WO2022246897A1 - 静电场偏转器及其加工方法 - Google Patents

静电场偏转器及其加工方法 Download PDF

Info

Publication number
WO2022246897A1
WO2022246897A1 PCT/CN2021/098310 CN2021098310W WO2022246897A1 WO 2022246897 A1 WO2022246897 A1 WO 2022246897A1 CN 2021098310 W CN2021098310 W CN 2021098310W WO 2022246897 A1 WO2022246897 A1 WO 2022246897A1
Authority
WO
WIPO (PCT)
Prior art keywords
deflection
plate
extension
electrostatic field
side wall
Prior art date
Application number
PCT/CN2021/098310
Other languages
English (en)
French (fr)
Inventor
李帅辰
蒋磊
孙伟强
孟庆浪
蒋俊海
Original Assignee
中科晶源微电子技术(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科晶源微电子技术(北京)有限公司 filed Critical 中科晶源微电子技术(北京)有限公司
Publication of WO2022246897A1 publication Critical patent/WO2022246897A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1477Scanning means electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Definitions

  • the present application relates to the field of semiconductors, in particular to an electrostatic field deflector and a processing method thereof.
  • the optical inspection equipment can no longer meet the needs, and the electron beam inspection equipment overcomes the limitation of the optical wavelength, making the resolution Increased to the nanometer field, tiny defects can be detected.
  • the core of the electron beam detection equipment is the scanning electron microscope, which scans the image point by point by deflecting the electron beam. There are two types of deflectors: electrostatic deflector and magnetic deflector.
  • electrostatic deflector Compared with magnetic deflector, electrostatic deflector has the advantage of faster scanning speed, but compared with magnetic deflector, the electrostatic field in electrostatic field deflector is more uneven, which will cause greater The phase difference is not conducive to the alignment of the scanning electron microscope.
  • an electrostatic field deflector which is suitable for installation in a scanning electron microscope, including a deflecting plate and an insulating mounting seat; the middle part of the insulating mounting seat has a mounting hole; the deflecting plate is in the form of a column Body, the outer wall is adapted to the installation hole, the deflection plate is fixed in the installation hole, and the middle part of the deflection plate has an optical axis hole, and the optical axis hole is coaxially arranged with the installation hole ; Wherein, the deflection pole plate is divided into even-numbered deflection pole pieces along its radial direction.
  • the upper side wall of the deflection pole block protrudes from the insulating mount and has a first extension extending outward, the upper surface of the first extension is lower than the deflection pole The upper surface of the block, the lower surface of the first extension part is in contact with the upper surface of the insulating mount.
  • the deflection plate is a cylinder, and grooves are opened on the surface of the side wall of the deflection plate that is not extended by the first extension, and are in contact with the inner wall of the installation hole. .
  • the deflection pole plate is evenly divided into eight deflection pole pieces.
  • the material of the deflection plate is beryllium copper; the material of the insulating mount is ceramic.
  • a second extension part extends outward from the upper side wall of the insulating mounting base, the second extension part is in a ring structure in the vertical direction, and the second extension part is provided with Four fixing screw holes, the axial distances from the fixing screw holes to the installation holes are equal, and the connecting lines of the adjacent fixing screw holes form a square structure; the first one on each deflection pole piece The extension parts are spliced into a ring structure in the vertical direction, and the outer diameter of the ring structure of the deflection pole piece is smaller than the outer diameter of the ring structure of the second extension part; the upper surface of the first extension part is provided with a crimping hole, The side wall is provided with an inlet hole.
  • the present application proposes a processing method of an electrostatic field deflector, wherein the upper side wall of the deflecting pole piece protrudes from the insulating mounting seat and has a first extension extending outward, and the first extension
  • the upper surface of the deflection pole piece is lower than the upper surface of the deflection pole piece, and the lower surface of the first extension part is in contact with the upper surface of the insulating mounting base;
  • the deflection pole plate is a cylinder, and the deflection pole plate is not extended.
  • a groove is opened on the surface of the side wall of the first extension part, which is in contact with the inner wall of the installation hole; it includes the following steps: rough machining the deflection plate to be processed, and making the upper part of the side wall into the first extension part, without setting The first deflection plate prototype with grooves on the side wall of the first extension; processing the electrostatic field deflector; includes the following steps: rough machining the deflection plate to be processed, and making the upper part of the side wall as The extension part is the prototype of the deflection pole plate with a groove on the side wall without the extension part; rough machining of the insulating mounting seat to be processed is made into the prototype of the mounting seat with a mounting hole in the middle; the deflection pole plate
  • the groove of the plate and/or the inner wall of the mounting hole of the insulating mount is coated with adhesive, and the deflection plate and the insulating mount are bonded and fixed for a preset time to release the adhesive stress.
  • the preliminary processing of the deflecting electrode plate to be processed further includes: placing the deflecting electrode plate to be processed on a cutting line processing device, and the upper surface of the first deflecting electrode plate to be processed , The side and the lower surface are machined with an even number of cutting lines in the radial direction.
  • the upper side wall of the insulating mount has a second extension extending outward, the second extension is in a ring structure in the vertical direction, and the second extension is provided with Four fixing screw holes, the axial distances from the fixing screw holes to the installation holes are equal, and the connecting lines of the adjacent fixing screw holes form a square structure; the first one on each deflection pole piece The extension parts are spliced into a ring structure in the vertical direction, and the outer diameter of the ring structure of the deflection pole piece is smaller than the outer diameter of the ring structure of the second extension part; the upper surface of the first extension part is provided with a crimping hole, The side wall is provided with a wire inlet hole; use a clamping device to clamp the side wall of the second extension part, and sequentially install the side wall without the second extension part and the second extension part of the insulating mounting seat.
  • the lower surface of the deflection plate and the inner wall of the optical axis hole of the prototype of the deflection plate are finished
  • the deflecting pole plate prototype is cut along the cutting line by using a slow-moving wire to cut into eight averaged deflecting pole pieces.
  • FIG. 1 shows a three-dimensional structure diagram of an electrostatic field deflector according to an embodiment of the present application
  • Fig. 2 shows a schematic diagram of the installation of the prototype of the deflector and the prototype of the mounting seat according to an embodiment of the present application
  • Fig. 3 shows a cross-sectional view of an electrostatic field deflector according to an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • Fig. 1 shows a three-dimensional structure diagram of an electrostatic field deflector according to an embodiment of the application
  • Fig. 2 shows a schematic diagram of installation when the prototype of the deflector and the prototype of the mounting base are installed according to an embodiment of the application
  • Fig. 3 shows A cross-sectional view of an electrostatic field deflector according to an embodiment of the present application.
  • this electrostatic field deflector is suitable for installation in a scanning electron microscope, and includes: a deflecting plate 10 and an insulating mounting seat 20, the middle part of the insulating mounting seat 20 has a mounting hole, and the deflecting plate 10 is as a whole It is cylindrical, and the outer wall is adapted to the installation hole, and the deflection plate 10 is fixed in the installation hole, and the middle part of the deflection plate 10 has an optical axis hole 102, and the optical axis hole 102 is coaxially arranged with the installation hole, wherein the deflection plate 10 is divided into deflection pole pieces 11 of even lobes along its radial direction.
  • the electron beam can pass through the electrostatic field deflector as vertically as possible
  • the geometric center of the deflection pole plate 10 is cut into even-numbered deflection pole pieces 11 along its radial direction, and the two opposite deflection pole pieces 11 form an electrostatic field, which effectively improves the uniformity of the electrostatic field, so that The scanning electron microscope reduces the phase difference, improves the resolution, and improves the detection accuracy, which can be applied to production lines with higher processes.
  • the upper side wall of the deflection pole piece 11 protrudes from the insulating mount 20 and extends outwards with a first extension 101 , the upper surface of the first extension 101 is lower than The upper surface of the deflection pole piece 11 and the lower surface of the first extension part 101 are in contact with the upper surface of the insulating mounting base 20 .
  • each deflection pole piece 11 extends outwards from a first extension portion 101, and the first extension portion 101 is cut into even-numbered lobes through the deflection pole plate 10, and the first extension portion
  • the lower surface of 101 can be in contact with the upper surface of the insulating mount 20, mechanically ensuring that the deflection pole piece 11 is installed horizontally in the insulating mount 20, and ensuring that the electron beam exits the optical axis hole 102 as vertically as possible.
  • the longitudinal projection of the single first extension 101 is a fan ring, the inner edge of the fan ring is in contact with the outer wall of the deflection pole piece 11, and the lower surface of the fan ring is horizontal, so that the deflection pole plate 10 is horizontally placed on the insulating mounting base Within 20, it is convenient for the alignment of the scanning electron microscope and improves the resolution.
  • the longitudinal projections of all the first extensions 101 form a ring shape, and the upper surface of the deflection pole piece 11 is higher than the upper surface of the first extension portion 101, and the upper surface of the deflection pole piece 11 is used as the base surface. It is convenient for those skilled in the art to level when processing.
  • the deflection plate 10 is a cylinder, and grooves are opened on the surface of the side wall of the deflection plate 10 where the first extension 101 is not extended, and are in contact with the inner wall of the installation hole.
  • the side wall of the deflection plate 10 without the first extension 101 extending outward is the vertical plane of the deflection plate 10, and grooves are opened on the vertical plane of the deflection plate 10, and the grooves have
  • the deflection plate 10 has a vertical plane, and compared with a smooth plane, more adhesive can be stored in the groove, the bonding effect is better, and the connection strength is fully improved.
  • the deflection pole plate 10 is evenly divided into eight deflection pole pieces 11 .
  • the deflection plate 10 is divided into eight lobes after forming an average cut, forming four pairs of electrostatic fields.
  • the material of the deflector plate 10 is beryllium copper, and the material of the insulating mount 20 is ceramic.
  • the deflection plate 10 is made of beryllium copper, and the insulating mount 20 is made of ceramics.
  • the upper side wall of the insulating mount 20 extends outwards with a second extension part 201, the second extension part 201 has a ring structure in the vertical direction, and the second extension part 201
  • Four fixing screw holes 202 are provided on the second extension part 201. The distances from the fixing screw holes 202 to the axial centers of the mounting holes are equal, and the adjacent fixing screw holes 202 are connected to form a square structure.
  • An extension part 101 is spliced into a ring structure in the vertical direction, and the outer diameter of the ring structure of the deflection pole piece 11 is smaller than the outer diameter of the ring structure of the second extension part 201, and the upper surface of the first extension part 101 is provided with a crimping hole 104, The side wall is provided with a wire inlet hole 105 .
  • a wire inlet hole 105 is opened through the side wall of the first extension part 101, and a wire is connected to the deflection plate 10, and a voltage is applied to generate an electric field to change the direction of the electron beam, so as to realize the scanning function of the scanning lens.
  • a crimping hole 104 is opened on the upper surface of the first extension part 101 , and screws are screwed in to crimp the cables to fix the cables connected to the deflection pole pieces 11 .
  • the second extension 201 extending outward from the upper side wall of the insulating mount 20 is also in the form of a ring structure, and the second extension 201 is used to horizontally and stably fix the deflection plate 10 and the second extension thereon.
  • An extension 101, and the second extension 201 is provided with a fixing screw hole 202, the distance between the fixing screw hole 202 and the axis center of the installation hole is equal, and the adjacent fixing screw holes 202 are connected to form a square structure, which is easy to process, and As far as possible to ensure that the force is even after the assembly is completed, the fixing screw hole 202 is used to screw the deflection upper cover above the fixed deflection plate 10, and the deflection upper cover is installed to ensure the rationality of the device design. More components of the deflector mechanism and No changes have been made, so they will not be repeated in this article.
  • the present application proposes a processing method for an electrostatic field deflector.
  • the processing of the electrostatic field deflector in the above-mentioned possible implementation includes the following steps: rough machining the deflecting plate 10 to be processed, and making the side
  • the upper part of the wall is an extension part, and the side wall without the extension part is provided with the prototype of the deflection plate 10 with grooves, and the insulating mounting seat 20 to be processed is rough-machined to make a prototype of the mounting seat with a mounting hole in the middle.
  • the groove of the pole plate 10 and/or the inner wall of the mounting hole of the insulating mount 20 is coated with adhesive, and the deflection plate 10 and the insulating mount 20 are bonded and fixed for a preset time to release the adhesive stress.
  • the preliminary processing of the deflection pole plate 10 to be processed further includes: placing the deflection pole plate 10 to be processed on the cutting line processing device, and placing the first deflection pole plate 10 on the upper surface, An even number of cutting lines 103 are processed radially on the side and lower surface.
  • the deflection plate 10 to be processed made of beryllium copper is firstly rough-machined. It should be emphasized that the preliminary processing here has a finishing allowance, the equipment used for the specific processing, and the size All of them can be changed according to the specifications of the scanning electron microscope, which is a prior art, so only one processing sequence is mentioned in this article, and no further limitations are made on the others.
  • it includes processing the deflection plate 10 to be processed into a cylinder with a first extension 101 extending outward from the upper side wall, opening a cylinder with an optical axis hole 102 in the center, and processing the first extension 101 into a cylinder, And a groove is processed at the side wall where the first extension 101 is not extended outward, and the upper surface of the deflection plate 10 is higher than the upper surface of the first extension 101, so that it is used as a leveling for finishing;
  • Use a cutting line processing device to process an even number of cutting lines 103 in the radial direction on the upper surface, side and lower surface of the first deflection plate 10 to be processed, and the two ends of the cutting lines 103 on the side are respectively connected with the cutting lines on the upper surface and the lower surface.
  • the cutting line 103 is used as the reference line for cutting the deflection pole plate 10 into the deflection pole block 11, and the cutting line 103 is then preliminarily processed into the pressure wire hole 104 and the wire inlet hole 105 on the first extension part 101, as mentioned above After the processing steps are completed, the prototype of the deflecting plate 10 is made.
  • machining is carried out on the insulating mount 20 to be processed made of ceramic material, and a cylinder with a second extension 201 extending outward from the upper side wall and a mounting hole in the middle is made, and the second extension 201 is also processed Form a cylinder, and the surface is provided with a fixed screw hole 202, and the initial shape of the mounting seat is made after the aforementioned sequential processing steps are completed;
  • the upper side wall of the insulating mount 20 has a second extension part 201 extending outward.
  • the second extension part 201 has a ring structure in the vertical direction, and four Fixing screw holes 202, the axial distances from the fixing screw holes 202 to the mounting holes are equal, and the adjacent fixing screw holes 202 are connected to form a square structure, and the first extension part 101 on each deflection pole piece 11 is spliced in the vertical direction Form a ring structure, and the outer diameter of the ring structure of the deflection pole piece 11 is smaller than the ring structure outer diameter of the second extension part 201, the upper surface of the first extension part 101 is provided with a crimping hole 104, and the side wall is provided with a wire inlet hole 105,
  • Use the clamping device to clamp the side wall of the second extension part 201, and sequentially apply the side wall of the second extension part 201 to the insulating mount 20, the lower surface of the second extension part 201, and the light of the initial shape of the
  • the side wall of the second extension part 201 is used as the clamping surface, and the upper surface of the prototype deflection plate 10 is leveled, and then the side of the edge mounting seat that is not extended by the second extension part 201 is sequentially processed. wall, the lower surface of the second extension part 201, and the inner wall of the optical axis hole 102 of the prototype deflection plate 10, this processing sequence makes the deflection plate 10 not extend the side wall of the first extension part 101 and the insulating mounting seat 20.
  • the verticality of the side wall extended with the second extension part 201 is guaranteed, thereby ensuring that the geometric center of the electrostatic field of the deflecting plate 10 is as perpendicular as possible to the electron beam after installation, so that the electrostatic field deflector processing method of the present application is prepared
  • the deflector is suitable for higher process production lines.
  • the prototype of the deflection pole plate 10 is cut along the cutting line 103 by using a wire-feeding wire to cut into eight average deflection pole pieces 11 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

本申请涉及一种静电场偏转器,适用于安装在扫描电镜内,包括:偏转极板与绝缘安装座,绝缘安装座中部具有安装孔,偏转极板整体呈柱体,外侧壁与安装孔相适配,偏转极板固定在安装孔内,且偏转极板的中部具有光轴孔,光轴孔与安装孔同轴设置,其中,偏转极板沿其径向分为偶数瓣的偏转极块。包括通过将偏转极板固定在绝缘安装座内,且偏转极板的光轴孔与安装孔同轴设置,使电子束尽可能垂直的通过静电场偏转器的几何中心,又将偏转极板沿其径向平均切割成偶数瓣的偏转极块,相对的两个偏转极块形成一个静电场,有效的提高了静电场的均匀性,以使扫描电镜减小了相差,提高的分辨率,检测精度的提高能够适用于更高制程的产线。

Description

静电场偏转器及其加工方法 技术领域
本申请涉及半导体领域,尤其涉及一种静电场偏转器及其加工方法。
背景技术
随着半导体技术的发展和工艺技术进步,集成电路线宽愈来愈向细微化发展,对电路的生产工艺技术也提出了更高更难的要求,不但要刻蚀出亚微米线条,而且线路缺陷也要控制在一定范围内,以保证芯片的功能和成品率。
缺陷的尺寸在特征线宽的三分之一以上时,就成为致命的缺陷会导致器件失效。由于器件的尺寸不断缩小,致命缺陷的尺寸也变的越来越小,缺陷的检测变得更加困难,光学检测设备已不能满足需要,而电子束检测设备克服了光学波长的限制,使分辨率提高到纳米领域,可以检测到极微小的缺陷。电子束检测设备的核心是扫描电镜,即通过偏转电子束逐点扫描成像。偏转器有静电偏转器与磁偏转器两种,静电偏转相比磁偏转具有扫描速度快的优点,但是相较于磁偏转,静电场偏转器中的静电场更加不均匀,会引起更大的相差,不利于扫描电镜的对中。
发明内容
有鉴于此,本申请提出了一种静电场偏转器,适用于安装在扫描电镜内,包括偏转极板与绝缘安装座;所述绝缘安装座中部具有安装孔;所述偏转极板整体呈柱体,外侧壁与所述安装孔相适配,所述偏转极板固定在所述安装孔内,且所述偏转极板的中部具有光轴孔,所述光轴孔与所述安装孔同轴设置;其中,所述偏转极板沿其径向分为偶数瓣的偏转极块。
在一种可能的实现方法中,所述偏转极块的上部侧壁伸出所述绝缘安装座并向外延伸有第一延伸部,所述第一延伸部的上表面低于所述偏转极块的上表面,所述第一延伸部下表面与所述绝缘安装座上表面相接触。
在一种可能的实现方法中,所述偏转极板为圆柱体,所述偏转极板未延伸有所述第一延伸部的侧壁表面上开设有沟槽,与所述安装孔内壁相接触。
在一种可能的实现方法中,所述偏转极板平均分为八瓣所述偏转极块。
在一种可能的实现方法中,所述偏转极板的材质为铍铜;所述绝缘安装座的材质为陶瓷。
在一种可能的实现方法中,所述绝缘安装座的上部侧壁向外延伸有第二延伸部,所述第二延伸部在竖直方向呈环形结构,所述第二延伸部上开设有四个固定螺孔,所述固定螺孔到所述安装孔的轴心距离相等,且相邻的所述固定螺孔连线构成正方形结构;每个所述偏转极块上的所述第一延伸部在竖直方向拼接成环形结构,且所述偏转极块的环形结构外径小于所述第二延伸部的环形结构外径;所述第一延伸部的上表面开设有压线孔,侧壁开设有进线孔。
另一方面,本申请提出了一种静电场偏转器的加工方法,所述偏转极块的上部侧壁伸出所述绝缘安装座并向外延伸有第一延伸部,所述第一延伸部的上表面低于所述偏转极块的上表面,所述第一延伸部下表面与所述绝缘安装座上表面相接触;所述偏转极板为圆柱体,所述偏转极板未延伸有所述第一延伸部的侧壁表面上开设有沟槽,与所述安装孔内壁相接触;包括如下步骤:对待加工偏转极板进行粗加工,制成侧壁上部为第一延伸部,未设置所述第一延伸部的侧壁上开设有沟槽的偏转极板初型;对上述静电场偏转器进行加工处理;包括如下步骤:对待加工偏转极板进行粗加工,制成侧壁上部为延伸部,未设置所述延伸部的侧壁上开设有沟槽的偏转极板初型;对待加工绝缘安装座进行粗加工,制成中部具有安装孔的安装座初型;在所述偏转极板的沟槽和/或所述绝缘安装座的安装孔内壁涂覆粘接剂,所述偏转极板与所述绝缘安装座粘接固定后等待预设时间,用以释放粘接应力。
在一种可能的实现方式中,对待加工偏转极板进行的初步加工还包括:将所述待加工偏转极板置于切割线加工装置上,在所述第一待加工偏转极板的上表面、侧面及下表面沿径向加工出偶数根切割线。
在一种可能的实现方式中,所述绝缘安装座的上部侧壁向外延伸有第二延伸部,所述第二延伸部在竖直方向呈环形结构,所述第二延伸部上开设有四个固定螺孔,所述固定螺孔到所述安装孔的轴心距离相等,且相邻的所述固定螺孔连线构成正方形结构;每个所述偏转极块上的所述第一延伸部在竖直方向拼接成环形结构,且所述偏转极块的环形结构外径小于所述第二延伸部的环形结构外径;所述第一延伸部的上表面开设有压线孔,侧壁开设有进线孔;使用夹装装置夹装所述第二延伸部的侧壁,依次对所述绝缘安装座未延伸有所述第二延伸部的侧壁、所述第二延伸部的下表面以及所述偏转极板初型的光轴孔内壁进行精加工。
在一种可能的实现方式中,使用慢走丝线沿所述切割线切割所述偏转极板初型,切割成八瓣平均的所述偏转极块。
本申请的有益效果:通过将偏转极板固定在绝缘安装座内,且偏转极板的光轴孔与安装孔同轴设置,使电子束尽可能垂直的通过静电场偏转器的几何中心,又将偏转极板沿其径向平均切割成偶数瓣的偏转极块,相对的两个偏转极块形成一个静电场,有效的提高了静电场的均匀性,以使扫描电镜减小了相差,提高的分辨率,检测精度的提高能够适用于更高制程的产线。
根据下面参考附图对示例性实施例的详细说明,本申请的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例、特征和方面,并且用于解释本申请的原理。
图1示出根据本申请一实施例的静电场偏转器的立体结构图;
图2示出根据本申请一实施例的偏转器初型与安装座初型安装时的安装示意图;
图3示出根据本申请一实施例的静电场偏转器的剖视图。
具体实施方法
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
其中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请或简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方法中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
图1示出根据本申请一实施例的静电场偏转器的立体结构图;图2示出根据本申请一实施例的偏转器初型与安装座初型安装时的安装示意图;图3示出根据本申请一实施例的静电场偏转器的剖视图。
如图1-3所示,该一种静电场偏转器,适用于安装在扫描电镜内,包括:偏转极板10与绝缘安装座20,绝缘安装座20中部具有安装孔,偏转极板10整体呈柱体,外侧壁与安装孔相适配,偏转极板10固定在安装孔内,且偏转极 板10的中部具有光轴孔102,光轴孔102与安装孔同轴设置,其中,偏转极板10沿其径向分为偶数瓣的偏转极块11。
在此种实现方式中,通过将偏转极板10固定在绝缘安装座20内,且偏转极板10的光轴孔102与安装孔同轴设置,使电子束尽可能垂直的通过静电场偏转器的几何中心,又将偏转极板10沿其径向平均切割成偶数瓣的偏转极块11,相对的两个偏转极块11形成一个静电场,有效的提高了静电场的均匀性,以使扫描电镜减小了相差,提高的分辨率,检测精度的提高能够适用于更高制程的产线。
如图3所示,在一种可能的实现方法中,偏转极块11的上部侧壁伸出绝缘安装座20并向外延伸有第一延伸部101,第一延伸部101的上表面低于偏转极块11的上表面,第一延伸部101下表面与绝缘安装座20上表面相接触。
在此种可能的实现方式中,每个偏转极块11的上部侧壁向外延伸出第一延伸部101,第一延伸部101通偏转极板10一同被切成偶数瓣,第一延伸部101下表面能够与绝缘安装座20的上表面相接触,从机械结构上保证偏转极块11水平安装在绝缘安装座20内,确保电子束尽可能垂直射出光轴孔102。
进一步的,单个第一延伸部101的纵向投影为扇环,扇环内沿与偏转极块11的外壁相接触,且扇环的下表面水平,以使偏转极板10水平放置于绝缘安装座20内,便于扫描电镜对中,提高分辨率。
更具体的,所有第一延伸部101的纵向投影成环形,且偏转极块11的上表面高于第一延伸部101的上表面,用偏转极块11的上表面作为基面,在进行经加工时便于本领域实施人员找平。
在一种可能的实现方法中,偏转极板10为圆柱体,偏转极板10未延伸有第一延伸部101的侧壁表面上开设有沟槽,与安装孔内壁相接触。
在此种实现方式中,偏转极板10未向外延伸有第一延伸部101的侧壁为偏转极板10竖直平面,偏转极板10竖直平面上开设有沟槽,具有沟槽的偏转极板10竖直平面,相较于光滑平面,槽内能够存放更多的粘接剂,粘接效果更好,并充分的提高了连接强度。
在一种可能的实现方法中,偏转极板10平均分为八瓣偏转极块11。
优选的,偏转极板10形成平均切割后分为八瓣,组成四对静电场。
在一种可能的实现方法中,偏转极板10的材质为铍铜,绝缘安装座20的材质为陶瓷。
优选的,偏转极板10的材质选用铍铜,绝缘安装座20的材质为陶瓷。
如图1、图2所示,在一种可能的实现方法中,绝缘安装座20的上部侧壁向外延伸有第二延伸部201,第二延伸部201在竖直方向呈环形结构,第二延伸部201上开设有四个固定螺孔202,固定螺孔202到安装孔的轴心距离相等,且相邻的固定螺孔202连线构成正方形结构,每个偏转极块11上的第一延伸部101在竖直方向拼接成环形结构,且偏转极块11的环形结构外径小于第二延伸部201的环形结构外径,第一延伸部101的上表面开设有压线孔104,侧壁开设有进线孔105。
在此种可能的实现方式中,通过第一延伸部101的侧壁开设有进线孔105,对偏转极板10接电线,施加电压产生电场改变电子束方向,实现扫描透镜扫描的功能,在第一延伸部101的上表面开设有压线孔104,拧入螺钉压线,固定连接各个偏转极块11的线缆。
在此种实现方式中,绝缘安装座20的上部侧壁向外延伸的第二延伸部201也成环形结构,第二延伸部201用以水平,稳固的固定其上的偏转极板10和第一延伸部101,并且第二延伸部201上设置有固定螺孔202,固定螺孔202到安装孔的轴心距离相等,且相邻的固定螺孔202连线构成正方形结构,易于加工,且尽可能的保证装配好后受力平均,固定螺孔202用于螺接固定偏转极板10上方的偏转上盖,安装偏转上盖以确保装置设计的合理性,更多偏转器机构的部件并未做改动,故在本文中不做赘述。
另一方面,本申请提出了一种静电场偏转器的加工方法,对上述可能的实现方式中的静电场偏转器进行处理,包括如下步骤:对待加工偏转极板10进行粗加工,制成侧壁上部为延伸部,未设置延伸部的侧壁上开设有沟槽的偏转极板10初型,对待加工绝缘安装座20进行粗加工,制成中部具有安装孔 的安装座初型,在偏转极板10的沟槽和/或绝缘安装座20的安装孔内壁涂覆粘接剂,偏转极板10与绝缘安装座20粘接固定后等待预设时间,用以释放粘接应力。
在一种可能的实现方式中,对待加工偏转极板10进行的初步加工还包括:将待加工偏转极板10置于切割线加工装置上,在第一待加工偏转极板10的上表面、侧面及下表面沿径向加工出偶数根切割线103。
在上述实现方式中,首先对铍铜材质的待加工偏转极板10进行粗加工,需要特别强调的是,此处的初步加工预留有精加工余量,具体加工所使用的设备,及尺寸均可根据扫描电镜的规格进行变化,为现有技术,故本文中仅举出一种加工顺序,其余并未做出更多限定。
具体的,包括将待加工偏转极板10加工成上部侧壁向外延伸有第一延伸部101,将中心开设有光轴孔102的圆柱体,且第一延伸部101也加工成圆柱体,并在未向外延伸有第一延伸部101的侧壁处加工出沟槽,偏转极板10的上表面高于第一延伸部101的上表面,以使其作为精加工的找平面;再使用切割线加工装置在第一待加工偏转极板10的上表面、侧面及下表面沿径向加工出偶数根切割线103,侧面的切割线103两端分别与上表面与下表面的切割线103相连,切割线103做为之后将偏转极板10切开为偏转极块11的基准线,切割线103然后初步加工出第一延伸部101上的压线孔104及进线孔105,前述加工步骤完成后制成偏转极板10初型。
更进一步的,对陶瓷材质的待加工绝缘安装座20进行粗加工,制成上部侧壁向外延伸有第二延伸部201,中部开设有安装孔的圆柱体,且第二延伸部201也加工成圆柱体,表面开设有固定螺孔202,前述顺序加工步骤完成后制成安装座初型;
在偏转极板10初型侧壁的沟槽以及安装座初型的安装孔内壁处涂覆粘接剂,粘接后等待粘接剂固化,此处需要指出,粘接剂固化后,还需再放置一段时间释放粘接应力,避免粘接应力对之后切割时造成一定程度的影响,有效提高本申请的静电场偏转器的成品率。
在一种可能的实现方式中,绝缘安装座20的上部侧壁向外延伸有第二延伸部201,第二延伸部201在竖直方向呈环形结构,第二延伸部201上开设有四个固定螺孔202,固定螺孔202到安装孔的轴心距离相等,且相邻的固定螺孔202连线构成正方形结构,每个偏转极块11上的第一延伸部101在竖直方向拼接成环形结构,且偏转极块11的环形结构外径小于第二延伸部201的环形结构外径,第一延伸部101的上表面开设有压线孔104,侧壁开设有进线孔105,使用夹装装置夹装第二延伸部201的侧壁,依次对绝缘安装座20未延伸有第二延伸部201的侧壁、第二延伸部201的下表面以及偏转极板10初型的光轴孔102内壁进行精加工。
在此种实现方式中,以第二延伸部201的侧壁做为夹装面,以偏转极板10初型的上表面找平,然后依次加工缘安装座未延伸有第二延伸部201的侧壁、第二延伸部201的下表面以及偏转极板10初型的光轴孔102内壁,此种加工顺序使得偏转极板10未延伸有第一延伸部101的侧壁与绝缘安装座20未延伸有第二延伸部201的侧壁的垂直度得到保证,从而确保了偏转极板10在安装后静电场的几何中心尽可能与电子束垂直,以使本申请的静电场偏转器加工方式制备的偏转器适用于更高制程的产线。
在一种可能的实现方式中,使用慢走丝线沿切割线103切割偏转极板10初型,切割成八瓣平均的偏转极块11。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种静电场偏转器,适用于安装在扫描电镜内,其特征在于,包括偏转极板与绝缘安装座;
    所述绝缘安装座中部具有安装孔;
    所述偏转极板整体呈柱体,外侧壁与所述安装孔相适配,所述偏转极板固定在所述安装孔内,且所述偏转极板的中部具有光轴孔,所述光轴孔与所述安装孔同轴设置;
    其中,所述偏转极板沿其径向平均分为偶数瓣的偏转极块。
  2. 根据权利要求1所述的静电场偏转器,其特征在于,所述偏转极块的上部侧壁伸出所述绝缘安装座并向外延伸有第一延伸部,所述第一延伸部的上表面低于所述偏转极块的上表面,所述第一延伸部下表面与所述绝缘安装座上表面相接触。
  3. 根据权利要求2所述的静电场偏转器,其特征在于,所述偏转极板为圆柱体,所述偏转极板未延伸有所述第一延伸部的侧壁表面上开设有沟槽,与所述安装孔内壁相接触。
  4. 根据权利要求1-3任一项所述的静电场偏转器,其特征在于,所述偏转极板分为八瓣所述偏转极块。
  5. 根据权利要求4所述的静电场偏转器,其特征在于,所述偏转极板的材质为铍铜;所述绝缘安装座的材质为陶瓷。
  6. 根据权利要求2所述的静电场偏转器,其特征在于,所述绝缘安装座的上部侧壁向外延伸有第二延伸部,所述第二延伸部在竖直方向呈环形结构,所述第二延伸部上开设有四个固定螺孔,所述固定螺孔到所述安装孔的轴心距离相等,且相邻的所述固定螺孔连线构成正方形结构;
    每个所述偏转极块上的所述第一延伸部在竖直方向拼接成环形结构,且所述偏转极块的环形结构外径小于所述第二延伸部的环形结构外径;
    所述第一延伸部的上表面开设有压线孔,侧壁开设有进线孔。
  7. 一种静电场偏转器的加工方法,对权利要求1所述的静电场偏转器进行加工处理,其特征在于,所述偏转极块的上部侧壁伸出所述绝缘安装座并 向外延伸有第一延伸部,所述第一延伸部的上表面低于所述偏转极块的上表面,所述第一延伸部下表面与所述绝缘安装座上表面相接触;
    所述偏转极板为圆柱体,所述偏转极板未延伸有所述第一延伸部的侧壁表面上开设有沟槽,与所述安装孔内壁相接触;
    包括如下步骤:对待加工偏转极板进行粗加工,制成侧壁上部为第一延伸部,未设置所述第一延伸部的侧壁上开设有沟槽的偏转极板初型;
    对待加工绝缘安装座进行粗加工,制成中部具有安装孔的安装座初型;
    在所述偏转极板的沟槽和/或所述绝缘安装座的安装孔内壁涂覆粘接剂,所述偏转极板与所述绝缘安装座粘接固定后等待预设时间,用以释放粘接应力。
  8. 根据权利要求7所述的一种静电场偏转器的加工方法,其特征在于,对待加工偏转极板进行的初步加工还包括:将所述待加工偏转极板置于切割线加工装置上,在所述第一待加工偏转极板的上表面、侧面及下表面沿径向加工出偶数根切割线。
  9. 根据权利要求7所述的一种静电场偏转器的加工方法,其特征在于,所述绝缘安装座的上部侧壁向外延伸有第二延伸部,所述第二延伸部在竖直方向呈环形结构,所述第二延伸部上开设有四个固定螺孔,所述固定螺孔到所述安装孔的轴心距离相等,且相邻的所述固定螺孔连线构成正方形结构;
    每个所述偏转极块上的所述第一延伸部在竖直方向拼接成环形结构,且所述偏转极块的环形结构外径小于所述第二延伸部的环形结构外径;
    所述第一延伸部的上表面开设有压线孔,侧壁开设有进线孔;
    使用夹装装置夹装所述第二延伸部的侧壁,依次对所述绝缘安装座未延伸有所述第二延伸部的侧壁、所述第二延伸部的下表面以及所述偏转极板初型的光轴孔内壁进行精加工。
  10. 根据权利要求8所述的一种静电场偏转器的加工方法,其特征在于,使用慢走丝线沿所述切割线切割所述偏转极板初型,切割成八瓣平均的所述偏转极块。
PCT/CN2021/098310 2021-05-27 2021-06-04 静电场偏转器及其加工方法 WO2022246897A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110584540.9A CN116092901A (zh) 2021-05-27 2021-05-27 静电场偏转器及其加工方法
CN202110584540.9 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022246897A1 true WO2022246897A1 (zh) 2022-12-01

Family

ID=84228401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098310 WO2022246897A1 (zh) 2021-05-27 2021-06-04 静电场偏转器及其加工方法

Country Status (2)

Country Link
CN (1) CN116092901A (zh)
WO (1) WO2022246897A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123651A (ja) * 1988-11-02 1990-05-11 Fujitsu Ltd 半導体装置製造装置の製造方法
JPH10261376A (ja) * 1997-03-18 1998-09-29 Toshiba Corp 荷電ビーム描画装置用静電偏向電極の製造方法
CN108807118A (zh) * 2018-06-08 2018-11-13 聚束科技(北京)有限公司 一种扫描电子显微镜系统及样品探测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123651A (ja) * 1988-11-02 1990-05-11 Fujitsu Ltd 半導体装置製造装置の製造方法
JPH10261376A (ja) * 1997-03-18 1998-09-29 Toshiba Corp 荷電ビーム描画装置用静電偏向電極の製造方法
CN108807118A (zh) * 2018-06-08 2018-11-13 聚束科技(北京)有限公司 一种扫描电子显微镜系统及样品探测方法

Also Published As

Publication number Publication date
CN116092901A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US6522817B2 (en) Optical fiber array and method of formation
JP2614421B2 (ja) 静電チャック装置の製造方法
US8173976B2 (en) Linear ion processing apparatus with improved mechanical isolation and assembly
US6125522A (en) Manufacturing method for electrostatic deflector
US5929452A (en) Electrostatic deflecting electrode unit for use in charged beam lithography apparatus and method of manufacture the same
EP1070334A1 (en) Precision alignment and assembly of microlenses and microcolumns
WO2022246897A1 (zh) 静电场偏转器及其加工方法
US7598594B2 (en) Wafer-scale microcolumn array using low temperature co-fired ceramic substrate
KR20220051815A (ko) 탑재대 및 기판 처리 장치
US5753922A (en) Electromagnetic deflector
US11694870B2 (en) Stage apparatus
TWI755544B (zh) 多行掃描式電子顯微鏡系統
JP2023095890A (ja) リソグラフィ装置で用いる基板ホルダ及びデバイス製造方法
US7193221B2 (en) Electronic optical lens barrel and production method therefor
TWI770449B (zh) 載物台設備、檢測設備及真空設備
US6586746B1 (en) Multipole electrostatic e-beam deflector
KR20230104634A (ko) 정전기식 클램프
CN116092902A (zh) 对中机构及具有其的扫描电镜
CN111183501B (zh) 干涉测量台定位装置
US20200176215A1 (en) Systems and methods of colling objective lens of a charged-particle beam system
US7448131B2 (en) Method of making gate for charged particle motion
WO2022246895A1 (zh) 对中机构及具有其的扫描电镜
TWI820665B (zh) 粒子束裝置及物件台
US11996263B2 (en) Stage apparatus
JP2006216558A (ja) 粒子放射線用の静電偏向システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE