芯两端均安装有复位弹簧。该复位弹簧能够对阀芯产生一定的预紧力。三位两通换向阀702的阀芯的开启以及开启幅度,即阀芯的位移量的大小,取决于第一先导控制油路或者第二先导控制油路中的液压力及复位弹簧的预紧力。
第一先导控制油路或者第二先导控制油路中的压力达到一定程度后才能够克服复位弹簧的弹簧力并驱动该阀芯移动。并且,随着第一先导控制油路或者第二先导控制油路中的压力逐渐增大,三位两通换向阀702的第一工作油口与第二工作油口的连接油路直径逐渐增大。
当第一工作油口与第二工作油口的连接油路直径增大到一定程度后,通过第一先导控制油路或者第二先导控制油路作用于阀芯上的压力又会相应减少。直至作用于阀芯上的液压力处于一定的平衡状态时,阀芯便处于稳定位置处。
此时,该三位两通换向阀702能够对马达301产生一定的背压。由此,液压油在流经马达301内部时,能够在马达301的滑靴与斜盘之间建立有适 宜强度的有效润滑油膜。进而,作业机械被拖行时,能够有效防止马达301内部出现干磨和烧结的问题,有效保护了马达301,并延长了马达301的使用寿命。
当作业机械主机正常运行时,两位四通换向阀701和三位两通换向阀702处于图1所示状态。即,两位四通换向阀701处于右位,三位两通换向阀702处于中位。
当作业机械主机发生故障时,外接油源流动至两位四通换向阀701的先导控制油路中,并驱动两位四通换向阀701切换至左位。
两位四通换向阀701中的第三工作油口中的液压油流动至三位两通换向阀702的第一先导控制油路,或者,两位四通换向阀701中的第四工作油口中的液压油流动至三位两通换向阀702的第二先导控制油路,以驱使三位两通换向阀702切换至左位或者右位,使得三位两通换向阀702中的第一工作油口与第二工作油口连通。由此,马达301的进油油路302与回油油路303相互连通,并形成闭合回路,作业机械能够被拖行至非工作区域内。
同时,三位两通换向阀702能够形成一定的背压,以使马达301的滑靴与斜盘之间建立起具有一定强度的有效油膜,进而有效保护马达301。
本申请第二方面的实施例提供一种行走驱动系统,该行走驱动系统包括如上所述的马达总成900。
进一步,由于该行走驱动系统包括如上所述的马达总成900,因此,其同样具备如上所述的各项优势。
在本申请的一个实施例中,该行走驱动系统还包括油源、蓄能器401、蓄能器控制阀402和梭阀500。
其中,油源与梭阀500的第一进油口连接。油源与蓄能器401连接,以为蓄能器401充油。蓄能器控制阀402连接在梭阀500的第二进油口与蓄能器401之间,以将蓄能器401与梭阀500连通或者截止。梭阀500的工作油口与制动器控制阀202连接。
油源与马达301的进油油路302和马达301的回油油路303连接。滑阀组的先导控制油路与蓄能器控制阀402的工作油口连接。滑阀组连接在马达301的进油油路302和马达301的回油油路303之间,以控制马达301的进油油路302与马达301的回油油路303的连通或者截止。
如图1所示,当作业机械主机正常运行时,液压油能够经过梭阀500和制动器控制阀202流动至制动器201中。
作业机械主机正常行走时,油源能够经梭阀500的工作油口和制动器控制阀202进入制动器201内,液压油作用在制动器201内的制动活塞上,克服弹簧的预紧力,并推动制动活塞滑动,以将制动力解除释放。同时,油源还能够为马达301提供进油油源和回油油路。马达301在液压油的驱动作用下正常运转以带动驱动轴转动,进而驱使作业机械正常行驶。
另外,在作业机械正常行走过程中,油源还能够将部分油液储存至蓄能器401内,以在作业机械主机发生故障时,作为备用油源使用。
当作业机械主机出现故障时,油源处于切断截止状态。蓄能器401中的部分液压油经蓄能器控制阀402、梭阀500和制动器控制阀202并流动至制动器201内,液压油作用在制动器201内的制动活塞上,克服弹簧的预紧力,并推动制动活塞滑动,以将制动力解除释放。同时,蓄能器401中的部分液压油经蓄能器控制阀402的工作油口流动至滑阀组内,以使马达301的进油油路302和回油油路303接通,并形成闭合回路。此时,可将作业机械拖行至非工作区域内。
通过这种结构设置,作业机械主机正常工作时,油源能够为蓄能器401存储油液。油源能够为马达301提供进油油源和回油油路。马达301在液压油的驱动作用下正常工作。
当作业机械主机出现故障时,油源截断。此时,蓄能器401中的油液还能够通过蓄能器控制阀402和梭阀500流动至制动器控制阀202和制动器201内,以为马达301解除制动。
蓄能器401中存储的油液通过蓄能器控制阀402的工作油口流动至滑阀组的先导控制油路中,促使滑阀组换向以使得马达301的进油油路302和马达301的回油油路303接通,以形成闭合回路。
根据以上描述可知,该行走驱动系统一方面能够保障作业机械的正常作业行驶;另一方面也能够在主机出现故障时,将作业机械拖行至非作业区域内。由此,能够极大降低由于主机故障,作业机械无法被拖行至非作业区域所导致的经济损失。
在本申请的一个实施例中,蓄能器控制阀402包括两位两通电磁换向阀 和换向开关。换向开关内包括电源,以使换向开关能够独立控制两位两通电磁换向阀换向。
如图1所示,蓄能器控制阀402包括两位两通电磁换向阀和用于控制两位两通电磁换向阀切换工作位的换向开关。其中,换向开关内安装有电源。该电源可以为电池。只要保证换向开关内的电池有电,即可控制两位两通电磁换向阀切换工作位。
当作业机械主机正常运行时,两位两通电磁换向阀处于图1所示的左位,即,蓄能器401与梭阀500的进油口相互截止的状态。此时,蓄能器401仅进行蓄能,不进行供能。
当作业机械主机出现故障时,控制换向开关以驱使两位两通电磁换向阀切换至右位,即,蓄能器401与梭阀500的进油口相互连通的状态。此时,第一油源101截止。蓄能器401停止蓄能,进行供能。
在本申请的一个实施例中,油源包括第一油源101、第二油源102和第三油源103。
其中,第一油源101分别与梭阀500的第一进油口和蓄能器401连接。第二油源102与马达301的进油油路302连接。第三油源103与马达301的回油油路303连接。
此处应当理解的是,第一油源101、第二油源102和第三油源103可以分别为三个独立的油源,也可以为公共油源的三个分支。
如图1所示,第一油源101分别与梭阀500的第一进油口和蓄能器401连接。由此,第一油源101的部分液压油能够通过梭阀500流入制动器控制阀202处并控制制动器201进行制动动作或者解除制动动作。同时,第一油源101的部分液压油还可以储存在蓄能器401内,作为备用油源。
第二油源102与马达301的进油油路302连接,第三油源103与马达301的回油油路303连接。此处应当理解的是,由于马达301可以实现正转或者反转。上述将第二油源102与马达301的进油油路302连接,将第三油源103与马达301的回油油路303连接仅是本申请的一个示意性实施例。并不能对本申请构成任何限定。马达301的进油油路302和回油油路303可以交换使用。即,马达301正转时的进油油路302为马达301反转时的回油油路303;马达301正转时的回油油路303为马达301反转时的进油油路302。
进一步,在本申请的一个实施例中,第一油源101与蓄能器401之间设置有用于防止油液回流的单向阀800。
如图1所示,在第一油源101与蓄能器401之间安装有单向阀800,该单向800阀能够防止蓄能器401中的液压油回流至第一油源101中。
本申请第三方面的实施例提供了一种作业机械,该作业机械包括如上所述的马达总成900或行走驱动系统。
例如,在本申请的一个实施例中,上述作业机械包括履带行走机构或者轮式行走机构。
此处应当理解的是,上述实施例仅是本申请的一个示意性实施例,并不能对本申请构成任何限定。也就是说,上述作业机械包括但是不限于履带式行走机构和轮式行走机构。
进一步,由于该作业机械包括如上所述的马达总成900或行走驱动系统,因此,其同样具备如上所述的各项优势。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种马达总成,包括:马达、制动器、制动器控制阀和滑阀组,
    其中,所述制动器控制阀与所述制动器连接,所述制动器与所述马达连接,所述制动器控制阀能够控制所述制动器解除制动动作或形成制动动作,
    其中,所述滑阀组连接在所述马达的进油油路和所述马达的回油油路之间,以控制所述马达的进油油路与所述马达的回油油路的连通或者截止。
  2. 根据权利要求1所述的马达总成,其中,还包括泄油油箱和泄油控制阀,
    其中,所述泄油控制阀连接在所述泄油油箱与所述马达的泄油口之间,所述泄油控制阀能够控制所述马达的泄油口与所述泄油油箱连通或者与所述马达的进油油路和所述马达的回油油路连通,并且,在所述泄油控制阀与所述马达的进油油路之间、以及所述泄油控制阀与所述马达的回油油路之间均安装有补油单向阀。
  3. 根据权利要求1所述的马达总成,其中,所述滑阀组包括两位四通换向阀和三位两通换向阀,
    其中,所述马达的进油油路和所述马达的回油油路均与所述两位四通换向阀连接,所述三位两通换向阀与所述两位四通换向阀连接,以使所述马达的进油回路与所述马达的回油油路连通或者截止。
  4. 根据权利要求3所述的马达总成,其中,所述两位四通换向阀的第一工作油口与所述马达的进油油路连接,所述两位四通换向阀的第二工作油口与所述马达的回油油路连接,所述两位四通换向阀的第三工作油口与所述三位两通换向阀的第一工作油口连接,所述两位四通换向阀的第四工作油口与所述三位两通换向阀的第二工作油口连接。
  5. 根据权利要求4所述的马达总成,其中,所述三位两通换向阀包括第一先导控制油路和第二先导控制油路,所述第一先导控制油路与所述两位四通换向阀的第三工作油口连接,所述第二先导控制油路与所述两位四通换向阀的第四工作油口连接,
    其中,所述三位两通换向阀的阀芯两端均安装有复位弹簧。
  6. 一种行走驱动系统,所述行走驱动系统,包括根据权利要求1至5中任一项所述的马达总成。
  7. 根据权利要求6所述的行走驱动系统,其中,还包括油源、蓄能器、蓄能器控制阀和梭阀,
    其中,所述油源与所述梭阀的第一进油口连接,所述油源与所述蓄能器连接,以为所述蓄能器充油,所述蓄能器控制阀连接在所述梭阀的第二进油口与所述蓄能器之间,以将所述蓄能器与所述梭阀连通或者截止,所述梭阀的工作油口与所述制动器控制阀连接,
    所述油源与所述马达的进油油路和所述马达的回油油路连接,所述滑阀组的先导控制油路与所述蓄能器控制阀的工作油口连接,所述滑阀组连接在所述马达的进油油路和所述马达的回油油路之间,以控制所述马达的进油油路与所述马达的回油油路的连通或者截止。
  8. 根据权利要求7所述的行走驱动系统,其中,所述蓄能器控制阀包括两位两通电磁换向阀和换向开关,所述换向开关内包括电源,以使换向开关能够独立控制所述两位两通电磁换向阀换向。
  9. 根据权利要求7所述的行走驱动系统,其中,所述油源包括第一油源、第二油源和第三油源,
    其中,所述第一油源分别与所述梭阀的第一进油口和所述蓄能器连接,所述第二油源与所述马达的进油油路连接,所述第三油源与所述马达的回油油路连接。
  10. 一种作业机械,包括根据权利要求1至5中任一项所述的马达总成或者根据权利要求6至9中任一项所述的行走驱动系统。
PCT/CN2021/109282 2021-05-25 2021-07-29 马达总成、行走驱动系统及作业机械 WO2022247003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110572485.1 2021-05-25
CN202110572485.1A CN113202829A (zh) 2021-05-25 2021-05-25 马达总成、行走驱动系统及作业机械

Publications (1)

Publication Number Publication Date
WO2022247003A1 true WO2022247003A1 (zh) 2022-12-01

Family

ID=77023083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109282 WO2022247003A1 (zh) 2021-05-25 2021-07-29 马达总成、行走驱动系统及作业机械

Country Status (2)

Country Link
CN (1) CN113202829A (zh)
WO (1) WO2022247003A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780990A (en) * 1971-01-28 1973-12-25 Haegglund & Soener Ab Brake controlling device
JP2003130011A (ja) * 2001-10-19 2003-05-08 Hitachi Constr Mach Co Ltd 油圧モータの駆動装置
CN105439018A (zh) * 2014-11-26 2016-03-30 徐州重型机械有限公司 具有分段控制功能的回转液控系统及起重机
CN105692454A (zh) * 2016-04-14 2016-06-22 徐州重型机械有限公司 一种卷扬控制系统和起重机
CN106315442A (zh) * 2016-08-26 2017-01-11 武汉船用机械有限责任公司 拖缆机自动排缆液压控制系统
CN207846525U (zh) * 2017-12-18 2018-09-11 徐州徐工挖掘机械有限公司 挖掘机回转马达的延时制动控制回路
CN109469666A (zh) * 2018-10-17 2019-03-15 江苏谷登工程机械装备有限公司 一种水平定向钻机液压控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780990A (en) * 1971-01-28 1973-12-25 Haegglund & Soener Ab Brake controlling device
JP2003130011A (ja) * 2001-10-19 2003-05-08 Hitachi Constr Mach Co Ltd 油圧モータの駆動装置
CN105439018A (zh) * 2014-11-26 2016-03-30 徐州重型机械有限公司 具有分段控制功能的回转液控系统及起重机
CN105692454A (zh) * 2016-04-14 2016-06-22 徐州重型机械有限公司 一种卷扬控制系统和起重机
CN106315442A (zh) * 2016-08-26 2017-01-11 武汉船用机械有限责任公司 拖缆机自动排缆液压控制系统
CN207846525U (zh) * 2017-12-18 2018-09-11 徐州徐工挖掘机械有限公司 挖掘机回转马达的延时制动控制回路
CN109469666A (zh) * 2018-10-17 2019-03-15 江苏谷登工程机械装备有限公司 一种水平定向钻机液压控制系统

Also Published As

Publication number Publication date
CN113202829A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
EP3026272B1 (en) Energy regeneration system for construction equipment
KR101272978B1 (ko) 하이브리드 건설 기계
CN102874704B (zh) 一种液压系统、卷扬机构及工程机械
JP2013245787A (ja) 作業機械の駆動装置
CN111577714B (zh) 一种液压系统及工程机械
JP4948046B2 (ja) 建設機械の動力装置
WO2022247003A1 (zh) 马达总成、行走驱动系统及作业机械
CN110937541B (zh) 一种使用o型中位机能换向阀的卷扬机液压系统
CN219672958U (zh) 应用于掘锚机的液压行走驱动系统、掘锚机
CN214945324U (zh) 马达总成、行走驱动系统及作业机械
CN109642665B (zh) 流体压力回路
CN216379736U (zh) 一种挖掘机回转马达的制动解除回路及挖掘机
CN113581147B (zh) 液压制动系统及作业机械
CN112112867B (zh) 液控式排气阀单元、液控排气式卷扬控制系统和卷扬机
CN214738393U (zh) 一种回转马达的补油系统及挖掘机
CN113482979A (zh) 一种用于凿岩机和锚杆钻机切换的控制系统
CN112922073A (zh) 一种回转马达的补油系统及挖掘机
CN112942480B (zh) 混合动力工程机械液压系统以及混合动力工程机械
JP4260850B2 (ja) 油圧回路
CN215927952U (zh) 一种工程机械车辆的紧急制动系统及履带式挖掘机
CN216618061U (zh) 一种剪叉式高空作业平台行走控制系统
CN112962710B (zh) 挖掘机的液压系统、挖掘机及动力共享机群
CN211778303U (zh) 自行走剪叉型高空作业车液压系统集成控制阀组
CN116838731A (zh) 矿用单轨吊用制动液压系统
CN113464513A (zh) 一种开式回转补油系统及补油方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE